
MATH 2057 Exam 2 Information Spring 2011

Exam 2 will take place on Tuesday, March 22. It will cover section 14.8 and the first four sections of Chapter
15. (Cylindrical and spherical coordinates, used in section 15.4, are introduced in section 12.7.) Some remarks
concerning this material are included below. Books, notes, calculators, etc. may not be used on the exam.

If you have questions regarding this material, be ready to ask them in class in the next week. You may
also make use of my office hours, and the free tutoring available in 141B Middleton Library (hours: M–Th
10:00–7:00, F 10:00–3:00). I don’t know when people capable of tutoring for MATH 2057 are available.

Some review problems are included on the next page. This is not a comprehensive list. Additional problems
may be found in the Exercises of the sections we’ve covered, and in the WeBWorK assignments. Some
potentially relevant problems from the Chapter Review Exercises are:

§14.8 (p. 871) #54, 55, 57, 60 Ch. 15 (p. 937) #5–17 odd, 19, 20, 22, 26, 27, 29, 31, 33–39

§14.8 Lagrange multipliers. To find the extreme values of f(x, y, z) subject to the constraint g(x, y, z) = 0,
find all values of x, y, z, and λ such that ∇f(x, y, z) = λ∇g(x, y, z) and g(x, y, z) = 0. Then evaluate f at
the points (x, y, z) you found, and identify the maximum and minimum values, if any. If f has an extremum
subject to the constraint g = 0 at P = (x0, y0, z0) (and ∇gP 6= 0), there is a scalar λ0 so that ∇fP = λ0∇gP .
There is an analogous 2-variable version of this method, see e.g., Example 1. I will not ask you to consider
problems involving two constraints (see Example 4) on the exam.

Chapter 15. The focus of this chapter is on extending the basic notions of integral calculus to functions of two
or more variables.

I will try to avoid lengthy techniques of integration problems on the exam (you were presumably tested on
these in Calulus II). But standard techniques such as u-substitution and integration by parts are fair game.

§15.1 Double integrals over rectangles are introduced in this section, and Fubini’s Theorem for calculating
these via iterated integrals is discussed. I will not ask you to work directly with the definition of a double
integral (involving Riemann sums) on the exam. But you should be aware of this definition, properties of
double integrals, and the geometric interpretations, related notions, and applications discussed in this chapter.

§15.2 Double integrals over simple regions may also be calculated using iterated integrals, see Theorem 2
on page 888. These are our main computational tools for dealing with double integrals, and you should be
comfortable with them. Be able to (quickly) decide what is the best way to express a given region, to set up
iterated integrals over vertically and horizontally simple regions, to change the order of integration if necessary
(and to recognize when this is necessary), and of course to calculate iterated integrals.

§15.3 Triple integrals over boxes and more generally simple solids may also be calculated via iterated integrals,
see for instance Theorem 2 on page 901. Again, be able to decide what is the best way to express a given solid,
to set up and evaluate iterated integrals over simple solids. Applications of triple integrals include volume,
average value (of a function of three variables), mass, center of mass. . .

§15.4 Integration in polar, cylindrical and spherical coordinates. If D = {(r, θ) | θ1 ≤ θ ≤ θ2, α(θ) ≤ r ≤ β(θ)}
is a polar region, and f is continuous on D, you should be able to calculate

∫∫
D f(x, y) dA by switching to polar

coordinates, see page 912. When carrying this out, do not forget that the “polar element of area” is r dr dθ. If
W is a solid of the form θ1 ≤ θ ≤ θ2, α(θ) ≤ r ≤ β(θ), z1(r, θ) ≤ z ≤ z2(r, θ), and f is continuous on W , the
triple integral

∫∫∫
W f(x, y, z) dV may be calculated by switching to cylindrical coordinates, see page 914. In

particular, the “element of volume” is r dz dr dθ. If W is of the form θ1 ≤ θ ≤ θ2, φ1 ≤ φ ≤ φ2, ρ1(φ, θ) ≤ ρ ≤
ρ2(φ, θ), and f is continuous on W , the triple integral

∫∫∫
W f(x, y, z) dV may be calculated by switching to

spherical coordinates, see page 917. In particular, the “element of volume” is ρ2 sin(φ) dρ dφ dθ. Be prepared
to set up and evaluate multiple integrals by changing to one of these coordinate systems. For this, you will
need to be able to make translations between rectangular and polar, cylindrical, and spherical coordinates.
You should also develop enough experience with these regions and solids and multiple integrals to recognize
when switching to polar, cylindrical, or spherical coordinates is appropriate.
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Remarks.

I will expect you to know the trigonometric identity sin2 θ + cos2 θ = 1, and related identities. If necessary,
I will give you other identities, such as half-angle and double-angle formulas. I will also expect you to know
the values of the trigonometric functions at “standard angles” such as those given below (in radians).

θ 0 π/6 π/4 π/3 π/2

sin θ 0 1/2
√

2/2
√

3/2 1

cos θ 1
√

3/2
√

2/2 1/2 0

From these, and the graphs of the sine and cosine functions, with which you should also be intimately
acquainted, you can determine the values of the trigonometric functions at many other “standard angles.”

I will also expect you to know basic properties of exponentials and logarithms.

Review Problems.

1. Use Lagrange multipliers to find the maximum and minimum values of f(x, y, z) = x2 + y2 + z2 subject to
the constraint z2 − xy = 1.

2. Let D be the region in the first quadrant bounded by x = y2, y = 0, and x = 1. Evaluate

∫∫
D

y sin(πx2) dA.

3. Use a double integral to find the area of the region inside one loop of the three-leaved rose r = cos(3θ).

4. A plane lamina occupies the region D in the xy-plane bounded by the x = 1, y = 1, and xy = 2. The
density at the point (x, y) in this region is given by ρ(x, y) = 4xy. Find the center of mass of the lamina.

5. Consider the solid bounded by the surface z = 1− y2 and the planes x = 0, z = 0, y = 1, and y = x.

(a) Make a beautiful sketch of this solid.

(b) Use a double integral to find the volume of this solid.

6. Use cylindrical or spherical coordinates, whichever is most appropriate.

(a) Let E be the solid in the first octant bounded by the cone z =
√
x2 + y2, and the plane z = 2.

Evaluate
∫∫∫

E xyz dV .

(b) Find the volume common to the spheres x2 + y2 + z2 = 9 and x2 + y2 + (z − 2)2 = 4

Selected Review Problem Answers.

1. Use Lagrange multipliers to find the maximum and minimum values of f(x, y, z) = x2 + y2 + z2 subject to
the constraint z2 − xy = 1.

The system of equations one must solve, ∇f(x, y, z) = λ∇g(x, y, z), g(x, y, z) = k, is:

2x = −λy, 2y = −λx, 2z = 2λz, z2 − xy = 1.

From the third of these equations, either z = 0 or λ = 1.

If z = 0, then y = −1/x (from the fourth equation). Use this in the first two equations to see that x4 = 1,
so x = 1 or x = −1. If x = 1, then y = −1. If x = −1, then y = 1. So we must consider the points (1,−1, 0)
and (−1, 1, 0).

If λ = 1, use the first two equations to show that x = 0 and y = 0. Then the fourth equation reads z2 = 1.
So z = 1 or z = −1, and we must consider the points (0, 0, 1) and (0, 0,−1).

f(1,−1, 0) = f(−1, 1, 0) = 2 is the maximum, and f(0, 0, 1) = f(0, 0,−1) = 1 is the minimum



2. Let D be the region in the first quadrant bounded by x = y2, y = 0, and x = 1. Evaluate

∫∫
D

y sin(πx2) dA.

D = {(x, y) | y2 ≤ x ≤ 1, 0 ≤ y ≤ 1} = {(x, y) | 0 ≤ y ≤
√
x, 0 ≤ x ≤ 1}∫∫

D

y sin(πx2) dA =

∫ 1

0

∫ 1

y2
y sin(πx2) dx dy =

∫ 1

0

∫ √x
0

y sin(πx2) dy dx =
1

2π

Evaluate the second of the two iterated integrals above (the one on the right).

3. Use a double integral to find the area of the region inside one loop of the three-leaved rose r = cos(3θ).

Let D be the region inside the loop of r = cos(3θ) that lies in the first and fourth quadrants (see below).

This region is given by D = {(r, θ) | 0 ≤ r ≤ cos(3θ),−π/6 ≤ θ ≤ π/6}. The area of D is A =

∫∫
D

1 dA.

Using polar coordinates, we have A =

∫ π/6

−π/6

∫ cos(3θ)

0
r dr dθ =

π
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4. A plane lamina occupies the region D in the xy-plane bounded by the x = 1, y = 1, and xy = 2. The
density at the point (x, y) in this region is given by ρ(x, y) = 4xy. Find the center of mass of the lamina.

The mass is m =

∫ 2

1

∫ 2/x

1
4xy dy dx = 8 ln(2)− 3. The center of mass is (x̄, ȳ), where

x̄ =
1

m

∫ 2

1

∫ 2/x

1
4x2y dy dx =

10

3m
and ȳ =

1

m

∫ 2

1

∫ 2/x

1
4xy2 dy dx =

10

3m

5. Consider the solid bounded by the surface z = 1− y2 and the planes x = 0, z = 0, and y = x.
(a) Make a beautiful sketch of this solid. See below.
(b) Use a double integral to find the volume of this solid.

V =

∫ 1

0

∫ 1

x
(1− y2) dy dx =

∫ 1

0

∫ y

0
(1− y2) dx dy =

1

4

6. Use cylindrical or spherical coordinates. . .

(a)

∫ π/2

0

∫ 2

0

∫ 2

r
r3 z sin θ cos θ dz dr dθ =

∫ π/2

0

∫ π/4

0

∫ 2/ cosφ

0
ρ5 sin3 φ cosφ sin θ cos θ dρ dφ dθ =

4

3

(b)

∫ 2π

0

∫ 3
√
7/4

0

∫ √9−r2
2−
√
4−r2

r dz dr dθ +

∫ 2π

0

∫ 2

3
√
7/4

∫ 2+
√
4−r2

2−
√
4−r2

r dz dr dθ =
63π

8∫ 2π

0

∫ cos−1(3/4)

0

∫ 3

0
ρ2 sinφdρ dφ dθ +

∫ 2π

0

∫ π/2

cos−1(3/4)

∫ 4 cosφ

0
ρ2 sinφdρ dφ dθ =

63π
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Many additional problems may be found in the Chapter 14 and 15 Review Exercises, and in the WeBWorK
assignments. If you would like to try problems that are numerically different, but conceptually the same as
the problems you’ve done in WeBWorK, log in with Username: aaaaaa and Password: 123456789.


