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Abstract
Given the toric (or toral) arrangement defined by a root system Φ,

we classify and count its components of each dimension. We show how
to reduce to the case of 0-dimensional components, and in this case
we give an explicit formula involving the maximal subdiagrams of the
affine Dynkin diagram of Φ. Then we compute the Euler characteristic
and the Poincaré polynomial of the complement of the arrangement,
that is the set of regular points of the torus.

1 Introduction

Let g be a semisimple Lie algebra of rank n over C, h a Cartan subalgebra,
Φ ⊂ h∗ and Φ∨ ⊂ h respectively its root and coroot systems. The equations
{α(h) = 0}α∈Φ define a family H of intersecting hyperplanes in h. Let 〈Φ∨〉
be the lattice spanned by the coroots: the quotient T

.= h/〈Φ∨〉 is a complex
torus of rank n. Each root α takes integer values on 〈Φ∨〉, so it induces a
map T → C/Z % C∗ that we denote by eα. The equations {α(h) ∈ Z}α∈Φ

define in h a periodic family of hyperplanes, or equivalently the equations
{eα(t) = 1}α∈Φ define in T a finite family T of codimension 1 subtori. H
and T are called respectively the hyperplane arrangement and the toric ar-
rangement defined by Φ (see for example [7], [9], [22]). We call subspaces of
H the intersections of elements of H, and components of T the connected
components of the intersections of elements of T . We denote by S(Φ) the set
of the subspaces of H, by C(Φ) the set of the components of T , and by Sd(Φ)
and Cd(Φ) the sets of d−dimensional subspaces and components. Clearly if
Φ =Φ 1 × Φ2 then S(Φ) = S(Φ1) × S(Φ2) and C(Φ) = C(Φ1) × C(Φ2), so
from now on we will suppose Φ to be irreducible.

H is a classical object, whereas De Concini and Procesi [7] recently
showed that T provides a geometric way to compute the values of the
Kostant partition function. This function counts in how many ways an ele-
ment of the lattice 〈Φ〉 can be written as sum of positive roots, and plays an
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important role in representation theory, since (by Kostant’s and Steinberg’s
formulae [18], [25]) it yields efficient computation of weight multiplicities
and Littlewood-Richardson coefficients, as shown in [5] using results from
[1], [3], [6], [26]. The values of Kostant partition function can be computed
as a sum of contributions given by the elements of C0(Φ) (see [5, Teor 3.2]).

Furthermore, let R be the complement in T of the union of all elements
of T . R is called the set of the regular points of the torus T and has been
intensively studied (see in particular [7], [19], [20]). The cohomology of R
is direct sum of contributions given by the elements of C(Φ) (see for exam-
ple [7]). Then by describing the action of W on C(Φ) we implicitly get a
W−equivariant decomposition of the cohomology of R, and by counting and
classifying the elements of C(Φ) we can compute the Poincaré polynomial of
R.

We say that a subset Θ of Φ is a subsystem if it satisfies the following
conditions:

1. α ∈ Θ ⇒ −α ∈ Θ

2. α, β ∈ Θ and α + β ∈ Φ ⇒ α + β ∈ Θ.

For each t ∈ T let us define the subsystem of Φ

Φ(t) .= {α ∈ Φ|eα(t) = 1}.

The aim of Section 2 is to describe C0(Φ), that is the set of points t ∈ T such
that Φ(t) has rank n. Let α1, . . . , αn be simple roots of Φ, α0 the lowest
root, and Φp the subsystem of Φ generated by {αi}0≤i≤n,i%=p. Let Γ be the
affine Dynkin diagram of Φ and V (Γ) the set of its vertices (a list of such
diagrams can be found for example in [12] or in [17]). V (Γ) is in bijection
with {α0, α1, . . . , αn}, so we can identify each vertex p with an integer from
0 to n. The diagram Γp that we get by removing from Γ the vertex p (and
all adjacent edges) is the (genuine) Dynkin diagram of Φp. Let W be the
Weyl group of Φ and Wp the Weyl group of Φp, i.e. the subgroup of W
generated by all the reflections sα0 , . . . , sαn except sαp . Notice that Γ0 is
the Dynkin diagram of Φ and W0 = W . Since W permutes the roots, its
natural action on T restricts to an action on C0(Φ). We denote by W (t) the
stabilizer of a point t ∈ C0(Φ). Then we prove the

Theorem 1. There is a bijection between the W−orbits of C0(Φ) and the
vertices of Γ, having the property that for every point t in the orbit Op

corresponding to the vertex p, Φ(t) is W−conjugated to Φp and W (t) is
W−conjugated to Wp.

As a corollary we get the formula

|C0(Φ)| =
∑

p∈V (Γ)

|W |
|Wp|

. (1)
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In Section 3 we deal with components of arbitrary dimension. For each
component U of T we consider the subsystem of Φ

ΘU
.= {α ∈ Φ|eα(t) = 1∀t ∈ U}

and its completion ΘU
.= 〈ΘU 〉R ∩ Φ.

Let Kd be the set of subsystems Θ of Φ of rank n− d that are complete
(i.e. such that Θ = Θ), and let CΦ

Θ be the set of components U such that
ΘU = Θ. This gives a partition of the components:

Cd(Φ) =
⊔

Θ∈Kd

CΦ
Θ.

Notice that the subsystem of roots vanishing on a subspace of H is always
complete; then Kd is in bijection with Sd. The elements of Sd are classified
and counted in [21], [22]. Thus the description of the sets CΦ

Θ that we give
in Theorem 11 yields a classification of the components of T . In particular
we show that |CΦ

Θ| = n−1
Θ |C0(Θ)|, where nΘ is an integer depending only on

the conjugacy class of Θ, and then

|Cd(Φ)| =
∑

Θ∈Kd

n−1
Θ |C0(Θ)|. (2)

In Section 4, using results of [7] and [8], we deduce from Theorem 1 that
the Euler characteristic of R is equal to (−1)n|W |. This fact was known as
a consequence of a topological construction of Salvetti ([10], [24]). Moreover
Corollary 12 yields a formula for the Poincaré polynomial of R:

PΦ(q) =
n∑

d=0

(−1)d(q + 1)dqn−d
∑

Θ∈Kd

n−1
Θ |WΘ|. (3)

This formula allows to compute explicitly PΦ(q).

I would like to thank Gus Lehrer and Paolo Papi for giving me useful
suggestions, and Filippo Callegaro, Francesca Mori and Alessandro Pucci
for some stimulating discussions. I also want express my gratitude to my
supervisor Corrado De Concini for suggesting to me many key ideas, en-
couraging me, and giving me a lot of helpful advice.

2 0-dimensional components

2.1 Statements

For all facts about Lie algebras and root systems we refer to [14]. Let

g = h⊕
⊕

α∈Φ

gα
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be the Cartan decomposition of g, and let us choose nonzero elements
X0, X1, . . . , Xn in the 1−dimensional subalgebras gα0 , gα1 , . . . , gαn : since
[gα, gα′ ] = gα+α′ whenever α, α′, α + α′ ∈ Φ, we have that X0, X1, . . . , Xn

generate g. Let a0 = 1 and for p = 1, . . . , n let ap be the coefficient of αp in
−α0. For each p = 0, . . . , n we define an automorphism σp of g by

σp(Xp)
.= e2πia−1

p Xp , σp(Xi) = Xi ∀i -= p;

Let G be the semisimple and simply connected algebraic group having
root system Φ; g and T are respectively the Lie algebra and a maximal torus
of G (see for example [13]). G acts on itself by conjugacy, i.e. for each g ∈ G
the map k .→ gkg−1 is an automorphism of G. Its differential Ad(g) is an
automorphism of g.

Remark 2. Let t ∈ C0(Φ) and gAd(t) be the subalgebra of elements fixed
by Ad(t). For each α ∈ Φ and for each Xα ∈ gα we have that Ad(t)(Xα) =
eα(t)Xα, thus

gAd(t) = h⊕
⊕

α∈Φ(t)

gα.

Moreover gσp is generated by the subalgebras {gαi}0≤i≤n,i%=p. Then gAd(t)

and gσp are semisimple algebras having root system respectively Φ(t) and
Φp. Our strategy will be to prove that for each t ∈ C0(Φ), Ad(t) is conjugated
to some σp. This implies that gAd(t) is conjugated to gσp and then Φ(t) to
Φp, as claimed in Theorem 1.

Then we want give a bijection between vertices of Γ and W−orbits of
C0(Φ) showing that, for every t in the orbit Op, Ad(t) is conjugated to σp.
However, since some of the σp (as well as the corresponding Φp) are them-
selves conjugate, this bijection is not going to be canonical. To make it
canonical we should merge the orbits corresponding to conjugate automor-
phisms: for this we consider the action of a larger group.

Let Λ(Φ) ⊂ h be the lattice of the coweights of Φ, i.e.

Λ(Φ) .= {h ∈ h|α(h) ∈ Z∀α ∈ Φ}.

The lattice spanned by the coroots 〈Φ∨〉 is a sublattice of Λ(Φ); set

Z(Φ) .=
Λ(Φ)
〈Φ∨〉 .

This finite subgroup of T coincides with Z(G), the center of G. It is well
known ([13, 13.4]) that

Ad(g) = idg ⇔ g ∈ Z(Φ). (4)

Notice that
Z(Φ) = {t ∈ T |Φ(t) = Φ}
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thus Z(Φ) ⊆ C0(Φ). Moreover, for each z ∈ Z(Φ), t ∈ T, α ∈ Φ,

eα(zt) = eα(z)eα(t) = eα(t)

and therefore Φ(zt) = Φ(t). In particular Z(Φ) acts by multiplication on
C0(Φ). Clearly this action commutes with that of W and we get an action
of W × Z(Φ) on C0(Φ).

Let Q be the set of the Aut(Γ)-orbits of V (Γ). If p, p′ ∈ V (Γ) are two
representatives of q ∈ Q, then Γp % Γp′ , thus Wp % Wp′ . Moreover we
will see (Corollary 7.2) that σp is conjugated to σp′ . Then we can restate
Theorem 1 as follows.

Theorem 3. There is a canonical bijection between Q and the set of
W ×Z(Φ)−orbits in C0(Φ), having the property that if p ∈ V (Γ) is a repre-
sentative of q ∈ Q, then:

1. every point t in the corresponding orbit Oq induces an automorphism
conjugated to σp;

2. the stabilizer of t ∈ Oq is isomorphic to Wp × StabAut(Γ)p.

This theorem implies immediately the formula:

|C0(Φ)| =
∑

q∈Q

nq
|W |
|Wp|

(5)

where nq is the cardinality of the Aut(Γ)−orbit q. This is clearly equivalent
to formula (1).

Remark 4. If we see the elements of Λ(Φ) as translations, we can define a
group of isometries of h

W̃
.= W ! Λ(Φ).

W̃ is called the extended affine Weyl group of Φ and contains the affine Weyl
group Ŵ

.= W ! 〈Φ∨〉 (see [15], [23]).
The action of W × Z(Φ) on C0(Φ) can be lifted to an action of W̃ .

Indeed W̃ preserves the lattice 〈Φ∨〉 of h, and thus acts on T = h/〈Φ∨〉 and
on C0(Φ) ⊂ T . Since the semidirect factor 〈Φ∨〉 acts trivially, W̃ acts as its
quotient

W̃

〈Φ∨〉 % W × Z(Φ).
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2.2 Examples

In the following examples we denote by Sn, Dn, Cn respectively the sym-
metric, dihedral and cyclic group on n letters.

1. Case Cn The roots 2αi + · · ·+ 2αn−1 + αn (i = 1, . . . , n) take integer
values on the points [α∨

1 /2], . . . , [α∨
n/2] ∈ h/〈Φ∨〉, and thus on their

sums, for a total of 2n points of C0(Φ). Indeed let us introduce the
following notation. If we fix a basis h∗1, . . . , h

∗
n of h∗, we can write the

simple roots of Cn as

αi = h∗i − h∗i+1 for i = 1, . . . , n− 1 , and αn = 2h∗n. (6)

Then Φ = {h∗i −h∗j}∪ {h∗i + h∗j}∪ {±2h∗i } (i, j = 1, . . . , n , i -= j), and
if we write ti for eh∗i , we have that

eΦ .= {eα, α ∈ Φ} = {tit−1
j } ∪{ titj} ∪{ t±2

i }.

The system of n independent equations t21 = 1, . . . , t2n = 1 has 2n

solutions: (±1, . . . ,±1), and it is easy to see that all other systems
does not have other solutions. W % Sn ! (C2)n acts on T = (C∗)n by
permuting and inverting its coordinates; the second operation is trivial
on C0(Φ). Then two elements of C0(Φ) are in the same W−orbit if and
only if they have the same number of negative coordinates. So we
can define the p−th W−orbit Op as the set of points with p negative
coordinates. (This choice is not canonical: we may choose the set of
points with p positive coordinates as well). Clearly if t ∈ Op then

W (t) % (Sp ×Sn−p) ! (C2)n.

Thus |Op| =
(n

p

)
and we get:

|C0(Φ)| =
n∑

p=0

(
n

p

)
= 2n.

Notice that if t ∈ Op then −t ∈ On−p and Ad(t) = Ad(−t) since
Z(Φ) = {±(1, . . . , 1)}. In fact Γ has a symmetry exchanging the
vertices p and n − p. Finally notice that C0(Φ) is a subgroup of T
isomorphic to (C2)n and generated by the elements

δi
.= (1, . . . , 1,−1, 1, . . . , 1) (with the −1 at the i− th place).

Then we can come back to the original coordinates observing that δi

is the nontrivial solution of the system ti2 = 1, tj = 1∀j -= i, and using
(6) to get:

δi ↔
[

n∑

k=i

α∨
k /2

]
.
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2. Case Dn We can write αn = h∗n−1 +h∗n and the others αi as before, so
eΦ = {tit−1

j } ∪{ titj}. Then each system of n independent equations
is W−conjugated to

t1 = t2, . . . , tp−1 = tp, tp−1 = t−1
p , t±1

p+1 = tp+2, . . . , tn−1 = tn, tn−1 = t−1
n

for some p -= 1, n − 1. Then we get the subset of (C2)n composed by
the following n−ples: {(±1, . . . ,±1)}\{±δi}i=1,...,n, 2n−2n in number.
However reasoning as before we see that each one represents two points
in h/〈Φ∨〉. Namely, the correspondence is given by:

{[
n−1∑

k=i

α∨
k

2
±

α∨
n−1 − α∨

n

4

]}
−→ δi.

From a geometric point of view, the tis are coordinates of a maximal
torus of the orthogonal group, while T = h/〈Φ∨〉 is a maximal torus
of its two-sheets universal covering. Each one of the W−orbits corre-
sponding to the four extremal vertices of Γ is composed by one of the
four points over ±(1, . . . , 1), all inducing the identity automorphism:
indeed Aut(Γ) acts transitively on these points. The other orbits are
defined as in the case Cn.

3. Case Bn This case is very similar to the previous one, but now
αn = h∗n, eΦ = {tit−1

j } ∪{ titj} ∪{ t±1
i }, and then we get the points

{(±1, . . . ,±1)}\{δi}i=1,...,n. Here the projection is
{[

n−1∑

k=i

α∨
k

2
± α∨

n

4

]}
−→ δi

so we have 2n − n pairs of points in C0(Φ).

4. Case An If we see h∗ as the subspace of 〈h∗1, . . . , h∗n+1〉 of equation∑
h∗i = 0, and T as the subgroup of (C∗)n+1 of equation

∏
ti = 1, we

can write all the simple roots as αi = h∗i − h∗i+1; then eΦ = {tit−1
j }.

In this case Φ has no proper subsystem of its same rank, then all the
coordinates must be identical. Therefore

C0(Φ) = Z(Φ) =
{
(ζ, . . . , ζ)|ζn+1 = 1

}
% Cn+1.

Then W % Sn+1 acts on C0(Φ) trivially and Z(Φ) transitively, as
expected since Aut(Γ) % Dn+1 acts transitively on the vertices of Γ.
We can write more explicitly C0(Φ) ⊆ h/〈Φ∨〉 as

C0(Φ) =

{[
k

n + 1

n∑

i=1

iα∨
i

]
, k = 0, . . . , n

}
.
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2.3 Proof of Theorem 3

Motivated by Remark 2, we start to describe the automorphisms of g that
are induced by the points of C0(Φ).

Lemma 5. If t ∈ C0(Φ), then Ad(t) has finite order.

Proof. Let β1, . . . , βn linearly independent roots such that eβi(t) = 1: then
for each root α ∈ Φ we have that mα =

∑
ciβi for some m and ci ∈ Z, thus

eα(tm) = emα(t) =
n∏

i=1

(eβi)ci(t) = 1.

Then Ad(tm) is the identity on g, so by (4) tm ∈ Z(Φ). Z(Φ) is a finite
group, so tm and t have finite order.

The previous lemma allows us to apply the following

Theorem 6 (Kač).

1. Each inner automorphism of g of finite order m is conjugated to an
automorphism σ of the form

σ(Xi) = ζsiXi

with ζ fixed primitive m−th root of unity and (s0, . . . , sn) nonnegative
integers without common factors such that m =

∑
siai.

2. Two such automorphisms are conjugated if and only if there is an
automorphism of Γ sending the parameters (s0, . . . , sn) of the first in
the parameters (s′0, . . . , s′n) of the second.

3. Let (i1, . . . , ir) be all the indices for which si1 = · · · = sir = 0. Then gσ

is the direct sum of an (n−r)−dimensional center and of a semisimple
Lie algebra whose Dynkin diagram is the subdiagram of Γ of vertices
i1, . . . , ir.

This is a special case of a theorem proved in [16] and more extensively
in [12, X.5.15 and 16]. We only need the following

Corollary 7.

1. Let σ be an inner automorphism of g of finite order m such that gσ is
semisimple. Then there is p ∈ V (Γ) such that σ is conjugated to σp.
In particular m = ap and the Dynkin diagram of gσ is Γp.

2. Two automorphisms σp, σp′ are conjugated if and only if p, p′ are in
the same Aut(Γ)−orbit.
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Proof. If gσ is semisimple, then in Theorem 6.3 n = r, hence all but one
parameters of σ are equal to 0, and the nonzero parameter sp must be equal
to 1, otherwise there would be a common factor, contradicting Theorem
6.1. So we get the first statement. Then the second statement follows from
Theorem 6.2.

Let be t ∈ C0(Φ): by Remark 2 gAd(t) is semisimple, so by Corollary 7.1
Ad(t) is conjugated to some σp. Then there is a canonical map

ψ : C0(Φ) −→ Q (7)

sending t in ψ(t) = {p ∈ V (Γ) such that σp is conjugated to Ad(t)}. Notice
that ψ(t) is a well-defined element of Q by Corollary 7.2.

We now prove the fundamental

Lemma 8. Two points in C0(Φ) induce conjugated automorphisms if and
only if they are in the same W × Z(Φ)−orbit.

Proof. Let N be the normalizer of T in G. We recall that W % N/T
and the action of W on T is induced by the conjugation action of N ; it
is also well known that two points of T are G−conjugated if and only if
they are W−conjugated. Then W−conjugated points induce conjugated
automorphisms. Moreover by (4)

Ad(t) = Ad(s) ⇔ Ad(ts−1) = idg ⇔ ts−1 ∈ Z(Φ).

Finally suppose that t, t′ ∈ C0(Φ) induce conjugated automorphisms, i.e.

∃g ∈ G|Ad(t′) = Ad(g)Ad(t)Ad(g−1) = Ad(gtg−1).

Then zt′ = gtg−1 for some z ∈ Z(Φ). Thus zt′ and t are G−conjugated
elements of T , and so they are W−conjugated, proving the claim.

We can now prove the first part of Theorem 3. Indeed by the previous
lemma there is a canonical injective map defined on the set of the orbits of
C0(Φ):

ψ :
C0(Φ)

W × Z(Φ)
−→ Q.

We must show that this map is surjective. The system

αi(h) = 1(∀i -= 0, p) , αp(h) = a−1
p

is composed of n linearly independent equations, then it has a solution h ∈ h.
Notice that α0(h) ∈ Z. Let t be the class of h in T ; then eα(t) = 1 ⇔ α ∈ Φp.
Then by Remark 2 Ad(t) is conjugated to σp and Φ(t) to Φp.
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In order to relate the action of Z(Φ) with that of Aut(Γ), we introduce
the following subset of W . For each p -= 0 such that ap = 1, set zp

.= wp
0w0,

where w0 is the longest element of W and wp
0 is the longest element of the

parabolic subgroup of W generated by all the simple reflections sα1 , . . . , sαn

except sαp . Then we define

WZ
.= {1} ∪{ zp}p=1,...,n|ap=1

WZ has the following properties (see [15, 1.7 and 1.8 ]):

Theorem 9 (Iwahori-Matsumoto).

1. WZ is a subgroup of W isomorphic to Z(Φ).

2. For each zp ∈ WZ , zp.α0 = αp. This defines an injective map WZ ↪→
Aut(Γ), and the WZ−orbits of V (Γ) coincide with the Aut(Γ)−orbits.

Therefore Q is the set of WZ−orbits of V (Γ), and the bijection ψ between
Q and the set of Z(Φ)−orbits of C0(Φ)/W can be lifted to a noncanonical
bijection between V (Γ) and C0(Φ)/W . Then we just have to consider the
action of W on C0(Φ) and show the

Lemma 10. If t ∈ Op, then W (t) is conjugated to Wp.

Proof. Notice that the centralizer CN (t) of t in N is the normalizer of
T = CT (t) in CG(t). Then W (t) = CN (t)/T is the Weyl group of CG(t).
CG(t) is the subgroup of G of points fixed by the conjugacy by t, then its
Lie algebra is gAd(t), that is conjugated to gσp by the first part of Theorem
3. Therefore W (t) is conjugated to Wp.

This completes the proof of Theorem 3 and also of Theorem 1, since by
Remark 2 the map ψ defined in (7) can also be seen as the map

t .→ ψ(t) = {p ∈ V (Γ) such that Φp is conjugated to Φ(t)}.

3 d-dimensional components

3.1 From hyperplane arrangements to toric arrangements

Let S be a d−dimensional subspace of H. The set ΘS of the elements of Φ
vanishing on S is a complete subsystem of Φ of rank n− d. Hence the map
S → ΘS gives a bijection between Sd and Kd, whose inverse is

Θ → S(Θ) .= {h ∈ h|α(h) = 0∀α ∈ Θ}.
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In [22, 6.4 and C] (following [21] and [4]) the subspaces of H are classified
and counted, and the W−orbits of Sd are completely described. This is done
case-by-case according to the type of Φ. We now show a case-free way to
extend this analysis to the components of T .

Given a component U of T let us consider

ΘU
.= {α ∈ Φ|eα(t) = 1∀t ∈ U}.

In contrast with the case of linear arrangements, ΘU in general is not com-
plete. Then for each Θ ∈ Kd let us define CΦ

Θ as the set of components U
such that ΘU = Θ. This is clearly a partition of the set of d−dimensional
components of T , i.e.

Cd(Φ) =
⊔

Θ∈Kd

CΦ
Θ (8)

We may think of S(Θ) as the tangent space in any point of each component
of CΦ

Θ; then by [22] the problem of classifying and counting the components
of T reduces to classify and count the components of T having a given tan-
gent space, i.e. the elements of CΦ

Θ. We do this in the next section.

3.2 Theorems

Let Θ be a complete subsystem of Φ and WΘ its Weyl group. Let k and K
be respectively the semisimple Lie algebra and the semisimple and simply
connected algebraic group of root system Θ, d a Cartan subalgebra of k,
〈Θ∨〉 and Λ(Θ) the coroot and coweight lattices, Z(Θ) .= Λ(Θ)

〈Θ∨〉 the center of
K, D the maximal torus of K defined by d/〈Θ∨〉, D the toric arrangement
defined by Θ on D and C0(Θ) the set of its 0-dimensional components.

We also consider the adjoint group Ka
.= K/Z(Θ) and its maximal torus

Da
.= D/Z(Θ) % d/Λ(Θ). We recall from [13] that K is the universal

covering of Ka, and if D′ is an algebraic torus having Lie algebra d, then
D′ % d/L for some lattice Λ(Θ) ⊇ L ⊇ 〈Θ∨〉; so there are natural covering
projections D ! D′ ! Da having kernel respectively L/〈Θ∨〉 and Λ(Θ)/L.
Notice that Θ naturally defines an arrangement on each D′, and that for
D′ = Da the set of the 0-dimensional components is C0(Θ)/Z(Θ). Given a
point t of some D′ we set

Θ(t) .= {α ∈ Θ|eα(t) = 1}.

Theorem 11. There is a WΘ−equivariant surjective map

ϕ : CΦ
Θ ! C0(Θ)/Z(Θ)

such that kerϕ % Z(Φ) ∩ Z(Θ) and ΘU = Θ(ϕ(U)).
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Proof. Let S(Θ) be the subspace of h defined in Section 3.1 and H the corre-
sponding subtorus of T . T/H is a torus with Lie algebra h/S(Θ) % d, then
Θ defines an arrangement D′ on D′ .= T/H. The projection π : T ! T/H
induces a bijection between CΦ

Θ and the set of 0-dimensional components of
D′, because H ∈ CΦ

Θ and for each U ∈ CΦ
Θ, ΘU = Θ(π(U)).

Moreover the restriction of the projection dπ : h ! h/S(Θ) to 〈Φ∨〉 is
simply the map that restricts the coroots of Φ to Θ. Set RΦ(Θ) .= dπ(〈Φ∨〉);
then Λ(Θ) ⊇ RΦ(Θ) ⊇ 〈Θ∨〉 and D′ % d/RΦ(Θ). Denote by p the projection
Λ(Φ) ! Λ(Φ)

〈Φ∨〉 and embed Λ(Θ) in Λ(Φ) in the natural way. Then the kernel
of the covering projection of D′ ! Da is isomorphic to

Λ(Θ)
RΦ(Θ)

% p(Λ(Θ)) % Z(Φ) ∩ Z(Θ).

We set
nΘ

.=
|Z(Θ)|

|Z(Φ) ∩ Z(Θ)| .

The following corollary is straightforward from Theorem 11.

Corollary 12.
|CΦ

Θ| = n−1
Θ |C0(Θ)|

and then by (8)
|Cd(Φ)| =

∑

Θ∈Kd

n−1
Θ |C0(Θ)|.

Notice that two components U, U ′ of T are W−conjugated if and only
if are verified both the conditions:

1. their tangent spaces are W−conjugated , i.e. ∃w ∈ W such that
ΘU = w.ΘU ′ ;

2. U and w.U ′ are WΘU−conjugated.

Then the action of W on C(Φ) is described by the following remark.

Remark 13.

1. By Theorem 11, ϕ induces a surjective map ϕ from the set of the
WΘ−orbits of CΦ

Θ to the set of the WΘ × Z(Θ)−orbits of C0(Θ), that
are described by Theorem 3.

2. In particular if Θ is irreducible, set ΓΘ its affine Dynkin diagram, QΘ

the set of the Aut(Γ)−orbits of its vertices, ΓΘ
p the diagram that we
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get from ΓΘ removing the vertex p, and Θp the associated root system.
Then there is a surjective map

ϕ̂ : CΦ
Θ ! QΘ

such that, if ϕ̂(U) = q and p is a representative of q, then ΘU % Θp.

3.3 Examples

Case F4. Z(Φ) = {1}, thus nΘ = |Z(Θ)|. Then in this case nΘ does not
depend on the conjugacy class, but only on the isomorphism class of Θ.

We say that a subspace S of H (respectively a component U of T ) is of
a given type if the corresponding subsystem ΘS (respectively ΘU ) is of such
type. Then by [22, Tab. C.9] and Corollary 12 there are:

1. 1 subspace of type ”A0”, tangent to 1 component of the same type
(the whole spaces);

2. 24 subspaces of type A1, each tangent to 1 component of the same
type;

3. 72 subspaces of type A1×A1, each tangent to 1 component of the same
type;

4. 32 subspaces of type A2, each tangent to 1 component of the same
type;

5. 18 subspaces of type B2, each tangent to 1 component of the same
type and 1 component of type A1 × A1;

6. 12 subspaces of type C3, each tangent to 1 component of the same
type and 3 of type A2 × A1;

7. 12 subspaces of type B3, each tangent to 1 component of the same
type, 1 of type A3 and 3 of type A1 × A1 × A1;

8. 96 subspaces of type A1×A2, each tangent to 1 component of the same
type;

9. 1 subspace of type F4 (the origin), tangent to: 1 component of the
same type, 12 of type A1×C3, 32 of type A2×A2, 24 of type A3×A1,
and 3 of type C4.

Case An−1. It is easily seen that each subsystem Θ of Φ is complete
and is product of irreducible factors Θ1, . . . ,Θk, with Θi of type Aλi−1 for
some positive integers λi such that λ1 + · · · + λk = n and n − k is the

13



rank of Θ. In other words, as it is well known, the W−conjugacy classes of
subspaces of H are in bijection with the partitions λ of n, and if a subspace
has dimension d then corresponding partition has length |λ| .= k equal to
d + 1. The number of subspaces of partition λ is easily seen to be equal to
n!/bλ, where bi is the number of λj that are equal to i and bλ

.=
∏

i!bibi!
(see [22, 6.72]). Now let gλ be the greatest common divisor of λ1, . . . , λk.
By example 4 in Section 2.2 we have that |Z(Θ)| = λ1 . . . λk = |C0(Θ)| and
|Z(Φ) ∩ Z(Θ)| = gλ. Then by Corollary 12 |CΦ

Θ| = gλ and

|Cd(Φ)| =
∑

|λ|=d+1

n!gλ

bλ
.

This could also be seen directly as follows. We can think T as the
subgroup of (C∗)n given by the equation t1 . . . tn − 1 = 0. Θ imposes the
equations

t1 = · · · = tλ1 , . . . , tλ1+···+λk−1+1 = · · · = tn.

Then we have the relation xλ1
1 . . . xλk

k − 1 = 0. If gλ = 1 this polynomial is
irreducible, because the vector (λ1, . . . , λk) can be completed to a basis of
the lattice Zk. If gλ > 1 this polynomial has exactly gλ irreducible factors
over C. Then in every case it defines an affine variety having exactly gλ

irreducible components, that are precisely the elements of CΦ
Θ.

4 Topological invariants

4.1 Theorems

Let R be the complement in T of the union of all the subtori of the toric
arrangement T . In this section we prove that the Euler characteristic of R,
that we denote by χΦ, is equal to (−1)n|W |. We also give a formula for the
Poincaré polynomial of R, that we denote by PΦ(q).

Let d1, . . . , dn be the degrees of W , i.e. the degrees of the generators
of the ring of W−invariant regular functions on h; it is well known that
d1 . . . dn = |W |. Moreover by [2] B(Φ) .= (d1 − 1) . . . (dn − 1) is equal to the
leading coefficient of the Poincaré polynomial of the complement of H in h,
and then to the number of unbroken basis of Φ (see for example [9, 2.2.8
and 10.1.6]).

The cohomology of R can be expressed as a direct sum of contributions
given by the components of T (see for example [7, Theor. 4.2] or [9, 14.1.5]).
In terms of Poincaré polynomial this expression is:

Theorem 14.

PΦ(q) =
∑

U∈C(Φ)

B(ΘU )(q + 1)d(U)qn−d(U)

14



where d(U) is the dimension of the component U .

Now we use this expression to compute χΦ.

Lemma 15.

χΦ = (−1)n
n∑

p=0

|W |
|Wp|

B(Φp)

Proof.
χΦ = PΦ(−1) = (−1)n

∑

t∈C0(Φ)

B(Φ(t)) (9)

because the contributions of all components of positive dimension vanish at
−1. Obviously isomorphic subsystems have the same degrees, so Theorem 1
yields the statement.

Theorem 16.
χΦ = (−1)n|W |

Proof. By the previous lemma we must prove that

n∑

p=0

B(Φp)
|Wp|

= 1

If we write dp
1, . . . , d

p
n for the degrees of Wp, the previous identity becomes

n∑

p=0

(dp
1 − 1) . . . (dp

n − 1)
dp

1 . . . dp
n

= 1.

This identity has been proved in [8], and later with different methods in
[11].

Notice that W acts on R and then on its cohomology. So we can consider
the equivariant Euler characteristic of R, that is, for each w ∈ W ,

χ̃Φ(w) .=
n∑

i=0

(−1)i Tr(w, H i(R, C)).

Let ,W be the character of the regular representation of W . From Theorem
16 we get the following

Corollary 17.
χ̃Φ = (−1)n,W

Proof. Since W is finite and acts freely on R, it is well known that χ̃Φ = k,W

for some k ∈ Z. Then to compute k we just have to look at χ̃Φ(1) = χΦ.
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Finally we give a formula for PΦ(q) that, together with the mentioned
results in [22], allows its explicit computation.

Theorem 18.

PΦ(q) =
n∑

d=0

(q + 1)dqn−d
∑

Θ∈Kd

n−1
Θ |WΘ|

Proof. By formula (8) we can restate Theorem 14 as

PΦ(q) =
n∑

d=0

(q + 1)dqn−d
∑

Θ∈Kd

∑

U∈CΦ
Θ

B(ΘU )

Moreover by Theorem 11 and Corollary 12 we get
∑

U∈CΦ
Θ

B(ΘU ) = n−1
Θ

∑

t∈C0(Θ)

B(Θ(t)).

Finally the claim follows by formula (9) and Theorem 16 applied to Θ:
∑

t∈C0(Θ)

B(Θ(t)) = (−1)dχΘ = |WΘ|.

4.2 Examples

Case F4. In Section 3.3 we have given a list of the 9 occurring types of
complete subsystems, together with the multiplicity of each one. So we just
have to compute the coefficient n−1

Θ |WΘ| for each type. This is equal to:

• 1 for types 1., 2. and 3.

• 2 for types 4. and 8.

• 4 for type 5.

• 24 for types 6. and 7.

• 1152 for type 9.

Then
PΦ(q) = 2153q4 + 1260q3 + 286q2 + 28q + 1.

Case An−1. By Section 3.3, n−1
Θ = gλ

λ1...λk
and |WΘ| = λ1! . . . λk!. Then

by Theorem 17

PΦ(q) =
n∑

d=0

(q + 1)dqn−d
∑

|λ|=d+1

n!b−1
λ gλ(λ1 − 1)! . . . (λk − 1)!.
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