1. Let C be the topologist's comb, given on the right.

$$
C=I \cup\left(\bigcup_{k=0}^{\infty} J_{k}\right) \text {, where }
$$

$I=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x \leq 1\right.$ and $\left.y=0\right\}$,
$J_{0}=\left\{(x, y) \in \mathbb{R}^{2} \mid x=0\right.$ and $\left.0 \leq y \leq 1\right\}$, and
 $J_{k}=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, x=\frac{1}{k}\right.\right.$ and $\left.0 \leq y \leq 1\right\}$, for each positive integer k.
(a) State the definition of a limit point, and find all limit points of C.
x is a limit point of a set A if every open set containing x meets A in a point other than x
C contains all of its limit points. Recall that x is a limit point of $C \subset \mathbb{R}^{2}$ if and only if there is a sequence of points $\left(x_{i}\right)$ in C such that $x_{i} \rightarrow x$ and $x_{i} \neq x \forall i$ (Proposition 1.1.6). From the definition of C, one can check that if $\left(x_{i}\right)$ is a sequence in C which converges, it must converge to a point in C.
(b) Is C path connected? Explain.

Yes, C is path connected. This can be proved, for instance, by induction, using Exercise 1.3.12. First note that I and J_{0} are clearly path connected, and that $I \cap J_{0}=\{(0,0)\}$. Then, $I \cup J_{0}$ is path connected. Since J_{1} is path connected and $\left(I \cup J_{0}\right) \cap J_{1}=\{(1,0)\}, I \cup J_{0} \cup J_{1}$ is path connected. An inductive argument then shows that $C=I \cup\left(\bigcup_{k=0}^{\infty} J_{k}\right)$ is path connected.
(c) Is C compact? Explain.

Yes, C is compact. From part (a), C contains all of its limit points, so C is closed. Since C is contained in a disk centered at the origin (say, of radius 2), C is also bounded. So, by the Heine-Borel Theorem, C is compact.
2. Let $X \subset \mathbb{R}^{n}$ and $Y \subset \mathbb{R}^{m}$ be topological spaces.
(a) State the definition in terms of open sets, a function $f: X \rightarrow Y$ is continuous if \ldots
\ldots for every open set $V \subset Y$, inverse image $f^{-1}(V)=\{x \in X \mid f(x) \in V\}$ is open in X.
(b) Prove that the composition of continuous functions is continuous:

If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are continuous, prove that $g \circ f: X \rightarrow Z$ is continuous.
Let $h=g \circ f$, and let W be an open set in Z. We must show that $h^{-1}(W)$ is open in X. Since g is continuous, $V=g^{-1}(W)$ is open in Y. Since f is continuous, $U=f^{-1}(V)$ is open in X. Since $U=f^{-1}\left(g^{-1}(W)\right)=h^{-1}(W)$ is open, $h=g \circ f$ is continuous.
(c) Let $(a, b)=\left\{x \in \mathbb{R}^{1} \mid a<x<b\right\} \subset \mathbb{R}^{1}$. Are $X=(0,1)$ and $Y=(4,9)$ homeomorphic? Explain. Yes, $(0,1)$ and $(4,9)$ are homeomorphic. For instance, one can check that $f(x)=5 x+4$ is a one-to-one continuous function from $(0,1)$ to $(4,9)$, with continuous inverse function $g(x)=(x-4) / 5$, i.e., a homeomorphism.
3. Let A be a subspace of \mathbb{R}^{n}, and let B be a subset of A.
(a) Prove that if B is closed in A, then $B=A \cap D$ for some closed set $D \subset \mathbb{R}^{n}$.

Since B is closed in A, the complement $U=A \backslash B$ is open in A. Since A has the subspace topology, this means that $U=A \cap V$, where V is open in \mathbb{R}^{n}. Let $D=\mathbb{R}^{n} \backslash V$. Observe that D is closed in \mathbb{R}^{n}, and that $B=A \backslash U=A \backslash A \cap V=A \cap\left(\mathbb{R}^{n} \backslash V\right)=A \cap D$.
(b) Given an example of a subspace A of \mathbb{R}^{2} and a subset B of A for which B is closed in A, but B is not closed in \mathbb{R}^{2}.
One example: $A=\left\{(x, y) \in \mathbb{R}^{2}| | x|<1,|y|<1\}\right.$, an open square, and $B=\{(x, y) \in A \mid x \geq 0\}$ $B=A \cap\left\{(x, y) \in \mathbb{R}^{2} \mid x \geq 0\right\}$ is closed in A, but B is not closed in \mathbb{R}^{2} since, for instance, $(1,0)$ is a limit point of B in \mathbb{R}^{2} which is not in B.
(Note that B is not open in \mathbb{R}^{2} either.)
(c) If A is open in \mathbb{R}^{2} and B is open in A, is B open in \mathbb{R}^{2} ? Explain.

Yes. If B is open in A, then $B=A \cap V$ for some open V in \mathbb{R}^{2}. The intersection of two open sets in \mathbb{R}^{2} is open in \mathbb{R}^{2}.
4. Explain why...
(a) ... the unit interval $I=[0,1]=\{x \in \mathbb{R} \mid 0 \leq x \leq 1\}$ and the circle \mathbb{S}^{1} are not homeomorphic. For instance, I has the fixed point property (by the intermediate value theorem), while \mathbb{S}^{1} does not (e.g., rotation by $\pi / 2$ radians has no fixed point in \mathbb{S}^{1}).
(b) $\ldots \mathbb{R}^{2}$ and $D^{2}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\}$ are not homeomorphic. For instance, \mathbb{R}^{2} is not compact, while D^{2} is compact.
(c) ...the 2 -sphere \mathbb{S}^{2} and the torus \mathbb{T} are not homeomorphic.

For instance, the complement of any simple closed curve \mathcal{C} on \mathbb{S}^{2} is not path connected, but there are simple closed curves on \mathbb{T} for which the complement is path connected. A homeomorphism $h: \mathbb{S}^{2} \rightarrow \mathbb{T}$ would restrict to a homeomorphism $\mathbb{S}^{2} \backslash \mathcal{C} \rightarrow \mathbb{T} \backslash h(\mathcal{C})$. But $\mathbb{S}^{2} \backslash \mathcal{C}$ is not path connected, while $\mathbb{T} \backslash h(\mathcal{C})$ may be. Since path connectivity is a topological property, there cannot be such a homeomorphism.
5. Consider the plane model for the Klein bottle \mathbb{K} given on the right, with a, b indicating the identifications, and v, x, y, z representing points in \mathbb{K}.
(a) Exhibit Euclidean 2-disk neighborhoods of each of the points v, x, y, z in separate copies of the plane model for \mathbb{K}, and explain why \mathbb{K} is Hausdorff.

If u and v are distinct points in \mathbb{K}, one can produce neighborhoods U of u and V of v as above which are disjoint.
(b) Exhibit a simple closed curve \mathcal{C} on \mathbb{K} for which $\mathbb{K} \backslash \mathcal{C}$ is path connected.

Draw \mathcal{C} on the space model for \mathbb{K} given on the back of this sheet.
Here are a couple examples (there are many others):

The complement of the red curve is a cylinder. The complement of the blue curve is a Möbius band. The red curve is drawn on the space model below.
(c) Give a "cut-and-paste" argument explaining why \mathbb{K} is homeomorphic to $\mathbb{P} \# \mathbb{P}$, where \mathbb{P} is the projective plane.

6. Let \mathbb{K} be the Klein bottle, and \mathbb{T} the torus.
(a) Sketch a plane model and write down a word that represents the connected sum $\mathbb{K} \# \mathbb{T}$.

one word representing $\mathbb{K} \# \mathbb{T}$ is $a b a^{-1} b r s r^{-1} s^{-1}$
(b) Is the surface $\mathbb{K} \# \mathbb{T}$ orientable? Explain.

No, if S_{1} and S_{2} are surfaces, with at least one nonorientable, then $S_{1} \# S_{2}$ is nonorientable.
Or, the presence of $\cdots b \cdots b \cdots$ in the word representing $\mathbb{K} \# \mathbb{T}$ indicates that this surface contains a Möbius band, and hence an orientation reversing loop.
(c) State the Classification Theorem for Surfaces.

What surface in this theorem is $\mathbb{K} \# \mathbb{T}$ homeomorphic to? Explain.
Any compact, path connected surface is homeomorphic to a sphere, a connected sum of tori, or a connected sum of projective planes.
Since $\mathbb{K} \cong \mathbb{P} \# \mathbb{P}$, and $\mathbb{P} \# \mathbb{T} \cong 3 \mathbb{P}$, we have $\mathbb{K} \# \mathbb{T} \cong \mathbb{P} \# \mathbb{P} \# \mathbb{T} \cong \mathbb{P} \# 3 \mathbb{P} \cong 4 \mathbb{P}$.
5. A space model for the Klein bottle \mathbb{K}, with simple closed curve \mathcal{C} for which $\mathbb{K} \backslash \mathcal{C}$ is path connected.

