1. Consider the homogeneous system of linear equations, with coefficient matrix A:

(a) Find a row echelon matrix that is row equivalent to A, and find the rank of A.

	1	-2	1	-1	
The matrix A is row equivalent to	0	0	1	1	, so rank $A=2$.
	0	0	0	0	

(b) Find the solution set of this system of linear equations.

The solution set is $\{(2s+2t, s, -t, t) \mid s, t \in \mathbb{R}\}.$

(c) For this matrix A and any 3×1 constant vector \vec{b} , can you be certain that the non-homogeneous system of linear equations $A\vec{x} = \vec{b}$ is consistent? Explain.

You cannot be certain.

The system $A \vec{x} = \vec{b}$ is consistent if rank $A = \operatorname{rank} A^{\#}$, where $A^{\#} = [A \mid \vec{b}]$.

This need not be the case for every \vec{b} .

For instance, the system $A \vec{x} = \vec{b}$ is inconsistent if $\vec{b} = \begin{bmatrix} 1 & 1 & 8 \end{bmatrix}^T$.

2. Let
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & -2 \\ 1 & 0 & -2 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} 2 \\ 0 \\ 4 \end{bmatrix}$. The inverse of A is $A^{-1} = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & -1 \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$.

(a) Use Gauss-Jordan elimination to calculate the inverse of the matrix A by hand.

Row reduce [A | I] until you reach $[I | A^{-1}]$.

(b) Solve the system of linear equations $A\vec{x} = \vec{b}$.

The solution is
$$\vec{x} = A^{-1}\vec{b} = [10 - 4 \ 3]^T$$
.

(c) Does the homogeneous system $A^T \vec{x} = \vec{0}$ have infinitely many solutions? Explain.

Since A is nonsingular, A^T is also nonsingular. So $A^T\vec{x} = \vec{0}$ has only the trivial solution.

3. Consider the system of linear equations

where k is a constant.

(a) Find all values of k for which this system has infinitely many solutions.

The system has infintely many solutions if k = 1 or k = -1.

(b) Find all values of k for which this system has no solution.

The system has no solution k is any number other than 1 or -1.

(c) Are there any values of k for which this system has a unique solution? Explain.

There are not. For instance, the rank of the coefficient matrix is 2, which is less than the number of variables.

4. Consider the matrix $A = \begin{bmatrix} 3 & 2 & 0 & 1 \\ 2 & 4 & 2 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$.

(a) Calculate the determinant of the matrix A.

The determinant of this matrix is -18.

(b) Can the answer to part (a) be used to determine if the matrix A is nonsingular? Explain.

It can: det $A \neq 0$ if and only if A is nonsingular.