Return this sheet with your exam. Each problem is worth 17 points. Name: \qquad
Give detailed proofs when asked to. Otherwise, (briefly justified) short answers are sufficient.

1. Let C be the topologist's comb, given on the right.
(The formal definition of C is given on the back of this sheet.)
(a) State the definition of a limit point, and find all limit points of C.
(b) Is C path connected? Explain.
(c) Is C compact? Explain.

2. Let $X \subset \mathbb{R}^{n}$ and $Y \subset \mathbb{R}^{m}$ be topological spaces.
(a) State the definition in terms of open sets, a function $f: X \rightarrow Y$ is continuous if \ldots
(b) Prove that the composition of continuous functions is continuous:

If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are continuous, prove that $g \circ f: X \rightarrow Z$ is continuous.
(c) Let $(a, b)=\left\{x \in \mathbb{R}^{1} \mid a<x<b\right\} \subset \mathbb{R}^{1}$, with the subspace topology.

Are $X=(0,1)$ and $Y=(4,9)$ homeomorphic? Explain.
3. Let A be a subspace of \mathbb{R}^{n}, and let B be a subset of A.
(a) Prove that if B is closed in A, then $B=A \cap D$ for some closed set $D \subset \mathbb{R}^{n}$.
(b) Given an example of a subspace A of \mathbb{R}^{2} and a subset B of A for which B is closed in A, but B is not closed in \mathbb{R}^{2}.
(c) If A is open in \mathbb{R}^{2} and B is open in A, is B open in \mathbb{R}^{2} ? Explain.
4. Give a brief explanation why...
(a) ... the unit interval $I=[0,1]=\{x \in \mathbb{R} \mid 0 \leq x \leq 1\}$ and the circle \mathbb{S}^{1} are not homeomorphic.
(b) \ldots the plane \mathbb{R}^{2} and the disk $D^{2}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\}$ are not homeomorphic.
(c) ... the 2 -sphere \mathbb{S}^{2} and the torus \mathbb{T} are not homeomorphic.
5. Consider the plane model for the Klein bottle \mathbb{K} given on the right, with a, b indicating the identifications, and v, x, y, z representing points in \mathbb{K}.
(a) Exhibit Euclidean 2-disk neighborhoods of each of the points v, x, y, z in separate copies of the plane model for \mathbb{K}, and explain why \mathbb{K} is Hausdorff.
(b) Exhibit a simple closed curve \mathcal{C} on \mathbb{K} for which $\mathbb{K} \backslash \mathcal{C}$ is path connected. Draw \mathcal{C} on the space model for \mathbb{K} given on the back of this sheet.

(c) Give a "cut-and-paste" argument explaining why \mathbb{K} is homeomorphic to $\mathbb{P} \# \mathbb{P}$, where \mathbb{P} is the projective plane.
6. Let \mathbb{K} be the Klein bottle, and \mathbb{T} the torus,
(a) Sketch a plane model and write down a word that represents the connected sum $\mathbb{K} \# \mathbb{T}$.
(b) Is the surface $\mathbb{K} \# \mathbb{T}$ orientable? Explain.
(c) State the Classification Theorem for Surfaces.

What surface in this theorem is $\mathbb{K} \# \mathbb{T}$ homeomorphic to? Explain.

1. The topologist's comb C is given by $C=I \cup\left(\bigcup_{k=0}^{\infty} J_{k}\right)$, where

$$
\begin{aligned}
I & =\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x \leq 1 \text { and } y=0\right\}, \\
J_{0} & =\left\{(x, y) \in \mathbb{R}^{2} \mid x=0 \text { and } 0 \leq y \leq 1\right\}, \text { and } \\
J_{k} & =\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, x=\frac{1}{k}\right. \text { and } 0 \leq y \leq 1\right\}, \text { for each positive integer } k .
\end{aligned}
$$

5. A space model for the Klein bottle \mathbb{K}.

