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Abstract.

Let A be an affine hyperplane arrangement in C! with complement
U . Let f1, . . . , fn be linear polynomials defining the hyperplanes of A,
and A· the algebra of differential forms generated by the one-forms
d log f1, . . . , d log fn. To each λ ∈ Cn we associate the master function
Φ =

∏n
i=1 f

λi
i on U and the closed logarithmic one-form ω = d logΦ.

We assume ω is a general element of a rational linear subspace D of
A1 of dimension q > 1 such that the map

∧k(D) → Ak given by
multiplication in A· is zero for all p < k ≤ q, and is nonzero for
k = p. With this assumption, we prove the critical locus crit(Φ) of Φ
has components of codimension at most p, and these are intersections
of level sets of p rational master functions. We give conditions that
guarantee crit(Φ) is nonempty and every component has codimension
equal to p, in terms of syzygies among polynomial master functions.

If A is p-generic, then D is contained in the degree p resonance
variety Rp(A)—in this sense the present work complements previous
work on resonance and critical loci of master functions. Any arrange-
ment is 1-generic; we give a precise description of crit(Φλ) in case λ lies
in an isotropic subspaceD of A1, using the multinet structure on A cor-
responding to D ⊆ R1(A). This is carried out in detail for the Hessian
arrangement. Finally, for arbitrary p and A, we establish necessary
and sufficient conditions for a set of integral one-forms to span such a
subspace, in terms of nested sets of A, using tropical implicitization.
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§1. Introduction

Let A = {H1, . . . , Hn} be an arrangement of distinct affine hyper-
planes in C!, with complement U = C! −

⋃n
i=1 Hi. Choose a linear

polynomial fi with zero locus Hi, for each i. Let λ = (λ1 . . . ,λn) ∈ Cn,
and consider the master function

Φλ =
n∏

i=1

fλi
i .

The multi-valued function Φλ has a well-defined critical locus

crit(Φλ) = {x ∈ U | dΦλ(x) = 0}.

Indeed, crit(Φλ) coincides with the zero locus V (ωλ) of the single-valued
closed logarithmic one-form

ωλ = d log(Φλ) =
n∑

i=1

λid log(fi).

In particular, crit(Φλ) is unchanged if λ is multiplied by a non-zero
scalar. We are interested in the relation between crit(Φλ) and algebraic
properties of the cohomology class represented by ωλ in H1(U,C).

For certain arrangements A and weights λ, the critical points of Φλ

yield a complete system of eigenfunctions for the commuting hamilito-
nians of the sln(C)-Gaudin model, via the Bethe Ansatz [23, 25, 17].
That application was the origin of the term master function, introduced
in [28]. Much of that theory depends only on combinatorial properties of
arrangements, and can be formulated in that general setting—see [29].

Let A· denote the graded C-algebra of holomorphic differential forms
on U generated by {d log(fi) | 1 ≤ i ≤ n}. By a well-known result of
Brieskorn, the inclusion of A· into the de Rham complex of U induces
an isomorphism in cohomology, and thus A· ∼= H ·(U,C), see [1, 4]. In
particular A1 ∼= Cn. Since ωλ ∧ ωλ = 0, left-multiplication by ωλ makes
A· into a cochain complex (A·,ωλ). For generic λ, Hp(A·,ωλ) = 0
for p < #, and dimH!(A·,ωλ) = |χ(U)|, see [24, 30]. At the same
time, for generic λ, Φλ has |χ(U)| isolated, nondegenerate critical points
[27, 20, 26]. Here we are concerned with Hp(A·,ωλ) and crit(Φλ) when
λ is not generic.

For p < #, the ω for which Hp(A·,ω) (= 0 comprise the pth resonance
variety Rp(A) of A, a well-studied invariant of A·. On the other hand,
precise conditions on λ guaranteeing that Φλ has |χ(U)| isolated critical
points are not known. There are also examples where the critical points
of Φλ are isolated but degenerate.
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In some cases crit(Φλ) is positive-dimensional. If A is a discrim-
inantal arrangement, in the sense of [24], then for certain choices of
integral weights λ arising from a simple Lie algebra g, crit(Φλ) has com-
ponents of the same positive dimension [25, 16, 18]. In the particular
case g = sl2(C) of this situation, the codimension of crit(Φλ) is #− 1. In
this case, it was shown in [6] that ωλ ∈ R!−1(A) for these λ, with the
rank of the skew-symmetric part of H!−1(A·,ωλ) equal to the number
of components of crit(Φλ).

Our work in [5] provides a weak generalization of these results.
There we study the universal critical set, the set Σ of pairs (x, a) such
that x ∈ V (ωa). For fixed λ, crit(Φλ) is the a = λ slice of Σ. Let Σ be
the Zariski closure of Σ in C! × Cn, and Σλ the a = λ slice of Σ. In [5]
we show, if ωλ ∈ Rp(A), then Σλ has codimension at most p, provided
A is tame and either p ≤ 2 or A is free. See [5] for definitions of free and
tame arrangements; any affine arrangement in C2 is tame. It is not true
in general that Σλ is the closure of Σλ. Indeed, Σλ may be empty under
the given hypotheses—that is, Σλ ⊆ C! × Cn may lie over

⋃n
i=1 Hi.

In this paper, we obtain somewhat more precise information on
crit(Φλ), for more general arrangements, but impose a different hypoth-
esis on ωλ. Namely, we assume that ωλ has a decomposable cocycle, that
is, there exists ψ ∈ Ap such that ωλ ∧ ψ = 0, and ψ is a product of p
elements of A1, whose linear span does not include ωλ.

We say a subspace D of A1 is singular if the multiplication map∧q(D) → Aq is zero, where q = dimD. Let p be maximal such that∧p(D) → Ap is not the zero map. If ω = d log(Φ) ∈ D−{0}, then ω can
be included in a basis of D, and any p-fold product of the other basis
elements is a decomposable p-cocycle for ω.

We assume that D is a rational subspace of A1, that is, D has a
basis Λ = {ωξ1 , . . . ,ωξq} with each ωξj an integer linear combination
of d log(f1), . . . , d log(fn). Associated to Λ is a rational mapping ΦΛ =
(Φξ1 , . . . ,Φξq ) : C! ! Cq, whose image is a quasi-affine subvariety Y =
YΛ of Cq. The dimension of Y is p. If ω = d log(Φ) ∈ D, then the
critical locus crit(Φ) is consists of fibers of ΦΛ and singular points of
ΦΛ. In particular, for generic ω ∈ D, crit(Φ) has codimension at most
dim(Y ) = p. We obtain more precise conclusions in case the projective
closure Y is a curve (p = 1) or a hypersurface (p = q − 1), or Y is
nonsingular and meets the coordinate hyperplanes transversely. If Y is
linear, of any codimension, with Y = Y ∩ (C∗)q and ΦΛ nonsingular,
we get a complete description of the crit(Φ) for d log(Φ) ∈ D, in terms
of critical loci of master functions on the complement of the rank-p
arrangement cut out on Y by the coordinate hyperplanes.
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Every component of R1(A) is a rationally-defined and isotropic lin-
ear subspace [14], and every element of R1(A) has a decomposable co-
cycle. Moreover, by the theory of multinets and Čeva pencils [10], we
can choose Λ so that the variety YΛ corresponding to a component of
R1(A) is linear. We carry out the entire analysis in detail in this case,
with special attention to the Hessian arrangement, the one case we know
for which YΛ is not a hypersurface.

Our approach lends itself to tropicalization, using the main result of
[7]. Using the nested set subdivison of the Bergman fan [11], we derive
a rank condition for a product of integral one-forms ωξ1 ∧ · · · ∧ ωξq to
vanish. The rank condition can be used in case A is p-generic to give
a combinatorial description of the (p+ 1)-tuples of integral forms in A1

whose product vanishes, analogous to the description of R1(A) in terms
of neighborly partitions—see [2].

The outline of this paper is as follows. In Section 2 we introduce
Orlik–Solomon algebras and resonance varieties, prove a general result
about zero loci of differential forms, and compute critical loci directly
for some examples, including the Hessian arrangement. In Section 3 we
consider logarithmic one-forms with decomposable p-cocycles satisfying
the rationality criterion above, obtaining a precise description of their
zero loci, especially in case ΦΛ is nonsingular and Y Λ is a hypersurface
meeting the coordinate hyperplanes transversely. We revisit the exam-
ples from Section 2. In Section 4 we treat the case where Y Λ is linear,
returning to the example of the Hessian arrangement. In Section 5 we
formulate a test for existence of decomposable cocycles using tropical
implicitization.

§2. Resonance, vanishing products, and zeros of one-forms

It will be more convenient for us to consider arrangements of pro-
jective hyperplanes in complex projective space P!. Let [x0 : · · · : x!]
be homogeneous coordinates on P!, and let αi : C!+1 → C be a nonzero
homogeneous linear form, for 0 ≤ i ≤ n. Assume without loss that
α0(x) = x0. Let Hi = ker(αi), considered as a projective hyper-
plane in P!, and let A = {H0, . . . , Hn}. We will denote the corre-
sponding linear hyperplanes in C!+1 by cHi, comprising the central ar-
rangement cA = {cH0, . . . , cHn}. Let U = P! −

⋃n
i=0 Hi. We identify

[1 : x1 : · · · : x!] ∈ P! −H0 with (x1, . . . , x!) ∈ C!, and set

fi(x1, . . . , x!) = αi(1, x1, . . . , x!)

for 1 ≤ i ≤ n. Then we recover the affine arrangement A of the Intro-
duction, with the same complement U . In P!, U is the complement of
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the singular projective hypersurface defined by

Q =
n∏

i=0

αi,

the (homogeneous) defining polynomial of A.

2.1. The projective Orlik–Solomon algebra

Let Ω·(U) be the complex of holomorphic differential forms on U .
The Orlik–Solomon algebra of A is the subalgebra A·(A) of Ω·(U) gen-
erated by d log(fi), 1 ≤ i ≤ n, as in the Introduction.

We will also study A·(A) in homogeneous coordinates. Let ωi =
d log(αi) for 0 ≤ i ≤ n, and let A·(cA) be the algebra of holomorphic
forms on C!+1 generated by ω0, . . . ,ωn. Define ∂ : A·(cA) → A·(cA) by

∂(ωi1 ∧ · · · ∧ ωik) =
k∑

j=1

(−1)j−1ωi1 ∧ · · · ∧ ω̂ij ∧ · · · ∧ ωik

and extending linearly. Then ∂ is a graded derivation of degree -1, and

∂
( n∑

i=0

ciωi

)
=

n∑

i=0

ci.

In general, a holomorphic p-form on C!+1 − {0} descends to a well-
defined form on P! if and only if it is C∗-invariant and its contraction
along the Euler vector field

∑n
i=0 xi

∂
∂xi

vanishes, see [8]. This contrac-
tion, on A·(cA), is given by ∂, and A·(cA) consists of C∗-invariant forms.
Then we may identify A·(A) with the subalgebra ker(∂) of A·(cA). This
is easily seen to coincide with the subalgebra of A·(cA) generated by
ker(∂) ∩A1(cA).

With our choice of coordinates, d log(fi) = ωi − ω0 under this iden-
tification. {ω1 − ω0, . . . ,ωn − ω0} generates A· by the remark above.
Also, (A·(cA), ∂) is an exact complex, so that im(∂) = ker(∂) = A·(A),
see [19].

There is a well-known presentation of A·(cA) as a quotient of the
exterior algebra E· =

∧·(e0, . . . , en). For C = {i1, . . . , ik} ⊆ {0, . . . , n},
write eC = ei1 · · · eik ∈ Ek. Say C is a circuit of cA if C is minimal with
the property that

codim
⋂

j∈C

Hj < |C|.

Then A·(cA) is isomorphic to E·/I, where

I =
(
∂eC | C is a circuit of cA

)
.
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2.2. Resonance varieties

Let ω =
∑n

i=0 λiωi, where λ = (λ0, . . . ,λn) ∈ Cn+1. Assume that
∂ω =

∑m
i=0 λi = 0. Since d log(fi) = ωi − ω0, ω =

∑n
i=1 λi d log(fi).

Then ω ∈ A1, and ω ∧ ω = 0, so we obtain a cochain complex

0 −→ A0 ω∧−−−−→ · · · ω∧−−−−→ Ap ω∧−−−−→ · · · ω∧−−−−→ A! −→ 0.

Let

Zp(ω) = {ψ ∈ Ap | ω ∧ ψ = 0},
Bp(ω) = {ψ ∈ Ap | ψ = ω ∧ ϕ for some ϕ ∈ Ap−1}, and

Hp(A·,ω) = Zp(ω)/Bp(ω).

Then
Rp(A) = {ω ∈ A1 | Hp(A·,ω) (= 0}

is, by definition, the pth resonance variety of A.
As observed in the Introduction,

ω = d log(Φ) =
dΦ

Φ
,

where Φ =
∏n

j=1 f
λj

j , and crit(Φ) coincides with the zero locus of ω. In

homogeneous coordinates, Φ is given by
∏n

j=0 α
λj

j .

2.3. Zeros of forms

We start with an elementary observation about products and zeros
of differential forms. If ψ ∈ Ωk(U), for some k, 0 ≤ k ≤ #, let

V (ψ) = {x ∈ U | ψ(x) = 0},

a quasi-affine subvariety of C!. Let U(ψ) = U − V (ψ).

Proposition 2.1. Suppose ω ∈ Ω1(U) and ψ ∈ Ωp(U) satisfy ω ∧
ψ = 0. Then every component of V (ω) − V (ψ) has codimension less
than or equal to p.

Proof. We may write ω =
∑!

i=1 bidxi for some holomorphic func-
tions b1, . . . b! on U . Then

V (ω) =
!⋂

i=1

V (bi).
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Similarly, ψ =
∑

I AIdxI for some holomorphic functions AI , where
I ranges over all subsets I = {i1, . . . , ip}< of {1, 2, . . . , #}, and dxI =
dxi1 ∧ · · · ∧ dxip . (The subscript “<” is meant to indicate that the
elements of I are listed in increasing order.) Set UI = U(AI), and let
SI denote the coordinate ring of UI , i.e., SI is C[x1, . . . , x!], localized at
AI . Then

U(ψ) =
⋃

I

UI .

The equation ω ∧ ψ = 0 says, for each subset J of {1, . . . , #} of size
p+ 1,

(2.1)
∑

i∈J

σ(i, J)biAJ−{i} = 0.

Here σ(i, J) = ±1 depending on the position of i in J .
We have

V (ω) ∩ U(ψ) =
⋃

I

V (ω) ∩ UI .

Fix I = {i1, · · · , ip}<. For each i (∈ I, set J = I ∪ {i} in equation
(2.1). Since AI (= 0 on UI , one can solve for bi in terms of bi1 , . . . , bip .
This means bi lies in the ideal (bi1 , . . . , bip) of SI . Since this holds
for every i (∈ I, the defining ideal of V (ω) ∩ UI in SI is contained in
(bi1 , . . . , bip). Then each irreducible component of V (ω) ∩ UI has codi-
mension less than or equal to the codimension of (bi1 , . . . , bip), which is
at most p. Since the UI cover U(ψ), the result follows. Q.E.D.

Corollary 2.2. If
⋂

{V (ψ) | ψ ∈ Ωp(U),ω ∧ ψ = 0} = ∅,

then every component V (ω) has codimension less than or equal to p.

Corollary 2.3. Suppose X is a component of V (ω) of codimension
c. If ψ is a p-form satisfying ω ∧ ψ = 0 and p < c, then X ⊆ V (ψ).

Remark 2.4. The preceding results go through without change for
any smooth complex analytic variety U , interpreting x1, . . . , x! as local
holomorphic coordinates on U .

A p-form ψ satisfying ω ∧ψ = 0 will be called a p-cocycle for ω. We
say ψ is trivial if ψ = ω ∧ ϕ for some ϕ ∈ Ωp−1(U). If ψ is a trivial
cocycle for ω, then V (ω) ⊆ V (ψ).

The trivial cocycle condition ψ = ω ∧ ϕ is generally difficult to
characterize. We propose the following conjecture, the converse to the
observation above.
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Conjecture 2.5. If ψ ∈ Ap, then ψ = ω ∧ ϕ for some ϕ ∈ Ap−1 if
and only if ω ∧ ψ = 0 and V (ω) ⊆ V (ψ).

The conjecture is not hard to prove directly in case p = 1, and the
statement for any p follows from results of [29] if ω ∈ A1 is generic.

2.4. Examples

Our first example is linearly equivalent to the rank-three braid ar-
rangement.

Example 2.6. Let A = {H0, . . . , H5} be the arrangement with
defining polynomial

Q = xyz(x− y)(x− z)(y − z),

with the hyperplanes labelled according to the order of factors in Q.
For a, b, c ∈ C, not all zero, with a+ b+ c = 0, let

Φabc = [x(y − z)]a[y(x− z)]b[z(x− y)]c.

Then ωabc := d log(Φabc) = a(ω0 + ω5) + b(ω1 + ω4) + c(ω2 + ω3).
One computes

ωabc = [dx dy dz]




b1
b2
b3





= [dx dy dz]




1/x 1/(x− z) 1/(x− y)

1/(y − z) 1/y 1/(y − x)
1/(z − y) 1/(z − x) 1/z








a
b
c



 .

The zero locus V (ωabc) is given by the vanishing of b1, b2, and b3. The
kernel of the matrix is spanned by (x(y − z), y(z − x), z(x − y)), so
[x : y : z] ∈ V (ωabc) if and only if [x(y−z) : y(z−x) : z(x−y)] = [a : b : c].
Since a + b + c = 0, this is equivalent to [x(y − z) : y(z − x)] = [a : b],
i.e.,

x(y − z)

y(z − x)
=

a

b

or, more symmetrically,

a

x
+

b

y
+

c

z
= 0.

If any of a, b, or c are zero, then crit(Φabc) = V (ωabc) is empty. Otherwise
crit(Φabc) has codimension 1. Moreover, crit(Φλ) is a level set of the

master function x(y−z)
y(z−x) .
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Fig. 1. The braid arrangement with crit(Φ1,1,−2)

Let D = {ωabc | a+ b+ c = 0}. Then D ⊆ A1 and, for any ω ∈ D,
Z1(ω) = D. Thus ψ ∈ Z1(ωabc) if and only if ψ = d logΦa′b′c′ with
a′ + b′ + c′ = 0. Then ψ has zero locus given by

a′

x
+

b′

y
+

c′

z
= 0,

which one can see is disjoint from V (ωabc) if and only if ψ (∈ B1(ωabc).
The Zariski closure of every nonempty critical set contains the four
points [0 : 0 : 1], [1 : 1 : 1], [1 : 0 : 0], and [0 : 1 : 0]—see Figure 1.

Here is a rank-four example.

Example 2.7. Let A = {H0, . . . , H7} be the arrangement of eight
planes in P3 with defining polynomial

Q = xyzw(x+ y + z)(x+ y + w)(x+ z + w)(y + z + w).

The dual point configuration consists of the four vertices and four face-
centers of the 3-simplex. Fix a, b, c, d ∈ C and let

Φ =

(
x

y + z + w

)a( y

x+ z + w

)b( z

x+ y + w

)c( w

x+ y + z

)d

.

The one-form ω = d logΦ belongs to a 4-dimensional component of
R2(A). If none of a, b, c, d are zero, then H1(A,ω) = 0 and H2(A,ω) ∼=
C. A nontrivial 2-cocycle for ω is given by

ψ = b · ∂(ω167) + c · ∂(ω257) + d · ∂(ω347).
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One sees that ω is equal to the product

[dx dy dz dw]





1
x

−1
x+z+w

−1
x+y+w

−1
x+y+z

−1
y+z+w

1
y

−1
x+y+w

−1
x+y+z

−1
y+z+w

−1
x+z+w

1
z

−1
x+y+z

−1
y+z+w

−1
x+z+w

−1
x+y+w

1
w









a
b
c
d



 .

Computing the kernel of the matrix, we see that [x : y : z : w] ∈ V (ω) if
and only if the vector (x(y+z+w), y(x+z+w), z(x+y+w), w(x+y+z))
is proportional to (a, b, c, d), giving the equations

x(y + z + w)

w(x+ y + z)
=

a

d
,

y(x+ z + w)

w(x+ y + z)
=

b

d
,

z(x+ y + w)

w(x+ y + z)
=

c

d
.

V (ω) has a component of codimension two, given by

x+ y + z + w = 0,
a

x
+

b

y
+

c

z
+

d

w
= 0.

For general a, b, c, d, the remaining components of V (ω) consist of four
additional points in P3. It follows from Corollary 2.3 that the cocycle ψ
vanishes on the isolated points of V (ω). This can also be verified here
by direct computation.

Example 2.8. The Hessian arrangement consists of the 12 lines
through the inflection points of a nonsingular cubic in P2. It is the only
known arrangement of rank greater than two that supports a global
component of R1(A) of dimension greater than two. That is, there is
an element ω ∈ A1 which has poles along every hyperplane of A, and
satisfies dimH1(A·,ω) > 1.

Any nonsingular cubic is equivalent to

(2.2) x3 + y3 + z3 − 3txyz = 0

up to projective transformation, for some t ∈ C. These cubics have
the same inflection points. Then, up to projective transformation, the
Hessian arrangement A is defined by

Q = xyz(x+ y+ z)(x+ y+ ζz)(x+ y+ ζ2z)(x+ ζy+ z)(x+ ζy+ ζz)

· (x+ ζy + ζ2z)(x+ ζ2y + z)(x+ ζ2y + ζz)(x+ ζ2y + ζ2z),

where ζ = e
2πi
3 . The 12 lines of A are the irreducible components of the

four singular cubics in the family 2.2, corresponding to t = ∞, 1, ζ, and
ζ2. See [19, Example 6.30].
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Numbering the hyperplanes in order, these singular cubics are given
by

P0 = α0α1α2 = xyz,

P1 = α3α8α10 = x3 + y3 + z3 − 3xyz,

P2 = α4α6α11 = x3 + y3 + z3 − 3ζxyz, and

P3 = α5α7α9 = x3 + y3 + z3 − 3ζ2xyz.

For (a1, a2, a3) ∈ C3 let ω = ωa1a2a3 = d log(Φ), where

Φ = Φa1a2a3 =

(
P1

P0

)a1
(
P2

P0

)a2
(
P3

P0

)a3

.

Let D ⊆ A1 be the space of all such forms. Then H1(A·,ω) ∼= D/Cω
has dimension two.

As in the previous examples, we write

ω =
[
dx, dy, dz

]
M




a1
a2
a3



 ,

where M is a 3× 3 matrix of rational functions, the Jacobian of

(log(P1/P0), log(P2/P0), log(P3/P0)).

Then ω(x) = 0 for x ∈ U if and only if a = (a1, a2, a3) lies in the kernel
of M(x).

The matrix M has rank 1. In fact one finds that M = vwT where

v =





2x3−y3−z3

x
x3−2y3+z3

y
x3+y3−2z3

z



 and w =




1
P1
1
P2
1
P3



 .

The critical equation becomes vwT a = 0, which is satisfied if and
only if wT a = 0 or all components of v vanish. The latter occurs at the
points given by x3 = y3 = z3, which are the common inflection points of
the cubics (2.2). In particular those points do not lie in the complement
U . Thus crit(Φ) is defined by the single equation

(2.3)
a1
P1

+
a2
P2

+
a3
P3

= 0.
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Then crit(Φ) is empty or has codimension one and degree six. Work-
ing in the torus xyz (= 0, set

T =
x3 + y3 + z3

xyz
.

Then equation (2.3) is equivalent to

(2.4)
a1

T − 3
+

a2
T − 3ζ

+
a3

T − 3ζ2
= 0,

which becomes a quadratic AT 2 +BT + C = 0 in T .
Then, if a = (a1, a2, a3) is generic, crit(Φ) has two irreducible com-

ponents. Each component is the intersection with U of a level set T = 3t
of T . These are nonsingular fibers in the pencil (2.2), meeting each
other and A at their nine common inflection points. So crit(Φ) ⊆ U has
two connected components. Every pair of nonsingular fibers appears as
crit(Φ) for some a. The discriminant B2−4AC defines a hypersurface in
(a1, a2, a3)-space for which the corresponding critical locus crit(Φ) has a
single nonreduced component, and every nonsingular fiber can appear.

For some values of a, crit(Φ) is empty or has only one reduced
component. This is easiest to see by clearing fractions in (2.3), to obtain

(2.5) a1P2P3 + a2P1P3 + a3P1P2 = 0.

When one component of the variety defined by (2.5) is Pi = 0 or P0 =
xyz = 0, then crit(Φ) has one reduced component. This occurs if a is
a generic point on ai = 0 or a1 + a2 + a3 = 0. If ai = 0 for some i
and a1 + a2 + a3 = 0, or if ai (= 0 for only one i, then (2.5) becomes
PiPj = 0, and crit(Φ) = ∅. If a is a cyclic permutation of (0, ζ, 1) or
equals (1, ζ, ζ2), up to scalar multiple, then (2.5) becomes P 2

i = 0, and
crit(Φ) = ∅.

Each cocycle of ω = ωa1a2a3 has the form ψ = ωb1b2b3 for some
b1, b2, b3. So we see that V (ψ) and V (ω) can have a component in
common, but if ω and ψ are not proportional, then V (ω) − V (ψ) is
nonempty and has codimension one.

§3. Decomposable cocycles

We will now assume ψ is a cocycle for ω ∈ A1 and ψ is a product of
logarithmic one-forms. Then ω is a factor in a vanishing product of p+1
one-forms in A·. To carry out our geometric analysis it is necessary to
work initially over the integers, although eventually the results extend to
C-linear combinations of the original integral weights. For that reason
we state the result in terms of subspaces of A1.
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We will be dealing with rational functions parametrizing affine or
projective algebraic varieties. For that reason we formulate and prove
our results algebraically. For any quasi-projective variety X, write C[X]
for the ring of regular functions on X, and C(X) for the field of rational
functions on X. If X is a subvariety of projective space, then elements
of C[X] are represented by homogeneous polynomials and elements of
C(X) by homogeneous rational functions of degree zero. If ϕ : R → S is
a homomorphism of C-algebras, denote by ΩS|R the S-module of Kähler
differentials of S over R. Write Ω[X] = ΩC[X]|C and Ω(X) = ΩC(X)|C.
Elements of Ω[X] (resp. Ω(X)) are polynomial (resp. rational) one-
forms on X.

3.1. Singular subspaces of A1

Let D be a subspace of A1. We call D a singular subspace if the
multiplication map

∧q(D) → Aq is the zero map, where q = dimD. The
rank of D is the largest p such that

∧p(D) → Ap is not trivial. We say D
is rational if D has a basis {ωξ1 , . . . ,ωξq}, with ξi = (ξi0, . . . , ξin) ∈ Zn+1

for 1 ≤ i ≤ q. Then Φξi =
∏n

j=1 f
ξij
j =

∏n
j=0 α

ξij
j is a single-valued

rational function on P!, regular on U . (Recall
∑n

j=0 ξij = 0.)
We apply the following general result. It is an easy consequence of

the implicit function theorem, but we give an algebraic proof that holds
over any algebraically-closed field of characteristic zero. See [13] and [9]
for the relevant background on Kähler differentials.

Proposition 3.1. Suppose F1, . . . , Fq are rational functions on C!,
and

F = (F1, . . . , Fq) : C! ! Cq.

Then the image of F has dimension less than k if and only if

dFi1 ∧ · · · ∧ dFik = 0

for all 1 ≤ i1 < · · · < ik ≤ q.

Proof. The image of F is a quasi-affine variety, whose function
field is isomorphic to C(F1, . . . , Fq). Then the dimension p of im(F )
is equal to the transcendence degree of C(F1, . . . , Fq) over C. With-
out loss of generality, suppose {F1, . . . , Fp} is a transcendence base for
C(F1, . . . , Fq) over C. Then the set {dF1, . . . , dFp} forms a basis for
Ω(C(F1, . . . , Fq)), a vector space over C(F1, . . . , Fq), see [9, Theorem
16.14]. Then

dF1 ∧ · · · ∧ dFp (= 0.
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If {Fi1 , . . . , Fik} ⊆ {F1, . . . , Fq} with k > p, then {dFi1 , . . . , dFik} is
linearly dependent over C(F1, . . . , Fq), hence

dFi1 ∧ · · · ∧ dFik = 0.

Q.E.D.

If Λ = (ξ1, . . . , ξq) with ξi ∈ Zn+1 satisfying
∑n

j=0 ξij = 0, set

ΦΛ := (Φξ1 , . . . ,Φξq ) : P! ! Cq.

Proposition 3.1 applies as follows.

Corollary 3.2. Suppose D is a rational singular subspace of A1,
and ΦΛ is the rational mapping associated to an ordered integral basis Λ
of D. Then dimΦΛ(U) is equal to the rank of D. In particular, ΦΛ(U)
has positive codimension in Cq.

Let [z0 : · · · : zq] be homogeneous coordinates on Pq, and identify
Cq with the Pq − {z0 = 0} as above. Let Y be the Zariski closure of
Y = ΦΛ(U) in Pq. In homogeneous coordinates, ΦΛ is given by

ΦΛ = [1 : Φξ1 : · · · : Φξq ] : P! ! Pq.

Clearing fractions, we have

ΦΛ = [Φν0 : Φν1 : · · · : Φνq ]

where the master functions Φνi are homogeneous polynomials of the
same degree d. Moreover we may assume the Φνi have no common
factors. Equivalently, the weights νi = (νi0, . . . , νin) are non-negative
integer vectors with

∑n
i=0 νij = d for 0 ≤ i ≤ q, whose supports have

empty intersection. Then

Φξi =
Φνi

Φν0

, ξi = νi − ν0, and ωξi = ωνi − ων0 .

Definition 3.3. Λ is essential if every hyperplane H ∈ A appears
as a component of V (Φνi) for some i, 0 ≤ i ≤ q.

Henceforth we will tacitly assume Λ is essential. We have Y ⊆
Y ∩ (C∗)q in any case. If Λ is not essential, the inclusion is proper, and
may be proper otherwise—see Example 3.16.

The defining ideal I = IΛ of Y is generated by homogeneous polyno-
mials P (z0, . . . , zq) for which P (Φν0 , . . . ,Φνq ) vanishes identically on U ,
or, equivalently, P (1,Φξ1 , . . . ,Φξq ) = 0. We will sometimes refer to IΛ
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as the syzygy ideal of Λ. The mapping zi .→ Φνi induces an isomorphism
of rings

C[Y ] = C[z0, . . . , zq]/I −→ C[Φν0 , . . . ,Φνq ].

In particular Y is irreducible. Identifying C[Y ] with C[Φν0 , . . . ,Φνq ],

the dominant rational mapping ΦΛ : P! ! Y corresponds to the field
extension

C(Φξ1 , . . . ,Φξq ) ⊆ C(x1, . . . , x!).

The affine ring C[Y ] is isomorphic to a localization of the ring of Laurent
polynomials C[Φ±1

ν0
, . . . ,Φ±1

νq
].

If ω ∈ D − {0}, we write ω = ωa =
∑q

i=0 aiωνi =
∑n

i=1 aiωξi with
a = (a0, . . . aq) ∈ Cq+1 − {0}, satisfying

∑q
i=0 ai = 0. Note that any

p-fold wedge product ψ = ωξi1
∧ · · · ∧ ωξip is a cocycle for ω.

The one-form
∑q

i=0 aid log(zi) ∈ Ω(Cq+1) is C∗-invariant, and con-
tracts trivially along the Euler vector field, so it descends to a well-
defined rational one-form on Pq. This form restricts to a one-form in
Ω(Y ) which we denote by τa. Since Y ⊆ (C∗)q, τa is regular on Y .
Note that

∑q
i=0 aid log(zi) = d logµa, where µa =

∏q
i=0 z

ai
i is a master

function for the arrangement of coordinate hyperplanes in Pq.
We show that the zeros of τa pull back to zeros of ωa.

Lemma 3.4. Let x ∈ U and y = ΦΛ(x) ∈ Y . Then ωa(x) = 0 if
and only if τa(y) ∈ ker(Φ∗

Λ)y.

Proof. We have

ωa =
q∑

i=0

aid logΦνi = d log
q∏

i=0

Φai
νi
,= Φ∗

Λ(d log
q∏

i=0

zai
i ) = Φ∗

Λ(τa).

The result follows upon localization at y. Q.E.D.

Note that

Φ∗
Λ(τa) =

q∑

i=0

!∑

j=0

ai
Φνi

∂Φνi

∂xj
dxj .

Then τa(y) ∈ ker(Φ∗
Λ)y if and only if

[
a0
y0

· · · aq

yq

]
lies in the left null

space of the Jacobian of ΦΛ.
Let Sing(ΦΛ) denote the singular locus of ΦΛ, and Sing(Y ) the sin-

gular locus of Y . Let SΛ = Sing(ΦΛ) ∪ Φ−1
Λ (Sing(Y )) ⊆ U .

Theorem 3.5. V (ωa) contains Φ
−1
Λ (V (τa)), and V (ωa)−Φ−1(V (τa))

is a subset of SΛ.
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Proof. The first statement is immediate from Lemma 3.4. If ΦΛ

is nonsingular at x ∈ U then the Jacobian of ΦΛ attains its maximal
rank p = dim(Y ) at x. If in addition Y is nonsingular at y = ΦΛ(x),
then dim(Ω(Y )y) = p. Then ker(Φ∗

Λ)y = 0. The second statement then
follows from Lemma 3.4. Q.E.D.

Corollary 3.6. Suppose D is a rational singular subspace of A1,
with integral basis Λ. Let p be the rank of D. If d log(Φ) ∈ D then
crit(Φ) ⊆ SΛ or codim(crit(Φ)) ≤ p.

Proof. Write ω = d log(Φ) =
∑q

i=1 aiωξi . The hypothesis implies
dimY = p, so V (τa) is empty or has codimension at most p in Y .
In the first case V (ω) ⊆ SΛ by the preceding theorem. Otherwise,
V (ω) ⊇ Φ−1

Λ (V (τa)) has codimension at most p. Q.E.D.

Corollary 3.7. Suppose D is a rational singular subspace of A1,
with integral basis Λ. If d log(Φ) ∈ D, then crit(Φ) − SΛ is a union of
fibers of ΦΛ.

The fibers of ΦΛ are intersections of level sets of the rational master
functions Φξi , for 1 ≤ i ≤ q.

We have not used the assumption that {ξ1, . . . , ξq} is linearly inde-
pendent, i.e., that the dimension of D is strictly greater than p. This
hypothesis rules out a trivial case.

Proposition 3.8. Suppose a (= 0. Then τa is not identically zero
on Y .

Proof. If τa is zero on Y , then

Φ∗
Λ(τa) =

q∑

i=0

aid log(Φνi) =
q∑

i=0

aiωνi =
q∑

i=1

aiωξi

is zero on U . This contradicts the assumption that {ωξ1 , . . . ,ωξq} is a
basis for D. Q.E.D.

A singular subspace of rank 1 is called an isotropic subspace of A1.

Corollary 3.9. Suppose Λ is an integral basis of an isotropic sub-
space of A1. Then

(i) if ω = d log(Φ) ∈ D then Sing(ΦΛ) ⊆ crit(Φ).
(ii) if 0 (= ω = d log(Φ) ∈ D, then the components of crit(Φ)− SΛ

are disjoint hypersurfaces in U .

Proof. Since dim(Y ) = 1, the Jacobian of ΦΛ vanishes identically
at points of Sing(ΦΛ). Then Sing(ΦΛ) ⊆ V (ω) = crit(Φ) by Lemma 3.4.
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If a (= 0, then τa doesn’t vanish identically on Y by Proposition 3.8.
Then V (τa) is zero-dimensional. Assertion (ii) follows from Theorem 3.5.

Q.E.D.

Corollary 3.9(i) can be used to locate singular fibers in Čeva pencils
[10, Def. 4.5]—see Example 3.17.

3.2. Zeros of τa
We apply the method of Lagrange multipliers to find the zeros of τa.

The argument applies even if Y is singular. Fix a set of homogeneous
generators {P1, . . . , Pr} of the defining ideal I = IΛ ⊆ S of Y . Write ∂j
for ∂

∂zj
. Let

JΛ =
[
∂jPi

]

be the Jacobian of (P1, . . . , Pr). The rank of JΛ at a nonsingular point
y ∈ Y is equal to q − p, the codimension of Y .

Lemma 3.10. Let y ∈ Y . Then y ∈ V (τa) if and only if
[
a0
y0

· · · aq

yq

]

is an element of the row space of JΛ(y).

Proof. The one-form d logµa =
∑q

i=0 aid log(zi) ∈ Ω(Pq) restricts
to τa ∈ Ω(Y ). There is an exact sequence of C[Y ]-modules

I/I2
d−→ C[Y ]⊗C[Pq ] Ω[Pq] → Ω[Y ] → 0,

where d is given by right multiplication by JΛ [9, Sec. 16.1]. Localiza-
tion at the maximal ideal corresponding to y preserves exactness of this
sequence, so τa(y) ∈ Ω(Y )y vanishes if and only if τa(y) is in the image
of d. Q.E.D.

For each i ≥ 0, let Fitti(a, I) be the variety in Pq defined by the
(q + 1− i)× (q + 1− i) minors of the (r + 1)× (q + 1) matrix

(3.1)





a0/z0 · · · aq/zq
∂0P1 · · · ∂qP1
...

. . .
...

∂0Pr · · · ∂qPr




.

The ideal Fitti(a, I) is independent of the choice of generating set for
I. Similarly, let Fitti(JΛ) denote the variety in Pq defined by the (q +
1− i)× (q + 1− i) minors of JΛ. Let Y reg = Y − Sing Y . Then Y reg =
Y ∩ Fittp(JΛ)− Fittp+1(JΛ), where p = dimY .

If Y is smooth, then V (τa) is a Fitting variety. More generally:

Corollary 3.11. V (τa) ∩ Y reg = Fittp(a, I) ∩ Y reg.
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Proof. At any point of Y reg the rank of JΛ is equal to q − p =

codimY , so the rank of matrix (3.1) is at least q−p. Then
[
a0
y0

· · · aq

yq

]

is in the row space of J(y) if and only if (3.1) has rank q− p, if and only
if all (q − p+ 1)× (q − p+ 1) minors vanish. Q.E.D.

Remark 3.12. In fact, the intersections Y ∩ Fitti(JΛ), p ≤ i ≤ q
determine a stratification of Y by locally-closed subvarieties, and V (τa)
coincides with Fitti(a, I) on the stratum Fitti(JΛ)−Fitti+1(JΛ), by the
same argument.

In view of Proposition 2.1 we study the zeros of cocycles for τa.
Since dimY = p, every ψ ∈ Ωp(Y ) is a cocycle for τa. For 0 ≤ i ≤ q, set
τi =

dyi

yi
, so that τa =

∑q
i=0 aiτi =

∑q
i=1 ai(τi−τ0) =

∑q
i=1 d log(yi/y0).

Proposition 3.13. The intersection
⋂

{V (ξ) | ξ ∈ Ωp
C(Y ), τa ∧ ξ = 0}

is contained in Sing(Y ).

Proof. For I = {i1 < · · · < ip}< ⊆ {1, . . . , q}, consider the p-form

ξI = (τi1 − τ0) ∧ · · · ∧ (τip − τ0).

Then τa ∧ ξI = 0. But dimY = p, so at each point of Y reg, ξI must be
nonzero for some I. Q.E.D.

3.3. The case q = p+ 1

Suppose D is a singular subspace of rank dim(D)− 1, with integral
basis Λ = {ωξ1 , . . . ,ωξq}. Then Y is defined by a single homogeneous
polynomial P (z0, . . . , zq). This hypothesis holds for all the examples we
know, with one exception: the Hessian arrangement, which supports a
rational singular subspace of dimension three and rank one—see Exam-
ples 2.8 and 4.11.

Consider the rational mapping

(3.2) ρ = [z0∂0P : · · · : zq∂qP ] : Pq ! Pq.

This map has poles along Sing(Y ) and Sing(Y ∩ CI) where CI is the
coordinate subspace zi = 0, i ∈ I. It is regular on Y reg ∩ (C∗)q. By
Euler’s formula,

∑q
j=0 zj∂jP = deg(P )P , so the image of Y under ρ is

contained in the hyperplane
∑q

j=0 zj = 0.

Proposition 3.14. Suppose Y is the hypersurface given by P = 0,
and ρ is as given in (3.2). Then
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(i) V (τa) (= ∅ if and only if a ∈ ρ(Y ).
(ii) If a ∈ ρ(Y ) then V (τa) = ρ−1(a).
(iii) For generic a ∈ ρ(Y ), V (τa) is nonempty and every compo-

nent has codimension equal to dim ρ(Y ).

Proof. The first two assertions follow from Lemma 3.10, and the
third follows from the second. Q.E.D.

Corollary 3.15. Suppose

(i) ΦΛ is nonsingular on U ,
(ii) Y is nonsingular and intersects the coordinate hyperplanes

transversely,
(iii) dim ρ(Y ) = dimY , and
(iv) ΦΛ(U) = Y ∩ (C∗)q.

If d log(Φ) =
∑q

i=1 aiωξi and ai (= 0 for all i, then crit(Φ) is nonempty
and every component has codimension q − 1.

Proof. We have observed that ρ(Y ) is contained in the hyperplane
∆ defined by

∑q
i=0 zi = 0. The second hypothesis ensures that Sing(Y ∩

CI) is empty for every I ⊆ {0, . . . , q}. Then ρ is regular on Y . By the
third condition, dim ρ(Y ) = q − 1 = dim∆. Since ∆ is irreducible, we
conclude ρ(Y ) = ∆. Since Y = Y ∩ (C∗)q by (iii), ∆ ∩ (C∗)q = ρ(Y ).
The result then follows from Proposition 3.14 and Theorem 3.5, since
(i) and (ii) imply SΛ = ∅ and the fibers of ΦΛ all have codimension
q − 1. Q.E.D.

The hypotheses in Corollary 3.15 are satisfied in many examples.
The third condition is automatic in case q = 2. The last two conditions
hold in every example we know where (i) and (ii) hold.

3.4. Examples

Example 3.16 (Example 2.6, continued). Let D be the rational
singular subspace of A1 ∼= C5 with basis Λ = {ω010−ω100, ω001−ω100}.

We have

ΦΛ = [Φ100 : Φ010 : Φ001] = [x(y − z) : y(x− z) : z(x− y)].

ΦΛ is nonsingular on U , and Y = Y ∩ (C∗)5. The components of ΦΛ

satisfy the homogeneous relation Φ100−Φ010+Φ001 = 0, so Y is the line
z0 − z1 + z2 = 0 in P2. Corollary 3.15 implies crit(Φabc) is nonempty if
and only if a+ b+ c = 0 and a, b and c are nonzero. In this case,

crit(Φabc) = (ρ ◦ ΦΛ)
−1([a : b : c]) = Φ−1

Λ ([a : −b : c]),
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that is, crit(Φabc) is given by

[x(y − z) : y(x− z) : z(x− y)] = [a : −b : c], or, equivalently

[x(y − z) : y(z − x)] = [a : b]

as we found earlier. It has codimension one in P2. In this example the
map ΦΛ has connected generic fiber, hence crit(Φabc) is connected. If
a, b, or c is zero, and a+ b+ c = 0, then crit(Φabc) is empty.

The basis Λ above has special properties that resulted in the linear
syzygy of master functions: we will revisit this in the next section. By
way of comparison, consider the basis Λ′ = {ω120 − ω012,ω300 − ω012}.
Then

ΦΛ′ = [Φ010Φ
2
001 : Φ100Φ

2
010 : Φ3

100]

= [yz2(x− y)2(x− z) : xy2(x− z)2(y − z) : x3(y − z)3].

A Macaulay 2 calculation [12] shows that ΦΛ′ is nonsingular on U . Using
the identity Φ100 − Φ010 + Φ001 = 0, one finds that the Zariski closure
Y ′ of Y ′ = ΦΛ′(U) is defined by

z31 − z20z2 − 4z0z1z2 − 2z21z2 + z1z
2
2 = 0.

Then Y ′ is an irreducible cubic with a node at [z0 : z1 : z2] = [−2 :
1 : −1]. This is a point of Y ′. It is also in Φ̃Λ′(E), where Φ̃Λ′ is the
lift of ΦΛ′ to the blow-up of P2 at the four base points, and E is the
exceptional divisor over [0 : 1 : 0].

The image of Y ′ under ρ misses the three points [0 : −1 : 1], [−2 :
1 : 1], and [−2 : 3 : −1], corresponding to the three one-forms ω100 −
ω010, ω100 − ω001, and ω010 − ω001 in D that have empty zero locus. In
particular Y ′ (= Y ′ ∩ (C∗)5.

Example 3.17. Let A be the arrangement with defining equation
Q = Q0Q1Q2 where

Q0 = (x+ z)(2x− y − z)(2x+ y − z)

Q1 = (x− z)(2x+ y + z)(2x− y + z), and

Q2 = (y + z)(y − z)z

The image of ΦΛ = [Q0 : Q1 : Q2] : P2 ! P2 is the line z0−z1+2z2 =
0. The fibers are the cubics passing through nine points, three on each of
three concurrent lines—A is a specialization of the Pappus arrangement.
One of these cubics is x(4x2− y2− 3z2) = 0. Although Y is smooth, ΦΛ

is singular at two points of U , given by x = y2 + 3z2 = 0. These two
points lie in crit(Qa

0Q
b
1Q

c
2) for every a, b, c with a+ b+ c = 0.
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Similarly, if A the subarrangement of the Hessian arrangement (2.8)
defined by P1P2P3 = 0, then every critical set crit(P a

1 P
b
2P

c
3 ), a+b+c = 0,

contains the three points [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1] of U where
the fourth special fiber xyz = 0 is singular. The map ΦΛ = [P1 :
P2 : P3] is singular at these points, although Y is smooth, given by
ζP1 + ζ2P2 + P3 = 0. (See also Example 4.11.)

Remark 3.18. In fact, Corollary 3.9 can be used to detect Čeva
pencils [10] (see 4.4). For instance the master function

Φ =
x(y − z)

y(x− z)

has critical points [0 : 1 : 0] and [1 : 1 : 0], the singular points of the
third completely decomposable fiber in Example 2.6.

Example 3.19 (Example 2.7, continued). In this example, the one-
form ω has no decomposable 2-cocycle. Indeed there are no singular
subspaces of A1 of rank p = 1 or p = 2. For p = 1 this holds because
A is 2-generic. For p = 2 one can verify the statement computationally
using the approach of [15]; in [2] we give a combinatorial argument based
on Theorem 5.4. Setting

Ψ = [
x

y + z + w
:

y

x+ z + w
:

z

x+ y + w
:

w

x+ y + z
] : P3 ! P3,

we have ω = d log(Φ) = Ψ∗(τ) where

τ = a d log(y0) + bd log(y1) + c d log(y2) + d d log(y3).

The map Ψ is dominant. The one-dimensional critical locus of Φ is a
fiber of a different map

[x(y + z + w) : y(x+ z + w) : z(x+ y + w) : w(x+ y + z)].

§4. Linear dependence among master functions

In this section we consider a singular subspace D with an integral
basis Λ such that YΛ is linear, i.e., the syzygy ideal IΛ is generated by
homogeneous linear forms. We saw this phenomenon in Example 3.16.
We start with a trivial example that will be useful for what follows.

4.1. Example: equations for the critical locus

Suppose A is an essential arrangement of n + 1 hyperplanes in P!,
with n > #. Then D = A1 is a singular subspace, with integral basis
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{ωi − ω0 | 1 ≤ i ≤ n}. The corresponding rational mapping is

Φ = ΦΛ = [α0 : · · · : αn] : P! ! Pn,

and Y = Y Λ is a linear subvariety of Pn. The reader will recognize
that this is the usual identification of a labelled vector configuration,
(α0, . . . ,αn), with a point in the Grassmannian of #-planes in Pn. Let
us denote Y Λ by LA. (This is an abuse of notation; Y Λ depends on the
choice of defining forms αi.)

Most of the results of the previous section are vacuous in this situ-
ation, but Lemma 3.10 tells us something:

Theorem 4.1. Let B =
[
bij

]
be an (# + 1) × (n + 1) matrix such

that LA is the kernel of B. Then, for any λ ∈ Cn, the critical locus of
Φλ is defined by the

(n+1
!+1

)
equations

∑

i∈I

σ(i, I)bI−{i}
λi

αi(x)
= 0

where I ranges over the subsets of {0, . . . , n} of size #+1, the coefficient
bJ is given by bJ = det

[
bij | j ∈ J

]
, and σ(i, I) = ±1, depending on the

position of i in I.

Proof. The linear forms defined by the rows of B generate the
syzygy ideal IΛ. Then the Jacobian JΛ is equal to B. With the observa-
tion that SΛ = ∅, setting a = λ in Lemma 3.10 and applying Theorem 3.5
yields the claim. Q.E.D.

The columns of the matrix B above define a realization of the ma-
troid dual to the matroid of A. In Example 2.6,

B =




0 −1 1 0 0 1
−1 0 1 0 1 0
−1 1 0 1 0 0



 .

(The matroid of A is self-dual.) Theorem 4.1 says that crit(Φabc) is
defined by the 4× 4 minors of





a
x

b
y

c
z

c
x−y

b
x−z

a
y−z

0 −1 1 0 0 1
−1 0 1 0 1 0
−1 1 0 1 0 0



 .

These 15 equations reduce to the single equation found in Example 2.6.
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4.2. Linear hypersurfaces

Suppose Y is a linear and p = rank(D) = q − 1, i.e., Y is a linear
hyperplane in Pq. Let P (z) =

∑q
j=0 bjzj be a generator for the syzygy

ideal. It is no loss to assume bj (= 0 for all j, or equivalently, Y is not
contained in any coordinate hyperplane. Otherwise some proper subset
of {Φν0 , . . . ,Φνq} is linearly dependent.

Proposition 4.2. Suppose Y is a hyperplane not contained in any
coordinate hyperplane in Pq. Let λ =

∑q
i=0 aiνi. Then for generic a

satisfying
∑q

i=0 ai = 0, crit(Φλ)−SΛ is nonempty and every component
of crit(Φλ)− SΛ has codimension equal to the rank of D.

Proof. The syzygy ideal IΛ is generated by a linear polynomial
P (z) =

∑q
j=0 bjzj , and bj (= 0 for 0 ≤ j ≤ q by hypothesis. The map

ρ = [b0z0 : · · · : bqzq] of (3.2) is an automorphism of Pq since all of the bj
are nonzero. Consequently, ρ maps the hyperplane Y isomorphically to
the hyperplane ∆ defined by

∑q
i=0 zi = 0. The result then follows from

Proposition 3.14. Q.E.D.

4.3. The general case

Suppose the singular subspace D ⊆ A1 has an integral basis Λ for
which Y = Y Λ is a linear variety in Pq. Choose a linear isomorphism
ϕ : Pp → Y , given by a (q + 1) × (p + 1) matrix B =

[
bij

]
. Assume D

is not contained in any coordinate hyperplane. Then the intersections
of Y with the coordinate hyperplanes in Pq determine an essential ar-
rangement B of q + 1 not necessarily distinct hyperplanes in Pp, with
defining forms βi(x) =

∑p
i=0 bijxj , for 0 ≤ i ≤ q. By construction, the

subspace LB of Pq, as described in Section 4.1, is equal to Y .

Theorem 4.3. Suppose Y Λ = LB is a linear subspace not con-
tained in any coordinate hyperplane in Pq, and Y = Y ∩ (C∗)q. Let
λ =

∑q
i=0 aiνi with

∑q
i=0 ai = 0. Let Ψa =

∏q
i=0 β

ai
i be the master

function on the complement of the arrangement B in Pp corresponding
to a. Then

(i) crit(Φλ)− SΛ (= ∅ if and only if crit(Ψa) (= ∅,
(ii) crit(Φλ)− SΛ = Φ−1

Λ (ρ(crit(Ψa))), and
(iii) codim(crit(Φλ)− SΛ) ≤ codim crit(Ψa).

Proof. Just as in Section 4.1, the one-form τa on Y pulls back
to d log(Ψa) under the isomorphism ϕ, and the assertions follow from
Proposition 3.14. Q.E.D.

Example 4.4 (Example 2.6, continued). We saw in Example 3.16
that the variety Y is given by z0−z1+z2 = 0 in P2, and Y = Y ∩ (C∗)2.
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We can take ϕ : P1
∼=−−→ Y to be given by the matrix

B =




1 0
1 1
0 1



 .

Then associated arrangement B consists of three points [1 : 0], [1 : 1],
[0 : 1] in P1. The complement of B has Euler characteristic −1, so a
generic B-master function Ψabc has a single nondegenerate critical point.
A computation shows that this holds if a, b, and c are nonzero. We reach
the same conclusion as before, that crit(Φabc) has codimension one.

4.4. Multinets and codimension-one critical sets

Next we use the main result of [10] to give a complete description
of crit(Φ) for any ω = d log(Φ) ∈ R1(A). As we observed earlier, if
ω ∈ R1(A), then ω has a nontrivial decomposable 1-cocycle ψ. The
statement that ω∧ψ = 0 means, for each x ∈ U, {ω(x),ψ(x)} is linearly
dependent. Then there are functions a and b on U such that a(x)ω(x)+
b(x)ψ(x) = 0 for all x ∈ U . This implies V (ω) contains V (b) − V (a),
which is a hypersurface unless it is empty. It was this observation that
led to the current research.

According to [14], the maximal isotropic subspaces D of A1 of di-
mension at least two are the components of R1(A), and they intersect
trivially. By [10, Theorem 3.11], such a component has an integral basis
Λ = (ωξ1 , . . . ,ωξq ), with the property that the corresponding polynomial
master functions Φν0 , . . . ,Φνq are all collinear in the space of degree d

polynomials. Then Y = Y Λ is a line in Pq. The homogenized basis
{ων0 , . . . ,ωνq} corresponds to the characteristic vectors νi of the blocks
in a multinet structure on a subarrangement of A, as defined below.

For X ⊆ P!, write AX = {H ∈ A | X ⊆ H}. A rank-two flat of A
is a subspace X of the form H ∩ K for some H,K ∈ A, H (= K. If P
is a partition of A, the base locus of P is the set of rank-two flats of A
obtained by intersecting hyperplanes from different blocks of P.

Definition 4.5. A (q + 1, d)-multinet on A is a pair (P,m) where
P is a partition {A0, . . . ,Aq} of A into q+1 blocks, with base locus X ,
and m : A → Z>0 is a multiplicity function, satisfying

(i)
∑

H∈Ai
m(H) = d for every i.

(ii) For each X ∈ X ,
∑

H∈Ai∩AX
m(H) = nX for some integer

nX , independent of i.
(iii) For each i,

⋃
Ai −

⋃
X is connected.

The third condition says that P cannot be refined to a (q′, d)-
multinet with the same multiplicity function, with q′ > q + 1. Given a
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multinet on A, let νi =
∑

Hi∈Ai
m(Hi)ei, for 0 ≤ i ≤ q, and ξi = νi− ν0

for 1 ≤ i ≤ q. We call ν0, . . . , νq the characteristic vectors of (P,m). We
have the following results from [10].

Theorem 4.6 ([10, Corollary 3.12]). Suppose D is a maximal iso-
tropic subspace of A1 of dimension q ≥ 2. Then there is a subarrange-
ment A′ of A and a (q+1, d)-multinet on A′ whose characteristic vectors
ν0, . . . , νq yield an integral basis ωξ1 , . . . ,ωξq of D.

Theorem 4.7 ([10, Theorem 3.11]). Suppose ν0, . . . , νq are the
characteristic vectors of a (q+1, d)-multinet structure on A. Then each
of the master functions Φνi , i ≥ 2, is a linear combination of Φν0 and
Φν1 . Moreover every fiber of the mapping [Φν0 : Φν1 ] : P! ! P1 is con-
nected.

Given this result, the analysis of critical sets proceeds exactly as in
the Example 4.4. First, we need a lemma about isolated critical points.

Lemma 4.8. Suppose A is an affine arrangement of n hyperplanes
in C!, and W is a nonempty Zariski-open subset of C!. Then there is a
nonempty Zariski-open subset L of Cn such that W ∩ crit(Φλ) consists
of |χ(U)| points, for each λ ∈ L.

Proof. By [20, Theorem 1.1], there is a nonempty Zariski-open sub-
set L′ of Cn for which crit(Φλ) is isolated and consists of |χ(U)| points,
for λ ∈ L′. Let

Σ = {(λ, v) ∈ Cn × U : ωλ(v) = 0} ,

an n-dimensional smooth complex variety by [20, Prop. 4.1]. Let πi
for i = 1, 2 denote its projections onto Cn and U , respectively. Then
π−1
2 (U ∩W ) and π−1

1 (L′) are each nonempty Zariski-open subsets of Σ,
as is their intersection Z. Then π1(Z) is a finite union of locally-closed
subsets of Cn—see [13, Exercise 3.19]. Since Z is dense in Σ, π1(Z) is
dense in Cn. Hence π1(Z) contains a Zariski-open subset L, which has
the required property. Q.E.D.

Theorem 4.9. Suppose ω = d log(Φ) ∈ R1(A), and D is the max-
imal isotropic subspace of A1 containing ω. Let Λ be the integral basis
of D arising from the associated multinet. Then

(i) For every ω ∈ D, Sing(ΦΛ) ⊆ crit(Φ), and,
(ii) For generic ω ∈ D, crit(Φ)−Sing(ΦΛ) is a union of dim(D)−1

connected smooth hypersurfaces of the same degree.

Proof. Write q = dim(D) and let ν0, . . . , νq be the characteris-
tic vectors of the (q + 1, d)-multinet corresponding to D. Write ω =
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∑q
i=0 aiωνi . By the preceding theorem, for each 2 ≤ k ≤ q, there is a

linear relation Φνk = bkΦν0 + ckΦν1 . Then Y is a line in Pq. The first
assertion follows from Corollary 3.9.

We can choose the isomorphism ϕ : P1 ∼=−−→ Y ⊂ Pq to be given by
the matrix

B =





1 0
0 1
b2 c2
...

...
bq cq




.

The corresponding arrangement B consists of q + 1 distinct points in
P1. The Euler characteristic of the complement of B is 1− q. Then for
generic a the B-master function Ψa has q − 1 isolated, nondegenerate
critical points in Y ∩ (C∗)q. In fact, since Y is dense in Y ∩ (C∗)q, we
apply Lemma 4.8 to see that, for generic a, Ψa has q − 1 critical points
in Y . Then Corollary 3.7 implies crit(Φ) is the union of q − 1 fibers of
ΦΛ.

The projection Pq ! P1 along z0 = z1 = 0 restricts to an isomor-
phism on Y . Then the last statement of Theorem 4.7 implies the fibers
of ΦΛ are connected. These fibers are given by [Φν0 : Φν1 ] = [a0 : a1].
Since the Φνi have degree d, crit(ΦΛ) is a union of q − 1 connected hy-
persurfaces of degree d. The generic fiber of ΦΛ is smooth by Bertini’s
Theorem [13, Corollary III.10.9]. Q.E.D.

Corollary 4.10. For generic ω = d log(Φ) ∈ R1(A), the number of
connected components of crit(Φλ) is equal to the dimension of H1(A·,ω).

Example 3.17 shows that crit(Φ) need not be smooth or irreducible
for all ω = d log(Φ) ∈ R1(A).

Example 4.11. By [22, 31], the maximum number of blocks in a
multinet is equal to four. The only known example with four blocks is the
multinet on the Hessian arrangement corresponding to the Hesse pencil,
Example 2.8. The factors of the polynomial master functions P0 =
xyz, P1, P2, P3 define the blocks of a multinet on A with all multiplicities
equal to one. These master functions satisfy two linear syzygies:

P2 = 3(1− ζ)P0 + P1

P3 = 3(1− ζ2)P0 + P1.

Then the variety Y Λ corresponding to the basis

Λ = {ω100,ω010,ω001}
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Fig. 2. A rank-four matroid with a linear syzygy of master functions

is the line given by z2 = 3(1 − ζ)z0 + z1, z3 = 3(1 − ζ2)z0 + z1 in P3,
which meets the coordinate hyperplanes in the four points corresponding
to the singular fibers. The corresponding arrangement B consists of four
points in general position in P1, given by the rows of the matrix





1 0
0 1

3(1− ζ) 1
3(1− ζ2) 1



 .

The complement of B has Euler characteristic −2, hence a generic
B-master function has two isolated critical points. Then, for generic
a = (a1, a2, a3), the critical locus of the A-master function Φ = Φa1a2a3

has two components and codimension one, as found by direct calculation
in Example 2.8. This example shows that Theorem 4.8(ii) and Corollary
4.9 may not hold under the weaker hypothesis that ai (= 0 for all i.

Here is a rank-four example, that has appeared in different form in
the lecture of A. Libgober in this volume.

Example 4.12. LetA be the arrangement with defining polynomial

Q = (x+ y)(x− y)(y + z)(y − z)(z + w)(z − w)(w + x)(w − x),

with the hyperplanes numbered according to the order of factors in Q.
Then A is a 2-generic subarrangement of the Coxeter arrangement of
type D4. Up to lattice-isotopy, the dual projective point configuration
consists of the eight vertices of a cube—see Figure 2. Let D be the
subspace of A1 with basis

Λ = {(ω0+ω1)− (ω6+ω7), (ω2+ω3)− (ω6+ω7), (ω4+ω5)− (ω6+ω7)}.
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Then D is a rational singular subspace of rank two; if ω ∈ D, then
H1(A·,ω) = 0 and H2(A·,ω) ∼= D/Cω has dimension 2. Y Λ is the
linear hyperplane in P3 defined by z0 + z1 + z2 + z3 = 0, reflecting the
linear syzygy of polynomial master functions

(x+ y)(x− y) + (y + z)(y − z) + (z + w)(z − w) + (w + x)(w − x) = 0.

From Proposition 4.2 we see that

Φ =

(
x2 − y2

w2 − x2

)a1
(
y2 − z2

w2 − x2

)a2
(
z2 − w2

w2 − x2

)a3

has nonempty critical set of codimension two in P3, for generic (a1, a2, a3).

§5. The rank condition

We are left with the problem of finding rational singular subspaces
of A1. The theory of multinets gives a method to find such subspaces of
rank one. In this section we give a combinatorial condition for a set Λ
of linearly independent integral one-forms to span a singular subspace
of A1 of arbitrary rank, using tropical implicitization and nested sets.

5.1. Tropicalization

The tropicalization of a projective variety V in Pq is a polyhedral fan
trop(V ) in tropical projective space TPq = Rq+1/R(1, . . . , 1), associated
to a homogeneous defining ideal I of V . If V is a hypersurface with
defining equation f = 0, then trop(V ) is the image in TPq of the union
of the cones of codimension at least one in the normal fan of the Newton
polytope of f . In general, trop(V ) is the image of the union of the cones
of codimension at least one in the Gröbner fan of I. The set trop(V )
arises geometrically from the lowest-degree terms in Puiseux expansions
of curves lying in V . See [7] and the references therein for background
on tropical varieties. See [21] for matroid terminology.

We will need several results from tropical geometry. The first is a
theorem of Bieri and Groves [3].

Theorem 5.1. The maximal cones in trop(V ) have dimension equal
to dim(V ).

If V is an #-dimensional linear subvariety of Pn, given as the column
space of a matrix R, then the tropicalization trop(V ) depends only on
the dependence matroid G on the rows of R. In our setting the rows of
R give the defining forms of a hyperplane arrangement A. The matroid
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polytope ∆(G) of G is the convex hull of the set

{∑

i∈B

ei | B is a basis of G
}
.

The tropicalization trop(V ), called the Bergman fan of G, is the image in
TPn of the union of the cones of codimension at least one in the normal
fan of ∆(G). We denote it by B(G).

In [11] the Bergman fan is described in terms of nested set cones. Let
G be the set of proper connected (i.e., irreducible) flats of G. These are
the flats corresponding to the dense edges of the projective arrangement
A. A collection S = {X1, . . . , Xp} of subsets of G is a nested set if, for
every set T of pairwise incomparable elements of S, the join

∨
T is not

an element of G. The nested sets form a simplicial complex ∆ = ∆(G),
the nested set complex, which is pure of dimension r = # − 1. It is the
coarsest of a family of nested set complexes, obtained by replacing G
with larger “building sets.” All of these complexes are subdivided by
the order complex of the poset of nonempty flats of G.

If S ⊆ A, set eS =
∑

Hi∈S ei. The nested set fan N(G) is the image
in TPn of the union of the cones generated by

{eS | S ∈ S}

for S ∈ ∆(G). From [11] we have the following result.

Theorem 5.2. The nested set fan N(G) subdivides the Bergman
fan B(G).

5.2. Singular subspaces

Let A be an arrangement in P! with homogeneous defining linear
forms α0, . . . ,αn. Let G be the underlying matroid of A, the dependence
matroid on {α0, . . . ,αn}. Suppose D is a rational subspace of A1(A),
with integral basis Λ = {ωξ1 , . . . ,ωξq}. We identify Λ with the q×(n+1)
matrix of integers

[
ξij

]
, and recall that

∑n
j=0 ξij = 0 for 1 ≤ i ≤ q. Let

Y Λ be the Zariski closure of the image of the associated rational map
ΦΛ = [1 : Φξ1 : · · · : Φξq ] : P! ! Pq.

The main observation is that ΦΛ can be factored as a linear map
followed by a monomial map. Assume A is essential, and let

α =
[
α0 : · · · : αn

]
: P! → Pn.

Let µ = µΛ : Pn ! Pq be given by

µ([t0 : · · · : tn]) = [1 : tξ1 : · · · : tξq ],
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where we use the usual vector notation for monomials: t(i0,...,in) =
ti00 · · · tinn . Then the following diagram commutes.

Pn
!!

µΛ

!!!
!!

!!
!!

!

P! "" ΦΛ ""

α

##""""""""
"" Pq

In this situation the diagram tropicalizes faithfully, in the following
sense.

Theorem 5.3 ([7, Theorem 3.1]). The tropicalization trop(Y Λ) is
equal to the image of the Bergman fan B(G) under the linear map

TPn → TPq

with matrix Λ.

We obtain the following characterization. Write Λ =
[
Λ0| · · · |Λn

]

with Λj ∈ Zq for each j. For S = {Hj1 , . . . , Hjk} ⊆ A, let ΛS =∑k
r=1 Λjr .

Theorem 5.4. The subspace D is singular if and only if the rank
of the matrix

ΛS =
[
ΛS1 | · · · |ΛS"−1

]

is less than q, for each maximal nested set S ∈ N(G). In this case the
rank of D is the maximal rank of ΛS for S ∈ N(G).

Proof. The subspace D is singular if and only if dimY Λ < q. By
Theorem 5.1, this occurs if and only if dim trop(Y Λ) < q. The cones
of trop(Y Λ) are images of the cones of B(G) under Λ, by Theorem 5.3.
The linear hulls of the cones in B(G) are the images in TPn of the linear
spans of the sets {eS | S ∈ S}, for S ∈ N(G), by Theorem 5.2. Since
Λ(eS) = ΛS , the result follows. The last statement holds because the
rank of D is equal to dimY Λ. Q.E.D.

Example 5.5. Consider the arrangement of rank four with defining
polynomial

Q = xyz(x+ y + z)w(x+ y + w),

with hyperplanes ordered according to the given factorization of Q. The
dual point configuration consists of the six vertices of a triangular prism
in P3.

For generic (a, b, c), the master function Φ = xay−azb(x + y +
z)−bwc(x+y+w)−c has critical set of codimension two, and H2(A,ω) ∼=
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C for ω = d log(Φ). Based on our other examples, one might suspect
that the subspace D with basis Λ = {ω0 − ω1, ω2 − ω3, ω4 − ω5} is
singular. Among the nested sets of A is the set S = {0, 02, 024}, and

ΛS =




1 1 1
0 1 1
0 0 1





does not have rank two. Then by Theorem 5.4, D is not singular. In
fact, ψ = a · ∂(ω0ω1ω5) + b · ∂(ω2ω3ω5) is the unique 2-cocycle for ω.
ψ is trivial if a or b is zero, and our argument shows that ψ is not
decomposable if a and b are both nonzero.

In the forthcoming paper [2], Theorem 5.4 is used to derive combi-
natorial conditions for p-generic arrangements to support singular sub-
spaces of rank p. Using that approach one can show by combinatorial
means that there are no singular subspaces of A1 of rank two in Exam-
ple 5.5.

Theorem 5.4 also has the following corollary.

Corollary 5.6. If G1 and G2 are loop-free matroids on the ground
set {1, . . . , n} and B(G1) = B(G2), then G1 = G2.

Proof. Let G be a loop-free matroid on {1, . . . , n}, with Orlik–
Solomon algebra A· = A·(G). Let e1, . . . , en ∈ A1 denote the canonical
generators. Then S = {i1, . . . , ik} ⊆ {1, . . . , n} is dependent in G if
and only if ei1 ∧ · · · ∧ eik = 0 in Ak. (This statement holds even if G
has multiple points.) Equivalently, S is dependent if and only if the
coordinate subspace D ⊆ A1 spanned by {ei1 , . . . , eik} is singular. By
Theorem 5.3, D is singular if and only if the image of the Bergman fan
B(G) ⊆ TPn under the projection TPn → TPS ∼= TPk−1 has dimension
less than k − 1. Thus B(G) determines G. Q.E.D.
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