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What is a picture?

e Begin with any finitely presented
group, for example:

G = (a,b,c,d||a,b, ], [a,d] b, d),]c,d])
e View relations as 2-cells equipped

with attaching maps.
r = abca” e 1p™!
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e GGlue 2-cells together to cover a
sphere.
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e Project to the plane and construct
the dual




e Or we could assemble a picture
directly!

Definition: Given a finitely presented
group G, a picture is a finite, ori-
ented plane graph whose vertices rep-
resent relations (or their inverses) ex-
plicitly as they are written in the list
of relations.

e A closed arc containing no ver-
O% tices, labeled by a generator is a
picture.

e Otherwise edges terminate at ver-
tices.

e A picture-with-boundary is a pic-
ture embedded in a disk with one
or more edges terminating in the
boundary of the disk.
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e A subpicture is the interior of an
unlabeled, closed arc that con-
tains no vertices and that meets
edges transversely.

e Note that boundary words of sub-
pictures or of pictures-with-boundary

are trivial in the group G.
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Defining the Picture Group

We first define the extended picture
group E;.
e Binary operation is disjoint union
(obviously commutative).

e [dentity is the empty picture.

e Form the inverse by construct-
ing the mirror image and then
reversing all arrows.




e Fiquivalence relations:
— Isotopy in the plane
— Bridge moves
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Why do we want bridge moves?
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Two immediate consequences:

e A closed arc with empty interior
is trivial in B,

Conyerse

e Floating pairs (two-vertex pictures)
are torsion elements.
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Denote the subgroup generated by
all floating pairs as Ty, If the pre-
sentation for G is minimal, and all
relations are commutators, then 7
contains all the order two elements

Of Ec;.
Now deﬁne PG’ = EG / TG

Proposition Py is isomorphic to the
picture group as defined by Fenn [1983]
or Bogley and Pride [1993].
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G acts on Eg, Tr and Ppg.
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Here’s the main point: For a CW
complex with no cells in dimension
greater than 2,

Pg = mo(X)
where G = 71(X). See Loday [2000]




Affine Transformation
of a Line Arrangement

Let A={l1,...,ln} be an arrange-

ment of n lines in C2. For each 7, de-
fine affine transformation ¢; : {; —

C2. The by ®(A) we mean the ar-

rangement {@1(l1), ..., on(ln)}. Note
that |®(A)| < n.

Example:
G == <L271 ..... .CE5|[£E1,$2,IL'3,SU4J,[CEi,$5],i & {1,2,3,4})
G'=(z1,..., 5| |71, T2, T3]; (73, 25] 1 = 1,2,3 § =4, 5; (24, z5))

o

A F(A)
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Homomorphisms Between
Picture Groups

Here arc pictures that are obviously
related to cach other, from Pz on
the left and from Py on the right.
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The homomorphism is defined by
enclosing each vertex in a one vertex
subpicture via nonintersecting closed
arcs and then stating how each one-
vertex subpicture in P changes to
become a subpicture in Py, main-
taining “the same” boundary word.
Given h(vy), then h(—v;) must be
its mirror image, but with arrows re-
versed.
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Theorem: Let G = (X| R) and
G’ = (X'| R") be finitely presented
groups, and let f : F'x — Fy/ be
an injective homomorphism between
the respective free groups on gener-
ators. If f(r) € N(R') for each
r € R, then there exists a homo-
morphism h : Pg — Pgy, as just
defined.

The idea of the proof:

e Well defined because bridge moves
occur entirely outside the closed
arcs that define the one-vertex
subpictures.

e The image of T» must be con-
tained in 1.




Sufficient conditions for defining in-
jective homomorphisms between pic-
ture groups of line arrangement com-
plements

e No new parallel lines:
¢iliﬂ¢jlj:@=>liﬂlj':@

e Tend toward increased general-
1zation:
liﬂljﬂlk#@=>¢iliﬂ¢jlj'ﬂ
Ol # 0

[f there exists a transformation ¢ such
that B = ®(A) meeting the two con-
ditions, we say A > B.
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Theorem

If A > B, then there exists a well-
defined homomorphism from the pic-
ture group of the complement of A
to the picture group of the comple-
ment of B. Furthermore, if |B| =
|A|, then the homomorphism is in-
jective.

A last example:
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More pictures from respective pic-
ture groups:

a

Ficure 3. A second picture for arrangement A

a

FIGURE 4. A second picture for arrangement A’ ob-
tained from the picture in figure 3 via homomorphism




Pictures from each group with ob-
vious homomorphism:

FiGurE 1. A picture in the picture group associated
with arrangement 4

FIGURE 2. A picture in the picture group associated
with arrangement A’, obtained from the picture in figure
1 by resolving the intersection of the lines labeled b,d, f
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