Combinatorics of orbit configuration spaces

Christin Bibby (univ. of Michigan)
with Nir Gadish (univ. of Chicago)

FPSAC 2018
July 20
Hanover, NH
Orbit configuration spaces \[\text{[Xicotencatl `97]} \]

\[X: \text{"nice" topological space} \quad (\text{eg. } \mathbb{C}, \mathbb{C}^*, \mathbb{S}^1 \times \mathbb{S}^1) \]

\[G: \text{finite group} \]

\[G \curvearrowright X \text{ almost freely: } S = \{ x \in X \mid \exists g \in G - e, \ g x = x \} \text{ finite} \]

Note: \[G \curvearrowright (X - S) \text{ freely} \]

\[\text{Conf}_n^G(X - S) = \left\{ (x_1, \ldots, x_n) \in (X - S)^n \mid G x_i \cap G x_j = \emptyset \right\} \subset (X - S)^n \]

\[S_n[G] \]

\[S_n \]

\[\text{Conf}_n^G(X - S) = \left\{ (x_1, \ldots, x_n) \in X^n \mid G x_i \neq x_j \quad 1 \leq i < j \leq n \quad g \in G \right\} \subset X^n \]

i.e. the complement of the arrangement

\[A_n(G, X): \quad H_{ij}(g) = \{ (x_1, \ldots, x_n) \in X^n \mid g x_i = x_j \} \quad 1 \leq i < j \leq n \quad g \in G \]

\[H_k^S = \{ (x_1, \ldots, x_n) \in X^n \mid x_k = s \} \quad 1 \leq k \leq n \quad s \in S \]
Combinatorics of an arrangement

A layer of $A_n = A_n(G,X)$ is a connected component of an intersection $\bigcap_{H \in T} (T \subseteq A)$

The poset of layers $P_n(G,X)$ is the set of layers, partially ordered by reverse inclusion.

Example $X = C$

$G = 1$

$Conf_n(C) = \{(x_1, \ldots, x_n) \in C^n \mid x_i \neq x_j\}$

complement of braid arrangement: hyperplanes $x_i = x_j$ \(1 \leq i < j \leq n\)

$P_n(1,C)$ is the partition lattice Π_n

An intersection of diagonals in C^n corresponds to a partition of $\{1,2,\ldots,n\}$
Example (Type C toric arrangement)

$X = \mathbb{C}^* \text{ or } S'$

$G = \mathbb{Z}_2$ acting by group inversion $x \mapsto x^{-1}$

$n = 2$

$S = \{ \pm 1 \}$

$x_1 = x_2$

$x_1 = x_2^{-1}$

$x_1 = 1$

$x_2 = 1$

$x_1 = -1$

$x_2 = -1$
<table>
<thead>
<tr>
<th>Topology</th>
<th>Combinatorics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confₙ(C)</td>
<td>Partition lattice Π_n</td>
</tr>
<tr>
<td>Confₙ⁺(X-S)</td>
<td>??</td>
</tr>
</tbody>
</table>

Questions

- How can we describe layers using partitions?
- How can we use this combinatorics to understand the topology?
Generalizing partition/Dowling lattices

G: finite group
S: finite G-set
$[n] = \{1, 2, \ldots, n\}$

A partial G-partition of $[n]$ consists of a partition

$\beta \rightarrow T$
where $T \subseteq [n]$

along with $\forall B \in \beta$ an equivalence class of

G-colorings $b: B \rightarrow G$
($b \sim bg \ \forall g \in G$)

The zero block of β is the set $\emptyset = [n] - T$.

The Dowling poset $D_n(G, S)$ is the set of pairs

(β, γ)
where β is a partial G-partition and

$\gamma: \emptyset \rightarrow S$ is an S-coloring of its zero block \emptyset.

covering
merge: $(\{A \cup B\} \cup \beta, \gamma) < (A \cup B \cup \beta, \gamma)$

relations
color: $(B \cup \beta, \gamma) < (\emptyset, \emptyset \cup \gamma)$
Example

Partition lattice $\Pi_n = D_n (1, \emptyset) \cong D_{n-1} (1)$

Dowling lattice $D_n (G) = D_n (G, *)$ [Dowling '73]

$G = \mathbb{Z}_2 = \{ e, i \}$
$
\cap \text{trivial}
$

$s = \{ \pm 1 \}$

$n = 2$
Example

\[X = \mathbb{C}^x \quad G = \mathbb{Z}_2 \quad S = \{ \pm 1 \} \quad n = 2 \]
Recall:

\[G : \] finite group \quad \mathcal{X} : \text{G-space} \quad S = \{x \in \mathcal{X} \mid \exists g \in \text{G-e}, gx = x \} \\
\text{An}(G, X) : \text{subspaces} \quad gx_i = x_j, \quad x_k = s \quad (g \in G, s \in S) \\
\text{P}_n(G, X) : \text{poset of layers, connected components of intersections} \\
S_n[G] = G^n \times S_n \cap \text{An}, \text{P}_n \\

Question: How can we describe \(\text{P}_n(G, X) \) using partitions?

Answer: [BG'18]

There is a \(S_n[G] \)-equivariant poset isomorphism

\[
\text{P}_n(G, X) \cong D_n(G, S)
\]

Question: How can we use \(D_n(G, S) \) to understand the topology?
Example

Local Structure

\[(1,1) \quad (1,-1) \quad (-1,1) \quad (-1,-1) \]

\[x_1 = 1 \quad x_2 = 1 \quad x_1 = x_2 \quad x_4 = x_2^{-1} \quad x_2 = -1 \quad x_6 = -1 \]

\[x^2 \]
Local Structure

Example

In general:

layers of a local arrangement

an interval in the poset of layers
Theorem [BG'18] For \((\beta, \gamma) \in D_n(G, S)\),

\[(D_n(G, S))_{\leq (\beta, \gamma)} \equiv \prod_{B \in \beta} \pi_B \times \prod_{G \cdot s \in S/G} D_{sY(Gs)}(Gs)\]

Note Closed intervals are geometric lattices and hence homotopy equivalent to a wedge of spheres.

\[(D_n(G, S))_{\geq (\beta, \gamma)} \equiv D_\beta(G, S)\]
Characteristic polynomial \((\text{Assume } S \neq \emptyset)\)

The characteristic polynomial of \(D_n(G,S)\) is

\[
\chi(t) = \sum_{x \in D_n(G,S)} \mu(\delta, x) t^{n - \text{rank}(x)}
\]

\(\mu\) Möbius function

Theorem \([BG'18]\)

\[
\chi(t) = \prod_{k=0}^{n-1} (t - |S| - |G|_1 k)
\]

Corollary The Euler characteristic of \(\text{Conf}_n^G (X - S)\) is

\[
\prod_{k=0}^{n-1} (\chi_x - |S| - |G|_1 k)
\]

\(\chi_x\) Euler characteristic of \(X\)

And sometimes this tells us the Poincaré polynomial ...

Example for \(X = C^* \cup \mathbb{Z}_2 = G\): \(\text{Poin}(t) = \prod_{k=1} (1 + (1+2k) t)\)
Realizability?

Theorem [Dowling '73]

\[D_n(G) \text{ is realized by a complex hyperplane arrangement} \iff G \text{ is cyclic.} \]

*Other fields put a restriction on } |G|

Question When is \(D_n(G,S) \) realizable? (by a hypersurface arrangement)

Note Need \(\prod_{B \in \beta} \pi_B \times \prod_{G \in S/G} D_{\text{gen}}(G) \) realizable cyclic!

Consequence

Smooth complex curve

If \(GCX \) almost freely then the stabilizer of every point is cyclic.
Thank you