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Motivating example: Confn(X )

An ordered configuration space of n points on a space X is:

Confn(X ) := {(x1, . . . , xn) ∈ X n | xi 6= xj for i 6= j}
The symmetric group acts on X n by permuting coordinates; this gives an action
of Sn on Confn(X ).

Note: Confn(C) is the complement to the union of hyperplanes associated to a type An−1 root

system, which are defined by xi = xj .

Hyperplane arrangements associated to root systems

Given a root system, one may consider the set of reflecting hyperplanes in Cn.
The corresponding Weyl group acts on the complement of their union.

Type: A1 B2 C2 D2

Weyl group: S2 W2 W2 D2

hyperplanes in Cn xi = xj xi = xj xi = xj xi = xj

are defined by xi = −xj xi = −xj xi = −xj

the equations: xi = 0 2xi = 0

Question: What if we replace C with C× or a complex elliptic curve E ?
We can make sense of these equations using the group operation. They will define (disjoint

unions of) codimension-one subtori or abelian subvarieties, and the Weyl group will still act on

the complement of their union.

Toric arrangements

Using the multiplicative group structure of C× to make sense of these
equations, they define codimension-one subvarieties in (C×)n.

Here, we draw the arrangements in (S 1)2 but imagine it’s (C×)2:

Type: A1 B2 C2 D2

Weyl group: S2 W2 W2 D2

subtori in (C×)n xi = xj xi = xj xi = xj xi = xj Hij

are defined by xi = x−1
j xi = x−1

j xi = x−1
j H ′ij

the equations: xi = 1 x2
i = 1 H1

i ,H−1
i

What’s new? The type B and C arrangements are different, since x2
i = 1 gives us two

subvarieties. Moreover, H12 ∩ H ′12 = {(1, 1), (−1,−1)} has two connected components.

Note: The two-torsion points (1 and −1) play a key role here.

Elliptic arrangements

For a complex elliptic curve E , we consider codimension-one subvarieties of E n.

Since a complex elliptic curve has four 2-torsion points, the solution to 2xi = 0,
as well as the intersection Hij ∩ H ′ij (where xi = xj and xi = −xj), will each have
four connected components (indexed by the 2-torsion points).

Note: Unfortunately, I don’t have good pictures of elliptic arrangements.

Motivating example: Confn(C)

Theorem. [Arnold,’69] The unordered configuration space on C is homologically
stable. That is, for n� 0,

Hi(Confn(C)/Sn;Q) ∼= Hi(Confn+1(C)/Sn+1;Q)

Ordered configuration spaces don’t have this property, but we can use the action
of Sn to observe another type of stability. For example, for n ≥ 4, we have the
following decomposition as an Sn-representation:

H1(Confn(C);Q) = V(n) ⊕ V(n−1,1) ⊕ V(n−2,2)

Note: Recall that irreducible representations of Sn are indexed by partitions of n.

Representation stability

Definition. [Church-Farb,’13] Let Gn denote either the symmetric group Sn or
hyperoctahedral group Wn = Z2 o Sn. A sequence {Vn} of Gn-representations
with Gn-equivariant maps φn : Vn → Vn+1 is uniformly representation stable
with stable range n ≥ N if for n ≥ N ...

φn is injective,
Gn+1 · φn(Vn) = Vn+1, and
Vn = ⊕λV (λ)⊕cλ

n where cλ doesn’t depend on n. (the multiplicities stabilize)

Note: For the symmetric groups, we consider λ = (λ1, . . . , λ`) ` k such that N ≥ k + λ1, and

V (λ)n denotes the irreducible representation of Sn corresponding to λ[n] := (n − k, λ1, . . . , λ`).

For the hyperoctahedral groups, irreducible representations are indexed by pairs of partitions, so

for λ = (λ+, λ−) with λ− ` k , we take V (λ)n to be the representation of Wn indexed by the

pair (λ+[n − k], λ−).

Configuration spaces and hyperplane arrangements

Returning to Confn(C): We can restate our observation above that for n ≥ 4,

H1(Confn(C);Q) = V (0)⊕ V (1)⊕ V (2)

The maps φn here are induced by Confn+1(C)→ Confn(C) which “forget the last point.”

Theorem. [Church,’12] If X is a connected, orientable manifold, then for each i ,
{H i(Confn(X );Q)} is uniformly representation stable with stable range n ≥ 4i .

Theorem. [Wilson,’15] If {An} is a sequence of type A, B/C, or D arrangements
in Cn, with complements M(An), then for each i , {H i(M(An);Q)} is uniformly
representation stable with stable range n ≥ 4i .

Note: Church used a Leray spectral sequence argument, and Wilson used so-called

FIW -modules. Combining these techniques, and understanding the combinatorics of our

arrangements, gives our main theorem:

Main theorem

Let {An} be a sequence of toric or elliptic arrangements of type B, C, or D, with
complements M(An). Then for each i , the sequence {H i(M(An);Q)} of
Wn-representations is uniformly representation stable with stable range n ≥ 4i .

Some consequences:

The orbit spaces M(An)/Wn are rationally homologically stable.
For each i , dim H i(M(An);Q) is a polynomial in n.

Combinatorics: intersection poset

In type A, the set of intersections of subvarieties, partially ordered by reverse inclusion, is the

partition lattice. More generally, if we take the set of connected components of intersections,

partially ordered by reverse inclusion, we can describe it combinatorially using certain partitions,

in a way that respects the action of the group:

For type Cn arrangements in X n (X = C,C×,E ), connected components of
intersections correspond to partitions π of [n] = {1, 1̄, . . . , n, n̄}, with each
self-barred block labelled by a distinct 2-torsion point of X , such that for every
p ∈ π we have p̄ ∈ π.

For type Bn arrangements, we also require that if {i , ī} ∈ π then it’s labeled by the identity of X .

For type Dn arrangements, we require that there are no blocks of the form {i , ī} in π.

Note: In the case of C, this agrees with [Barcelo-Ihrig,’99].

For type B/C arrangements in Cn this is the Dowling lattice.

Note: Orbits are indexed by labelled partitions of n.

The labels and block sizes are preserved by the group action.

Examples of combinatorics in (C×)2
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Some remaining questions

What are the stable multiplicities?
Note: Even the Betti numbers are hard to compute in the elliptic case.

What about other complex reflection groups?
Note: Complex multiplication on certain elliptic curves gives rise to interesting arrangements.


