- 1. (a) Solve the initial value problem $\frac{dy}{dx} = y^2 \sin x$, y(0) = 1. $y = \sec x$ solves the IVP
 - (b) Does the initial value problem in part (a) have a unique solution? Explain.

 It does. Use the existence and uniqueness theorem for first-order IVPs.
- 2. Find the general solution of each of the following differential equations.

(a)
$$y' + 4y = e^{-x}$$
 $y = \frac{1}{3}e^{-x} + Ce^{-4x}$

(b)
$$y'' + 10y' + 25y = 0$$
 $y = c_1 e^{-5x} + c_2 x e^{-5x}$

(c)
$$y'' - 2y' + 5y = 0$$
 $y = c_1 e^x \cos 2x + c_2 e^x \sin 2x$

- 3. (a) Solve the initial value problem y'' 4y = 0, y(0) = 1, y'(0) = 6. $y = 2e^{2x} e^{-2x}$
 - (b) Find a particular solution of the differential equation $y'' 4y = 8e^{2x} + 5\sin x.$ $y = 2xe^{2x} \sin x$
- 4. Consider the differential equation $x^2y'' 2xy' + 2y = 0$, x > 0.
 - (a) One solution of this differential equation is $y_1(x) = x$. Use the method of reduction of order to find a second linearly independent solution $y_2(x)$ on the interval $I = (0, \infty)$. Briefly explain why the solutions $y_1(x)$ and $y_2(x)$ are linearly independent on I.

$$y = Ax^2 + Bx$$
 is a solution by reduction of order, so $y_2 = x^2$ is a second solution

$$y_1 = x$$
 and $y_2 = x^2$ are not proportional on I , so are linearly independent on I

This can also be established using the Wronskian: $W[x, x^2] = x^2 \neq 0$ for x > 0

(b) Find the general solution of this differential equation.

$$y = c_1 x + c_2 x^2$$

- 5. Newton's law of cooling states that the rate of change of the temperature of an object with respect to time t is proportional to difference between the temperature, W(t), of the object at time t and the temperature, R, of the surrounding medium.
 - Suppose that the temperature of the water in my cup is 45° F at the beginning of class (at time t=0), and that room temperature $R=72^{\circ}$ F is constant. To determine the temperature of my water at the end of class using Newton's law of cooling, you would have to solve a certain initial value problem. Write this initial value problem down.

$$\frac{dW}{dt} = k(W - 72), \quad W(0) = 45$$