Combinatorics and invariants of toric arrangements

Luca Moci

April 1, 2008

Abstract

Given the toric (or toral) arrangement defined by a root system Φ , we classify and count its components of each dimension. We show how to reduce to the case of 0-dimensional components, and in this case we give an explicit formula involving the maximal subdiagrams of the affine Dynkin diagram of Φ . Then we compute the Euler characteristic and the Poincaré polynomial of the complement of the arrangement, that is the set of regular points of the torus.

1 Introduction

Let \mathfrak{g} be a semisimple Lie algebra of rank *n* over \mathbb{C} , \mathfrak{h} a Cartan subalgebra, $\Phi \subset \mathfrak{h}^*$ and $\Phi^{\vee} \subset \mathfrak{h}$ respectively its root and coroot systems. The equations $\{\alpha(h)=0\}_{\alpha\in\Phi}$ define a family \mathcal{H} of intersecting hyperplanes in \mathfrak{h} . Let $\langle\Phi^{\vee}\rangle$ be the lattice spanned by the coroots: the quotient $T \doteq \mathfrak{h}/\langle \Phi^{\vee} \rangle$ is a complex torus of rank n. Each root α takes integer values on $\langle \Phi^{\vee} \rangle$, so it induces a map $T \to \mathbb{C}/\mathbb{Z} \simeq \mathbb{C}^*$ that we denote by e^{α} . The equations $\{\alpha(h) \in \mathbb{Z}\}_{\alpha \in \Phi}$ define in \mathfrak{h} a periodic family of hyperplanes, or equivalently the equations $\{e^{\alpha}(t)=1\}_{\alpha\in\Phi}$ define in T a finite family T of codimension 1 subtori. \mathcal{H} and \mathcal{T} are called respectively the hyperplane arrangement and the toric arrangement defined by Φ (see for example [7], [9], [22]). We call subspaces of $\mathcal H$ the intersections of elements of $\mathcal H$, and *components* of $\mathcal T$ the connected components of the intersections of elements of \mathcal{T} . We denote by $\mathcal{S}(\Phi)$ the set of the subspaces of \mathcal{H} , by $\mathcal{C}(\Phi)$ the set of the components of \mathcal{T} , and by $\mathcal{S}_d(\Phi)$ and $\mathcal{C}_d(\Phi)$ the sets of d-dimensional subspaces and components. Clearly if $\Phi = \Phi_1 \times \Phi_2$ then $\mathcal{S}(\Phi) = \mathcal{S}(\Phi_1) \times \mathcal{S}(\Phi_2)$ and $\mathcal{C}(\Phi) = \mathcal{C}(\Phi_1) \times \mathcal{C}(\Phi_2)$, so from now on we will suppose Φ to be irreducible.

 \mathcal{H} is a classical object, whereas De Concini and Procesi [7] recently showed that \mathcal{T} provides a geometric way to compute the values of the Kostant partition function. This function counts in how many ways an element of the lattice $\langle \Phi \rangle$ can be written as sum of positive roots, and plays an important role in representation theory, since (by Kostant's and Steinberg's formulae [18], [25]) it yields efficient computation of weight multiplicities and Littlewood-Richardson coefficients, as shown in [5] using results from [1], [3], [6], [26]. The values of Kostant partition function can be computed as a sum of contributions given by the elements of $C_0(\Phi)$ (see [5, Teor 3.2]).

Furthermore, let R be the complement in T of the union of all elements of \mathcal{T} . R is called the set of the *regular points* of the torus T and has been intensively studied (see in particular [7], [19], [20]). The cohomology of Ris direct sum of contributions given by the elements of $\mathcal{C}(\Phi)$ (see for example [7]). Then by describing the action of W on $\mathcal{C}(\Phi)$ we implicitly get a W-equivariant decomposition of the cohomology of R, and by counting and classifying the elements of $\mathcal{C}(\Phi)$ we can compute the Poincaré polynomial of R.

We say that a subset Θ of Φ is a *subsystem* if it satisfies the following conditions:

- 1. $\alpha \in \Theta \Rightarrow -\alpha \in \Theta$
- 2. $\alpha, \beta \in \Theta$ and $\alpha + \beta \in \Phi \Rightarrow \alpha + \beta \in \Theta$.

For each $t \in T$ let us define the subsystem of Φ

$$\Phi(t) \doteq \{ \alpha \in \Phi | e^{\alpha}(t) = 1 \}.$$

The aim of Section 2 is to describe $C_0(\Phi)$, that is the set of points $t \in T$ such that $\Phi(t)$ has rank n. Let $\alpha_1, \ldots, \alpha_n$ be simple roots of Φ , α_0 the lowest root, and Φ_p the subsystem of Φ generated by $\{\alpha_i\}_{0 \leq i \leq n, i \neq p}$. Let Γ be the affine Dynkin diagram of Φ and $V(\Gamma)$ the set of its vertices (a list of such diagrams can be found for example in [12] or in [17]). $V(\Gamma)$ is in bijection with $\{\alpha_0, \alpha_1, \ldots, \alpha_n\}$, so we can identify each vertex p with an integer from 0 to n. The diagram Γ_p that we get by removing from Γ the vertex p (and all adjacent edges) is the (genuine) Dynkin diagram of Φ_p . Let W be the Weyl group of Φ and W_p the Weyl group of Φ_p , i.e. the subgroup of W generated by all the reflections $s_{\alpha_0}, \ldots, s_{\alpha_n}$ except s_{α_p} . Notice that Γ_0 is the Dynkin diagram of Φ and $W_0 = W$. Since W permutes the roots, its natural action on T restricts to an action on $C_0(\Phi)$. We denote by W(t) the stabilizer of a point $t \in C_0(\Phi)$. Then we prove the

Theorem 1. There is a bijection between the W-orbits of $C_0(\Phi)$ and the vertices of Γ , having the property that for every point t in the orbit \mathcal{O}_p corresponding to the vertex p, $\Phi(t)$ is W-conjugated to Φ_p and W(t) is W-conjugated to W_p .

As a corollary we get the formula

$$|\mathcal{C}_0(\Phi)| = \sum_{p \in V(\Gamma)} \frac{|W|}{|W_p|}.$$
(1)

In Section 3 we deal with components of arbitrary dimension. For each component U of \mathcal{T} we consider the subsystem of Φ

$$\Theta_U \doteq \{ \alpha \in \Phi | e^\alpha(t) = 1 \forall t \in U \}$$

and its completion $\overline{\Theta_U} \doteq \langle \Theta_U \rangle_{\mathbb{R}} \cap \Phi$.

Let \mathcal{K}_d be the set of subsystems Θ of Φ of rank n - d that are *complete* (i.e. such that $\Theta = \overline{\Theta}$), and let $\mathcal{C}_{\Theta}^{\Phi}$ be the set of components U such that $\overline{\Theta}_U = \Theta$. This gives a partition of the components:

$$\mathcal{C}_d(\Phi) = \bigsqcup_{\Theta \in \mathcal{K}_d} \mathcal{C}_{\Theta}^{\Phi}.$$

Notice that the subsystem of roots vanishing on a subspace of \mathcal{H} is always complete; then \mathcal{K}_d is in bijection with \mathcal{S}_d . The elements of \mathcal{S}_d are classified and counted in [21], [22]. Thus the description of the sets $\mathcal{C}_{\Theta}^{\Phi}$ that we give in Theorem 11 yields a classification of the components of \mathcal{T} . In particular we show that $|\mathcal{C}_{\Theta}^{\Phi}| = n_{\Theta}^{-1} |\mathcal{C}_0(\Theta)|$, where n_{Θ} is an integer depending only on the conjugacy class of Θ , and then

$$|\mathcal{C}_d(\Phi)| = \sum_{\Theta \in \mathcal{K}_d} n_{\Theta}^{-1} |\mathcal{C}_0(\Theta)|.$$
(2)

In Section 4, using results of [7] and [8], we deduce from Theorem 1 that the Euler characteristic of R is equal to $(-1)^n |W|$. This fact was known as a consequence of a topological construction of Salvetti ([10], [24]). Moreover Corollary 12 yields a formula for the Poincaré polynomial of R:

$$P_{\Phi}(q) = \sum_{d=0}^{n} (-1)^{d} (q+1)^{d} q^{n-d} \sum_{\Theta \in \mathcal{K}_{d}} n_{\Theta}^{-1} |W^{\Theta}|.$$
(3)

This formula allows to compute explicitly $P_{\Phi}(q)$.

I would like to thank Gus Lehrer and Paolo Papi for giving me useful suggestions, and Filippo Callegaro, Francesca Mori and Alessandro Pucci for some stimulating discussions. I also want express my gratitude to my supervisor Corrado De Concini for suggesting to me many key ideas, encouraging me, and giving me a lot of helpful advice.

2 0-dimensional components

2.1 Statements

For all facts about Lie algebras and root systems we refer to [14]. Let

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{lpha \in \Phi} \mathfrak{g}_{lpha}$$

be the Cartan decomposition of \mathfrak{g} , and let us choose nonzero elements X_0, X_1, \ldots, X_n in the 1-dimensional subalgebras $\mathfrak{g}_{\alpha_0}, \mathfrak{g}_{\alpha_1}, \ldots, \mathfrak{g}_{\alpha_n}$: since $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\alpha'}] = \mathfrak{g}_{\alpha+\alpha'}$ whenever $\alpha, \alpha', \alpha + \alpha' \in \Phi$, we have that X_0, X_1, \ldots, X_n generate \mathfrak{g} . Let $a_0 = 1$ and for $p = 1, \ldots, n$ let a_p be the coefficient of α_p in $-\alpha_0$. For each $p = 0, \ldots, n$ we define an automorphism σ_p of \mathfrak{g} by

$$\sigma_p(X_p) \doteq e^{2\pi i a_p^{-1}} X_p \ , \ \sigma_p(X_i) = X_i \ \forall i \neq p;$$

Let G be the semisimple and simply connected algebraic group having root system Φ ; \mathfrak{g} and T are respectively the Lie algebra and a maximal torus of G (see for example [13]). G acts on itself by conjugacy, i.e. for each $g \in G$ the map $k \mapsto gkg^{-1}$ is an automorphism of G. Its differential Ad(g) is an automorphism of \mathfrak{g} .

Remark 2. Let $t \in C_0(\Phi)$ and $\mathfrak{g}^{Ad(t)}$ be the subalgebra of elements fixed by Ad(t). For each $\alpha \in \Phi$ and for each $X_\alpha \in \mathfrak{g}_\alpha$ we have that $Ad(t)(X_\alpha) = e^{\alpha}(t)X_\alpha$, thus

$$\mathfrak{g}^{Ad(t)} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi(t)} \mathfrak{g}_{\alpha}.$$

Moreover \mathfrak{g}^{σ_p} is generated by the subalgebras $\{\mathfrak{g}_{\alpha_i}\}_{0\leq i\leq n,i\neq p}$. Then $\mathfrak{g}^{Ad(t)}$ and \mathfrak{g}^{σ_p} are semisimple algebras having root system respectively $\Phi(t)$ and Φ_p . Our strategy will be to prove that for each $t \in \mathcal{C}_0(\Phi)$, Ad(t) is conjugated to some σ_p . This implies that $\mathfrak{g}^{Ad(t)}$ is conjugated to \mathfrak{g}^{σ_p} and then $\Phi(t)$ to Φ_p , as claimed in Theorem 1.

Then we want give a bijection between vertices of Γ and W-orbits of $C_0(\Phi)$ showing that, for every t in the orbit \mathcal{O}_p , Ad(t) is conjugated to σ_p . However, since some of the σ_p (as well as the corresponding Φ_p) are themselves conjugate, this bijection is not going to be canonical. To make it canonical we should merge the orbits corresponding to conjugate automorphisms: for this we consider the action of a larger group.

Let $\Lambda(\Phi) \subset \mathfrak{h}$ be the lattice of the coweights of Φ , i.e.

$$\Lambda(\Phi) \doteq \{h \in \mathfrak{h} | \alpha(h) \in \mathbb{Z} \forall \alpha \in \Phi\}.$$

The lattice spanned by the coroots $\langle \Phi^{\vee} \rangle$ is a sublattice of $\Lambda(\Phi)$; set

$$Z(\Phi) \doteq \frac{\Lambda(\Phi)}{\langle \Phi^{\vee} \rangle}.$$

This finite subgroup of T coincides with Z(G), the *center* of G. It is well known ([13, 13.4]) that

$$Ad(g) = id_{\mathfrak{g}} \Leftrightarrow g \in Z(\Phi). \tag{4}$$

Notice that

$$Z(\Phi) = \{t \in T | \Phi(t) = \Phi\}$$

thus $Z(\Phi) \subseteq \mathcal{C}_0(\Phi)$. Moreover, for each $z \in Z(\Phi), t \in T, \alpha \in \Phi$,

$$e^{\alpha}(zt) = e^{\alpha}(z)e^{\alpha}(t) = e^{\alpha}(t)$$

and therefore $\Phi(zt) = \Phi(t)$. In particular $Z(\Phi)$ acts by multiplication on $\mathcal{C}_0(\Phi)$. Clearly this action commutes with that of W and we get an action of $W \times Z(\Phi)$ on $\mathcal{C}_0(\Phi)$.

Let Q be the set of the $Aut(\Gamma)$ -orbits of $V(\Gamma)$. If $p, p' \in V(\Gamma)$ are two representatives of $q \in Q$, then $\Gamma_p \simeq \Gamma_{p'}$, thus $W_p \simeq W_{p'}$. Moreover we will see (Corollary 7.2) that σ_p is conjugated to $\sigma_{p'}$. Then we can restate Theorem 1 as follows.

Theorem 3. There is a canonical bijection between Q and the set of $W \times Z(\Phi)$ -orbits in $\mathcal{C}_0(\Phi)$, having the property that if $p \in V(\Gamma)$ is a representative of $q \in Q$, then:

- 1. every point t in the corresponding orbit \mathcal{O}_q induces an automorphism conjugated to σ_p ;
- 2. the stabilizer of $t \in \mathcal{O}_q$ is isomorphic to $W_p \times Stab_{Aut(\Gamma)}p$.

This theorem implies immediately the formula:

$$|\mathcal{C}_0(\Phi)| = \sum_{q \in Q} n_q \, \frac{|W|}{|W_p|} \tag{5}$$

where n_q is the cardinality of the $Aut(\Gamma)$ -orbit q. This is clearly equivalent to formula (1).

Remark 4. If we see the elements of $\Lambda(\Phi)$ as translations, we can define a group of isometries of \mathfrak{h}

$$W \doteq W \ltimes \Lambda(\Phi).$$

 \widetilde{W} is called the *extended affine Weyl group* of Φ and contains the affine Weyl group $\widehat{W} \doteq W \ltimes \langle \Phi^{\vee} \rangle$ (see [15], [23]).

The action of $W \times Z(\Phi)$ on $\mathcal{C}_0(\Phi)$ can be lifted to an action of \widetilde{W} . Indeed \widetilde{W} preserves the lattice $\langle \Phi^{\vee} \rangle$ of \mathfrak{h} , and thus acts on $T = \mathfrak{h}/\langle \Phi^{\vee} \rangle$ and on $\mathcal{C}_0(\Phi) \subset T$. Since the semidirect factor $\langle \Phi^{\vee} \rangle$ acts trivially, \widetilde{W} acts as its quotient

$$\frac{\widetilde{W}}{\langle \Phi^{\vee} \rangle} \simeq W \times Z(\Phi).$$

2.2 Examples

In the following examples we denote by \mathfrak{S}_n , \mathfrak{D}_n , \mathfrak{C}_n respectively the symmetric, dihedral and cyclic group on n letters.

1. Case C_n The roots $2\alpha_i + \cdots + 2\alpha_{n-1} + \alpha_n$ $(i = 1, \ldots, n)$ take integer values on the points $[\alpha_1^{\vee}/2], \ldots, [\alpha_n^{\vee}/2] \in \mathfrak{h}/\langle \Phi^{\vee} \rangle$, and thus on their sums, for a total of 2^n points of $\mathcal{C}_0(\Phi)$. Indeed let us introduce the following notation. If we fix a basis h_1^*, \ldots, h_n^* of \mathfrak{h}^* , we can write the simple roots of C_n as

$$\alpha_i = h_i^* - h_{i+1}^*$$
 for $i = 1, \dots, n-1$, and $\alpha_n = 2h_n^*$. (6)

Then $\Phi = \{h_i^* - h_j^*\} \cup \{h_i^* + h_j^*\} \cup \{\pm 2h_i^*\} \ (i, j = 1, \dots, n, i \neq j)$, and if we write t_i for $e^{h_i^*}$, we have that

$$e^{\Phi} \doteq \{e^{\alpha}, \alpha \in \Phi\} = \{t_i t_j^{-1}\} \cup \{t_i t_j\} \cup \{t_i^{\pm 2}\}.$$

The system of n independent equations $t_1^2 = 1, \ldots, t_n^2 = 1$ has 2^n solutions: $(\pm 1, \ldots, \pm 1)$, and it is easy to see that all other systems does not have other solutions. $W \simeq \mathfrak{S}_n \ltimes (\mathfrak{C}_2)^n$ acts on $T = (\mathbb{C}^*)^n$ by permuting and inverting its coordinates; the second operation is trivial on $\mathcal{C}_0(\Phi)$. Then two elements of $\mathcal{C}_0(\Phi)$ are in the same W-orbit if and only if they have the same number of negative coordinates. So we can define the p-th W-orbit \mathcal{O}_p as the set of points with p negative coordinates. (This choice is not canonical: we may choose the set of points with p positive coordinates as well). Clearly if $t \in \mathcal{O}_p$ then

$$W(t) \simeq (\mathfrak{S}_p \times \mathfrak{S}_{n-p}) \ltimes (\mathfrak{C}_2)^n.$$

Thus $|\mathcal{O}_p| = \binom{n}{p}$ and we get:

$$|\mathcal{C}_0(\Phi)| = \sum_{p=0}^n \binom{n}{p} = 2^n.$$

Notice that if $t \in \mathcal{O}_p$ then $-t \in \mathcal{O}_{n-p}$ and Ad(t) = Ad(-t) since $Z(\Phi) = \{\pm (1, \ldots, 1)\}$. In fact Γ has a symmetry exchanging the vertices p and n - p. Finally notice that $\mathcal{C}_0(\Phi)$ is a subgroup of T isomorphic to $(\mathfrak{C}_2)^n$ and generated by the elements

 $\delta_i \doteq (1, ..., 1, -1, 1, ..., 1)$ (with the -1 at the *i* - *th* place).

Then we can come back to the original coordinates observing that δ_i is the nontrivial solution of the system $t_i^2 = 1$, $t_j = 1 \forall j \neq i$, and using (6) to get:

$$\delta_i \leftrightarrow \left[\sum_{k=i}^n \alpha_k^{\vee}/2\right]$$

2. Case D_n We can write $\alpha_n = h_{n-1}^* + h_n^*$ and the others α_i as before, so $e^{\Phi} = \{t_i t_j^{-1}\} \cup \{t_i t_j\}$. Then each system of n independent equations is W-conjugated to

$$t_1 = t_2, \dots, t_{p-1} = t_p, t_{p-1} = t_p^{-1}, t_{p+1}^{\pm 1} = t_{p+2}, \dots, t_{n-1} = t_n, t_{n-1} = t_n^{-1}$$

for some $p \neq 1, n-1$. Then we get the subset of $(\mathfrak{C}_2)^n$ composed by the following n-ples: $\{(\pm 1, \ldots, \pm 1)\}\setminus\{\pm \delta_i\}_{i=1,\ldots,n}, 2^n-2n$ in number. However reasoning as before we see that each one represents two points in $\mathfrak{h}/\langle \Phi^{\vee} \rangle$. Namely, the correspondence is given by:

$$\left\{ \left[\sum_{k=i}^{n-1} \frac{\alpha_k^{\vee}}{2} \pm \frac{\alpha_{n-1}^{\vee} - \alpha_n^{\vee}}{4} \right] \right\} \longrightarrow \delta_i.$$

From a geometric point of view, the t_i s are coordinates of a maximal torus of the orthogonal group, while $T = \mathfrak{h}/\langle \Phi^{\vee} \rangle$ is a maximal torus of its two-sheets universal covering. Each one of the *W*-orbits corresponding to the four extremal vertices of Γ is composed by one of the four points over $\pm(1, \ldots, 1)$, all inducing the identity automorphism: indeed $Aut(\Gamma)$ acts transitively on these points. The other orbits are defined as in the case C_n .

3. Case B_n This case is very similar to the previous one, but now $\alpha_n = h_n^*, e^{\Phi} = \{t_i t_j^{-1}\} \cup \{t_i t_j\} \cup \{t_i^{\pm 1}\}$, and then we get the points $\{(\pm 1, \ldots, \pm 1)\} \setminus \{\delta_i\}_{i=1,\ldots,n}$. Here the projection is

$$\left\{ \left[\sum_{k=i}^{n-1} \frac{\alpha_k^{\vee}}{2} \pm \frac{\alpha_n^{\vee}}{4} \right] \right\} \longrightarrow \delta_i$$

so we have $2^n - n$ pairs of points in $\mathcal{C}_0(\Phi)$.

4. Case A_n If we see \mathfrak{h}^* as the subspace of $\langle h_1^*, \ldots, h_{n+1}^* \rangle$ of equation $\sum h_i^* = 0$, and T as the subgroup of $(\mathbb{C}^*)^{n+1}$ of equation $\prod t_i = 1$, we can write all the simple roots as $\alpha_i = h_i^* - h_{i+1}^*$; then $e^{\Phi} = \{t_i t_j^{-1}\}$. In this case Φ has no proper subsystem of its same rank, then all the coordinates must be identical. Therefore

$$\mathcal{C}_0(\Phi) = Z(\Phi) = \left\{ (\zeta, \dots, \zeta) | \zeta^{n+1} = 1 \right\} \simeq \mathfrak{C}_{n+1}.$$

Then $W \simeq \mathfrak{S}_{n+1}$ acts on $\mathcal{C}_0(\Phi)$ trivially and $Z(\Phi)$ transitively, as expected since $Aut(\Gamma) \simeq \mathfrak{D}_{n+1}$ acts transitively on the vertices of Γ . We can write more explicitly $\mathcal{C}_0(\Phi) \subseteq \mathfrak{h}/\langle \Phi^{\vee} \rangle$ as

$$\mathcal{C}_0(\Phi) = \left\{ \left[\frac{k}{n+1} \sum_{i=1}^n i\alpha_i^{\vee} \right], k = 0, \dots, n \right\}.$$

2.3 Proof of Theorem 3

Motivated by Remark 2, we start to describe the automorphisms of \mathfrak{g} that are induced by the points of $\mathcal{C}_0(\Phi)$.

Lemma 5. If $t \in C_0(\Phi)$, then Ad(t) has finite order.

Proof. Let β_1, \ldots, β_n linearly independent roots such that $e^{\beta_i}(t) = 1$: then for each root $\alpha \in \Phi$ we have that $m\alpha = \sum c_i\beta_i$ for some m and $c_i \in \mathbb{Z}$, thus

$$e^{\alpha}(t^m) = e^{m\alpha}(t) = \prod_{i=1}^n (e^{\beta_i})^{c_i}(t) = 1.$$

Then $Ad(t^m)$ is the identity on \mathfrak{g} , so by (4) $t^m \in Z(\Phi)$. $Z(\Phi)$ is a finite group, so t^m and t have finite order.

The previous lemma allows us to apply the following

Theorem 6 (Kač).

1. Each inner automorphism of \mathfrak{g} of finite order m is conjugated to an automorphism σ of the form

$$\sigma(X_i) = \zeta^{s_i} X_i$$

with ζ fixed primitive m-th root of unity and (s_0, \ldots, s_n) nonnegative integers without common factors such that $m = \sum s_i a_i$.

- 2. Two such automorphisms are conjugated if and only if there is an automorphism of Γ sending the parameters (s_0, \ldots, s_n) of the first in the parameters (s'_0, \ldots, s'_n) of the second.
- Let (i₁,...,i_r) be all the indices for which s_{i1} = ··· = s_{ir} = 0. Then g^σ is the direct sum of an (n-r)-dimensional center and of a semisimple Lie algebra whose Dynkin diagram is the subdiagram of Γ of vertices i₁,...,i_r.

This is a special case of a theorem proved in [16] and more extensively in [12, X.5.15 and 16]. We only need the following

Corollary 7.

- Let σ be an inner automorphism of g of finite order m such that g^σ is semisimple. Then there is p ∈ V(Γ) such that σ is conjugated to σ_p. In particular m = a_p and the Dynkin diagram of g^σ is Γ_p.
- 2. Two automorphisms σ_p , $\sigma_{p'}$ are conjugated if and only if p, p' are in the same $Aut(\Gamma)$ -orbit.

Proof. If \mathfrak{g}^{σ} is semisimple, then in Theorem 6.3 n = r, hence all but one parameters of σ are equal to 0, and the nonzero parameter s_p must be equal to 1, otherwise there would be a common factor, contradicting Theorem 6.1. So we get the first statement. Then the second statement follows from Theorem 6.2.

Let be $t \in \mathcal{C}_0(\Phi)$: by Remark 2 $\mathfrak{g}^{Ad(t)}$ is semisimple, so by Corollary 7.1 Ad(t) is conjugated to some σ_p . Then there is a canonical map

$$\psi: \mathcal{C}_0(\Phi) \longrightarrow Q \tag{7}$$

sending t in $\psi(t) = \{p \in V(\Gamma) \text{ such that } \sigma_p \text{ is conjugated to } Ad(t)\}$. Notice that $\psi(t)$ is a well-defined element of Q by Corollary 7.2.

We now prove the fundamental

Lemma 8. Two points in $C_0(\Phi)$ induce conjugated automorphisms if and only if they are in the same $W \times Z(\Phi)$ -orbit.

Proof. Let N be the normalizer of T in G. We recall that $W \simeq N/T$ and the action of W on T is induced by the conjugation action of N; it is also well known that two points of T are G-conjugated if and only if they are W-conjugated. Then W-conjugated points induce conjugated automorphisms. Moreover by (4)

$$Ad(t) = Ad(s) \Leftrightarrow Ad(ts^{-1}) = id_{\mathfrak{g}} \Leftrightarrow ts^{-1} \in Z(\Phi).$$

Finally suppose that $t, t' \in \mathcal{C}_0(\Phi)$ induce conjugated automorphisms, i.e.

$$\exists g \in G | Ad(t') = Ad(g)Ad(t)Ad(g^{-1}) = Ad(gtg^{-1}).$$

Then $zt' = gtg^{-1}$ for some $z \in Z(\Phi)$. Thus zt' and t are G-conjugated elements of T, and so they are W-conjugated, proving the claim.

We can now prove the first part of Theorem 3. Indeed by the previous lemma there is a canonical injective map defined on the set of the orbits of $C_0(\Phi)$:

$$\overline{\psi}: \frac{\mathcal{C}_0(\Phi)}{W \times Z(\Phi)} \longrightarrow Q.$$

We must show that this map is surjective. The system

$$\alpha_i(h) = 1(\forall i \neq 0, p) , \alpha_p(h) = a_p^{-1}$$

is composed of *n* linearly independent equations, then it has a solution $h \in \mathfrak{h}$. Notice that $\alpha_0(h) \in \mathbb{Z}$. Let *t* be the class of *h* in *T*; then $e^{\alpha}(t) = 1 \Leftrightarrow \alpha \in \Phi_p$. Then by Remark 2 Ad(t) is conjugated to σ_p and $\Phi(t)$ to Φ_p . In order to relate the action of $Z(\Phi)$ with that of $Aut(\Gamma)$, we introduce the following subset of W. For each $p \neq 0$ such that $a_p = 1$, set $z_p \doteq w_0^p w_0$, where w_0 is the longest element of W and w_0^p is the longest element of the parabolic subgroup of W generated by all the simple reflections $s_{\alpha_1}, \ldots, s_{\alpha_n}$ except s_{α_p} . Then we define

$$W_Z \doteq \{1\} \cup \{z_p\}_{p=1,\dots,n|a_p=1}$$

 W_Z has the following properties (see [15, 1.7 and 1.8]):

Theorem 9 (Iwahori-Matsumoto).

- 1. W_Z is a subgroup of W isomorphic to $Z(\Phi)$.
- 2. For each $z_p \in W_Z$, $z_p.\alpha_0 = \alpha_p$. This defines an injective map $W_Z \hookrightarrow Aut(\Gamma)$, and the W_Z -orbits of $V(\Gamma)$ coincide with the $Aut(\Gamma)$ -orbits.

Therefore Q is the set of W_Z -orbits of $V(\Gamma)$, and the bijection $\overline{\psi}$ between Q and the set of $Z(\Phi)$ -orbits of $\mathcal{C}_0(\Phi)/W$ can be lifted to a noncanonical bijection between $V(\Gamma)$ and $\mathcal{C}_0(\Phi)/W$. Then we just have to consider the action of W on $\mathcal{C}_0(\Phi)$ and show the

Lemma 10. If $t \in \mathcal{O}_p$, then W(t) is conjugated to W_p .

Proof. Notice that the centralizer $C_N(t)$ of t in N is the normalizer of $T = C_T(t)$ in $C_G(t)$. Then $W(t) = C_N(t)/T$ is the Weyl group of $C_G(t)$. $C_G(t)$ is the subgroup of G of points fixed by the conjugacy by t, then its Lie algebra is $\mathfrak{g}^{Ad(t)}$, that is conjugated to \mathfrak{g}^{σ_p} by the first part of Theorem 3. Therefore W(t) is conjugated to W_p .

This completes the proof of Theorem 3 and also of Theorem 1, since by Remark 2 the map ψ defined in (7) can also be seen as the map

 $t \mapsto \psi(t) = \{ p \in V(\Gamma) \text{ such that } \Phi_p \text{ is conjugated to } \Phi(t) \}.$

3 d-dimensional components

3.1 From hyperplane arrangements to toric arrangements

Let S be a d-dimensional subspace of \mathcal{H} . The set Θ_S of the elements of Φ vanishing on S is a complete subsystem of Φ of rank n - d. Hence the map $S \to \Theta_S$ gives a bijection between \mathcal{S}_d and \mathcal{K}_d , whose inverse is

$$\Theta \to S(\Theta) \doteq \{h \in \mathfrak{h} | \alpha(h) = 0 \forall \alpha \in \Theta\}.$$

In [22, 6.4 and C] (following [21] and [4]) the subspaces of \mathcal{H} are classified and counted, and the W-orbits of \mathcal{S}_d are completely described. This is done case-by-case according to the type of Φ . We now show a case-free way to extend this analysis to the components of \mathcal{T} .

Given a component U of \mathcal{T} let us consider

$$\Theta_U \doteq \{ \alpha \in \Phi | e^{\alpha}(t) = 1 \forall t \in U \}.$$

In contrast with the case of linear arrangements, Θ_U in general is not complete. Then for each $\Theta \in \mathcal{K}_d$ let us define $\mathcal{C}_{\Theta}^{\Phi}$ as the set of components Usuch that $\overline{\Theta_U} = \Theta$. This is clearly a partition of the set of d-dimensional components of \mathcal{T} , i.e.

$$\mathcal{C}_d(\Phi) = \bigsqcup_{\Theta \in \mathcal{K}_d} \mathcal{C}_{\Theta}^{\Phi} \tag{8}$$

We may think of $S(\Theta)$ as the tangent space in any point of each component of $\mathcal{C}_{\Theta}^{\Phi}$; then by [22] the problem of classifying and counting the components of \mathcal{T} reduces to classify and count the components of \mathcal{T} having a given tangent space, i.e. the elements of $\mathcal{C}_{\Theta}^{\Phi}$. We do this in the next section.

3.2 Theorems

Let Θ be a complete subsystem of Φ and W^{Θ} its Weyl group. Let \mathfrak{k} and K be respectively the semisimple Lie algebra and the semisimple and simply connected algebraic group of root system Θ , \mathfrak{d} a Cartan subalgebra of \mathfrak{k} , $\langle \Theta^{\vee} \rangle$ and $\Lambda(\Theta)$ the coroot and coweight lattices, $Z(\Theta) \doteq \frac{\Lambda(\Theta)}{\langle \Theta^{\vee} \rangle}$ the center of K, D the maximal torus of K defined by $\mathfrak{d}/\langle \Theta^{\vee} \rangle$, \mathcal{D} the toric arrangement defined by Θ on D and $\mathcal{C}_0(\Theta)$ the set of its 0-dimensional components.

We also consider the *adjoint group* $K_a \doteq K/Z(\Theta)$ and its maximal torus $D_a \doteq D/Z(\Theta) \simeq \mathfrak{d}/\Lambda(\Theta)$. We recall from [13] that K is the universal covering of K_a , and if D' is an algebraic torus having Lie algebra \mathfrak{d} , then $D' \simeq \mathfrak{d}/L$ for some lattice $\Lambda(\Theta) \supseteq L \supseteq \langle \Theta^{\vee} \rangle$; so there are natural covering projections $D \twoheadrightarrow D' \twoheadrightarrow D_a$ having kernel respectively $L/\langle \Theta^{\vee} \rangle$ and $\Lambda(\Theta)/L$. Notice that Θ naturally defines an arrangement on each D', and that for $D' = D_a$ the set of the 0-dimensional components is $\mathcal{C}_0(\Theta)/Z(\Theta)$. Given a point t of some D' we set

$$\Theta(t) \doteq \{ \alpha \in \Theta | e^{\alpha}(t) = 1 \}.$$

Theorem 11. There is a W^{Θ} -equivariant surjective map

$$\varphi: \mathcal{C}^{\Phi}_{\Theta} \twoheadrightarrow \mathcal{C}_0(\Theta)/Z(\Theta)$$

such that ker $\varphi \simeq Z(\Phi) \cap Z(\Theta)$ and $\Theta_U = \Theta(\varphi(U))$.

Proof. Let $S(\Theta)$ be the subspace of \mathfrak{h} defined in Section 3.1 and H the corresponding subtorus of T. T/H is a torus with Lie algebra $\mathfrak{h}/S(\Theta) \simeq \mathfrak{d}$, then Θ defines an arrangement \mathcal{D}' on $D' \doteq T/H$. The projection $\pi : T \twoheadrightarrow T/H$ induces a bijection between $\mathcal{C}_{\Theta}^{\Phi}$ and the set of 0-dimensional components of \mathcal{D}' , because $H \in \mathcal{C}_{\Theta}^{\Phi}$ and for each $U \in \mathcal{C}_{\Theta}^{\Phi}, \Theta_U = \Theta(\pi(U))$. Moreover the restriction of the projection $d\pi : \mathfrak{h} \twoheadrightarrow \mathfrak{h}/S(\Theta)$ to $\langle \Phi^{\vee} \rangle$ is

Moreover the restriction of the projection $d\pi : \mathfrak{h} \twoheadrightarrow \mathfrak{h}/S(\Theta)$ to $\langle \Phi^{\vee} \rangle$ is simply the map that restricts the coroots of Φ to Θ . Set $R^{\Phi}(\Theta) \doteq d\pi(\langle \Phi^{\vee} \rangle)$; then $\Lambda(\Theta) \supseteq R^{\Phi}(\Theta) \supseteq \langle \Theta^{\vee} \rangle$ and $D' \simeq \mathfrak{d}/R^{\Phi}(\Theta)$. Denote by p the projection $\Lambda(\Phi) \twoheadrightarrow \frac{\Lambda(\Phi)}{\langle \Phi^{\vee} \rangle}$ and embed $\Lambda(\Theta)$ in $\Lambda(\Phi)$ in the natural way. Then the kernel of the covering projection of $D' \twoheadrightarrow D_a$ is isomorphic to

$$\frac{\Lambda(\Theta)}{R^{\Phi}(\Theta)} \simeq p(\Lambda(\Theta)) \simeq Z(\Phi) \cap Z(\Theta).$$

We set

$$n_{\Theta} \doteq \frac{|Z(\Theta)|}{|Z(\Phi) \cap Z(\Theta)|}$$

The following corollary is straightforward from Theorem 11.

Corollary 12.

$$|\mathcal{C}_{\Theta}^{\Phi}| = n_{\Theta}^{-1} |\mathcal{C}_0(\Theta)|$$

and then by (8)

$$|\mathcal{C}_d(\Phi)| = \sum_{\Theta \in \mathcal{K}_d} n_{\Theta}^{-1} |\mathcal{C}_0(\Theta)|.$$

Notice that two components U, U' of \mathcal{T} are W-conjugated if and only if are verified both the conditions:

- 1. their tangent spaces are W-conjugated, i.e. $\exists w \in W$ such that $\overline{\Theta_U} = w.\overline{\Theta_{U'}};$
- 2. U and w.U' are $W^{\overline{\Theta_U}}$ -conjugated.

Then the action of W on $\mathcal{C}(\Phi)$ is described by the following remark.

Remark 13.

- 1. By Theorem 11, φ induces a surjective map $\overline{\varphi}$ from the set of the W^{Θ} -orbits of $\mathcal{C}^{\Phi}_{\Theta}$ to the set of the $W^{\Theta} \times Z(\Theta)$ -orbits of $\mathcal{C}_{0}(\Theta)$, that are described by Theorem 3.
- 2. In particular if Θ is irreducible, set Γ^{Θ} its affine Dynkin diagram, Q^{Θ} the set of the $Aut(\Gamma)$ -orbits of its vertices, Γ_p^{Θ} the diagram that we

get from Γ^{Θ} removing the vertex p, and Θ_p the associated root system. Then there is a surjective map

$$\widehat{\varphi}: \mathcal{C}^{\Phi}_{\Theta} \twoheadrightarrow Q^{\Theta}$$

such that, if $\widehat{\varphi}(U) = q$ and p is a representative of q, then $\Theta_U \simeq \Theta_p$.

3.3 Examples

Case F_4 . $Z(\Phi) = \{1\}$, thus $n_{\Theta} = |Z(\Theta)|$. Then in this case n_{Θ} does not depend on the conjugacy class, but only on the isomorphism class of Θ .

We say that a subspace S of \mathcal{H} (respectively a component U of \mathcal{T}) is of a given type if the corresponding subsystem Θ_S (respectively Θ_U) is of such type. Then by [22, Tab. C.9] and Corollary 12 there are:

- 1. 1 subspace of type " A_0 ", tangent to 1 component of the same type (the whole spaces);
- 2. 24 subspaces of type A_1 , each tangent to 1 component of the same type;
- 3. 72 subspaces of type $A_1 \times A_1$, each tangent to 1 component of the same type;
- 4. 32 subspaces of type A_2 , each tangent to 1 component of the same type;
- 5. 18 subspaces of type B_2 , each tangent to 1 component of the same type and 1 component of type $A_1 \times A_1$;
- 6. 12 subspaces of type C_3 , each tangent to 1 component of the same type and 3 of type $A_2 \times A_1$;
- 12 subspaces of type B₃, each tangent to 1 component of the same type, 1 of type A₃ and 3 of type A₁ × A₁ × A₁;
- 8. 96 subspaces of type $A_1 \times A_2$, each tangent to 1 component of the same type;
- 9. 1 subspace of type F_4 (the origin), tangent to: 1 component of the same type, 12 of type $A_1 \times C_3$, 32 of type $A_2 \times A_2$, 24 of type $A_3 \times A_1$, and 3 of type C_4 .

Case A_{n-1} . It is easily seen that each subsystem Θ of Φ is complete and is product of irreducible factors $\Theta_1, \ldots, \Theta_k$, with Θ_i of type A_{λ_i-1} for some positive integers λ_i such that $\lambda_1 + \cdots + \lambda_k = n$ and n - k is the rank of Θ . In other words, as it is well known, the W-conjugacy classes of subspaces of \mathcal{H} are in bijection with the partitions λ of n, and if a subspace has dimension d then corresponding partition has length $|\lambda| \doteq k$ equal to d+1. The number of subspaces of partition λ is easily seen to be equal to $n!/b_{\lambda}$, where b_i is the number of λ_j that are equal to i and $b_{\lambda} \doteq \prod i!^{b_i}b_i!$ (see [22, 6.72]). Now let g_{λ} be the greatest common divisor of $\lambda_1, \ldots, \lambda_k$. By example 4 in Section 2.2 we have that $|Z(\Theta)| = \lambda_1 \ldots \lambda_k = |\mathcal{C}_0(\Theta)|$ and $|Z(\Phi) \cap Z(\Theta)| = g_{\lambda}$. Then by Corollary 12 $|\mathcal{C}_{\Theta}^{\Theta}| = g_{\lambda}$ and

$$|\mathcal{C}_d(\Phi)| = \sum_{|\lambda|=d+1} \frac{n! g_{\lambda}}{b_{\lambda}}.$$

This could also be seen directly as follows. We can think T as the subgroup of $(\mathbb{C}^*)^n$ given by the equation $t_1 \dots t_n - 1 = 0$. Θ imposes the equations

$$t_1 = \cdots = t_{\lambda_1}, \ldots, t_{\lambda_1 + \cdots + \lambda_{k-1} + 1} = \cdots = t_n.$$

Then we have the relation $x_1^{\lambda_1} \dots x_k^{\lambda_k} - 1 = 0$. If $g_{\lambda} = 1$ this polynomial is irreducible, because the vector $(\lambda_1, \dots, \lambda_k)$ can be completed to a basis of the lattice \mathbb{Z}^k . If $g_{\lambda} > 1$ this polynomial has exactly g_{λ} irreducible factors over \mathbb{C} . Then in every case it defines an affine variety having exactly g_{λ} irreducible components, that are precisely the elements of $\mathcal{C}_{\Theta}^{\Phi}$.

4 Topological invariants

4.1 Theorems

Let R be the complement in T of the union of all the subtori of the toric arrangement \mathcal{T} . In this section we prove that the Euler characteristic of R, that we denote by χ_{Φ} , is equal to $(-1)^n |W|$. We also give a formula for the Poincaré polynomial of R, that we denote by $P_{\Phi}(q)$.

Let d_1, \ldots, d_n be the *degrees* of W, i.e. the degrees of the generators of the ring of W-invariant regular functions on \mathfrak{h} ; it is well known that $d_1 \ldots d_n = |W|$. Moreover by [2] $\mathcal{B}(\Phi) \doteq (d_1 - 1) \ldots (d_n - 1)$ is equal to the leading coefficient of the Poincaré polynomial of the complement of \mathcal{H} in \mathfrak{h} , and then to the number of *unbroken basis* of Φ (see for example [9, 2.2.8 and 10.1.6]).

The cohomology of R can be expressed as a direct sum of contributions given by the components of \mathcal{T} (see for example [7, Theor. 4.2] or [9, 14.1.5]). In terms of Poincaré polynomial this expression is:

Theorem 14.

$$P_{\Phi}(q) = \sum_{U \in \mathcal{C}(\Phi)} \mathcal{B}(\Theta_U)(q+1)^{d(U)} q^{n-d(U)}$$

where d(U) is the dimension of the component U.

Now we use this expression to compute χ_{Φ} .

Lemma 15.

$$\chi_{\Phi} = (-1)^n \sum_{p=0}^n \frac{|W|}{|W_p|} \mathcal{B}(\Phi_p)$$

Proof.

$$\chi_{\Phi} = P_{\Phi}(-1) = (-1)^n \sum_{t \in \mathcal{C}_0(\Phi)} \mathcal{B}(\Phi(t))$$
(9)

because the contributions of all components of positive dimension vanish at -1. Obviously isomorphic subsystems have the same degrees, so Theorem 1 yields the statement.

Theorem 16.

$$\chi_{\Phi} = (-1)^n |W|$$

Proof. By the previous lemma we must prove that

$$\sum_{p=0}^{n} \frac{\mathcal{B}(\Phi_p)}{|W_p|} = 1$$

If we write d_1^p, \ldots, d_n^p for the degrees of W_p , the previous identity becomes

$$\sum_{p=0}^{n} \frac{(d_1^p - 1) \dots (d_n^p - 1)}{d_1^p \dots d_n^p} = 1.$$

This identity has been proved in [8], and later with different methods in [11]. $\hfill \Box$

Notice that W acts on R and then on its cohomology. So we can consider the *equivariant Euler characteristic* of R, that is, for each $w \in W$,

$$\widetilde{\chi}_{\Phi}(w) \doteq \sum_{i=0}^{n} (-1)^{i} Tr(w, H^{i}(R, \mathbb{C})).$$

Let ρ_W be the character of the regular representation of W. From Theorem 16 we get the following

Corollary 17.

$$\widetilde{\chi}_{\Phi} = (-1)^n \varrho_W$$

Proof. Since W is finite and acts freely on R, it is well known that $\tilde{\chi}_{\Phi} = k \varrho_W$ for some $k \in \mathbb{Z}$. Then to compute k we just have to look at $\tilde{\chi}_{\Phi}(1) = \chi_{\Phi}$. \Box

Finally we give a formula for $P_{\Phi}(q)$ that, together with the mentioned results in [22], allows its explicit computation.

Theorem 18.

$$P_{\Phi}(q) = \sum_{d=0}^{n} (q+1)^d q^{n-d} \sum_{\Theta \in \mathcal{K}_d} n_{\Theta}^{-1} |W^{\Theta}|$$

Proof. By formula (8) we can restate Theorem 14 as

$$P_{\Phi}(q) = \sum_{d=0}^{n} (q+1)^{d} q^{n-d} \sum_{\Theta \in \mathcal{K}_{d}} \sum_{U \in \mathcal{C}_{\Theta}^{\Phi}} \mathcal{B}(\Theta_{U})$$

Moreover by Theorem 11 and Corollary 12 we get

$$\sum_{U \in \mathcal{C}_{\Theta}^{\Phi}} \mathcal{B}(\Theta_U) = n_{\Theta}^{-1} \sum_{t \in \mathcal{C}_0(\Theta)} \mathcal{B}(\Theta(t)).$$

Finally the claim follows by formula (9) and Theorem 16 applied to Θ :

$$\sum_{t \in \mathcal{C}_0(\Theta)} \mathcal{B}(\Theta(t)) = (-1)^d \chi_{\Theta} = |W^{\Theta}|.$$

4.2 Examples

Case F₄. In Section 3.3 we have given a list of the 9 occurring types of complete subsystems, together with the multiplicity of each one. So we just have to compute the coefficient $n_{\Theta}^{-1}|W^{\Theta}|$ for each type. This is equal to:

- 1 for types 1., 2. and 3.
- 2 for types 4. and 8.
- 4 for type 5.
- 24 for types 6. and 7.
- 1152 for type 9.

Then

$$P_{\Phi}(q) = 2153q^4 + 1260q^3 + 286q^2 + 28q + 1.$$

Case A_{n-1} . By Section 3.3, $n_{\Theta}^{-1} = \frac{g_{\lambda}}{\lambda_1 \dots \lambda_k}$ and $|W^{\Theta}| = \lambda_1! \dots \lambda_k!$. Then by Theorem 17

$$P_{\Phi}(q) = \sum_{d=0}^{n} (q+1)^{d} q^{n-d} \sum_{|\lambda|=d+1} n! b_{\lambda}^{-1} g_{\lambda}(\lambda_{1}-1)! \dots (\lambda_{k}-1)!.$$

References

- W. BALDONI, M. BECK, C. COCHET, M. VERGNE, Volume of Polytopes and Partition Function, Discrete and Computational Geometry 35 (2006), 551-595.
- [2] E. BRIESKORN, Sur les groupes des tresses (d'après V. I. Arnold), Sem. Bourbaki, exp. 401, Lecture Notes in Math., vol. 317, Springer, 1973.
- [3] M. BRION, M. VERGNE, Arrangement of Hyperplanes. I. Rational Functions and Jeffrey-Kirwan Residue, Ann. Sci. Ecole Norm. Sup. (4) 32 (1999), 715-741.
- [4] R. W. CARTER, Conjugacy classes in the Weyl group, Compositio Math. 25, 1972.
- [5] C. COCHET, Vector partition function and representation theory, arXiv:math/0506159v1 (math.RT), 2005.
- [6] C. DE CONCINI, C. PROCESI, Nested Sets and Jeffrey-Kirwan Cycles, Geometric methods in algebra and number theory, 139–149, Progr. Math., 235, Birkhauser Boston, Boston, MA, 2005.
- [7] C. DE CONCINI, C. PROCESI, On the geometry of toric arrangements, Transformations Groups 10, N. 3-4, 2005.
- [8] C. DE CONCINI, C. PROCESI, A curious identity and the volume of the root spherical simplex, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 17 (2006), no. 2.
- [9] C. DE CONCINI, C. PROCESI, *Topics in hyperplane arrangements, polytopes and box-splines,* to appear, available on www.mat.uniroma1.it/people/procesi/dida.html.
- [10] C. DE CONCINI, M. SALVETTI, Cohomology of Artin groups: Addendum: The homotopy type of Artin groups, M. Math. Res. Lett. 3, no. 2, 1996.
- [11] G. DENHAM, A note on De Concini and Procesi's curious identity, arXiv:0705.2263v1 (math.RT), 2007.
- [12] S. HELGASON, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, 1978.
- [13] J.E. HUMPHREYS, Linear Algebraic Groups, Springer-Verlag, 1975.
- [14] J.E. HUMPHREYS, Introduction to Lie Algebras and Representation theory, Springer-Verlag, 3rd reprint, 1975.

- [15] N. IWAHORI, H. MATSUMOTO, On some Bruhat decompositions and the structure of the Hecke rings of p-adic Chevalley groups, Publications mathematiques de l'I.H.E.S., tome 25, 1965.
- [16] V. KAČ, Automorphisms of finite order of semisimple Lie algebras, Funct. Anal. Appl. 3, 1969.
- [17] V. KAČ, Infinite dimensional Lie Algebras, Cambridge University Press.
- [18] B. KOSTANT, A formula for the multiplicity of a weight, Trans. Amer. Math. Soc. 93 1959, 53-73.
- [19] G. I. LEHRER, A toral configuration space and regular semisimple conjugacy classes, Math. Proc. Cambridge Philos. Soc. 118 (1995), no. 1, 105-113.
- [20] G. I. LEHRER, The cohomology of the regular semisimple variety, J. Algebra 199 (1998), no. 2, 666-689.
- [21] P. ORLIK, L. SOLOMON, *Coxeter arrangements*, in Singularities, Part 2 (Arcata, Calif, 1981), Proc. Sympos. Pure Math. 40, 1983.
- [22] P. ORLIK, H. TERAO, Arrangements of Hyperplanes, Springer-Verlag, 1992.
- [23] A. RAM, Alcove walks, Hecke algebras, spherical functions, crystals and column strict tableaux, Pure and Applied Mathematics Quarterly 2 no. 4 (Special Issue: In honor of Robert MacPherson, Part 2 of 3) (2006) 963-1013.
- [24] M. SALVETTI, The homotopy type of Artin groups, Math. Res. Lett. 1, no. 5, 1994.
- [25] R. STEINBERG, A general Clebsch-Gordan theorem, Bull. Amer. Math. Soc. 67, 1961, 406-407.
- [26] A. SZENES, M. VERGNE, Toric Reduction and a Conjecture of Batyrev and Materov, Invent. Math. 158 (2004), 453-495.