Write this system in vector form, find the rank of the coefficient matrix, and find the solution set of the system.

2. Consider the matrix
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & -3 & 4 \\ 1 & -1 & 3 \end{bmatrix}$$
 and the constant vector $\vec{b} = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$.

(b) Use your answer from part (a) to solve the system of equations
$$A\vec{x} = \vec{b}$$
.

3. Consider the matrix
$$A = \begin{bmatrix} 2 & -1 & 3 & 1 \\ 1 & 4 & -2 & 3 \\ 0 & 1 & -1 & 0 \\ 1 & 3 & -2 & 4 \end{bmatrix}.$$

(b) If B is a
$$4 \times 4$$
 matrix with $det(B) = -7$, what is the determinant of the product AB? Explain.

(c) Can a system
$$A\vec{x} = \vec{b}$$
 involving this matrix A, and any constant vector \vec{b} , be inconsistent? Explain.

4. Consider the homogeneous system of linear equations
$$(1-\lambda)x_1 + 2x_2 + 6x_3 = 0 \\ (2-\lambda)x_2 + 3x_3 = 0 \\ x_2 + (4-\lambda)x_3 = 0$$

(a) Find all values of
$$\lambda$$
 for which this system has infinitely many solutions.

(b) Find the solution set of this homogeneous system when
$$\lambda = 1$$
.