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Abstract

A vector functional-difference equation of the first order with a special matrix coefficient is analysed.
It is shown how it can be converted into a Riemann-Hilbert boundary-value problem on a union of two
segments on a hyperelliptic surface. The genus of the surface is defined by the number of zeros and poles
of odd order of a characteristic function in a strip. An even solution of a symmetric Riemann-Hilbert
problem is also constructed. This is a key step in the procedure for diffraction problems. The proposed
technique is applied for solving in closed form a new model problem of electromagnetic scattering of
a plane wave obliquely incident on an anisotropic impedance half-plane (all the four impedances are
assumed to be arbitrary).

1 Introduction

The most powerful and general methods for exact solution of model problems in acoustic and electromag-
netic scattering are those of Wiener and Hopf (1931) and Maliuzhinets (1958). The former method leads
to the Riemann-Hilbert boundary-value problem on an infinite straight line L (it splits the complex plane
into two half-planes D+ and D−):

Φ+(t) = G(t)Φ−(t) + g(t), t ∈ L, (1.1)

where the unknown vectors (functions) Φ±(t) are analytic in D±. The matrix (function) G(t) and the
vector (function) g(t) are given. The Maliuzhinets method gives rise to a functional-difference equation
(a particular case of the Carleman boundary-value problem of the theory of analytic functions):

Φ(σ) = G(σ)Φ(σ − h) + g(σ), σ ∈ Ω = {Re(s) = ω}, (1.2)

where Φ(σ) is an unknown vector (function) analytic in the strip Π = {ω − h < Re(s) < ω}. The matrix
(function) G(σ) and the vector (function) g(σ) are supposed to be known.

The method of exact solution of equations (1.1), (1.2) rests on our ability to factorise the coefficient
G of the problems, i.e. to split the matrix (function) G into two factors:

G(t) = X+(t)[X−(t)]−1, t ∈ L, (1.3)

in the case of equation (1.1), and

G(σ) = X(σ)[X(σ − h)]−1, σ ∈ Ω, (1.4)
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for equation (1.2). Here X±(z) are analytic and non-singular in the domains D±, and X(s) is analytic
and non-singular in the strip Π.

If the aforementioned equations are scalar, then in either case there is an exact device for factorisation
which is, essentially, based on the Sokhotski-Plemelj formulae. Thus, practically all conceivable scalar
equations (1.1), (1.2) corresponding to applied problems can be solved exactly (for a survey see Noble,
1988; Osipov and Norris 1999).

It is known that for a system of functional equations (1.1) or (1.2) such a general procedure is not
available. In comparison with the difference matrix factorisation (1.4), there are significantly more studies
on the Wiener-Hopf matrix factorisation (1.3). We mention papers by Khrapkov (1971), Jones (1984) and
Moiseyev (1989). The paper by Jones also provides some references to other results on the Wiener-Hopf
matrix factorisation and their applications to physical models.

As for the vector functional-difference equation (1.2), to the best of the authors’ knowledge, classes
of matrices which admit the constructive difference factorisation (1.4) have not been studied. We, of
course, discard those cases when the matrix coefficient G can be diagonalised by multiplying the left- and
right-hand sides of equation (1.2) by a constant matrix.

In this paper, we study the vector functional-difference equation (1.2) with the matrix coefficient of
the form

G(σ) =

(

a1(σ) + a2(σ)f1(σ) a2(σ)
a2(σ)f2(σ) a1(σ) − a2(σ)f1(σ)

)

, σ ∈ Ω, (1.5)

where a1(σ), a2(σ) are arbitrary Hölder functions on every finite segment of the contour Ω, f1(σ), f2(σ)
are arbitrary single-valued meromorphic functions in the strip Π such that fj(σ) = fj(σ − h), σ ∈ Ω,
j = 1, 2. It is assumed that the function f1(s) and the characteristic function f(s) = f 2

1 (s) + f2(s) have
finite numbers of poles in the strip Π. The number of zeros of the function f(s) in the strip Π is also
finite.

We propose a procedure for exact solution of the vector functional-difference equation (1.2) with the
matrix coefficient (1.5). The method consists of the following steps:

(i) reducing the initial equation (1.2) to two separate functional-difference equations of the first order
and a system of boundary conditions for the unknown functions on a system of cuts. The cuts join the
branch points in the strip of the function f 1/2(s);

(ii) converting the problem to a vector Riemann-Hilbert problem on a system of open curves;
(iii) setting up a Riemann-Hilbert problem on the contour L = L1 ∪ L2, Lj = (−1, 1) ⊂ Cj , on a

hyperelliptic surface R formed from the two copies C1 and C2 of the cut complex plane;
(iv) constructing a solution of the Riemann-Hilbert problem on the surface growing at infinity;
(v) solving the Jacobi inversion problem (Springer, 1956; Zverovich, 1971; Farkas and Kra, 1991;

Antipov and Silvestrov, 2002) and remove the growth at infinity of the solution;
(vi) writing down the general solution of the Riemann-Hilbert problem on the surface and, afterwards,

the general solution of the vector functional-difference equation (1.2).
If the function f 1/2(s) has no branch points in the strip Π, then one can find a closed-form solution

of the vector equation (1.2) by analysing a standard Riemann-Hilbert problem on the segment (−1, 1) of
the complex plane. In general, however, it is necessary to formulate and solve a Riemann-Hilbert problem
on a two-sheeted surface of genus ρ, with 2ρ + 2 being the number of the branch points of the function
f1/2(s) in the strip Π (the number of these points is always even). If the function f 1/2(s) has only two
branch points in the strip Π, then the genus of the surface is zero and the solution of the Jacobi inversion
problem can be bypassed. For ρ ≥ 1, the analysis of the Riemann-Hilbert problem requires solving the
Jacobi inversion problem in terms of either the Riemann θ-function (see, for instance, Farkas and Kra,
1991) if ρ ≥ 2, or elliptic functions (see, for example, Hancock, 1968) if ρ = 1.

It turns out that applying the Maliuzhinets technique to problems of diffraction needs a special solution
which meets the symmetry condition:

Φ(ω + iτ) = Φ(ω − h− iτ), −∞ < τ <∞. (1.6)
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The above relation not only narrows the class of solutions but also imposes some necessary conditions for
the matrix G(σ) and the vector g(σ). If those conditions are satisfied, then one needs to seek an even
solution of the Riemann-Hilbert problem on a surface of genus ρ′ = [ρ/2] ([a] is the entire part of a number
a). Therefore, in this case, there is no need to solve Jacobi’s problem if the number of the branch points
in the strip Π is not greater than 4. Otherwise, for the number of the branch points not greater than 8,
the problem is solvable in terms of elliptic functions. We note that the number of the branch points of the
function f 1/2(s) is a topological characteristics of the problem. To decrease the genus of the corresponding
surface we need an additional symmetry of the problem. Recently, Senior and Legault (2000) analysed
a second-order scalar functional-difference equation in the case when it is solvable by elliptic functions.
Although their method is different, it also uses some elements of the theory of Riemann surfaces (a torus
in their case).

To show how the proposed technique works, we choose a new canonical problem of electromagnetic
scattering by an anisotropic impedance half-plane. Senior (1978) formulated the problem for four different
impedance parameters using both Wiener-Hopf and Maliuzhinets methods. The Wiener-Hopf formulation
leads to a 1 × 4 vector Riemann-Hilbert boundary-value problem for an infinite contour on a plane. The
particular case, when the impedances meet the restriction η+

j = η−j (j = 1, 2), was analysed by Hurd
and Lüneberg (1985). They chose the Wiener-Hopf formulation and found a closed-form solution of the
corresponding 1×2 vector Riemann-Hilbert problem on the real axis in terms of elliptic functions. On the
other hand, the Maliuzhinets formulation of the general problem gives a second-order functional-difference
equation. As it was pointed out by Senior (1978), it was beyond known techniques.

In this paper, we present a closed-form solution of this most general case of the scattering problem.
Mathematically, it converts into a Riemann-Hilbert problem on a hyperelliptic surface of genus three that
is solvable in terms of the Riemann θ-function of genus 3 (Antipov and Silvestrov, 2002).

The paper is organised as follows. In Section 2, we define sufficient conditions for the matrix coefficient
G(σ) to be imposed in order that the proposed method works. We reduce the initial functional-difference
equation (1.2) to a scalar Riemann-Hilbert problem on an open contour of a Riemann surface in Section
3. A canonical solution of this problem is constructed in Section 4. The general solution of the Riemann-
Hilbert problem on the surface is written down in Section 5. In Section 6, we construct and analyse a
closed-form solution of the vector functional-difference equation (1.2). We also specify it for the case when
all the poles are simple.

For problems of scattering, it is crucial to know how to construct a solution that meets the symmetry
condition (1.6). This is the main aim of Section 7.

Section 8 is devoted to the problem of diffraction by an anisotropic impedance half-plane (all the four
impedances are assumed to be arbitrary). In Section 8.1, we reduce the problem to a vector functional-
difference equation of the first order. The general case (the corresponding surface is of genus 3) is analysed
in Section 8.2. Finally, in Section 8.3, a special case, when there are no branch points, is considered. We
emphasise that in this case the impedances are not necessarily the same, and the solution of the Jacobi
inversion problem is bypassed.

2 Vector functional-difference equation of the first order

Let Π be a strip in the plane of a complex variable s: Π = {s ∈ C : ω − h < Re(s) < ω}, where ω is
real and h > 0. Let Ω, Ω−1 be the boundaries of the strip: Ω = {Re(s) = ω}, Ω−1 = {Re(s) = ω − h}.
Consider the following boundary-value problem of the theory of analytic functions:

Given a 2 × 2 matrix G(σ) and a vector g(σ) find a vector Φ(s) analytic in the strip Π, continuous
up to the boundary Ω ∪ Ω−1 apart from a finite number of poles β1, β2, . . . , βt ∈ Π of orders τ1, τ2, . . . , τt
and satisfying the boundary condition

Φ(σ) = G(σ)Φ(σ − h) + g(σ), σ ∈ Ω. (2.1)
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At the ends of the strip, i.e. as Im(s) → ±∞, Φ(s) = O(eb± Im(s)) with b± being real, finite and prescribed.
The matrix G(σ) and the vector g(σ) satisfy the Hölder condition on every finite segment of Ω. At infinity,
i.e. as σ → ω ± i∞, the components of the G(σ) and g(σ) may have a finite exponential growth not
necessarily the same. The matrix G(σ) is also nonsingular on Ω.

This problem is a vector generalisation of Carleman’s boundary-value problem (Carleman, 1932, p.148)
Φ(σ) = G(σ)Φ(α(σ)) + g(σ), σ ∈ Ω ∪ Ω−1 with the shift function α(σ) = σ − h on Ω and α(σ) = σ + h
on Ω−1. Obviously, the function α meets the Carleman condition α(α(σ)) = σ, σ ∈ Ω ∪ Ω−1. The other
Carleman conditions G(α(σ))G(σ) = 1 and G(σ)g(α(σ)) + g(σ) = 0, σ ∈ Ω ∪ Ω−1 are satisfied identically
if we put G(σ) = G(σ), g(σ) = g(σ), σ ∈ Ω, and G(σ) = [G(σ + h)]−1, g(σ) = −[G(σ + h)]−1g(σ + h)
σ ∈ Ω−1.

Note, that at the same time, the boundary condition (2.1) can be regarded as a vector functional-
difference equation.

Let λ1(σ), λ2(σ) be the eigenvalues of the matrix G(σ) and let λ1(σ) 6= λ2(σ). In this section we define
a class of matrices representable in the form

G(σ) = T(σ)Λ(σ)[T(σ − h)]−1, σ ∈ Ω, (2.2)

where Λ(σ) = diag{λ1(σ), λ2(σ)}, and the matrix T(σ) admits a two-valued analytical continuation
from the contour Ω into the strip apart from a finite number of poles, branch points and points where
detT(s) = 0. It is also required that T(σ) = T(σ − h), σ ∈ Ω. The eigenvalues of the matrix

G(σ) =

(

G11(σ) G12(σ)
G21(σ) G22(σ)

)

(2.3)

are given by

λ1(σ) = 1

2
[G11(σ) +G22(σ) + ∆1/2(σ)], λ2(σ) = 1

2
[G11(σ) +G22(σ) − ∆1/2(σ)], (2.4)

where
∆(σ) = [G11(σ) −G22(σ)]2 + 4G12(σ)G21(σ). (2.5)

Take the diagonalising matrix T(σ) in the form

T(σ) =

(

1 1
G22(σ)−G11(σ)+∆1/2(σ)

2G12(σ)
G22(σ)−G11(σ)−∆1/2(σ)

2G12(σ)

)

, σ ∈ Ω, (2.6)

with detT(σ) = −∆1/2(σ)[G12(σ)]−1. In order the matrix T(σ) to be meromorphic and two-valued, it is
sufficient that the functions

G22(s) −G11(s)

G12(s)
and

∆(s)

G2
12(s)

, s ∈ Π, (2.7)

are single-valued meromorphic functions. Clearly, if the functions (2.7) are meromorphic, then the function
G21(s)/G12(s) is also meromorphic. To clarify the structure of the matrix G(s) that meets the above
conditions, introduce the functions

f1(s) =
G11(s) −G22(s)

2G12(s)
, f2(s) =

G21(s)

G12(s)
, s ∈ Π, (2.8)

which are single-valued meromorphic functions in Π. Then the original matrix has the form

G(σ) =

(

G11(σ) G12(σ)
f2(σ)G12(σ) G11(σ) − 2f1(σ)G12(σ)

)

, σ ∈ Ω. (2.9)
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Note, the elements Gij(σ) are not required to be meromorphic in the strip Π. Finally, we transform the
matrix G(σ) into the form

G(σ) = a1(σ)

(

1 0
0 1

)

+ a2(σ)

(

f1(σ) 1
f2(σ) −f1(σ)

)

, σ ∈ Ω, (2.10)

where
a1(σ) = 1

2
[G11(σ) +G22(σ)], a2(σ) = G12(σ). (2.11)

In the new notations, the eigenvalues λ1, λ2 and the matrix of transformation T become

λ1(σ) = a1(σ) + a2(σ)f1/2(σ), λ2(σ) = a1(σ) − a2(σ)f1/2(σ), (2.12)

T(s) =

(

1 1

−f1(s) + f1/2(s) −f1(s) − f1/2(s)

)

, (2.13)

where f(s) = f 2
1 (s) + f2(s). Here a1(σ), a2(σ) are arbitrary Hölder functions on Ω (although they may be

discontinuous at infinity), and f1(s), f2(s) are arbitrary single-valued meromorphic functions in the strip
Π. They do not have poles on Ω. In the strip Π, the functions f1(s), f(s) have finite numbers of poles. It
is assumed that the number of zeros of the function f(s) in the strip Π is also finite. We emphasise that
the elements of the matrix T(s) are h-periodic or, equivalently, the functions f1(s), f

1/2(s) are h-periodic.
Formula (2.10) can be treated as an analogue of the Chebotarev-Khrapkov matrix (Chebotarev, 1956;

Khrapkov, 1971) for the functional-difference equation (2.1).

3 Scalar Riemann-Hilbert problem on a hyperelliptic surface

In this section we reduce the vector functional-difference equation (2.1) with the matrix coefficient (2.10) to
a scalar Riemann-Hilbert problem on a Riemann surface. First, substitute the relation (2.2) into equation
(2.1)

[T(σ)]−1Φ(σ) = Λ(σ)[T(σ − h)]−1Φ(σ − h) + [T(σ)]−1g(σ), σ ∈ Ω, (3.1)

and introduce a new vector-function

φ(s) = [T(s)]−1Φ(s), s ∈ Π, (3.2)

with the components

φ1(s) =

(

f1(s)

2f1/2(s)
+

1

2

)

Φ1(s) +
Φ2(s)

2f1/2(s)
,

φ2(s) =

(

− f1(s)

2f1/2(s)
+

1

2

)

Φ1(s) −
Φ2(s)

2f1/2(s)
, s ∈ Π. (3.3)

These formulae indicate that the functions φ1(s) and φ2(s) are multi-valued. They have branch points at
the zeros and poles of odd order of the function f(s).

Among these points there can also be the two infinite points at the upper and lower ends of the strip.
From the theory of periodic meromorphic functions, by definition, the upper end x+ i∞ (ω− h ≤ x ≤ ω)
of the strip is called a zero of order ν of a function f(s) if f(s) ∼ Ae2πisν/h as Im(s) → +∞ (A =const6= 0).
The point x + i∞ is a pole of order ν if f(s) ∼ Ae−2πisν/h as Im(s) → +∞. The lower end x − i∞ is
treated similarly. It is known (Hancock, 1968) that any h-periodic meromorphic function has the same
number of poles and zeros in the strip of the periods (the poles and zeros including the upper and lower
infinite points are counted according to the multiplicity). Indeed, by the conformal mapping z = e−2πis/h,
the strip Π is transformed into C̄ = C∪{∞}, and an h-periodic function in the s-plane becomes a rational
function in the extended z-plane with the same number of poles and zeros in C̄.
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Therefore, the function f 1/2(s) has an even number of the branch points (the infinite points x ± i∞
can be branch points as well). Let the branch points be s0, s1, . . . , s2ρ+1. In the case ρ = −1, the function
f(s) is either a constant, or all its poles and zeros are of even order. Henceforth, it is assumed that ρ ≥ 0.
Apart from the branch points s0, s1, . . . , s2ρ+1, the functions φ1(s) and φ2(s) admit a finite number of
poles in the strip Π. In addition to the prescribed poles β1, β2, . . . , βt of the vector-function Φ(s), the
functions φ1 and φ2 have new poles. Their multiplicity and location are entirely defined by the poles of
the function f1(s) and the zeros of even order of the function f(s). Let all the poles of the functions φ1(s)
and φ2(s) be a1, a2, . . . , am of orders ν1, ν2, . . . , νm.

By using (3.2) the coupled difference equation (3.1) reduces to two separate equations

φ1(σ) = λ1(σ)φ1(σ − h) + g◦1(σ), σ ∈ Ω,

φ2(σ) = λ2(σ)φ2(σ − h) + g◦2(σ), σ ∈ Ω, (3.4)

with

g◦1(σ) =

(

f1(σ)

2f1/2(σ)
+

1

2

)

g1(σ) +
g2(σ)

2f1/2(σ)
,

g◦2(σ) =

(

− f1(σ)

2f1/2(σ)
+

1

2

)

g1(σ) − g2(σ)

2f1/2(σ)
, σ ∈ Ω. (3.5)

and λ1, λ2 being the functions (2.12). To fix a branch of the function f 1/2(s) we cut the strip Π by
smooth curves Γj ⊂ Π (j = 0, 1, . . . ρ) which do not intersect each other and join the branch points so
that Γj = s2js2j+1 (j = 0, 1, . . . ρ). The positive direction of Γj is chosen from s2j to s2j+1. Denote the
limit value of the fixed branch on the left and the right sides of the cut as [f 1/2(σ)]+ and [f1/2(σ)]−,
respectively. Clearly, [f 1/2(σ)]+ = −[f1/2(σ)]−, σ ∈ Γj.

Since the vector-function Φ(s) must be single-valued in the strip Π, from (3.2), in addition, we get the
following boundary condition on the system of curves Γj (j = 0, 1, . . . , ρ):

T+(σ)φ+(σ) = T−(σ)φ−(σ), σ ∈ Γj . (3.6)

This requirement recovers the linear relations between the limit values of the functions φ1 and φ2 on the
curves Γj :

φ+
1 (σ) = φ−2 (σ), φ−1 (σ) = φ+

2 (σ),

σ ∈ Γj (j = 0, 1, . . . , ρ). (3.7)

Therefore, the original vector functional-difference equation (2.1) with the matrix coefficient (2.10) is
equivalent to the system of two separate difference equations (3.4) and the two relations of Riemann-
Hilbert type (3.7).

To reduce this new problem to a vector Riemann-Hilbert problem on a system of open contours, we
map the s-strip Π onto a z-plane cut along the segment [−1, 1]. The mapping function and the inverse
map are defined by

z = −i tan π
h

(s− ω), s = ω +
ih

2π
log

1 + z

1 − z
. (3.8)

The contour Ω is mapped onto the upper side of the cut [−1, 1] (the left bank with respect to the positive
direction), the second side of the strip, Ω−1, is mapped onto the lower side of the cut. The images of the
upper and the lower infinite points of the strip Π, x − i∞ and x + i∞ (ω − h ≤ x ≤ ω), are the points
z = −1 and z = 1, respectively. The function log[(1 + z)(1 − z)−1] is real on the upper side of the cut.
Introduce the following functions

Fj(z) = φj

(

ω +
ih

2π
log

1 + z

1 − z

)

, z ∈ C,

lj(t) = λj

(

ω +
ih

2π
log

1 + t

1 − t

)

, t ∈ [−1, 1],
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g∗j (t) = g◦j

(

ω +
ih

2π
log

1 + t

1 − t

)

, t ∈ [−1, 1], j = 1, 2, (3.9)

and also the notations for the images of the branch points sj and the poles ak:

zj = −i tan π
h

(sj − ω), j = 0, 1, . . . , 2ρ+ 1,

αk = −i tan π
h

(ak − ω), k = 1, 2, . . . ,m. (3.10)

Let the cuts Γj be mapped onto curves Γ∗
j (j = 0, 1, . . . ρ). The curves Γ∗

j ⊂ C and do not intersect each
other and the segment [−1, 1].

Thus, the system of equations (3.4), (3.7) is equivalent to the following vector Riemann-Hilbert problem

F+
1 (t) = l1(t)F

−
1 (t) + g∗1(t), t ∈ (−1, 1),

F+
2 (t) = l2(t)F

−
2 (t) + g∗2(t), t ∈ (−1, 1),

F+
1 (t) = F−

2 (t), t ∈ Γ∗
j ,

F+
2 (t) = F−

1 (t), t ∈ Γ∗
j , j = 0, 1, . . . ρ. (3.11)

Finally, we reduce this vector problem on the complex plane to a scalar problem on a Riemann surface.
Let R be the two-sheeted surface of the algebraic equation

w2 = q(z), q(z) = (z − z0)(z − z1) · · · (z − z2ρ+1), (3.12)

formed by gluing two copies C1 and C2 of the extended complex plane C ∪∞ cut along the system of the
curves Γ∗

j (j = 0, 1, . . . ρ). The positive (left) sides of the cuts Γ∗
j on C1 are glued with the negative (right)

sides of the curves Γ∗
j on C2, and vice versa. This gives rise to a two-sheeted Riemann surface R of genus

ρ. Then the function w, defined by (3.12), becomes single-valued on the surface R:

w =

{

q1/2(z), z ∈ C1

−q1/2(z), z ∈ C2,
(3.13)

where q1/2(z) is the branch chosen such that q1/2(z) ∼ zρ+1, z → ∞.
Denote a point of the surface R with affix z on C1 by the pair (z, q1/2(z)), and its counterpart on C2

by the pair (z,−q1/2(z)). Introduce a function on the surface R

F (z, w) =

{

F1(z), (z, w) ∈ C1

F2(z), (z, w) ∈ C2.
(3.14)

Because of the third and fourth conditions in (3.11), the function F (z, w) is meromorphic everywhere
on the surface except for the contour L = L1 ∪ L2, where L1 = (−1, 1) ⊂ C1 and L2 = (−1, 1) ⊂ C2.
Therefore, the system (3.11) is equivalent to a scalar Riemann-Hilbert problem on the surface R

F+(t, ξ) = l(t, ξ)F−(t, ξ) + g∗(t, ξ), (t, ξ) ∈ L, (3.15)

where

l(t, ξ) =

{

l1(t), (t, ξ) ∈ L1

l2(t), (t, ξ) ∈ L2,
g∗(t, ξ) =

{

g∗1(t), (t, ξ) ∈ L1

g∗2(t), (t, ξ) ∈ L2,
(3.16)

and ξ = w(t).
Without loss of generality, the Hölder function l(t, ξ) does not vanish on the contour L and has definite

limits at the end-points t = ±1. The function g∗(t, ξ) is also a Hölder function on L except possibly the
ends:

|g∗(t, ξ)| ≤ A
(µ)
0 |t∓ 1|−ν̃±

µ , (t, ξ) ∈ Lµ, µ = 1, 2, t→ ±1, (3.17)

where A
(µ)
0 = const. The parameters ν̃±µ are defined from (3.5) by the behaviour at the points ω ± i∞ of

the functions f1(σ), f1/2(σ), g1(σ) and g2(σ).
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4 Canonical solution to the Riemann-Hilbert problem on a hyperellip-

tic surface

4.1 Class of solutions

First, describe a class of solutions for the problem (3.15). Clearly, the function F (z, w) admits poles at
the points (αk, q

1/2(αk)) and (αk,−q1/2(αk)) of orders νk (k = 1, 2, . . . ,m). In addition, this function
may have poles at the branch points zj of order say, µj ≥ 0 (j = 0, 1, . . . , 2ρ + 1). If one of these points
zj is a removable singularity, then µj = 0. Obviously, if µj > 0, then µj is odd. We remind (Springer,
1956) that a branch point zj of a Riemann surface is called a pole of order µj for a function F (z, w) if
F (z, w) ∼ Aζ−µj , ζ → 0, A = const, and ζ = (z− zj)

1/2 is a local uniformising parameter of the point zj.
Formulae (3.3), (3.9) and (3.14) indicate that at the end-points of the contour L, the function F (z, w)

may have singularities:

|F (z, w)| ≤ A
(µ)
1 |z ∓ 1|−ν±

µ , (z, w) ∈ Cµ, µ = 1, 2, z → ±1, (4.1)

where A
(µ)
1 = const, and ν±µ ≥ ν̃±µ . The numbers ν±µ are defined by the parameters ν̃±µ , by the prescribed

growth at the ends of the strip of the functions Φ1(s),Φ2(s), i.e. by the numbers b±, and also by the
behaviour of the functions f1(s)f

−1/2(s)+1, f1(s)f
−1/2(s)−1 and f−1/2(s) as s→ x±i∞ (ω−h ≤ x ≤ ω).

The key step of the technique of solution is to factorise the function l(t, ξ) or to construct a special,
canonical function. We say that the function X(z, w) is a canonical solution of the problem (3.15) if it
provides a solution to the following homogeneous problem on an open contour of the surface R:

Find a function X(z, w) which is meromorphic on R \ L, admits a finite number of poles and zeros
and has non-zero boundary values X±(t, ξ) satisfying the following boundary condition

X+(t, ξ) = l(t, ξ)X−(t, ξ), (t, ξ) ∈ L ⊂ R, (4.2)

where the contour L consists of the contours L1 = (−1, 1) ⊂ C1 and L2 = (−1, 1) ⊂ C2. At the ends of
the contours Lµ,

|X(z, w)| ≤ A
(µ)
2 |z ∓ 1|−ν±

µ , (z, w) ∈ Cµ, z → ±1, A
(µ)
2 = const, µ = 1, 2. (4.3)

4.2 Solution to the problem growing at infinity

We start with constructing a system of canonical cross-sections of the surface R: a1,a2, . . . aρ and
b1,b2, . . .bρ. If ρ = 0, then the surface R is topologically equivalent to a sphere, and there are no
cross-sections. Let ρ > 0. The cross-section aj is a closed smooth curve built up from the banks of the
cut Γ∗

j = z2jz2j+1. As aj is traced in the positive direction, the first sheet C1 is to the left (Fig.1).
The cross-section bj is a smooth closed curve that consists of two parts. The first one (the solid line in

Fig.1) lies on the first sheet C1, its starting point is z2j , and the ending point is z1. The second part lies
on the second sheet (the dashed line in Fig.1), starts at the point z1 (it belongs to both sheets C1 and C2)
and goes to the point z2j at which it returns to the first sheet. The contour bj crosses the cross-section
aj from right to the left and does not cross the other sections ak and bk (k 6= j) and the contour L. We
mention that the choice of the system of the cross-sections is not unique. Another possibility, that under
some circumstances can be more convenient, is to take the cross-section bρ as a loop joining the points
z2ρ+1 and z0 and passing through the infinite points of both sheets of the surface (Fig.2).

Choose Weierstrass’ kernel (Zverovich, 1971)

dW =
w + ξ

2ξ

dt

t− z
, w = w(z), ξ = w(t), (4.4)
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Figure 1: Canonical cross-sections aj, bj (j = 1, 2, . . . , ρ). The loop bρ joins the points z1 and z2ρ.
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Figure 2: Canonical cross-sections aj, bj (j = 1, 2, . . . , ρ). The loop bρ joins the points z2ρ+1 and z0.

as an analogue of the Cauchy kernel on the surface R. We next show that the function

X(z, w) = exp{χ(z, w)}, (z, w) ∈ R (4.5)

provides a partial solution of the problem (4.2). Here

χ(z, w) =
1

2πi

∫

L

log l(t, ξ)dW +
2
∑

µ=1









sgnκ+
µ

|κ+
µ |
∑

j=1

p′µj
∫

p′µ0

dW + sgnκ−µ

|κ−
µ |
∑

j=1

p′′µj
∫

p′′µ0

dW









+
ρ
∑

j=1







rj
∫

pj

dW +mj

∮

aj

dW + nj

∮

bj

dW






, (4.6)

where

p′10 = (1, q1/2(1)), p′20 = (1,−q1/2(1)), p′′10 = (−1, q1/2(−1)), p′′20 = (−1,−q1/2(−1)),

pj = (δj , vj) ∈ C1, vj = q1/2(δj), j = 1, 2, . . . , ρ,

p′µj = (δ′µj , (−1)µ−1v′µj) ∈ Cµ, v′µj = q1/2(δ′µj), j = 1, 2, . . . , |κ+
µ |, µ = 1, 2,

p′′µj = (δ′′µj , (−1)µ−1v′′µj) ∈ Cµ, v′′µj = q1/2(δ′′µj), j = 1, 2, . . . , |κ−µ |, µ = 1, 2, (4.7)

are arbitrary fixed distinct points of the surface R which do not lie on the contour L and the canonical
cross-sections. Also, they coincide with none of the branch points of the surface R and the poles of the
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function F (z, w). The final formulae for the solution do not depend upon the choice of the points p ′µj , p
′′
µj

and pj.
As far as the points rj = (σj , wj) (wj = w(σj), j = 1, 2, . . . , ρ) are concerned, they are unknown and

may lie on either sheet of the surface. The points rj are also assumed to be different from the branch points
z0, z1, . . . z2ρ+1 and the poles with affixes α1, α2, . . . , αm. The numbers κ±1 , κ

±
2 ,mj and nj (j = 1, 2, . . . , ρ)

are unknown integers. Branches of the function log l(t, ξ) on the contours L1 and L2 are chosen in an
arbitrary way and will be fixed afterwards. The points rj and the integers κ±1 , κ

±
2 ,mj, nj will be chosen

later to make the function X(z, w) bounded at infinity and to satisfy the condition (4.3) at the ending
points of the contour L. The integrals in (4.6), apart from the integrals over L and around aj, bj , are
taken over smooth curves joining the end-points and which do not cross the cross-sections aj, bj and the
contour L. The values of these integrals are independent of the shape of the path. The first integral in
(4.6),

χ0(z, w) =
1

2πi

∫

L

log l(t, ξ)dW, (4.8)

is discontinuous through the contour L with the jump log l(t, ξ). The other integrals are also discontinuous
through the curves of integration. However, the corresponding jumps are 2πik (k is an integer), and
therefore, the function X(z, w) satisfies the homogeneous boundary condition (4.2).

The second and the third terms in (4.6) are taken to achieve the prescribed behaviour (4.3) of the
canonical solution at the ends z = ±1 of the contours L1 and L2 (see Section 4.3). Analysis of the term
exp{χ(z, w)} in the vicinity of the points p′µj shows that the function X(z, w) has simple poles at these
points if κ+

µ < 0 and simple zeros if κ+
µ > 0. Clearly, for κ+

µ = 0 there is no singularity at the point p′µj.
The same rule is applicable to the integrals over the curves with the ending point p ′′µj.

We emphasise that, in general, the function (4.5) has an essential singularity at infinity for the Weier-
strass kernel having the algebraic growth at infinity. To eliminate the essential singularity, the last sum
in (4.6) is added (see Section 4.4). At the starting points pj, the function X(z, w) possesses simple poles,
and at the ending points rj , it has simple zeros.

4.3 Choice of a branch of log l(t, ξ) and integers κ±
1 , κ±

2

Let us fix a branch of the function log l(t, ξ) such that

−π < arg lµ(0) ≤ π, µ = 1, 2. (4.9)

Then
log lµ(1) = log lµ(0) + i∆′

µ, log lµ(−1) = log lµ(0) − i∆′′
µ, µ = 1, 2, (4.10)

where ∆′
µ and ∆′′

µ are the increments of the arguments of the functions lµ(t) as t traces the contours [0, 1]
and [0,−1], respectively, with t = 0 as a starting point.

With a view towards recovering the property (4.3) of the function X(z, w) in neighbourhoods of the
end-points, we choose the integers κ±1 and κ±2 . To do this, first, rewrite the integral (4.8) in the form

χ0(z, w) =
1

4πi

1
∫

−1

[log l1(t) + log l2(t)]
dt

t− z

+
w(z)

4πi

1
∫

−1

[log l1(t) − log l2(t)]
dt

q1/2(t)(t− z)
(4.11)

and analyse its behaviour at z = ±1. The first term in (4.11) has the logarithmic singularity B± log(z∓1)
at the points z = ±1 of both sheets of the surface, where

B± = ± 1

4πi
[log l1(±1) + log l2(±1)]. (4.12)
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As for the second integral, its behaviour depends on whether or not the points z = ±1 coincide with
the branch points of the surface. If z = ±1 are not the branch points, then the second integral has the
logarithmic singularity B±

µ log(z ∓ 1) on the sheet Cµ, where

B±
µ = ∓(−1)µ

4πi
[log l1(±1) − log l2(±1)], µ = 1, 2. (4.13)

If z = 1 or z = −1 is a branch point, then the second integral is bounded as z → 1 or z → −1 on both
sheets C1 and C2.

We thus obtain that if z = 1 is a branch point, regardless of which sheet the point z = 1 belongs to,
the function χ0(z, w) behaves as

χ0(z, w) ∼ log l1(1) + log l2(1)

4πi
log(z − 1), (z, w) ∈ R, z → 1. (4.14)

In the vicinity of the second end-point, if it is a branch point, then

χ0(z, w) ∼ − log l1(−1) + log l2(−1)

4πi
log(z + 1), (z, w) ∈ R, z → −1. (4.15)

If z = ±1 are regular points of the surface,

χ0(z, w) ∼ ± log lµ(±1)

2πi
log(z ∓ 1), (z, w) ∈ Cµ, z → ±1, µ = 1, 2. (4.16)

Substituting formulae (4.14), (4.15), (4.16) into (4.5), (4.6) yields

X(z, w) = O(|z ∓ 1|β±
µ ), (z, w) ∈ Cµ, z → ±1, µ = 1, 2, (4.17)

where

β±µ = ± 1

2π
arg lµ(±1) − κ±µ , µ = 1, 2. (4.18)

This is true if z = ±1 are regular points of the surface. If, however, z = 1 or z = −1 coincides with a
branch point, then

X(z, w) = O(|z − 1|β+

), (z, w) ∈ R, z → 1 (4.19)

or
X(z, w) = O(|z + 1|β−

), (z, w) ∈ R, z → −1, (4.20)

with

β± = ± 1

4π
[arg l1(±1) + arg l2(±1)] − κ±1 . (4.21)

In this case we put κ+
2 = 0 or κ−2 = 0. Obviously, the function X(z, w) meets the condition (4.3) if the

numbers β±
1 , β± satisfy the inequalities

−ν±µ ≤ β±µ < 1 − ν±µ (µ = 1, 2), −ν±1 ≤ β± < 1 − ν±1 . (4.22)

Hence, if z = ±1 are regular points of the surface R, then

κ±µ = ν±µ +

[

± 1

2π
arg lµ(±1)

]

, µ = 1, 2. (4.23)

Here [a] is the entire part of a number a. If z = 1 or z = −1 is a branch point of the surface, then

κ+
1 = ν+

1 +

[

1

4π
(arg l1(1) + arg l2(1))

]

, κ+
2 = 0 (4.24)

or

κ−1 = ν−1 +

[

− 1

4π
(arg l1(−1) + arg l2(−1))

]

, κ−2 = 0. (4.25)
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4.4 Jacobi’s inversion problem

If the genus ρ of the surface R is zero, then the last sum in (4.6) vanishes, and the function X(z, w) given
by (4.5) is a solution (bounded as z → ∞) to the homogeneous problem (4.2). The choice (4.23) or (4.24),
(4.25) provides the prescribed behaviour of the solution to the original vector functional equation at the
ends x± i∞ (h− ω ≤ x ≤ ω) of the strip.

Let us concentrate on the elliptic (ρ = 1) and hyperelliptic (ρ ≥ 2) cases. In general, for arbitrary
rj,mj , nj , because of the pole of order ρ of the Weierstrass’ kernel at infinity, the function X(z, w) has
an essential singularity at infinity. The presence of the points rj and the integers mj, nj makes it possible
to eliminate this singularity. To do this, we rewrite the representation (4.6) for the function χ(z, w) as
follows

χ(z, w) = χ1(z) + w(z)χ2(z), (4.26)

where

χ1(z) =
1

4πi

1
∫

−1

[log l1(t) + log l2(t)]
dt

t− z

+
1

2

2
∑

µ=1






sgnκ+

µ

|κ+
µ |
∑

j=1

δ′µj
∫

1

dt

t− z
+ sgnκ−µ

|κ−
µ |
∑

j=1

δ′′µj
∫

−1

dt

t− z






+

1

2

ρ
∑

j=1

σj
∫

δj

dt

t− z
,

χ2(z) =
1

4πi

1
∫

−1

[log l1(t) − log l2(t)]
dt

q1/2(t)(t− z)

− 1

2

2
∑

µ=1

(−1)µ






sgnκ+

µ

|κ+
µ |
∑

j=1

δ′µj
∫

1

dt

q1/2(t)(t− z)
+ sgnκ−µ

|κ−
µ |
∑

j=1

δ′′µj
∫

−1

dt

q1/2(t)(t− z)







+
1

2

ρ
∑

j=1







(σj ,wj)
∫

(δj ,vj)

+mj

∮

aj

+nj

∮

bj







dt

ξ(t)(t− z)
. (4.27)

By use of the identity
1

t− z
= −1

z
− t

z2
− . . . − tρ−1

zρ
+

tρ

zρ(t− z)
(4.28)

we obtain the following asymptotic expansion of the function χ(z, w) at infinity

χ(z, w) = −1

2

ρ
∑

ν=1







1

2πi

1
∫

−1

[log l1(t) − log l2(t)]
tν−1dt

q1/2(t)

−
2
∑

µ=1

(−1)µ






sgnκ+

µ

|κ+
µ |
∑

j=1

δ′µj
∫

1

tν−1dt

q1/2(t)
+ sgnκ−µ

|κ−
µ |
∑

j=1

δ′′µj
∫

−1

tν−1dt

q1/2(t)







+
ρ
∑

j=1







(σj ,wj)
∫

(δj ,vj)

+mj

∮

aj

+nj

∮

bj







tν−1dt

ξ(t)











w(z)

zν
+O(1), z → ∞. (4.29)

The function χ(z, w) is bounded at infinity if and only if the following ρ conditions hold

ρ
∑

j=1







(σj ,wj)
∫

(δj ,vj)

dων +mj

∮

aj

dων + nj

∮

bj

dων






= d◦ν , ν = 1, 2, . . . , ρ, (4.30)
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where

d◦ν = − 1

2πi

1
∫

−1

[log l1(t) − log l2(t)]
tν−1dt

q1/2(t)

+
2
∑

µ=1

(−1)µ






sgnκ+

µ

|κ+
µ |
∑

j=1

δ′µj
∫

1

tν−1dt

q1/2(t)
+ sgnκ−µ

|κ−
µ |
∑

j=1

δ′′µj
∫

−1

tν−1dt

q1/2(t)






,

dων =
tν−1dt

ξ(t)
. (4.31)

The differentials dω1, dω2, . . . , dωρ form a basis of abelian differentials of the first kind on the surface R.
The integrals

Aνj =

∮

aj

tν−1dt

ξ(t)
, Bνj =

∮

bj

tν−1dt

ξ(t)
(4.32)

are the A- and B-periods of the abelian integrals (Springer, 1956):

ων = ων(z, w) =

(z,w)
∫

(z0,0)

tν−1dt

ξ(t)
, ν = 1, 2, . . . , ρ. (4.33)

By use of the notations (4.32) and (4.33) equations (4.30) become

ρ
∑

j=1

[ων(σj , wj) +mjAνj + njBνj] = d∗ν , ν = 1, 2, . . . , ρ, (4.34)

where

d∗ν = d◦ν +
ρ
∑

j=1

ων(δj , vj). (4.35)

The nonlinear system (4.34) with respect to the points (σj , wj) ∈ R and the integers mj , nj (j = 1, 2, . . . , ρ)
is the classical Jacobi inversion problem (Springer, 1956, Zverovich, 1971, Farkas, 1992). It is known that
its solution always exists.

In the elliptic case, ρ = 1, the problem is equivalent to the inversion of the elliptic integral

(σ1 ,w1)
∫

(z0,0)

dt
√

(t− z0)(t− z1)(t− z2)(t− z3)
+m1A11 + n1B11 = d∗1. (4.36)

It is solvable in terms of elliptic functions (Hancock, 1968). In the hyperelliptic case, ρ ≥ 2, the inversion
problem gives rise to a system of ρ algebraic equations (Zverovich, 1971) that is equivalent to one algebraic
equation of order ρ (Antipov and Silvestrov, 2002). To provide a guideline to the reader, describe the
main steps of the procedure for the inversion problem (Antipov and Silvestrov, 2002):

(i) normalising the basis of the abelian integrals of the first kind (4.33);
(ii) setting up Jacobi’s inversion problem for the normalised basis;
(iii) reducing the problem to an algebraic equation of order ρ;
(iv) evaluating the coefficients of the algebraic equation in terms of Riemann’s θ-function.
The function X(z, w) defined by (4.5), (4.26) is a canonical solution of the problem (3.15) provided the

continuous branches of the functions log l1(t), log l2(t) are chosen as in (4.9); the integers κ±1 , κ
±
2 are fixed

by (4.23) to (4.25). The points (δj , vj) ∈ R (j = 1, 2, . . . , ρ) are fixed in an arbitrary manner. The points
(σj , wj) ∈ R and the integers mj, nj (j = 1, 2, . . . , ρ) should be found from the Jacobi inversion problem
(4.34). We note that it is always possible to avoid (by changing the location of the points (δj , vj)) the
case when either some of the points (σj , wj) coincide, or some of them fall on the poles (αk,±q1/2(αk)),
or on the branch points of the surface R.

13



5 Non-homogeneous Riemann-Hilbert problem

Use of the canonical solution enables us to find the general solution of the non-homogeneous problem
(3.15). First, by splitting the function

l(t, ξ) =
X+(t, ξ)

X−(t, ξ)
, (t, ξ) ∈ L, (5.1)

we obtain
F+(t, ξ)

X+(t, ξ)
− F−(t, ξ)

X−(t, ξ)
=

g∗(t, ξ)

X+(t, ξ)
, (t, ξ) ∈ L. (5.2)

It follows from (3.17), (4.17), (4.19), (4.20), (4.22) that the function [X+(t, ξ)]−1g∗(t, ξ) may have inte-
grable singularities at the ends t = ±1 of the contour R:

∣

∣

∣

∣

g∗(t, ξ)

X+(t, ξ)

∣

∣

∣

∣

≤ A′|t∓ 1|−δ, A′ = const, 0 ≤ δ < 1, t→ ±1. (5.3)

Hence a partial solution of the problem (3.15) is the function X(z, w)Ψ(z, w), where

Ψ(z, w) = ψ1(z) + w(z)ψ2(z),

ψ1(z) =
1

4πi

∫

L

g∗(t, ξ)

X+(t, ξ)

dt

t− z
, ψ2(z) =

1

4πi

∫

L

g∗(t, ξ)

ξ(t)X+(t, ξ)

dt

t− z
. (5.4)

Then the general solution of the problem (3.15) becomes

F (z, w) = X(z, w)[Ψ(z, w) +R(z, w)], (5.5)

where R(z, w) is the meromorphic function on R whose poles are defined by the class of solutions described
in Section 4.1 and, also, by the properties of the canonical function X(z, w). The function R(z, w) has
poles of orders ν1, ν2, . . . , νm at the points with the affixes α1, α2, . . . αm on both sheets of the surface. It
also has simple poles at the points rj = (σj , wj) (j = 1, 2, . . . , ρ) and poles of orders µ0, µ1, . . . , µ2ρ+1 (µj

are either zero, or odd positive numbers) at the branch points z0, z1, . . . , z2ρ+1, respectively.
If κ+

µ > 0 (µ = 1 or µ = 2), then at the points p′µj = (δ′µj , (−1)µ−1v′j) ∈ Cµ (j = 1, 2, . . . , κ+
µ )

the canonical solution has simple zeros, and, therefore, the function R(z, w) may have simple poles at
these points. In the case κ+

µ < 0, the canonical function X(z, w) has simple poles at the points p′µj

(j = 1, 2, . . . ,−κ+
µ ). Eventually, this causes the presence of inadmissible poles of the function F (z, w).

In order for the solution to be bounded at the points p′µj it is necessary and sufficient that the function
Ψ(z, w) +R(z, w) vanishes at these points. Analysis of the structure of the function R(z, w) at the points
p′′µj = (δ′′µj , (−1)µ−1v′′µj) ∈ Cµ (j = 1, 2, . . . , |κ−µ |) is employed similarly.

In addition, the function Ψ(z, w)+R(z, w) has simple zeros at the points pj = (δj , vj) (j = 1, 2, . . . , ρ)
and has to be bounded at infinity on both sheets (if of course none of the above poles coincides with one
of the two infinite points of the surface). The meromorphic function R(z, w) with the described poles has
the form

R(z, w) = R1(z) + w(z)R2(z), (5.6)

where

R1(z) = C0 +
ρ
∑

j=1

Cjwj

z − σj
+

m
∑

k=1

νk
∑

j=1

D′
kj

(z − αk)j

+
2ρ+1
∑

k=0

(µk−1)/2
∑

j=1

E′
kj

(z − zk)j
−

2
∑

µ=1

(−1)µ





κ′
µ
∑

j=1

H ′
µjv

′
µj

z − δ′µj

+

κ′′
µ
∑

j=1

H ′′
µjv

′′
µj

z − δ′′µj



 ,
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R2(z) =
ρ
∑

j=1

Cj

z − σj
+

m
∑

k=1

νk
∑

j=1

D′′
kj

(z − αk)j

+
2ρ+1
∑

k=0

(µk+1)/2
∑

j=1

E′′
kj

(z − zk)j
+

2
∑

µ=1





κ′
µ
∑

j=1

H ′
µj

z − δ′µj

+

κ′′
µ
∑

j=1

H ′′
µj

z − δ′′µj



 . (5.7)

Here κ′µ = max{κ+
µ , 0}, κ′′µ = max{κ−µ , 0} (µ = 1, 2), v′µj = q1/2(δ′µj), v

′′
µj = q1/2(δ′′µj), wj = w(σj).

If the upper index is less than the lower one, then the corresponding sum is assumed to be zero. The
constants Cj (j = 0, 1, . . . , ρ), D′

kj, D
′′
kj (k = 1, 2, . . . ,m; j = 1, 2, . . . , νk), E

′
kj (k = 0, 1, . . . , 2ρ + 1; j =

1, 2, . . . , (µk−1)/2), E ′′
kj (k = 0, 1, . . . , 2ρ+1; j = 1, 2, . . . , (µk +1)/2), H ′

µj (j = 1, 2, . . . , κ′µ; µ = 1, 2) and
H ′′

µj (j = 1, 2, . . . , κ′′µ; µ = 1, 2) are arbitrary. The same choice of the constants Cj in the representations
for the rational functions R1(z) and R2(z) is explained by the fact that the canonical function X(z, w)
has simple poles at the points rj = (σj, wj) which lie either on the first sheet C1 or on the second one.
The constants D′

kj and D′′
kj are not the same because the general solution has to have poles at the points

α1, α2, . . . , αm, and the functions 1, w(z) are linear independent. For the same reason the constants E ′
kj,

E′′
kj and H ′

mj, H
′′
mj are different for the functions R1(z) and R2(z).

The procedure of solution of the Riemann-Hilbert problem (3.15) will be accomplished if the following
conditions

lim
z→∞

zk[ψ2(z) +R2(z)] = 0, k = 1, 2, . . . , ρ, (5.8)

Ψ(δk, vk) +R(δk, vk) = 0, k = 1, 2, . . . , ρ, (5.9)

are satisfied. In addition,

Ψ(δ′µj , (−1)µ−1v′µj) +R(δ′µj , (−1)µ−1v′µj) = 0, j = 1, 2, . . . ,−κ+
µ , µ = 1, 2, (5.10)

and
Ψ(δ′′µj , (−1)µ−1v′′µj) +R(δ′′µj , (−1)µ−1v′′µj) = 0, j = 1, 2, . . . ,−κ−µ , µ = 1, 2, (5.11)

effective if the upper bounds are positive. The conditions (5.8) provide the boundness of the function
Ψ(z, w) +R(z, w) at infinity. The next group of the conditions lends itself to eliminating the poles at the
points (δk, vk). The relations (5.10), (5.11) guarantee the boundness of the function F (z, w) at the points
(δ′µj , (−1)µ−1v′µj) and (δ′′µj , (−1)µ−1v′′µj) when κ+

µ < 0 and κ−µ < 0, respectively.
Remark. Formulae (5.7) are written down under the assumption that the poles αk and the branch

points zk lie in a finite part of the complex plane. Otherwise these formulae and the conditions (5.8) should
be corrected in the appropriate manner. Alternatively, the conformal mapping (3.8) can be changed by
another mapping of the strip Π into the complex plane with a cut different from [−1, 1] to make all the
points αk and zk finite.

6 Exact solution to the vector functional-difference equation

6.1 General case

Now we define the solution to the initial equation (2.1) with the matrix G(σ) given by (2.10). Use of the
relations (3.2), (2.13), (3.9) and (3.14) gives

Φ1(s) = F (z, w) + F (z,−w),

Φ2(s) = −f1(s)[F (z, w) + F (z,−w)] + f 1/2(s)[F (z, w) − F (z,−w)], s ∈ Π, (6.1)

where
z = −i tan π

h
(s− ω), f(s) = f 2

1 (s) + f2(s),

w = q1/2(z), q(z) = (z − z0)(z − z1) . . . (z − z2ρ+1). (6.2)
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The functions f1(s), f2(s) are defined by (2.8). To analyse the behaviour of the solution at the singular
points, let us transform formulae (6.1). First, by making use of relations (5.4) – (5.6), (4.5) and (4.26),
the solution to the Riemann-Hilbert problem (3.15) becomes

F (z, w) = eχ1(z)+w(z)χ2(z)[Y1(z) + w(z)Y2(z)], (6.3)

where
Y1(z) = ψ1(z) +R1(z), Y2(z) = ψ2(z) +R2(z), (6.4)

and the functions χ1, χ2, ψ1, ψ2 and R1(z), R2(z) are defined by (4.27), (5.4) and (5.7). Substituting the
expression (6.3) into (6.1) gives the resulting formulae for the solution:

Φ1(s) = 2eχ1(z)[cosh{w(z)χ2(z)}Y1(z) + w(z) sinh{w(z)χ2(z)}Y2(z)],

Φ2(s) = −f1(s)Φ1(s) + 2f 1/2(s)eχ1(z)[sinh{w(z)χ2(z)}Y1(z) + w(z) cosh{w(z)χ2(z)}Y2(z)]. (6.5)

The functions (6.5) satisfy equation (2.1). However, for arbitrary chosen constants in (5.7), they have
poles in the strip Π. Indeed, the function F (z, w) has poles at the points of both sheets of the surface
with affixes α1, α2, . . . αm and z0, z1, . . . , z2ρ+1. Their images in the strip Π, the points a1, a2, . . . am, and
s0, s1, . . . s2ρ+1, respectively, are the poles of the functions Φ1(s),Φ2(s). The factors f1(s) and f 1/2(s) may
change the order of poles or add new ones to the set of poles of the function Φ2(s). The conditions of
analyticity of the functions Φ1(s), Φ2(s) at their superfluous singular points provide additional conditions
which together with (5.8) – (5.11) are used to fix some of the arbitrary constants in (5.7).

6.2 The case of simple poles

Let all the poles αk (k = 1, 2, . . . ,m) and the branch points zk (k = 0, 1, . . . , 2ρ+1) be simple, i.e. νk = 1
(k = 1, 2, . . . ,m), and µk = 1 (k = 0, 1, . . . , 2ρ + 1). Then, obviously,

R1(z) = C0 +
ρ
∑

j=1

Cjwj

z − σj
+

m
∑

j=1

D′
j

z − αj
−

2
∑

µ=1

(−1)µ





κ′
µ
∑

j=1

H ′
µjv

′
µj

z − δ′µj

+

κ′′
µ
∑

j=1

H ′′
µjv

′′
µj

z − δ′′µj



 ,

R2(z) =
ρ
∑

j=1

Cj

z − σj
+

m
∑

j=1

D′′
j

z − αj
+

2ρ+1
∑

j=0

Ej

z − zj
+

2
∑

µ=1





κ′
µ
∑

j=1

H ′
µj

z − δ′µj

+

κ′′
µ
∑

j=1

H ′′
µj

z − δ′′µj



 . (6.6)

Therefore, the solution (6.5) possesses 3ρ + 2m + κ′1 + κ′2 + κ′′1 + κ′′2 + 3 arbitrary constants. Now we
write down all the conditions for the functions Φ1(s),Φ2(s) to be within the prescribed class. Assume
that the point (σk, wk) ∈ C1. Then from (6.6) the function F (z,−w) is analytic at this point. Because
of the simple zero for X(z, w) at (σk, wk), the function F (z, w) has a removable singularity at this point.
Similar result follows for (σk, wk) ∈ C2. The 2ρ conditions (5.8), (5.9) provide the required behaviour
of the solution at infinity and remove the simple poles of the canonical function X(z, w) at the points
(δk, vk) ∈ C1 (k = 1, 2, . . . , ρ). Let α1, α2, . . . , αt (t ≤ m) be the prescribed poles of the solution. Then to
eliminate the other poles αt+1, . . . , αm, we require

res
z=αk

Φ1(s) = 0, res
z=αk

Φ2(s) = 0 (k = t+ 1, t+ 2, . . . ,m) (6.7)

where

s = ω +
ih

2π
log

1 + z

1 − z
. (6.8)

The above relations provide the additional 2(m−t) conditions. As for the poles z = zk (k = 0, 1, . . . , 2ρ+1)
of the function R2(z), they become removable points of the solution. This is because the functions

w(z) sinh{w(z)χ2(z)}, f 1/2(z) sinh{w(z)χ2(z)}, f 1/2(z)w(z) cosh{w(z)χ2(z)} (6.9)
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have simple zeros at the points z = zk. The relations (5.10), (5.11) give κ̂1 + κ̂2 + κ̃1 + κ̃2 conditions,
where κ̂µ = max{0,−κ+

µ }, κ̃µ = max{0,−κ−µ } (µ = 1, 2). Finally, the function Φ2(s) defined from (3.3)
by

Φ2(s) = [−f1(s) + f1/2(s)]φ1(s) − [f1(s) + f1/2(s)]φ2(s) (6.10)

may have inadmissible poles at the poles of the functions f1(s) and f 1/2(s). Let these poles be s◦1, s
◦
2,

. . . , s◦n◦ . Assuming that all the poles are simple, write down the regularity conditions for the function
Φ2(s) at these points

res
s=s◦j

Φ2(s) = 0, j = 1, 2, . . . , n◦. (6.11)

Therefore, the total number of additional conditions providing the functions Φ1(s),Φ2(s) to belong to the
prescribed class, is 2ρ+ 2m− 2t+n◦ + κ̂1 + κ̂2 + κ̃1 + κ̃2. Thus, the difference between the number of the
arbitrary constants in (6.6) and the number of conditions for them is ρ+2t−n◦ +κ+

1 +κ+
2 +κ−1 +κ−2 +3.

Note, that ρ is the genus of the surface R (the number of the branch points of the function f 1/2(s) in the
strip Π is 2ρ+ 2); t is the number of the prescribed poles of the solution in the strip Π; n◦ is the number
of the inadmissible poles s◦j ; the integers κ±1 and κ±2 are defined by (4.23) – (4.25) and depend on the
elements of the matrix G(σ).

7 Even solution of the Riemann-Hilbert problem

In this section we aim to analyse a particular case of the Riemann-Hilbert problem (3.15) when its solution
is even, i.e. satisfies the condition

Fµ(z) = Fµ(−z), z ∈ Cµ\[−1, 1], µ = 1, 2. (7.1)

Since the points s and 2ω−h−s of the s-plane correspond to the points z and −z of the plane, respectively,
the relation (7.1) holds, if simultaneously

Φµ(s) = Φµ(2ω − h− s), µ = 1, 2,

f1(s) = f1(2ω − h− s), f 1/2(s) = f1/2(2ω − h− s), s ∈ Π. (7.2)

We also describe an algorithm for this case. To construct such an even solution is a crucial step in solving
problems of electromagnetic scattering (see Section 8).

7.1 Formulation

Assume that the poles αk (k = 1, 2, . . . , 2m′; m = 2m′) of the functions F1(s), F2(s) and the branch points
zk (k = 0, 1, . . . , 2ρ+ 1) of the surface R are simple and located symmetrically with respect to the origin:

αm′+k = −αk, k = 1, 2, . . . ,m′,

zρ+1+k = −zk, k = 0, 1, . . . , ρ. (7.3)

Let also the points z = ±1 do not coincide with the branch points.
Define a class of the Riemann-Hilbert problems (3.15) with additional condition of symmetry (7.1)

which have a solution. The relation (7.1) implies

F+
µ (−t) = F−

µ (t), F−
µ (−t) = F+

µ (t), t ∈ (−1, 1), µ = 1, 2. (7.4)

Replacing t for −t in the equation

F+
µ (t) = lµ(t)F−

µ (t) + g∗µ(t), t ∈ (−1, 1), µ = 1, 2, (7.5)
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that follows from (3.15), and using formulae (7.4) give

F+
µ (t) =

1

lµ(−t)F
−
µ (t) −

g∗µ(−t)
lµ(−t) , t ∈ (−1, 1), µ = 1, 2. (7.6)

By comparison of relations (7.5) and (7.6) we get the following necessary conditions for a solution of the
problem (3.15), (7.1) to exist:

lµ(t)lµ(−t) = 1, g∗µ(t) + lµ(t)g∗µ(−t) = 0, t ∈ (−1, 1), µ = 1, 2. (7.7)

Note, that the above conditions are equivalent to the relations

λµ(σ)λµ(σ̄) = 1, g◦µ(σ) + λµ(σ)g◦µ(σ̄) = 0, σ ∈ Ω, µ = 1, 2. (7.8)

This is because the points σ and σ̄ of the contour Ω correspond to the points t and −t on the segment
[−1, 1], respectively.

Thus, we have two possibilities: lµ(0) = 1 and lµ(0) = −1. We will henceforth assume that the
functions lµ(t) and g∗µ(t) meet the conditions (7.7). By the relation (7.1), the functions Fµ(z) have the
same singularities at the points z = ±1, and the inequality (4.1) becomes

|Fµ(z)| ≤ A
(µ)
1 |z ∓ 1|−νµ , z → ±1, A

(µ)
1 = const (µ = 1, 2). (7.9)

7.2 Even canonical function

Choose a branch of the functions log lµ(t), t ∈ [−1, 1] (µ = 1, 2) such that −π < arg lµ(0) ≤ π (µ = 1, 2).
Then, because of the conditions (7.7)

log lµ(−t) = − log lµ(t) + 2πiεµ, t ∈ [−1, 1], µ = 1, 2, (7.10)

where

εµ =

{

0 if lµ(0) = 1
1 if lµ(0) = −1,

(7.11)

and also since q1/2(−t) = q1/2(t), t ∈ [0, 1], the integral (4.11) has the form

χ0(z, w) =
1

2πi

1
∫

0

[log l1(t) + log l2(t)]
t dt

t2 − z2

+
w(z)

2πi

1
∫

0

[log l1(t) − log l2(t)]
t dt

q1/2(t)(t2 − z2)
+ χ̃0(z, w), (7.12)

where

χ̃0(z, w) = −ε1 + ε2
2

1
∫

0

dt

t+ z
− w(z)

ε1 − ε2
2

1
∫

0

dt

q1/2(t)(t+ z)
. (7.13)

The function χ̃0(z, w) is continuous everywhere on the surface R apart from the segments [−1, 0] ⊂
Cµ, µ = 1, 2. On these segments, for the function χ̃0(z, w), the following boundary condition holds:

χ̃+
0 (t, ξ) − χ̃−

0 (t, ξ) = 2πiεµ. (7.14)

Hence the function exp{χ̃0(z, w)} is continuous everywhere on the surface R. So, without loss of generality,
we can take the function χ0(z, w) without the last term χ̃0(z, w), i.e. as

χ0(z, w) =
1

2πi

1
∫

0

[log l1(t) + log l2(t)]
t dt

t2 − z2
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+
w(z)

2πi

1
∫

0

[log l1(t) − log l2(t)]
t dt

q1/2(t)(t2 − z2)
. (7.15)

Introduce, next, a new algebraic function

p(ζ) = (ζ − ζ0)(ζ − ζ1) . . . (ζ − ζρ), ζj = z2
j , j = 0, 1, . . . , ρ. (7.16)

Then, in view of the symmetry (7.3) of the branch points zj ,

q(z) = (z2 − z2
0)(z

2 − z2
1) . . . (z2 − z2

ρ) = p(z2). (7.17)

Rewrite now formula (7.15) as follows

χ0(z, w) =
1

4πi

1
∫

0

[log l1(
√
τ) + log l2(

√
τ)]

dτ

τ − ζ
+
u(ζ)

4πi

1
∫

0

[log l1(
√
τ) − log l2(

√
τ)]

dτ

p1/2(τ)(τ − ζ)

=
1

2πi

∫

L∗

log l∗(τ, η) dU = χ0∗(ζ, u), (7.18)

where ζ = z2, L∗ = L∗
1 ∪ L∗

2, L∗
1 = [0, 1] ⊂ C1, L∗

2 = [0, 1] ⊂ C2, log l∗(τ, η) = log lµ(
√
τ) on the contour

L∗
µ (µ = 1, 2), and

dU =
u+ η

2η

dτ

τ − ζ
(7.19)

is the Weierstrass’ kernel on a Riemann surface R′ of the algebraic function u2 = p(z). Here u(ζ) = w(
√
ζ),

η = u(τ).
On the other hand, the function expχ0∗(ζ, u) is a particular solution of the homogeneous Riemann-

Hilbert problem
expχ+

0∗(τ, η) = l∗(τ, η) expχ−
0∗(τ, η), (τ, η) ∈ L∗ (7.20)

on the surface R′ of genus ρ′ = [ρ/2] with the branch points ζ0, ζ1, . . . , ζρ. This solution is bounded at
the points (0,±p1/2(0)). It may have a power singularity at the points (1,±p1/2(1)) and an essential
singularity at infinity. By the device proposed in Section 4, remove these singularities by adding a new
function that does not affect the boundary condition (7.20)

χ∗(ζ, u) = χ0∗(ζ, u) +
2
∑

µ=1

sgnκµ

|κµ|
∑

j=1

p∗µj
∫

p∗µ0

dU +
ρ′
∑

j=1









r∗j
∫

p∗j

dU +mj

∮

a∗
j

dU + nj

∮

b∗
j

dU









. (7.21)

Here a∗
j , b∗

j (j = 1, 2, . . . , ρ′) are the canonical cross-sections of the surface R′ which are the images of
the ρ′ cross-sections aj, bj (j = 1, 2, . . . , ρ′) of the surface R by mapping ζ = z2. The integers κµ and the
points p∗µ0 are given by

κµ = νµ +

[

1

2π
arg lµ(1)

]

= νµ +

[

1

2π
∆∗

µ

]

, µ = 1, 2,

p∗µ0 = (1, (−1)µ−1p1/2(1)) = (1, (−1)µ−1q1/2(1)) ∈ Cµ, µ = 1, 2, (7.22)

where ∆∗
µ is the increment of the argument of the function lµ(t) as t traces the contour [0, 1] with t = 0

as a starting point. The other points p∗µj and p∗j are arbitrary, distinct and fixed:

p∗µj = (γ2
µj , (−1)µ−1vµj) ∈ Cµ, vµj = p1/2(γ2

µj) = q1/2(γµj), j = 1, 2, . . . , |κµ|, µ = 1, 2,

p∗j = (δ2j , vj) ∈ C1, vj = p1/2(δ2j ) = q1/2(δj), j = 1, 2, . . . , ρ′, (7.23)
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The integers mj , nj (j = 1, 2, . . . , ρ′) and the points

r∗j = (σ2
j , uj) ∈ R′, uj = u(σ2

j ) = w(σj) = wj, j = 1, 2, . . . , ρ′, (7.24)

are defined from the following Jacobi inversion problem on the Riemann surface R ′:

ρ′
∑

j=1

[ω∗
ν(σ

2
j , u(σ

2
j )) +mjA

∗
νj + njB

∗
νj] = d∗ν , ν = 1, 2, . . . , ρ′, (7.25)

where

ω∗
ν = ω∗

ν(ζ, u) =

(ζ,u)
∫

(ζ0,0)

τν−1dτ

η(τ)
= 2

(z,w)
∫

(z0,0)

t2ν−1dt

ξ(t)
= 2ω2ν(z, w),

A∗
νj =

∮

a∗
j

dω∗
ν = 2A2ν j, B∗

νj =

∮

b∗
j

dω∗
ν = 2B2ν j , j = 1, 2, . . . , ρ′,

d∗ν = 2
ρ′
∑

j=1

ω2ν(δj , vj) −
1

πi

1
∫

0

[log l1(t) − log l2(t)]
t2ν−1dt

q1/2(t)

+2
2
∑

µ=1

(−1)µ sgnκµ

|κµ|
∑

j=1

γµj
∫

1

t2ν−1dt

q1/2(t)
, ν = 1, 2, . . . , ρ′. (7.26)

We emphasise that the new Jacobi problem (7.25) related to the symmetric problem (3.15), (7.1) consists
of ρ′ = [ρ/2] non-linear algebraic equations, and can be reduced to an algebraic equation of degree ρ ′

(Antipov and Silvestrov, 2002). We remind that in the general non-symmetric case, there are ρ equations.
Next, by replacing in (7.18), (7.19), (7.21) ζ and τ for z2 and t2 respectively, we obtain the even

canonical function in the form (4.26), where

χ1(z) =
1

2πi

1
∫

0

[log l1(t) + log l2(t)]
t dt

t2 − z2
+

2
∑

µ=1

sgnκµ

|κµ|
∑

j=1

γµj
∫

1

t dt

t2 − z2
+

ρ′
∑

j=1

σj
∫

δj

t dt

t2 − z2
,

χ2(z) =
1

2πi

1
∫

0

[log l1(t) − log l2(t)]
t dt

q1/2(t)(t2 − z2)
−

2
∑

µ=1

(−1)µ sgnκµ

|κµ|
∑

j=1

γµj
∫

1

t dt

q1/2(t)(t2 − z2)

+
ρ′
∑

j=1







(σj ,wj)
∫

(δj ,vj)

+mj

∮

aj

+nj

∮

bj







t dt

ξ(t)(t2 − z2)
. (7.27)

7.3 General even solution

By use of the function χ(z, w) we can find the general solution of the even problem (3.15), (7.1). Let us
write it down in the case of simple poles (analysed in Section 6.2):

F (z, w) = χ(z, w) {ψ1(z) +R1(z) + w(z)[ψ2(z) +R2(z)]} , (7.28)

where

ψ1(z) =
1

2πi

∫

L∗

g∗(t, ξ)

X+(t, ξ)

t dt

t2 − z2
,
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ψ2(z) =
1

2πi

∫

L∗

g∗(t, ξ)

ξ(t)X+(t, ξ)

t dt

t2 − z2
,

R1(z) = C0 +
ρ′
∑

j=1

Cjwj

z2 − σ2
j

+
m′

∑

j=1

D′
j

z2 − α2
j

+
κ′

∑

j=1

H ′
jv1j

z2 − γ2
1j

−
κ′′

∑

j=1

H ′′
j v2j

z2 − γ2
2j

,

R2(z) =
ρ′
∑

j=1

Cj

z2 − σ2
j

+
m′
∑

j=1

D′′
j

z2 − α2
j

+
ρ
∑

j=0

Ej

z2 − z2
j

+
κ′
∑

j=1

H ′
j

z2 − γ2
1j

+
κ′′
∑

j=1

H ′′
j

z2 − γ2
2j

,

κ′ = max{κ1, 0}, κ′′ = max{κ2, 0}, wj = w(σj), vµj = q1/2(γµj). (7.29)

Here we used formulae (5.4), (7.7) and also

X+(−t, ξ) = X−(t, ξ) = X+(t, ξ)/l(t, ξ), (t, ξ) ∈ L. (7.30)

The solution (7.28) possesses ρ + ρ′ + 2m′ + κ′ + κ′′ + 2 arbitrary constants, and it has to meet the 2ρ′

conditions
lim

z→∞
z2j [ψ2(z) +R2(z)] = 0, j = 1, 2, . . . , ρ′, (7.31)

ψ1(δj) +R1(δj) + vj [ψ2(δj) +R2(δj)] = 0, j = 1, 2, . . . , ρ′, (7.32)

which follow from (5.8), (5.9). As in the general case, it should also satisfy the relations

ψ1(γ1j) +R1(γ1j) + v1j [ψ2(γ1j) +R2(γ1j)] = 0, j = 1, 2, . . . ,−κ1 (if κ1 < 0) (7.33)

ψ1(γ2j) +R1(γ2j) − v2j [ψ2(γ2j) +R2(γ2j)] = 0, j = 1, 2, . . . ,−κ2 (if κ2 < 0) (7.34)

and the conditions (6.7), (6.11). Therefore, in total, we get 2ρ′+m− t+n◦+ κ̂1 + κ̂2 relations for arbitrary
constants. Here κ̂µ = max{0,−κµ} (µ = 1, 2), and n◦ is the number of equations (6.11).

7.4 Odd solution

Finally, we notice that the even canonical function can be used for finding the general solution of the
problem (3.15) subject to the condition Fµ(z) = −Fµ(−z) (µ = 1, 2). We write down the solution in case
such a problem might arise in other applications:

F (z, w) = zχ(z, w) {ψ3(z) +R1(z) + w(z)[ψ4(z) +R2(z)]} , (7.35)

where

ψ3(z) =
1

2πi

∫

L∗

g∗(t, ξ)

X+(t, ξ)

dt

t2 − z2
,

ψ4(z) =
1

2πi

∫

L∗

g∗(t, ξ)

ξ(t)X+(t, ξ)

dt

t2 − z2
. (7.36)

It should be pointed out that the odd solution of the problem (3.15) exists only under the conditions

lµ(t)lµ(−t) = 1, g∗µ(t) − lµ(t)g∗µ(−t) = 0, t ∈ (−1, 1), µ = 1, 2. (7.37)
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8 Diffraction by an anisotropic impedance half-plane

8.1 Physical problem

To illustrate the technique of the paper, we consider scattering of an electromagnetic wave at skew incidence
by an anisotropic half-plane with different impedances. Let the primary source be a plane wave incident
obliquely whose z-components are

Ei
z = eze

ikρ sinβ cos(θ−θ0)−ikz cos β ,

Z0H
i
z = hze

ikρ sinβ cos(θ−θ0)−ikz cos β , (8.1)

where (ρ, θ, z) are cylindrical coordinates, k is the wave number (Im(k) ≤ 0), Z0 is the intrinsic impedance
of free space, β is the angle of incident (0 < β < π/2), and ez , hz are prescribed parameters. In the
most general case in which the impedance is anisotropic and differs on the upper and lower sides of the
half-planes {0 < ρ <∞, θ = ±π ∓ 0, |z| <∞}, the boundary conditions are (Senior, 1978)

Eρ = ∓η±2 Z0Hz, θ = ±π ∓ 0,

Ez = ±η±1 Z0Hρ, θ = ±π ∓ 0, (8.2)

where η±1 , η
±
2 are the surface impedances of the upper (θ = π − 0) and lower (θ = −π + 0) half-planes,

respectively. The surface impedances are assumed to be real. The ρ-components Eρ and Hρ are expressed
in terms of Ez and Hz as follows

Eρ =
1

ik sin2 β

[

cos β
∂Ez

∂ρ
+

1

ρ

∂(Z0Hz)

∂θ

]

,

Z0Hρ =
1

ik sin2 β

[

cos β
∂(Z0Hz)

∂ρ
− 1

ρ

∂Ez

∂θ

]

. (8.3)

Therefore, equivalently, the boundary conditions (8.2) can be written as

1

ρ

∂Ez

∂θ
− cos β

∂(Z0Hz)

∂ρ
± ik sin2 βEz

η±1
= 0, θ = ±π ∓ 0,

1

ρ

∂(Z0Hz)

∂θ
+ cos β

∂Ez

∂ρ
± ikη±2 sin2 βZ0Hz = 0, θ = ±π ∓ 0. (8.4)

Represent the total field in the form of the Sommerfeld integral (Maliuzhinets, 1958)

Ez(ρ, θ, z) =
e−ikz cos β

2πi

∫

γ

eikρ sinβ cos αse(α+ θ)dα,

Z0Hz(ρ, θ, z) =
e−ikz cos β

2πi

∫

γ

eikρ sinβ cos αsh(α+ θ)dα, (8.5)

where γ is the Sommerfeld contour, the functions se(α) and sh(α) are analytic everywhere in the strip
−π < Re(α) < π apart from the point α = θ0, where they have a simple pole with the residues defined by
the incident field (8.1). At the infinite points α = x ± i∞ (|x| < ∞), the functions se(α) and sh(α) are
bounded. The boundary conditions (8.4) are satisfied if and only if (Maliuzhinets, 1958)

(

sinα± 1

η±1
sinβ

)

se(α± π) − cosα cos βsh(α± π)
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=

(

− sinα± 1

η±1
sinβ

)

se(−α± π) − cosα cosβsh(−α± π),

(

sinα± η±2 sinβ
)

sh(α± π) + cosα cos βse(α± π)

=
(

− sinα± η±2 sinβ
)

sh(−α± π) + cosα cos βse(−α± π). (8.6)

Next, following Senior and Legault (1998) introduce the two functions

Φ1(α+ π) =

(

sinα+
1

η+
1

sinβ

)

se(α + π) − cosα cos βsh(α+ π),

Φ2(α+ π) =
(

sinα+ η+
2 sinβ

)

sh(α+ π) + cosα cos βse(α+ π). (8.7)

Inverting these relations gives

se(α+ π) =
1

Γα(1/η+
1 , η

+
2 )

[
(

sinα+ η+
2 sinβ

)

Φ1(α+ π) + cosα cos βΦ2(α+ π)],

sh(α+ π) =
1

Γα(1/η+
1 , η

+
2 )

[(

sinα+
1

η+
1

sinβ

)

Φ2(α+ π) − cosα cos βΦ1(α+ π)

]

, (8.8)

where
Γα(a, b) = (sinα+ a sinβ)(sinα+ b sinβ) + cos2 α cos2 β. (8.9)

Because of the identities

Φj(α+ π) = Φj(−α+ π), Φj(−α− π) = Φj(α+ 3π), j = 1, 2, (8.10)

the system of equations for the functions se, sh can be reduced to the system for the new functions Φ1,Φ2:

1

Γα(−1/η+
1 ,−η+

2 )

[

Γα

(

1

η−1
,−η+

2

)

Φ1(α+ 3π) − 1

η1
cosα sin 2βΦ2(α + 3π)

]

=
1

Γα(1/η+
1 , η

+
2 )

[

Γα

(

− 1

η−1
, η+

2

)

Φ1(α− π) − 1

η1
cosα sin 2βΦ2(α− π)

]

,

1

Γα(−1/η+
1 ,−η+

2 )

[

Γα

(

− 1

η+
1

, η−2

)

Φ2(α+ 3π) + η2 cosα sin 2βΦ1(α+ 3π)

]

=
1

Γα(1/η+
1 , η

+
2 )

[

Γα

(

1

η+
1

,−η−2
)

Φ2(α− π) + η2 cosα sin 2βΦ1(α− π)

]

, (8.11)

where
1

η1
=

1

2

(

1

η+
1

+
1

η−1

)

, η2 =
η+
2 + η−2

2
. (8.12)

If now express Φ1(α + 3π), Φ2(α+ 3π) in terms of the values Φ1(α − π), Φ2(α− π) and put σ = 3π + α,
then, on Ω = {Re(σ) = 3π},

Φ(σ) = G(σ)Φ(σ − 4π), σ ∈ Ω, (8.13)

where

Φ(σ) =

(

Φ1(σ)
Φ2(σ)

)

, G(σ) =

(

G11(σ) G12(σ)
G21(σ) G22(σ)

)

, (8.14)

with

G11(σ) =
Γσ(1/η−1 ,−η+

2 )Γσ(1/η+
1 ,−η−2 ) + η2η

−1
1 cos2 σ sin2 2β

D(σ)
,
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G22(σ) =
Γσ(−1/η−1 , η

+
2 )Γσ(−1/η+

1 , η
−
2 ) + η2η

−1
1 cos2 σ sin2 2β

D(σ)
,

G12(σ) = −η
−
0 sinβ sin 2β sin 2σ

η1D(σ)
, G21(σ) =

η+
0

η−0
η1η2G12(σ),

D(σ) =
Γσ(−1/η+

1 ,−η+
2 )

Γσ(1/η+
1 , η

+
2 )

[Γσ(−1/η−1 , η
+
2 )Γσ(1/η+

1 ,−η−2 ) + η2η
−1
1 cos2 σ sin2 2β],

η+
0 = η+

2 − 1

η−1
, η−0 = η−2 − 1

η+
1

. (8.15)

8.2 Arbitrary impedances: a surface of genus ρ′ = 3

Equation (8.13) is a vector functional-difference equation of the first order with the shift h = 4π subject
to the additional condition of symmetry

Φ(σ) = Φ(2π − σ), σ ∈ Π = {−π < Re(s) < 3π}. (8.16)

In this section we show how to reduce the problem (8.13), (8.16) to a particular case of the even Riemann-
Hilbert problem (3.15), (7.1) analysed in Section 7, and also how to solve it.

8.2.1 Analysis of a Riemann-Hilbert problem on a surface

It is seen that the matrix (8.14) has the structure (2.10) required for the method to be applied. Indeed,
in the notations of Section 2,

a1(σ) = 1

2
[G11(σ) +G22(σ)], a2(σ) = G12(σ),

f1(s) =
η1(η

+
0 + η−0 )

2η−0 sin 2β cos s
(cos2 s cos2 β + sin2 s− e0 sin2 β),

f2(s) =
η+
0

η−0
η1η2, (8.17)

where

e0 =
1

η+
0 + η−0

(

η+
0

η−2
η+
1

+ η−0
η+
2

η−1

)

. (8.18)

Clearly, the functions (8.17) meet the conditions for a1(σ), a2(σ), f1(s) and f2(s) imposed in Section 2.
The key function of the method is

f(s) = f 2
1 (s) + f2(s) =

[

η1(η
+
0 + η−0 ) tan β

4η−0 cos s

]2

f∗(s), (8.19)

where

f∗(s) =

(

cos2 s− 1 − e0 sin2 β

sin2 β

)2

+ 16e1 cos2 s cot2 β,

e1 =
η2η

+
0 η

−
0

η1(η
+
0 + η−0 )2

. (8.20)

In the strip Π = {−π < Re(s) < 3π}, the function f(s) has four poles of the second order: − 1

2
π, 1

2
π, 3

2π

and 5
2π. Define the branch points of the function f 1/2(s). From (8.19), (8.20), they are the roots of the

equations
cos 2s = Aν , s ∈ Π (ν = 1, 2), (8.21)
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where

Aν = −1 +
2

sin2 β

[

1 − e0 sin2 β − 8e1 cos2 β + 4i(−1)ν cos β
√

e1(1 − e0 sin2 β − 4e1 cos2 β)

]

. (8.22)

In the above formula,
√
. . . is one of the branches of the square root. From the whole set of the roots

πj +
i

2
log(Aν ±

√

A2
ν − 1) (ν = 1, 2; j = 0,±1,±2, . . .), (8.23)

one needs to choose those roots which lie in the strip Π. We note that the expression

d0 = e1(1 − e0 sin2 β − 4e1 cos2 β) (8.24)

can be positive, negative and, also, equal to zero. If d0 = 0, then, obviously, the function f 1/2(s) does not
have branch points at all. The roots of equation (8.21) become zeros of the function f 1/2(s). This case is
reported in Section 8.3. Henceforward we assume that d0 6= 0 and, therefore, in the strip Π, the function
f1/2(s) has 16 branch points: s0, s1, . . . , s15.

For example, for β = 1
4π, η+

2 /η
+
1 = 2, η−1 /η

+
1 = 3 and η−2 /η

+
1 = 4, the branch points are

s0 = −1.57080 − i1.70392, s1 = s0,

s2 = −1.57080 − i0.05375, s3 = s2,

sj = sj−4 + π (j = 4, 5, . . . , 15). (8.25)

Analysis of formulae (8.17), (8.19) reveals that the functions f1(s)f
−1/2(s) and f−1/2(s) are free of poles in

the strip Π (all their singular points are the branch points s0, s1, . . . s15). Since the functions se(α), sh(α)
have the prescribed pole at the point α = θ0 and because of the relation (8.16) the functions Φ1(s), Φ2(s)
have simple poles at the points s = θ0, s = 2π − θ0. Therefore, the functions φ1(s), φ2(s), defined by
(3.3), have simple poles at the same points: a1 = θ0, a2 = 2π − θ0.

As for the behaviour at the ends of the strip, because of the presence of the functions sinα and cosα
in (8.7), the functions Φ1(s), Φ2(s), grow exponentially as s → x ± i∞ (−π ≤ x ≤ 3π): Φj(s) = O(e|s|).
The functions f1(s)f

−1/2(s) ± 1 and f−1/2(s) make different the principal term in the expansions of the
functions φ1(s) and φ2(s) as s → ∞, s ∈ Π. To show this, choose a branch of the function f 1/2(s) such
that

f1/2(s) ∼ − η1

2 sin 2β

∣

∣

∣

∣

∣

η+
0

η−0
+ 1

∣

∣

∣

∣

∣

sin2 β cos s, s→ x± i∞, −π ≤ x ≤ 3π. (8.26)

Then
f1(s)

f1/2(s)
= sgn

(

η+
0

η−0
+ 1

)

+O(e−2|s|), s→ x± i∞. (8.27)

Formulae (3.3) and (8.26) indicate that one of the functions φ1(s), φ2(s) grows at the ends of the strip,
and the other is bounded:

η+
0

η−0
+ 1 > 0 : φ1(s) = O(e|s|), φ2(s) = O(1), s→ x± i∞, (8.28)

η+
0

η−0
+ 1 < 0 : φ1(s) = O(1), φ2(s) = O(e|s|), s→ x± i∞. (8.29)

From the relations (8.8), it is clear that the functions se(α), sh(α) have inadmissible poles at the zeros
of the function Γα(−1/η+

1 ,−η+
2 ) which lie in the strip −π < Re(α) < π. Let these zeros be εj , j = 1, 2, 3, 4

(Re(εj) ∈ (−π, π)). The points εj become removable points of the functions se(α), sh(α), if the following
conditions hold

(− sin s+ η+
2 sinβ)Φ1(s) − cos s cosβΦ2(s) = 0, s = εj ,
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(

− sin s+
1

η+
1

sinβ

)

Φ2(s) + cos s cos βΦ1(s) = 0, s = εj , j = 1, 2, 3, 4. (8.30)

Since the determinant of this system Γεj (−1/η+
1 ,−1/η+

2 ) is equal to 0, the above conditions are equivalent
to the following four equations

(− sin εj + η+
2 sinβ)Φ1(εj) − cos εj cosβΦ2(εj) = 0, j = 1, 2, 3, 4. (8.31)

Following the procedure of Section 3 we reduce the vector functional-difference equation (8.13) to the
scalar Riemann-Hilbert problem (3.15) (g∗(t, ξ) ≡ 0) on the two-sheeted Riemann surface R of genus
ρ = 7 (the number of the branch points is 16). In the example (8.25) the branch points become

z0 = −0.45822 − 0.33792i, z2 = −0.01574 − 0.41413i,

z4 = −1.41358 − 1.04246i, z6 = −0.09165 − 2.41124i,

zj = −zj−1 (j = 1, 3, 5, 7), zj = zj−4 (j = 8, 9, 10, 11),

zj = zj−12 (j = 12, 13, 14, 15). (8.32)

It turns out that in all possible cases the branch points zj are symmetric with respect to the origin. Since
the function z = −i tan s−3π

4 maps the points s and 2π − s into the points z and −z, respectively, and

because the functions Φ1(s),Φ2(s) and f1(s), f
1/2(s) meet the relation (8.16), the functions Fµ(z), µ = 1, 2

are even. It is also clear that they have simple poles at the points α1 = −i cot π−θ0

4 and α2 = −α1.
Define the behaviour of the functions Fµ(z) at the ends z = ±1. Let, first, η+

0 /η
−
0 + 1 > 0. Because

of formulae (8.28), the numbers ν±µ in inequalities (4.1) become ν±1 = 2, ν±2 = 0. Indeed, for F1(z), for
instance, we have

F1(z) = φ1

(

3π + 2i log
1 + z

1 − z

)

∼ A◦
1e

|s| ∼ A◦
1 exp

{

2

∣

∣

∣

∣

log
1 + z

1 − z

∣

∣

∣

∣

}

∼ A◦
1|z ± 1|−2, z → ∓1 (s→ x± i∞, −π ≤ x ≤ 3π), A◦

1 = const. (8.33)

For η+
0 /η

−
0 + 1 < 0, the same argument gives ν±1 = 0, ν±2 = 2.

Next, analysing formulae (8.15) as σ → 3π ± i∞ and as σ = 3π we get

Gjj(σ) ∼ 1, Gjm(σ) = O(e−2|σ|) (j 6= m), σ → 3π ± i∞, j,m = 1, 2,

G12(3π) = 0, G11(3π) = G22(3π) = 1, (8.34)

and therefore
λj(3π) = λj(3π ± i∞) = 1, j = 1, 2. (8.35)

8.2.2 Even Riemann-Hilbert problem

We have already shown that the poles α1, α2 and the branch points zj (j = 0, 1, . . . , 15) are simple and
symmetric with respect to the origin. The end-points z = ±1 are not branch points of the surface. In
order that the functions Fµ(z) are even, it is necessary for the functions lµ(t) to satisfy the condition (7.7),
i.e. lµ(t)lµ(−t) = 1, t ∈ (−1, 1). To check this relation, notice that for σ = 3π + iξ (−∞ < ξ <∞)

cos σ̄ = cos σ, sin σ̄ = − sinσ, Γσ̄(a, b) = Γσ(−a,−b). (8.36)

Then from (8.15), (8.17), (8.19) and (2.8), (2.11)

G11(σ̄) = G22(σ)
D(σ)

D(σ̄)
, G22(σ̄) = G11(σ)

D(σ)

D(σ̄)
, G12(σ̄) = −G12(σ)

D(σ)

D(σ̄)
,

26



−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re l
1
(t)

Im
 l 1(t

)

Figure 3: The set {l1(t) : 0 < t < 1}, for β = 1
4π, η+

2 /η
+
1 = 0.001, η−1 /η

+
1 = 10, η−2 /η

+
1 = 2.

a1(σ̄) = a1(σ)
D(σ)

D(σ̄)
, a2(σ̄) = −a2(σ)

D(σ)

D(σ̄)
, f1/2(σ̄) = f 1/2(σ), σ ∈ Ω. (8.37)

So, for the characteristic functions λ1(σ), λ2(σ) we obtain

λµ(σ̄) =
[

a1(σ) + (−1)ja2(σ)f1/2(σ)
] D(σ)

D(σ̄)
, µ = 1, 2. (8.38)

Then

λµ(σ)λµ(σ̄) =
[G11(σ)G22(σ) −G12(σ)G21(σ)]D(σ)

D(σ̄)
, µ = 1, 2. (8.39)

It is directly verified that

[(G11(σ)G22(σ) −G12(σ)G21(σ)]D(σ) −D(σ̄)

=
η2 cos2 σ sin2 2β

η1D(σ)

{

[Γσ(1/η−1 ,−η+
2 ) − Γσ(−1/η−1 , η

+
2 )][Γσ(1/η+

1 ,−η−2 ) − Γσ(−1/η+
1 , η

−
2 )]

−4η+
0 η

−
0 sin2 β sin2 σ

}

= 0. (8.40)

For this reason,
λµ(σ)λµ(σ̄) = 1, σ ∈ Ω, (8.41)

and
lµ(t)lµ(−t) = 1, t ∈ (−1, 1), µ = 1, 2. (8.42)

As for the quantities arg lµ(t), we get

lµ(−1) = lµ(0) = lµ(1) = 1. (8.43)

Choose arg lµ(0) = 0. Then, by formula (8.42), arg lµ(−1) = − arg lµ(1). Numerical results for dif-
ferent sets of the parameters of the problem show that as the point t traverses from 0 to 1, the point
{Re lµ(t), Im lµ(t)} always passes once round the origin in the negative direction (see Fig. 3, 4 for β = π/4,
η+
2 /η

+
1 = 0.001, η−1 /η

+
1 = 10, η−2 /η

+
1 = 2). This means, that the increments ∆∗

µ of the arguments of the
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functions lµ(t), as the contours L∗
µ = [0, 1] ∈ Cµ are traversed by the point t in the positive direction, are

equal to −2π:
1

2π
∆∗

µ = −1. (8.44)

We have verified all the conditions for the Riemann-Hilbert problem (3.15) to have an even solution. Thus,
to construct it, we may follow the scheme of Section 7.

8.2.3 Closed-form solution

We seek an even solution of the Riemann-Hilbert problem (3.15) in the class of functions:

|Fµ(z)| ≤ Aµ|z − 1|−νµ , z → 1, µ = 1, 2, (8.45)

with

ν1 =

{

2, η+
0 /η

−
0 > −1

0, η+
0 /η

−
0 < −1

, ν2 =

{

0, η+
0 /η

−
0 > −1

2, η+
0 /η

−
0 < −1

. (8.46)

The integers κ1, κ2 are defined from (7.22)

κ1 =

{

1, η+
0 /η

−
0 > −1

−1, η+
0 /η

−
0 < −1

, κ2 =

{

−1, η+
0 /η

−
0 > −1

1, η+
0 /η

−
0 < −1

. (8.47)

The Riemann surface R′ introduced in Section 7 becomes a surface of genus ρ′ = 3. The even canonical
function χ(z, w) has been constructed in Section 7.2, and it is defined by the relations (4.26), (7.27). The
points (σ2

j , uj) ∈ R′ and the integers mj, nj (j = 1, 2, 3) should be found by solving the Jacobi inversion
problem (7.25).

We next specify formulae (7.27), (7.28) which describe the solution of the Riemann-Hilbert problem
(3.15), (7.1) relevant to the physical problem under consideration:

F (z, w) = χ(z, w)[R1(z) + w(z)R2(z)],

R1(z) = C0 +
3
∑

j=1

Cjwj

z2 − σ2
j

+
D1

z2 − α2
1

+
H1v11δ−κ1,1

z2 − γ2
11

− H2v21δ−κ2,1

z2 − γ2
21

,
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R2(z) =
3
∑

j=1

Cj

z2 − σ2
j

+
D2

z2 − α2
1

+
H1δ−κ1,1

z2 − γ2
11

+
H2δ−κ2,1

z2 − γ2
21

+
7
∑

j=0

Ej

z2 − z2
j

, (8.48)

with Cj (j = 0, 1, 2, 3), D1, D2, H1,H2 Ej (j = 0, 1, . . . , 7), being arbitrary constants, δm,n being Kro-
necker’s symbol, and

α1 = −i cot π − θ0
4

, zj = −i tan sj − 3π

4
(j = 0, 1, . . . , 7). (8.49)

Thus, the functions (8.48) possess 15 arbitrary constants. Define the number of additional conditions for
them. Equations (7.31), (7.32) yield the first 6 conditions

lim
z→∞

z2jR2(z) = 0, j = 1, 2, 3,

R1(δj) + vjR2(δj) = 0, j = 1, 2, 3. (8.50)

From (7.33), (7.34) we get either

R1(γ11) + v11R2(γ11) = 0 for κ1 = −1, κ2 = 1, (8.51)

or
R1(γ21) − v21R2(γ21) = 0 for κ1 = 1, κ2 = −1. (8.52)

We also have the 4 equations (8.31) and the 2 regularity conditions (6.11) of the function Φ2(s) at the
points − 1

2π, 1
2π

res
s=±π/2

{[−f1(s) + f1/2(s)]φ1(s) − [f1(s) + f1/2(s)]φ2(s)} = 0. (8.53)

Note that then, because of the symmetry condition Φ2(s) = Φ2(2π− s), the function Φ2(s) will be regular
at the points s = 3

2π and s = 5
2π automatically. These conditions follow from (3.2) and (2.13). Finally, to

reproduce the incident field, the solution has to meet the two conditions

res
α=θ0

se(α) = ez, res
α=θ0

sh(α) = eh. (8.54)

The number of the constants is 15, and to fix them, we have the same number of linear equations.
The solution of the vector functional equation (8.13) is defined by (6.5). The constructed solution

meets the symmetry condition (8.16). The closed-form solution of the scattering problem is given by
formulae (8.5) and (8.8).

Remark 1. If η+
µ = η−µ (µ = 1, 2), then the initial vector functional-difference equation can be simplified

to a new one with h = 2π (see Senior, 1978, p.212). Following the above procedure reduces the problem
to a Riemann-Hilbert problem on a surface of genus ρ′ = 1 (a torus). The corresponding Jacobi inversion
problem is solvable in terms of elliptic functions. This symmetric case was analysed by Hurd and Lüneberg
(1985). They used the Wiener-Hopf formulation and Daniele’s technique (1984) and found a closed-form
solution in terms of elliptic functions.

Remark 2. The above technique may be extended for the case of the complex impedances if the single
branch of the function f 1/2(s) is chosen such that

f1/2(s) ∼ − η1

2 sin 2β

(

η+
0

η−0
+ 1

)

sin2 β cos s, s→ x± i∞, −π ≤ x ≤ 3π. (8.55)

We leave this interesting case and also physical and numerical analysis of the problem for future research.
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8.3 Case ρ = −1: no branch points

By convention of Section 3, if the function f 1/2(s) does not have branch points in the strip Π, then ρ = −1.
This is a very important case since the matrix of transformation (2.13) becomes single-valued, and the
solution of the Riemann-Hilbert problem on the Riemann surface R can be bypassed. In Fig. 5 we present
those angles of incident β for some values of the impedances when there are no branch points of f 1/2(s)
in the strip Π. Such cases can be used as a test for numerical computations for arbitrary values of the
impedances. In this section we give a closed-form solution of the vector functional-difference equation
(8.13) for ρ = −1. In addition, we show that for the isotropic case η±1 = η±2 = η, the integer ρ is also
equal to −1.

Instead of the Riemann-Hilbert problem on the surface R, we get two separate problems on a plane:

F+
1 (t) = l1(t)F

−
1 (t), t ∈ (−1, 1),

F+
2 (t) = l2(t)F

−
2 (t), t ∈ (−1, 1). (8.56)

We are looking for a solution of the above problems subject to the conditions

Fµ(z) = Fµ(−z), z /∈ [−1, 1]; (8.57)

Then the limit values of the functions Fµ(z) satisfy the relations F+
µ (t) = F−

µ (−t), t ∈ (−1, 1).

Let η+
0 /η

−
0 > −1. In this case, as it was shown in Section 8.2,

F1(z) = O(|z ± 1|−2), F2(z) = O(1), z → ∓1. (8.58)

We also get

∆
(1)
L = ∆

(2)
L = −4π, lµ(±1) = 1. (8.59)

Choose arg lµ(0) = 0. Then, immediately, arg lµ(−1) = 2π and arg lµ(1) = −2π. Factorise the functions
lµ(t):

lµ(t) =
X+

µ (t)

X−
µ (t)

, t ∈ (−1, 1), (8.60)
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where

Xµ(z) = (z2 − 1)rµ exp







1

2πi

1
∫

−1

log lµ(t)

t− z
dt







(8.61)

with rµ to be determined. Analysis of the Cauchy integral gives

1

2πi

1
∫

−1

log lµ(t)

t− z
dt = − log(z ± 1) + Ωµ∓(z), z → ∓1, (8.62)

where the functions Ωµ±(z) are bounded as z → ±1. Therefore,

Xµ(z) ∼ A±
µ (z ∓ 1)rµ−1, z → ±1, A±

µ = const. (8.63)

The class of solutions (8.58) indicates that

r1 = −1, r2 = 1. (8.64)

The Sokhotski-Plemelj formulae and the identities (8.42) imply

Xµ(z) = Xµ(−z), z /∈ (−1, 1); X+
µ (t) = X−

µ (−t), t ∈ (−1, 1). (8.65)

The functions F1(z), F2(z) must be bounded at infinity (the point z = ∞ corresponds to the regular point
s = π of the functions Φ1(s), Φ2(s)). They may have simple poles at the points ±zj (j = 0, 1, 2, 3) and
±α1, where

zj = −i cot
π − s∗j

4
, α1 = −i cot π − θ0

4
, (8.66)

and s∗j (j = 0, 1, 2, 3) are the simple zeros in the strip {−π < Re(s) < π} of the function

f1/2(s) =
η1(η

+
0 + η−0 ) tan β

4η−0 cos s
(cos2 s+ 4e1 cot2 β). (8.67)

The general solution of the Riemann-Hilbert problems (8.56), (8.57) becomes

F1(z) = X1(z)



d1 + d2z
2 +

D1

z2 − α2
1

+
3
∑

j=0

Cj

(z2 − z2
j )X1(zj)



 ,

F2(z) = X2(z)





D2

z2 − α2
1

−
3
∑

j=0

Cj

(z2 − z2
j )X2(zj)



 , (8.68)

where d1, d2, D1, D2, C0, C1, C2, C3 are arbitrary constants. Here we used the relation

res
z=±zj

F1(z) = − res
z=±zj

F2(z), j = 0, 1, 2, 3, (8.69)

that follows from (3.3). Clearly, since X1(z) = O(z−2), X2(z) = O(z2), z → ∞, the functions F1(z), F2(z)
are bounded at infinity.

To fix the 8 constants in (8.68), we have the same number of equations (8.31), (8.53) and (8.54).
Finally, notice that in the isotropic case we get

η±1 = η±2 = η1 = η2 = η, η±0 = η − 1

η
,

e0 = 1, e1 =
1

4
, d0 = 0, (8.70)

and the function f 1/2(s) does not have branch points:

f1/2(s) =
η tanβ

2 cos s
(cos2 s+ cot2 β). (8.71)

Thus, this is a particular case of the above problem for ρ = −1.
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9 Conclusion

In this paper we have analysed a class of vector functional-difference equations. It has been shown that a
vector functional-difference equation of the first order in a strip Π of a complex plane subject to certain
restrictions, is equivalent to a scalar Riemann-Hilbert boundary-value problem on a two-sheeted Riemann
surface of genus ρ. The genus ρ is defined through the number N of the poles and zeros of odd order in
the strip of a characteristic function of the matrix coefficient by the formula ρ = (N − 2)/2 (N is always
even). In contrast with the Riemann-Hilbert problem on a union of two real axes of a hyperelliptic surface
considered by Antipov and Silvestrov (2002), in the present case, the corresponding Riemann-Hilbert
problem is formulated on a union of two finite segments. We have constructed a closed-form solution of
that new problem of the theory of analytic functions. The conditions quenching the pole of order ρ at
infinity of the Weierstrass kernel give rise to the classical Jacobi inversion problem.

Motivated by applications to diffraction theory, in addition to the general case, we have studied a
special symmetric case of the vector functional-difference equation. It has been revealed that in this case
the Riemann-Hilbert problem is reducible to a new problem on a surface of genus ρ ′ = [ρ/2].

To convince the reader in the applicability and the viability of the technique proposed, we have solved
a new model problem for an anisotropic half-plane with imperfect interfaces (the impedances η±1 , η

±
2

are arbitrary) which are illuminated by a plane electromagnetic wave at oblique incidence. To solve this
problem, we started with the Maliuzhinets formulation or, equivalently, with a vector functional-difference
equation of the first order. It turns out that the matrix coefficient of the equation meets the restrictions
for the method to be applied. The genus of the corresponding Riemann surface is equal to three. To
complete the procedure of solution, one needs to solve the Jacobi inversion problem for a surface of genus
3. A device for its exact solution has already been reported (Antipov and Silvestrov, 2002). We have also
analysed a particular case when the characteristic function does not have poles and zeros of odd order,
and the solution of the Jacobi inversion problem has been avoided. Numerical results will be reported
elsewhere.

The proposed technique has a potential to be successfully applied to a variety of diffraction problems
have been considered insoluble. The complexity of the approach depends on the genus of the corresponding
Riemann surface. From numerical point view the only portion which becomes more complicated is solution
of the Jacobi inversion problem.
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