Topology of real arrangements corresponding to shellable complexes

Sangwook Kim

George Mason University

AMS 2008 Spring Southeastern Meeting Arrangements and Related Topics March 29, 2008 Simplicial complexes and diagonal arrangements

2 Topology of diagonal subspace arrangements

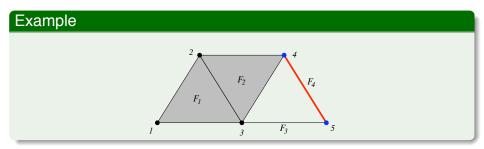
3 $K(\pi, 1)$ examples from matroids

Topology of coordinate subspace arrangements

5 Question/Problem

Definition

A simplicial complex is shellable if its facets can be arranged in linear order F_1, F_2, \ldots, F_t in such a way that the subcomplex $(\bigcup_{i=1}^{k-1} 2^{F_i}) \cap 2^{F_k}$ is pure and $(\dim F_k - 1)$ -dimensional for all $k = 2, \ldots, t$. Such an ordering of facets is called a shelling order or shelling.



Simplicial complexes and diagonal arrangements

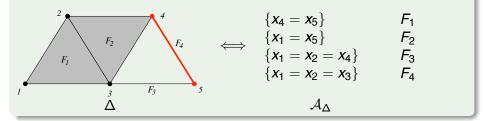
Correspondence

A simplicial complex Δ on [*n*]

$$\iff$$

A diagonal arrangement \mathcal{A}_{Δ} : collection of diagonal subspaces $\{x_{i_1} = \cdots = x_{i_k}\}$ of \mathbb{R}^n for all $\{i_1, \ldots, i_k\}$ complementary to facets of Δ

Example



Simplicial complexes and diagonal arrangements

Example

The Braid arrangement
$$\mathcal{B}_n = \bigcup_{i < j} \{x_i = x_j\}$$

$$\Delta_{n,n-2} = \{ \sigma \subset [n] : |\sigma| \le n-2 \}$$

Example

The *k*-equal arrangement
$$A_{n,k} = \bigcup_{i_1 < \cdots < i_k} \{x_{i_1} = \cdots = x_{i_k}\}$$

$$(1)$$

$$\Delta_{n,n-k} = \{ \sigma \subset [n] : |\sigma| \le n-k \}$$

Two important spaces associated with $\mathcal A$

Definition

• The complement of an arrangement \mathcal{A} in \mathbb{R}^n is

$$\mathcal{M}_{\mathcal{A}} = \mathbb{R}^n - \bigcup_{H \in \mathcal{A}} H$$

• The singularity link of a central arrangement \mathcal{A} in \mathbb{R}^n is

$$\mathcal{V}_{\mathcal{A}}^{\circ} = \mathbb{S}^{n-1} \cap \bigcup_{H \in \mathcal{A}} H$$

Fact

By Alexander duality,

$$H^{i}(\mathcal{M}_{\mathcal{A}};\mathbb{F})=H_{n-2-i}(\mathcal{V}_{\mathcal{A}}^{\circ};\mathbb{F})$$

Sangwook Kim

George Mason University

Application in group cohomology

Definition

An Eilenberg-MacLane space (or a $K(\pi, n)$ space) is a connected cell complex with all homotopy groups except the *n*-th homotopy group being trivial and the *n*-th homotopy group isomorphic to π .

Fact

If a CW complex X is a $K(\pi, 1)$ space, then

 $\operatorname{Tor}_{n}^{\mathbb{Z}_{n}}(\mathbb{Z},\mathbb{Z}) = H_{n}(X;\mathbb{Z}) \text{ and } \operatorname{Ext}_{\mathbb{Z}_{n}}^{n}(\mathbb{Z},\mathbb{Z}) = H^{n}(X;\mathbb{Z}).$

Theorem (Fadell and Neuwirth, 1962)

Let \mathcal{B}_n be the braid arrangement in \mathbb{C}^n . Then $\mathcal{M}_{\mathcal{B}_n}$ is a $K(\pi, 1)$ space.

Theorem (Khovanov, 1996)

Let $\mathcal{A}_{n,3}$ be the 3-equal arrangement in \mathbb{R}^n . Then $\mathcal{M}_{\mathcal{A}_{n,3}}$ is a $K(\pi, 1)$ space.

What is the topology of $\mathcal{M}_{\mathcal{A}}$ and $\mathcal{V}_{\mathcal{A}}^{\circ}$?

Definition

The intersection lattice L_A of a subspace arrangement A is the collection of all nonempty intersections of subspaces of A ordered by reverse inclusion.

Theorem (Goresky and Macpherson, 1988)

Let \mathcal{A} be a subspace arrangement in \mathbb{R}^n . Then

$$\widetilde{H}^{i}(\mathcal{M}_{\mathcal{A}}) \cong \bigoplus_{x \in L_{\mathcal{A}} - \{\hat{0}\}} \widetilde{H}_{codim(x)-2-i}(\hat{0}, x).$$

Theorem (Ziegler and Živaljević, 1993)

For every central subspace arrangement \mathcal{A} in \mathbb{R}^n ,

$$\mathcal{V}_{\mathcal{A}}^{\circ} \simeq \bigvee_{x \in L_{\mathcal{A}} - \{\hat{0}\}} (\Delta(\hat{0}, x) * \mathbb{S}^{\dim(x)-1}).$$

What is a general sufficient condition for the intersection lattice L_A of a diagonal arrangement A to be well-behaved?

Theorem (Björner and Welker, 1995)

The order complex of the intersection lattice $L_{A_{n,k}}$ for the *k*-equal arrangement $A_{n,k}$ has the homotopy type of a wedge of spheres.

$$\mathcal{A}_{n,k} = \mathcal{A}_{\Delta_{n,n-k}}$$
 and $\Delta_{n,n-k}$ is shellable.

Theorem (Kozlov, 1999)

Let Δ be a simplicial complex on [n] that satisfies some conditions. Then the intersection lattice for A_{Δ} has the homotopy type of a wedge of spheres.

 Δ in Kozlov's theorem is shellable.

Theorem (K.)

Let Δ be a shellable simplicial complex with dim $\Delta \leq n-3$. Then the order complex of the intersection lattice L_{Δ} of A_{Δ} is homotopy equivalent to a wedge of spheres.

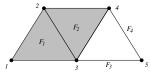
Theorem (K.)

Let Δ be a shellable simplicial complex on [n] with dim $\Delta \leq n-3$. Let σ be the intersection of all facets and $\bar{\sigma}$ its complement. Then the intersection lattice L_{Δ} is homotopy equivalent to a wedge of spheres, consisting of (p-1)! copies of spheres of dimension

$$\delta(D) = p(2 - n) + \sum_{j=1}^{p} |F_{i_j}| + |\bar{\sigma}| - 3$$

for each (unordered) shelling-trapped decomposition $D = \{(\bar{\sigma}_1, F_{i_1}), \dots, (\bar{\sigma}_p, F_{i_p})\}$ of $\bar{\sigma}$. Moreover, if one removes the $\delta(D)$ -simplex corresponding to a saturated chain $\overline{C}_{D,\omega}$ for each shelling-trapped decomposition $D = \{(\bar{\sigma}_1, F_{i_1}), \dots, (\bar{\sigma}_p, F_{i_p})\}$ of $\bar{\sigma}$ and a permutation ω of [p-1], then the remaining simplicial complex $\widehat{\Delta}(\hat{0}, U_{\bar{\sigma}})$ is contractible.

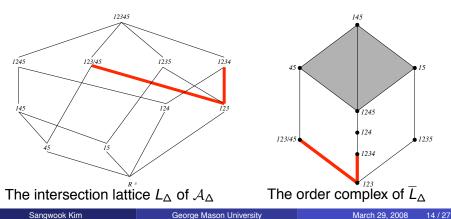
Example



A shellable complex Δ

 $\{ (12345, F_4) \} \\ \{ (45, F_1), (123, F_4) \}$

Shelling-trapped decompositions of [5]



Lemma (K.)

For the upper interval, there is a simplicial complex whose intersection lattice is isomorphic to $[U_{\bar{\sigma}}, \hat{1}]$. If *F* is the last facet in the shelling order, the simplicial complex which corresponds to $[U_{\overline{F}}, \hat{1}]$ is shellable.

Proof sketch of Main theorem

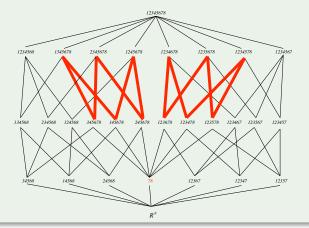
If *F* is the last facet in the shelling of Δ , one can consider the following decomposition of $\widehat{\Delta}(\overline{L})$:

$$\widehat{\Delta}(\overline{L}) = \widehat{\Delta}(\overline{L} - \{H\}) \cup \widehat{\Delta}(\overline{L}_{\geq H}),$$

where $\widehat{\Delta}(\overline{L} - \{H\})$ is obtained by removing all chains $\overline{C}_{D,\omega}$ not containing H from $\Delta(\overline{L} - \{H\})$ and $\widehat{\Delta}(\overline{L}_{\geq H})$ is obtained by removing $\overline{C}_{D,\omega}$ and $\overline{C}_{D,\omega} - H$ from $\Delta(\overline{L}_{\geq H})$ for all $\overline{C}_{D,\omega}$ containing H. Then one can show that all three spaces $\widehat{\Delta}(\overline{L} - \{H\})$, $\widehat{\Delta}(\overline{L}_{\geq H})$ and their intersection are contractible, and hence $\widehat{\Delta}(\overline{L})$ is also contractible.

Example

Let Δ be a shellable complex with a shelling 123456, 127, 137, 237, 458, 468, 568.



Sangwook Kim

Corollary (K.)

Let Δ be a shellable simplicial complex with dim $\Delta \leq n-3$. The singularity link of \mathcal{A}_{Δ} has the homotopy type of a wedge of spheres, consisting of p! spheres of dimension $n + p(2 - n) + \sum_{j=1}^{p} |F_{i_j}| - 2$ for each shelling-trapped decomposition $\{(\bar{\sigma}_1, F_{i_1}), \dots, (\bar{\sigma}_p, F_{i_p})\}$ of some subset of [n].

Theorem (K.)

Let Δ be a shellable simplicial complex with dim $\Delta \leq n-3$. Then dim_F $H_i(\mathcal{V}^{\circ}_{\mathcal{A}_{\Delta}}; \mathbb{F})$ is the number of ordered shelling-trapped decompositions $((\bar{\sigma}_1, F_{i_1}), \dots, (\bar{\sigma}_p, F_{i_p}))$ of some subset of [n] with $i = n + p(2-n) + \sum_{j=1}^{p} |F_{i_j}| - 2$.

Theorem (Davis, Januszkiewicz and Scott, 1998)

Let \mathcal{H} be a simplicial real hyperplane arrangement in \mathbb{R}^n . Let \mathcal{A} be any arrangement of codimension-2 intersection subspaces in \mathcal{H} which intersects every chamber in a codimension-2 subcomplex. Then $\mathcal{M}_{\mathcal{A}}$ is $K(\pi, 1)$.

Proposition

Let A be a subarrangement of 3-equal arrangement of \mathbb{R}^n so that

$$\mathcal{A} = \left\{ \left\{ \mathbf{x}_i = \mathbf{x}_j = \mathbf{x}_k \right\} \mid \left\{ i, j, k \right\} \in T_{\mathcal{A}} \right\},\$$

for some collection T_A of 3-element subsets of [n]. Then A satisfies the hypothesis of DJS's theorem (and hence \mathcal{M}_A is $K(\pi, 1)$) if and only if every permutation ω in \mathfrak{S}_n has at least one triple in T_A consecutive.

DJS matroids

The matroid complexes $\Delta = \mathcal{I}(M)$ are a natural class of shellable complexes.

Definition

Say a rank 3 matroid *M* on [*n*] is DJS if every permutation ω in \mathfrak{S}_n has at least one triple in $\mathcal{B}(M)$ consecutive.

Proposition (K.)

Rank 3 Matroids without parallel elements are DJS. In particular, rank 3 simple matroids are DJS.

Proposition (K.)

Let M be a rank 3 matroid on the ground set [n] with no circuits of size 3. Let P_1, \ldots, P_k be distinct parallel classes which have more than one element and let N be the set of all elements which are not parallel with anything else. Then, M is DJS if and only if $|\frac{|P_1|}{2}| + \cdots + |\frac{|P_k|}{2}| - k < |N| - 2.$

DJS matroids

Definition

 A simplicial complex Δ on [n] is shifted if, for any face of Δ, replacing any vertex i by a vertex j(< i) gives another face in Δ.

• The Gale ordering on all *k* element subsets of [*n*] is given by $\{x_1 < \cdots < x_k\}$ is less than $\{y_1 < \cdots < y_k\}$ if $x_i \le y_i$ for all *i* and $\{x_1, \ldots, x_k\} \ne \{y_1, \ldots, y_k\}$.

Theorem (Klivans)

Let M be a matroid whose independent set complex is shifted. Then its bases $\mathcal{B}(M)$ is the principal order ideal of Gale ordering.

Proposition (K.)

Let *M* be the rank 3 matroid on the ground set [n] corresponding to the principal order ideal generated by $\{a, b, n\}$. Then, *M* is DJS if and only if $\lfloor \frac{n-b}{2} \rfloor < a$.

Correspondence

A simplicial complex Δ on [n]

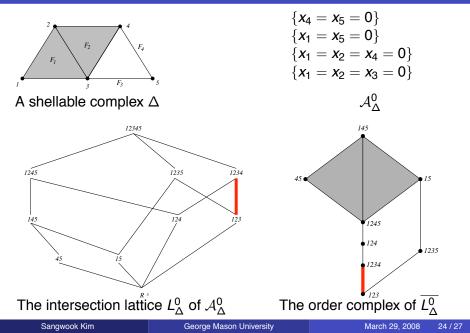
 \iff

A coordinate arrangement \mathcal{A}^0_Δ : collection of coordinate subspaces $\{x_{i_1} = \cdots = x_{i_k} = 0\}$ of \mathbb{R}^n for all $\{i_1, \ldots, i_k\}$ complementary to facets of Δ

Theorem (K.)

Let Δ be a shellable simplicial complex on [n]. Then the intersection lattice L^0_{Δ} of \mathcal{A}^0_{Δ} is homotopy equivalent to link_{$\Delta \sigma$}, where σ is the intersection of all facets. Hence the intersection lattice L^0_{Δ} is homotopy equivalent to a wedge of spheres.

Example



Corollary (K.)

If Δ is a shellable simplicial complex, then the singularity link of \mathcal{A}^0_{Δ} is homotopy equivalent to a wedge of spheres.

Theorem (Welker)

If Δ is a shifted simplicial complex, then the complement of \mathcal{A}^0_{Δ} is homotopy equivalent to a wedge of spheres.

Conjecture (Welker)

If Δ is a shellable simplicial complex, then the complement of \mathcal{A}^0_{Δ} is homotopy equivalent to a wedge of spheres.

Questions

- When is the intersection lattice for the diagonal arrangement shellable?
- When is the complement for the diagonal arrangement homotopy equivalent to a wedge of spheres?

Problems

- Generalize to the case of B_n and D_n .
- Characterize the rank 3 matroids which are DJS.