- 1. Consider the vectors $\vec{v}_1 = (1, 3, 4), \vec{v}_2 = (0, 1, 1), \vec{v}_3 = (-1, 0, -1), \vec{v}_4 = (5, 3, -2)$ in \mathbb{R}^3 .
 - (a) Determine if the set of vectors $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$ spans \mathbb{R}^3 .
 - (b) Determine if this set of vectors is linearly independent.
 - (c) Does this set of vectors form a basis for \mathbb{R}^3 ? Explain.
- 2. Recall that the trace of a square matrix is the sum of the diagonal entries. Let S be the set of all 2×2 matrices with real entries and zero trace: $S = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \text{ real, and } a + d = 0 \right\}$.
 - (a) Show that S is a subspace of $\mathbb{M}_2(\mathbb{R})$, the vector space of all 2×2 matrices with real entries.
 - (b) Verify that $\left\{ \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} \right\}$ is a basis for S.
 - (c) Find the components of the matrix $A = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix}$ with respect to the basis in part (b). In other words, express the matrix A as a linear combination of the matrices given in part (b).
- 3. (a) Consider the mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x_1, x_2, x_3) = (x_1 + x_2, x_3, k)$, where k is a scalar. Find all values of k for which T is a linear transformation, and find the matrix of T for these values of k.
 - (b) If $T: \mathbb{R}^3 \to \mathbb{R}$ is a linear transformation and T(1,0,0)=1, T(1,1,0)=3, T(1,1,1)=5, find T(2,4,6).
- 4. Consider the matrix $A = \begin{bmatrix} 2 & 0 & -1 \\ 2 & 3 & 1 \\ -4 & 0 & 2 \end{bmatrix}$ and the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(\vec{x}) = A\vec{x}$.
 - (a) Find a basis for Ker(T), the kernel of the linear transformation T. What is the dimension of Ker(T)?
 - (b) Find a basis for Rng(T), the range of the linear transformation T. What is the dimension of Rng(T)?
 - (c) Do the rows of the matrix A form a basis for \mathbb{R}^3 ? Explain.
 - (d) Determine all eigenvalues and corresponding eigenvectors of the matrix A.