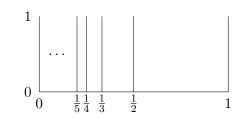
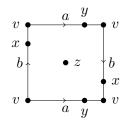
Return this sheet with your exam. Each problem is worth 17 points. NAME: _______ Give detailed proofs when asked to. Otherwise, (briefly justified) short answers are sufficient.

1. Let C be the topologist's comb, given on the right.

(The formal definition of C is given on the back of this sheet.)

- (a) State the definition of a limit point, and find all limit points of C.
- (b) Is C path connected? Explain.
- (c) Is C compact? Explain.
- **2**. Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be topological spaces.
 - (a) State the definition in terms of open sets, a function $f: X \to Y$ is continuous if ...
 - (b) Prove that the composition of continuous functions is continuous: If $f: X \to Y$ and $g: Y \to Z$ are continuous, prove that $g \circ f: X \to Z$ is continuous.
 - (c) Let $(a, b) = \{x \in \mathbb{R}^1 \mid a < x < b\} \subset \mathbb{R}^1$, with the subspace topology. Are X = (0, 1) and Y = (4, 9) homeomorphic? Explain.
- **3**. Let A be a subspace of \mathbb{R}^n , and let B be a subset of A.
 - (a) Prove that if B is closed in A, then $B = A \cap D$ for some closed set $D \subset \mathbb{R}^n$.
 - (b) Given an example of a subspace A of \mathbb{R}^2 and a subset B of A for which B is closed in A, but B is not closed in \mathbb{R}^2 .
 - (c) If A is open in \mathbb{R}^2 and B is open in A, is B open in \mathbb{R}^2 ? Explain.
- 4. Give a brief explanation why...
 - (a) ... the unit interval $I = [0, 1] = \{x \in \mathbb{R} \mid 0 \le x \le 1\}$ and the circle \mathbb{S}^1 are not homeomorphic.
 - (b) ... the plane \mathbb{R}^2 and the disk $D^2 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$ are not homeomorphic.
 - (c) ... the 2-sphere \mathbb{S}^2 and the torus $\mathbb T$ are not homeomorphic.
- **5**. Consider the plane model for the Klein bottle \mathbb{K} given on the right, with a, b indicating the identifications, and v, x, y, z representing points in \mathbb{K} .
 - (a) Exhibit Euclidean 2-disk neighborhoods of each of the points v, x, y, z in separate copies of the plane model for \mathbb{K} , and explain why \mathbb{K} is Hausdorff.
 - (b) Exhibit a simple closed curve C on \mathbb{K} for which $\mathbb{K} \smallsetminus C$ is path connected. Draw C on the space model for \mathbb{K} given on the back of this sheet.
 - (c) Give a "cut-and-paste" argument explaining why \mathbb{K} is homeomorphic to $\mathbb{P}\#\mathbb{P}$, where \mathbb{P} is the projective plane.
- **6**. Let \mathbb{K} be the Klein bottle, and \mathbb{T} the torus,
 - (a) Sketch a plane model and write down a word that represents the connected sum $\mathbb{K}\#\mathbb{T}$.
 - (b) Is the surface $\mathbb{K} \# \mathbb{T}$ orientable? Explain.
 - (c) State the Classification Theorem for Surfaces.
 What surface in this theorem is K#T homeomorphic to? Explain.





1. The topologist's comb *C* is given by $C = I \cup \left(\bigcup_{k=0}^{\infty} J_k\right)$, where

$$I = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1 \text{ and } y = 0\},\$$

$$J_0 = \{(x, y) \in \mathbb{R}^2 \mid x = 0 \text{ and } 0 \le y \le 1\}, \text{ and}\$$

$$J_k = \{(x, y) \in \mathbb{R}^2 \mid x = \frac{1}{k} \text{ and } 0 \le y \le 1\}, \text{ for each positive integer } k.$$

5. A space model for the Klein bottle \mathbb{K} .

