1 +

1. Let C be the topologist's comb, given on the right.

(a) State the definition of a limit point, and find all limit points of C.

x is a limit point of a set A if every open set containing x meets A in a point other than xC contains all of its limit points. Recall that x is a limit point of $C \subset \mathbb{R}^2$ if and only if there is a sequence of points (x_i) in C such that $x_i \to x$ and $x_i \neq x \forall i$ (Proposition 1.1.6). From the definition of C, one can check that if (x_i) is a sequence in C which converges, it must converge to a point in C.

(b) Is C path connected? Explain.

Yes, C is path connected. This can be proved, for instance, by induction, using Exercise 1.3.12. First note that I and J_0 are clearly path connected, and that $I \cap J_0 = \{(0,0)\}$. Then, $I \cup J_0$ is path connected. Since J_1 is path connected and $(I \cup J_0) \cap J_1 = \{(1,0)\}, I \cup J_0 \cup J_1$ is path connected. An inductive argument then shows that $C = I \cup (\bigcup_{k=0}^{\infty} J_k)$ is path connected.

(c) Is C compact? Explain.

Yes, C is compact. From part (a), C contains all of its limit points, so C is closed. Since C is contained in a disk centered at the origin (say, of radius 2), C is also bounded. So, by the Heine-Borel Theorem, C is compact.

- **2**. Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be topological spaces.
 - (a) State the definition in terms of open sets, a function $f: X \to Y$ is continuous if for every open set $V \subset Y$, inverse image $f^{-1}(V) = \{x \in X \mid f(x) \in V\}$ is open in X.
 - (b) Prove that the composition of continuous functions is continuous: If f: X → Y and g: Y → Z are continuous, prove that g ∘ f: X → Z is continuous. Let h = g ∘ f, and let W be an open set in Z. We must show that h⁻¹(W) is open in X. Since g is continuous, V = g⁻¹(W) is open in Y. Since f is continuous, U = f⁻¹(V) is open in X. Since U = f⁻¹(g⁻¹(W)) = h⁻¹(W) is open, h = g ∘ f is continuous.
 - (c) Let $(a, b) = \{x \in \mathbb{R}^1 \mid a < x < b\} \subset \mathbb{R}^1$. Are X = (0, 1) and Y = (4, 9) homeomorphic? Explain. Yes, (0, 1) and (4, 9) are homeomorphic. For instance, one can check that f(x) = 5x + 4 is a one-to-one continuous function from (0, 1) to (4, 9), with continuous inverse function g(x) = (x-4)/5, i.e., a homeomorphism.
- **3**. Let A be a subspace of \mathbb{R}^n , and let B be a subset of A.
 - (a) Prove that if B is closed in A, then $B = A \cap D$ for some closed set $D \subset \mathbb{R}^n$. Since B is closed in A, the complement $U = A \setminus B$ is open in A. Since A has the subspace topology, this means that $U = A \cap V$, where V is open in \mathbb{R}^n . Let $D = \mathbb{R}^n \setminus V$. Observe that D is closed in \mathbb{R}^n , and that $B = A \setminus U = A \cap V = A \cap (\mathbb{R}^n \setminus V) = A \cap D$.
 - (b) Given an example of a subspace A of \mathbb{R}^2 and a subset B of A for which B is closed in A, but B is not closed in \mathbb{R}^2 .

One example: $A = \{(x, y) \in \mathbb{R}^2 \mid |x| < 1, |y| < 1\}$, an open square, and $B = \{(x, y) \in A \mid x \ge 0\}$ $B = A \cap \{(x, y) \in \mathbb{R}^2 \mid x \ge 0\}$ is closed in A, but B is not closed in \mathbb{R}^2 since, for instance, (1, 0) is a limit point of B in \mathbb{R}^2 which is not in B. (Note that B is not open in \mathbb{R}^2 either.)

- (c) If A is open in R² and B is open in A, is B open in R²? Explain.
 Yes. If B is open in A, then B = A ∩ V for some open V in R². The intersection of two open sets in R² is open in R².
- 4. Explain why...
 - (a) ... the unit interval $I = [0, 1] = \{x \in \mathbb{R} \mid 0 \le x \le 1\}$ and the circle \mathbb{S}^1 are not homeomorphic. For instance, I has the fixed point property (by the intermediate value theorem), while \mathbb{S}^1 does not (e.g., rotation by $\pi/2$ radians has no fixed point in \mathbb{S}^1).
 - (b) $\dots \mathbb{R}^2$ and $D^2 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$ are not homeomorphic. For instance, \mathbb{R}^2 is not compact, while D^2 is compact.
 - (c) ... the 2-sphere \mathbb{S}^2 and the torus \mathbb{T} are not homeomorphic.

For instance, the complement of any simple closed curve \mathcal{C} on \mathbb{S}^2 is not path connected, but there are simple closed curves on \mathbb{T} for which the complement is path connected. A homeomorphism $h: \mathbb{S}^2 \to \mathbb{T}$ would restrict to a homeomorphism $\mathbb{S}^2 \smallsetminus \mathcal{C} \to \mathbb{T} \smallsetminus h(\mathcal{C})$. But $\mathbb{S}^2 \smallsetminus \mathcal{C}$ is not path connected, while $\mathbb{T} \backsim h(\mathcal{C})$ may be. Since path connectivity is a topological property, there cannot be such a homeomorphism.

- 5. Consider the plane model for the Klein bottle \mathbb{K} given on the right, with a, b indicating the identifications, and v, x, y, z representing points in \mathbb{K} .
 - (a) Exhibit Euclidean 2-disk neighborhoods of each of the points v, x, y, z in separate copies of the plane model for \mathbb{K} , and explain why \mathbb{K} is Hausdorff.

If u and v are distinct points in \mathbb{K} , one can produce neighborhoods U of u and V of v as above which are disjoint.

(b) Exhibit a simple closed curve C on K for which K \ C is path connected. Draw C on the space model for K given on the back of this sheet. Here are a couple examples (there are many others):

The complement of the red curve is a cylinder. The complement of the blue curve is a Möbius band. The red curve is drawn on the space model below.

(c) Give a "cut-and-paste" argument explaining why \mathbb{K} is homeomorphic to $\mathbb{P}\#\mathbb{P}$, where \mathbb{P} is the projective plane.

- **6**. Let \mathbb{K} be the Klein bottle, and \mathbb{T} the torus.
 - (a) Sketch a plane model and write down a word that represents the connected sum $\mathbb{K}\#\mathbb{T}$.

(b) Is the surface $\mathbb{K}\#\mathbb{T}$ orientable? Explain.

No, if S_1 and S_2 are surfaces, with at least one nonorientable, then $S_1 \# S_2$ is nonorientable. Or, the presence of $\cdots b \cdots b \cdots$ in the word representing $\mathbb{K} \# \mathbb{T}$ indicates that this surface contains a Möbius band, and hence an orientation reversing loop.

- (c) State the Classification Theorem for Surfaces.
 What surface in this theorem is K#T homeomorphic to? Explain.
 Any compact, path connected surface is homeomorphic to a sphere, a connected sum of tori, or a connected sum of projective planes.
 Since K ≅ P#P, and P#T ≅ 3P, we have K#T ≅ P#P#T ≅ P#3P ≅ 4P.
- 5. A space model for the Klein bottle \mathbb{K} , with simple closed curve \mathcal{C} for which $\mathbb{K} \setminus \mathcal{C}$ is path connected.

