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Abstract. We show that the Artin pure braid group Pn is not residually free for
n ≥ 4. Our results also show that the corank of Pn is equal to 2 for n ≥ 3.

1 Introduction

A group G is residually free if for every x 0= 1 in G, there is a homo-

morphism f from G to a free group F so that f (x) 0= 1 in F . Equiva-

lently, G embeds in a product of free groups (of finite rank). Examples

of residually free groups include the fundamental groups of orientable

surfaces. In this note, we show that the Artin pure braid group, the ker-

nel Pn = ker(Bn → #n) of the natural map from the braid group to the
symmetric group, is not residually free for n ≥ 4. (It is easy to see that

the pure braid groups P2 and P3 are residually free.) We also classify all

epimorphisms from the pure braid group to free groups, and determine

the corank of the pure braid group. For n ≥ 5, the fact that Pn is not

residually free was established independently by L. Paris (unpublished),

see Remark 5.4.

For n ≥ 3, the braid groups themselves are not residually free. Indeed,

the only nontrivial two-generator residually free groups are Z, Z2, and
F2, the nonabelian free group of rank two, see Wilton [Wil08]. Since Bn
can be generated by two elements for n ≥ 3, it is not residually free. (For

n = 2, B2 = Z is residually free.)
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If G is a group which is not residually free, then any group G̃ with a

subgroup isomorphic to G cannot be residually free. Consequently, the

(pure) braid groups are “poison” groups for residual freeness. In particu-

lar, a group with a subgroup isomorphic to the 4-strand pure braid group

P4 or the 3-strand braid group B3 is not residually free. Since P4 < Pn for

every n ≥ 4, our main result follows from the special case n = 4. More-

over, the same observation enables us to show that a number of other

groups are not residually free. These include (pure) braid groups of ori-

entable surfaces, the (pure) braid groups associated to the full monomial

groups, and a number of irreducible (pure) Artin groups of finite type.

This research was motivated by our work in [CFR10, Section 3], which

implies the residual freeness of fundamental groups of the complements

of certain complex hyperplane arrangements. In particular, the proof of

the assertion in the last sentence of [CFR10, Example 3.25] gives the last

step in the proof of Theorem 5.2 below.

ACKNOWLEDGEMENTS. The authors are grateful to Luis Paris and Ivan

Marin for helpful conversations, and to the referee for pertinent observa-

tions.

2 Automorphisms of the pure braid group

Let Bn be the Artin braid group, with generators σ1, . . . , σn−1 and rela-
tions σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n − 2, and σ jσi = σiσ j for

| j − i | ≥ 2. The Artin pure braid group Pn has generators

Ai, j = σ j−1 · · · σi+1σ 2i σ−1
i+1 · · · σ−1

j−1 = σ−1
i · · · σ−1

j−2σ
2
j−1σ j−2 · · · σi ,

and relations

A−1
r,s Ai, j Ar,s =






Ai, j if i < r < s < j ,

Ai, j if r < s < i < j ,

Ar, j Ai, j A
−1
r, j if r < s = i < j ,

Ar, j As, j Ai, j A
−1
s, j A

−1
r, j if r = i < s < j ,

[Ar, j , As, j ]Ai, j [Ar, j , As, j ]−1 if r < i < s < j ,

(2.1)

where [u, v] = uvu−1v−1 denotes the commutator. See, for instance,
Birman [Bir75] as a general reference on braid groups. It is well known

that the pure braid group admits a direct product decomposition

Pn = Z × Pn/Z , (2.2)
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where Z = Z(Pn) ∼= Z is the center of Pn , generated by

Zn = (A1,2)(A1,3A2,3) · · · (A1,n · · · An−1,n). (2.3)

Note that P3 = Z(P3)×P3/Z(P3) ∼= Z × F2, where F2 is the free group

on two generators. For any n≥3, by (2.2), there is a split, short exact se-
quence

1 → tv(Pn) → Aut(Pn) % Aut(Pn/Z) → 1, (2.4)

where the subgroup tv(Pn) of Aut(Pn) consists of those automorphisms
which become trivial upon passing to the quotient Pn/Z .

For a group G with infinite cyclic center Z = Z(G) = 〈z〉, a transvec-
tion is an endomorphism of G of the form x /→ xzt (x), where t : G → Z
is a homomorphism, see Charney and Crisp [CC05]. Such a map is an

automorphism if and only if its restriction to Z is surjective, which is the

case if and only if z /→ z or z /→ z−1, that is, t (z) = 0 or t (z) = −2.
For the pure braid group Pn , the transvection subgroup tv(Pn) of Aut(Pn)

consists of automorphisms of the form Ai, j /→ Ai, j Z
ti, j
n , where ti, j ∈ Z

and
∑
ti, j is either equal to 0 or −2. In the former case, Zn /→ Zn ,

while Zn /→ Z−1
n in the latter. This yields a surjection tv(Pn) → Z2,

with kernel consisting of transvections for which
∑
ti, j = 0. Since

Pn has
(
n

2

)
= N + 1 generators, this kernel is free abelian of rank N .

The choice t1,2 = −2 and all other ti, j = 0 gives a splitting Z2 →
tv(Pn). Thus, tv(Pn) ∼= ZN # Z2. Explicit generators of tv(Pn) are given
below.

For n ≥ 4, Bell and Margalit [BM07] show that the automorphism

group of the pure braid group admits a semidirect product decomposition

Aut(Pn) ∼= (ZN # Z2) #Mod(Sn+1). (2.5)

Here, ZN # Z2 = tv(Pn) is the transvection subgroup of Aut(Pn) de-
scribed above, Sn+1 denotes the sphere S2 with n + 1 punctures, and

Mod(Sn+1) is the extended mapping class group of Sn+1, the group of
isotopy classes of all self-diffeomorphisms of Sn+1. The semidirect prod-
uct decomposition (2.5) is used in [Coh11] to determine a finite presen-

tation for Aut(Pn). From this work, it follows that Aut(Pn) is generated
by automorphisms

ξ, βk (1 ≤ k ≤ n), ψ, φp,q (1 ≤ p < q ≤ n, {p, q} 0= {1, 2}), (2.6)
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given explicitly by

ξ : Ai, j /→(Ai+1, j · · · A j−1, j )
−1A−1

i, j (Ai+1, j · · · A j−1, j ),

βk : Ai, j /→






Ai−1, j if k= i − 1,

A−1
i,i+1Ai+1, j Ai,i+1 if k= i< j−1,

Ai, j−1 if k= j−1> i ,

A−1
j, j+1Ai, j+1A j, j+1 if k = j ,

Ai, j otherwise,

for 1≤k≤n−1,

βn : Ai, j /→
{
Ai, j if j 0= n,

(Ai,n A1,i · · · Ai−1,i Ai,i+1 · · · Ai,n−1)−1 if j = n,

ψ : Ai, j /→
{
A1,2Z

−2
n if i = 1 and j = 2,

Ai, j otherwise,

φp,q : Ai, j /→






A1,2Zn if i = 1 and j = 2,

Ap,q Z
−1
n if i = p and j = q,

Ai, j otherwise.

(2.7)

It is readily checked that these are all automorphisms of Pn . The auto-

morphisms ψ and φp,q are transvections. For k ≤ n − 1, βk ∈ Aut(Pn)
arises from the conjugation action of Bn on Pn , βk(Ai, j ) = σ−1

k Ai, jσk ,
see Dyer and Grossman [DG81].

Remark 2.1. The presentation of Aut(Pn) found in [Coh11] is given in
terms of the generating set ε, ωk (1 ≤ k ≤ n), ψ , φp,q (1 ≤ p <

q ≤ n, {p, q} 0= {1, 2}), where ξ = ε ◦ ψ , β2 = ω2 ◦ φ−1
1,3, βn =

ωn ◦ ψ ◦ φ1,n ◦ φ2,n , and βk = ωk for k 0= 2, n. This presentation exhibits
the semidirect product structure (2.5) of Aut(Pn).

3 Epimorphisms to free groups

We study surjective homomorphisms from the pure braid group Pn to the

free group Fk on k ≥ 2 generators. Since P2 = Z is infinite cyclic, we
assume that n ≥ 3. We begin by exhibiting a number of specific such

homomorphisms.

Let F2 = 〈x, y〉 be the free group on two generators, and write [n] =
{1, 2, . . . , n}. If I = {i, j, k} ⊂ [n] with i < j < k, define f I : Pn → F2
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by

f I (Ar,s) =






x if r = i and s = j ,

y if r = i and s = k,

y−1x−1 if r = j and s = k,

1 otherwise.

(3.1)

If I = {i, j, k, l} ⊂ [n] with i < j < k < l, define f I : Pn → F2 by

f I (Ar,s) =






x if r = i and s = j ,

y if r = i and s = k,

y−1x−1 if r = j and s = k,

y−1x−1 if r = i and s = l,

x yx−1 if r = j and s = l,

x if r = k and s = l,

1 otherwise.

(3.2)

In either case (3.1) or (3.2), note that f I is surjective by construction. It

is readily checked that f I is a homomorphism. We will show that these

are, in an appropriate sense, the only epimorphisms from the pure braid

group to a nonabelian free group.

Remark 3.1. The epimorphisms f I : Pn → F2 are induced by maps of

topological spaces. Let

F(C, n) = {(z1, . . . , zn) ∈ Cn | zi 0= z j if i 0= j}

be the configuration space of n distinct ordered points in C. It is well
known that Pn = π1(F(C, n)) and that F(C, n) is a K (Pn, 1)-space.
For a subset I of [n] of cardinality k, let pI : F(C, n) → F(C, k) de-

note the projection which forgets all coordinates not indexed by I . The

induced map on pure braid groups forgets the corresponding strands. Ad-

ditionally, let qn : F(C, n) → F(C, n)/C∗ denote the natural projection,
where C∗ acts by scalar multiplication. In particular, q3 : F(C, 3) →
F(C, 3)/C∗ ∼= C × (C $ {two points}). Finally, define g : F(C, 4) →
F(C, 3) by

g(z1,z2,z3,z4)=
(
(z1+z2−z3−z4)2, (z1+z3−z2−z4)2, (z1+z4−z2−z3)2

)
.

One can check that if |I | = 3, then f I = (q3 ◦ pI )∗, while if |I | = 4,

f I = (q3 ◦ g ◦ pI )∗.
In the case n = 4, F(C, n) is diffeomorphic to C×M , where M is the

complement of the Coxeter arrangement A of type D3. With this iden-

tification, the mappings pI and g correspond to the components of the
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mapping constructed in [CFR10, Example 3.25]. The map g is the pencil

associated with the non-local component of the first resonance variety of

H∗(M; C) as in [LY00,FY07], see below.

One can also check that the homomorphism g∗ : P4 → P3 is the re-

striction to pure braid groups of the famous homomorphism B4 → B3 of

full braid groups, given by σ1 /→ σ1, σ2 /→ σ2, σ3 /→ σ1.

Let G and H be groups, and let f and g be (surjective) homomor-

phisms from G to H . Call f and g equivalent if there are automorphisms

φ ∈ Aut(G) and ψ ∈ Aut(H) so that g ◦ φ = ψ ◦ f . If f and g are

equivalent, we write f ∼ g.

Proposition 3.2. If I and J are subsets of [n] of cardinalities 3 or 4, then
the epimorphisms f I and f J from Pn to F2 are equivalent.

Proof. If n = 3, there is nothing to prove. So assume that n ≥ 4.

Let I = {i1, . . . , iq} ⊂ [n] with q ≥ 2 and i1 < i2 < · · · < iq . Define

αI ∈ Bn by

αI = (σi1−1 · · · σ1)(σi2−1 · · · σ2) · · · (σiq−1 · · · σq),

where σik−1 · · · σk = 1 if ik = k. Then α−1
I Air ,isαI = Ar,s for 1 ≤ r <

s ≤ q. This can be seen by checking that, for instance, the geometric

braids αI Ar,sα
−1
I and Air ,is are equivalent. Denote the automorphism

Ai, j /→ α−1
I Ai, jαI of Pn by the same symbol,

αI = (βi1−1 · · ·β1)(βi2−1 · · ·β2) · · · (βiq−1 · · ·βq) ∈ Aut(Pn).

Then, αI (Air ,is ) = Ar,s for 1 ≤ r < s ≤ q.

If I has cardinality 3, then, by the above, we have f I = f[3] ◦ αI , so

f I ∼ f[3]. Similarly, if |I | = 4, then f I = f[4] ◦ αI and f I ∼ f[4]. Thus
it suffices to show that f I ∼ f[3] for some I with |I | = 4. This can be

established by checking that f I = f[3] ◦ βn for I = {1, 2, 3, n}.

Remark 3.3. The homomorphisms f I also have a natural interpretation

in terms of the moduli space M0,n of genus-zero curves with n marked

points. By definition, M0,n is the quotient of the configuration space

F(S2,n) of the Riemann sphere S2=C∪ {∞} by the action of PSL(2,C).
The map hn: F(C, n)→M0,n+1 given by hn(z1, ..., zn)=[(z1, ..., zn,∞)]
induces a homeomorphism

F(C, n)/Aff(C) → M0,n+1,
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where Aff(C) ∼= C # C∗ is the affine group, and a homotopy equivalence

hn : F(C, n)/C∗ → M0,n+1.

For 1 ≤ i ≤ 5, let δi : M0,5 → M0,4 be defined by forgetting the i-th

point. Then, in the notation of Remark 3.1, for 1 ≤ i ≤ 4, δi ◦ h4 =
h3 ◦ q3 ◦ pI , where I = [4] \ {i}. Up to a linear change of coordinates
in F(C, 3), δ5 ◦ h4 = h3 ◦ q3 ◦ g. (See also Pereira [Per10, Example
3.1].) The maps δi : M0,5 → M0,4, 1 ≤ i ≤ 5, are clearly equivalent

up to diffeomorphism of the source. Applying Remark 3.1, this gives an

alternate proof of Proposition 3.2.

For our next result, we require some properties of the cohomology

ring of the pure braid group. Let A = ⊕
k≥0 A

k be a graded algebra

over a field k that is connected (A0 ∼= k), graded-commutative (b · a =
(−1)pqa · b for a ∈ Ap and b ∈ Aq), and satisfies dim A1 < ∞. Since

a · a = 0 for each a ∈ A1, multiplication by a defines a cochain complex

(A, δa):

A0
δa−−−−→ A1

δa−−−−→ A2
δa−−−−→ · · · · · · δa−−−−→ A!,

where δa(x) = ax . The resonance varietiesRd(A) of A are defined by

Rd(A) = {a ∈ A1 | Hd(A, δa) 0= 0}.

If dim Ad < ∞, thenRd(A) is an algebraic set in A1.

In the case where A = H∗(M(A); k) is the cohomology ring of the
complement of a complex hyperplane arrangement, and k has charac-
teristic zero, work of Libgober and Yuzvinsky [LY00] (see also [FY07])

shows that R1(A) is the union of the maximal isotropic subspaces of A1

for the quadratic form

µ : A1 ⊗ A1 → A2, µ(a ⊗ b) = ab (3.3)

having dimension at least two. Note that, for any field k, any isotropic
subspace of A1 of dimension at least two is contained inR1(A).

For our purposes, it will suffice to take k = Q. Let A = H∗(Pn; Q)
be the rational cohomology ring of the pure braid group, that is, the co-

homology of the complement of the braid arrangement in Cn . By work

of Arnold [Arn69] and F. Cohen [Coh76], A is generated by degree one

elements ai, j , 1 ≤ i < j ≤ n, which satisfy (only) the relations

ai, j ai,k − ai, j a j,k + ai,ka j,k for 1 ≤ i < j < k ≤ n,
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and their consequences. The irreducible components of the first res-

onance variety R1(A) may be obtained from work of Cohen and Su-

ciu [CS00] (see also [Per10]), and may be described as follows. The

rational vector space A1 = H 1(Pn; Q) is of dimension
(
n

2

)
, and has basis

{ai, j | 1 ≤ i < j ≤ n}. If I = {i, j, k} ⊂ [n] with i < j < k, let VI be

the subspace of A1 defined by

VI = span{ai, j − a j,k, ai,k − a j,k}.

If I = {i, j, k, l} ⊂ [n] with i < j < k < l, let VI be the subspace of A
1

defined by

VI = span{ai, j + ak,l − a j,k − ai,l, ai,k + a j,l − a j,k − ai,l}.

The 2-dimensional subspaces VI of A
1, where |I | = 3 or |I | = 4, are the

irreducible components ofR1(A) = ⋃4
k=3

⋃
|I |=k VI .

Remark 3.4. One can check that VI = f ∗
I (H 1(F2; Q)), where f I: Pn →

F2 is defined by (3.1) if |I | = 3 and by (3.2) if |I | = 4. Work of Schenck

and Suciu [SS06, Lemma 5.3] implies that for any two components VI
and VJ ofR1(A), there is an isomorphism of A1 = H 1(Pn; Q) taking VI
to VJ . This provides an analog, on the level of (degree-one) cohomology,

of Proposition 3.2.

Theorem 3.5. Let n ≥ 3 and k ≥ 2, and consider the pure braid group

Pn and the free group Fk .

1. If k ≥ 3, there are no epimorphisms from Pn to Fk .

2. If k = 2, there is a single equivalence class of epimorphisms from Pn
to F2.

Proof. For part (3.5), if f : Pn → Fk is an epimorphism, then f splits,

so

f ∗ : H 1(Fk; Q) → H 1(Pn; Q)

is injective. Consequently, f ∗(H 1(Fk; Q)) is a k-dimensional isotropic
subspace of A1 = H 1(Pn; Q) for the form (3.3). Since this subspace

is isotropic, it must be contained in an irreducible component of R1(A).
Since these components are all of dimension 2, we cannot have k ≥ 3.

For part (3.5), by Proposition 3.2, it suffices to show that an arbitrary

epimorphism f : Pn → F2 is equivalent to f I for some I of cardinality

3 or 4. We will extensively use that fact that if [a, b] = 1 in F2, then

〈a, b〉 < F2 is free and abelian, so a = zm and b = zn for some z ∈ F2
and m, n ∈ Z. Additionally, if the homology class [a] of a in H1(F2; Z)
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is part of a basis and [a, b] = 1, then b is a power of a. Indeed, sup-

pose {[a], [a′]} is a basis for H1(F2; Z). Write [z] = c1[a] + c2[a′] with
c1, c2 ∈ Z. Then we have [a] = m[z] = mc1[a]+mc2[a′], which implies
c2 = 0 and m = c1 = ±1, yielding the assertion.
Let f : Pn → F2 be an epimorphism. Then f ∗(H 1(F2; Q)) is a 2-

dimensional isotropic subspace of H 1(Pn; Q) for the form (3.3). Since

the irreducible components of R1(A) are all of dimension 2, we must
have f ∗(H 1(F2; Q)) = VI for some I ⊂ [n] of cardinality 3 or 4. Since
the cohomology rings of Pn and F2 are torsion-free, passing to integer

coefficients, we have f ∗(H 1(F2; Z)) = VI ∩ Z(n2) ⊂ H 1(Pn; Z). Conse-
quently, there is an automorphism ϕ∗ of H 1(F2; Z) so that f ∗ = f ∗

I ◦ϕ∗.
Passing to homology (again using torsion-freeness), we have f∗ = ϕ∗ ◦
( f I )∗, where ϕ∗ ∈ Aut(H1(F2; Z)) is dual to ϕ∗. Let ϕ ∈ Aut(F2) be an
automorphism which induces ϕ∗.
From the definitions (3.1) and (3.2) of the epimorphisms f I , there ex-

ists {i, j, k} with 1 ≤ i < j < k ≤ n, f I (Ai, j ) = x , and f I (Ai,k) = y,

where F2 = 〈x, y〉. Let u = f (Ai, j ) and v = f (Ai,k). Using the equa-
tion f∗ = ϕ∗ ◦ ( f I )∗, we have

[u] = [ f (Ai, j )] = f∗([Ai, j ]) = ϕ∗([ f I (Ai, j )] = ϕ∗([x]) = [ϕ(x)],

and similarly [v] = [ϕ(y)]. Thus {[u], [v]} is a basis for H1(F2; Z).
Let w = f (A j,k). Using the pure braid relations (2.1), we have

Ai, j Ai,k A j,k = Ai,k A j,k Ai, j = A j,k Ai, j Ai,k . Applying f , these imply

that [uv,w] = 1 and [u, vw] = 1 in F2. Since {[u], [u]+[v]} is a basis for
H1(F2; Z), these imply thatw = (uv)m and vw = un for some m, n ∈ Z.
A calculation with homology classes reveals that m = n = −1. Hence
w = v−1u−1, i.e., uvw = 1.

Suppose that f (Ar,s) = 1 for all {r, s} 0⊂ {i, j, k}. Then the image of
f is contained in the subgroup 〈u, v〉 of F2. Since f is by hypothesis an
epimorphism, we have 〈u, v〉 = F2. Letting λ be the automorphism of F2
taking u to x and v to y, we have λ ◦ f = f{i, j,k}.
Now suppose that f (Ar,s) 0=1 for some {r, s} 0⊂ {i, j, k}. First assume

that {r, s}∩ {i, j, k} = ∅. We claim that f (Ar,s)=1. There are various
cases depending on the relative positions of r < s and i < j < k. We

consider the case i < r < j < k < s and leave the remaining analogous

cases to the reader. In this instance, we have relations [A j,k, Ar,s] = 1

and A−1
i, j Ar,s Ai, j = [Ai,s, A j,s]Ar,s[Ai,s, A j,s]−1. The second of these,

together with the pure braid relations (2.1) may be used to show that

[Ai, j , A−1
j,s Ar,s A j,s] = 1. Applying f , we have [w, f (Ar,s)] = 1 and

[u, z−1 f (Ar,s)z]=1 in F2, where z= f (A j,s). Since any two element sub-
set of {[u],[v],[w]} forms a basis for H1(F2; Z), these relations imply that
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f (Ar,s) = wm and z−1 f (Ar,s)z = un for some m, n ∈ Z. Consequently,
m[w]=n[u] in H1(F2; Z), which forces m = n=0 and f (Ar,s)=1.
Thus, we must have f (Ar,s) 0=1 for some {r, s}with |{r, s}∩{i, j, k}| =

1. As above, there are several cases, and we consider a representative one,

leaving the other, similar, cases to the reader.

Assume that r = k, so that i < j < k < s, and that f (Ak,s) 0= 1.

Applying f to the pure braid relations [Ai, j , Ak,s] = 1, [A j,k, Ai,s] = 1,

and [Ai,k, A−1
k,s A j,s Ak,s] = 1 yields [u, f (Ak,s)] = 1, [w, f (Ai,s)] = 1,

and [v, f (A−1
k,s A j,s Ak,s)] = 1 in F2. It follows that f (Ak,s) = um ,

f (Ai,s) = wn , and f (A j,s) = umvlu−m for some m, n, l ∈ Z. Since
f (Ak,s) 0= 1, we have m 0= 0. Then, applying f to the pure braid rela-

tions [Ai,k, Ai,s Ak,s] = 1 and [A j,k, A j,s Ak,s]= 1, we obtain [v,wnum]=
1 and [w, umvl] = 1 in F2. Thus, w

num = v p and umvl = wq for some

p, q ∈ Z. Passing to homology, using the fact that [u] + [v] + [w] = 0

in H1(F2; Z) since uvw = 1 in F2, reveals that m = n = l.

In Pn , we also have the relation [A j,s, Ak,s A j,k] = 1. Applying f we

obtain the relation [umvmu−m, umw] = 1 in F2. Hence, u
mvmu−m = z p

and umw = zq for some z ∈ F2 and p, q ∈ Z. Writing [z] = c1[u] +
c2[v], we have

m[v] = pc1[u] + pc2[v] and (m − 1)[u] − [v] = qc1[u] + qc2[v]

in H1(F2; Z). It follows that m = n = l = 1, and therefore f (Ai,s) =
w = v−1u−1, f (A j,s) = uvu−1, and f (Ak,s) = u. Thus the image of f

is contained in the subgroup 〈u, v〉 of F2. As before, 〈u, v〉 = F2 since f

is an epimorphism. Recalling that λ is the automorphism of F2 taking u
to x and v to y, we have λ ◦ f = f{i, j,k,s}.

The proof of Theorem 3.5(a) actually yields the following general re-

sult.

Theorem 3.6. Let G be a finitely generated group, and k an algebra-

ically closed field. Then there are no epimorphisms from G to Fk for

k > dimR1(H∗(G, k)).

Recall that the corank of a group G is the largest natural number k for

which the free group Fk is an epimorphic image of G. The corank of

P2 ∼= Z is 1. For larger n, as an immediate consequence of Theorem 3.5,
we obtain the following.

Corollary 3.7. For n ≥ 3, the corank of the pure braid group Pn is equal

to 2.

Theorem 3.6 yields a more general result.
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Corollary 3.8. Let G be a finitely generated group and k an alge-

braically closed field. Then the corank of G is bounded above by

dimR1(H∗(G, k)).

In fact, results of Dimca, Papadima, and Suciu [DPS09] imply that the

corank of G is equal to dimR1(H∗(G, C)) for a wide class of quasi-
Kahler groups, including fundamental groups of complex projective hy-

persurface complements.

4 Epimorphisms of the lower central series Lie algebra

An analogue of Theorem 3.5 holds on the level of lower central series Lie

algebras. For a group G, let Gk be the k-th lower central series subgroup,

defined inductively by G1 = G and Gk+1 = [Gk,G] for k ≥ 1. Let

g(G) = ⊕
k≥1 Gk/Gk+1. The mapG×G → G given by the commutator,

(x, y) /→ [x, y], induces a bilinear map g(G) × g(G) → g(G) which
defines a Lie algebra structure on g(G).
The structure of the lower central series Lie algebra g(Pn) of the pure

braid group was first determined rationally by Kohno [Koh85]. The fol-

lowing description holds over the integers as well, see Papadima [Pap02].

For each j ≥ 1, let L[ j] be the free Lie algebra generated by elements
a1, j+1, . . . , a j, j+1. Then g(Pn) is additively isomorphic to

⊕n−1
j=1 L[ j],

and the Lie bracket relations in g(Pn) are the infinitesimal pure braid re-
lations, given by

[ai, j + ai,k + a j,k, am,k] = 0, for m ∈ {i, j},
[ai, j , ak,l] = 0, for {i, j} ∩ {k, l} = ∅. (4.1)

Let fk be the free Lie algebra (over Z) generated by x1, . . . , xk . The
homomorphisms f I : Pn → F2, |I | = 3, 4, induce surjective Lie algebra
homomorphisms g(Pn) → f2. Calculations with (3.1) and (3.2) reveal
that these are given by

( f{i, j,k})∗(ar,s) =






x1 if {r, s} = {i, j},
x2 if {r, s} = {i, k},
−x1 − x2 if {r, s} = { j, k},
0 otherwise,

( f{i, j,k,l})∗(ar,s) =






x1 if {r, s} = {i, j} or {r, s} = {k, l},
x2 if {r, s} = {i, k} or {r, s} = { j, l},
−x1 − x2 if {r, s} = { j, k} or {r, s} = {i, l},
0 otherwise.
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Theorem 4.1. Up to isomorphism, the maps ( f I )∗ : g(Pn) → f2, |I | =
3, 4, are the only epimorphisms from the lower central series Lie algebra

g(Pn) to a free Lie algebra of rank at least 2.

Sketch of Proof. If ϕ : g(Pn) → fk is an epimorphism, there is an induced
epimorphism g(Pn)⊗Q → fk ⊗Qwhich we denote by the same symbol.

Let bi, j = ϕ(ai, j ). Then the relations (4.1) imply that

[br,s, bi, j + bi,k + b j,k] = 0 if {r, s} ⊂ {i, j, k}, and
[bi, j , bk,l] = 0 if {i, j} ∩ {k, l} = ∅. (4.2)

Since fk ⊗ Q is free, we conclude that br,s is a scalar multiple of bi, j +
bi,k + b j,k for each {r, s} ⊂ {i, j, k} and that bk,l is a scalar multiple of
bi, j if {i, j} ∩ {k, l} = ∅. Write br,s = ∑k

j=1 cr,s; j x j as a linear combi-
nation of the generators x1, . . . , xk of fk ⊗ Q. For 1 ≤ p ≤ k, let ηp =∑

1≤r<s≤n cr,s;pa
∗
r,s ∈ H 1(Pn; Q), where a∗

r,s is dual to ar,s ∈ H1(Pn; Q).

If 1 ≤ p < q ≤ k, it follows from (4.2) that the 2× 2 determinants

∣∣∣∣
cr,s;p cr,s;q

ci, j;p + ci,k;p + c j,k;p ci, j;q + ci,k;q + c j,k;q

∣∣∣∣

and ∣∣∣∣
cu,v;p cu,v;q

ci, j;p + cl,k;p ci, j;q + ck,l;q

∣∣∣∣

vanish for {r, s} ⊂ {i, j, k}, and {u, v} = {i, j} or {k, l} where {i, j} ∩
{k, l} = ∅. By [Fa97,LY00], this implies that ηp∧ηq = 0. Consequently,

{η1, . . . , ηk} spans an isotropic subspace of A1, where A = H∗(Pn; Q).
Then k ≤ dimR1(A, Q) as in the proof of Theorem 3.5. One concludes
that if ϕ : g(Pn) # fk , then k is at most 2.
Finally, one shows that every surjection g(Pn) → f2 is induced by f I

for some I with |I | = 3 or 4, using a linear version of the argument in the

proof of Theorem 3.5 and the infinitesimal pure braid relations (4.1).

5 Pure braid groups are not residually free

Recall that a group G is residually free if for every x 0= 1 in G, there is

a homomorphism f from G to a free group F so that f (x) 0= 1 in F . In

this section, we show that Pn is not residually free for n ≥ 4, and derive

some consequences. Since P2 ∼= Z and P3 ∼= Z × F2, these groups are

residually free.
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For each I ⊂ [n] of cardinality 3 or 4, let KI = ker( f I : Pn → F2).
Define

Kn =
4⋂

k=3

⋂

|I |=k
KI .

Proposition 5.1. The subgroup Kn of Pn is characteristic.

Proof. It suffices to show that if β is one of the generators of Aut(Pn)
listed in (2.6), then β(Kn) = Kn .

If β = ψ or β = φp,q is a transvection, then for each I , f I ◦ β = f I
since f I (Zn) = 1, where Zn is the generator of the center Z(Pn) of Pn
recorded in (2.3). It follows that β(KI ) = KI for each I , which implies

that β(Kn) = Kn .

If β = ξ , then for each I , it is readily checked that f I ◦ ξ = λ ◦ f I ,

where λ ∈ Aut(F2) is defined by λ(x) = x−1 and λ(y) = xy−1x−1.
Thus, ξ(KI ) = KI , and ξ(Kn) = Kn .

If β = βk for 1 ≤ k ≤ n − 1, let τk denote the permutation induced
by βk . Let I = {i1, . . . , il} where l = 3 or 4, and let τk(I ) denote
the set {τk(i1), . . . , τk(il)} with the elements in increasing order. Define
automorphisms λ1, λ2 ∈ Aut(F2) by

λ1 :
{
x /→ x,

y /→ x−1y−1,
and λ2 :

{
x /→ xyx−1,

y /→ x,

and set λ3 = λ1. Then, calculations with the definitions of the automor-
phism βk and the epimorphisms f I : Pn → F2 (see (2.7), (3.1), and (3.2))

reveal that

f I ◦ βk =
{

λ j ◦ fτk(I ) if k = i j = i j+1 − 1,

fτk(I ) otherwise.

Note that, in the first case above, τk(I ) = I and j < l. Thus, KI =
βk(Kτk(I )) for each I , and βk permutes the subgroups KI of Pn (for |I | =
3 and |I | = 4 respectively). It follows that βk(Kn) = Kn .

Finally, if β = βn , calculations with (2.7), (3.1), and (3.2)) reveal that

f I ◦ βn =






f I∪{n} if |I | = 3 and n /∈ I ,

λ1 ◦ f I if |I | = 3 and n ∈ I ,

f I if |I | = 4 and n /∈ I ,

f I!{n} if |I | = 4 and n ∈ I .

Thus, βn(KI ) = KI if either |I | = 3 and n ∈ I or |I | = 4 and n /∈ I ,

while βn(KI ) = KI∪{n} and βn(KI∪{n}) = KI if |I | = 3 and n /∈ I . It

follows that βn(Kn) = Kn , and Kn char Pn .
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Theorem 5.2. For n ≥ 4, the pure braid group Pn is not residually free.

Proof. Let f : Pn → F be a homomorphism from the pure braid group

to a nonabelian free group. Since Pn is finitely generated and subgroups

of free groups are free, we may assume without loss that f : Pn → Fk
is a surjection onto a finitely generated nonabelian free group. We claim

that Kn is contained in the kernel of f . By Theorem 3.5, k = 2 and

f ∼ f[3]. Thus there are automorphisms α ∈ Aut(Pn) and λ ∈ Aut(F2)
so that λ ◦ f = f[3] ◦ α. Let x ∈ Kn . Then α(x) ∈ Kn since Kn is

characteristic in Pn by Proposition 5.1. Since Kn ⊂ K[3] = ker( f[3]) by
definition, we have α(x) ∈ ker( f[3]). Hence, λ ◦ f (x) = f[3] ◦ α(x) = 1,

and x ∈ ker( f ).
To complete the proof, it suffices to exhibit a nontrivial element of Kn

that is in the kernel of every homomorphism g : Pn → Z from the pure
braid group to an abelian free group. This is straightforward since is

it easy to see that the intersection Kn ∩ [Pn, Pn] of Kn with the com-

mutator subgroup of Pn is nontrivial. For instance, a calculation re-

veals that x = [[A1,2, A2,3], [A2,3, A3,4]] ∈ Kn ∩ [Pn, Pn]. The pure
braid x is nontrivial (one can check that the braids [A1,2, A2,3][A2,3, A3,4]
and [A2,3, A3,4][A1,2, A2,3] are distinguished by the Artin representation).
Thus x 0= 1 is in the kernel of every homomorphism from Pn to a free

group, and Pn is not residually free.

Remark 5.3. When viewed as an element of the 4-strand pure braid

group, the braid [[A1,2, A2,3], [A2,3, A3,4]] ∈ P4 is an example of a Brun-

nian braid. The deletion of any strand trivializes the braid, see Figure 5.1.

(Compare [CFR10, Section 3].)

Figure 5.1. The braid [[A1,2, A2,3], [A2,3, A3,4]] in P4.

Remark 5.4. I. Marin showed us an argument he credited to L. Paris,

showing the P5 is not residually free, implying that Pn is not residually

free for n ≥ 5. Paris’ argument uses the solution of the Tits conjecture

for B5 due to Droms, Lewin, and Servatius [DLS90] (see also Collins

[Col94]) to produce a subgroup of P5 isomorphic to the free product Z ∗
(Z × F2), as explained in [Mar11, Proposition 1.1]. This latter group is
not residually free, see [Bau67, Theorems 6 and 3].

Let Σ be an orientable surface, possibly with punctures. Let Σ×n =
Σ × · · · × Σ denote the n-fold Cartesian product. The pure braid group
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Pn(Σ) of the surface Σ is the fundamental group of the configuration

space

F(Σ, n) = {(x1, . . . , xn) ∈ Σ×n | xi 0= x j if i 0= j}.

of n distinct ordered points in Σ .

Corollary 5.5. For n ≥ 4, the pure braid group Pn(Σ) is not residually
free.

Proof. If Σ 0= S2, the pure braid group P4 embeds in Pn(Σ), see Paris
and Rolfsen [PR99]. If Σ = S2, then P4 < Pn(S

2) for n ≥ 5, and

P4(S
2) ∼= P4/Z(P4) (see, for instance, [Bir75]). So the result follows

from Theorem 5.2.

Remark 5.6. The fundamental group of the orbit space F(Σ, n)/#n ,

where#n denotes the symmetric group, is the (full) braid group Bn(Σ) of
the surfaceΣ . Recall from the Introduction that B3 is not residually free,
and that the only two-generator residually free groups are Z, Z2, and F2.
IfΣ 0= S2 and n ≥ 3, then Bn(Σ) has a B3 subgroup, so is not residually
free. If Σ = S2, then B3 < Bn(S

2) for n ≥ 4, and B3(S
2) ∼= B3/Z(B3).

So Bn(S
2) is not residually free for n ≥ 3.

A complex hyperplane arrangement A = {H1, . . . , Hm} is a finite col-
lection of codimension one subspaces ofCn . Fix coordinates (z1, . . . , zn)
on Cn , and for 1 ≤ i ≤ m, let !i(z1, . . . , zn) be a linear form with

ker(!i) = Hi . The product Q = Q(A) = ∏m
i=1 !i is a defining poly-

nomial for A. The group G(A) of the arrangement is the fundamental
group of the complement M(A) = Cn $

⋃m
i=1 Hi = Cn $ Q−1(0).

The arrangement Ar,1,n with defining polynomial

Q = Q(Ar,1,n) = z1 · · · zn
∏

1≤i< j≤n
(zri − zrj )

is known as the full monomial arrangement (it is the reflection arrange-

ment corresponding to the full monomial group G(r, 1, n)). Note that the
arrangement A2,1,n is the Coxeter arrangement of type Bn . The comple-
ment M(Ar,1,n) of the full monomial arrangement may be realized as the
orbit configuration space

FB(C∗, n) = {(x1, . . . , xn) ∈ (C∗)×n | B · xi ∩ B · x j = ∅ if i 0= j}

of ordered n-tuples of points in C∗ which lie in distinct orbits of the free
action of B = Zr on C∗ by multiplication by the primitive r-th root of
unity exp(2π

√
−1/r).
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Call the fundamental group P(r, 1, n) = G(Ar,1,n) the pure monomial
braid group. For n = 1, P(r, 1, 1) ∼= Z, and for n = 2, it is well known

that P(r, 1, 2) ∼= Z×Fr+1. Hence, P(r, 1, n) is residually free for n ≤ 2.

Corollary 5.7. For n ≥ 3, the pure monomial braid group P(r, 1, n) is
not residually free.

Proof. For n ≥ 3, it follows from [Coh01] that the pure braid group P4
embeds in P(r, 1, n). So the result follows from Theorem 5.2.

Remark 5.8. The fundamental group of the orbit space M(Ar,1,n)/
G(r, 1, n) is the (full) monomial braid group B(r, 1, n). This group ad-
mits a presentation with generators ρ0, ρ1, . . . , ρn−1 and relations

(ρ0ρ1)
2 = (ρ1ρ0)

2, ρiρi+1ρi
= ρi+1ρiρi+1 (1 ≤ i < n),

ρiρ j = ρ jρi (| j − i | > 1).

Observe that B(r, 1, n) is independent of r , and is the Artin group of
type Bn . For n ≥ 3, the group B(r, 1, n) has a B3 subgroup, so is not
residually free. The group B(r, 1, 2) is not residually free, since it is a
two-generator group which is not free or free abelian.

Let Γ be a Coxeter graph, with associated Artin group AΓ and pure

Artin group PΓ . We say that Γ contains an Ak subgraph if it contains a

path of length k with unlabelled edges as a vertex-induced subgraph.

Corollary 5.9. If Γ contains an A3 subgraph, then the associated pure

Artin group PΓ is not residually free.

Proof. If Γ contains an A3 subgraph, it follows from van der Lek [Lek83]

(see also [Par97]) that PΓ has a P4 subgroup. So the result follows from

Theorem 5.2.

If Γ is a connected Coxeter graph of finite type different from B3, H3,
or F4, then Γ contains an A3 subgraph, hence PΓ is not residually free

by Corollary 5.9. If Γ is of type B3, then PΓ is the pure monomial braid

group P(2, 1, 3), so is not residually free by Corollary 5.7. If Γ is of type

F4, then Γ contains a B3 subgraph, hence PΓ is not residually free by the

same argument as in the proof of Corollary 5.9.

Remark 5.10. If Γ contains an A2 subgraph, then the (full) Artin group

A has a B3 subgroup, so is not residually free. This includes all irre-

ducible Artin groups of finite type and rank at least 2, except type I2(m).
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de tresses pures, Invent. Math. 82 (1985), 57–75. MR0808109

[Lek83] H. VAN DER LEK, The homotopy type of complex hyper-

plane complements Ph.D. Thesis, University of Nijmegen, Ni-

jmegen, Netherlands, 1983.

[LY00] A. LIBGOBER and S. YUZVINSKY, Cohomology of the Orlik-

Solomon algebras and local systems, Compositio Math. 121

(2000), 337–361. MR1761630

[Mar11] I. MARIN, Residual nilpotence for generalizations of pure

braid groups, preprint 2011.

http://www.math.jussieu.fr/˜marin/resnilpise.pdf

www.math.jussieu.fr/˜marin/resnilpise.pdf
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