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Abstract

Given equations with k-rational coefficients that define a curve C of genus 1 over a perfect field k,
can we find equations that define its jacobian JC? The problem is trivial when the degree n of
a k -rational divisor on C is equal to 1. For the cases 2 ≤ n ≤ 4, certain standard forms for C
appear classically, and the classical invariant theory of those forms turns out to contain equations
that define JC . This modern interpretation of classical results was explained for n = 2 in 1954, for
n = 3 in 2001, and for n = 4 in 1996. A standard form for C and its invariant theory was worked
out by Tom Fisher for n = 5 in 2003, again leading to equations for JC .

In the present work, the problem is solved algorithmically for all n ≥ 3. (As in the classical
approach, we must assume the characteristic of k does not divide n.) The basic idea, given to us
by Minhyong Kim, is to embed C in Pn−1

k using the divisor of degree n, then to explicitly describe
as matrices the finite Heisenberg group that corresponds to the n-torsion JC [n] on the jacobian,
and then to determine equations for the quotient of C by the Heisenberg group, giving us the
sought jacobian: C/JC [n] ∼= JC . The Heisenberg matrices also allow us to compute the points of
hyperosculation on C, which is a k -rational orbit under the action of JC [n] and thus gives the origin
for the group law on JC . Our algorithm relies on techniques from the theory of Gröbner bases, and
on techniques from the invariant theory of finite groups.

In presenting the background material to our algorithm, we develop the theory of curves of
genus 1 with an attached k -rational divisor class, and the theory of non-degenerate degree n curves
in Pn−1

k of genus 1. We thus state in a more general context results that appeared previously in more
specialized contexts in work of Klaus Hulek and work of Catherine O’Neil. We give an elementary
proof that the commutator pairing on the Heisenberg group corresponds to the Weil pairing on JC [n].
We describe intriguing hyperplane configurations and relate them to the points of hyperosculation
on the curve of genus 1.
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CHAPTER I

Introduction

I.1. The motivating problem

The motivation behind this work is the following arithmo-geometric problem: given equations defin-
ing a curve C of genus 1 over a perfect field k, find equations defining the jacobian curve JC . The
arithmetic nature of the problem is reflected in its triviality when k is algebraically closed, for in that
case we have C ∼= JC . (The problem also turns out to be trivial when k is a finite field—see §I.2f.)

This problem is in some sense the opposite or inverse of the following problem, which occurs in
the theory of descent: given an elliptic curve, produce its principal homogeneous spaces.

I.1a. Previous work and related work

Let n be the degree of a k -rational divisor on C. The n = 1 case of the motivating problem is trivial:
we have C ∼= JC .

For n ≥ 2, it turns out the curve C always admits a non-degenerate degree n map to Pn−1
k ,

so without loss of generality we may assume that C is given that way to begin with. For n ≥ 3
that map is an embedding, so we are essentially assuming that C is given to us as a non-degenerate
degree n curve in Pn−1

k of genus 1.

The classical approach. The cases n = 2, n = 3, n = 4, and n = 5 of the motivating problem,
or slight variants thereof, have been solved, under the hypothesis char(k) - n (in some cases also
char(k) 6= 2, 3), using techniques of classical invariant theory: [Wei54], [MSS96], [AKM+01],
[VT], and [Fis]. The first four references rely on results from invariant theory worked out in the
19th century, and thus amount to establishing interesting modern interpretations of classical results.
The work [Fis], on the other hand, does quite a bit more: it develops from scratch the relevant
invariant theory—which does not appear classically—and then gives the interpretation in terms of
jacobians.

This “classical approach” requires one to work with a suitable family of curves of genus 1. The
classical invariant theory of the generic equations defining the family describes a fundamental system
of covariants and their relations, called syzygies. In the cases considered so far, there has always
been one Weierstrass-like syzygy (I am not aware of a satisfactory explanation for that), which turns
out to define the jacobian JC of each member C of the family.

However, we know of a family F (see §I.2a), for which the classical approach appears to go
through without a hitch, yet the Weierstrass-like syzygy turns out to define a quadratic twist of the
jacobian, not the jacobian itself! A little extra work then identifies which twist occurred, thereby
leading to the actual jacobian.

Because the classical approach works with a family of curves, it ends up producing formulas
for the coefficients of JC in terms of the coefficients of C. The approach itself does not apply
to individual curves, but once the formulas are known, they can of course be applied to individual
curves, giving us an algorithm (namely: substitution) of trivial computational complexity for solving
a restricted version of the motivating problem; namely, its restriction to the particular curves that
occur in the family under consideration.
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10 I. Introduction

The O’Neil approach. With additional assumptions on the starting curves and the ground field k ,
the motivating problem is treated by an intriguing approach in [O’N01]: the jacobian JC , together
with a level-n structure (this is part of the extra data on C), is expressed as a point on the modular
curve X1(n). For n = 3 and n = 5, [O’N01] exhibits formulas for JC ∈ X1(n) in terms of C.

The Anderson approaches. A related problem has been studied by Greg Anderson: given a curve
of genus g defined over an algebraically closed field, find equations defining its jacobian (an abelian
variety of dimension g). One approach to this problem, which may lead to an algorithm, is given
in [And02]. A different, and algorithmic, approach is given in [And]. By assuming the ground field
to contain symbols that are algebraically independent over the prime subfield, this approach can
treat a family of curves of genus 1, which then leads to formulas for the jacobian (which can then
be applied to individual curves). Even though the formulas are defined over the prime subfield, it is
unclear whether they always give the jacobian over that field—certainly they do so over the field’s
algebraic closure. As shown in [And], when the Anderson algorithm is applied over Q to two of
the cases considered in [AKM+01], it produces the same equations for the jacobian as exhibited in
[AKM+01], and thus gives the correct answer over Q.

I.1b. Present contribution

In the present work, again assuming char(k) - n (cf. §I.2e), we develop an algorithm (a computational
process guaranteed to complete in a finite number of computational steps), based on ideas given to
us by Minhyong Kim, that solves the motivating problem in all degrees n ≥ 3.

Unlike the approaches mentioned previously, this algorithm can be applied directly to individual
curves. Of course, it can then also be applied to a family, serving as an alternate approach for
obtaining formulas for JC . (For example, in chapter V we apply the algorithm to the individual
curve 3x3+4y3+5z3 = 0, and then show in §V.7 how to tackle the family ax3+by3+cz3+mxyz = 0.)

After applying our algorithm, if one desires a Weierstrass model for JC , one could apply the
usual Riemann–Roch algorithm (cf. §V.7c): find functions x, y with poles of orders 2 and 3 at the
origin of JC , then use linear algebra to find the relation between 1, x, y, x2, xy, y2, x3.

The mere existence of an algorithm is not surprising, at least when k is countable, for there
certainly exists the following type of exhaustive search: given C, one enumerates all varieties defined
over k (there are countably many); for each such variety V , one enumerates all k -rational points in
the ambient space; for each such pair (V, P ), one enumerates all algebraic maps from the ambient
space of C to the ambient space of V ; for each such triple (V, P, φ), one checks whether V is a curve
of genus 1, whether P lies on V , and whether φ has degree n2 and the difference of any pair of points
in φ−1(P ) is a divisor class of order dividing n in the divisor class group; all of this can be done
algorithmically, and once all the conditions are met, by [AKM+01, Prop. 4.5], one has found JC .
(This also shows that the motivating problem lies in the computational complexity class np: a non-
deterministic polynomial-time algorithm is to guess and then verify the certificate data indicated
above.) But exhaustive search is completely useless: even in the simplest of cases, it exhausts our
patience, and it has the philosophical drawback that its description relies only peripherally on the
mathematics of the motivating problem.

In contrast to exhaustive search, the algorithm in the present work relies heavily on the mathe-
matics of the motivating problem, and the algorithm can be successfully applied in practice (as we
demonstrate in chapters V and VI). However, on multiple occasions in the algorithm, we need to
find all solutions to a 0-dimensional intermediate problem; unfortunately, today we know how to
complete those steps algorithmically only by appealing to the theory of Gröbner bases, and thus the
overall algorithm, in its present form, has seemingly unbounded computational complexity.

In summary, our present algorithm has the advantage over the previous approaches of being
applicable both to families and to individual curves, and of course the advantage that it can be
applied in all degrees n ≥ 3. On the other hand, from a practical perspective, on a current desktop-
class computer (3 GHz Pentium processor, 2 GB RAM), we have been successful only with particular
instances in the n = 3 and n = 4 cases of the motivating problem.
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I.1c. Roadmap for the algorithm

As described below in the chapter-by-chapter overview (see §I.3), this dissertation contains more than
just the algorithm that solves the motivating problem. If the reader’s only goal is to understand that
algorithm, then the summary below in §I.3d may be a good starting point, and the more detailed
roadmap is as follows.

In chapter II, the only crucial material is: §II.2 on the map jD and the isomorphism C/JC [n] ∼ //

JC , and §II.2a on the points of hyperosculation. In chapter III, the only crucial material is: §III.8 on
classifying linear automorphisms, §III.11 on the fixpoints and hyperplane configurations associated
to generators of Jn, and §III.12 on lifting Jn ⊂ PGLn(k̄) to Hn ⊂ SLn(k̄). Of course, all of
chapter IV (description of the algorithm) is crucial, and the examples from chapter V and VI serve
as concrete illustrations of the steps.

I.2. Future research projects

I.2a. The family F

Consider the family F : Z3 = U(X,Y ), where U is a generic binary cubic form with distinct roots.
When we look at the classical invariant theory of binary cubic forms (cf. [Stu93, 3.7.6, 3.7.7]), we
find a Weierstrass-like syzygy. Let E be the elliptic curve over Q defined by that syzygy, and let
C be a member of the family F with coefficients in Q. The syzygy leads to a map C // E of
degree 3. Thus E cannot be JC , for a map C // JC defined over Q must have degree a square: its
pullback is multiplication-by-m for some m. It turns out E is the quadratic twist of JC over Q(

√
−3),

which is the field over which JC has complex multiplication. Further investigations into F may give
additional insight into the classical approach: when it works, and why it works when it does. (I
intend to continue this research and publish the results in the future.)

I.2b. The “j-invariant” approach

An entirely different approach to finding JC , not discussed elsewhere in this dissertation, goes as
follows: starting with C defined over k , move to a finite field extension K/k over which CK admits
a point, then apply the Riemann–Roch algorithm (cf. §V.7c) to obtain a Weierstrass model W
for CK that has k -rational coefficients. (From this we can read off the j-invariant of C—my original
motivation for this approach—whence the name.) Thus C, W , and JC (as an abstract curve) are
all defined over k , and all three are isomorphic over K. But W and JC are elliptic curves over k ,
whence either W ∼= JC , or W is a quadratic twist of JC over one of the quadratic extensions lying
inside K/k . By writing down the possibilities, we obtain a finite list of Weierstrass models that
are candidates for JC (and one of them must actually be JC). Next repeat the procedure with a
different field extension K/k , hopefully obtaining a different finite list of candidates that necessarily
contains JC . Repeat this process until the various finite lists intersect in a single candidate, which
must then be JC . (I have successfully applied this approach in the case n = 2. I intend to continue
this research and publish the results in the future.)

Compared to the classical approach, or to the Anderson algorithm, or to the algorithm in this
dissertation, the “j-invariant” approach has the following disadvantage: it does not give you a map
C // JC .

I.2c. Arithmetic complexity bounds

Any systematic approach to the jacobian might lead to relations between the arithmetic height (or
other suitable notion of complexity) of JC and the height of C. (A preliminary investigation of the
“j-invariant” approach led to rough height relations. I intend to continue this line of research in the
future.)
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I.2d. Elucidating the hyperplane configurations

We feel that more can be said about fixpoints and fixed hyperplanes of elements of PGLn(k̄) that
preserve C (cf. §III.9 and §III.11). For example, what can be said about the hyperplanes fixed by the
[−1]-automorphisms? For another example, we discover in chapter V that the [−1]-automorphisms
have eigenvalue +1 at one fixpoint but eigenvalue −1 at the other three fixpoints. Why does this
happen, and what happens in general? Many such questions are easily formulated from the examples
worked out in chapters V and VI.

It would also be nice to have a formula, or at least an algorithm more elegant than brute force,
for determining the osculating hyperplane at a point (thus also for determining the hyperosculating
hyperplanes at the points of hyperosculation).

A better understanding of these matters may lead to further simplifications of the elementary
proof in §III.10 that the commutator pairing is the Weil pairing, or at least some kind of insight
into what is happening geometrically in each step of the proof.

I.2e. Handling the modular case

Our algorithm for the jacobian exploits the isomorphism (∗) (from §I.3b below), which holds in
general. Even the recasting of C/JC [n] as C/Hn (cf. §I.3d below) holds in general. However, to
compute C/Hn in practice, we start by finding the k̄ -valued points of the group scheme Hn. When
char(k) | n (known as the modular case), we have #Hn 6= #Hn(k̄), and our algorithm breaks down.
(Note that the invariant theory of finite groups itself is not an obstacle: algorithms for the modular
case appear in [Kem96] and [DHS98].) However, since we do determine equations defining the group
scheme Hn, even in the modular case there may be a method for determining equations for C/Hn.

I.2f. Examples in characteristic p > 0

It would be interesting to apply our algorithm to examples in characteristic p > 0. For example,
whereas working over function fields in characteristic 0 may be computationally out of reach on
today’s computers, it may turn out that something similar is feasible in characteristic p.

It is worth remarking that the motivating problem is actually trivial when k is the finite field Fq,
where q is a power of p. By the Riemann hypothesis for curves (cf. [Har77, Ex. V.1.10]), we can
easily see that a curve of genus g defined over Fq necessarily admits a rational point when q exceeds
a bound expressible in terms of g. For g = 1, the condition is q ≥ 2. Therefore, our curve C of
genus 1 always admits an Fq-rational point, whence C ∼= JC . But this isomorphism is not canonical;
in particular, given a family of curves of genus 1, it is unclear whether we can pick out the rational
point in a consistent manner across the family. In other words, a non-canonical isomorphism C ∼= JC

exists for each individual members of the family, but there may be no single such isomorphism for
the entire family. Our algorithm, on the other hand, always produces JC in a canonical fashion.
Thus, it is still interesting to apply the algorithm even when working over a finite field.

I.3. Chapter-by-chapter overview

I.3a. Chapter I: Introduction

You’re reading that chapter right now!

I.3b. Chapter II: Background on quasi-elliptic curves

Interest in the motivating problem led us to study an object we call a quasi-elliptic curve defined
over k : a pair (C,D), where C is a curve of genus 1 defined over k , and D is a k -rational divisor class
on C. Each quasi-elliptic curve admits precisely n2 (when char(k) - n) points of hyperosculation,
which are k̄ -valued points P such that nP ∈ D. They compose a k -rational orbit under the action
of the n-torsion JC [n] on C. This action respects the fibers of the map jD : C // JC , P � // [nP ]−D,
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and we get an isomorphism of curves
C

JC [n]
∼ // JC . (∗)

The hyperosculation orbit on C is the k -rational point on the left that goes to the origin of JC on
the right.

Remark. Our algorithm for JC will in fact find equations for C/JC [n]; it will find coordinates for
the points of hyperosculation on C, and thus obtain the coordinates of the origin on C/JC [n].

Chapter II proceeds with a description of morphisms between quasi-elliptic curves, and in par-
ticular establishes

Aut(Ck̄ ,D) = JC [n](k̄) o Aut(Ck̄ , O), (∗∗)
where O ∈ C(k̄) is a point of hyperosculation.

We next give an alternative description of a quasi-elliptic curve, namely as a map C // JC ,
such as jD above, with the property that the induced pullback map JC

// JC is multiplication-by-n.
While working on the paper [AKM+01], such maps occurred when we were considering new ways of
describing principal homogeneous spaces and n-coverings of an elliptic curve. We briefly give those
descriptions here.

Finally, when the class D admits a k -rational representative D, so that we are working with
a pair (C,D), there is always the associated non-degenerate degree n map to the projective space
bundle P

(
H0(C,O(D))

)
, which upon choosing coordinates is just Pn−1

k . (The map is an embedding
for n ≥ 3.) We show that automorphisms of (C,D) extend to automorphisms of Pn−1

k .

I.3c. Chapter III: Projective quasi-elliptic curves C n� � // Pn−1
k

This chapter generalizes material on “elliptic normal curves” from [Hul86] and on “n-prepared
curves” from [O’N01].

We study pairs (C,D) with n ≥ 3 (cf. the last paragraph in the previous section), but identify
them with their image in Pn−1

k ; thus, we study “non-degenerate degree n curves in Pn−1
k of genus 1”

(it turns out, as we show, that none of these words is superfluous), and denote such a curve C n� � //

Pn−1
k .

We show that C n� � // Pn−1
k is projectively normal, we compute its Hilbert function and Hilbert

polynomial, and we show that each generating set for the saturated ideal defining the curve contains
n(n − 3)/2 linearly independent quadratic forms. Furthermore, when char(k) 6= 2, for n ≥ 4 each
minimal generating set comprises precisely n(n−3)/2 quadratic forms; that is, C is cut out scheme-
theoretically by quadrics.

Combining (∗∗) with the last paragraph in §I.3b, we obtain{
φ ∈ PGLn(k̄) : φ(Ck̄ ) = Ck̄

} ∼= JC [n](k̄) o Aut
(
(Ck̄ , O)

)
, (∗∗∗)

and from this we conclude: the subgroup Jn ⊂ PGLn(k̄) of elements that preserve C and act
fixpoint-free on C is a faithful and Galois equivariant representation of the action of JC [n](k̄) on C.

No matter the characteristic of k or the j-invariant of C, the part of (∗∗∗) that always exists is
Jn o {±1}. The non-trivial coset of Jn is characterized as the subset of PGLn(k̄) whose elements
preserve C, have a fixpoint on C, and have order 2. When n is odd, each point of hyperosculation
on C occurs as the fixpoint of an element of that coset. When n is even, either all or none of the
fixpoints of an element of that coset are points of hyperosculation. We can identify whether a given
fixpoint is a point of hyperosculation by searching for a hyperplane that meets C with multiplicity n
at the given point. Thus we have a practical procedure for finding the points of hyperosculation
on C.

By choosing lifts from PGLn(k̄) to GLn(k̄), we define the commutator pairing

Jn × Jn
// k̄×,(

[M ], [N ]
) � // M NM−1N−1.
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Using the points of hyperosculation as a crutch, we give an elementary proof that the commutator
pairing on Jn corresponds to the Weil pairing on JC [n](k̄). To even discuss the Weil pairing, we must
assume char(k) - n, and this assumption now occurs repeatedly as we appeal to the commutator
pairing and the fact that Jn has two generators: we show that lifts of generators M and N for Jn

have distinct eigenvalues, that each generator cyclically permutes the fixpoints (eigenspaces) of the
other, and the same is true of the fixed hyperplanes (eigenspaces of the transposed matrices).

For n odd, this leads to the following hyperplane configuration: the hyperplanes fixed by M
intersect C in the n2 points of hyperosculation, and the same is true of the hyperplanes fixed by N .
Furthermore, each point of hyperosculation lies in the intersection of a unique hyperplane fixed by M
with a unique hyperplane fixed by N . (This gives yet another procedure for finding the points of
hyperosculation on C.)

For n even, the hyperplanes fixed by M intersect C in a collection of n2 points that, under the
isomorphism (∗), correspond to a non-trivial point of 2-torsion on JC , while the hyperplanes fixed
by N do the same thing, but for a different point of 2-torsion on JC .

Next, we define Hn ⊂ SLn(k̄) to be the preimage of Jn under the map SLn
// PGLn, giving

us the exact sequence
1 // µn(k̄) // Hn

// Jn
// 1.

This is a central extension of Jn by µn(k̄), of order n3 (when char(k) - n). We characterize the
different lifts of Jn to GLn(k̄) of order n3, and establish that Hn is essentially the only lift we would
want to work with.

We finish the chapter by describing Schrödinger-like representations for Hn and how they relate
to the Galois module structure of JC [n].

I.3d. Chapter IV: An algorithm for the jacobian

We assume C to be smooth and given as in §I.3c: a non-degenerate degree n curve in Pn−1
k of

genus 1. We furthermore assume char(k) - n (cf. §I.2e). Actually, the algorithm takes arbitrary
equations as input, and then verifies that the input meets the assumptions. Thus

C = Proj
k [x0, . . . , xn−1]

I
,

where the generators of I were given in the input.
Now we exploit (∗). As explained in §I.3c, the action of JC [n](k̄) on C(k̄) is given by the group

Jn ⊂ PGLn(k̄), which we lift to Hn ⊂ SLn(k̄). We find Hn as follows: using a Gröbner basis for
the ideal of C, we easily write down the conditions for a generic matrix to preserve C and have
determinant 1. In finding the finitely many solutions, we obtain a finite field extension K/k over
which each solution is defined. We can then check which matrices have no fixpoints on C, and which
have fixpoints and are of order 2 in PGLn(k̄). Thus we can find matrices representing the elements
of Jn o {±1}. We identify two generators M,N for Hn by searching for a pair of matrices whose
commutator is a primitive nth root of unity.

By finding eigenvectors for each matrix and its transpose, we obtain the fixpoints and fixed
hyperplanes under the action of the induced element of PGLn(k̄). As explained in §I.3c, this
information gives us the coordinates of the points of hyperosculation.

We identify Hn with the K-valued points of a finite group scheme, again denoted Hn, which is
defined over k . Then (∗) becomes

JC
∼=

C

Hn
= Proj

((K[x0, . . . , xn−1]
K I

)Hn(K)
)Gal(K/k)

= Proj
k[x0, . . . , xn−1] ∩K[x0, . . . , xn−1]Hn(K)

I ∩K[x0, . . . , xn−1]Hn(K)
.

Algorithms in the invariant theory of finite groups (cf. [Stu93]) tell us how to find the invariants
under Hn(K). Because Hn itself is invariant under Gal(K/k), these algorithms already give us the
correct answer over k .
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Finally, substituting the coordinates of one of the points of hyperosculation on C gives us the
coordinates of the k -rational origin on JC .

I.3e. Chapter V: Example: a Selmer cubic

To illustrate our theory in the case n = 3, we apply the algorithm from chapter IV to the Selmer
cubic

C = Proj
Q[x, y, z]

〈3x3 + 4x3 + 5z3〉
.

We show how to carry out each step of the algorithm by hand (but also include computer code in
some cases), showing in moderate detail how to apply the well-known intermediate algorithms that
were referenced in chapter IV.

At the end of the chapter, we rely on the earlier results in this chapter to tackle the family

Proj
k [x, y, z]

〈ax3 + bx3 + cz3 +mxyz〉
,

where k is a perfect field with char(k) 6= 3.
We include example code for the computer systems we used: GP/Pari [BBB+00], Macaulay 2

[GS], Mathematica [Wol03], mwrank [Cre], and Singular [GPS01].

I.3f. Chapter VI: Example: a pair of quadrics

To illustrate the case n = 4, we carry out some of the steps of applying the algorithm from chapter IV
to

C = Proj
Q[w, x, y, z]

〈w2 + x2 + y2 + z2, w2 + 2x2 + 3y2 + 4z2〉
.

We include computer code that is easily adapted to arbitrary values of n.
Compared to the example from the previous chapter, the current example is interesting for at

least two reasons: it illustrates how the algorithm works when n is even, and the finite Heisenberg
group H4 looks even less Schrödinger-like.

I.3g. Appendix A: Facts about curves of genus 1

We state facts about curves of genus 1 that we reference in other parts of this dissertation.

I.3h. Appendix B: Maps to projective space: a coordinate-free approach

Well known from the theory of smooth projective curves is that a divisor D on a curve X leads to the
map X // Pn given by P � // [s0(P ) : . . . : sn(P )], where the si are elements of L(D) = H0

(
X,O(D)

)
.

In this appendix, for lack of a suitable reference, we give a coordinate-free description of such
maps. (For the same material described in terms of coordinates, see [Har77, §II.7].)

We describe projective space bundles, how to think of their points as certain types of rank 1
quotients, and how they behave under base change. For X a noetherian scheme over a noetherian
ring A, and L an invertible sheaf on X that is generated by global sections and such that H0(X,L)
is a free A-module of finite rank, we obtain a canonical morphism

φ : X // P
(
H0(X,L)⊗A OA

)
,

from X to the displayed projective space bundle. When A is a field k , and K is a field extension
of k , the map φ has a nice description in terms of K-valued points:

φV : X(K) // P
(
H0(X,L)

)
(K),

P � // { s ∈ H0(X,L)⊗k K : sP = 0 }.

In other words, φ carries the K-valued point P to the hyperplane, in the vector space H0(X,L)⊗kK,
of global sections that vanish at P .
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I.4. Table of notation

Symbol Explanation

k , k̄ , Gk perfect field, algebraic closure, absolute Galois group Gal(k̄/k)
K field extension of k , often a finite and/or Galois extension in k̄

Pn−1
k projective (n− 1)-space over k ≡ Proj

(
k [X0, . . . , Xn−1]

)
P(·) projective space bundle ≡ space of hyperplanes
X a k -scheme, often a k -curve of arbitrary genus

XK the K -scheme X ×k K
X(K ) the K -valued points of X ≡ morphisms Spec(K ) // X

C a k -curve of genus 1
k(C) field of k -rational rational functions on C(k̄)
JC the jacobian of C
D k -rational divisor class on C of positive degree
n degree of D
p char(k)
e when char(k) | n, we have pe | n but pe+1 - n
jD the map C // JC , P

� // [nP ]−D
H hyperosculation packet on C (see II.2a)
D k -rational divisor on C of positive degree
[D] set of all divisors linearly equivalent to D
[D]k set of k -rational divisors linearly equivalent to D

(C, O) elliptic curve with group law origin O ∈ C(k)
(C,D) quasi-elliptic curve (see II.2)

C
(n)

// JC map whose pullback JC
// JC is multiplication-by-n (see II.3)

C
n� � // Pn−1

k non-degenerate degree n curve in Pn−1
k of genus 1 (see III.1)

I saturated homogeneous ideal of C (see III.3)
Jn JC [n](k̄) disguised as a certain subgroup of PGLn(k̄) (see III.10)
Hn finite Heisenberg group in SLn(k̄) covering Jn (see III.12)
G Gröbner basis for an ideal

Table I.1. Notation used throughout this dissertation.



CHAPTER II

Background on quasi-elliptic curves

II.1. Assumptions

Let k be a perfect field, and throughout let k̄ denote an algebraic closure. Without further context
or qualification, use of “Galois” refers to the absolute Galois group Gk := Gal(k̄/k).

A k-variety is a separated, geometrically integral, finite-type k -scheme, and a curve is a variety
of dimension 1. If X is a k -scheme, and K ⊇ k is a field extension, then XK denotes the K -scheme

XK := X ×k K := X ×Spec(k) Spec(K ).

Thus a k -variety may be defined as a finite-type k -scheme X such that the base change Xk̄ is a
variety in the sense of classical algebraic geometry carried out over algebraically closed fields.

Throughout, C is a k -curve of genus 1, and JC denotes the jacobian of C. Basic facts about
curves of genus 1 appear in appendix A. Crucial among them is the fact, which follows from
Riemann–Roch, that each K -rational divisor class of degree 1 admits a unique K -rational point as
representative (for details, see §A.1d); from this, we can give an elementary definition both of the
canonical group law on an elliptic curve (see §A.2) and of the canonical action of JC on C (see §A.3).
Familiarity with these facts is assumed.

II.2. Definition of a quasi-elliptic curve (C,D)

Recall that an elliptic k-curve is a pair
(C,O),

where C is a k -curve of genus 1 and O is a k -rational point on C. A morphism of elliptic curves
(C,O) // (C ′, O′) is a morphism of curves φ : C // C ′ so that φ(O) = O′. In fact, (C,O) can
be given a canonical group scheme structure; in particular, for any field extension K ⊇ k , the
set C(K ) is a group with identity element O, and any morphism of elliptic curves is necessarily
a group homomorphism on K -valued points. Associated with (C,O) is the canonical k -morphism
jO : C // JC of degree 1, determined on k̄ -valued points by

jO : C(k̄) ∼ // JC(k̄),

P � // [P −O].

Via this map, which evidently takes the group law origin on C to the group law origin on JC , we
have: every elliptic curve is canonically isomorphic to its jacobian.

Note that a given k -curve C of genus 1 need not occur as an elliptic k -curve, since C need not
admit a k -valued point.

In analogy with the above, we define a quasi-elliptic k-curve to be a pair

(C,D),

where C is a k -curve of genus 1 and D is a k -rational divisor class on C of positive degree. (In §II.4,
and throughout chapter III, we’ll further assume that D admits a k -rational representative, but for
now it is only the class that is k -rational.) A morphism of quasi-elliptic curves (C,D) // (C ′,D′)
is a morphism of curves φ : C // C ′ so that φ∗D = D′. We define the degree of (C,D) to be the

17
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degree of D. Let n be that degree. Associated with (C,D) is the canonical k -morphism jD : C // JC

of degree n2, determined on k̄ -valued points by

jD : C(k̄) // JC(k̄),

P � // [nP ]−D.
Note that each k -curve C of genus 1 does occur as a quasi-elliptic k -curve: simply define a

k -rational divisor class on C by taking the Galois orbit of any k̄ -valued point of C.
On a curve of genus 1, since each k -rational divisor class of degree 1 has a unique k -rational

point as representative, a quasi-elliptic curve of degree 1 is the same thing as an elliptic curve.

II.2a. Osculating divisors and points of hyperosculation

On a curve C of genus 1, the canonical action of JC on C induces, for each integer n ≥ 1, an action
of JC [n](k̄) on C(k̄). The orbits under this action are called n-torsion packets. Here are the basic
facts (explained in more detail in §A.3a):

• An n-torsion packet is a maximal collection of points in C(k̄) so that, if P,Q are any two
of them, then there is a linear equivalence nP ∼ nQ.

• The set of n-torsion packets on C is in one-to-one correspondence with the set
(
C/JC [n]

)
(k̄).

• Given an n-torsion packet P ⊂ C(k̄), we can pick O ∈ T and consider the elliptic curve
E = (Ck̄ , O). Then P comprises the points of n-torsion: P = E[n](k̄). Thus an n-torsion
packet is a collection of points which would be the (usual) n-torsion were we to choose one
of them as group law origin.

• The Galois conjugate of an n-torsion packet is again an n-torsion packet.

Definition. Let (C,D) be a quasi-elliptic curve of degree n. A point P ∈ C(k̄) such that nP ∈ D is
called a point of hyperosculation. For each P ∈ C(k̄), the unique divisor of the form (n−1)P+Q
that lies in D is called the osculating divisor at P .

The uniqueness is explained as follows: since the divisor class D − (n − 1)[P ] has degree 1,
it is represented by a unique point Q ∈ C(k̄). Observe that a point of hyperosculation may be
characterized as one whose osculating divisor involves that point more than usual.

Remark. The terms “osculation” and “hyperosculation” have a geometric interpretation for n ≥ 3.
Identify C with its image in Pn−1

k via the embedding given by D (see §II.4). Associated with each
P ∈ C(k̄) is the hyperplane meeting C to maximal order at P , called the osculating hyperplane.
For most P , we have just seen that the osculating hyperplane meets C to order n − 1 at P . For
certain points P , the osculating hyperplane meets C to order n at P , and that phenomenon is called
hyperosculation. A point whose osculating plane hyperosculates is called a point of hyperosculation.
For a cubic curve in P2

k , the osculating hyperplane at each point is simply the tangent line. The
9 points of hyperosculation are simply the flex points—they are the points where the tangent line
meets the curve to order 3.

Proposition II.2.1. On a quasi-elliptic curve (C,D), the points of hyperosculation compose an n-
torsion packet. There are precisely #JC [n](k̄) distinct points of hyperosculation in C(k̄). (Therefore,
when char(k) - n, there are n2 such points.)

Proof. It is easy to check that the points of hyperosculation are one orbit under the action of
JC [n](k̄) on C(k̄). �

Corollary II.2.2. Every quasi-elliptic curve has at least one point of hyperosculation. (It might
not be k-rational, but see II.2.3.)

Definition. The n-torsion packet H comprising points of hyperosculation is called the hyperoscu-
lation packet.

Proposition II.2.3. The hyperosculation packet H is Galois stable.
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Proof. If P is such that nP ∈ D, then it is easy to see that Pσ has the same property: nP σ =
(nP )σ ∈ Dσ = D. �

The space of n-torsion packets is
(
C/JC [n]

)
(k̄). If C is an arbitrary k -curve of genus 1, then

C/JC [n] need not admit a k -rational point; but, by II.2.3, when C is part of a quasi-elliptic curve
(C,D) of degree n, then C/JC [n] always admits a canonical k -rational point, namely the hyperoscu-
lation packet H. In other words, (C/JC [n],H) is an elliptic curve.

Theorem II.2.4. The k-morphism jD of degree n2, given on k̄-valued points by

jD : C(k̄) // JC(k̄)

P � // [nP ]−D,

descends to a k-isomorphism of elliptic curves

jD : C/JC [n] ∼ // JC .

(When n = 1, this is just the usual isomorphism C
∼ // JC .)

Proof. To see this, observe merely that the map has degree 1, and that the fibers of jD are the
same as the orbits under the action of JC [n]; in particular, the hyperosculation packet is j−1

D (0). �

II.2b. Structure of morphisms

The definition of a morphism between two quasi-elliptic curves was given in §II.2. For there to exist
such a morphism, it is of course necessary that the two quasi-elliptic curves have the same degree.
We will now give descriptions of the set of morphisms between two quasi-elliptic curves, of the
monoid of endomorphisms of a quasi-elliptic curve, and of the group of automorphisms of a quasi-
elliptic curve. These particular descriptions require the choice of a point of hyperosculation. Since
there may be no such choice that is k -rational, these descriptions may not be useful for describing
k -rational homomorphisms, k -rational endomorphisms, and k -rational automorphisms.

Proposition II.2.5. Let (C,D) and (C ′,D′) be two quasi-elliptic curves of the same degree n. Fix
points of hyperosculation O ∈ C(k̄) and O′ ∈ C ′(k̄). Each morphism

ψ ∈ Hom
(
(Ck̄ ,D), (C ′k̄ ,D

′)
)

can be written uniquely in the form

ψ = τ ◦ φ, where τ ∈ JC′ [n](k̄), φ ∈ Hom
(
(Ck̄ , O), (C ′k̄ , O

′)
)
.

Moreover, vice versa, each such τ ◦ φ defines a ψ.

Proof. By A.4.1, we certainly can write ψ = τ ◦φ with φ as above and τ ∈ JC′(k̄). Then ψ∗(nO) =
τ∗φ∗(nO) = τ∗(nO′) = nτ(O′), and we have nτ(O′) ∼ nO′ if and only if n(τ(O′) − O′) ∼ 0, i.e., if
and only if τ has order n. �

Corollary II.2.6. Let (C,D) be a quasi-elliptic curve of degree n. Fix a point of hyperosculation
O ∈ C(k̄). Each endomorphism

ψ ∈ End
(
(Ck̄ ,D)

)
can be written uniquely in the form

ψ = τ ◦ φ, τ ∈ JC [n](k̄), φ ∈ End
(
(Ck̄ , O)

)
.

Proposition II.2.7. Let (C,D) be a quasi-elliptic curve of degree n. Fix a point of hyperosculation
O ∈ C(k̄). The automorphism group of (Ck̄ ,D) has the structure

Aut
(
(Ck̄ ,D)

)
= JC [n](k̄) o Aut

(
(Ck̄ , O)

)
.

Proof. As in II.2.5, this time by A.4.5. �
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II.3. Quasi-elliptic curves as maps C
(n)

// JC

Associated with the quasi-elliptic curve (C,D) is the map jD : P � // [nP ] − D, which has the
property:

the induced map (jD)∗ : JC
// JC is multiplication-by-n.

We will now classify maps with that property and thereby obtain another description of quasi-elliptic
curves.

To get started, forget D for the time being, and let φ : C // JC be any morphism whatsoever.
For each integer n ≥ 1, we associate with φ the map

φn : C // Picn
C

whose behavior on k̄ -valued points is

φn : P � // unique class DP so that φ(P ) = [nP ]−DP .

Proposition II.3.1. We have φ∗ = [n] if and only if φn is constant; when that is the case, φ is
defined over k if and only if the value of the constant map φn in Picn

C is a k-rational class.

Proof. If φn is constant, say with value D, then φ(P ) = [nP ] − D for all P ∈ C(k̄), whence φ∗ is
immediately seen to be [n]. Now assume φ∗ = [n]. Let P,Q ∈ C(k̄) be arbitrary. Then [nP −nQ] =
n[P −Q] = φ∗[P −Q] = φ(P )− φ(Q) =

(
[nP ]−DP

)
−
(
[nQ]−DQ

)
= [nP − nQ]− (DP −DQ), so

DP = DQ.
Now assume φ(P ) = [nP ]−D for all P ∈ C(k̄). Then φσ(P ) = (φ(Pσ−1

))σ =
(
[nP σ−1

]−D
)σ =

[nP ] − Dσ, so φ = φσ for all σ ∈ Gal(k̄/k) if and only if D = Dσ for all σ ∈ Gal(k̄/k), i.e., if and
only if the class D is k -rational. �

Let us write

C
(n)

// JC (II.1)

for a k -morphism with the property that the induced map φ∗ on jacobians is multiplication-by-n.
Given two diagrams

C
(n)

// JC and C ′
(n)

// JC′ ,

a morphism between them is a curve morphism φ : C // C ′ fitting into a commutative diagram

C

C ′

φ

��

JC′ .
(n)

//

JC

(n)
//

φ∗
��

By the proof of II.3.1, each (II.1) is equal to jD for a unique D ∈ Picn(C)(k), whence the two
horizontal arrows in the diagram are of the form jD and jD′ . Commutativity of the diagram is easily
seen to correspond to the condition φ∗D = D′.

Thus there is an isomorphism between the category of quasi-elliptic curves and the category of
morphisms of the form (II.1), which goes as follows: to a quasi-elliptic curve (C,D) we associate the
morphism jD, while to a morphism (II.1), which must equal jD for a unique D ∈ Picn(C)(k), we
associate the quasi-elliptic curve (C,D).

De-emphasizing the divisor class by thinking of a quasi-elliptic curve as being a morphism (II.1)
is analogous to de-emphasizing the origin by thinking of an elliptic curve as being a curve together
with an isomorphism to its jacobian.
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II.3a. Relationship with n-coverings of an elliptic curve

Let (E,O) be a fixed elliptic k -curve. Associated with E is the Kummer sequence

0 //
E(k)
nE(k)

// H1
(
Gk , E[n](k̄)

)
// H1
(
Gk , E(k̄)

)
[n] // 0. (∗)

Elements of the Weil–Châtelet group WC(E) := H1
(
Gk , E(k̄)

)
are classically described as equiv-

alence classes of torsors (= principal homogeneous spaces) over E: a k -curve C together with a simply
transitive action of E on C. Elements of WC(E) may instead be described (see [AKM+01, §4]) as
equivalence classes of pairs

(C, JC
∼ // E),

where JC
∼ // E is a k -isomorphism of elliptic curves.

Elements of H1
(
Gk , E[n](k̄)

)
are classically described (following [Cas60, §1] and [Cas62, §2])

as equivalence classes of n-coverings: diagrams

C

∼
��

// E

E

[n]

??~~~~~~~~

(∗∗)

in which C and the morphism C // E are each defined over k , but the isomorphism C
∼ // E need

not be defined over k . Elements of H1
(
Gk , E[n](k̄)

)
may instead be described as equivalence classes

of pairs

(C
(n)

// JC , JC
∼ // E),

where C
(n)

// JC is a quasi-elliptic k -curve (in the sense of §II.3), and JC
∼ // E is a k -isomorphism

of elliptic curves; two pairs (C
(n)

// JC , JC
∼ // E) and (C ′

(n)
// JC′ , JC′

∼ // E) are equivalent when
there is a k -morphism φ : C // C ′ so that the following diagram commutes:

C

C ′

φ

��

JC′
(n)

// E.∼ //

EJC
(n)

//

φ∗
��

∼ //

We now establish this alternate description. Given a pair (C
(n)

// JC , JC
∼ // E), we immediately

obtain the corresponding classical n-covering (∗∗). On the other hand, given (∗∗), C // E induces
the pullback morphism JE

// JC whose kernel is JE [n]. Thus JE/JE [n] ∼= JC , but also JE/JE [n] ∼=
JE

∼= E, whence there is a canonical k -isomorphism JC
∼ // E.

With these descriptions, the first map in (∗) sends a point P ∈ E(k) to the map Q � // nQ+ P ,
or more precisely,

[P ] � // (E
(n)

// JE , JE
∼ // E)(

Q � // [nQ+ P − (n+ 1)O], [P −O] � // P
)
,

while the second map in (∗) is simply the forgetful map

(C
(n)

// JC , JC
∼ // E) � // (C, JC

∼ // E).

II.4. Mapping a quasi-elliptic curve to projective space

Consider a quasi-elliptic curve (C,D), of degree n, for which the divisor class D admits a k -rational
representative D. Such a quasi-elliptic curve, together with the additional data of the choice of
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representative, is denoted simply (C,D). Associated with (C,D) is the k -morphism ιD of degree n
to the canonical projective space bundle arising from D, which is given on k̄ -valued points by

ιD : C(k̄) // P
(
H0(C,O(D))

)
(k̄),

P
� //

{
s ∈ H0(Ck̄ ,O(D)) : s(P ) = 0

}
.

Remark. For V any k -vector space, the k̄ -valued points of the projective space bundle P(V ) are
simply the hyperplanes in the k̄ -vector space V ⊗k k̄ . (See appendix B for details on projective space
bundles.) The map ιD takes a point to the hyperplane of sections that vanish at that point, but one
must interpret this correctly: O(D) is a subsheaf of the constant sheaf induced by the function field,
so it is common to think of a section of O(D) as a rational function f ; the section vanishes at P
precisely when the order of vanishing of f at P is at least one higher than what is allowed/required
by the coefficient of P in D.

The map ιD is an embedding precisely for n ≥ 3, because that is the precise condition for D
to be very ample (see [Har77, IV.3.3.3]). We will study such embedded curves in chapter III. For
now, however, we make no assumption on n.

By choosing a basis B = {x0, . . . , xn−1 } for H0
(
C,O(D)

)
, our map becomes

ιB : C(k̄) // Pn−1
k (k̄),

P � // [x0(P ) : . . . : xn−1(P )].

The image of ιB is non-degenerate (meaning: it does not lie in a hyperplane), because otherwise we
would contradict the linear independence of the basis elements. Each choice of basis leads to such a
map, and two different choices lead to two maps that differ by an automorphism of Pn−1

k , namely
by the element of PGLn(k) induced by the change-of-basis matrix. Replacing D with D′ ∈ [D]k ,
and choosing a basis B′ for H0

(
C,O(D′)

)
, we obtain a map ιB′ : C // Pn−1

k as before, and it, too,
differs from the original ιB by an automorphism of Pn−1

k . (To see this, note that O(D) and O(D′)
are isomorphic, whence by B.3b we have P

(
H0(C,O(D))

) ∼= P
(
H0(C,O(D′))

)
. Now apply [Har77,

II.7.1.1].)
In short, given a quasi-elliptic curve (C,D) with the property that D admits a k -rational rep-

resentative but without the data of a choice of such representative, there is a maximal family F of
k -morphisms ι : C // Pn−1

k of degree n with non-degenerate image such that any two members of F
differ by a k -rational automorphism of Pn−1

k . Given the pair (C,F), we recover the pair (C,D) by
letting D be the class of divisors of hyperplane sections (= pullbacks of hyperplanes) for any (and
all) maps in F .

II.4a. Extending a morphism between quasi-elliptic curves to a morphism between
projective spaces

Isomorphisms between quasi-elliptic curves induce compatible morphisms between the projective
spaces to which they map. More precisely, if (C,D) is a quasi-elliptic curve with a k -rational divisor
of degree n, and if (C ′, D′) is a quasi-elliptic curve with a k -rational divisor of the same degree n, and
if we choose a basis B for H0

(
C,O(D)

)
and a basis B′ for H0

(
C ′,O(D′)

)
, and if we have a morphism

φ : C // C ′ with φ∗D ∼ D′, then we can ask about the existence of a map in the indicated position:

C Pn−1
k

ιB //

C ′

φ

��

Pn−1
k

ιB′ //

��
?

(∗)

Proposition II.4.1. If φ is an isomorphism, then the map in question in (∗) exists (and is an
automorphism of Pn−1

k ).



II.4. Mapping a quasi-elliptic curve to projective space 23

Proof. We have φ∗D′ ∼ D. The desired map is obtained by composing the maps in the following
commutative diagram:

C P
(
H0(C,O(D))

)
//

P
(
H0(C,O(φ∗D′))

)∼ (by B.3b)
��

P
(
H0(C, φ∗O(D′))

)∼ (by B.3b)
��

P
(
H0(C ′,O(D′))

)
.

(by B.3a)

C //

C //

C ′

∼ φ

��
//

�

It is natural to wonder, when φ is not an isomorphism, whether the map in question in (∗)
exists. We now show this is in general not the case.

Assume it exists. By pulling back O(1) from the lower right corner of (∗) to the upper left
corner in two different ways, we obtain O(`D) ∼= φ∗O(D′) for some ` ∈ Z, which forces ` = deg(φ),
and we have obtained a simple necessary condition:

φ∗D′ ∼ deg(φ) ·D.

Example. The necessary condition need not hold. Let (C,O) be an elliptic curve with a k -rational
point P of order 2. Let Φ be the subgroup {O,P }. The quotient map C // C/Φ may be viewed as
a degree 2 morphism between quasi-elliptic curves of degree 3:

φ : (C, 3O) // (C/Φ, 3O/Φ).

Then φ∗(3O/Φ) = 3O+3P , while deg(φ) · 3O = 6O, but [3]O⊕ [3]P 6= [6]O, whence 3O+3P 6∼ 6O.
Therefore, if C and C/Φ are embedded in P2

k via 3O and 3O/Φ, then φ does not extend to a
morphism P2

k
// P2

k .



CHAPTER III

Projective quasi-elliptic curves C
n� � // Pn−1

k

In this chapter, we study arithmo-geometric aspects of k -curves of genus 1 that are embedded as
non-degenerate degree n curves in Pn−1

k , where k is a perfect field. Obviously n ≥ 3. Such a curve C
will be denoted

C
n� � // Pn−1

k . (III.1)

Remark. Together with the additional data of a choice of k -valued point on JC [n], and the as-
sumption char(k) - n, (III.1) is called an “n-prepared curve” in [O’N01]. When k = C, (III.1) is
called an “elliptic normal curve”.

Let D be the class of hyperplane sections on C. Then (III.1) gives us a quasi-elliptic curve
(C,D) of degree at least 3 and such that D admits a k -rational representative. Call such a quasi-
elliptic curve projective. Conversely, given a k -curve C of genus 1 and a divisor class D on C of
degree n ≥ 3 that admits a k -rational representative D, a choice of basis for H0

(
C,O(D)

)
gives an

embedding to projective space (cf. §II.4), recovering the description (III.1). In summary, “projective
quasi-elliptic curve of degree n” means essentially the same thing as “non-degenerate degree n curve
in Pn−1

k of genus 1”.
Note that each k -curve C of genus 1 occurs as a projective quasi-elliptic curve: simply define a

k -rational divisor on C by taking the Galois orbit of any k̄ -valued point on C.

III.1. Attempting to simplify the description

In this section, we answer the question: are any of the words in “non-degenerate degree n curve
in Pn−1

k of genus 1” superfluous? After all, we are familiar with the fact: a degree 3 smooth curve
in P2

k necessarily has genus 1 and necessarily is non-degenerate.

Proposition III.1.1. If X ⊂ Pn−1
k is a non-degenerate curve, then deg(X) ≥ n− 1.

Proof. Choosing n − 1 distinct points in X(k̄), there exists a hyperplane H ⊂ Pn−1
k̄

containing
those points. If deg(X) < n− 1, then Xk̄ is contained in H. �

Proposition. If X ⊂ Pn−1
k is a non-degenerate curve, and D is a hyperplane section, then `(D) ≥ n.

Proof. The dimension `(D) is the same for every hyperplane section, so let D be the section
determined by X0 = 0. Then 1, X1/X0, . . . , Xn−1/X0 lie in H0

(
X,O(D)

)
, and they are linearly

independent since X is non-degenerate. Thus `(D) ≥ n. �

Corollary. If C ⊂ Pn−1
k is a non-degenerate curve of genus 1, then deg(C) ≥ n.

Proof. By Riemann–Roch (see §A.1), we have `(D) = deg(D) for any divisor of positive degree.
Now let D be any hyperplane section. Then deg(D) = deg(C). �

Example. We show that a non-degenerate curve in Pn−1
k of genus 1 can have degree strictly larger

than n. In [Har77, §IV.3] it is shown that every projective k -curve can be embedded in P3
k . The

procedure goes like this: if the curve already lies in P2
k or P3

k , we’re done; otherwise, we repeatedly
project from points off the curve to decrease the dimension. We can always get as far as P3

k without

24



III.3. The saturated homogeneous ideal of C 25

introducing singularities. Thus we can start with a projective quasi-elliptic curve C
5� � // P4

k of
degree 5 in P4

k , and then project it to P3
k , giving us a non-degenerate degree 5 curve in P3

k of
genus 1.

Example. We show that a degree n curve in Pn−1
k of genus 1 can be degenerate. Take the non-

degenerate degree 5 curve in P3
k of genus 1 from the previous example, and inject it into P4

k . This
gives a degenerate degree 5 curve in P4

k of genus 1.

Example. We show that a non-degenerate degree n curve in Pn−1
k can have genus 6= 1. Consider a

rational normal curve (generalization of the twisted cubic) of degree n in Pn
k and project it to Pn−1

k .
It has genus 0.

In summary, no words in “non-degenerate degree n curve in Pn−1
k of genus 1” are superfluous.

III.2. Basic facts about C n� � // Pn−1
k

Let C n� � // Pn−1
k be a projective quasi-elliptic curve.

Proposition III.2.1. Given n− 1 points P1, . . . , Pn−1 ∈ C(k̄), they lie in the support of a unique
hyperplane section.

Proof. By §A.1d, there is a unique Q ∈ C(k̄) so that P1 + . . . + Pn−1 + Q ∈ D, where D is the
divisor class comprising hyperplane sections on C. �

Corollary III.2.2. Given n − 1 distinct points P1, . . . , Pn−1 ∈ C(k̄), their linear span in Pn−1
k is

a hyperplane.

Proof. If their linear span had codimension ≥ 2, then P1, . . . , Pn−1 would be contained in more
than one hyperplane, contradicting III.2.1. �

Corollary III.2.3. Any n− 1 or fewer distinct points in C(k̄) are independent.

Corollary III.2.4. The linear span of any n− 2 or fewer points in C(k̄) misses the rest of C.

Proof. Let ` be the number of distinct points in the given collection. By III.2.3, they span a P`
k̄
.

If that P`
k̄

were to meet C in another point, then, again by III.2.3, the points would have to instead
span a P`+1

k̄
. �

III.3. The saturated homogeneous ideal of C

From the scheme viewpoint, our projective quasi-elliptic curve C is a closed subscheme of

Pn−1
k = Proj(S), where S = k [X0, . . . , Xn−1],

and thus, by [Har77, II.5.16], we have

C = Proj(S/I),

where I is a homogeneous ideal in S. However, if I and I ′ are homogeneous ideals of S such that the
rings S/I and S/I ′ are not isomorphic, it can nonetheless be the case (see [Har77, Ex. II.2.14c])
that

Proj(S/I) ∼= Proj(S/I ′). (III.2)
Fortunately, by [Har77, Ex. II.5.10], we have (III.2) if and only if I and I ′ have the same saturation.
Recall that the saturation of an ideal I is

Ī = { s ∈ S : for each i, there exists ni so that X ni
i · s ∈ I }.

We always have Proj(S/I) ∼= Proj(S/Ī), and the correspondence between closed subschemes of Pn−1
k

and saturated homogeneous ideals in S is one-to-one. Whenever we speak of the ideal of C, we always
mean the unique saturated homogeneous ideal in S that defines C.
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More generally, by [Har77, II.5.9], closed subschemes (of any scheme, not just projective space)
correspond to quasi-coherent sheaves of ideals. Let IC denote the ideal sheaf of C on Pn−1

k . It is
defined by the exactness of the following sequence of OPn−1

k
-modules:

0 // IC
// OPn−1

k

// ι∗OC
// 0. (III.3)

The relationship between IC and the ideal of C is given by [Har77, Ex. II.5.10c]:

I =
⊕
m∈Z

H0
(
Pn−1
k , IC(m)

)
. (III.4)

It is worth recording that the (saturated homogeneous) ideal of Ck̄ is simply

Ik̄ = I ⊗k k̄ .

Certainly Ik̄ is an ideal of Ck̄ , and one can easily check that it is saturated; alternatively, start with
the description

Ik̄ :=
⊕
m∈Z

H0
(
Pn−1
k̄

, ICk̄
(m)

)
,

and apply [Har77, III.9.3], which tells us

H0
(
Pn−1
k , IC(m)

)
⊗k k̄ = H0

(
Pn−1
k̄

, ICk̄
(m)

)
, for all m ∈ Z,

whence we recover Ik̄ = I ⊗k k̄ .

III.4. Projective normality

By twisting (III.3), we obtain, for each m ∈ Z, the following exact sequence of OPn−1
k

-modules:

0 // IC(m) // OPn−1
k

(m) // (ι∗OC)(m) // 0. (III.5)

Taking global sections, we obtain

0 // H0
(
Pn−1
k , IC(m)

)
// H0
(
Pn−1
k ,OPn−1

k
(m)

)
// H0
(
C,OC(mD)

)
// H1
(
Pn−1
k , IC(m)

)
// H1
(
Pn−1
k ,OPn−1

k
(m)

)
// H1
(
C,OC(mD)

)
// . . . , (III.6)

where D is any choice of k -rational hyperplane section on C. (We used H0
(
Pn−1
k , (ι∗OC)(m)

)
=

H0
(
Pn−1
k , ι∗(OC(mD))

)
= H0

(
C,OC(mD)

)
, which follow from [Har77, Ex. III.4.1, II.5.12c].)

It is of interest to determine for which m the map

H0
(
Pn−1
k ,OPn−1

k
(m)

)
// H0
(
C,OC(mD)

)
(III.7)

from (III.6) is surjective. This gives us information about the dimension of the first term in (III.6),
which, by (III.4), is information about the mth graded piece of the ideal I of C.

For m < 0, surjectivity of (III.7) follows from `(mD) = 0 (see [Har77, IV.1.2]). For m = 0,
surjectivity follows from the fact that C is connected. For m = 1, surjectivity is sometimes called
linear normality, and holds because we can view (III.1) as the embedding associated with a choice
of basis for H0

(
C,OC(D)

)
, whence the homogeneous coordinates on Pn−1

k pull back to that basis.
We now establish surjectivity for all m, which is sometimes called projective normality (cf. [Har77,
Ex. II.5.14]).

Theorem III.4.1. Let C be a non-degenerate degree n curve in Pn−1
k of genus 1. For each m ∈ Z,

the short exact sequence (III.5) remains exact upon taking global sections. In other words, the
map (III.7) is surjective.

Proof. Since H1
(
Pn−1
k ,OPn−1

k
(m)

)
= 0 (see [Har77, III.5.1]), the surjectivity of (III.7) is equiva-

lent, by (III.6), to
H1
(
Pn−1
k , IC(m)

)
= 0, for all m ∈ Z.

The cases m < 2 were established preceding the theorem statement. Now we mimic the proof
in [Hul86].
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By [Har77, III.9.3], H1
(
Pn−1
k , IC(m)

)
⊗k k̄ ∼= H1

(
Pn−1
k̄

, ICk̄
(m)

)
, whence we may assume

k = k̄ . By Bertini (see [Har77, II.8.18]), there exists a hyperplane H so that the scheme D = C∩H
comprises n distinct points, call them P1, . . . , Pn.

D
s //

��

H

j

��

C
ι // Pn−1

k

We will now consider various sheaves ofOPn−1
k

-modules on Pn−1
k , which fit together into the following

diagram:

0

��

0

��

0

��

0 // IC(m)

��

// OPn−1
k

(m)

��

// (ι∗OC)(m)

��

// 0

0 // IC(m+ 1)

��

// OPn−1
k

(m+ 1)

��

// (ι∗OC)(m+ 1)

��

// 0

0 // (j∗ID/H)(m+ 1)

��

// (j∗OH)(m+ 1)

��

// (j∗s∗OD)(m+ 1)

��

// 0

0 0 0

Multiplication by the linear form ` ∈ H0
(
Pn−1
k ,OPn−1

k
(1)
)

that defines H gives the exact se-
quence

0 // IC(m) ` // IC(m+ 1) // (j∗ID/H)(m+ 1) // 0,
where ID/H denotes the ideal sheaf of D on H. Taking global sections, we obtain

. . . // H1
(
Pn−1
k , IC(m)

)
// H1
(
Pn−1
k , IC(m+ 1)

)
// H1
(
Pn−1
k , (j∗ID/H)(m+ 1)

)
// . . . ,

and the theorem is reduced, by induction on m ≥ 1, to establishing

H1
(
Pn−1
k , (j∗ID/H)(m+ 1)

)
= 0, for m ≥ 1. (∗)

If we now start with the exact sequence of sheaves of OH -modules

0 // ID/H
// OH

// s∗OD
// 0,

we can apply j∗ and then twist m+ 1 times to obtain

0 // (j∗ID/H)(m+ 1) // (j∗OH)(m+ 1) // (j∗s∗OD)(m+ 1) // 0.

Note that j∗ is exact here because j is a closed immersion (see [Har77, III.3.7, III.8.1]). Taking
global sections gives

. . . // H0
(
H,OH(m+ 1)

)
// H0
(
Pn−1
k , (j∗s∗OD)(m+ 1)

)
// H1
(
Pn−1
k , (j∗ID/H)(m+ 1)

)
// H1
(
H,OH(m+ 1)

)
// . . . .

We now claim H1
(
H,OH(m+1)

)
vanishes for m ≥ 1; in other words, since H ∼= Pn−2

k , we are claim-
ing H1

(
Pn−2
k ,OPn−2

k
(m+1)

)
= 0 for m ≥ 1. For n ≥ 4, the claim follows immediately from [Har77,

III.5.1b]. For n = 3, the claim follows from the existence of a perfect pairing (see [Har77, III.5.1d])
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H0
(
P1
k ,OP1

k
(−m−3)

)
×H1

(
P1
k ,OP1

k
(m+1)

)
// k and the fact that the first term in this pairing van-

ishes when m ≥ 1 (see [Har77, II.5.13]). Having established the claim, we see that (∗) is equivalent
to showing the map

H0
(
H,OH(m+ 1)

)
// H0
(
Pn−1
k , (j∗s∗OD)(m+ 1)

)
to be surjective form ≥ 1. Since the codomain is simply the direct sum of one-dimensional skyscraper
sheaves supported on the Pi, we are done if we can exhibit an (m+ 1)-form on H that vanishes at
all Pi except, say, P1. Since some projective coordinate does not vanish at P1, we are reduced to
finding a quadratic form on H that vanishes at all Pi except P1.

By lemma III.2.4, the points P3, . . . , Pn span a linear space in Pn−1
k that misses the rest of C, and

thus they define a hyperplane inside H that misses P1 and P2. Reasoning instead with P2, . . . , Pn−1,
we obtain a hyperplane that misses P1 and Pn. The product of the associated linear forms gives a
quadratic form on H that vanishes at all Pi except P1. �

III.5. The Hilbert function of C

To describe I explicitly for particular values of n, we will start by determining the dimension of each
graded piece. Set

dI(s) := dimk Is = dimk H0
(
Pn−1
k , IC(s)

)
.

By III.4.1, taking global sections of the exact sequence

0 // IC(s) // OPn−1
k

(s) // (i∗OC)(s) // 0

gives the exact sequence

0 // H0
(
Pn−1
k , IC(s)

)
// H0
(
Pn−1
k ,OPn−1

k
(s)
)

// H0
(
C,O(sD)

)
// 0,

whence

dI(s) = dimk H0
(
Pn−1
k ,OPn−1

k
(s)
)
− `(sD).

By counting monomials of degree s, and by Riemann–Roch, we obtain

dI(s) =
(
n− 1 + s

n− 1

)
− ns.

Recall that the Hilbert function of C is φC(s) := dimk (S/I)s. By what we determined above,
we immediately obtain:

φC(s) = dimk Ss − dimk Is

=
(
n− 1 + s

n− 1

)
− dI(s)

= ns.

For sufficiently large s, the Hilbert function agrees with a polynomial function (see [Har77, I.7.5]),
called the Hilbert polynomial of C. But φC(s) is itself polynomial in s, whence φC(s) is both
the Hilbert function and the Hilbert polynomial. (Since C is a degree n curve of genus 1, we can
independently see, by [Har77, I.7.6, Ex. I.7.2], that its Hilbert polynomial is PC(s) = ns.) We have
proved:

Theorem III.5.1. On a non-degenerate degree n curve in Pn−1
k of genus 1, the Hilbert polynomial

and Hilbert function are the same, namely φC(s) = PC(s) = ns.
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III.6. C is a complete intersection for n = 3 and n = 4

We ask: for which n is a projective quasi-elliptic curve C a complete intersection?
Recall, for X a closed subscheme of Pn−1

k , each generating set for the ideal of X has cardinality
≥ n − 1 − dim(X); if there exists a generating set of cardinality = n − 1 dim(X), then X is said
to be a complete intersection, in which case the degree of X is the product of the degrees of the
n− 1− dim(X) generators (see [Har77, I.7.7]).

Our curve (III.1), whose degree n is ≥ 3, is a complete intersection if and only if its ideal can
be generated by n − 2 elements. Since no hyperplane contains C, each generator has degree ≥ 2,
whence, to be a complete intersection, C must have degree ≥ 2n−2. From 2n−2 ≤ n we conclude
n ≤ 4.

Theorem III.6.1. Let C be a non-degenerate degree n curve in Pn−1
k of genus 1. Then C is a

complete intersection if and only if n = 3 or n = 4.

Proof. We already saw that n = 3 or n = 4 is necessary. Let n = 3. From our calculation in §III.5,
we have

dI(s) := dimk Is =
(
s+ 2
s

)
− 3s =

(s− 2)(s− 1)
2

.

In particular, dI(3) = 1, so there is a cubic form F ∈ I. Since 〈F 〉 ⊆ I, we obtain 〈F 〉 = I by
showing dimk 〈F 〉s = dimk Is for each degree s. But the dimension of 〈F 〉 in degree s is the same as
the dimension of S = k [x, y, z] in degree s − 3. Since dimk Ss =

(
s+2
2

)
, we have dimk 〈F 〉s =

(
s−1
2

)
,

which is just dI(s).
Now let n = 4. Then

dI(s) =
(
s+ 3
s

)
− 4s =

(s− 1)(s2 + 7s− 6)
6

.

In particular, dI(2) = 2, so there are two linearly independent quadratic forms Q1, Q2 ∈ I. As
before, we will show dimk Is = dimk 〈Q1, Q2〉s, and thus obtain I = 〈Q1, Q2〉. Since there are
relations between Q1 and Q2, we have to work a bit harder to determine dimk 〈Q1, Q2〉s. Let N
be the free module S ⊕ S, where S = k [w, x, y, z]. Consider the Koszul complex for (Q1, Q2) ∈ N
(cf. [Eis95, §17.2]),

0 // S // N //
∧2

N // 0,

where the maps are just wedge-multiplication on the left by the element (Q1, Q2). In terms of the
basis e1 = (1, 0) and e2 = (0, 1) for N , and the basis e1 ∧ e2 for

∧2
N , the complex is

0 S// S2
(Q1

Q2
)

// S
(−Q2,Q1)

// 0.// (∗)
By [Eis95, 17.5], the complex (∗) is exact everywhere except at the right since Q1, Q2 compose a
regular sequence; indeed, since C is not contained in a plane, Q1 is irreducible whence 〈Q1〉 is prime,
and since Q2 is not a multiple of Q1, it is nonzero in the integral domain S/〈Q1〉. We thus obtain
the exact sequence

0 S// S2
(Q1

Q2
)

// 〈Q1, Q2〉
(−Q2,Q1)

// 0.// (∗∗)

From this we can determine dimk 〈Q1, Q2〉s. Since dimk Ss =
(
s+3
3

)
, the dimension of the middle

term of (∗∗) in degree s is 2
(
s+3
3

)
. The map (Q1

Q2
) shifts degrees by 2, whence the dimension of the

cokernel in degree s is 2
(
s+3
3

)
−
(
(s−2)+3

3

)
. But the quotient map (−Q2,Q1) again shifts degrees by 2,

so

dimk 〈Q1, Q2〉s = 2
(

(s− 2) + 3
3

)
−
(

(s− 4) + 3
3

)
,

which is the same as dI(s). �

Remark. For n = 4, an alternate argument appears at the end of §18.2 in [Eis95].
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III.7. Cutting C out by quadrics when n ≥ 4 and char(k) 6= 2

We ask: is C cut out scheme-theoretically by quadrics (equivalently, is I generated by quadratic
forms)? If so, how many quadrics are needed? In the previous section, we saw that C is not cut
out by quadrics when n = 3, while it is cut out by a pair of quadrics when n = 4.

Proposition III.7.1. Let C be a non-degenerate degree n curve in Pn−1
k of genus 1. Then each

minimal generating set for I contains n(n− 3)/2 quadratic forms.

Proof. From our work in §III.5, we have

dimk{ quadratic forms in I } = dI(2) = dimk H0
(
Pn−1
k , IC(2)

)
=
n(n− 3)

2
.

Since there are no linear forms in I, each generating set for I must contain n(n − 3)/2 linearly
independent quadratic forms, whence each minimal generating set contains precisely n(n − 3)/2
quadratic forms (and possibly also forms of higher degree—indeed, such is the case when n = 3). �

Theorem III.7.2. Assume char(k) 6= 2. Let C be a non-degenerate degree n curve in Pn−1
k of

genus 1. Then C is cut out scheme-theoretically by quadrics if and only if n ≥ 4, in which case each
minimal generating set for I comprises n(n− 3)/2 elements, all of them quadratic forms.

Proof. In light of III.7.1, it remains to show, when n ≥ 4 and char(k) 6= 2, that I is generated by
quadratic forms—we do this below, in III.7.4. �

We recall (cf. [Har77, Ex. 5.12] and [Har95, Lec. 3, Lec. 22]) basic facts about quadrics in Pn−1
k

when char(k) 6= 2. Thinking of the variables (X0, . . . , Xn−1) as a column vector X, each quadratic
form Q(X) ∈ k [X0, . . . , Xn−1] can be written in the form Q(X) = XtAX, where A is an n × n
symmetric matrix with entries in k . The rank of the quadric defined by Q is, by definition, simply
the rank of the matrix A. A rank 1 quadric is a hyperplane of multiplicity 2, while a rank 2 quadric
is a union of two distinct hyperplanes. A quadric is irreducible if and only if its rank r satisfies r ≥ 3,
and a quadric is smooth if and only if r is maximal: r = n. For 2 ≤ r ≤ n− 1, the quadric may be
described as a cone, with vertex a Pn−1−r

k , over a smooth (rank r) quadric in Pr−1
k . Given any two

distinct quadrics QA and QB , with (scheme-theoretic) intersection X = QA ∩QB , each member of
the pencil

λ0QA + λ1QB , where [λ0 : λ1] ∈ P1
k (k̄), (III.8)

also contains X. The pencil (III.8) may be recovered by any two distinct members of that pencil.
The singular members correspond to the roots [λ0 : λ1] ∈ P1

k (k̄) of the equation

det(λ0A+ λ1B) = 0, (III.9)

where A and B are the n× n symmetric matrices corresponding to QA and QB .
We return now to our curve C. Since C is non-degenerate, each quadric containing C has

rank ≥ 3, and we will show that Ck̄ is in fact the (scheme-theoretic) intersection of the rank 3
quadrics containing it. (We had to go to k̄ for the following reason: since the roots of (III.9) need
not be k -rational, the singular quadrics in Pn−1

k̄
containing Ck̄ need not be defined over k .)

For n = 4, we already know from §III.6 that C = QA ∩ QB , where QA and QB are any two
distinct quadrics containing C, and we know from III.7.1 that every quadric containing C lies in the
pencil (III.8). (Both facts hold even when char(k) = 2, but henceforth we assume char(k) 6= 2.)

We will see later (in §III.13) that there exists a linear change-of-coordinates, defined over k̄ , so
that the group H ′

4 ⊂ GL4(k̄) of order 64 generated by

M =


1

i
−1

−i

 and N =


1

1
1

1


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preserves Ck̄ in its action on P3
k̄

, where i2 = −1. (We use the notation H ′
4 because, in §III.12, we

reserve “H4” to mean the order 64 subgroup of SL4(k̄) that has the same image in PGL4(k̄) as H ′
4.)

We assume the change-of-coordinates to have been applied.
Since H ′

4 preserves Ck̄ , it also preserves the set (III.8) of all quadrics that contain Ck̄ . As
discussed in [Hul86, §III.2], the H ′

4-module H0
(
P3
k̄
,O(2)

)
can be expressed as a direct sum of

irreducible submodules in the form

H0
(
P3
k̄ ,O(2)

)
= (V1 ⊕ V2)⊕ V3 ⊕ V4 ⊕ V5,

where

V1 = 〈x 2
0 + x 2

2 , x
2
1 + x 2

3 〉,
V2 = 〈x1x3, x0x2〉,
V3 = 〈x 2

0 − x 2
2 , x

2
1 − x 2

3 〉,
V4 = 〈x0x1 + x2x3, x1x2 + x0x3〉,
V5 = 〈x0x1 − x2x3, x1x2 − x0x3〉.

One can check that V1
∼= V2 as H ′

4-modules, while no other two of the direct summands are isomor-
phic. Therefore, either our pencil (III.8) lies in V1 ⊕ V2, or it is equal to one of V3, V4, V5. It cannot
be V3 since Ck̄ does not lie in a plane, while it can be neither V4 nor V5 since those pencils define
singular curves. Thus, our pencil lies in V1⊕V2. As an H ′

4-module, it must be isomorphic to V1 and
V2, whence it must have a k̄ -vector space basis on which H ′

4 acts in the same manner as it does on
the bases for V1 and V2 exhibited above; in short, our pencil must have a k̄ -vector space basis of the
form 〈

a(x 2
0 + x 2

2 ) + b(x1x3), a(x 2
1 + x 2

3 ) + b(x0x2)
〉
.

Some pairs of values for a, b cannot occur, but we need not identify them all: certainly (a, b) 6= (0, 0),
and it is easy to check that (III.9) has at least two distinct roots. In summary, Ck̄ is an intersection
of a pair of quadrics of rank 3, whence it is also the intersection of all rank 3 quadrics containing it.

Theorem III.7.3. Assume k = k̄ and char(k) 6= 2. For n ≥ 4, each non-degenerate degree n curve
in Pn−1

k of genus 1 is cut out scheme-theoretically by the rank 3 quadrics containing it; that is, the
rank 3 quadratic forms in I compose a generating set for I.

Proof. The proof for k = C in [Hul86, §IV.1] goes through unaltered. For the convenience of the
reader, we repeat it here. It proceeds by induction on n. The case n = 4 was explained preceding
the theorem.

Assume n ≥ 5. We shall first show that C is a set-theoretic intersection of rank 3 quadrics.
To do this, let P ∈ Pn−1

k (k) \ C(k) be an arbitrary point not lying on C. We can choose a point
P0 ∈ C(k) such that the line PP0 is neither a secant nor a tangent of C. (Otherwise, projection
from P would map C onto a non-degenerate curve C ′ ⊂ Pn−2

k of degree ≤ n/2, so by III.1.1 we
would have n/2 ≥ n − 2, which is never the case for n ≥ 5.) Projection from P0 maps C onto a
non-degenerate degree n− 1 curve C ′ ⊂ Pn−2

k of genus 1, and the image P ′ of P does not lie on C ′.
By the induction hypothesis, there is a rank 3 quadric Q′ through C ′ that does not contain P ′. Let
Q be the cone over Q′ with vertex P0. Then C ⊂ Q but P /∈ Q(k).

It remains to show that the intersection is scheme-theoretic; equivalently, we must show that
the rank 3 quadrics separate tangents. Let P ∈ C(k) be an arbitrary point on C and let L be a line
through P that is not tangent to C at P . Next choose a point P0 ∈ C(k) that does not lie on L.
Projecting from P0 we get a non-degenerate degree n− 1 curve C ′ in Pn−2

k of genus 1. Let P ′ and
L′ be the images of P and L. By the induction hypothesis, there is a rank 3 quadric Q′ through
C ′ such that Q′ and the line L′ intersect transversally at P ′. The cone Q over Q′ with vertex P0

therefore intersects the line L at P transversally. �

The following corollary to the theorem completes the proof of III.7.2.
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Corollary III.7.4. Assume char(k) 6= 2. For n ≥ 4, each non-degenerate degree n curve in Pn−1
k of

genus 1 is cut out scheme-theoretically by quadrics; that is, the ideal I of C is generated by quadratic
forms. (Moreover, in any generating set for I, the subset of quadratic forms is itself a generating
set.)

Proof. By the theorem, certainly I ⊗k k̄ is generated by quadratic forms. Let { p1, . . . , pr } be a
finite set of homogeneous forms that generate I. Any element of I⊗k k̄ can also be expressed in terms
of the pi. Certainly none of the pi is linear, so by degree considerations, elements of a quadratic
generatoring set for I ⊗k k̄ can be expressed in terms of those pi that are quadratic, whence the
quadratic pi themselves compose a quadratic generating set for I ⊗k k̄ . Multiplying them by all
possible powers of the variables leads to a generating set for I ⊗k k̄ as a vector space over k̄ . Thus
there is a k̄ -basis for I⊗k k̄ of vectors that are defined over k , whence, by linear descent (see [Sil99,
II.5.8.1]), the same vectors compose a k -basis for I. Therefore, the quadratic pi compose a quadratic
generating set for I. �

III.8. Classifying linear automorphisms of C n� � // Pn−1
k

Let C n� � // Pn−1
k be a projective quasi-elliptic curve of degree n, and let D be the class of hyperplane

sections on C.
The automorphism group of Pn−1

k̄
is PGLn(k̄). Since elements of PGLn(k̄) send hyperplanes

in Pn−1
k̄

to hyperplanes, if such an element also preserves Ck̄ , then it will induce an automorphism
of (Ck̄ ,D). Automorphisms of Ck̄ that are induced by automorphisms of the ambient projective
space are called linear automorphisms of Ck̄ .

It turns out that all automorphisms of (Ck̄ ,D) are linear. We saw in II.4.1 that each automor-
phism of (Ck̄ ,D) extends to an automorphism of the ambient Pn−1

k̄
. Furthermore, the extension

is unique: since each point in Pn−1
k̄

(k̄) is an intersection of hyperplanes in Pn−1
k̄

, an element of
PGLn(k̄) is determined by its behavior on hyperplanes, which are in one-to-one correspondence
with hyperplane sections on Ck̄ ; thus, if two elements of PGLn(k̄) move a given hyperplane to two
different places, then they move the associated hyperplane section to two different places, and thus
cannot induce the same automorphism of Ck̄ . We have shown:

Aut
(
(Ck̄ ,D)

)
=
{

linear automorphisms of Ck̄

} ∼= {φ ∈ PGLn(k̄) : φ(Ck̄ ) = Ck̄

}
.

Note that the isomorphism above is Gal(k̄/k)-equivariant. In other words: any group of matrix
classes in PGLn(k̄) that acts on C necessarily does so in a faithful and Galois equivariant manner.
By II.2.7, the largest such group has structure{

φ ∈ PGLn(k̄) : φ(Ck̄ ) = Ck̄

} ∼= JC [n](k̄) o Aut
(
(Ck̄ , O)

)
,

where O ∈ C(k̄) is a point of hyperosculation.

Proposition III.8.1. In the above identification, the elements of PGLn(k̄) that act fixpoint-free
on C correspond precisely to JC [n](k̄). Thus, when char(k) - n, there are precisely n2 elements of
PGLn(k̄) that act fixpoint-free on C.

Proof. The first part is a special case of A.4.3. The second part follows from #JC [n](k̄) = n2 when
char(k) - n. �

Corollary III.8.2. Let C be a non-degenerate degree n curve in Pn−1
k of genus 1. Let Jn ⊂

PGLn(k̄) be the subgroup of elements that preserve C and act fixpoint-free on C. Then Jn is a
faithful and Galois equivariant representation of the action of JC [n](k̄) on C.

III.9. Concerning the [−1]-automorphisms of C n� � // Pn−1
k

This section is about those linear automorphisms of Ck̄ that are of order 2 and have a fixpoint
in C(k̄).
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Proposition III.9.1. Let φ be an order 2 curve automorphism of Ck̄ that has a fixpoint P ∈ C(k̄).
Then φ is the unique order 2 automorphism of the elliptic curve (Ck̄ , P ), more commonly known
as [−1]. Thus the fixpoints of φ are the points of 2-torsion on (Ck̄ , P ); furthermore, if Q is such a
point, then φ is also the [−1]-automorphism on the elliptic curve (Ck̄ , Q).

Proof. See A.4.8. �

Let O ∈ C(k̄) be a point of hyperosculation. By [−1] we mean the unique order 2 automorphism
of the elliptic curve (Ck̄ , O). In the previous section, we identified the linear automorphisms of Ck̄

with JC [n](k̄) o Aut
(
(Ck̄ , O)

)
.

Proposition III.9.2. Inside JC [n](k̄) o Aut
(
(Ck̄ , O)

)
, the order 2 linear automorphism of Ck̄ with

a fixpoint are precisely the elements of the form τ ◦ [−1], where τ ∈ JC [n](k̄).

Proof. Follows immediately from A.4.9. �

It is easy to verify (cf. the proof of A.4.9) that τQ⊕Q ◦ [−1] is the unique order 2 automorphism
of Ck̄ that fixes Q ∈ C(k̄), where the group law is on the elliptic curve (Ck̄ , O), and τQ⊕Q is the
translation-by-(Q ⊕ Q) map. We therefore see a relationship between points of hyperosculation
and fixpoints of order 2 linear automorphisms, but due to the presence of Q⊕Q, that relationship
depends on the parity of n:

• Assume n is odd. For P ∈ C(k̄) a point of hyperosculation, there is a unique point of
hyperosculation Q ∈ C(k̄) so that [2]Q = P . Therefore, for each linear automorphism of
order 2 with a fixpoint in C(k̄), precisely one of its fixpoints is a point of hyperosculation.

• Assume n is even. For P ∈ C(k̄) a point of hyperosculation, either all the solutions of
[2]Q = P are points of hyperosculation, or none of them are. (The two cases are determined
by whether P is a point of (n/2)-torsion.) Therefore, for each linear automorphism of
order 2 with a fixpoint in C(k̄), either all of its fixpoints are points of hyperosculation, or
none of them are.

In either case, we see: each point of hyperosculation occurs as the fixpoint of a unique order 2 linear
automorphism.

III.9a. Procedure for finding the points of hyperosculation

By the work in §III.8, we may identify the order 2 linear automorphisms of C that have a fixpoint
with the elements of PGLn(k̄) that: act on C, have order 2, and admit a fixpoint. In fact, as the
following proposition shows, if we find one of them, and if we have found all the elements of PGLn(k̄)
that act fixpoint-free on C, then this gives us all the order 2 elements with fixpoints.

Proposition III.9.3. Let C be a non-degenerate degree n curve in Pn−1
k of genus 1. Let T̄ ∈

PGLn(k̄) be an element of order 2 that preserves C and has at least one fixpoint on C. The
remaining such automorphisms have the form M̄ ⊗ T̄ , where M̄ ∈ PGLn(k̄) acts on C without
fixpoints.

Proof. If one of the fixpoints of T̄ is a point of hyperosculation, then this proposition is just a
repeat of III.9.2. In fact, by III.9.2, we know that T̄ = τ ◦ [−1] for some τ ∈ JC [n](k̄). It is clear
that each M̄ ◦ T̄ also has that form. �

To find the points of hyperosculation, we first find all the order 2 elements of PGLn(k̄) that
preserve C and have a fixpoint on C. The points of hyperosculation lie among the finitely many fix-
points. For each fixpoint, the osculating hyperplane can be determined by brute force: parameterize
all hyperplanes that go through the given point, and then impose the conditions that maximize the
intersection multiplicity of the hyperplane with C. The unique solution is the osculating hyperplane.
If the hyperplane does not meet C elsewhere, then the point in question is a point of hyperosculation.

Remark. When n is odd, a simpler way for finding the points of hyperosculation is given in III.11.8.
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III.10. The commutator pairing is the Weil pairing

Let Jn ⊂ PGLn(k̄) denote the subgroup of elements that act fixpoint-free on C. In the previous
section, we saw that there is a canonical isomorphism of Galois modules

Jn
∼= JC [n](k̄). (III.10)

We will establish that the “commutator pairing” (defined below) on Jn corresponds, under (III.10),
to the inverse of the Weil pairing on JC [n](k̄).

III.10a. Commutator pairings on abelian projective linear groups

Consider an abelian subgroup G ⊂ PGLn(k̄). For matrix classes [A], [B] ∈ G, the usual commutator[
[A], [B]

]
:= [A] [B] [A]−1[B]−1

is of course trivial. But if we first lift the classes [A], [B] to representing matrices A,B ∈ GLn(k̄),
then the commutator [A,B] might be nontrivial, and all we can say for certain is that [A,B] lies
in k̄×. It is easy to check that [A,B] is independent of the choice of representing matrices. Thus we
obtain a well-defined commutator pairing

G×G // k̄×,(
[A], [B]

) � // ABA−1B−1.

The commutator pairing is immediately seen to be alternating (whence also skew-symmetric), and
can be easily verified to be bilinear. If G is Galois stable, then the pairing is a map between Galois
modules, and it is easily seen to be equivariant with respect to that action.

Remark. The commutator pairing could easily be degenerate, indeed trivial, as is seen by consid-
ering the matrices 1 0 0

0 ζ3 0
0 0 ζ2

3

 and

1 0 0
0 ζ3 0
0 0 ζ3

 ,
which generate a Z/3Z× Z/3Z in PGL3(Q̄).

III.10b. The Weil pairing on an elliptic curve (E,O)

Let (E,O) be an elliptic curve, defined over k , and let n be such that char(k) - n. Then as a group,
E[n](k̄) ∼= Z/nZ×Z/nZ, although as a Galois module the structure can be more complicated. The
well-known Weil pairing is usually defined by one of the procedures for computing it, such as the
one in [Sil99, III.8]. We will instead work with the description given below in III.10.1, and connect
that with the commutator pairing below in III.10.3.

Theorem. Assume char(k) - n. The Weil pairing

en : E[n](k̄)× E[n](k̄) // µn(k̄)

has the following properties:
• bilinear
• alternating, whence skew-symmetric;
• perfect: E[n](k̄) ∼= Hom

(
E[n](k̄),µn(k̄)

)
, whence non-degenerate and surjective;

• Galois equivariant;
• compatible: emn(P,Q) = en(mP,Q);

• admits dual isogenies as adjoints: en(P, φQ) = en(φ̂P,Q).

Proof. All properties except “perfect” are established in [Sil99, III.8.1, III.8.1.1, III.8.2]. As for
“perfect”, observe that non-degeneracy gives an injection E[n](k̄) � � // Hom

(
E[n](k̄),µn(k̄)

)
, which

must be an isomorphism since the two sets have the same cardinality. �
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E[n](k̄) admits other pairings with all the properties listed above: simply post-compose the Weil
pairing with an automorphism of µn(k̄). Among these pairings, it isn’t so obvious which of them
should be considered the true Weil pairing. For example, the pairing as defined in [Sil99, III.8] is
actually the inverse of the pairing as described in [Mum70]. The latter agrees with the description
of the pairing in terms of function-on-divisor evaluation given in [Sil99, Ex. 3.16], which we now
recall.

Theorem III.10.1. Assume char(k) - n. Let (E,O) be an elliptic curve, and let en denote the Weil
pairing on E[n](k̄). Given P,Q ∈ E[n](k̄), we may compute en(P,Q) as follows. Choose divisors
DP and DQ with disjoint support so that DP ∼ P −O and DQ ∼ Q−O. Choose rational functions
fP and fQ so that (fP ) = nDP and (fQ) = nDQ. Then

en(P,Q) =
fP (DQ)
fQ(DP )

.

Proof. See [Sil99, Ex. 3.16]. �

Proposition III.10.2. Two points P,Q ∈ E[n](k̄) are generators for E[n](k̄) if and only if en(P,Q)
is a generator for µn(k̄), i.e., if and only if en(P,Q) is a primitive nth root of unity.

Proof. Let the pair (P,Q) generate. Since the Weil pairing is surjective, en(P,Q) is a primitive
nth root of unity. Each pair of elements in E[n](k̄) can be written in the form (aP + bQ, cP + dQ),
with a, b, c, d ∈ Z/nZ. Such a pair generates E[n](k̄) if and only if there is a group automorphism
of E[n](k̄) carrying (P,Q) to that pair; in other words, the matrix[

a c
b d

]
must lie in GL2(Z/nZ), which is equivalent to the condition: ad − bc is a unit in Z/nZ. On the
other hand, en(aP + bQ, cP + dQ) is easily seen to be en(P,Q)ad−bc, which is a primitive nth root
of unity under precisely the same condition: ad− bc is a unit in Z/nZ. �

III.10c. The commutator pairing on Jn is the Weil pairing

We return to the subgroup Jn ⊂ PGLn(k̄) and the canonical isomorphism (III.10). Since Jn is
abelian, it admits the commutator pairing

Jn × Jn
// k̄×.

If char(k) - n, then JC [n](k̄) admits the Weil pairing

JC [n](k̄)× JC [n](k̄) // µn(k̄).

We ask: in light of (III.10), what is the relationship between the two pairings?
The following theorem is sketched in [O’N01, Thm. 2.5], and appears for the case k = C in

[Hul86]. We give here an elementary proof.

Theorem III.10.3. Assume char(k) - n. Let C be a non-degenerate degree n curve in Pn−1
k of

genus 1. Then, under the isomorphism (III.10), the commutator pairing on Jn corresponds to the
inverse of the Weil pairing on JC [n](k̄).

Remark. If one defines the Weil pairing as done in [Sil99, III.8], then one must eliminate “the
inverse of” from the theorem statement. (Cf. discussion preceding III.10.1.

Proof. Let P̄0, . . . , P̄n2−1 ∈ C(k̄) be the points of hyperosculation on C. For each P̄i, there exists
a hyperplane H̄i meeting C to order n at P̄i, and an element M̄i ∈ Jn whose action on C (given by
matrix multiplication) is translation-by-P̄i on the elliptic curve (C, P̄0):

M̄iP̄0 = P̄i.
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We wish to compute en(M̄i, M̄j). By III.10.1, we need disjoint divisors Di and Dj linearly
equivalent, respectively, to P̄i − P̄0 and P̄j − P̄0. We set

Di := P̄i − P̄0,

Dj := (P̄j ⊕ P̄`)− P̄`,

where ⊕ denotes addition on the elliptic curve (C, P̄0), and ` is such that

P̄` /∈ { P̄0, P̄i,	P̄j , P̄i 	 P̄j }.

This is the precise condition for the divisors to be disjoint, and such ` exists because n ≥ 3.
In what follows, the following notation will be useful: P̄i⊕j is the point P̄i ⊕ P̄j , H̄i⊕j is the

hyperplane associated to P̄i⊕j , and M̄i⊕j is the matrix class giving translation-by-P̄i⊕j .
Now we lift everything to row vectors, column vectors, and matrices: choose row vectors Hi

representing H̄i, column vectors Pi representing P̄i, and matrices Mi representing M̄i. By Pi⊕j ,
Hi⊕j , and Mi⊕j we mean the row vector, column vector, and matrix chosen to represent P̄i⊕j , H̄i⊕j ,
and M̄i⊕j .

Observe that Hi/H0 is a function on C(k̄) with divisor nDi, while Hj⊕`/H` is a function on C(k̄)
with divisor nDj . By III.10.1, we have

en(M̄i, M̄j) =
(Hi/H0)(Dj)

(Hj⊕`/H`)(Di)
=
HiPj⊕`

HiP`

H0P`

H0Pj⊕`

Hj⊕`P0

Hj⊕`Pi

H`Pi

H`P0
.

Since each vector appears once in the numerator and once in the denominator, everything we have
done is independent of our choice of lifts. Since M̄i corresponds to translation-by-P̄i, we see that
MiP0 represents P̄i, but MiP0 need not equal Pi: they differ by a scalar. We can nonetheless
apply the substitution Pi

oo MiP0, so long as we do so simultaneously in the numerator and in the
denominator. We can similarly apply Hi

oo H0M
−1
i , since H0M

−1
i represents H̄i. Applying these

types of substitutions gives us

en(M̄i, M̄j) =
H0M

−1
i Mj⊕`P0

H0M
−1
i M`P0

H0M`P0

H0Mj⊕`P0

H0M
−1
j⊕`P0

H0M
−1
j⊕`MiP0

H0M
−1
` MiP0

H0M
−1
` P0

.

Since Mi⊕j and MiMj each represent M̄iM̄j , we apply Mi⊕j
oo MiMj to obtain

en(M̄i, M̄j) =
H0M

−1
i MjM`P0

H0M
−1
i M`P0

H0M`P0

H0MjM`P0

H0M
−1
` M−1

j P0

H0M
−1
` M−1

j MiP0

H0M
−1
` MiP0

H0M
−1
` P0

.

By §III.9, the [−1] automorphism of the elliptic curve (C, P̄0) lies in PGLn(k̄). Let T be a matrix
representing this automorphism. Then TP0 and P0 differ by a scalar, similarly H0T and H0 differ by
a scalar, and the same can be said for MiT and TM−1

i . Paying attention that each of the following
moves in the numerator is matched by a corresponding move in the denominator, the pesky scalars
will never make an appearance. We insert T appropriately, and then walk it to the left one step at
a time until it disappears again:

H0M
−1
i MjM`P0

H0M
−1
i M`P0

H0M`P0

H0MjM`P0

=
H0M

−1
i MjM`TP0

H0M
−1
i M`TP0

H0M`TP0

H0MjM`TP0

=
H0M

−1
i MjTM

−1
` P0

H0M
−1
i TM−1

` P0

H0TM
−1
` P0

H0MjTM
−1
` P0

=
H0M

−1
i TM−1

j M−1
` P0

H0M
−1
i TM−1

` P0

H0TM
−1
` P0

H0TM
−1
j M−1

` P0

=
H0TMiM

−1
j M−1

` P0

H0TMiM
−1
` P0

H0M
−1
` P0

H0M
−1
j M−1

` P0

=
H0MiM

−1
j M−1

` P0

H0MiM
−1
` P0

H0M
−1
` P0

H0M
−1
j M−1

` P0

.

Inserting this equation already leads to some cancellation:

en(M̄i, M̄j) =
H0MiM

−1
j M−1

` P0

H0MiM
−1
` P0

H0M
−1
` M−1

j P0

H0M
−1
j M−1

` P0

H0M
−1
` MiP0

H0M
−1
` M−1

j MiP0

.
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Now we would like to swap adjacent pairs of matrices. Although we have not yet shown matrix
commutators to be the Weil pairing, those commutators nonetheless are scalars, so we must merely
be careful to match each swap above and below.

en(M̄i, M̄j) =
H0MiM

−1
j M−1

` P0

H0MiM
−1
` P0

H0M
−1
j M−1

` P0

H0M
−1
j M−1

` P0

H0M
−1
` MiP0

H0M
−1
j M−1

` MiP0

=
H0MiM

−1
j M−1

` P0

H0MiM
−1
` P0

H0MiM
−1
` P0

H0M
−1
j MiM

−1
` P0

= [Mi,M
−1
j ]

H0M
−1
j MiM

−1
` P0

H0M
−1
j MiM

−1
` P0

= [Mi,M
−1
j ] = [Mi,Mj ]

−1.

The final equality of commutators holds because the commutator is a scalar. �

III.11. The configuration of hyperplanes fixed by Jn

We return to the subgroup of PGLn(k̄) that preserves C (see §III.8), especially the subgroup Jn—
corresponding to JC [n](k̄)—that preserves C and has no fixpoints on C. The reader may easily
verify the following facts about fixpoints and fixed hyperplanes:

• Let M̄ ∈ PGLn(k̄), and let M ∈ GLn(k̄) represent M̄ . A fixpoint of M̄ corresponds to
an eigenvector of M .

• M̄ fixes a linear subspace of Pn−1
k̄

pointwise if and only if the corresponding linear subspace
of An

k̄
is an eigenspace of M .

• For a row vector ¯̀ of homogeneous coordinates, let H` :=
{
P̄ ∈ Pn−1

k (k̄) : ¯̀ · P̄ = 0
}

be the corresponding hyperplane. The action of PGLn(k̄) on points is P̄ � // M̄P̄ , but its
action on hyperplanes is ¯̀ � // ¯̀M̄−1:

M̄H` =
{
M̄P̄ : ¯̀· P̄ = 0

}
=
{
P̄ : ¯̀M̄−1P̄ = 0

}
= H`M̄−1 .

• M̄ fixes a hyperplane H` if and only if ` is an eigenvector of M t.
Concerning the structure of things related to Jn, there are often three cases to consider:

• #Jn = n2, which happens if and only if char(k) - n, in which case we have Jn
∼= Z/nZ ×

Z/nZ (as Z-modules);
• #Jn = n2/pe where p = char(k) and pe | n but pe+1 - n, which can happen when char(k) |
n, in which case we have Jn

∼= Z/nZ× Z/(n/pe)Z (as Z-modules);
• #Jn = n2/p2e, which is the other possibility when char(k) | n, in which case we have
Jn

∼= Z/(n/pe)Z× Z/(n/pe)Z (as Z-modules).
As we will see, we can often make a general statement—without restricting to a particular case
above—in terms of an element of Jn of order n. Implicitly, of course, such a statement applies only
to the first two cases given above.

Proposition III.11.1. Let M̄ ∈ PGLn(k̄) be an element that preserves C. For each hyperplane H
fixed by M̄ , the corresponding hyperplane section H ∩ C is a union of orbits under the action of M̄
on C.

Proof. Obvious. �

Corollary III.11.2. Let M̄ ∈ Jn have order n. Then each hyperplane H fixed by M̄ meets C
transversally: H ∩ C comprises n distinct points.

Proof. Each orbit of M̄ on C comprises n distinct points. On the other hand, H ∩C comprises at
most n points. Now apply the proposition. �

Proposition III.11.3. Assume that n is odd. Let M̄ ∈ Jn have order n. The orbit of Q ∈ C(k̄) is
a hyperplane section if and only if Q is a point of hyperosculation.
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Proof. Fix a point of hyperosculation O ∈ C(k̄) to obtain a group law. Then points of n-torsion
coincide with points of hyperosculation. The orbit ofQ is a hyperplane section if and only ifQ+M̄Q+
M̄2Q + . . . + M̄n−1Q ∼ nO. But M̄ is just translation-by-P for some point of hyperosculation P .
Thus the condition is Q+ (Q⊕P ) + (Q⊕ [2]P ) + . . .+ (Q⊕ [n− 1]P ) ∼ nO, which is equivalent to
[n]Q⊕ [n(n− 1)/2]P = O, which reduces to: Q is a point of hyperosculation. �

To obtain a version of the proposition for n even, we need the notion of a dyadic packet. By
the isomorphism C/JC [n] ∼= JC from II.2.4, the n-torsion packets on C correspond to the k̄ -valued
points on JC , and the hyperosculation packet on C corresponds to the origin on JC . We will call an
n-torsion packet on C dyadic if it corresponds to a point of 2-torsion on JC .

Proposition III.11.4. Fix a point of hyperosculation O ∈ C(k̄) to obtain a group law on Ck̄ . The
multiplication-by-n map C // C gives a one-to-one correspondence between the dyadic packets and
the 2-torsion on (Ck̄ , O). Thus the dyadic packets partition the (2n)-torsion on (Ck̄ , O); furthermore,
this partition is independent of the choice of O.

Proof. It is easy to check that the group law on JC is induced by the group law on (Ck̄ , O), where O
is any choice of point of hyperosculation. The preimages under multiplication-by-n of the 2-torsion
on (Ck̄ , O) are easily seen to be n-torsion packets, with the property that multiplying them by 2
sends them into the hyperosculation packet; in short, they are the 2-torsion on the quotient JC . �

Proposition III.11.5. Assume that n is even. Let M̄ ∈ Jn have order n. Let a point of hyper-
osculation O ∈ C(k̄) define a group law, so that M̄ corresponds to translation-by-P , whence M̄n/2

is translation by [n/2]P , which is a point of order 2 on (Ck̄ , O). Then the orbit of Q ∈ C(k̄) is
a hyperplane section if and only if [n]Q = [n/2]P , i.e., if and only if Q lies in the dyadic packet
corresponding to [n/2]P .

Proof. By the proof of III.11.3, the orbit of Q is a hyperplane section if and only if [n]Q⊕ [n(n−
1)/2]P = O, which reduces to: [n]Q = [n/2]P . �

Combining III.11.3 and III.11.5, we obtain: if M̄ ∈ Jn has order n, then the orbit of Q ∈ C(k̄) is a
hyperplane section if and only if Q lies in a certain n-torsion packet that depends only on M̄ . From
this we obtain the following result.

Corollary III.11.6. Let M̄ ∈ Jn have order n, and let M ∈ GLn(k̄) represent M̄ .
• Each eigenvalue of M has a 1-dimensional eigenspace.
• M has #Jn/n distinct eigenvalues.

Proof. There are only finitely many points in an n-torsion packet, so there can be only finitely
many hyperplanes fixed by M̄ . If an eigenspace of M were 2-dimensional or larger, then there would
be infinitely many hyperplanes fixed by M̄ .

The n-torsion packet has cardinality #Jn. That set is partitioned into collections of size n by
the hyperplanes fixed by M̄ . The fixed hyperplanes correspond to the eigenspaces of M , which in
turn correspond to the eigenvalues. �

Corollary III.11.7. Let M̄ ∈ Jn have order n, and let M ∈ GLn(k̄) represent M̄ .
• If char(k) - n (i.e., #Jn = n2), then M has n distinct eigenvalues, whence there are

precisely n distinct fixpoints of M̄ (not on C), and precisely n distinct fixed hyperplanes.
The fixed hyperplanes intersect C in the n2 points of either the hyperosculation packet
(when n is odd) or a non-hyperosculation dyadic packet (when n is even).

• If char(k) | n (i.e., #Jn = n2/pe where p = char(k) and pe | n but pe+1 - n), then M has
n/pe unique eigenvalues, whence there are precisely n/pe distinct fixpoints of M̄ (not on C),
and precisely n/pe distinct fixed hyperplanes. The fixed hyperplanes intersect C in the n/pe

points of either the hyperosculation packet (when n is odd) or a non-hyperosculation dyadic
packet (when n is even).
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• Special case: if n = p is prime and char(k) = p (i.e., #Jn = p), then M has a unique
eigenvalue (algebraic multiplicity n, but geometric multiplicity 1), thus a unique fixpoint
(not on C), and a unique fixed hyperplane. The fixed hyperplane intersects C in the p points
of either the hyperosculation packet (when p is odd) or the unique non-hyperosculation
dyadic packet (when p = 2).

Remark III.11.8. When n is odd, this gives an easy procedure to find the points of hyperosculation
on C: find an element of PGLn(k̄) that preserves C, has no fixpoints, and has order n; next, find its
fixed hyperplane(s); finally, compute their intersection with C. (When char(k) | n and furthermore
#Jn = n2/p2e where p = char(k) and pe | n but pe+1 - n, then this procedure can’t be used. Instead,
one can follow the procedure in §III.9a.)

III.11a. Hyperplane configurations when char(k) - n

For the rest of this section, we will assume char(k) - n, whence Jn
∼= Z/nZ×Z/nZ (as Z-modules).

Our goal is to describe the configuration of hyperplanes fixed by generators for Jn.
We already know, by III.11.6, that (a representative for) M̄ ∈ Jn of order n has distinct eigen-

values. Now we can say a bit more.

Proposition III.11.9. Assume char(k) - n. Let M̄ ∈ Jn be an element of order n, and let M ∈
GLn(k̄) be any matrix representating M̄ . If λ ∈ k̄× is an eigenvalue of M , then also ζλ is an
eigenvalue of M for each ζ ∈ µn(k̄). In other words, M has distinct eigenvalues, and they compose
a coset of µn(k̄) inside k̄×.

Proof. Since M̄ has order n, there exists N̄ ∈ Jn so that M̄ and N̄ are generators. Let N be any
lift of N̄ to GLn(k̄). By III.10.2 and III.10.3, MNM−1N−1 is a primitive nth root of unity, which
we’ll call ζn. Now let λ ∈ k̄× be an eigenvalue of M , and let x be a corresponding eigenvector. Then

Mx = λx, and M(Nx) = MNx = ζnNMx = ζnλNx = (ζnλ)(Nx),

so ζnλ is an eigenvalue of M (with corresponding eigenvector Nx). �

Proposition III.11.10. Assume char(k) - n. Let M̄, N̄ ∈ Jn be generators. Then M̄ cyclically
permutes the hyperplane sections preserved by N̄ , and vice versa.

Proof. In the proof of III.11.9, we saw that if x is an eigenvector of M , also Nx is an eigenvector
of M . Thus N̄ cyclically permutes the fixpoints of M̄ , whence also N̄ cyclically permutes the
hyperplanes preserved by M̄ . �

Theorem III.11.11. Assume char(k) - n. Further assume that n is odd. If M̄, N̄ generate Jn,
then there is a one-to-one correspondence{

hyperplane sections
preserved by M̄

}
×
{

hyperplane sections
preserved by N̄

}
oo // { points of hyperosculation }

(H,H ′) � // H ∩H ′,

which is equivariant with respect to the action of Jn; thus, if we fix a point of hyperosculation as
origin to obtain a group law, this correspondence is an isomorphism of Jn-modules.

Proof. Obvious from the preceding material. �

Instead of intersecting hyperplane sections to obtain points in C(k̄), we could instead intersect
the actual hyperplanes to obtain points in a Grassmannian. When n is even, the hyperplanes fixed
by M cover a non-hyperosculation dyadic packet on C, while the hyperplanes fixed by N cover a
different non-hyperosculation dyadic packet on C. There is again an intersection pairing taking
values in a Grassmannian, but not one taking values in C(k̄). (In other words, when n is even, the
(n−3)-dimensional linear space obtained by intersecting a hyperplane fixed by M with a hyperplane
fixed by N does not meet C.)
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III.12. Lifting Jn ⊂ PGLn(k̄) to Hn ⊂ GLn(k̄)

We now consider the problem of lifting the subgroup Jn ⊂ PGLn(k̄), which corresponds to JC [n](k̄),
from PGLn(k̄) to GLn(k̄). In other words, we seek a finite subgroup Hn ⊂ GLn(k̄) so that, under
the canonical projection GLn

// PGLn, the image of Hn is Jn. We furthermore require Hn to be
a Gal(k̄/k)-module.

Of course we would like Hn to be as small as possible; in fact, we would be delighted if Hn could
be isomorphic, as a Galois module, to Jn. Unfortunately, as we will see below, this is too much to
ask in general.

Remark. One reason for wanting Hn to be Gal(k̄/k)-stable is that it may then be viewed as the set
of k̄ -valued points of a finite group scheme defined over k . This will be relevant in chapter IV, where
we will be interested in computing a quotient by Jn, which we will express in terms of invariants
of Hn. This also explains why we would like Hn to be as small as possible: the computational
expense for finding the elements of Hn and then working out its invariant theory is likely to increase
with the size of Hn.

We always have available the following canonical lift: we define Hn by taking the preimage of Jn

under the canonical projection SLn
// PGLn:

1 // µn(k̄) // SLn(k̄) // PGLn(k̄) // 1

1 // µn(k̄) // Hn
//

?�

OO

Jn
//

?�

OO

1

In other words:
Hn :=

{
A ∈ GLn(k̄) : Ā ∈ Jn and det(A) = 1

}
.

Note #Hn = #µn(k̄) ·#Jn. (Thus, when char(k) - n, we have #Hn = n3.) Since the determinant 1
condition is preserved when matrices are moved by elements of Gal(k̄/k), the canonical lift Hn is
Gal(k̄/k)-stable. We will see below that Hn is always a central extension of Jn by µn(k̄).

III.12a. Case: char(k) - n (i.e., #Jn = n2)

We saw that taking commutators of arbitrary lifts of elements in Jn corresponds to the Weil pairing
(see III.10.3). Since the Weil pairing is surjective, any lift of Jn to GLn(k̄) must contain the constant
matrices 1, ζn, ζ 2

n , . . . , ζ n−1
n . Therefore, any lift of Jn has cardinality ≥ n3, while the canonical

lift Hn has cardinality = n3.
Now that we know lifts of order n3 exist, we can classify them all. Let H ′

n be a fixed but
unknown lift of Jn to GLn(k̄) of order n3. For M̄ ∈ Jn, let M ∈ Hn and M ′ ∈ H ′

n denote a choice
of representatives for M̄ . Since both Hn and H ′

n admit only elements of µn(k̄) as scalar matrices,
we have (M ′)n = αMn for some α ∈ µn(k̄), and α is independent of our choices. Thus we obtain a
well-defined homomorphism

φ : Jn
// µn(k̄)

M̄ � // (M ′)nM−n

On the other hand, if φ ∈ Hom
(
Jn,µn(k̄)

)
, then we can define a lift H ′

n as follows: take generators
M̄, N̄ for Jn, choose representatives M,N ∈ Hn, set M ′ = n

√
φ(M̄)M and N ′ = n

√
φ(N̄)N for some

choice of nth roots, and let H ′
n be the group of order n3 generated by M ′, N ′. It is easy to check that

we have established a one-to-one correspondence between Hom
(
Jn,µn(k̄)

)
and lifts of Jn to GLn(k̄)

of order n3; in fact, the correspondence respects the Galois action, in the following sense: if φ is the
homomorphism associated to H ′

n, then φσ is the homomorphism associated to (H ′
n)σ. Thus the lifts

that are Galois stable correspond to the elements of Hom
(
Jn,µn(k̄)

)
that are Galois invariant. The

canonical lift Hn corresponds to the trivial homomorphism.

Proposition. Assume char(k) - n. There exist precisely n2 lifts of Jn to GLn(k̄) of order n3.
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Proof. The cardinality of Hom
(
Jn,µn(k̄)

)
is n2. �

If we fix generators M̄, N̄ for Jn, and a generator ζn for µn(k̄), and choose representatives
M ′, N ′ ∈ H ′

n, then each element of H ′
n has a unique expression in the form

ζ a
n (M ′)b(N ′)c, where a, b, c ∈ Z/nZ. (III.11)

Proposition. Assume char(k) - n. Each of the lifts H ′
n is a central extension of Jn by µn(k̄).

Proof. Using commutators, we can express a product of elements in the form (III.11) in the same
form. It is easy to check that an element lies in the center if and only if b ≡ c ≡ 0 (mod n). �

III.12b. Case: char(k) | n and #Jn = n2/pe

Let p := char(k), and define e by pe | n but pe+1 - n. Since #µn(k̄) = n/pe, the canonical lift Hn

has order n3/p2e. If M,N ∈ Hn are such that M̄, N̄ generate Jn, and furthermore M̄ has order n
while N̄ has order n/pe, then each element of Hn has a unique expression in the form ζ a

n/peM bN c

with a ∈ Z/(n/pe)Z, b ∈ Z/nZ, and c ∈ Z/(n/pe)Z. We see easily that Hn is a central extension of
Jn by µn(k̄).

III.12c. Case: char(k) | n and #Jn = n2/p2e

Set p and e as in §III.12b. The canonical lift Hn has order n3/p3e. If M,N ∈ Hn are such that
M̄, N̄ generate Jn, then each element of Hn has a unique expression in the form ζ a

n/peM bN c with
a, b, c ∈ Z/(n/pe)Z. We again see easily that Hn is a central extension of Jn by µn(k̄).

III.13. Schrödinger-like representations of Hn when char(k) - n
Assume char(k) - n. We show in this section that there exist nice matrix representations over k̄ of
both the canonical lift Hn ⊂ SLn(k̄) and the non-canonical lifts H ′

n ⊂ GLn(k̄) of Jn ⊂ PGLn(k̄),
which were introduced in §III.12. We will see that the classical Schrödinger representation occurs
for Hn when n is odd, while it occurs for one of the H ′

n when n is even.
We first consider the canonical lift Hn. Fix choices M̄, N̄ ∈ Jn and M,N ∈ Hn as in the

discussion in §III.12a. We saw in III.11.9 that the eigenvalues of M,N are each a coset of µn(k̄)
inside k̄×. By the definition of Hn, the product of the eigenvalues is 1. Therefore, when n is odd,
both M and N have eigenvalues

{ 1, ζn, ζ 2
n , . . . , ζ

n−1
n },

while when n is even, both M and N have eigenvalues

{ ζ2n, ζ
3
2n, ζ

5
2n, . . . , ζ

2n−1
2n }.

Over k̄ , we can choose an eigenvector x for M corresponding to the first eigenvalue, and then use
the basis {x,Nx,N2x, . . . , Nn−1x } of eigenvectors for M (cf. proof of III.11.9) to obtain a new
coordinate system for Pn−1

k̄
. (Even though, when n is odd, x itself can be chosen to be defined

over k , the remaining eigenvectors need not be defined over k .) For n odd, Hn will then have the
classical Schrödinger representation

M =


1

ζn
ζ 2
n

. . .
ζ n−1
n

 , N =


1

1
. . .

1
1

 ,
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while for n even we obtain

M =


ζ2n

ζ 3
2n

. . .
ζ 2n−1
2n

 , N =


1

. . .
1

−1

 .
We now consider one of the lifts H ′

n ⊂ GLn(k̄). For generators M ′, N ′ ∈ H ′
n, if we define

α, β ∈ µn(k̄) by (M ′)n = αMn and (N ′)n = βNn (cf. §III.12a), then in terms of the same basis
used just now above, for n odd we obtain

M ′ =


n
√
α

n
√
αζn

. . .
n
√
αζ n−1

n

 , N ′ =


n
√
β

. . .
n
√
β

n
√
β

 ,
while for n even we obtain

M ′ =


n
√
αζ2n

n
√
αζ 3

2n

. . .
n
√
αζ 2n−1

2n

 , N ′ =


n
√
β

. . .
n
√
β

− n
√
β

 .
We could instead scale the basis so that it is

{
x,N ′x, . . . , (N ′)n−1x

}
. Then (N ′)nx is either βx

(when n is odd) or −βx (when n is even), so for n odd we obtain

M ′ =


n
√
α

n
√
αζn

. . .
n
√
αζ n−1

n

 , N ′ =


1

. . .
1

β

 ,
while for n even we obtain

M ′ =


n
√
αζ2n

n
√
αζ 3

2n

. . .
n
√
αζ 2n−1

2n

 , N ′ =


1

. . .
1

−β

 .
Thus, when n is even, we obtain the classical Schrödinger representation for the particular H ′

n

corresponding to (α, β) = (−1,−1).
Our use of a pair α, β ∈ µn(k̄) to “measure” how a lift H ′

n deviates from Hn required us to
then separately treat the cases n odd and n even in looking at Schrödinger-like representations. We
can treat all values of n simultaneously by instead working with a pair α′, β′ ∈ µn(k̄) that measures
how far we deviate from the classical Schrödinger representation.

Theorem III.13.1. Assume char(k) - n. Let α′, β′ ∈ µn(k̄). Over k̄ , there always exists a coordi-
nate system so that the matrix group of order n3 generated by

n
√
α′

n
√
α′ζn

. . .
n
√
α′ζ n−1

n

 and


1

. . .
1

β′


represents one of the lifts H ′

n. The classical Schrödinger representation occurs when (α′, β′) = (1, 1).
For n odd, it has determinant 1 throughout and thus represents the canonical lift Hn; for n even, it
has determinant ±1 throughout and thus does not represent Hn.
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III.14. Concerning the Galois module structure of JC [n]

Theorem III.14.1. Assume char(k) - n. If there exists a change-of-coordinates, defined over k, in
which the canonical lift Hn has a Schrödinger-like representation (cf. §III.13), then there exists an
isomorphism JC [n] ∼= µn × Z/nZ.

Proof. The change-of-coordinates does not affect the abstract Galois module structure, so let Hn be
the matrix group of order n3 generated by the two Schrödinger-like matrices M and N , as in §III.13.
(Thus, if n is odd, the diagonal entries of M are 1, ζ 2

2n, ζ
4
2n, . . ., while if n is even, the diagonal entries

of M are ζ2n, ζ
3
2n, ζ

5
2n, . . ..) Each element of Hn has a unique expression in the form ζ a

nM
bN c with

a, b, c ∈ Z/nZ, and each element of JC [n](k̄) ∼= Jn has a unique expression in the form M̄ bN̄ c.
We can write down an isomorphism Jn

// µn × Z/nZ on k̄ -valued points as follows: M̄ bN̄ c � //

(ζ 2b
2n , c). We already know this to be an isomorphism of groups; as for Galois modules, we need worry

only about the first coordinate. The result follows easily from the observation that ζ 2b
2n is always the

same as the ratio of the first two diagonal entries of M b. �



CHAPTER IV

An algorithm for the jacobian

Let k be a perfect field. As we saw in chapter III, every curve C of genus 1, defined over k , occurs
as a non-degenerate degree n curve in Pn−1

k of genus 1. In this chapter, under the assumption
char(k) - n (regarding this, see §I.2e), we describe how to find equations for the jacobian JC of C.

IV.1. An algorithm for the jacobian

Theorem IV.1.1. There exists an algorithm (described in this chapter) that takes as input a finite
set of homogeneous equations; the algorithm checks whether the input defines a non-degenerate de-
gree n curve in Pn−1

k of genus 1, where n−1 is the number of variables and n is coprime to char(k);
if not, the algorithm terminates with an error; otherwise, it produces as output:

• coordinates of the n2 points of hyperosculation on C;
• equations describing the jacobian JC ;
• coordinates of the k-rational origin on JC ;
• polynomials describing the map jD : C // JC of degree n2 that carries P � // [nP ]−D, where
D is the divisor class of hyperplane sections on C.

Proof. The rest of this chapter is the proof. �

Remarks. (1) To do all of this on a computer, we must of course have an encoding for
elements of k and have algorithms for the field operations. In other words, k must be a
computable field (cf. [BW93, §4.6]). In this chapter, we will not concern ourselves with
such implementation-level details.

(2) More generally, we could take as input a finite set of homogeneous or inhomogeneous
equations, not requiring them to define a non-degenerate degree n (smooth) curve in Pn−1

k

or An−1
k of genus 1, and it is clear in principle that we would then need to do the following

(but it is unclear how practical some of the steps are): we homogenize the equations and
check that they define a variety of dimension is 1; then we blow up all the singularities to
obtain a smooth curve of some degree n embedded in Pm

k for some m; we check that the
genus is 1 and that n is coprime to char(k); then we intersect with a k -rational hyperplane
to obtain a k -rational divisor D of degree n, then compute the map to projective space
(cf. §II.4) determined by O(D). If n = 2, this map gives us a double cover of P1

k , and we
apply the formulas from [Wei54] (also in [AKM+01]) to output everything stated in the
theorem (the 4 points of hyperosculation correspond to the 4 points of ramification of the
double cover, and these are easily determined). If n ≥ 3, the map to projective space gives
us a new set of equations that meet the conditions of the theorem, and so we proceed with
the algorithm described in this chapter.

IV.2. Vetting the input

The input to the algorithm is a finite set of homogeneous equations in a finite number of variables.
There exist algorithms (see, e.g., [BS92]) for determining the dimension, genus, and degree of the
scheme defined by the equations, as well as algorithms for determining whether a variety is smooth

44
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(by determining the dimension of the singular locus), and they are implemented in Macaulay 2 [GS]
(cf. the code in table V.1).

If the dimension is 6= 1, then the algorithm terminates with the message “input does not define
a curve”.

If the genus is 6= 1, then the algorithm terminates with the message “input curve does not have
genus 1”.

If char(k) | n, where n is the degree, then the algorithm terminates with the message “degree
of input curve is divisible by ground field characteristic”.

If the number of variables in the input equations is 6= n− 1, then the algorithm terminates with
the message “input curve is not of degree one higher than dimension of ambient projective space”.

If one of the input equations is linear, then the algorithm terminates with the message “input
curve is degenerate (it lies in a hyperplane)”.

If the curve has a non-empty singular locus, then the algorithm terminates with the message
“input curve is singular”.

IV.3. Describing all matrices that preserve the curve

Let I be the ideal generated by the input equations. Our curve is

C = Proj
k [x0, . . . , xn−1]

I
,

but note that I may not be the ideal of the curve because I might not be saturated. (There exists
algorithms for computing the saturation. We do not care whether I is saturated.) Let G be a
Gröbner basis for I with respect to some arbitrary (but fixed) monomial order on k [x0, . . . , xn−1].

Let A be an n × n matrix of variables aij . If x = [x0 : . . . : xn−1] is a k̄ -valued point of Pn−1
k

that lies on C, then Ax may or may not lie on C. The condition for A to preserve C is that, for each
f(x) ∈ I, where x is now a tuple of variables, also f(Ax) ∈ I. It is sufficient for this condition to hold
on a set of generators for I. The ideal membership problem f(Ax) ∈ I is solved computationally
using the Gröbner basis: we have f(Ax) ∈ I if and only if f(Ax) reduces to 0 upon division by G.

We proceed as follows: For each of the original generators f(x) of I given to us as part of the
input, we divide f(Ax) by G and, viewing the remainder as a polynomial in k(aij)[x], set each
remainder coefficient equal to 0. This process results in a system of equations in the aij whose
solutions correspond to the matrices A that preserve C.

IV.4. Finding Hn o {±1 }
To the system of equations in the aij obtained in the last step, add in the additional equation
det(A) = 1. At this point, the equations define a 0-dimensional ideal. (The number of solutions
will depend on the number of elliptic curve automorphisms the input curve admits over k̄ . When
the j-invariant of C is neither 0 nor 1728, then there will be 2n3 solutions.) The elements of Hn

are then characterized as those solutions that act fixpoint-free on the curve (cf. §III.8). The various
[−1] automorphisms (cf. §III.9) are characterized as those solutions that do have a fixpoint and have
order 2 (modulo scalars).

IV.4a. Solving over a field extension

The 0-dimensional system defining the finitely many matrices must now be solved. There exist
various techniques for this (cf. [CLO98, Ch. 2]). The simplest is elimination and extension. Slightly
fancier is to obtain a Gröbner basis with respect to a favorite monomial order, and then use a Gröbner
basis conversion procedure (cf. [CLO98, §2.3]) to land in the elimination/extension situation.

At any rate, a tedious but finite process will construct a normal field extension k(θ)/k and all
the solution matrices, with all the entries expressed in terms of θ.

Once the solutions are in hand, we must identify Hn, and when n is even, we must also identify
the [−1] automorphisms (we’ll need them to find the points of hyperosculation). Since fixpoints
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correspond to eigenvectors, we can use linear algebra to determine the fixpoints of each matrix, and
the equations for C tell us whether any of the fixpoints lie on C.

For Hn, we hold on to the matrices that have no fixpoints, while for the [−1] automorphisms,
we hold on to the matrices of order 2 (modulo scalars) and have a fixpoint. (In fact, by III.9.3, if
we find one such matrix T , then they all have the form MT , where M ∈ Hn.)

Finally, by expanding all possible products of elements of Hn, we can find generators for Hn.
In fact, since char(k) - n, we will find two generators whose commutator is a primitive nth root of
unity (cf. §III.12).

IV.4b. Practical improvements for finding Hn

Since char(k) - n, the group Hn is characterized by the following properties: it admits a pair of
matrices that act fixpoint-free on the curve and whose commutator is a primitive nth root of unity.
Furthermore, each of the two generators admits n distinct fixpoints (not lying on the curve).

Thus, instead of solving for all matrices that preserve the curve, we need only solve for potentital
generators of Hn. We can apply the following result to reduce the number of solutions, and then
simply search for a pair of solutions whose commutator is a primitive nth root of unity, and which
have no fixpoints on C.

Proposition IV.4.1. Assume char(k) - n. If n is odd, and if M ∈ Hn is such that M̄ ∈ Jn has
order n, then Mn = 1. If n is even, we instead have Mn = −1.

Proof. As we saw in III.11.9, the eigenvalues of M are {α, αζn, . . . , αζ n−1
n }, for some α ∈ k̄×.

Thus, both the minimum and characteristic polynomials of M are
∏

0≤i≤n−1(X − αζ i
n) = X +

(−1)nαn
∏

i ζ
i
n. But the determinant is 1. Thus, for n odd, M satisfies Xn − 1, while for n even,

M satisfies Xn + 1. �

Remark. In fact, when n is odd, Hn may be characterized as {A ∈ GLn(k̄) : Ā ∈ Jn and An = 1 }.
However, when n is even, we know of no such characterization.

Therefore, when n is odd, if one introduces the condition Mn = 1, one could leave off the det = 1
condition; however, it is unclear how—or even whether—the running time is affected by doing so
(cf. V.2.1).

IV.4c. Practical improvements for finding the [−1] automorphisms

When n is even, we will need matrices corresponding to the [−1] automorphisms to find the points
of hyperosculation on C.

When n is odd, we won’t need (as far as our algorithm for the jacobian is concerned) those
matrices, but there may be independent interest in finding them.

We have already seen that the [−1] matrices are characterized by having a fixpoint on C and
having order 2 in PGLn(k̄), i.e., modulo scalars. By the determinant 1 condition, the only possible
scalars are elements of µn(k̄).

Proposition. When n is odd, we can choose the [−1] matrices to satisfy A2 = 1.

Proof. Say we have found a matrix representing [−1] but A2 = ζ i
n. If i is odd, then we replace A

with ζ
(n−i)/2
n A. Then we will have A2 = 1 and detA = 1. If i is even, then we instead replace A

with ζ (2n−i)/2
n A. �

Proposition. When n is even, we can choose each [−1] matrix to satisfy either A2 = 1 or A2 = ζn.

Proof. Say A2 = ζ i
n. If i is even, we replace A with ζ

(n−i)/2
n . If i is odd, we replace A with

ζ
(n+1−i)/2
n . �

IV.5. Finding the points of hyperosculation

For this step, what we do depends on the parity of n.
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IV.5a. When n is odd

The hyperplanes fixed by M will intersect our curve in the n2 points of hyperosculation. (The same
is true for the hyperplanes fixed by N . See III.11.11.)

The hyperplanes fixed by M correspond to the eigenvectors of M t (cf. §III.11). Thus, for
example, if

M t[α0, . . . , αn−1] = [α0, . . . , αn−1],
then

[α0, . . . , αn−1]tM−1 = [α0, . . . , αn−1]t,
whence M fixes the hyperplane

α0x0 + . . .+ αn−1xn−1 = 0.

Tossing the equation of a fixed hyperplane into our equations for I gives a 0-dimensional system
whose solutions correspond to the points of intersection of the hyperplane with the curve. We solve
this system by any convenient technique (cf. §IV.4a).

Repeating this process for each fixed hyperplane, we obtain the coordinates of the n2 points of
hyperosculation. We print these out as part of the algorithm’s output.

IV.5b. When n is even

We find the points of hyperosculation by investigating the fixpoints of the [−1] automorphisms
(cf. §III.9a). For each matrix T representing such an automorphism, either all of its fixpoints on C
(there are four of them) are points of hyperosculation, or none of them are. For a given fixpoint,
we look at all hyperplanes through that fixpoint, looking for the one with maximal intersection
multiplicity with C at that fixpoint (this is the osculating hyperplane at that point). In fact, it is
easy to see that the osculating hyperplane must itself be fixed by T , so we can restrict our search
to the fixed hyperplanes of T .

If the osculating hyperplane meets C only at the fixpoint in question, then we have found a
point of hyperosculation, and the other fixpoints of the matrix are also points of hyperosculation.

IV.6. Finding weighted equations for the jacobian

The action of Hn on the curve is a non-faithful representation of the action of JC [n] on the curve.
We have

JC
∼= C/JC [n] = C/Hn.

By basic principles of geometric invariant theory (cf. [Mum70, §II.7, §III.12] and [ABD+64, §7]),
we have

JC
∼= Proj

((
k(θ)[x0, . . . , xn−1]
I k(θ)[x0, . . . , xn−1]

)Hn
)Gal

(
k(θ)/k

)
.

Remark. In fact, since we only need to find JC up to birational equivalence, we really only care
that the Proj exhibited above has the correct function field. By the universal property of C/Hn, we
can easily establish that its function field is(

K(CK)Hn
)Gal(K/k)

, where K = k(θ).

We easily check that the Proj above has the same function field.

The following lemma helps us break the monster Proj expression into bite-size pieces. (In the
lemma, we are interested in the cases G = Hn or G = Gal

(
k(θ)/k

)
.)

Lemma. Let G be a finite group acting on a k-algebra R with trivial action on k, where k is a field
and char(k) - |G|. If I ⊆ R is an ideal with GI = I (so that G acts on R/I), then

(R/I)G = RG/IG.
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Proof. The averaging operator

∗ : R // RG, r � //
1
|G|

∑
g∈G

rg

is a homomorphism of RG-modules. Taking G-invariants on the short exact sequence 0 // I // R //

R/I // 0 gives the exact sequence

0 // IG // RG // (R/I)G.

If f + I ∈ (R/I)G, then f − fg ∈ I for all g ∈ G. Then 1
|G|
(∑

g(f − fg)
)

= f − f∗ also lies
in I, whence the coset f + I is represented by f∗ ∈ RG. Thus we have the short exact sequence of
RG-modules

0 // IG // RG // (R/I)G // 0.
�

By the lemma, we have

JC
∼= Proj

(
k(θ)[x0, . . . , xn−1]Hn

)Gal
(
k(θ)/k

)
((
I k(θ)[x0, . . . , xn−1]

)Hn

)Gal
(
k(θ)/k

) .
(Observe the denominator may not be simply I. Certainly both Hn and Gal

(
k(θ)/k

)
preserve the

curve, whence I is preserved as a whole, but the individual elements in I need not be invariant.)
By work of Hilbert and Noether, k(θ)[x0, . . . , xn−1]Hn is finitely generated. There exist standard

algorithms in the invariant theory of finite groups (see for example [Stu93]) for finding a system of
generators.

Applying one of these algorithms, we obtain finitely many polynomials pi in k(θ)[x0, . . . , xn−1]
so that k(θ)[x0, . . . , xn−1]Hn = k(θ)[pi]. Since Hn itself is Gal

(
k(θ)/k

)
-invariant, it is in fact the

case that the algorithms cited above will produce pi that are themselves Gal
(
k(θ)/k

)
-invariant, and

thus (
k(θ)[x0, . . . , xn−1]Hn

)Gal
(
k(θ)/k

)
is simply k [pi].

We end up with equations for JC in terms of the generators pi of the ring of invariants(
k(θ)[x0, . . . , xn−1]Hn

)Gal
(
k(θ)/k

)
. These actually express JC as a closed subscheme of a weighted

projective space, since the new variables pi need not have degree 1.
One can work with closed subschemes of weighted projective spaces quite similarly to the way one

works with them in usual projective spaces (see [Dol82]). However, weighted projective spaces do
admit some pathologies (cf. [Dol82, §1.5])—for example, they can be singular. Following [Dol82,
§1.1, Lemma], we formally eliminate all common factors from the degrees of the pi. For example,
if we have five generators of degrees (3; 6; 9; 9; 15), say, then we instead declare the degrees to be
(1; 2; 3; 3; 5), but otherwise make no changes.

Remark. We make this simple formal degree change because much of the theory of weighted
projective spaces assumes one has done so. One could also attempt to further clean up the description
of the weighted space, such as by applying [Dol82, §1.3.1, Proposition].

The algorithm now outputs the equations and the (formally adjusted) degrees of the variables
of the weighted projective space.

The map jD : C // JC is simply the map P � // [pi(P )]. The algorithm outputs the polynomials
pi to give an explicit description of jD.

The k -rational origin on JC is simply the image, under jD, of any one of the points of hyper-
osculation on C. We determined those points earlier. Picking one, and evaluating the pi there, the
algorithm outputs the coordinates of the origin of JC .
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IV.7. Obtaining non-weighted equations for JC

Using the affine covering described in [Har77, II.2.5b], we can find an affine patch of JC containing
the origin of JC . Homogenizing the resulting equations leads to equations for JC as a closed sub-
scheme of a (non-weighted) projective space. The algorithm outputs these equations and the new
coordinates for the origin.

Remark. An alternate approach is to take the function field of JC , which can be read off from the
weighted projective model, and express that field in the form k(α)[β]/

〈
f(α, β)

〉
, which leads to a

non-weighted plane model of JC .

Remark. If one’s goal is a Weierstrass model for JC , one could now (or even prior to finding a
non-weighted model) apply the Riemann–Roch algorithm (cf. §V.7c).

IV.8. Algorithm summary

Let k be a perfect field. The input to the algorithm is a finite set of homogeneous forms with
coefficients in k .

(They are supposed to scheme-theoretically define a non-degenerate curve of degree n in Pn−1
k

of genus 1, where n − 1 is the number of variables in the input, and char(k) - n. But all of this is
verified in the first step of the algorithm.)

(1) Determine the dimension, genus, and degree n of the scheme defined by the equations, as
well as whether the singular locus is empty. Terminate with an error if the scheme does
not have dimension 1, or if the curve does not have genus 1, or if n is a multiple of char(k),
or if the number of variables differs from n− 1, or if the curve is singular, or if one of the
equations is linear (whence the curve is degenerate).

(2) Let G be a Gröbner basis (with respect to some fixed monomial order) for the ideal gen-
erated by the input equations. Let A be a generic n × n matrix. For each input equa-
tion f(x) = 0, divide f(Ax) by G and set each coefficient of the remainder to 0, thus
obtaining a system of equations in the aij that describe which matrices A preserve the
input curve.

(3) With the additional equation det(A) = 1, solve for the finitely many solution matrices,
expressing each matrix’s entries as elements in k(θ), where k(θ) is a finite normal field
extension of k constructed during the solution process.

(4) Among the finitely many matrices, find the ones that act fixpoint-free on the curve, and
find generators for that subgroup of matrices.

(5) If n is odd, determine the hyperplanes fixed by one of the generators, and intersect those
hyperplanes with the curve to find the points of hyperosculation. If n is even, instead find
the [−1]-matrices among the solutions found earlier, write down all their fixpoints, and
then determine which of the fixpoints admit osculating hyperplanes that hyperosculate.

(6) Compute k -rational generators pi for the subring k(θ)[x0, . . . , xn−1]Hn , where Hn is the
matrix group whose generators were found a couple steps ago. Compute k -rational gen-
erators for the ideal

(
I k(θ)[x0, . . . , xn−1]

)Hn . These ideal generators serve as equations
for JC in a weighted projective space, whose coordinates are the pi. Evaluating the pi on
the points of hyperosculation of C (see previous step) gives the coordinates of the origin
on JC .

(7) Grab an affine patch containing the origin of JC and homogenize, thus obtaining equations
for JC in a (non-weighted) projective space.



CHAPTER V

Example: a Selmer cubic

Let k = Q, and let C ⊂ P2
Q be the curve defined by F (x, y, z) = 0, where

F (x, y, z) = 3x3 + 4y3 + 5z3.

That is,

C = Proj
Q[x, y, z]

〈3x3 + 4y3 + 5z3〉
. (V.1)

In this chapter, we will apply the algorithm from chapter IV to find the jacobian of (V.1), as well
as related data (such as the points of hyperosculation on C). Afterwards, in §V.6, we will find some
of the other data discussed in chapter III that was not necessary for finding JC . Finally, in §V.7, we
will generalize the results to the family

Proj
k [x, y, z]

〈ax3 + by3 + cz3 +mxyz〉
,

where k is a perfect field with char(k) 6= 3.

V.1. Vetting the input

It is easy to see that (V.1) is a smooth non-degenerate degree 3 curve in P2
Q of genus 1: we check

smoothness by verifying the matrix of partial derivatives of F has full rank everywhere on C; non-
degeneracy follows because the generator F is not linear; the degree can be read off from F ; the
genus can be read off from the genus formula g = (d − 1)(d − 2)/2 for plane curves. The code in
table V.1 will give us the same information.

1 ringP2 = QQ[x,y,z]

2 f=3*x^3+4*y^3+5*z^3

3 idealC = ideal(f)

4 ringC = ringP2 / idealC

5 C = Proj ringC

6 dim C

7 codim singularLocus idealC

8 degree C

9 HH^1 OO_C

Table V.1. This Macaulay 2 code vets the input.

V.2. Finding H3

We will now go about finding the 27 matrices that are the Q̄-valued points of the Heisenberg
group H3 ⊂ SL3, which, in its action on P2

Q, preserves C and corresponds to the action of JC [3]
on C (cf. §III.12). It is characterized by three things: it preserves C, each matrix has determinant 1,
and it acts fixpoint-free on C.

50
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First we will find conditions under which the generic matrix

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33


preserves C. In other words, whenever a point [x : y : z] lies on C, we require

Ā[x : y : z] = [a11x+ a12y + a13z : a21x+ a22y + a23z : a31x+ a32y + a33z]

to also lie on C, where Ā denotes the image of A in PGL3(Q̄). That is, F
(
Ā[x : y : z]

)
must lie in

the ideal
〈
F (x, y, z)

〉
, where

F
(
Ā[x : y : z]

)
=

3(a11x+ a12y + a13z)3 + 4(a21x+ a22y + a23z)3 + 5(a31x+ a32y + a33z)3. (∗)

This amounts to dividing (∗) by F and demanding the remainder to vanish, giving us 9 vanishing
conditions on the coefficients of A:

F
(
Ā[x : y : z]

)
= (a 3

11 + 4
3a

3
21 + 5

3a
3
31)F (x, y, z)−(

4a 3
11 − 3a 3

12 + 16
3 a

3
21 − 4a 3

22 + 20
3 a

3
31 − 5a 3

32

)
y3 +

(
9a 2

12a13 + 12a 2
22a23 + 15a 2

32a33

)
y2z +(

9a12a
2
13 + 12a22a

2
23 + 15a32a

2
33

)
yz 2 −

(
5a 3

11 − 3a 3
13 + 20

3 a
3
21 − 4a 3

23 + 25
3 a

3
31 − 5a 3

33

)
z3 +(

9a 2
11a12 + 12a 2

21a22 + 15a 2
31a32

)
x2y +

(
9a 2

11a13 + 12a 2
21a23 + 15a 2

31a33

)
x2z +(

9a11a
2
12 + 12a21a

2
22 + 15a31a

2
32

)
xy2 +

(
9a11a

2
13 + 12a21a

2
23 + 15a31a

2
33

)
xz2 +(

18a11a12a13 + 24a21a22a23 + 30a31a32a33

)
xyz.

1 ring R = (0,a11,a12,a13,a21,a22,a23,a31,a32,a33),(x,y,z),dp;

2 poly F = 3*x^3+4*y^3+5*z^3;

3 ideal I = F;

4 I = groebner(I);

5 matrix A[3][3] = a11,a12,a13,a21,a22,a23,a31,a32,a33;

6 matrix vars[3][1] = x,y,z;

7 matrix newvars = A*vars;

8 map substitution = R,newvars[1,1],newvars[2,1],newvars[3,1];

9 poly substituted = substitution(F);

10 poly reduced = reduce(substituted, I);

11 matrix conditions = coef(reduced, x*y*z);

12 conditions;

Table V.2. This Singular code determines the conditions for a matrix to preserve the Selmer cubic.

We next put these 9 conditions, along with the extra conditions det(A) = 1 and A3 = 1
(cf. IV.4.1) into an ideal in Q[aij ] with elimination (lexicographic) ordering, and find a reduced
Gröbner basis. For example, the code in table V.2 finds again the 9 conditions found previously by
hand, and then the code in table V.3 produces the equations shown below.

Remark V.2.1. The A3 = 1 condition turns out to be crucial (this possibility is discussed
in §IV.4b). Without that condition, the code would need to run an unknown amount of time—
we gave up after waiting an hour. Even with A9 = 1 (a trivial condition—for both n even and
n odd, we certainly have An2

= 1, since An is a scalar matrix), and with or without the det = 1
condition, we again gave up after an hour. But with A3 = 1 in place, with or without det = 1, the
code runs almost instantaneously.
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13 ring S = 0,(a11,a12,a13,a21,a22,a23,a31,a32,a33),lp;

14 ideal conditions_ideal;

15

16 int i; for (i = 1; i <= 9; i++) {

17 setring R;

18 poly condition = conditions[2,i];

19 setring S;

20 poly condition_in_S = imap(R,condition);

21 condition_in_S = cleardenom(condition_in_S);

22 conditions_ideal = conditions_ideal + condition_in_S;

23 }

24

25 matrix AA = imap(R,A);

26 poly determinant_one = 1 - det(AA);

27 conditions_ideal = conditions_ideal + determinant_one;

28

29 LIB "matrix.lib"; // Lets us call power(), unitmat(), ...

30 matrix AA_cubed = power(AA,3) - unitmat(3);

31 int j; for (i = 1; i <= 3; i++) {

32 for (j = 1; j <= 3; j++) {

33 conditions_ideal = conditions_ideal + AA_cubed[i,j];

34 }

35 }

36

37 option(redSB); // so that ‘‘groebner’’ returns reduced result...

38 conditions_ideal = groebner(conditions_ideal);

39 conditions_ideal;

Table V.3. This Singular code (continuation from previous table) determines the conditions,

in elimination order, for a matrix to satisfy three conditions: preserve the Selmer cubic, have
determinant 1, and have its cube be 1.

125a 10
32 − 64a32 = 0, a 4

33 − a33 = 0, a32a33 = 0, a31a33 = 0,

8000a 9
31 + 3375a 9

32 + 1728a 3
33 − 1728 = 0, 12a 3

23 − 25a 3
31 = 0, a31a32 = 0, a23a33 = 0,

125a21a
9
32 − 64a21 = 0, a22a

3
33 − a22 = 0, a23a32 = 0, a22a32 = 0,

12a13 − 25a 2
21a

5
32 = 0, a 3

22 − a 3
33 = 0, a22a31 = 0, a22a23 = 0,

9a12 − 20a 2
23a

5
31 = 0, 16a 3

21 − 15a 3
32 = 0, a21a33 = 0, a21a31 = 0,

a11 − a 2
22a

2
33 = 0, a21a23 = 0, a21a22 = 0.

These equations define a 0-dimensional ideal in Q[aij ]. There exist computer algorithms, such
as the ones in Singular’s library zeroset lib, that will construct a field extension containing all
solutions and then list the solutions. Waiting on the computer to do this exhausted our patience,
so we simply solved it by hand.

Let K = Q(ζ3,
3
√

3, 3
√

4, 3
√

5), where ζ3 is a primitive cube root of unity, i.e., ζ 2
3 + ζ3 +1 = 0, and

each of the other symbols satisfies the obvious equation, e.g., ( 3
√

4)3 = 4. A symbol such as 3
√
−4/5

is shorthand for − 3
√

4/ 3
√

5.
When we go about finding all matrices in the solution set (the details are left to the reader), we

discover that there are 9 solutions (modulo cube roots of unity): 1, M , M2, N , MN , M2N , N2,
MN2, M2N2, where

M =

1 0 0
0 ζ3 0
0 0 ζ 2

3

 and N =

 0 3
√

4/3 0
0 0 3

√
5/4

3
√

3/5 0 0

 .
But we didn’t really have to find them all. We merely need to find two generators for the Heisenberg
group H3. Thus we must find a pair of matrices that act fixpoint-free on C and whose commutator
is a primitive cube root of unity.

It is easy to check that the two matrices M and N satisfy the commutator condition. The
fixpoints of M and N in P2

Q(Q̄) correspond to the eigenspaces of M and N (cf. §III.11). Using
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standard linear algebra techniques for finding eigenvalues and eigenvectors, we determine that M
fixes

[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1],

while N fixes

[1 : 3
√

3/4 : 3
√

3/5],

[1 : ζ3 3
√

3/4 : ζ 2
3

3
√

3/5],

[1 : ζ 2
3

3
√

3/4 : ζ3 3
√

3/5].

Substituting these points into the equation defining C verifies that the action of M and N on C is
indeed fixpoint-free.

V.3. Points of hyperosculation and the hyperplane configuration

The hyperplanes fixed by M and N correspond to the eigenvectors of M t and N t (cf. §III.11). We
determine that M fixes the hyperplanes

x = 0, y = 0, z = 0,

while N fixes the hyperplanes

x+ 3
√

4/3y + 3
√

5/3z = 0,

x+ ζ 2
3

3
√

4/3y + ζ3
3
√

5/3z = 0,

x+ ζ3
3
√

4/3y + ζ 2
3

3
√

5/3z = 0.

Intersecting either set of hyperplanes with C produces the 9 points of hyperosculation (cf. §III.11.8):

[0 : 1 : 3
√
−4/5], [0 : 1 : ζ3 3

√
−4/5], [0 : 1 : ζ 2

3
3
√
−4/5],

[ 3
√
−5/3 : 0 : 1], [ζ3 3

√
−5/3 : 0 : 1], [ζ 2

3
3
√
−5/3 : 0 : 1],

[1 : 3
√
−3/4 : 0], [1 : ζ3 3

√
−3/4 : 0], [1 : ζ 2

3
3
√
−3/4 : 0].

The rows correspond to the hyperplanes fixed byM , while the columns correspond to the hyperplanes
fixed by N . We see here the arrangement and intersection pairing described in §III.11.11.

Remark. Classically, the points of hyperosculation on a plane cubic are found using the Hessian.
We say more about this in §V.6c.

V.4. The curve underlying the jacobian JC

The matrices M and N generate an abelian group Jn ⊂ PGL3(K) whose elements correspond
to JC [3](Q̄). Thus JC [3] is defined (element-wise) over K.

The same matrices generate a group of order 27 in SL3(K). Let H3 ⊂ SL3 be the subgroup
with those K -valued points. By the material in §IV.6, we have

JC
∼= Proj

Q[x, y, z] ∩K[x, y, z]H3(K)

I ∩K[x, y, z]H3(K)
.

To determine the latter more explicitly, we start by looking for an explicit description of
K[x, y, z]H3(K). We know from general principles (see [Stu93]) that there will be three algebraically
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1 (*MonomialList generates all monomial exponent vectors

2 satisfying the given degree constraints.*)

3 MonomialList[varcount_, minweight_, maxweight_] :=

4 Module[

5 {v, i, r, keepgoing},

6 v = Table[maxweight, {varcount}];

7 r = {};

8 keepgoing = True;

9 While[keepgoing,

10 If[minweight <= (Plus @@ v) && (Plus @@ v) <= maxweight,

11 r = Append[r, v];

12 ];

13 (* Subtract 1 from first index in varlist v. *)

14 (* If result is negative, replace with maxweight,

15 and move right. If we run out of variables, quit. *)

16 i = 1;

17 While[--v[[i]] < 0,

18 v[[i]] = maxweight;

19 ++i;

20 If[i > varcount,

21 keepgoing = False; Break[];];

22 ];

23 ];

24 r

25 ];

26

27 (*Reynolds averages the value of the function on the matrixgroup orbit of varlist.*)

28 ReynoldsOperator[matrixgroup_List, f_, varlist_List] :=

29 Apply[Plus, Map[Apply[f, #.varlist] &, matrixgroup]]/Length[matrixgroup];

30

31 (*GeneratingInvariants applies Reynolds to all monomials of a given degree.*)

32 GeneratingInvariants[matrixgroup_List, varlist_List, degree_Integer] :=

33 Module[

34 {m = MonomialList[Length[varlist], degree, degree]},

35 Table[

36 ReynoldsOperator[matrixgroup,

37 Function[varlist, Times @@ Apply[Power, {varlist, m[[i]]}]],

38 varlist],

39 {i, Length[m]}]

40 ];

41

42 InvertedCharPoly[matrix_List, var_] :=

43 Det[IdentityMatrix[Length[matrix]] - var*matrix];

44 MolienSeries[matrixgroup_List, var_] :=

45 (1/Length[matrixgroup])*Plus @@ Map[1/InvertedCharPoly[#, var] &, matrixgroup]]

46

47 HeisenbergGroup[m_List, n_List] :=

48 Module[{d = Dimensions[m][[1]], z = m.n.Inverse[m].Inverse[n]},

49 Flatten[Table[

50 MatrixPower[z, i].MatrixPower[m, j].MatrixPower[n, k], {i, d}, {j,

51 d}, {k, d}], 2]]

Table V.4. This Mathematica code defines functions we’ll need in the next listing.

independent invariants (known as primary invariants), and possibly some additional dependent in-
variants (secondary invariants). The Molien series,

ΦH3(t) = 1
27

∑
σ∈H3(K)

1
det(id− tσ)

= 1
27

(
1

(1− t)3
+

1
(1− ζ3t)3

+
1

(1− ζ 2
3 t)3

+
24

1− t3

)
=

1− t3 + t6

(1− t3)3

= 1 + 2t3 + 4t6 + 7t9 + 11t12 + 16t15 + 22t18 + 29t21 + 37t24 + · · · ,

tells us that there are two linearly independent invariants of degree 3, four of degree 6, seven of
degree 9, and so on.

(The Mathematica code in table V.5, relying on the functions from table V.4, will compute the
Molien series above as well as what we are about to calculate.)

The three possible products of the two invariants of degree 3 do not account for all four linearly
independent invariants of degree 6. Hence we start by looking in degree 3 and degree 6. Applying
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52 cuberoot1 = Root[(#^2 + # + 1), 1];

53 cuberoot3 = Root[(#^3 - 3), 1];

54 cuberoot4 = Root[(#^3 - 4), 1];

55 cuberoot5 = Root[(#^3 - 5), 1];

56 vars = {x,y,z};

57 MM = DiagonalMatrix[Map[(cuberoot1^#) &, Range[3]]];

58 NN = RotateLeft[

59 DiagonalMatrix[{cuberoot3/cuberoot5, cuberoot4/cuberoot3, cuberoot5/cuberoot4}]];

60 MM // Simplify // MatrixForm

61 NN // Simplify // MatrixForm

62

63 h = HeisenbergGroup[MM, NN];

64 ms = MolienSeries[h, t]

65 ms = Simplify[ms]

66 Series[ms, {t, 0, 30}]

67

68 Factor[Union[Simplify[GeneratingInvariants[h, vars, 3]]]]

69 Factor[Union[Simplify[GeneratingInvariants[h, vars, 6]]]]

70

71 P1 = x y z;

72 P2 = 3x^3 + 4y^3 + 5z^3;

73 P3 = 9x^6 + 16y^6 + 25z^6;

74 GroebnerBasis[{P1-y1,P2-y2,P3-y3}, {x,y,z,y1,y2,y3}, {x,y,z}]

75

76 Simplify[ms*((1 - t^3)(1 - t^3)(1 - t^6))]

77 GeneratingInvariants[h, vars, 9] // Simplify // Factor // Simplify // Union // Factor

78

79 P4 = 27x^9 + 64y^9 + 125z^9;

80 GroebnerBasis[{P1-y1,P2-y2,P3-y3,P4-y4}, {x,y,z,y1,y2,y3,y4}, {x,y,z}]

81

82 P4 = 48x^3y^6 + 45x^6z^3 + 100y^3z^6;

83 syzygy = GroebnerBasis[{P1-y1,P2-y2,P3-y3,P4-y4}, {x,y,z,y1,y2,y3,y4}, {x,y,z}]

84

85 gg = GroebnerBasis[{P1-y1,P2-y2,P3-y3,P4-y4}, {x,y,z,y1,y2,y3,y4}];

86 PolynomialReduce[3x^3 + 4y^3 + 5z^3, gg, {x,y,z,y1,y2,y3,y4}]

87

88 syzygy /. {y2 -> 0}

Table V.5. This Mathematica code (relying on functions from previous table) calculates the

Molien series, the primary and secondary invariants, and the final syzygy that gives the model

for JC .

the Reynolds operator to all degree 3 and all degree 6 monomials gives the following list of invariants:

xyz, 3x3 + 4y3 + 5z3, xyz(3x3 + 4y3 + 5z3),

x2y2z2, 9x6 + 16y6 + 25z6, 12x3y3 + 15x3z3 + 20y3z3.

Two invariants of degree 3 together with one invariant of degree 6 must compose a set of algebraically
independent invariants. We arbitrarily choose

P1 := xyz

P2 := 3x3 + 4y3 + 5z3

P3 := 9x6 + 16y6 + 25z6

We verify their algebraic independence by introducing slack variables s1, s2, s3 with an elimination
ordering on monomials and compute a Gröbner basis for the ideal 〈P1 − s1, P2 − s2, P3 − s3〉 in
Q[x, y, z, s1, s2, s3] and then intersect with Q[s1, s2, s3] to read off any syzygies: there are none. In
other words, the ring homomorphism from Q[s1, s2, s3] to Q[P1, P2, P3] given by si

� // Pi has trivial
kernel. (All of this is explained quite nicely in [CLO97].

We can furthermore easily see that (0, 0, 0) is the only solution to P1 = 0, P2 = 0, P3 = 0;
whence, by the Nullstellensatz, the radical of 〈P1, P2, P3〉 is 〈x, y, z〉. Thus K[x, y, z] is integral
over K[P1, P2, P3], whence also K[x, y, z]H3(K) is integral over K[P1, P2, P3], and therefore is finitely
generated as a module over K[P1, P2, P3]. (In fact, as explained in [Stu93], K[x, y, z]H3(K) will be
free over K[P1, P2, P3], since the subring of invariants is Cohen–Macaulay.)

Thus P1, P2, P3 shall serve as primary invariants. They generate a graded subring of the subring
of invariants, and their Hilbert series is

1
1− t3

1
1− t3

1
1− t6

,
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which forms the denominator of the Hironaka form of our earlier Molien series:

ΦH3(t) =
1 + t9

(1− t3)(1− t3)(1− t6)
.

Thus there is one secondary invariant, in degree 9, which we now locate. Applying the Reynolds
operator to all degree 9 monomials gives us:

x2y2z2(3x3+4y3+5z3), 36x6y3+80y6z3+75x3z6,

xyz(9x6+16y6+25z6), 48x3y6+45x6z3+100y3z6,

x3y3z3, 27x9+64y9+125z9, xyz(12x3y3+15x3z3+20y3z3).

If we compute a Gröbner basis for the ideal

〈P1 − s1, P2 − s2, P3 − s3, 27x9 + 64y9 + 125z9 − s4〉
and intersect with Q[s1, s2, s3, s4], we obtain the syzygy

−360s 3
1 + s 3

2 − 3s2s3 + 2s4;

since this syzygy is linear in s4, it tells us that 27x9 + 64y9 + 125z9 is linearly dependent on other
degree 9 invariants expressible in terms of our previous choices. We next try

P4 := 48x3y6 + 45x6z3 + 100y3z6,

and this time the syzygy is not linear in s4:

259200s 6
1 − 960s 3

1 s
3
2 + s 6

2 + 1440s 3
1 s2s3 − 3s 4

2 s3
+ 3s 2

2 s
2
3 − s 3

3 + 1440s 3
1 s4 − 4s 3

2 s4 + 4s2s3s4 + 8s 2
4 .

In other words,

K[x, y, z]H3(K) ∼=
K[s1, s2, s3, s4]〈

259200s 6
1−960s 3

1 s 3
2 +s 6

2 +1440s 3
1 s2s3−3s 4

2 s3

+3s 2
2 s 2

3−s 3
3 +1440s 3

1 s4−4s 3
2 s4+4s2s3s4+8s 2

4

〉 ,
where this is an isomorphism of graded rings so long as we keep in mind a weighted grading on the
right: the variables s1, s2, s3, s4 have degrees 3, 3, 6, 9 (corresponding to our choices of P1, P2, P3, P4).

Remark. Although irrelevant to our calculations, it is helpful to understand what the primary and
secondary invariants have to do with the structure of the ring of invariants. As already mentioned,
the ring K[x, y, z]H3(K) is Cohen–Macaulay, and thus it is a finitely generated free module, generated
by the secondary invariants over the subring generated by the algebraically independent primary
invariants:

K[x, y, z]H3(K) = K[P1, P2, P3]⊕ P4K[P1, P2, P3].

Having determined K[x, y, z]H3(K), we return to the problem of finding JC . Observe that our
choices are such that the equation of the curve is given by P2 = 0. Furthermore, since H3(K) is
defined over Q, the Molien series and the invariants calculated above were each Gal(K/Q)-invariant.
Thus we have

Q[x, y, z] ∩K[x, y, z]H3(K) ∼=
Q[s1, s2, s3, s4]〈

259200s 6
1−960s 3

1 s 3
2 +s 6

2 +1440s 3
1 s2s3−3s 4

2 s3

+3s 2
2 s 2

3−s 3
3 +1440s 3

1 s4−4s 3
2 s4+4s2s3s4+8s 2

4

〉 ,
and substituting s2 = 0 corresponds to working modulo I, so that we have established

JC
∼= Proj

Q[s1, s3, s4]
〈259200s 6

1 − s 3
3 + 1440s 3

1 s4 + 8s 2
4 〉
.

We have expressed the curve underlying JC as a curve of degree 18 in a weighted projective plane
P(3;6;9)
Q . By the general theory of weighted projective planes (see the end of §IV.6), we formally

relabel the weights to be (1; 2; 3), so that JC is now a curve of degree 6 in P(1;2;3)
Q .
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The Q-rational group law origin on JC corresponds to the points of hyperosculation on C. Since
the functions s1, s3, s4 are invariant on those n2 points, we can obtain coordinates for the origin
on JC by picking any one of the points of hyperosculation and applying the map (cf. II.2.4)

jD : [x : y : z] � //
[
P1(x, y, z) :: P3(x, y, z) :: P4(x, y, z)

]
,

where we use the notation [· :: · :: ·] on weighted homogeneous coordinates to remind us of the
unusual equivalence relation: [x :: y :: z] ∼ [λx :: λ2y :: λ3z].

For example, one of the points of hyperosculation is [0 : 1 : 3
√
−4/5]. Evaluating jD at this point

gives us the group law origin on JC :
OJC

= [0 :: 2 :: 1].

Remark. In fact, evaluating [P1 :: P3 :: P4] at each of the 9 points of hyperosculation leads to
[0 :: 32 :: 64], [0 :: 50 :: 125], and [0 :: 18 :: 27]. But each of those is just [0 :: 2 :: 1].

In summary, we have determined the jacobian of (V.1) to be

JC
∼= Proj

Q[r, s, t]
〈259200r6 − s3 + 1440r3t+ 8t2〉

, (V.2)

where variables r, s, t have degrees (1; 2; 3), and the origin of the group law is the Q-rational point [0 ::
2 :: 1]. We obtained JC as an elliptic curve of degree 6 in the weighted projective plane P(1;2;3)

Q =
Proj

(
Q[r, s, t]

)
.

V.5. Obtaining a non-weighted model for JC

We will now obtain a non-weighted version of (V.2) using the approach from §IV.7. The weighted
projective plane P(1;2;3)

Q is covered by the following three affine patches (see [Har77, II.2.5b])

SpecQ
[ s
r2
,
t

r3
] ∼= SpecQ[u, v] (open subset where r 6= 0),

SpecQ
[r2
s
,
rt

s2
,
t2

s3
] ∼= Spec

Q[u, v, w]
〈uw − v2〉

(open subset where s 6= 0),

SpecQ
[r3
t
,
rs

t
,
s3

t2
] ∼= Spec

Q[u, v, w]
〈uw − v3〉

(open subset where t 6= 0),

where u, v, w are indeterminates. Thus we have three different ways of obtaining an affine model
for JC , but only two of those models (the latter two above) contain the image of the Q-rational
origin [0 :: 2 :: 1] on JC .

Let us use the affine patch corresponding to s 6= 0. Dividing the defining expression in (V.2)
through by s3 leads to

Spec
Q[u, v, w]

〈uw − v2, 259200u3 − 1 + 1440uv + 8w〉
⊂ A3

Q,

where the Q-rational origin is now (0, 0, 1/8). We can of course homogenize this if we prefer a
projective model for JC .

We have finished applying the algorithm from chapter IV to F (x, y, z) = 3x3 + 4y3 + 5z3 = 0.
In the next section, we will say some additional things about that example. Then, in §V.7, we will
tackle the family ax3 + by3 + cz3 +mxyz = 0.

V.6. Musings

V.6a. Finding the 2-torsion on (C,O)

We will determine the matrix T corresponding to [−1] on the elliptic curve (C,O), where O is the
following point of hyperosculation:

O = [0 : 1 : 3
√
−4/5].
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Thus we seek a matrix A of determinant 1 that preserves C and also fixes O, and furthermore its
square should be a scalar matrix (so that the matrix has order 2 on the curve). But if, say, A2 = ζ3,
then (ζ3A)2 = 1, and det(ζ3A) = 1. Thus we can find an A that satisfies A2 = 1. To do this, we
repeat the calculations from tables V.2 and V.3, only this time we replace the condition A3 = 1 with
A2 = 1. To preserve O, we discover we must have, among other things, the additional condition
5a 3

12 = 4a 3
13, which already simplifies matters sufficiently to determine

T =

−1 0 0
0 0 3

√
−5/4

0 3
√
−4/5 0

 .
The three eigenvalues of T are 1,−1,−1. There is one isolated fixpoint in P2

Q, and one line’s
worth of fixpoints in P2

Q, which gives us 3 fixpoints on C. Since T must have 4 fixpoints on C, the
isolated fixpoint must lie on C. Indeed, by computing eigenvectors, we determine that the fixpoint
corresponding to eigenvalue +1 is O, while the fixed line is spanned by [1 : 0 : 0] and [0 : 1 : 3

√
4/5].

That line cuts C in the following three points:

[ 3
√
−8/3 : 1 : 3

√
4/5], [ζ3 3

√
−8/3 : 1 : 3

√
4/5], [ζ 2

3
3
√
−8/3 : 1 : 3

√
4/5].

These must be the three points of non-trivial 2-torsion on (C,O). Note that they are not points of
hyperosculation (cf. §III.9).

V.6b. Obtaining a Weierstrass model for JC

As mentioned in §I.1b, once we have a curve of genus 1 together with a rational point (i.e., an elliptic
curve), we can always apply the Riemann–Roch algorithm to obtain a Weierstrass model for that
curve (cf. §V.7c). In the present example, it turns out there is an easier way.

At the start of §V.5, we chose an affine patch containing the Q-rational origin on JC . If we
instead work with an affine patch that does not contain that point, then we will obtain an affine
model with the origin “at infinity”.

Dividing the defining expression in (V.2) through by r6 leads to the affine model

Spec
Q[u, v]

〈259200− u3 + 1440v + 8v2〉
⊂ A2

Q.

We knew this would give us an affine plane model, but it so happens we already ended up with a
Weierstrass model! If we now apply the substitution u oo 2X, v oo 1

2 (Y − 180), and clear off the
common factor 2 from the result, we end up with

Y 2 = 4X3 − 97200. (V.3)

In the cases n = 2, 3, 4, formulas for a Weierstrass model of JC appear in [AKM+01]. (For
n = 5, see [Fis].) If we apply those formulas to (V.1), we also end up with (V.3) above.

V.6c. The classical Hessian

In §V.3, we found the 9 points of hyperosculation on our plane cubic (V.1) by finding the hyperplane
sections fixed by a generator for H3.

Classically (cf. [Sil99, Ex. III.3.9]), the 9 points of hyperosculation (called flex points) on a
plane cubic F (x, y, z) = 0 are obtained by intersecting the cubic with its Hessian H(x, y, z) = 0,
where

H(x, y, z) :=

∣∣∣∣∣∣∣
∂2F
∂x2

∂2F
∂x ∂y

∂2F
∂x ∂z

∂2F
∂y ∂x

∂2F
∂y2

∂2F
∂y ∂z

∂2F
∂z ∂x

∂2F
∂z ∂y

∂2F
∂z2

∣∣∣∣∣∣∣ .
Even without knowing any of the general theory of the Hessian, we can see quite easily that the

Hessian in our current example behaves as the theory says it must. For our F , the Hessian H is just
(a scalar multiple of) of the invariant P1 from §V.4. In calculating the origin on JC , we saw that P1
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vanishes at the 9 points of hyperosculation; on the other hand, by Bézout’s theorem (see [Har77,
I.7.8]), it cannot vanish elsewhere on C.

In fact, we saw in §V.4 that the space of cubic invariants is 2-dimensional, spanned by F
and P1. Therefore, other than scalar multiples of F , any cubic invariant will intersect C in the
points of hyperosculation. A more enlightening way of seeing this goes as follows.

Invariants of any degree that do not vanish identically on C will necessarily intersect C in a
union of 3-torsion packets. If the invariant is defined over Q, then its intersection with C is also
defined over Q. In particular, by Bézout, a cubic invariant will intersect C in a single 3-torsion
packet defined over Q; therefore, if we can show that the hyperosculation packet is the unique such
packet, then it follows that any cubic invariant must intersect C in the hyperosculation packet.

A change-of-variables to (V.3) yields Y 2 = X3− 24300. Feeding [0,0,0,0,-24300] to mwrank
tells us that JC has rank 0, while feeding

e=ellinit([0,0,0,0,-24300]);elltors(e)

to GP/Pari tells us that JC has a single point of torsion. In short, the hyperosculation packet is the
unique 3-torsion packet on C that is defined over Q.

V.7. Tackling the family ax3 + by3 + cz3 +mxyz = 0

Let k be a perfect field with char(k) 6= 3 (concerning this restriction, cf. §I.2e). Set

C = Proj
k [x, y, z]

〈ax3 + by3 + cz3 +mxyz〉
, (V.4)

where a, b, c,m ∈ k . The condition for C to be smooth is abc(27abc+m3) 6= 0.

V.7a. History

The family (V.4) has been studied extensively (often without the mxyz term). It was known
classically that a k -rational point on (V.4) leads to a non-trivial k -rational point on the elliptic
curve

E = Proj
k [X,Y, Z]

〈X3 + Y 3 + abcZ3 +mXY Z〉
, with origin OE = [1 : −1 : 0]. (V.5)

Formulas for this are attributed to Sylvester in [Cal92, §3] and to Euler in [Sel51, §I.2]. See also
[Cas91, §18, Lemma 1].

That (V.5) is the jacobian of (V.4) has probably been known for a long time—the earliest
reference I could find, for m = 0 and k = Q(ζ3), is [Cas91, §20, Ex. 3]. The proof outlined there
works in general, and goes as follows. Over k(ζ3, 3

√
a, 3
√
b) we can write down the isomorphism

φ : (V.4) // (V.5) given by X = 3
√
a x, Y = 3

√
b y, and Z = ( 3

√
ab)−1z. Then ξσ := φσ ◦ φ−1

is an element of H1
(
Gk , E(k̄) o Aut(E,OE)

)
. It is easy to verify that each ξσ is a fixpoint-free

automorphism of E, whence ξ ∈ H1
(
Gk, E(k̄)

)
. Therefore, C is a principal homogeneous space

for E, and thus E ∼= JC .
Our algorithm for the jacobian of (V.4) must therefore produce an answer isomorphic to the E

given above, and we will now verify this fact. We will also relate these models for JC to what is
found in [AKM+01].

V.7b. Finding the jacobian by the algorithm

To find the jacobian JC of (V.4), we could, in principle, repeat the earlier work in this chapter. (In
fact, the computer system Singular is capable of performing calculations over function fields that
are finitely generated over either Q or a finite field of small characteristic—for example, line 1 of the
code in table V.2 initializes a polynomial ring over the function field Q(aij). Thus, for suitable k , we
could view C as a curve over k(a, b, c,m), where the symbols a, b, c,m are algebraically independent
over k . But an attempt to run the code from tables V.2 and V.3, with obvious modifications for the
present situation, exhausted our patience.)
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We will take a different approach. By glancing at our work in §V.2, we go ahead and form the
field extension K = k(ζ3, 3

√
a, 3
√
b, 3
√
c), and then guess that the two matrices

M =

1 0 0
0 ζ3 0
0 0 ζ 2

3

 and N =

 0 3
√
b/a 0

0 0 3
√
c/b

3
√
a/c 0 0

 .
will generate H3. Indeed, this is the case: it is easy to verify that they preserve C, have no fixpoints
on C, and their commutator is ζ3.

The Molien series ΦH3(t) is the same as in §V.4, and carrying out a similar procedure as given
there (we will omit the details), we choose the primary invariants

P1 := xyz, P2 := ax3 + by3 + cz3, P3 := abx3y3 + acx3z3 + bcy3z3,

and the secondary invariant P4 := ab2x3y6 + a2cx6z3 + bc2y3z6, and obtain

K [x, y, z]H3(K ) ∼=
K [s1, s2, s3, s4]

〈9a2b2c2s 6
1 +abcs 3

1 s 3
2−6abcs 3

1 s2s3+s 3
3 +3abcs 3

1 s4−s2s3s4+s 2
4 〉
.

Working modulo the ideal of C corresponds to s2 = −ms1, and we obtain

JC
∼= Proj

k [s1, s3, s4]〈
abc(9abc−m3)s 6

1 +6abcms 4
1 s3+s 3

3 +3abcs 3
1 s4+ms1s3s4+s 2

4

〉 .
We find the points of hyperosculation on C, as in §V.3, by intersecting the hyperplanes fixed by M
or by N with C. For example, we find the point [0 : 1 : 3

√
−b/c]. Substituting the points of

hyperosculation into [P1 :: P3 :: P4] (cf. the end of §V.4) gives us [0 :: −b2 :: b3], [0 :: −c2 :: c3],
[0 :: −a2 :: a3], which are all just [0 :: −1 :: 1].

In summary, the jacobian of (V.4) is

JC
∼= Proj

k [r, s, t]〈
abc(9abc−m3)r6 + 6abcmr4s+ s3 + 3abcr3t+mrst+ t2

〉 , (V.6)

where variables r, s, t have degrees (1; 2; 3), and the origin of the group law is the k -rational point
[0 :: −1 :: 1]. We obtained JC as an elliptic curve of degree 6 in the weighted projective plane
P(1;2;3)
k = Proj

(
k [r, s, t]

)
. To obtain a non-weighted equation, we now proceed as in §V.6b. The

affine patch

Spec
k [u, v]〈

v2 +muv + 3abcv + u3 + 6abcmu+ abc(9abc−m3)
〉 ⊂ A2

k (V.7)

gives us a Weierstrass model for JC .

V.7c. Applying the Riemann–Roch algorithm

We will now apply the Riemann–Roch algorithm (which we learned from an example in [Con92])
to put the elliptic curve (V.5) into Weierstrass form, so that we may compare it with (V.7).

We must find functions ℘x, ℘y with poles of order 2, 3 at P = [1 : −1 : 0] and no poles elsewhere
on E : x3 + y3 + abcz3 +mxyz = 0. We go to the affine patch where x 6= 0. Set Y = y/x, Z = z/x.
Then we are looking at the point P = (−1, 0) on E : 1 + Y 3 + abcZ3 +mY Z = 0. We determine Z
to be a uniformizer at (−1, 0), and 1/Z to be a uniformizer at the three points on E where x = 0.
Thus we must have

℘x =
quadratic polynomial in Y and Z

Z2
, ℘y =

cubic polynomial in Y and Z
Z3

.

The bound on the numerator degree comes from looking at the pole behavior of Y at points where x =
0: the denominator Z2 contributes a zero of order 2 at those points, so the numerator can contribute
a pole of order at most 2, since the end result should be regular at those points.

Since L(2P ) = 〈1, ℘x〉, we can adjust ℘x by a scalar multiple of 1 = Z2/Z2; that is, the
coefficient of Z2 in the numerator of ℘x can be taken to be 0. We also need the numerator of
℘x to not vanish at P , yet vanish at the other two points Q1, Q2 on E where Z vanishes. These
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conditions immediately give some relations on the coefficients of the numerator of ℘x, and tell us the
Y 2 coefficient is nonzero. Scaling, we assume it to be 1. If we then use the equation of E expressed
locally at Q1, Q2, we can expand the numerator of ℘x in a series in Z to obtain the condition for
the numerator to vanish twice at those two points. We ultimately determine:

℘x =
Y 2 + m

3 Y Z − Y + m
3 Z + 1

Z2
.

As for ℘y, the equation of E itself allows us to eliminate the Y 3 term from the numerator, and
L(3P ) = 〈1, ℘x, ℘y〉 tells us we can eliminate the Z3 term and the Y 2Z term (by subtracting off
a multiple of ℘x). Repeating the previous work, this time requiring triple vanishing at Q1, Q2, we
obtain:

℘y =
Y 2 + m

3 Y Z − Y + m
3 Z + 1 + m2

9 Z
2

Z3
.

Riemann–Roch tells us that `(6P ) = 6, yet certainly { 1, ℘x, ℘y, ℘
2
x , ℘x℘y, ℘

3
x , ℘

2
y } all lie in L(6P ),

and by comparing with L(5P ), we conclude that we can express ℘ 2
y as a linear combination of the

rest. That is, there exist ai satisfying:

℘ 2
y + a1℘x℘y + a3℘y = a0℘

3
x + a2℘

2
x + a4℘x + a6.

This equation must hold identically on E, so if we expand this using our expressions for ℘x, ℘y and
use the equation of E repeatedly to eliminate all terms containing Y 3, then the coefficients we end
up with must all be 0. From this we easily determine:

℘ 2
y − m

3 ℘x℘y + abc℘y = 1
3℘

3
x + abcm

3 ℘x + abc
81 (m3 − 27abc).

This is E in Weierstrass form. We eliminate the denominators with a linear change-of-variables to
obtain

E : y2 −mxy + 9abcy = x3 + 9abcmx+ (abcm3 − 27a2b2c2). (V.8)
If we now apply the substitution x oo u and y oo (v − 3abc), then we obtain (V.7).

V.7d. Comparing with result from classical invariant theory

If, in addition to our standing assumption char(k) 6= 3, we also assume char(k) 6= 2, then we can
compare (V.7) with what we would obtain from the formulas in [AKM+01]. There it is shown that
JC has equation

y2 = 4x3 + 108Sx− 27T, (V.9)
where

S = 1
6abcm− 1

64m
4, and T = a2b2c2 − 20

63 abcm
3 − 8

66m
6.

If we scale the linear term of (V.9) by 64, and the constant term by 66 (cf. [Sil99, §III.1]), then we
obtain

y2 = 4x3 + 108(216abcm−m4)x− 216(5832a2b2c2 − 540abcm3 −m6). (V.10)
If we instead start with (V.7), and complete the square and the cube (cf. [Sil99, §III.1]), then

after cleaning up the denominators we also end up with (V.10).



CHAPTER VI

Example: a pair of quadrics

In the previous chapter, we worked through an example of using our algorithm in the case n = 3.
In this chapter, we work through an example for n = 4 far enough to find the Heisenberg group H4

and the points of hyperosculation, which demonstrates the following points:
• The ideal of our curve is no longer principal. Thus, whereas before with I = 〈F 〉 we put

the condition F (Ax) ≡ 0 modulo F (x) to find matrices that preserve the curve, now we
must find a Gröbner basis G for I, and for each generator F of I, we require F (Ax)/G ≡ 0,
where ·/G denotes the canonical form obtained by reducing modulo G.

• Since the parity of n is different, we must use a different method for finding the points of
hyperosculation (cf. §IV.5).

• In the previous chapter’s example, the Heisenberg group H4 admitted a Schrödinger-like
representation in the given coordinate system. That will not be the case presently.

In contrast to the previous chapter, this time around we will rely more on the computer, and we
present computer code that, although more abstract, has the advantage of being easily adapted to
different values of n.

VI.1. The curve

Let C be the intersection of the two quadrics in P3
Q defined by the matrices

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and


1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

 .
That is,

C = Proj
Q[w, x, y, z]

〈w2 + x2 + y2 + z2, w2 + 2x2 + 3y2 + 4z2〉
.

Note that C has no Q-rational point: it does not even have a point over R. We will now apply our
algorithm to find the points of hyperosculation, the hyperplane configuration, and the jacobian JC .

The code in table VI.1 confirms that C is a smooth degree 4 curve in P3
Q of genus 1. It is

non-degenerate because none of the ideal generators is linear.

1 n=4

2 nMinusOne=n-1

3 ringPnMinusOne = QQ[w_0..w_nMinusOne]

4 f1=w_0^2+w_1^2+w_2^2+w_3^2

5 f2=w_0^2+2*w_1^2+3*w_2^2+4*w_3^2

6 idealC = ideal(f1,f2)

7 ringC = ringPnMinusOne / idealC

8 C = Proj ringC

9 dim C

10 codim singularLocus idealC

11 degree C

12 HH^1 OO_C

Table VI.1. This Macaulay 2 code vets the input.

62
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Remark. We didn’t really need the computer: since the two matrices are diagonal, and their λ-
equation (as in (III.9)) has distinct roots, the two quadrics intersect in a smooth curve of genus 1
(see [Eis95, §18.3, Example, p.463]).

The code in table VI.2 works out the conditions for a matrix

A =


a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14 a15 a16


to preserve the curve, have determinant 1, and satisfy An = −1. (Thus, by §IV.4b, we are describing
potential generators of H4, not H4 itself.) Note that, for sake of speed, the code uses a non-
elimination term order for the initial computations, and then uses a Gröbner basis conversion process
(cf. [CLO98, §2.3]) to obtain a description of the ideal in elimination term order. We end up with
the following conditions:

a 5
16 + a16 = 0, a15a16 = 0, a14a16 = 0, a14a15 = 0,

3a 5
15 + a15 = 0, a13a16 = 0, a13a15 = 0, a13a14 = 0,

3a 5
14 − a14 = 0, a12a16 = 0, a12a14 = 0, a12a13 = 0,

a 4
13 − 3a 4

14 + 3a 4
15 + a 4

16 + 1 = 0, a11a15 = 0, a11a14 = 0, a11a13 = 0,

3a12a
4
15 + a12 = 0, a11a12 = 0, a10a16 = 0, a10a15 = 0,

a 2
12 − 3a 2

15 = 0, a10a14 = 0, a10a12 = 0, a10a11 = 0,

a11a
4
16 + a11 = 0, a9a16 = 0, a9a15 = 0, a9a13 = 0,

a 2
11 − a 2

16 = 0, a9a12 = 0, a9a11 = 0, a9a10 = 0,

a 2
10 − a 2

13 = 0, a8a16 = 0, a8a15 = 0, a8a13 = 0,

3a9a
4
14 − a9 = 0, a8a12 = 0, a8a11 = 0, a8a10 = 0,

a 2
9 − 3a 2

14 = 0, a7a16 = 0, a7a15 = 0, a7a14 = 0,

3a8a
4
14 − a8 = 0, a7a12 = 0, a7a11 = 0, a7a9 = 0,

a 2
8 + 3a 2

14 = 0, a7a8 = 0, a6a15 = 0, a6a14 = 0,

a 2
7 − a 2

13 = 0, a6a13 = 0, a6a12 = 0, a6a10 = 0,

a6a
4
16 + a6 = 0, a6a9 = 0, a6a8 = 0, a6a7 = 0,

a 2
6 − a 2

16 = 0, a5a16 = 0, a5a14 = 0, a5a13 = 0,

3a5a
4
15 + a5 = 0, a5a11 = 0, a5a10 = 0, a5a9 = 0,

a 2
5 + 3a 2

15 = 0, a5a8 = 0, a5a7 = 0, a5a6 = 0.

a4 − a7a10a
3
13 = 0,

a3 + a8a9a
3
14 = 0,

a2 + a5a12a
3
15 = 0,

a1 − a6a11a
3
16 = 0,
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1 // Lines marked ‘‘//[**]’’ are specific to the parity of n,

2 // or to the particular value of n, or to the particular equations

3 // being used in this example. Adjust these lines as necessary.

4

5 int n = 4; //[**]

6

7 ring ring_PnMinusOne = 0,(x(0..(n-1))),dp;

8 poly f1 = x(0)^2+x(1)^2+x(2)^2+x(3)^2; //[**]

9 poly f2 = x(0)^2+2*x(1)^2+3*x(2)^2+4*x(3)^2; //[**]

10 ideal ideal_C = f1,f2; //[**]

11

12 option(redSB); // Now ‘‘groebner’’ will reduce result...

13 ideal_C = groebner(ideal_C);

14

15 int n_squared = n*n;

16 ring ring_combined = (0,a(1..n_squared)),(x(0..(n-1))),dp;

17 ideal ideal_C_combined = imap(ring_PnMinusOne,ideal_C);

18 // Singular must be reminded it is groebner:

19 ideal_C_combined = groebner(ideal_C_combined);

20 matrix A[n][n] = a(1..(n_squared));

21 matrix vars[n][1] = x(0..(n-1));

22 matrix newvars = A * vars;

23 newvars;

24 map map_A = ring_combined,newvars[1,1],newvars[2,1],newvars[3,1],newvars[4,1]; //[**]

25

26 ideal_C_combined;

27

28 poly varprod = 1;

29 int i;

30 for (i = 0; i < n; i++) {

31 varprod = varprod * x(i);

32 }

33

34 ring ring_coefficients = 0,(a(1..(n_squared))),dp;

35 ideal ideal_conditions;

36

37 matrix AA = imap(ring_combined,A);

38 poly determinant_one = 1 - det(AA);

39 ideal_conditions = ideal_conditions + determinant_one;

40

41 // Extra (optional) conditions: (n)th power should be +1 or -1.

42 // Note: For n even, we won’t get a group, but we’ll find generators...

43 LIB "matrix.lib"; // Lets us call power(), unitmat(), ...

44 matrix AA_nth_power = power(AA,n) + (-1)^n * unitmat(n);

45 int j;

46 for (i = 1; i <= n; i++) {

47 for (j = 1; j <= n; j++) {

48 ideal_conditions = ideal_conditions + AA_nth_power[i,j];

49 }

50 }

51

52 setring ring_combined;

53 int eqn_count = ncols(ideal_C_combined);

54 for (i = 1; i <= eqn_count; i++) {

55 setring ring_combined;

56 poly generator = ideal_C_combined[i];

57 poly mapped_generator = map_A(generator);

58 mapped_generator;

59 poly reduced = reduce(mapped_generator, ideal_C_combined);

60 reduced;

61 matrix coefficients = coef(reduced,varprod);

62 int coef_count = ncols(coefficients);

63 for (j = 1; j <= coef_count; j++) {

64 setring ring_combined;

65 poly coefficient = coefficients[2,j];

66 setring ring_coefficients;

67 poly mapped_coefficient = imap(ring_combined,coefficient);

68 mapped_coefficient = cleardenom(mapped_coefficient);

69 ideal_conditions = ideal_conditions + mapped_coefficient;

70 }

71 }

72

73 setring ring_coefficients;

74 ideal_conditions = groebner(ideal_conditions);

75 ring ring_coefficients_lex = 0,(a(1..(n_squared))),lp;

76 ideal ideal_conditions_lex = fglm(ring_coefficients,ideal_conditions);

77 ideal_conditions_lex;

Table VI.2. This Singular code find equations describing generators of H4.
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To solve the system, let K = Q(ζ8,
4
√

3), where ζ8 is a symbol satisfying ζ 4
8 = −1 and 4

√
3 is a

symbol satisfying ( 4
√

3)4 = 3. Modulo the 4th roots of unity { 1, ζ 2
8 , ζ

4
8 , ζ

6
8 }, we find 12 solutions

(the signs must be assigned so that the determinant is 1):
0 0 0 ±ζ8
0 0 ±ζ8 0
0 ±ζ8 0 0
ζ8 0 0 0

 ,


0 0 ±ζ 2
8 /

4
√

3 0
0 0 0 ±ζ 2

8
4
√

3
± 4
√

3 0 0 0
0 1/ 4

√
3 0 0

 ,


0 ±ζ 3
8 /

4
√

3 0 0
±ζ 3

8
4
√

3 0 0 0
0 0 0 ±ζ8 4

√
3

0 0 ζ8/
4
√

3 0

 .
Their squares are the elements of order 2 in PGL4 (the signs must be assigned so that the determi-
nant is 1 and so that the matrix is not a scalar):

±ζ 2
8 0 0 0

0 ±ζ 2
8 0 0

0 0 ±ζ 2
8 0

0 0 0 ζ 2
8

 .
We arbitrarily choose two matrices of order 4 whose commutator is a primitive 4th root of unity:

M =


0 0 0 −ζ8
0 0 ζ8 0
0 ζ8 0 0
ζ8 0 0 0

 , N =


0 0 ζ 2

8 /
4
√

3 0
0 0 0 ζ 2

8
4
√

3
− 4
√

3 0 0 0
0 1/ 4

√
3 0 0

 .
We have M NM−1N−1 = ζ 2

8 . The Heisenberg group is

H4 = { ζ 2a
8 M bN c : a, b, c ∈ Z/4Z }.

VI.2. Finding the [−1] matrices

By running code similar to before, but replacing the condition A4 = −1 with A2 = 1 and also
trying again (cf. §IV.4c) with A2 = ζ 2

8 or simply A4 = −1, and then checking that each matrix has 4
fixpoints on C, we find the following 16 matrices (the signs must be assigned so that the determinant
is 1): 

0 0 ±ζ 3
8 /

4
√

3 0
0 0 0 ±ζ 3

8
4
√

3
±ζ8 4

√
3 0 0 0

0 ζ8/
4
√

3 0 0

 ,


0 ±ζ 2
8 /

4
√

3 0 0
±ζ 2

8
4
√

3 0 0 0
0 0 0 ± 4

√
3

0 0 1/ 4
√

3 0

 ,


0 0 0 ±ζ 2
8

0 0 ±ζ 2
8 0

0 ±ζ 2
8 0 0

ζ 2
8 0 0 0

 ,

±ζ8 0 0 0
0 ±ζ8 0 0
0 0 ±ζ8 0
0 0 0 ζ8

 .

VI.3. Finding a point of hyperosculation

Since n is even, the points of hyperosculation are the 16 fixpoints of 4 of the [−1] matrices (cf. §III.9a).
We simply take each matrix, look for a fixpoint, look for the osculating hyperplane at that fixpoint,
and check whether it hyperosculates; if not, we move on to the next matrix.
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Let us look at the matrix

T =


−ζ8 0 0 0
0 ζ8 0 0
0 0 ζ8 0
0 0 0 ζ8

 .
It fixes the isolated point [1 : 0 : 0 : 0] (which is not on C) and fixes every point in the eigenspace
spanned by [0 : 1 : 0 : 0], [0 : 0 : 1 : 0], and [0 : 0 : 0 : 1]. That eigenspace is just the hyperplane w = 0,
which intersects C in the 4 points

[0 : 1 : ±
√
−2 : ±1].

Let
O = [0 : 1 :

√
−2 : 1].

It is easy to see that the hyperosculating hyperplane at O (assuming it exists) must be fixed by T .
The hyperplanes fixed by T correspond to the eigenvectors of T t. We determine that T fixes the
isolated hyperplane w = 0 (which we just saw cannot be the hyperosculating hyperplane at O), and
T also fixes all the hyperplanes spanned by x = 0, y = 0, z = 0 (these are all the hyperplanes
containing the point [1 : 0 : 0 : 0]).

We thus look at hyperplanes corresponding to ` = [0 : ∗ : ∗ : ∗]t that go through O, i.e., the
hyperplanes sx + ty − (1 + t

√
−2)z = 0, where [s : t] ∈ P1

Q(Q̄). We look for [s : t] values that
maximize the number of times the hyperplane meets the curve at O. We eventually discover, for
[s : t] = [1 : 2

√
−2], the hyperplane meets C only at O. Thus O is a point of hyperosculation.

VI.4. The invariant theory of H4

To eventually describe

JC
∼= Proj

Q[w, x, y, z] ∩K[w, x, y, z]H4(K)

I ∩K[w, x, y, z]H4(K)
,

which we will not do here, we would first need to get our hands on K[w, x, y, z]H4(K). We will now
indicate how that calculation commences. The Molien series

ΦH4(t) = 1
64

∑
τ∈H4(K)

1
det(id− tτ)

=
1− t4 + 8t2 − t12 + t16

(t4 − 1)4(t4 + 1)
= 1 + 2t4 + 12t8 + 29t12 + 63t16 + 112t20 + 186t24 + 283t28 + . . .

tells us there are two linearly independent invariants in degree 4, twelve in degree 8, and so on. We
can verify that the following four polynomials,

P1 = wxyz,

P2 = 3w4 − x4 + y4 − 3z4,

P3 = x4y4 + 9w4z4,

P4 = (x2y2 + 3w2z2)(w2y2 + x2z2),

are algebraically independent invariants with (0, 0, 0, 0) being the only solution to P1 = 0, P2 = 0,
P3 = 0, and P4 = 0. Thus they serve as primary invariants, and we rewrite the Molien series in the
form

ΦH4(t) =
1 + 7t8 + 7t12 + t20

(1− t4)2(1− t8)2
.

We see that there are 7 secondary invariants in degree 8, 7 in degree 12, and 1 in degree 20. We
have not carried out the calculation to find those secondary invariants.



APPENDIX A

Facts about curves of genus 1

In this appendix, we review facts concerning k -curves of genus 1, where k is a perfect field. Our
results are mostly obtained from the theory of elliptic curves, as presented in [Sil99], by separating
an elliptic curve into two aspects: the underlying curve of genus 1, and the curve’s jacobian.

A.1. Consequences of Riemann–Roch on curves of genus 1

We recall the Riemann–Roch theorem for a curve of arbitrary genus.

Theorem (Riemann–Roch). Let X be a k-curve of genus g, let K be a canonical divisor, and let
D be a k-rational divisor on X. Let `k (·) = dimk Lk (·) = dimk H0

(
X,O(·)

)
. Then

`k (D)− `k (K −D) = deg(D) + 1− g.

Proof. Combine [Har77, IV.1.3] with [Sil99, II.5.8.1]). �

We now return to the context of C being a curve of genus 1, and explore the consequences of
the above theorem.

A.1a. The canonical divisor and differential forms

Substituting D = 0 and D = K into Riemann–Roch gives

`k (K) = 1 and deg(K) = 0, whence K ∼ 0.

In words: there exist global differential forms, any two differ by a scalar multiple, and they are
nowhere vanishing.

Any choice of nonzero global differential form is usually called “the invariant differential”, re-
ferring to the fact that they are invariant under translation by the action of the jacobian JC on C;
this follows from [Sil99, III.5.1].

A.1b. Dimension of complete linear systems

Corollary (Riemann–Roch on curves of genus 1). Let C be a k-curve of genus 1, and D a k-rational
divisor. Then:

`k (D)− `k (−D) = deg(D).

The relationship between the degree and dimension may be summarized as follows. The first
three statements hold for all curves, the last two for curves of genus 1:

• If deg(D) < 0, then `k (D) = 0.

• If deg(D) = 0 and D 6∼ 0, then `k (D) = 0.

• If deg(D) = 0 and D ∼ 0, then `k (D) = 1.

• If deg(D) > 0, then `k (D) = deg(D).

• If D is effective, then `k (D) ≥ 1.

67
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A.1c. No two points are linearly equivalent

Let P,Q ∈ C(k̄) be two distinct points. If we had P ∼ Q, then P − Q would be the divisor of a
function, implying the existence of a non-constant function in L(Q), contradicting `k̄ (Q) = 1.

A.1d. Effective representatives

For D a k -rational divisor, the fact

deg(D) > 0 +3 `k (D) = deg(D)

tells us that the complete linear system |D|k (which comprises effective k -rational divisors linearly
equivalent to D) is nonempty whenever deg(D) > 0. In other words: if D has positive degree, then
the class [D] has an effective k-rational representative.

Thus, if D has degree 1, then the class [D] is represented by a k -rational point. But, by A.1c, no
two distinct points are linearly equivalent. Thus: if D has degree 1, then the class [D] has a unique
k-rational point as representative.

The last statement is true more generally. We no longer require D to be k -rational, but we
do require the class [D] to be k -rational, which means Dσ ∼ D for all Galois automorphisms σ.
Temporarily taking our ground field to be k̄ , the previous paragraph tells us that [D] has a unique
k̄ -rational point P as representative. But then k -rationality of [P ] implies Pσ ∼ P , and uniqueness
forces Pσ = P . Thus P is k -rational. In short: each k-rational divisor class of degree 1 has a unique
k-rational point as representative.

Warning. It is in general not the case that the divisor class group Clk (C) comprises k -rational
divisors modulo linear equivalence. An element of Clk (C) is a k -rational class, i.e., a class [D] so
that each representative D satisfies Dσ ∼ D; such a class need not admit a k -rational representative.
However, as we saw above, on a curve of genus 1, each k -rational class of degree 1 does admit a
k -rational representative.

A.2. The group law

The set C(k) of k -rational points on C may be empty. When it is nonempty, then choosing any
O ∈ C(k) leads to the following composition rule: for P,Q ∈ C(k), define P ⊕ Q to be the unique
k -rational point (see A.1d) linearly equivalent to the degree 1 k -rational divisor P +Q−O.

The calculation

(P ⊕Q)⊕R ∼ (P ⊕Q) +R−O ∼ (P +Q−O) +R−O = (P +Q+R)− 2O

renders moot the order in which P,Q,R appear and the order in which they are combined, showing
the binary operation “⊕” to be both commutative and associative. It is furthermore immediate that
O is an identity element for this operation. Finally, given P ∈ C(k), let 	P be the unique k -rational
point linearly equivalent to 2O − P . Then 	P is the additive inverse of P :

P ⊕ (	P ) ∼ P + (	P )−O ∼ P + (2O − P )−O = O.

Thus the operation “⊕” defines an abelian group law on the set C(k) with O as identity element.
In summary: when C(k) is nonempty, each choice of O ∈ C(k) leads to an abelian group law

on C(k) with O as identity element.
This abstract description of the group law is intrinsic to the curve. The reader may be familiar

with the extrinsic “chord-and-tangent law” defined on nonsingular cubic curves in P2
k . (A descrip-

tion, along with pictures, appears in practically every book on elliptic curves.) That law has the
following description: fix any O ∈ C(k) to be the identity element, and then agree that three points
in C(k) sum to O if and only if they are collinear. Not every curve of genus 1 occurs as a cubic
in P2

k . But for the ones that do, we have the following result:

Theorem A.2.1. The intrinsic and extrinsic laws agree.
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Proof. Fix O ∈ C(k). For P,Q ∈ C(k), their intrinsic sum is the unique point linearly equivalent
to P +Q−O. Now let “⊕” denote the extrinsic law. If we show P ⊕Q ∼ P +Q−O, then we have
shown the two laws to agree.

Let R ∈ C(k) be such that P,Q,R are collinear. (In other words, take the line through P and Q
and find its third point of intersection with the curve. If P = Q, then use the tangent line.) The
extrinsic law says P ⊕ Q ⊕ R = O. Thus R is the inverse of P ⊕ Q. Let S ∈ C(k) be such that
O,R, S are collinear. Then S must be P ⊕ Q. The two lines define a rational function that gives
P +Q+R ∼ O +R+ S, whence P +Q−O ∼ S = P ⊕Q. �

A.2a. Isogenies

When C(k) is nonempty and O ∈ C(k) has been fixed, the pair (C,O) is called an elliptic curve.
A curve morphism

(C,O) // (C ′, O′) with O � // O′

is called an isogeny. The trivial isogeny is the constant map with value O′. Non-trivial isogenies
are finite morphisms and thus have a degree. Two elliptic curves are isogenous if there exists a
non-trivial isogeny between them.

Theorem A.2.2. Every k-isogeny C // C ′ is necessarily a group homomorphism C(k) // C ′(k).

Proof. Let P,Q ∈ C(k). Then P ⊕Q is the unique point linearly equivalent to P +Q− O. Since
φ∗ takes principal divisors to principal divisors, we have φ(P ⊕Q) ∼ φ(P ) + φ(Q)− φ(O), whence
φ(P ⊕Q) = φ(P )⊕ φ(Q). �

Corollary A.2.3. Any k-morphism C // C with a fixpoint O ∈ C(k) is automatically a group
endomorphism C(k) // C(k) of the elliptic curve (C,O).

The above result is an ingredient into the structure theorem for morphisms of curves of genus 1.
(See A.4.1.)

A.3. The jacobian action

Recall that a k -rational point on the jacobian JC is the same thing as a k -rational divisor class on C
of degree 0. In other words, JC(k) = Cl0k (C), and JC(k̄) = Cl0k̄ (C). There is a canonical action of JC

on C, whose behavior on k̄ -valued points is:

JC(k̄)× C(k̄) // C(k̄),(
[Z], P

) � // unique point linearly equivalent to [Z + P ].

Proposition A.3.1. The action of JC on C is simply transitive (and thus faithful and fixpoint-free).

Proof. Let P,Q ∈ C(k̄). The action is transitive since [Q − P ] ∈ JC(k̄) sends P to Q. Let
[Z] ∈ JC(k̄) also have that property. Then Z + P ∼ Q, whence [Z] = [Q− P ]. �

Thus JC comprises a part of the group of curve automorphisms of C. The precise structure of
that group is explained in A.4c.

A.3a. Torsion packets on curves of genus 1

Since JC acts on C, for each n ≥ 1 also JC [n] acts on C, where JC [n] is the kernel of multiplication-
by-n:

JC [n](k̄) = JC(k̄)[n].

Definition. An n-torsion packet on C is a collection of points in C(k̄) that comprises one orbit
under the action of JC [n](k̄).
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Thus we see: the set of n-torsion packets is in one-to-one correspondence with (C/JC [n])(k̄).
If P,Q ∈ C(k̄) lie in the same n-torsion packet, then P −Q defines a class in JC(k̄)[n], whence

nP ∼ nQ. Thus another description: an n-torsion packet is a maximal collection of points in C(k̄)
so that if P,Q are any two of them, then nP ∼ nQ.

Another way to think about n-torsion packets is as follows. Let T ⊂ C(k̄) be an n-torsion
packet. Choosing any O ∈ T , we get the elliptic curve (Ck̄ , O). Then T is simply the n-torsion
on that curve, i.e., T = (Ck̄ , O)[n](k̄), and the other n-torsion packets on C are the cosets of T
in (Ck̄ , O)(k̄). In summary, talking about an n-torsion packet on C is tantamount to saying, “here
is a collection of points which would be the n-torsion were we to choose one of them as group law
origin”.

Proposition A.3.2. The size of each n-torsion packet is the constant
∣∣JC [n](k̄)

∣∣. In particular, if
char(k) - n, then each n-torsion packet comprises n2 distinct elements of C(k̄).

Proof. The first statement follows from the action of JC on C being simply transitive. The hypoth-
esis char(k) - n guarantees that JC(k̄)[n] has order n2. (As a group, it is isomorphic to Z/nZ×Z/nZ,
but as a Gal(k̄/k)-module, its structure can be more complicated.) �

Proposition A.3.3. The Galois conjugate of an n-torsion packet is again an n-torsion packet. In
other words, each n-torsion packet is either permuted among itself or swapped as a whole with some
other n-torsion packet.

Proof. Any point in an n-torsion packet determines the packet by taking that point’s orbit under
the action of JC [n]. Since JC [n] and the action of JC on C are both defined over k , what happens
to an n-torsion packet is entirely determined by what happens to one of its representative points.
Such a point either stays within the packet or moves to a different packet. The rest of the packet
follows along. �

A.4. Morphisms

A.4a. Morphisms between curves of genus 1

In A.3, we saw that JC acts simply transitively on C. Thus each [Z] ∈ JC(k̄) gives rise to a distinct
fixpoint-free curve automorphism of C. Applying this to two curves C and C ′ of genus 1, we obtain
the following description of Hom(Ck̄ , C

′
k̄
).

Theorem A.4.1. Fix choices of O ∈ C(k̄) and O′ ∈ C ′(k̄). Then each curve morphism Ck̄
// C ′

k̄

can be decomposed uniquely in the form τ ◦φ, where τ ∈ JC′(k̄) and φ ∈ Hom
(
(Ck̄ , O), (C ′

k̄
, O′)

)
. In

other words, every morphism is a homomorphism followed by a translation.

Proof. Call the morphism η. For existence of the decomposition, write η = [η(O) − O′] ◦
(
[O′ −

η(O)] ◦ η
)
. Since [O′ − η(O)] ◦ η sends O � // O′, it is a homomorphism from the elliptic curve

(C,O) to the elliptic curve (C ′, O′). (That was A.2.2.) For uniqueness, say τ ◦ φ = τ ′ ◦ φ′. Then
φ = τ−1 ◦ τ ′ ◦ φ′. Thus τ−1 ◦ τ ′ fixes O′. By the simple transitivity of the JC′ -action, we must have
τ = τ ′, whence also φ = φ′. �

Remark. Instead of post-translating on C ′ after applying φ, one might hope to instead pre-translate
on C. That works only if the morphism C // C ′ is assumed non-constant.

One might ask: what about morphisms C // C ′ that are k -rational? Is it necessarily the case that
φ and τ in the theorem will also be k -rational? The answer is no: we have τ ◦φ = (τ ◦φ)σ = τσ ◦φσ,
but φσ need not take O � // O′. But if O and O′ are k -rational, then φσ does take O � // O′, whence
φ = φσ and τ = τσ. We have proved:

Theorem. Fix choices of O ∈ C(k) and O′ ∈ C ′(k), assuming they exist. Then each k-rational
curve morphism C // C ′ can be decomposed uniquely in the form τ ◦ φ, where τ ∈ JC′(k) and φ ∈
Homk

(
(C,O), (C ′, O′)

)
. In other words, every k-rational morphism is a k-rational homomorphism

followed by a k-rational translation.
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A.4b. Endomorphisms of curves of genus 1

By the above results, we obtain the following description of morphisms Ck̄
// Ck̄ , i.e., of End(Ck̄ ).

Theorem A.4.2. Fix a choice of O ∈ C(k̄). Then each curve morphism Ck̄
// Ck̄ can be decomposed

uniquely in the form τ ◦ φ, where φ ∈ End(Ck̄ , O) and τ ∈ JC(k̄).

Proof. Follows immediately from A.4.1. �

Remark. It would be nice to better elucidate the structure of the monoid End(Ck̄ ) as some kind
of product between End(Ck̄ , O) and JC(k̄). Unfortunately, the composition law appears to have no
simple description. Given τφ and τ ′φ′, how does one write τφτ ′φ in the desired form? As we’ll see
in the next section, when we restrict attention to automorphisms, we’ll obtain a semidirect product.

Concerning k -rational morphisms C // C, similar to before we can say:

Theorem. Fix a choice of O ∈ C(k), assuming one exists. Then each k-rational curve morphism
C // C can be decomposed uniquely in the form τ ◦ φ, where τ ∈ JC(k) and φ ∈ Endk (C,O).

To finish the story, we need to understand the structure of the endomorphism ring End(Ck̄ , O).
Lying in there are the multiplication-by-n maps [n], thus putting Z ⊆ End(Ck̄ , O). When there is
more than this, we say that the elliptic curve (Ck̄ , O) has complex multiplication. The possibilities
are as follows.

Theorem. Fix O ∈ C(k̄). Then End(Ck̄ , O) is one of the following:
(1) Z;
(2) an order in the ring of integers of an imaginary quadratic extension of Q;
(3) an order in a definite quaternion algebra over Q.

If k is a finite field, then the first possibility is ruled out. If k has characteristic 0, then the third
possibility is ruled out.

Proof. See [Sil99, III.9]. �

A morphism Ck̄
// Ck̄ decomposed as above as τ ◦φ is called a pure translation when φ = id.

Thus JC(k̄) is the group of pure translations of C.

Theorem A.4.3. A non-identity morphism Ck̄
// Ck̄ is fixpoint-free if and only if it is a pure

translation.

Proof. That non-identity pure translations are fixpoint-free was explained in section A.3. For
the other direction, we will establish the contrapositive. Assume that τ ◦ φ is a morphism with
φ 6= id. We must show that the morphism has a fixpoint. The elliptic curve endomorphism id − φ
of (Ck̄ , O) is non-constant whence surjective. Furthermore, the map τ corresponds to a translation
map on (Ck̄ , O), say by the point P . Since id−φ is surjective, there exists Q ∈ C(k̄) with Q−φ(Q) =
P . Then we have (τ ◦ φ)(Q) = P + φ(Q) = Q, showing τ ◦ φ to have a fixpoint. �

Corollary A.4.4. A fixpoint-free morphism Ck̄
// Ck̄ is an automorphism.

Remark. Fixpoints are discussed further in section A.4e.

A.4c. Automorphisms of curves of genus 1

Now we specialize to the case of isomorphisms Ck̄
// Ck̄ , i.e., we describe Aut(Ck̄ ).

Theorem A.4.5. Fix a choice of O ∈ C(k̄). Then the curve automorphism group of Ck̄ is

Aut(Ck̄ ) = JC(k̄) o Aut(Ck̄ , O).
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Proof. The unique decomposition aspect follows immediately from A.4.1. The semidirect product
structure is evident by computing the group law: given τ ◦ φ and τ ′ ◦ φ′, their composition τφτ ′φ′

may be written τ(φτ ′φ−1)φφ′, and now we merely have to convince ourselves that φτ ′φ−1 is a pure
translation. In other words, we must convince ourselves that JC(k̄) is a normal subgroup of Aut(Ck̄ ).

Let [Z] ∈ JC(k̄) and φ ∈ Aut(Ck̄ ). The action of [Z] on C(k̄) is to take any point P ∈ C(k̄) to
the unique point representing the divisor Z + P . What does φ[Z]φ−1 do? First P goes to φ−1(P ),
then [Z] carries that to the unique point linearly equivalent to Z + φ−1(P ), and thus φ carries it to
the unique point linearly equivalent to φ∗(Z) + P . In short, φ ◦ [Z] ◦ φ−1 is the same as [φ∗Z]. �

Remark A.4.6. As described in the proof, the semidirect product structure tells us how to combine
two automorphisms: (

[Z], φ
)
◦
(
[Z ′], φ′

)
=
(
[Z] + [φ∗Z ′], φ ◦ φ′

)
.

Concerning k -rational isomorphisms C // C, similar to before we can say:

Theorem. Fix a choice of O ∈ C(k), assuming one exists. Then the group of k-rational curve
automorphisms of C is:

Autk (C) = JC(k) o Autk (C,O).

To finish the story, we need to understand the structure of the automorphism group Aut(Ck̄ , O).

Theorem A.4.7. The structure of Aut(Ck̄ , O) depends on the j-invariant of C and the character-
istic of k:

Aut(Ck̄ , O) =



µ2(k̄), if j(C) 6= 0, 123 and char(k) 6= 2;
µ4(k̄), if j(C) = 123 and char(k) 6= 2, 3;
µ6(k̄), if j(C) = 0 and char(k) 6= 2, 3;
C2, if j(C) 6= 0 (= 123) and char(k) = 2;
C4 n C3, if j(C) = 0 (= 123) and char(k) = 3;
C3 nQ8, if j(C) = 0 (= 123) and char(k) = 2.

Remark. Here Cn denotes a cyclic group of order n, and Q8 a quaternion group of order 8. We
use µn(k̄) in place of Cn in the first three cases, as this furthermore indicates the Galois module
structure of the group. But when char(k) = 2, 3, that structure depends on more than just the
j-invariant, and is not given here.

Proof. See [Sil99, III.10.1, III.10.2] and the proof of [Sil99, A.1.2c]. �

Corollary A.4.8. Each elliptic curve (Ck̄ , O) admits a unique automorphism of order 2 (usually
denoted [−1]). Its fixpoints are the points of 2-torsion (Ck̄ , O)[2](k̄), and if Q is one of those points,
then the same automorphism is also the [−1]-automorphism of the elliptic curve (Ck̄ , Q).

Proof. The first statement follows from the theorem. The second statement follows from uniqueness.
�

Theorem A.4.9. Fix a choice of O ∈ C(k̄). In Aut(Ck̄ ) = JC(k̄) o Aut
(
(Ck̄ , O)

)
, the order 2

automorphism of Ck̄ with a fixpoint are precisely the elements of the form τ◦[−1], where τ ∈ JC [n](k̄),
and [−1] is the unique order 2 automorphism of the elliptic curve (Ck̄ , O).

Proof. By A.4.5, our automorphism is of the form τ ◦ φ for some τ ∈ JC(k̄) and some φ ∈
Aut

(
(Ck̄ , O)

)
. From the semidirect product structure (cf. A.4.6), it is easy to see that τ ◦ φ having

order 2 implies φ itself has order 2. Therefore, by A.4.8, our automorphism is of the form τ ◦ [−1].
It remains to show that every τ ∈ JC(k̄) can occur. In other words, for an arbitrary such τ ,

we must show that τ ◦ [−1] has order 2 and a fixpoint. Now τ = τP (translation-by-P ) for some
P ∈ C(k̄). Let Q ∈ C(k̄) be such that Q ⊕ Q = P , where the group law is on (Ck̄ , O). Then(
τ ◦ [−1]

)
(Q) = P 	 Q = Q, and τP ◦ [−1] ◦ τP ◦ [−1] = τP ◦

(
[−1] ◦ τP ◦ [−1]

)
◦
(
[−1] ◦ [−1]

)
=

τP ◦ τ	P = id. �
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A.4d. Separable and inseparable degree of a morphism

Theorem A.4.10. Let φ : C // C ′ be a finite morphism of curves of genus 1. Then for all Q ∈ C ′(k̄)
and all P ∈ C(k̄),

#φ−1(Q) = sep deg φ,

eφ(P ) = insep deg φ.

Proof. Fix arbitrary O ∈ C(k̄) and set O′ = φ(O). Then φ is a non-constant isogeny (C,O) //

(C ′, O′). Now apply [Sil99, III.4.10a]. �

A.4e. The degree and fixpoints of a curve endomorphism

For any morphism η : C // C, let # Fix(η) denote the number of fixpoints of η lying in C(k̄). In A.4b
we saw that, after fixing a choice O ∈ C(k̄), each morphism η : C // C has a unique decomposition
as an endomorphism of (C,O) followed by a pure translation:

η = τ ◦ φ, where φ ∈ End(C,O) and τ ∈ JC(k̄).

How this decomposition relates to the existence of fixpoints was given in A.4.3.

Theorem A.4.11. In the above decomposition, we have:
deg(τ ◦ φ) = deg(φ),

# Fix(τ ◦ φ) =


# Fix(φ), if φ 6= id;
∞, if φ = id and τ = id;
0, if φ = id and τ 6= id.

.

Proof. Since pure translations have degree 1, we have deg(τ ◦ φ) = deg(φ). The rest of the proof
concerns fixpoints. Letting “	” refer to subtraction on the elliptic curve (C,O), we can certainly
say that # Fix(τ ◦φ) is the same as the number of points in C(k̄) sent to O by the map (τ ◦φ)	 id.

Lemma. The map (τ ◦ φ)	 id is finite precisely when φ 6= id. Otherwise (τ ◦ φ)	 id is the constant
map with image τ(O).

Proof. Observe that the action of τ is simply addition by the point τ(O) ∈ C(k̄); that is, τ(P ) =
P ⊕ τ(O).

If φ = id, then (τ ◦ φ) 	 id takes P � // P ⊕ τ(O) 	 P , so that (τ ◦ φ) 	 id is constant with
image τ(O).

If φ 6= id, then there exists a P ∈ C(k̄) with P 6= φ(P ). Then (τ ◦ φ) 	 id takes P � // φ(P ) ⊕
τ(O) 	 P , while it takes O � // τ(O). The two images are distinct precisely because φ(P ) 	 P 6= O.
Thus (τ ◦ φ)	 id is non-constant, whence finite. �

We now continue with the proof of the theorem. Agreeing that constant maps have degree 0,
the number of points in C(k̄) sent to O by the map (τ ◦ φ)	 id is the same as its separable degree
so long as the map either is finite or is constant with image away from O. But it is constant with
image O only when (τ ◦ φ) = id. Thus we have shown:

# Fix(τ ◦ φ) = sep deg((τ ◦ φ)	 id) if τ ◦ φ 6= id.

By observing that (τ ◦φ)	 id carries P � // φ(P )⊕ τ(O)	P , we see that the “⊕τ(O)” part does
not affect the degree, whence

# Fix(τ ◦ φ) = sep deg(φ	 id) if τ ◦ φ 6= id.

Of course, we also have # Fix(φ) = sep deg(φ	 id) so long as φ 6= id, and thus our final conclusion is

# Fix(τ ◦ φ) = # Fix(φ) if φ 6= id.

Of course, when φ = id, then τ ◦ φ is a pure translation, so # Fix(τ ◦ φ) is either ∞ or 0, according
as whether τ = id. �
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A.4f. Correspondence between morphisms and subgroups of JC

Let (E,O) be an elliptic k -curve, where k is a perfect field. For each finite subgroup K ⊂ E(k̄) that
is Gal(k̄/k)-stable, there is the non-constant separable k -isogeny

ηK : E //
E

K
.

These are essentially the only non-constant separable isogenies with domain E, in the following
sense. Let (E′, O′) be another elliptic k -curve. Every non-constant separable k -isogeny η : E // E′

factors as the following composition of non-constant separable k -isogenies:

η : E //
E

Ker(η)(k̄)
∼ // E′.

(See [Sil99, III.4.9, III.4.12].)
Of course, two different isogenies can have the same kernel (for example, consider id : E //

E and [−1] : E // E), so one must be cautious in formulating the above in terms of a one-to-
one correspondence. We see that non-constant separable k -isogenies E // E′ are in one-to-one
correspondence with pairs (K,E/K ∼ // E′), where K is a finite Gal(k̄/k)-stable subgroup of E(k̄),
and E/K ∼ // E′ is a k -isomorphism.

We can eliminate “perfect” and “separable” from this correspondence by appealing to the lan-
guage of schemes. Let (E,O) be an elliptic k -curve, where k is now an arbitrary field. For each
finite subgroup k -scheme K ⊂ E, there is the non-constant k -isogeny

ηK : E //
E

K
.

If (E′, O′) is another elliptic k -curve, then every non-constant k -isogeny η : E // E′ factors as the
following composition of non-constant k -isogenies:

η : E //
E

Ker(η)
∼ // E′.

We can generalize this correspondence to curves of genus 1 as follows. Let C be a k -curve of
genus 1. For each finite subgroup k -scheme K ⊂ JC , there is the finite k -morphism

ηK : C //
C

K
.

If C ′ is another k -curve of genus 1, then every finite k -morphism η : C // C ′ factors as the following
composition of finite k -morphisms:

η : C //
C

Ker(η̂∗)
∼ // C ′.

Here Ker(η̂∗) is the finite subgroup k -scheme of JC whose k̄ -valued points are

Ker(η̂∗)(k̄) =
{

[P −Q] ∈ JC(k̄) : P,Q ∈ C(k̄) and η(P ) = η(Q)
}
.

Under the action of JC on C, this subgroup acts simply transitively on each fiber of η; in particular,
one can compute Ker(η̂∗)(k̄) by focusing on one fiber:

Ker(η̂∗)(k̄) =
{

[P −Q] ∈ JC(k̄) : P,Q ∈ η−1(R)
}
.

Since |η−1(R)| = sep deg(η), the number of closed points in JC [η] is sep deg(η). Multiplicities account
for the inseparable degree contribution.

Just as, with a non-constant k -isogeny η : E // E′ of elliptic k -curves there is a natural iso-
morphism Ker(η)(k̄) ∼= Aut

(
k̄(Ek̄ )/η∗k̄(E′

k̄
)
)
, with a finite k -morphism η : C // C ′ of k -curves of

genus 1 there is a natural isomorphism

Ker(η̂∗)(k̄) ∼ // Aut
(
k̄(Ck̄ )/η∗k̄(C ′k̄ )

)
.

Finally, the following statements are equivalent for a finite k -morphism η : C // C ′ of k -curves of
genus 1 (cf. [Sil99, III.4.10]):
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• η is separable;
• η is unramified;
• # Ker(η̂∗)(k̄) = deg η;
• The field extension k̄(Ck̄ )/η∗k̄(C ′

k̄
) is Galois.

This leads to the following Galois correspondences when k is perfect:
• Finite subgroup k -schemes of JC are in inclusion-preserving correspondence with Gal(k̄/k)-

stable finite subgroups of Aut
(
k̄(Ck̄ )/k̄

)
.

• Either of the above sets is in inclusion-reversing correspondence with finite-index Gal(k̄/k)-
stable subfields of k̄(Ck̄ ).

A.5. Consequences of Riemann–Hurwitz on curves of genus 1

We recall the Riemann–Hurwitz theorem for curves of arbitrary genus.

Theorem A.5.1 (Riemann–Hurwitz). For a finite separable morphism φ : X1
// X2 between smooth

projective curves,
2 genus(X1)− 2 = deg(φ)

(
2 genus(X2)− 2

)
+ deg(R),

where R is the ramification divisor of φ on X1, which, if the ramification is tame, looks like:

R =
∑

P∈X1(k̄)

(
eφ(P )− 1

)
P.

Proof. See [Har77, IV.2.4]. �

Theorem A.5.2. If there exists a finite and purely inseparable morphism X1
// X2 between smooth

projective curves, then genus(X1) = genus(X2).

Proof. See [Har77, IV.2.5]. �

Corollary A.5.3. If φ : X1
// X2 is a finite morphism between smooth projective curves, then

2 genus(X1)− 2 ≤ sep deg(φ)
(
2 genus(X2)− 2

)
. (A.1)

Proof. The morphism can be factored into a purely inseparable morphism followed by a separable
morphism. Now apply the previous two theorems. �

Theorem A.5.4. The existence of a finite morphism X1
// X2 between smooth projective curves

implies genus(X1) ≥ genus(X2).

Proof. If genus(X2) = 0, then there is nothing to prove. Otherwise, the right-hand side of (A.1) is
non-negative, so we can eliminate sep deg(φ) to obtain 2 genus(X1) − 2 ≥ 2 genus(X2) − 2, which
immediately gives the desired result. �

We can draw three consequences from Riemann–Hurwitz for curves of genus 1:
(1) The only finite morphisms with domain a smooth projective curve of genus 1 are:

• finite maps between curves of genus 1, and
• finite maps to P1, i.e., non-constant rational functions.

(2) Separable finite morphisms between smooth projective curves of genus 1 are unramified.
(3) More generally, the total ramification of a separable finite morphism from a curve of higher

genus to a curve of genus 1 is independent of the degree of the morphism; however, at least
with tame ramification, lower degrees force a higher number of branch points.



APPENDIX B

Maps to projective space: a coordinate-free
approach

Let X be a scheme over a ring A, and let L be an invertible sheaf on X.
As described in [Har77, §II.7], if L is generated by global sections, then to each finite ordered

collection B = (s0, . . . , sn) of global generators corresponds a unique morphism

φB : X // Pn
A (B.1)

with the properties φ∗B
(
O(1)

) ∼= L and φ∗B(xi) = si, where the xi are the homogeneous coordinates
on Pn

A . If the collection B is linearly independent, then the image of (B.1) is non-degenerate,
meaning: it does not lie in a hyperplane of Pn

A .
By the universal property of the fibre product Pn

X := Pn
A ×A X, each morphism (B.1) factors

canonically as a morphism
φB : X // Pn

X (B.2)
followed by the canonical projection Pn

X
// Pn

A .
Our goal is to give a coordinate-free description of the map X // Pn

X and of the composed map
X // Pn

A . To do so, we will require X and A to be noetherian, and we will furthermore require
H0(X,L) to be a free A-module of finite rank, or at least require a submodule of H0(X,L) that
generates L to have those properties. (By [Har77, II.5.19], these requirements are met if A is a
field and X is projective over A.)

B.1. Background material

B.1a. Projective space bundles

Let X be a noetherian scheme. Associated to each locally free coherent sheaf E on X is the projective
space bundle

π : P(E) // X. (B.3)
Let us recall its definition and properties (cf. [Har77, §II.7, p.162]). The sheaf

S := Sym(E) :=
⊕
d≥0

Symd(E)

is a quasi-coherent sheaf of graded OX -algebras, where each homogeneous part Sd is coherent,
S0

∼= OX , and S is locally generated by S1 = E . Thus we are in the situation denoted “(†)” in
[Har77, §II.7, p.160], and by definition

P(E) := Proj(S).

In other words, for each affine open U ⊆ X, we have

π−1(U) ∼= Proj
(
H0(U,S)

)
= Proj

(
Sym

(
H0(U, E)

))
.

Furthermore, P(E) comes equipped with an invertible sheaf O(1) and there is a canonical surjective
morphism π∗(E) // O(1), thus exhibitingO(1) as a “rank 1 quotient” of π∗(E). Finally, if everywhere
on X we have Rank(E) ≥ 2, then π∗

(
O(d)

) ∼= Sd; in particular, π∗
(
O(1)

) ∼= E . (See [Har77,
II.7.11].)

76
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Points correspond to rank 1 quotients. One way to think about P(E) is in terms of its T -valued
points, which turn out to correspond to certain rank 1 sheaf quotients. Let g : T // X be a T -valued
point of X, which will remain fixed throughout this paragraph. If f : T // P(E)
is a T -valued point over X (i.e., π ◦ f = g), then f∗ carries the exact sequence

π∗(E) // O(1) // 0

to the exact sequence
g∗(E) // f∗

(
O(1)

)
// 0.

P(E)

X

π

��

T
g

//

f
??�������

Note that f∗ is not only right-exact: it also preserves invertibility. Therefore, each T -valued point
of P(E) over X gives rise to a rank 1 quotient of E on T , and this turns out to be a one-to-one
correspondence (see [Har77, II.7.12]), which is easily verified to be functorial. In particular, when
we exhibit a rank 1 quotient

g∗(E) // L // 0,

the corresponding T -valued point f : T // P(E) has the property

f∗
(
O(1)

) ∼= L. (B.4)

Change of base. Projective space bundles behave well under change of base. Let h : X ′ // X be a
morphism of noetherian schemes, and let E be a locally free coherent sheaf on X. We will now estab-
lish a morphism P(h∗E) // P(E) so that the diagram shown here commutes. One way to describe a
morphism of schemes is to view the schemes as functors (assigning
to each T the set of T -valued points) and then to describe a natu-
ral transformation of those functors. Thus, for each T -valued point
f : T // P(h∗E), which immediately gives us the T -valued point π2 ◦ f
of X ′ and the T -valued point h ◦ π2 ◦ f of X, we must produce (in a

P(E) P(h∗E)oo

X ′

π2

��

X
hoo

��

π1

functorial fashion) a T -valued point of P(E) lying over h ◦ π2 ◦ f . By our correspondence between
T -valued points and rank 1 quotients, f corresponds to

(π2 ◦ f)∗(h∗E) // f∗
(
O(1)

)
// 0.

Since the left term is isomorphic to (h ◦ π2 ◦ f)∗(E), the exhibited rank 1 corresponds to a T -valued
point of P(E). It is furthermore not difficult (but left as an exercise for the reader) to establish that
the diagram is cartesian:

P(h∗E) = P(E)×X X ′. (B.5)

Coordinates. If E has finite rank everywhere on X, then the projective space bundle P(E) may be
locally coordinatized as follows. Let U ⊆ X be an open set on which E is free and has constant
finite rank, and set n so that the rank is n + 1. Let OU denote the restriction of OX to U . Let
B = { s0, . . . , sn } be a basis of global sections establishing the isomorphism E|U ∼=

⊕nOU . Observe
that Sym(E|U ) is isomorphic, via the association si

oo // xi, to the polynomial ring OU [x0, . . . , xn];
thus, P(E|U ) ∼= Pn

U , and the structure map π : P(E|U ) // U is then simply the canonical projection
Pn

U
// U . Of course, if E is globally free, then a single such coordinatization works for the entire

projective space bundle.

B.1b. Starting with a free A-module

Let X be a noetherian scheme over a noetherian ring A. If V is a free module of finite rank n + 1
over A, then E := V ⊗A OX is a locally free coherent sheaf of rank n + 1 on X. Here V ⊗A OX

denotes the sheaf whose sections over an open set U ⊆ X are V ⊗A H0(U,OX). (We view H0(U,OX)
as an A-module as follows: via restriction it is certainly a module over H0(X,OX), and there is
an obvious map A // H0(X,OX) associating to each a ∈ A the corresponding constant function.)
Similarly, V ⊗A OA is a locally free coherent sheaf of rank n+ 1 on Spec(A). Observe

V ⊗A OX
∼= s∗(V ⊗A OA), (B.6)

where s : X // Spec(A) is the structure map.
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In fact, both V ⊗AOA and V ⊗AOX are globally free, whence they may be globally coordinatized.
They can both be coordinatized simultaneously by choosing a basis B = { s0, . . . , sn } for V . Then
the symbols si ⊗ 1 compose a basis of global generators both for V ⊗A OA and for V ⊗A OX .

In summary, we always have the commutative diagram

X

Spec(A)

s

��

P(V ⊗A OA)oo Pn
A ,oo

∼B //

Pn
X

��

P(V ⊗A OX) //
∼Boo

��

πoo

where ∼B indicates the isomorphism associated to a choice of basis B for V . By (B.6) and (B.5),
describing an X-morphism X // P(V ⊗A OX), i.e., a section of π, is equivalent to describing an
A-morphism X // P(V ⊗A OA).

B.1c. When the base is a field

When the base ring A is a field k, and K is a field extension of k, the following nice description of
K-valued points of P(V ) is useful. (Since Spec(k) has just a single point, the sheaf V ⊗k OSpec(k) is
just the constant sheaf associated to V , so we might as well use V to denote both the vector space
and the sheaf.)

Let X be a noetherian scheme over k. Let V be as before: a free k-module of finite rank n+ 1.
Fix a field extension K ⊇ k; in other words, choose a K-valued point g : Spec(K) // Spec(k). We
already know that a K-valued point of P(V ) lying over g is nothing other than a rank 1 sheaf
quotient of the sheaf g∗V . But Spec(K) has a single point, so such a quotient amounts to a rank 1
vector space quotient of the vector space V ⊗kK. This puts us squarely in the realm of linear algebra.
By considering the kernel of a rank 1 quotient map, we see that rank 1 quotients are in one-to-one
correspondence with hyperplanes. In summary, the K-valued points of P(V ) are the hyperplanes
in V ⊗k K.

B.2. Coordinate-free version of X // Pn
X

Let X be a noetherian scheme over a noetherian ring A, and let L be an invertible sheaf on X that is
generated by global sections. Viewing H0(X,L) as an A-module, let V ⊆ H0(X,L) be a submodule
with the following properties:

• V generates L;
• V is a free A-module of finite rank.

We claim that, under these assumptions, the projective space bundle

π : P(V ⊗A OX) // X.

has a canonical section
φV : X // P(V ⊗A OX); (B.7)

furthermore, there is a canonical isomorphism φ∗V
(
O(1)

) ∼= L, and if we choose a basis B =
{ s0, . . . , sn } for V , whence P(V ⊗A OX) ∼= Pn

X , then we obtain the original map (B.2) described at
the outset.

Before establishing the claim, let us remark on consequences. If we compose (B.7) with P(V ⊗A

OX) // P(V ⊗A OA), we end up with

φV : X // P(V ⊗A OA). (B.8)

Under the basis B, (B.8) recovers the original map (B.1). Since (B.1) pulls back an A-basis of
H0
(
Pn

A ,O(1)
)

to an A-basis of H0(X,L), pullback must give a canonical isomorphism of A-modules

H0
(
P(V ⊗A OA),O(1)

) ∼= H0(X,L). (B.9)

In particular, the image of (B.8) is non-degenerate, meaning: it does not lie in a hyperplane. That
is, no nonzero global section of O(1) vanishes identically on X.
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Example. When A is a field k , X is a curve, and φV is the map associated to V = H0
(
C,O(D)

)
,

where D is a divisor on X, (B.9) says: equations for hyperplanes in P(V ) are in one-to-one corre-
spondence with

{
f ∈ k(X) : (f) + D ≥ 0

}
. This leads to a familiar fact: if we remove 0 from

each vector space in (B.9) and then work modulo k×, classes on the left correspond to hyperplanes,
while classes on the right correspond to hyperplane sections: effective divisors linearly equivalent
to D. In short, (B.9) establishes a one-to-one correspondence between hyperplanes and hyperplane
sections. When φV is an embedding, the correspondence is simply H � // H ∩X; in general, one must
instead choose an equation ` defining H, pull back ` to obtain a rational function φ∗V ` on X, and
finally take the divisor of φ∗V `.

Proof of claim. We start by describing (B.7). Given a T -valued point g : T // X, we must produce
(in a functorial fashion) a T -valued point T // P(V ⊗A OX). We saw earlier that this is the same
as producing a rank 1 quotient of g∗(V ⊗A OX). To do this, we simply apply g∗ to the given rank 1
quotient V ⊗AOX

// L // 0 on X. (The map V ⊗AOX
// L is described as follows. To each global

section s ∈ V corresponds the morphism OX
// L defined by f � // f · s. Given a pair (s, f), where

s ∈ V and f ∈ H0(U,OX), we “evaluate” s on f to obtain f · s ∈ H0(U,L). This pairing is bilinear
and thus gives the map in question. It is surjective precisely because V generates L.)

Having described (B.7), we now establish φ∗V
(
O(1)

) ∼= L. To do so, we again appeal to the
description of φV as a natural transformation of scheme functors. For each T -valued point g : T // X,
we must establish an isomorphism of sheaves

g∗(L) ∼= φV (g)∗
(
O(1)

)
.

The map φV (g) corresponds to the rank 1 quotient g∗(V ⊗A OX) // g∗(L) // 0, and thus, by (B.4),
the pullback of O(1) is indeed isomorphic to g∗(L).

Finally, to see that a choice of basis B = { s0, . . . , sn } for V leads to our original map (B.2), it
remains to verify, by the characterizing properties stated after (B.1), that the sections xi in O(1) on
Pn

A pull back to the sections si on X. We are looking at the composition

X
φV // Proj

(
Sym(V ⊗A OX)

) B // Proj
(
OX [x0, . . . , xn]

)
= Pn

X .

Under pullback, xi on Pn
X corresponds to si⊗1 on Proj

(
Sym(V ⊗AOX)

)
, which in turn corresponds

to si on X. �

When A is a field k, (B.8) has an elegant description in terms of K-valued points, where K is
a field extension of k. We already know that a fixed K-valued point g : Spec(K) // X goes to the
rank 1 quotient

g∗(V ⊗k OX) // g∗L // 0,
which gives a point on P(V ⊗k OX). Under P(V ⊗k OX) // P(V ), that point goes to the rank 1
quotient

(s ◦ g)∗(V ) // g∗L // 0,
which is a point on P(V ), where s is the structure map X // Spec(k). Since Spec(k) has a single
point, the data of (s ◦ g)∗(V ) is simply the K-vector space V ⊗k K. (Cf. B.1c.) The kernel of

V ⊗k K // g∗L
is the hyperplane of all elements in V ⊗k K that map to 0 in the fiber of L above the point of X hit
by g. In short, φV carries the K-valued point g to the hyperplane of sections of L that vanish at g.
Therefore, it is not uncommon to see (B.8) described solely in the following terms:

φV : X(K) // P(V )(K),

P � // { s ∈ V ⊗k K : sP = 0 }.

B.3. Mapping properties

Perhaps surprising at first, it is in general difficult, as we’ll see below, to extend morphisms between
schemes, or between sheaves, to morphisms between projective space bundles.
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B.3a. Morphism of schemes

Let f : X ′ // X be a morphism of noetherian schemes over a noetherian ring A. If L is an invertible
sheaf on X that is generated by global sections and such that H0(X,L) is a free A-module of finite
rank n+1, then f∗L is an invertible sheaf on X ′ that is generated by global sections, but H0(X ′, f∗L)
could have much larger rank. It would be nice if there existed maps f∗ giving a commutative diagram:

X ′ P
(
H0(X ′, f∗L)⊗A OX′

)φf∗L
// P

(
H0(X ′, f∗L)⊗A OA

)
//

P
(
H0(X,L)⊗A OA

)f∗
��

P
(
H0(X,L)⊗A OX

)
//X //

φL

f

��

f∗
��

But there do not exist non-constant morphisms from a higher-dimensional projective space to a
lower-dimensional one (see [Har77, Ex. II.7.3a]), whence a necessary condition for the existence
of f∗ is that H0(X ′, f∗L) be a free A-module of rank n+1. By applying the correspondence between
T -valued points and rank 1 quotients, one can check that existence of the f∗ follows if the map

f∗
(
H0(X,L)⊗A OX

)
// H0(X ′, f∗L)⊗A OX′

of sheaves on X ′ is surjective. This gives a sufficient condition.
The one easy thing we can say is this: if f is an isomorphism of schemes, then we do obtain the

maps f∗, and they will then also themselves be isomorphisms.

B.3b. Morphism of sheaves

Here it turns out, again, that we can’t make a useful general statement. Let X be a noetherian
scheme over a noetherian ring A. Let f : L // L′ be a morphism of invertible sheaves on X, where
both sheaves are generated by their global sections, and where both H0(X,L) and H0(X,L′) are free
A-modules of finite rank (not necessarily the same rank). It would be nice if there existed a map f∗

giving a commutative diagram:

X P
(
H0(X,L)⊗A OA

)
//

P
(
H0(X,L′)⊗A OA

)
OO

f∗

X //

To be able to define such a map f∗, we would need the induced map H0(X,L) // H0(X,L′) to
be surjective; otherwise we cannot guarantee that rank 1 quotients go to rank 1 quotients. But
then f itself would be surjective, so by [Har77, Ex. II.7.1], f was an isomorphism to begin with.
In summary, all we have been able to say here is the following: if f : L ∼ // L′ is an isomorphism
of sheaves on X, then there is an induced commutative diagram as shown above, where f∗ is an
isomorphism.

B.3c. Different subspaces of H0(X,L)

Let X be a noetherian scheme over a noetherian ring A, and let L be an invertible sheaf on X. If
we have submodules V ⊆ V ′ ⊆ H0(X,L), where V generates L (whence also V ′ generates L), and
both V and V ′ are free and of finite rank (generally not the same rank) as modules over A, then the
inclusion map V // V ′ leads to a projection map

P(V ′ ⊗A OA) P(V ⊗A OA).//

Note that the projection is not defined everywhere; however, it is defined at all points in the image
of φV ′ . If B is a basis for V and B′ a basis for V ′ such that B ⊆ B′, and we use these bases
to coordinatize the projective space bundles, then the projection displayed above becomes a usual
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projection between projective spaces in which certain homogeneous coordinates are simply dropped.

X P(V ′)
φV ′ // PRank(V ′)

A

∼B′ //

PRank(V )
A

��

P(V ) //
∼B

X //
φV

��

B.4. Very ample invertible sheaves

Let X be a noetherian scheme over a noetherian ring A. To each invertible sheaf L that is generated
by global sections and such that H0(X,L) is a free A-module of finite rank n+1, we have associated
the map

φ : X // P
(
H0(X,L)⊗A OA

)
.

We say that L is very ample relative to A when φ is an immersion. (Note that the map to
P
(
H0(X,L)⊗A OX

)
is always an immersion, so L is always very ample relative to X itself.)

If we forget about L and instead start with an immersion φ : X // Pn
A , then φ∗

(
O(1)

)
will be

an invertible sheaf on X that is very ample relative to A. (After all, the map to projective space
associated with φ∗

(
O(1)

)
is easily seen to be φ itself.)
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