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Shellable simplicial complexes

Definition
A simplicial complex is shellable if its facets can be arranged in linear
order F1,F2, . . . ,Ft in such a way that the subcomplex (

⋃k−1
i=1 2Fi ) ∩ 2Fk

is pure and (dimFk − 1)-dimensional for all k = 2, . . . , t . Such an
ordering of facets is called a shelling order or shelling.
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Simplicial complexes and diagonal arrangements

Correspondence

A simplicial complex
∆ on [n] ⇐⇒

A diagonal arrangement A∆:
collection of diagonal subspaces
{xi1 = · · · = xik} of Rn

for all {i1, . . . , ik} complementary
to facets of ∆

Example

1 3

42

53

42

F1

F

FF ⇐⇒

{x4 = x5}
{x1 = x5}
{x1 = x2 = x4}
{x1 = x2 = x3}

F1
F2
F3
F4

∆ A∆
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Simplicial complexes and diagonal arrangements

Example
The Braid arrangement Bn =

⋃

i<j
{xi = xj}

%

∆n,n−2 = {σ ⊂ [n] : |σ| ≤ n − 2}

Example
The k-equal arrangement An,k =

⋃

i1<···<ik

{xi1 = · · · = xik}

%

∆n,n−k = {σ ⊂ [n] : |σ| ≤ n − k}
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Two important spaces associated with A

Definition
The complement of an arrangement A in Rn is

MA = R
n −

⋃

H∈A

H

The singularity link of a central arrangement A in Rn is

V◦
A = S

n−1 ∩
⋃

H∈A

H

Fact
By Alexander duality,

Hi(MA; F) = Hn−2−i(V◦
A; F)
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Application in group cohomology
Definition
An Eilenberg-MacLane space (or a K (π,n) space) is a connected cell
complex with all homotopy groups except the n-th homotopy group
being trivial and the n-th homotopy group isomorphic to π.

Fact
If a CW complex X is a K (π,1) space, then

TorZπ
n (Z, Z) = Hn(X ; Z) and ExtnZπ(Z, Z) = Hn(X ; Z).

Theorem (Fadell and Neuwirth, 1962)
Let Bn be the braid arrangement in Cn. ThenMBn is a K (π,1) space.

Theorem (Khovanov, 1996)
Let An,3 be the 3-equal arrangement in Rn. ThenMAn,3 is a K (π,1)
space.
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What is the topology ofMA and V◦
A?

Definition
The intersection lattice LA of a subspace arrangement A is the
collection of all nonempty intersections of subspaces of A ordered by
reverse inclusion.
Theorem (Goresky and Macpherson, 1988)
Let A be a subspace arrangement in Rn. Then

H̃i(MA) ∼=
⊕

x∈LA−{0̂}

H̃codim(x)−2−i(0̂, x).

Theorem (Ziegler and Živaljević, 1993)
For every central subspace arrangement A in Rn,

V◦
A *

∨

x∈LA−{0̂}

(∆(0̂, x) ∗ S
dim(x)−1).
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What is a general sufficient condition for the
intersection lattice LA of a diagonal arrangement A to
be well-behaved?

Theorem (Björner and Welker, 1995)
The order complex of the intersection lattice LAn,k for the k-equal
arrangement An,k has the homotopy type of a wedge of spheres.

An,k = A∆n,n−k and ∆n,n−k is shellable.

Theorem (Kozlov, 1999)
Let ∆ be a simplicial complex on [n] that satisfies some conditions.
Then the intersection lattice for A∆ has the homotopy type of a wedge
of spheres.

∆ in Kozlov’s theorem is shellable.
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Homotopy type of L∆ for shellable ∆

Theorem (K.)
Let ∆ be a shellable simplicial complex with dim∆ ≤ n − 3. Then the
order complex of the intersection lattice L∆ of A∆ is homotopy
equivalent to a wedge of spheres.
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Homotopy type of L∆ for shellable ∆(precise version)

Theorem (K.)
Let ∆ be a shellable simplicial complex on [n] with dim∆ ≤ n − 3. Let
σ be the intersection of all facets and σ̄ its complement. Then the
intersection lattice L∆ is homotopy equivalent to a wedge of spheres,
consisting of (p − 1)! copies of spheres of dimension

δ(D) = p(2− n) +
p∑

j=1
|Fij | + |σ̄| − 3

for each (unordered) shelling-trapped decomposition
D = {(σ̄1,Fi1), . . . , (σ̄p,Fip)} of σ̄.
Moreover, if one removes the δ(D)-simplex corresponding to a
saturated chain CD,ω for each shelling-trapped decomposition
D = {(σ̄1,Fi1), . . . , (σ̄p,Fip)} of σ̄ and a permutation ω of [p − 1], then
the remaining simplicial complex ∆̂(0̂,Uσ̄) is contractible.
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Example

3

4

42

531

F2

F1

F

F

A shellable complex ∆

{(12345,F4)}
{(45,F1), (123,F4)}

Shelling-trapped
decompositions of [5]

5

1245

12345

12341235123/45

124 123145

1545

R

45 15

124

145

1245

123

123/45 1235

1234

The intersection lattice L∆ of A∆ The order complex of L∆
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Proof sketch of Main theorem

Lemma (K.)
For the upper interval, there is a simplicial complex whose intersection
lattice is isomorphic to [Uσ̄, 1̂]. If F is the last facet in the shelling order,
the simplicial complex which corresponds to [UF , 1̂] is shellable.

Proof sketch of Main theorem
If F is the last facet in the shelling of ∆, one can consider the following
decomposition of ∆̂(L):

∆̂(L) = ∆̂(L− {H}) ∪ ∆̂(L≥H),

where ∆̂(L− {H}) is obtained by removing all chains CD,ω not
containing H from ∆(L− {H}) and ∆̂(L≥H) is obtained by removing
CD,ω and CD,ω − H from ∆(L≥H) for all CD,ω containing H. Then one
can show that all three spaces ∆̂(L− {H}), ∆̂(L≥H) and their
intersection are contractible, and hence ∆̂(L) is also contractible.
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L∆ is not shellable in general

Example
Let ∆ be a shellable complex with a shelling
123456,127,137,237,458,468,568.

8

123571234712367

134568 145678345678124568234568 245678 123678 123478 123578 123467 123567 123457

34568 24568 7814568

12345671234568 23456781345678 12345781234678 12356781245678

12345678

R
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The topology of V◦
A∆

Corollary (K.)
Let ∆ be a shellable simplicial complex with dim∆ ≤ n − 3. The
singularity link of A∆ has the homotopy type of a wedge of spheres,
consisting of p! spheres of dimension n + p(2− n) +

∑p
j=1 |Fij | − 2 for

each shelling-trapped decomposition {(σ̄1,Fi1), . . . , (σ̄p,Fip)} of some
subset of [n].

Theorem (K.)
Let ∆ be a shellable simplicial complex with dim∆ ≤ n − 3. Then
dimFHi(V◦

A∆
; F) is the number of ordered shelling-trapped

decompositions ((σ̄1,Fi1), . . . , (σ̄p,Fip)) of some subset of [n] with
i = n + p(2− n) +

∑p
j=1 |Fij | − 2.
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Diagonal arrangement A such thatMA is K (π, 1)

Theorem (Davis, Januszkiewicz and Scott, 1998)
Let H be a simplicial real hyperplane arrangement in Rn. Let A be any
arrangement of codimension-2 intersection subspaces in H which
intersects every chamber in a codimension-2 subcomplex. ThenMA

is K (π,1).

Proposition
Let A be a subarrangement of 3-equal arrangement of Rn so that

A =
{
{xi = xj = xk} | {i , j , k} ∈ TA

}
,

for some collection TA of 3-element subsets of [n]. Then A satisfies
the hypothesis of DJS’s theorem (and henceMA is K (π,1)) if and only
if every permutation ω in Sn has at least one triple in TA consecutive.
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DJS matroids
The matroid complexes ∆ = I(M) are a natural class of shellable
complexes.

Definition
Say a rank 3 matroid M on [n] is DJS if every permutation ω in Sn has
at least one triple in B(M) consecutive.

Proposition (K.)
Rank 3 Matroids without parallel elements are DJS.
In particular, rank 3 simple matroids are DJS.

Proposition (K.)
Let M be a rank 3 matroid on the ground set [n] with no circuits of size
3. Let P1, . . . ,Pk be distinct parallel classes which have more than one
element and let N be the set of all elements which are not parallel with
anything else. Then, M is DJS if and only if
. |P1|2 / + · · · + . |Pk |2 / − k < |N| − 2.
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DJS matroids

Definition
A simplicial complex ∆ on [n] is shifted if, for any face of ∆,
replacing any vertex i by a vertex j(< i) gives another face in ∆.
The Gale ordering on all k element subsets of [n] is given by
{x1 < · · · < xk} is less than {y1 < · · · < yk} if
xi ≤ yi for all i and {x1, . . . , xk} 0= {y1, . . . , yk}.

Theorem (Klivans)
Let M be a matroid whose independent set complex is shifted. Then its
bases B(M) is the principal order ideal of Gale ordering.

Proposition (K.)
Let M be the rank 3 matroid on the ground set [n] corresponding to the
principal order ideal generated by {a,b,n}. Then, M is DJS if and only
if .n−b2 / < a.
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Simplicial complexes and Coordinate arrangements

Correspondence

A simplicial complex
∆ on [n] ⇐⇒

A coordinate arrangement A0
∆:

collection of coordinate subspaces
{xi1 = · · · = xik = 0} of Rn

for all {i1, . . . , ik} complementary
to facets of ∆

Theorem (K.)
Let ∆ be a shellable simplicial complex on [n]. Then the intersection
lattice L0∆ of A0

∆ is homotopy equivalent to link∆σ, where σ is the
intersection of all facets. Hence the intersection lattice L0∆ is homotopy
equivalent to a wedge of spheres.
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Example

3

4

42

531

F2

F1

F

F

A shellable complex ∆

{x4 = x5 = 0}
{x1 = x5 = 0}
{x1 = x2 = x4 = 0}
{x1 = x2 = x3 = 0}

A0
∆

5

1245

12345

12341235

124 123145

1545

R

45 15

124

145

1245

123

1235

1234

The intersection lattice L0∆ of A0
∆ The order complex of L0∆
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Homotopy type of V◦
A0

∆
andMA0

∆

Corollary (K.)
If ∆ is a shellable simplicial complex, then the singularity link of A0

∆ is
homotopy equivalent to a wedge of spheres.

Theorem (Welker)
If ∆ is a shifted simplicial complex, then the complement of A0

∆ is
homotopy equivalent to a wedge of spheres.

Conjecture (Welker)
If ∆ is a shellable simplicial complex, then the complement of A0

∆ is
homotopy equivalent to a wedge of spheres.
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Question/Problem

Questions

When is the intersection lattice for the diagonal arrangement
shellable?

When is the complement for the diagonal arrangement homotopy
equivalent to a wedge of spheres?

Problems

Generalize to the case of Bn and Dn.

Characterize the rank 3 matroids which are DJS.
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