
LECTURE 1
Equivariant Homology and Intersection Homology

(Geometry of Pseudomanifolds)

1.1. Introduction

〈1.1〉 In this lecture, we will give a geometric way of defining equivariant homology
and equivariant intersection homology. The standard definitions of these homology
theories, as found in the literature, are good for proving properties, but are perhaps
not so intuitive. In this lecture, we will consider G X : an action of a general Lie
group G on a space X , although in the other lectures we are interested mainly in
the case that G is a torus T .

〈1.2〉 The definitions we present are based on the notion of a pseudomanifold. A
k-dimensional manifold is a space that looks locally like k-dimensional Euclidean
space near every point. A k-dimensional pseudomanifold P is allowed to have
singularities, i.e. points where it doesn’t locally look like Euclidean space. However,
it must satisfy two properties:

(1) The part of P where it is a k-manifold is open and dense in P and it must
be oriented.

(2) The set of singularities has dimension at most k − 2 (i.e. codimension at
least 2).

A pseudomanifold (the pinched torus)
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There are several ways to make this intuitive notion of a pseudomanifold rigorous.
We will use simplicial complexes, because that is the one most in keeping with the
spirit of these notes. Readers who are comfortable with pseudomanifolds can skip
directly to §1.4

〈1.3〉 Equivariant homology theories are difficult to compute directly from the de-
finitions as given in this Lecture. However, the methods of Lectures 3 to 5 provide
effective computations in many interesting cases.

1.2. Simplicial Complexes

Readers familiar with simplicial complexes and orientations can skip this section.

〈2.1〉 A k-simplex ∆ is the convex hull of k +1 points p0, . . . , pk in general position
in some Euclidean space. Here general position just means that the points don’t all
lie in any (k − 1)-dimensional Euclidean subspace. The k-simplex is a polyhedron.
Its faces are themselves simplices; they are the convex hulls of subsets of the points
pi. The points pi are the vertices of ∆.

0-simplex 1-simplex 2-simplex 3-simplex

〈2.2〉 Definition. A simplicial complex is a set S of simplices in some Euclidean
space with the properties

(1) Any two simplices in S are either disjoint or intersect in a set that is a
face of each of them.

(2) Any face of a simplex in S is itself in S.

〈2.3〉 Spaces of finite type. We define a space of finite type to be a topological
space homeomorphic to the difference S − S′ where S is a simplicial complex and
S′ is a sub simplicial complex. We will assume without further mention that all
of our spaces are of finite type. Spaces generated by finite operations, such as
real algebraic varieties, or their images under algebraic maps, are all of finite type
(although proving it takes technology developed over many years). On the other
hand, a Cantor set, or Z are not of finite type.

〈2.4〉 An orientation O of a simplex ∆ is an ordering of the vertices of ∆, two
orderings being considered equivalent if one is an even permutation of the other.
(This definition doesn’t work for a 0-simplex. An orientation of a 0-simplex is
simply one of the symbols + or −.) Any simplex has exactly two orientations,
these two orientations are called opposite orientations of each other.

〈2.5〉 An orientation of a Euclidean space is an ordered set of basis vectors, two
being considered equivalent if one is a continuous deformation of the other. We
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can draw an orientation by representing the basis vectors as arrows, and signaling
the ordering by placing the tail of each arrow at the head of the previous one.
An orientation O of k-simplex ∆ determines an orientation of the k-dimensional
Euclidean space E containing ∆ as follows: Suppose O = {p0 < p1 < · · · < pk}.
Then {p1 − p0, p2 − p1, . . . , pk − pk−1} is the ordered basis.

Exercise. Show that two orientations of ∆ are equivalent if and only if they
determine equivalent ordered bases of E.

〈2.6〉 If ∆ is a k-simplex and ∆′ is a (k−1)-simplex, an orientation O of ∆ induces
an orientation O′ of ∆′ as follows: Pick an equivalent ordering such that the unique
vertex of ∆ not in ∆′ is the last one of the ordering. Then O′ is the restriction of
that ordering to ∆′. (This definition doesn’t work if ∆ is a 1-simplex. In this case,
O′ is − if ∆′ is the first vertex of the ordering, and it is + if it is the second one.)

1.3. Pseudomanifolds

〈3.1〉Definition. A k-dimensional pseudomanifold is a simplicial complex together
with an orientation O(∆) of each of its k-simplices, with the following properties:

(1) Every simplex is a face of some k-simplex.
(2) Every (k − 1)-simplex is the face of exactly two k-simplices.
(3) (The continuity of orientation property) If ∆′ is a (k − 1)-simplex and ∆

and ∆̃ are the two k-simplices that contain ∆′ in their boundary, then the
given orientations O(∆) and O(∆̃) induce opposite orientations on ∆′.

A pseudomanifold (the simplicial pinched torus)
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〈3.2〉 The following exercise shows why property 3 is called continuity of orientation.

Exercise. Suppose that ∆ and ∆̃ are two k-simplices in a Euclidean k-space, and
that they intersect in a (k − 1)-simplex ∆′. Show that the orientations O(∆) and
O(∆̃) induce opposite orientations on ∆′ if and only if the ordered basis for E
determined by ∆ as in exercise 1.2.5 can be continuously deformed into the ordered
basis for E determined by O(∆̃).

A path in the space of ordered bases of the plane

〈3.3〉 Definition. A k-dimensional pseudomanifold with boundary is a simplicial
complex S, an orientation O(∆) of each of its k-simplices, and a sub simplicial
complex B called the boundary, with the following properties:

(1) The boundary B is a (k − 1)-dimensional pseudomanifold
(2) Every simplex of S is a face of some k-simplex.
(3) Every (k − 1)-simplex ∆′ that not in B is the face of exactly two k-

simplices, and the continuity of orientation property holds for ∆′.
(4) Every (k−1)-simplex ∆′ in B is the face of exactly one k-simplex ∆ in S.

The orientation of ∆′ induced from O(∆) coincides with the orientation
O(∆′) of ∆′ from the pseudomanifold structure on B.

〈3.4〉 Exercise. Show that the continuity of orientation property for the boundary
B of a pseudomanifold with boundary follows from the other properties in the
definition.

1.4. Ordinary Homology Theory

As a warm up, we will give a definition of ordinary homology theory in the spirit
of the definitions of more complicated theories to come. This definition of ordinary
homology has roots going back to Poincaré and Veblen and the earliest days of
homology theory.

〈4.1〉 Definition. Let X be a topological space. An i-cycle is an i-dimensional
pseudomanifold P together with a map σ : P −→ X .

The idea is that an i-cycle captures the “holes” in a topological space by sur-
rounding them. For example, the following 1-cycle surrounds the hole in the annu-
lus:
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We will refer to the i-cycle σ : P −→ X by the symbol P when there’s no
confusion about what σ is.

〈4.2〉 Definition. If σ1 : P1 −→ X and σ2 : P2 −→ X are two i-cycles, then the
sum P1 + P2 is their union σ : P1 ∪ P2 −→ X where σ|P1 = σ1 and σ|P2 = σ2.

The negative −P of an i-cycle is the same i-cycle P with the opposite orientation
for every i-simplex. As usual, P1 − P2 is P1 + (−P2).

〈4.3〉 Definition. A cobordism between two i-cycles σ1 : P1 −→ X and σ2 :
P2 −→ X is a (i + 1)-dimensional pseudomanifold with boundary C, and a map
σ : C −→ X such that the boundary B of C is P1 − P2 and the restriction of σ to
B coincides with σ1 and σ2. Two i-cycles σ1 : P1 −→ X and σ2 : P2 −→ X are
said to be cobordant if there is a cobordism between them.

The 1-cycles P1 and P2 are cobordant

The idea behind this definition is that if P1 and P2 are cobordant, they surround
the same holes in the same way. For example, if σ has appropriate differentiability
assumptions so that it makes sense, any closed differential i-form will have the same
integral on P1 and on P2, by Stokes’ Theorem.

〈4.4〉 Proposition. Cobordism is an equivalence relation among i-cycles.

Exercise Prove this. For example, if S1 is a cobordism between P1 and P2, and
S2 is a cobordism between P2 and P3, then S1 and S2 can be glued together to
provide a cobordism between P1 and P3.
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〈4.5〉 Definition – Proposition. The i-th homology, notated Hi(X), is the set
of cobordism classes of i-cycles. The operations + and − induce the structure of
an Abelian group on this set. The identity element is represented by the empty
pseudomanifold.

〈4.6〉 For example, if X is the annulus, H0(X) is Z generated by a point, and
H1(X) is Z generated by the cycle P1 or P2 as in the pictures above.

〈4.7〉 Exercise. Show for any X that H0(X) is Zk where k is the number of path
connected components of X .

〈4.8〉 Convention. We write H∗(X) for
⊕

i Hi(X). It’s a summation convention:
wherever a star appears, it means a direct sum over the possible indices i that
might appear there.

1.5. Basic Definitions of Equivariant Topology

〈5.1〉 A topological group G is a set that is simultaneously a group and a topological
space, with the property that the multiplication operation G × G −→ G and the
inverse operation G −→ G are both continuous. G is a Lie group if it is one of our
spaces of finite type §1.2.3 (or, what turns out to be the same thing for topological
groups, if it’s a topological manifold with finitely many connected components.)

〈5.2〉 A space with a group action G X is a topological space X (which for us will
always be of finite type), and an a map G×X −→ X that is continuous, such that
(g · g′)x = g(g′(x)) (§0.1.5).

〈5.3〉 The equivariant category. Suppose G X and G′ X ′ are two topological
spaces with a group action. A morphism G X =⇒ G′ X ′ is a continuous group
homomorphism φ : G −→ G′ together with a continuous map ψ : X −→ X ′ such
that ψ(gx) = φ(g)ψ(x).

For example, for any G X there is a canonical morphism G X =⇒ 1 X/G.
Here 1 is the one element group; X/G is the quotient space X/∼ where ∼ is the
equivalence relation x ∼ x′ if there is a g ∈ G such that gx = x′; φ : G −→ 1 is the
only thing it could be; and φ : X −→ X/G is the quotient map.

〈5.4〉 G equivariant maps. If G is a fixed group, then the category of G-spaces is
the sub category of the equivariant category where the map φ on G is the identity.
The maps in this category are called G equivariant maps. In other words, if X and
X ′ are both G-spaces, then an equivariant map from X to X ′ is a continuous map
ψ : X −→ X ′ such that ψ(gx) = gψ(x) for all g ∈ G and all x ∈ X . We consider
two G spaces equivalent if they are isomorphic in this category. This means that
the map ψ is a homeomorphism.

〈5.5〉 Free actions. An action of G on X is free if no element of G except the
identity fixes any point in X , i.e. gx = x implies g is the identity.

Another commonly used terminology for the same thing is this: The map
π : X −→ X/G is called a principal G-bundle if and only if the action G X
is free. In this terminology, X/G is called the base of the principal bundle; X is
called the total space; and π is called the projection.

Yet another popular terminology is to say that X is a G-torsor over X/G.


