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Abstract

Extending a similar result about triangles, we show that each Heronian
tetrahedron may be positioned with integer coordinates. More generally,
we show the following: if an integral distance set in R3 can be positioned
with rational coordinates, then it can in fact be positioned with integer
coordinates. The proof, which uses the arithmetic of quaternions, is tan-
tamount to an algorithm.

1 Motivations.

From P. Yiu in this Monthly [8] we learned that Heronian triangles can be
realized as lattice triangles; that is, each triangle with integer side lengths and
integer area can be positioned in the plane so that its three vertices have in-
teger coordinates. Yiu includes this example: the triangle with side lengths
(25, 34, 39), which has area 420, can be realized with integer coordinates as
shown in Figure 1, despite the fact that this triangle has no integer heights.
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Figure 1: Heronian triangle (25, 34, 39) as a lattice triangle

We wondered whether a similar result holds for Heronian tetrahedra and
asked the following. Can each tetrahedron with integer side lengths, integer face
areas, and integer volume be positioned in three-dimensional space so that its
four vertices have integer coordinates? The classification of Heronian tetrahedra
is incomplete (see [2] and its references for a recent state of affairs); however,
using the formulas in [1] for computing the face areas and volume of a tetrahe-
dron, we used a computer to determine all Heronian tetrahedra with side length
up to 34000, and in each case the computer was able to find a position with
integer coordinates. For example, the computer found integer coordinates for
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the Heronian tetrahedron in Figure 2, which has face areas 6300, 4914, 2436,
3570, and volume 35280.

x

y

z

65

225

200

87

119

156

(0, 0, 0)

(15,−60, 20)
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Figure 2: Tetrahedron (225, 200, 65, 119, 156, 87) as a lattice tetrahedron

To answer our question for all Heronian tetrahedra, our initial hope was to
adapt Yiu’s method. Yiu considers the Heron triangle area formula from the
viewpoint of solving for one of the edges, and deftly manipulates a correspond-
ing discriminant condition into a form whose integral solutions are known to be
the precise sums of squares needed to obtain integer coordinates. However, we
subsequently learned from J. Fricke [4] another method for showing Heronian
triangles to be lattice triangles. Using the arithmetic of Gaussian integers com-
bined with their interpretation as two-dimensional rotations, Fricke provides a
constructive algorithm for rotating such a triangle into a position with integer
coordinates. Guided by that method, we were able to show Heronian tetrahedra
to be lattice tetrahedra. Using the arithmetic of Lipschitz-integral quaternions
combined with their interpretation as three-dimensional rotations, we obtained
a constructive algorithm for rotating such a tetrahedron into a position with
integer coordinates.

We shall review Fricke’s method, then cover the quaternion method, and
finally show how to recover the former as a special case of the latter.

2 Fricke’s method.

Fricke views Heronian triangles as particular examples of integral distance sets;
that is, collections of points whose pairwise distances are integers. He then
shows Heronian triangles to be lattice triangles for an elegantly simple reason:

1. Heronian triangles are easily positioned with rational coordinates; and

2. each finite integral distance set in Q2 can be repositioned to lie in Z2.‡

‡For our purposes here, we are not concerned with infinite integral distance sets, but note,
for the sake of completeness, that the infinite case follows from the Anning–Erdős Theorem
(elegant proof in [3]): if M ⊂ Qn is an infinite set of points such that each mutual distance
is an integer, then M lies in a line, and thus can be repositioned to lie in Z1.
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By the area formula for triangles, ∆ = 1
2 · base · height, Heronian triangles have

rational heights, so the first statement is verified by Figure 3. The key to Fricke’s
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(a2 − b2 + c2), 2∆/a
)

Figure 3: Rational coordinates for Heronian triangle (a, b, c) with area ∆

method is the second statement. Since we can translate an integral distance
set by one of its points, there is no loss of generality in assuming the integral
distance set to include the origin, and the second statement becomes as follows.

Theorem 1. Let M ⊂ Q2 be a finite set of rational points with (0, 0) ∈M such
that each mutual distance is an integer. Then there exists a rotation T such that
TM ⊂ Z2.

Instead of rotating directly from rational to integer coordinates, we avoid de-
nominators as follows. We first scale up to clear all denominators, then rotate
into integer coordinates that are also multiples of our scaling factor, and then
scale back down. By writing the scaling factor as a product of primes, we can
even work on one prime at a time. We claim Theorem 1 to be equivalent to the
following.

Theorem 2. Let p be a prime. Let M ⊂ Z2 be a finite set of points with
(0, 0) ∈ M such that each mutual distance is an integer divisible by p. Then
there exists a rotation T such that TM ⊂ pZ2.

Proof of equivalence. Assume Theorem 1 holds. To establish Theorem 2, start
with the set M from Theorem 2. Now apply Theorem 1 to the set 1

pM to obtain

T ( 1
pM) ⊂ Z2, whence TM ⊂ pZ2, thus giving us Theorem 2.

For the other direction, assume Theorem 2 holds. Let M ⊂ Q2 be a finite
set of points such that each mutual distance is an integer. Let d be such that
dM ⊂ Z2. Let d = p1 · · · pn be a factorization into primes (repetition allowed).
All distances in dM are divisible by p1, so by Theorem 2 there exists T1 with
T1(dM) ⊂ p1Z2, or T1( dp1M) ⊂ Z2. All distances in d

p1
M are divisible by p2, so

by Theorem 2 there exists T2 with T2(T1( dp1M) ⊂ p2Z2, or T2(T1( d
p1p2

M) ⊂ Z2.
Continuing in this fashion, we obtain

Tn(· · ·T2(T1( d
p1p2···pnM)) · · · ) ⊂ Z2,

or simply (Tn · · ·T2T1)M ⊂ Z2, thus giving us Theorem 1.

To prove Theorem 2, we will represent points and rotations using Gaussian
integers. Recall that the ring Z[i] of Gaussian integers comprises complex num-
bers of the form a+ bi, where a and b are (ordinary) integers. The conjugate of
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u = a + bi is u = a − bi and the norm of u = a + bi is N(u) = uu = a2 + b2.
Note that N(u) is the square of the length of u; hence, under the identification
(x, y)↔ x+ yi between points in the plane with integer coordinates and Gaus-
sian integers, statements involving distances can be translated into statements
involving norms. A nonzero Gaussian integer π gives rise to the operator

Tπ : (x, y) 7→ π
π (x+ yi), (1)

which is a rotation because the complex number π/π has norm 1. To find the
appropriate rotation operator to prove Theorem 2, we first need some prelimi-
naries on the arithmetic of Gaussian integers.

Just as each number in Z can be factored into an essentially unique product
of primes (unique up to order and multiplication by units), the same is true for
numbers in Z[i], where the set of units is {±1,±i}. However, Z and Z[i] have
different sets of primes: p = 2 factors inside Z[i] as i(1 − i)2, p ≡ 3 (mod 4)
remains prime inside Z[i], and p ≡ 1 (mod 4) splits inside Z[i] as ππ, where π
and π are the two primes (up to units) of norm p in Z[i]. To learn more about
Gaussian integers, see [7, Chapter 14].

Lemma 3. Given u ∈ Z[i], if p is an odd prime such that p - u but p | N(u),
then u has a unique divisor of norm p (unique up to units).

Proof. From p - u follows p - u, yet p | uu, whence p is not prime in Z[i], so
p ≡ 1 (mod 4). Thus p = ππ. Now π | uu while ππ - u, so π divides precisely
one of u,u (and π divides the other).

Lemma 4. Given u,u′ ∈ Z[i], if p is an odd prime such that p divides neither
u nor u′, but p divides both N(u) and N(u′), then u and u′ share a divisor of
norm p if and only if p | N(u− u′).

Proof. As before, we must have p ≡ 1 (mod 4). Write p = ππ, labeled so that
π | u. Note π - u. If π | u′ then π | u− u′ whence p | N(u− u′), while if π - u′
then π - N(u− u′) = N(u) + N(u′)− uu′ − uu′ whence p - N(u− u′).

Remark. Since all Gaussian integers of norm 2 differ by a unit, one can show
that Lemma 3 and Lemma 4 hold also for p = 2, but we do not need that case.

Lemma 5. Let p be a prime. If u ∈ Z[i] satisfies p - u but p2 | N(u), then
u has a factorization of the form u = π2s for a unique π of norm p (unique
up to units). Furthermore, if u′ ∈ Z[i] satisfies the same hypotheses as u, then
u′ has a factorization u′ = π2s′ (where π is the same as for u) if and only if
p | N(u− u′).

Proof. We must have p odd since 2 - u is incompatible with N(u) ≡ 0 (mod 4).
By Lemma 3, u has a unique divisor π of norm p. Write u = πw. Now p - w
but p | N(w). By Lemma 3, w has a unique divisor of norm p, which is then a
divisor of u, thus must be π. For the second part, apply Lemma 4.

We are now ready to prove Theorem 2.
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Proof of Theorem 2. By replacing distance statements with norm statements
under the identification (x, y) ↔ x + yi, we get that M is a set of Gaussian
integers satisfying

p2 | N(u) and p2 | N(u− u′), for all u,u′ ∈M.

If p | u for all u ∈ M , then already M ⊂ pZ2. Otherwise, there exists u with
p - u. By Lemma 5, there exists π of norm p with π2 | u. Let u′ ∈M . If p - u′,
then Lemma 5 tells us that π2 | u′. If p | u′, then p - u− u′. Hence, Lemma 5
tells us that π2 | u − u′, whence π2 | u′. Either way, π2 divides every point
in M ; therefore, TπM ⊂ pZ2, where Tπ is the rotation operator (1).

3 Example of Fricke’s method.

We wish to realize the Heronian triangle (65, 17, 80), which has area 288, as
a lattice triangle. Under the identification (x, y) ↔ x + yi, we position the
triangle initially with rational coordinates, and then scale up by 5 · 13 to clear
denominators, as shown in Figure 4. The scaled vertices satisfy the hypotheses
of Theorem 2 for p = 5 and p = 13.

0 65

5168
65

+ 576
65

i

0 4225

5168 + 576i

Figure 4: Heronian triangle (65, 17, 80), positioned initially with rational coor-
dinates, then scaled up to lattice triangle 5 · 13 · (65, 17, 80)

We first consider p = 5. We observe 5 - 5168 + 576i but 5 | N(5168 + 576i).
Thus we seek the unique Gaussian prime π of norm 5 that divides 5168 + 576i,
whose existence is guaranteed by Lemma 3. We note that checking π | 5168 +
576i is equivalent to checking 5 | (5168 + 576i)π. To find the candidate primes
of norm 5, we write 5 = 22 + 12 = (2 + i)(2 − i), and conclude π = 2 − i by
verifying

(5168 + 576i) · 2− i = 5 · (1952 + 1264i).

Lemma 5 ensures (2− i)2 divides all coordinates, allowing us to rotate by T2−i;
that is, we multiply all coordinates by (2+i)/(2−i). The result is a new position
in which all coordinates are divisible by 5, allowing us to scale down by 5, as
shown in Figure 5.

Next consider p = 13. The vertices of our scaled and rotated triangle still
satisfy Theorem 2 for p = 13 and we observe 13 - 528 + 896i; thus, we seek the
unique Gaussian prime of norm 13 = (2 + 3i)(2 − 3i) that divides 528 + 896i,
and it turns out to be 2 + 3i:

(528 + 896i) · 2 + 3i = 13 · (288 + 16i).
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0

2535 + 3380i

2640 + 4480i

0

507 + 676i

528 + 896i

Figure 5: Lattice triangle 5 ·13 · (65, 17, 80) first rotated by T2−i and then scaled
down to lattice triangle 13 · (65, 17, 80)

We now rotate by T2+3i; that is, we multiply all coordinates by (2−3i)/(2+3i).
As all coordinates were divisible by (2 + 3i)2, the result is a new position in
which all coordinates are divisible by 13, allowing us to scale down by 13, as
shown in Figure 6. The final result is the original triangle (65, 17, 80) realized
as a lattice triangle.

0

429− 728i 624− 832i

0

33− 56i 48− 64i

Figure 6: Lattice triangle 13 · (65, 17, 80) first rotated by T2+3i and then scaled
down to the original triangle (65, 17, 80) now positioned as a lattice triangle

4 Tetrahedra.

Analogously to Fricke’s method, we show that each Heronian tetrahedron is a
lattice tetrahedron by establishing the following:

1. Heronian tetrahedra are easily positioned with rational coordinates; and

2. each finite integral distance set in Q3 can be repositioned to lie in Z3.

By the volume formula for tetrahedra, V = 1
3 · base face area · height, Heronian

tetrahedra have rational heights, so the first statement is verified by Figure 7.
As in the two-dimensional case, the key is the second statement, which we state
more precisely as follows.
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(0, 0, 0) (a, 0, 0)

(
1
2a

(a2 − b2 + c2), 2∆/a, 0
)

P

P =
(

1
2a

(a2−f2+e2), 1
8a∆

(
(b2−c2)(e2−f2) + a2(b2+c2−2d2+e2+f2) − a4

)
, 3V/∆

)
,

where ∆ is the area of face abc and V is the volume of the tetrahedron.

Figure 7: Heronian tetrahedron positioned with rational coordinates

Theorem 6. Let M ⊂ Q3 be a finite set of rational points with (0, 0, 0) ∈ M
such that each mutual distance is an integer. Then there exists a rotation T
such that TM ⊂ Z3.

By the same argument showing Theorem 1 to be equivalent to Theorem 2,
Theorem 6 is equivalent to the following.

Theorem 7. Let p be a prime. Let M ⊂ Z3 be a finite set of points with
(0, 0, 0) ∈ M such that each mutual distance is an integer divisible by p. Then
there exists a rotation T such that TM ⊂ pZ3.

To prove Theorem 7, we will use the arithmetic of Lipschitz-integral quater-
nions and their interpretation as three-dimensional rotations. A quaternion
t = t0 + t1i+ t2j+ t3k is Lipschitz-integral when ti ∈ Z. The Lipschitz-integral
quaternions compose a noncommutative ring L with 8 units: {±1,±i,±j,±k}.
Given t, the conjugate is t = t0 − t1i − t2j − t3k, the norm is N(t) = tt =
t20 + t21 + t22 + t23, and t is pure when t0 = 0, i.e., t = −t. Under the identifica-
tion (x, y, z)↔ xi + yj + zk, points with integer coordinates are identified with
pure Lipschitz-integral quaternions. We observe again that statements about
distances can be translated into statements about norms. Each (not necessarily
pure) Lipschitz-integral quaternion t gives rise to a rotation operator that takes
pure quaternions to pure quaternions:

Tt : (x, y, z) 7→ 1
N(t)t(xi + yj + zk)t. (2)

Compared to the ring Z[i] of Gaussian integers, where only certain primes
p ∈ Z occur as a norm but then the factorization p = ππ is essentially unique,
the arithmetic in L is unusual. Each prime p ∈ Z occurs as a norm (as a
consequence of Lagrange’s four-square theorem), but the factorization p = tt is
never unique (not even up to left unit multiplication, right unit multiplication,
or conjugates); for example, consider 5 = (2 + i)(2− i) = (2 + j)(2− j). Jacobi’s
four-square theorem tells us that, for each prime p ∈ Z, there are p+ 1 primes
in L of norm p (up to multiplication by units). Fortunately, the arithmetic in L
turns out to be sufficiently reasonable for our needs.
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Lemma 8. Given u ∈ L, if p is an odd prime such that p - u but p | N(u), then
u has a unique right divisor of norm p (unique up to left unit multiplication),
and u has a unique left divisor of norm p (unique up to right unit multiplication).

Proof. See [6, Theorem 1].

Lemma 9. Given u,u′ ∈ L, if p is an odd prime such that p divides neither
u nor u′, but p divides both N(u) and N(u′), then u and u′ share a divisor of
norm p (either the same left divisor, or the same right divisor, or both) if and
only if p | N(u− u′).

Proof. See [6, Theorem 7].

Remark. As in the two-dimensional method, we do not need Lemma 8 and
Lemma 9 for the case p = 2, but unlike the two-dimensional method, where
the corresponding lemmata held for p = 2, here they do not. For example,
1 + i + j + k admits both 1 + i and 1 + j as right divisors, and 1 + i and 1 + j
do not share a divisor of norm 2 yet 2 | N(i− j).

Lemma 10. Let p be a prime. If u ∈ L is pure and satisfies p - u but p2 |
N(u), then u has a factorization of the form u = tst for a unique t of norm p
(unique up to left unit multiplication). Furthermore, if u′ ∈ L satisfies the same
hypotheses as u, then u′ has a factorization u′ = ts′t (where t is the same as
for u) if and only if p | N(u− u′).

Proof. We must have p odd since 2 - u is incompatible with N(u) ≡ 0 (mod 4).
By Lemma 8, u has unique left and right divisors of norm p. Let t be the right
divisor. Conjugating u = wt gives u = t(−w), so t must be the left divisor.
Now p - w but p | N(w). By Lemma 8, w has a unique left divisor of norm p,
which is then a left divisor of u, thus must be t. For the second part, apply
Lemma 9.

We can now prove Theorem 7.

Proof of Theorem 7. Using the identification (x, y, z) ↔ xi + yj + zk, we get
that M is a set of pure Lipschitz-integral quaternions satisfying

p2 | N(u) and p2 | N(u− u′), for all u,u′ ∈M.

If p | u for all u ∈ M , then already M ⊂ pZ3. Otherwise, there exists u with
p - u. By Lemma 10, there is a factorization u = tst where t has norm p.
For any other u′ ∈ M , if p - u′, then Lemma 10 tells us that u′ = ts′t, while
if p | u′, then p - u − u′, so Lemma 10 tells us that u − u′ = ts′t, whence
u′ = t(s− s′)t. Either way, every v ∈M factors in the form v = tsvt, whence
p2 | tvt; therefore, TtM ⊂ pZ3, where Tt is the rotation operator (2).
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Remark. During preparation for publication, we learned of the work of W. F.
Lunnon [5] on the same topic. Lunnon pointed out to us (private communi-
cation, 2012) that Fricke’s method goes through almost unchanged when the
definition of integral distance sets is relaxed to require only the square of the
mutual distances to be integers. Indeed, with that relaxed definition, only mi-
nor changes are required in the statements of Theorem 2 and Theorem 7 (and
the proofs of equivalence to Theorem 1 and Theorem 6), while the preparatory
lemmata and actual proofs of Theorem 2 and Theorem 7 go through unchanged.
We kept Fricke’s original definition for simplicity of presentation.

5 Tetrahedron example.

We wish to realize the Heronian tetrahedron (612, 480, 156, 185, 319, 455), which
has volume 665280, and whose face (612, 480, 156) has area 22464, as a lattice
tetrahedron. Under the identification (x, y, z) ↔ xi + yj + zk, we position the

i

j

k

0

612 2340
17

i+ 1248
17

j

220i+ 2772
13

j+ 1155
13

k

Figure 8: Tetrahedron (612, 480, 156, 185, 319, 455) positioned rationally

tetrahedron initially with rational coordinates, as shown in Figure 8. To clear
denominators, we scale up by 13 · 17 to obtain the vertices

0, A = 135252i, B = 30420i+ 16224j, and C = 48620i+ 47124j+ 19635k.

The scaled vertices satisfy the hypotheses of Theorem 7 for p = 13 and p = 17.
We consider p = 13 and observe 13 - C but 13 | N(C). Thus, we seek the

unique quaternion t of norm 13 which divides C on the right, whose existence
is guaranteed by Lemma 8. We note that the divisibility condition is equivalent
to 13 | Ct. There are 14 quaternions of norm 13 (up to multiplication by units),
which we find by expressing 13 as a sum of four squares in all possible ways
as 13 = 22 + 32 and 13 = 12 + 22 + 22 + 22. The first expression leads to 6
quaternions of norm 13: 2± 3i, 2± 3j, and 2± 3k. The second expression leads
to 8 quaternions of norm 13: 1±2i±2j±2k. We conclude t = 2−3i by verifying

C · 2− 3i = 13 · (−11220 + 7480i + 11781j− 7854k).

The proof of Theorem 7 tells us that all vertices have the form (2− 3i)s(2−3i),
allowing us to rotate by T2−3i; that is, we multiply all coordinates by 2 + 3i
on the right, by 2 − 3i on the left, and then divide by 13. The result is a new
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position in which all coordinates are divisible by 13, allowing us to scale back
down by 13, and we obtain the vertices

0, A′ = 10404i, B′ = 2340i− 480j− 1152k, and C ′ = 3740i− 3927k.

We now consider p = 17. The vertices still satisfy Theorem 7 for p = 17 and
we observe 17 - B′. Thus, we seek the unique quaternion t of norm 17 which
divides B′ on the right. There are 18 quaternions of norm 17, which we find
by writing 17 as a sum of 4 squares in all possible ways as 12 + 42 (this leads
to 6 quaternions of norm 17) and 32 + 22 + 22 (this leads to 12 quaternions of
norm 17). The quaternion we seek is t = 3− 2j− 2k:

B′ · 3− 2j− 2k = 17 · (192 + 492i− 360j + 72k).

After rotating by T3−2j−2k and then scaling down by 17, we obtain the vertices

0, 36i− 432j + 432k, 36i− 144j + 48k, and 176i− 264j + 33k.

The position as a lattice tetrahedron is shown in Figure 9.

x

y

z

(0, 0, 0)

(36,−432, 432)

(36,−144, 48)

(176,−264, 33)

Figure 9: Tetrahedron (612, 480, 156, 185, 319, 455) as a lattice tetrahedron

6 Recovering Fricke’s method from the three-
dimensional case.

Since the two-dimensional approach for triangles using Gaussian integers is al-
most statement-for-statement analogous to the three-dimensional approach for
tetrahedra using Lipschitz-integral quaternions, it seems that the former ought
to be a special case of the latter. This is indeed true.
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Theorem 11. In the proof of Theorem 7, if each u ∈ M ⊂ Z3 has z = 0,
i.e., M ⊂ Z2, then among the left associate choices of rotation operator Tt,
there exists one that keeps M in the xy-plane, i.e., has the z-axis as its axis of
rotation.

Proof. For t = t0 + (t1i + t2j + t3k), the axis of rotation of Tt is identified by
the vector (t1, t2, t3). Thus Tt has the z-axis as its axis of rotation precisely
when t has the form t = t0 + t3k. Tracing the proof of Theorem 7 back through
Lemma 10 to Lemma 8, we must therefore show the following. If u = u1i+u2j is
a pure Lipschitz-integral quaternion, representing a point in the xy-plane, with
p - u but p | N(u) for an odd prime p, then u admits a right divisor t of norm p
of the form t = t0 + t3k.

The equation u = vt is equivalent to ut ≡ 0 (mod p). By assumption,
u21 ≡ −u22, and p - u tells us that u1 6≡ 0, so −1 is a square modulo p. Let
s2 ≡ −1, where we choose the sign on s so that u1 ≡ su2. This also means
p ≡ 1 (mod 4), so there exist a, b with p = a2 + b2, and here we choose signs so
that a ≡ −sb. Let t = a+ bk. Then N(t) = p and ut ≡ 0.

To recover the Gaussian version of Fricke’s method, we identify t = t0 +
t3k with the Gaussian integer π = t0 + t3i, and identify points (x, y, 0) with
x + yi. Then the quaternion rotation operator Tt morphs into the Gaussian
rotation operator Tπ, Lemmata 8–10 respectively morph into Lemmata 3–5,
and the statement and proof of Theorem 7 morph into the statement and proof
of Theorem 2.
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References

[1] R. H. Buchholz, Perfect pyramids, Bull. Aust. Math. Soc. 45 (1993) 353–368.

[2] C. Chisholm, J. MacDougall, Rational and Heron tetrahedra, J. Number
Theory 121 (2006) 153–185.
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