Hyperplane arrangements

Notations:

- \mathfrak{g} a simple Lie algebra of rank n over \mathbb{C}
- \mathfrak{h} a Cartan subalgebra
- $\Phi \subset \mathfrak{h}^*$ the root system of \mathfrak{g}
- $\Phi^\vee \subset \mathfrak{h}$ the coroot system
- W be the Weyl group of Φ

$\{\alpha(h) = 0\}_{\alpha \in \Phi}$ defines in \mathfrak{h} a family \mathcal{H} of intersecting hyperplanes. \mathcal{H} is called the hyperplane arrangement defined by Φ.

We call subspaces of \mathcal{H} the intersections of elements of \mathcal{H}, and $S_d(\Phi)$ the set of d–dimensional subspaces of \mathcal{H}. W acts naturally on \mathcal{H} and on $S_d(\Phi)$.

Hyperplane arrangements

Notations:

- \mathfrak{g} a simple Lie algebra of rank n over \mathbb{C}
- \mathfrak{h} a Cartan subalgebra
- $\Phi \subset \mathfrak{h}^*$ the root system of \mathfrak{g}
- $\Phi^\vee \subset \mathfrak{h}$ the coroot system
- W be the Weyl group of Φ

$\{\alpha(h) = 0\}_{\alpha \in \Phi}$ defines in \mathfrak{h} a family \mathcal{H} of intersecting hyperplanes. \mathcal{H} is called the **hyperplane arrangement** defined by Φ.

We call **subspaces** of \mathcal{H} the intersections of elements of \mathcal{H}, and $S_d(\Phi)$ the set of d–dimensional subspaces of \mathcal{H}. W acts naturally on \mathcal{H} and on $S_d(\Phi)$.
Hyperplane arrangements

Notations:

- \mathfrak{g} a simple Lie algebra of rank n over \mathbb{C}
- \mathfrak{h} a Cartan subalgebra
- $\Phi \subset \mathfrak{h}^*$ the root system of \mathfrak{g}
- $\Phi^\vee \subset \mathfrak{h}$ the coroot system
- W be the Weyl group of Φ

$\{\alpha(h) = 0\}_{\alpha \in \Phi}$ defines in \mathfrak{h} a family \mathcal{H} of intersecting hyperplanes. \mathcal{H} is called the hyperplane arrangement defined by Φ.

We call subspaces of \mathcal{H} the intersections of elements of \mathcal{H}, and $S_d(\Phi)$ the set of d–dimensional subspaces of \mathcal{H}.

W acts naturally on \mathcal{H} and on $S_d(\Phi)$.
Hyperplane arrangements

Notations:

- \mathfrak{g} a simple Lie algebra of rank n over \mathbb{C}
- \mathfrak{h} a Cartan subalgebra
- $\Phi \subset \mathfrak{h}^*$ the root system of \mathfrak{g}
- $\Phi^\vee \subset \mathfrak{h}$ the coroot system
- W be the Weyl group of Φ

\[\{ \alpha(h) = 0 \}_{\alpha \in \Phi} \] defines in \mathfrak{h} a family \mathcal{H} of intersecting hyperplanes. \mathcal{H} is called the hyperplane arrangement defined by Φ. We call subspaces of \mathcal{H} the intersections of elements of \mathcal{H}, and $S_d(\Phi)$ the set of d–dimensional subspaces of \mathcal{H}. W acts naturally on \mathcal{H} and on $S_d(\Phi)$.
The coroot system Φ^\vee spans a lattice $\langle \Phi^\vee \rangle$ in \mathfrak{h}.

$T \doteq \mathfrak{h}/\langle \Phi^\vee \rangle$ is a complex torus of rank n.

Each root α is a map $\mathfrak{h} \to \mathbb{C}$ taking integer values on $\langle \Phi^\vee \rangle$.

So it induces a map $T \to \mathbb{C}/\mathbb{Z} \simeq \mathbb{C}^*$ that we denote e^α.

$\{e^\alpha(t) = 1\}_{\alpha \in \Phi}$ defines in T a finite family \mathcal{T} of codimension 1 subtori.

\mathcal{T} is called the toric (or toral) arrangement defined by Φ.

We call components of \mathcal{T} all the connected components of all the intersections of elements of \mathcal{T}, and we denote by $C_d(\Phi)$ the set of d–dimensional components.

W acts naturally on \mathcal{T} and on $C_d(\Phi)$.
Toric arrangements

The coroot system Φ^\vee spans a lattice $\langle \Phi^\vee \rangle$ in \mathfrak{h}.
$T = \mathfrak{h}/\langle \Phi^\vee \rangle$ is a complex torus of rank n.
Each root α is a map $\mathfrak{h} \to \mathbb{C}$ taking integer values on $\langle \Phi^\vee \rangle$.
So it induces a map $T \to \mathbb{C}/\mathbb{Z} \simeq \mathbb{C}^*$ that we denote e^α.

$\{e^\alpha(t) = 1\}_{\alpha \in \Phi}$ defines in T a finite family \mathcal{T} of codimension 1 subtori. \mathcal{T} is called the toric (or toral) arrangement defined by Φ.
We call components of \mathcal{T} all the connected components of all the intersections of elements of \mathcal{T}, and we denote by $C_d(\Phi)$ the set of d–dimensional components.
W acts naturally on \mathcal{T} and on $C_d(\Phi)$.
The coroot system Φ^\vee spans a lattice $\langle \Phi^\vee \rangle$ in \mathfrak{h}.

$T = \mathfrak{h}/\langle \Phi^\vee \rangle$ is a complex torus of rank n.

Each root α is a map $\mathfrak{h} \to \mathbb{C}$ taking integer values on $\langle \Phi^\vee \rangle$.

So it induces a map $T \to \mathbb{C}/\mathbb{Z} \simeq \mathbb{C}^*$ that we denote e^α.

$\{e^\alpha(t) = 1\}_{\alpha \in \Phi}$ defines in T a finite family \mathcal{T} of codimension 1 subtori.

\mathcal{T} is called the toric (or toral) arrangement defined by Φ.

We call components of \mathcal{T} all the connected components of all the intersections of elements of \mathcal{T}, and we denote by $C_d(\Phi)$ the set of d–dimensional components.

W acts naturally on \mathcal{T} and on $C_d(\Phi)$.

The coroot system Φ^\vee spans a lattice $\langle \Phi^\vee \rangle$ in \mathfrak{h}.

$T = \mathfrak{h}/\langle \Phi^\vee \rangle$ is a complex torus of rank n.

Each root α is a map $\mathfrak{h} \to \mathbb{C}$ taking integer values on $\langle \Phi^\vee \rangle$.

So it induces a map $T \to \mathbb{C}/\mathbb{Z} \simeq \mathbb{C}^*$ that we denote e^α.

$\{e^\alpha(t) = 1\}_{\alpha \in \Phi}$ defines in T a finite family \mathcal{T} of codimension 1 subtori.

\mathcal{T} is called the toric (or toral) arrangement defined by Φ.

We call components of \mathcal{T} all the connected components of all the intersections of elements of \mathcal{T}, and we denote by $C_d(\Phi)$ the set of d–dimensional components.

W acts naturally on \mathcal{T} and on $C_d(\Phi)$.
The coroot system Φ^\vee spans a lattice $\langle \Phi^\vee \rangle$ in \mathfrak{h}.

$T = \mathfrak{h}/\langle \Phi^\vee \rangle$ is a complex torus of rank n.

Each root α is a map $\mathfrak{h} \to \mathbb{C}$ taking integer values on $\langle \Phi^\vee \rangle$.

So it induces a map $T \to \mathbb{C}/\mathbb{Z} \cong \mathbb{C}^*$ that we denote e^α.

$\{e^\alpha(t) = 1\}_{\alpha \in \Phi}$ defines in T a finite family \mathcal{T} of codimension 1 subtori. \mathcal{T} is called the **toric (or toral) arrangement** defined by Φ.

We call **components** of \mathcal{T} all the connected components of all the intersections of elements of \mathcal{T}, and we denote by $\mathcal{C}_d(\Phi)$ the set of d-dimensional components.

W acts naturally on \mathcal{T} and on $\mathcal{C}_d(\Phi)$.
The coroot system Φ^\vee spans a lattice $\langle \Phi^\vee \rangle$ in \mathfrak{h}.

$T = \mathfrak{h}/\langle \Phi^\vee \rangle$ is a complex torus of rank n.

Each root α is a map $\mathfrak{h} \to \mathbb{C}$ taking integer values on $\langle \Phi^\vee \rangle$.

So it induces a map $T \to \mathbb{C}/\mathbb{Z} \cong \mathbb{C}^*$ that we denote e^α.

$$\{e^\alpha(t) = 1\}_{\alpha \in \Phi}$$ defines in T a finite family \mathcal{T} of codimension 1 subtori.

\mathcal{T} is called the toric (or toral) arrangement defined by Φ.

We call components of \mathcal{T} all the connected components of all the intersections of elements of \mathcal{T}, and we denote by $C_d(\Phi)$ the set of d–dimensional components.

W acts naturally on \mathcal{T} and on $C_d(\Phi)$.
The coroot system Φ^\vee spans a lattice $\langle \Phi^\vee \rangle$ in \mathfrak{h}.

$T = \mathfrak{h}/\langle \Phi^\vee \rangle$ is a complex torus of rank n.

Each root α is a map $\mathfrak{h} \rightarrow \mathbb{C}$ taking integer values on $\langle \Phi^\vee \rangle$.

So it induces a map $T \rightarrow \mathbb{C}/\mathbb{Z} \simeq \mathbb{C}^*$ that we denote e^α.

$\{e^\alpha(t) = 1\}_{\alpha \in \Phi}$ defines in T a finite family \mathcal{T} of codimension 1 subtori. \mathcal{T} is called the toric (or toral) arrangement defined by Φ.

We call components of \mathcal{T} all the connected components of all the intersections of elements of \mathcal{T}, and we denote by $C_d(\Phi)$ the set of d–dimensional components.

W acts naturally on \mathcal{T} and on $C_d(\Phi)$.
The function T provides a geometric way (De Concini and Procesi, 2005) to compute the values of the Kostant partition function, that counts in how many ways an element of the lattice $\langle \Phi \rangle$ can be written as sum of positive roots. It is involved in:

- Kostant’s formula for weight multiplicities
- Steinberg’s formula for Littlewood-Richardson coefficients

These formulas are efficient and have been implemented in computer programs. The values of Kostant partition functions are computed as a sum of “residues” at some points, and the points giving nonzero contribution are the elements of $C_0(\Phi)$, that we call points of the arrangement.
\(\mathcal{T} \) provides a geometric way (De Concini and Procesi, 2005) to compute the values of the **Kostant partition function**, that counts in how many ways an element of the lattice \(\langle \Phi \rangle \) can be written as sum of positive roots. It is involved in:

- Kostant’s formula for weight multiplicities
- Steinberg’s formula for Littlewood-Richardson coefficients

These formulas are efficient and have been implemented in computer programs.

The values of Kostant partition functions are computed a sum of ”residues” at some points, and the points giving nonzero contribution are the elements of \(C_0(\Phi) \), that we call points of the arrangement.
\(T \) provides a geometric way (De Concini and Procesi, 2005) to compute the values of the **Kostant partition function**, that counts in how many ways an element of the lattice \(\langle \Phi \rangle \) can be written as sum of positive roots. It is involved in:

- Kostant’s formula for **weight multiplicities**
- Steinberg’s formula for Littlewood-Richardson coefficients

These formulas are efficient and have been implemented in computer programs.

The values of Kostant partition functions are computed as a sum of ”residues” at some points, and the points giving nonzero contribution are the elements of \(C_0(\Phi) \), that we call **points** of the arrangement.
The Kostant partition function \(\mathcal{T} \) provides a geometric way (De Concini and Procesi, 2005) to compute the values of the Kostant partition function, that counts in how many ways an element of the lattice \(\langle \Phi \rangle \) can be written as sum of positive roots. It is involved in:

- Kostant’s formula for weight multiplicities
- Steinberg’s formula for Littlewood-Richardson coefficients

These formulas are efficient and have been implemented in computer programs. The values of Kostant partition functions are computed as a sum of "residues" at some points, and the points giving nonzero contribution are the elements of \(C_0(\Phi) \), that we call points of the arrangement.
\mathcal{T} provides a geometric way (De Concini and Procesi, 2005) to compute the values of the Kostant partition function, that counts in how many ways an element of the lattice $\langle \Phi \rangle$ can be written as sum of positive roots. It is involved in:

- Kostant’s formula for weight multiplicities
- Steinberg’s formula for Littlewood-Richardson coefficients

These formulas are efficient and have been implemented in computer programs.

The values of Kostant partition functions are computed a sum of ”residues” at some points, and the points giving nonzero contribution are the elements of $C_0(\Phi)$, that we call points of the arrangement.
Kostant partition function

\(T \) provides a geometric way (De Concini and Procesi, 2005) to compute the values of the **Kostant partition function**, that counts in how many ways an element of the lattice \(\langle \Phi \rangle \) can be written as sum of positive roots. It is involved in:

- Kostant’s formula for weight multiplicities
- Steinberg’s formula for Littlewood-Richardson coefficients

These formulas are efficient and have been implemented in computer programs. The values of Kostant partition functions are computed a sum of ”residues” at some points, and the points giving nonzero contribution are the elements of \(C_0(\Phi) \), that we call **points** of the arrangement.
T provides a geometric way (De Concini and Procesi, 2005) to compute the values of the Kostant partition function, that counts in how many ways an element of the lattice $\langle \Phi \rangle$ can be written as sum of positive roots. It is involved in:

- Kostant’s formula for weight multiplicities
- Steinberg’s formula for Littlewood-Richardson coefficients

These formulas are efficient and have been implemented in computer programs. The values of Kostant partition functions are computed a sum of ”residues” at some points, and the points giving nonzero contribution are the elements of $C_0(\Phi)$, that we call points of the arrangement.
One can try to generalize to \mathcal{T} well-known results for \mathcal{H}.

Let C be the complement in \mathcal{H} of the union of the elements of \mathcal{H}. The cohomology of C has been explicitly described.

Now, let R be the complement in \mathcal{T} of the union of the elements of \mathcal{T}. The cohomology of R can be expressed as sum of contributions of the components of \mathcal{T}. What do we know about these components?
The cohomology of the complement

One can try to generalize to \mathcal{T} well-known results for \mathcal{H}.

Let C be the complement in \mathfrak{h} of the union of the elements of \mathcal{H}. The cohomology of C has been explicitly described.

Now, let R be the complement in \mathcal{T} of the union of the elements of \mathcal{T}. The cohomology of R can be expressed as sum of contributions of the components of \mathcal{T}. What do we know about these components?
The cohomology of the complement

One can try to generalize to \mathcal{T} well-known results for \mathcal{H}.

Let C be the complement in \mathfrak{h} of the union of the elements of \mathcal{H}. The cohomology of C has been explicitly described.

Now, let R be the complement in \mathcal{T} of the union of the elements of \mathcal{T}. The cohomology of R can be expressed as sum of contributions of the components of \mathcal{T}. What do we know about these components?
One can try to generalize to T well-known results for H.

Let C be the complement in H of the union of the elements of H. The cohomology of C has been explicitly described.

Now, let R be the complement in T of the union of the elements of T. The cohomology of R can be expressed as sum of contributions of the components of T.

What do we know about these components?
The cohomology of the complement

One can try to generalize to \mathcal{T} well-known results for \mathcal{H}.

Let C be the complement in \mathcal{H} of the union of the elements of \mathcal{H}. The cohomology of C has been explicitly described.

Now, let R be the complement in \mathcal{T} of the union of the elements of \mathcal{T}. The cohomology of R can be expressed as sum of contributions of the components of \mathcal{T}. What do we know about these components?
Abstract

Today we will:

1. count the components of \mathcal{T}, describing the action of W on them.

2. compute the Euler characteristic and the Poincaré polynomial of the complement R.
Today we will:

1. count the components of \mathcal{T}, describing the action of \mathcal{W} on them.

2. compute the Euler characteristic and the Poincaré polynomial of the complement R.
Let $\alpha_1, \ldots, \alpha_n$ be simple roots of Φ and α_0 the lowest root.
Let Φ_p be the subsystem of Φ generated by $\{\alpha_i\}_{0 \leq i \leq n, i \neq p}$.
Let Γ be the affine Dynkin diagram of Φ.
The set of its vertices $V(\Gamma)$ is in bijection with $\{\alpha_0, \alpha_1, \ldots, \alpha_n\}$.
So the diagram Γ_p that we get removing from Γ its vertex p is the (genuine) Dynkin diagram of Φ_p.
Let W_p be the Weyl group of Φ_p, i.e. the subgroup of W generated by all the reflections $s_{\alpha_0}, \ldots, s_{\alpha_n}$ except s_{α_p}.

For each $t \in C_0(\Phi)$ let be

$$\Phi(t) \doteq \{\alpha \in \Phi | e^\alpha(t) = 1\}.$$

and $W(t)$ be the stabilizer of t in W.
Let $\alpha_1, \ldots, \alpha_n$ be simple roots of Φ and α_0 the lowest root. Let Φ_p be the subsystem of Φ generated by $\{\alpha_i\}_{0 \leq i \leq n, i \neq p}$. Let Γ be the affine Dynkin diagram of Φ. The set of its vertices $V(\Gamma)$ is in bijection with $\{\alpha_0, \alpha_1, \ldots, \alpha_n\}$. So the diagram Γ_p that we get removing from Γ its vertex p is the (genuine) Dynkin diagram of Φ_p.

Let W_p be the Weyl group of Φ_p, i.e. the subgroup of W generated by all the reflections $s_{\alpha_0}, \ldots, s_{\alpha_n}$ except s_{α_p}.

For each $t \in C_0(\Phi)$ let be

$$\Phi(t) \doteq \{\alpha \in \Phi | e^\alpha(t) = 1\}.$$

and $W(t)$ be the stabilizer of t in W.

Let $\alpha_1, \ldots, \alpha_n$ be simple roots of Φ and α_0 the lowest root.
Let Φ_p be the subsystem of Φ generated by $\{\alpha_i\}_{0 \leq i \leq n, i \neq p}$.
Let Γ be the affine Dynkin diagram of Φ.
The set of its vertices $V(\Gamma)$ is in bijection with $\{\alpha_0, \alpha_1, \ldots, \alpha_n\}$.
So the diagram Γ_p that we get removing from Γ its vertex p is the (genuine) Dynkin diagram of Φ_p.
Let W_p be the Weyl group of Φ_p, i.e. the subgroup of W generated by all the reflections $s_{\alpha_0}, \ldots, s_{\alpha_n}$ except s_{α_p}.

For each $t \in C_0(\Phi)$ let be

$$\Phi(t) \doteq \{\alpha \in \Phi | e^{\alpha}(t) = 1\}.$$

and $W(t)$ be the stabilizer of t in W.
Let $\alpha_1, \ldots, \alpha_n$ be simple roots of Φ and α_0 the lowest root.
Let Φ_p be the subsystem of Φ generated by $\{\alpha_i\}_{0 \leq i \leq n, i \neq p}$.
Let Γ be the affine Dynkin diagram of Φ.
The set of its vertices $V(\Gamma)$ is in bijection with $\{\alpha_0, \alpha_1, \ldots, \alpha_n\}$.
So the diagram Γ_p that we get removing from Γ its vertex p is the (genuine) Dynkin diagram of Φ_p.
Let W_p be the Weyl group of Φ_p, i.e. the subgroup of W generated by all the reflections $s_{\alpha_0}, \ldots, s_{\alpha_n}$ except s_{α_p}.

For each $t \in C_0(\Phi)$ let be

$$\Phi(t) \triangleq \{ \alpha \in \Phi \mid e^\alpha(t) = 1 \}.$$

and $W(t)$ be the stabilizer of t in W.
Points theorem

Theorem

There is a **bijection** $V(\Gamma) \leftrightarrow C_0(\Phi)/W$, having the property that if O_p is the orbit corresponding to the vertex p and $t \in O_p$, then:

- $\Phi(t)$ is W–conjugated to Φ_p;
- $W(t)$ is W–conjugated to W_p.

Then we have:

$$|C_0(\Phi)| = \sum_{p \in V(\Gamma)} \frac{|W|}{|W_p|}.$$
Points theorem

Theorem

There is a bijection $V(\Gamma) \leftrightarrow C_0(\Phi)/W$, having the property that if O_p is the orbit corresponding to the vertex p and $t \in O_p$, then:

- $\Phi(t)$ is $W-$conjugated to Φ_p;
- $W(t)$ is $W-$conjugated to W_p.

Then we have:

$$|C_0(\Phi)| = \sum_{p \in V(\Gamma)} \frac{|W|}{|W_p|}.$$
Points theorem

Theorem

There is a bijection $V(\Gamma) \leftrightarrow C_0(\Phi)/W$, having the property that if O_p is the orbit corresponding to the vertex p and $t \in O_p$, then:

- $\Phi(t)$ is W–conjugated to Φ_p;
- $W(t)$ is W–conjugated to W_p.

Then we have:

$$|C_0(\Phi)| = \sum_{p \in V(\Gamma)} \frac{|W|}{|W_p|}.$$
Points theorem

Theorem

There is a bijection $V(\Gamma) \leftrightarrow C_0(\Phi)/W$, having the property that if O_p is the orbit corresponding to the vertex p and $t \in O_p$, then:

- $\Phi(t)$ is W–conjugated to Φ_p;
- $W(t)$ is W–conjugated to W_p.

Then we have:

$$|C_0(\Phi)| = \sum_{p \in V(\Gamma)} \frac{|W|}{|W_p|}.$$
Theorem

There is a bijection $V(\Gamma) \leftrightarrow C_0(\Phi) / W$, having the property that if O_p is the orbit corresponding to the vertex p and $t \in O_p$, then:

- $\Phi(t)$ is W–conjugated to Φ_p;
- $W(t)$ is W–conjugated to W_p.

Then we have:

$$|C_0(\Phi)| = \sum_{p \in V(\Gamma)} \frac{|W|}{|W_p|}.$$
Example: Case C_n

\[\Phi = \{h_i^* - h_j^*\} \cup \{h_i^* + h_j^*\} \cup \{\pm 2h_i^*\}\]

Then on the torus $T = \{(t_1, \ldots, t_n), t_i \in \mathbb{C}^*\}$ the equations $e^\alpha(t) = 1$ are:

\[\{t_it_j^{-1} = 1\} \cup \{t_it_j = 1\} \cup \{t_i^2 = 1\}\]

There are 2^n solutions: $(\pm 1, \ldots, \pm 1)$
Example: Case C_n

$$\Phi = \{h_i^* - h_j^*\} \cup \{h_i^* + h_j^*\} \cup \{\pm 2h_i^*\}$$

Then on the torus $T = \{(t_1, \ldots, t_n), t_i \in \mathbb{C}^*\}$ the equations $e^\alpha(t) = 1$ are:

$$\{t_i t_j^{-1} = 1\} \cup \{t_i t_j = 1\} \cup \{t_i^2 = 1\}.$$

There are are 2^n solutions: $(\pm 1, \ldots, \pm 1)$
Example: Case C_n

\[\Phi = \{ h^*_i - h^*_j \} \cup \{ h^*_i + h^*_j \} \cup \{ \pm 2h^*_i \} \]

Then on the torus $T = \{(t_1, \ldots, t_n), t_i \in \mathbb{C}^*\}$ the equations $e^\alpha(t) = 1$ are:

\[\{ t_it_j^{-1} = 1 \} \cup \{ t_it_j = 1 \} \cup \{ t_i^2 = 1 \}. \]

There are are 2^n solutions: $(\pm 1, \ldots, \pm 1)$
$\mathcal{W} \cong S_n \times (C_2)^n$ acts on these points permuting their coordinates. Then orbits are given by the number of negative coordinates. Let \mathcal{O}_p be the set of points with p negative coordinates.

Clearly the stabilizer of a such point is

$$S_p \times S_{n-p} \times (C_2)^n$$

thus $|\mathcal{O}_p| = \binom{n}{p}$ and our formula is checked:

$$|\mathcal{C}_0(\Phi)| = \sum_{p=0}^{n} \binom{n}{p} = 2^n.$$
Example: Case C_n, 2

$W \cong \mathcal{S}_n \ltimes (\mathcal{C}_2)^n$ acts on these points permuting their coordinates. Then orbits are given by the number of negative coordinates.

Let \mathcal{O}_p be the set of points with p negative coordinates.

Clearly the stabilizer of a such point is

$$\mathcal{S}_p \ltimes \mathcal{S}_{n-p} \ltimes (\mathcal{C}_2)^n$$

thus $|\mathcal{O}_p| = \binom{n}{p}$ and our formula is checked:

$$|C_0(\Phi)| = \sum_{p=0}^{n} \binom{n}{p} = 2^n.$$
Example: Case C_n, 2

$W \simeq S_n \ltimes (C_2)^n$ acts on these points permuting their coordinates. Then orbits are given by the number of negative coordinates. Let \mathcal{O}_p be the set of points with p negative coordinates.

Clearly the stabilizer of a such point is

$$S_p \times S_{n-p} \ltimes (C_2)^n$$

thus $|\mathcal{O}_p| = \binom{n}{p}$ and our formula is checked:

$$|C_0(\Phi)| = \sum_{p=0}^{n} \binom{n}{p} = 2^n.$$
Example: Case C_n, 2

$W \cong S_n \ltimes (C_2)^n$ acts on these points permuting their coordinates. Then orbits are given by the number of negative coordinates. Let O_p be the set of points with p negative coordinates.

Clearly the stabilizer of a such point is

$$S_p \times S_{n-p} \ltimes (C_2)^n$$

thus $|O_p| = \binom{n}{p}$ and our formula is checked:

$$|C_0(\Phi)| = \sum_{p=0}^{n} \binom{n}{p} = 2^n.$$
Example: Case C_n, 3

The previous choice is not canonical!
(we could define as well \mathcal{O}_p as the set of points with p positive coordinates)

Observation:
- Γ has a symmetry exchanging the vertices p and $n - p$.
- Multiplication by -1 exchanges the corresponding orbits.
The previous choice is not canonical!
(we could define as well \mathcal{O}_p as the set of points with p positive coordinates)

Observation:
- Γ has a symmetry exchanging the vertices p and $n - p$.
- Multiplication by -1 exchanges the corresponding orbits.
The center

Given the coweight lattice

$$\Lambda(\Phi) \doteq \{ h \in h | \alpha(h) \in \mathbb{Z} \forall \alpha \in \Phi \}$$

we define the center

$$Z(\Phi) \doteq \frac{\Lambda(\Phi)}{\langle \Phi^\vee \rangle} = \{ t \in T | \Phi(t) = \Phi \}.$$

Thus:

- $Z(\Phi) \subseteq C_0(\Phi)$;
- $Z(\Phi)$ acts by multiplication on $C_0(\Phi)$.
The center

Given the coweight lattice

$$\Lambda(\Phi) \doteq \{ h \in \mathfrak{h} | \alpha(h) \in \mathbb{Z} \forall \alpha \in \Phi \}$$

we define the center

$$Z(\Phi) \doteq \frac{\Lambda(\Phi)}{\langle \Phi^\vee \rangle} = \{ t \in T | \Phi(t) = \Phi \}.$$

Thus:

- $Z(\Phi) \subseteq C_0(\Phi)$;
- $Z(\Phi)$ acts by multiplication on $C_0(\Phi)$.
Given the coweight lattice

\[\Lambda(\Phi) \doteq \{ h \in h | \alpha(h) \in \mathbb{Z} \forall \alpha \in \Phi \} \]

we define the center

\[Z(\Phi) \doteq \frac{\Lambda(\Phi)}{\langle \Phi^\vee \rangle} = \{ t \in T | \Phi(t) = \Phi \}. \]

Thus:
- \(Z(\Phi) \subseteq C_0(\Phi) \);
- \(Z(\Phi) \) acts by multiplication on \(C_0(\Phi) \).
We can make canonical the bijection between vertices and W—orbits by identifying:

- $Aut(\Gamma)$—conjugated vertices
- $Z(\Phi)$—conjugated orbits
Complete subsystems and subspaces

We define the completion of Θ:

$$\overline{\Theta} \doteq \langle \Theta \rangle_R \cap \Phi$$

and we say that Θ is complete if $\Theta = \overline{\Theta}$.

Let S be a d–dimensional subspace of H. The set Θ_S of the elements of Φ vanishing on S is a complete subsystem of Φ of rank $n - d$.

The map $S \rightarrow \Theta_S$ gives a bijection between d–dimensional subspaces and complete subsystems of rank $n - d$, whose inverse is

$$\Theta \rightarrow S(\Theta) \doteq \{ h \in H | \alpha(h) = 0 \forall \alpha \in \Theta \}.$$
Complete subsystems and subspaces

We define the completion of Θ:

$$\overline{\Theta} \doteq \langle \Theta \rangle_R \cap \Phi$$

and we say that Θ is complete if $\Theta = \overline{\Theta}$.

Let S be a d–dimensional subspace of \mathcal{H}. The set Θ_S of the elements of Φ vanishing on S is a complete subsystem of Φ of rank $n - d$.

The map $S \mapsto \Theta_S$ gives a bijection between d–dimensional subspaces and complete subsystems of rank $n - d$, whose inverse is

$$\Theta \mapsto S(\Theta) \doteq \{ h \in \mathcal{H} | \alpha(h) = 0 \forall \alpha \in \Theta \}.$$
We define the completion of Θ:
\[
\overline{\Theta} \doteq \langle \Theta \rangle_R \cap \Phi
\]
and we say that Θ is complete if $\Theta = \overline{\Theta}$.

Let S be a d–dimensional subspace of \mathcal{H}. The set Θ_S of the elements of Φ vanishing on S is a complete subsystem of Φ of rank $n - d$.

The map $S \to \Theta_S$ gives a bijection between d–dimensional subspaces and complete subsystems of rank $n - d$, whose inverse is
\[
\Theta \to S(\Theta) \doteq \{ h \in \mathfrak{H} | \alpha(h) = 0 \forall \alpha \in \Theta \}.
\]
We define the completion of Θ:

$$\overline{\Theta} = \langle \Theta \rangle_R \cap \Phi$$

and we say that Θ is complete if $\Theta = \overline{\Theta}$.

Let S be a d–dimensional subspace of \mathcal{H}. The set Θ_S of the elements of Φ vanishing on S is a complete subsystem of Φ of rank $n - d$.

The map $S \rightarrow \Theta_S$ gives a bijection between d–dimensional subspaces and complete subsystems of rank $n - d$, whose inverse is

$$\Theta \rightarrow S(\Theta) \doteq \{ h \in \mathfrak{h} | \alpha(h) = 0 \forall \alpha \in \Theta \}.$$
The subspaces of \mathcal{H} have been classified and counted, and the W–orbits of S_d completely described. This was done in 1980 by Orlik and Solomon case-by-case according to the type of Φ.

We now show how to extend this analysis to the components of \mathcal{T}.
The **subspaces** of \mathcal{H} have been classified and counted, and the W—orbits of S_d completely described. This was done in 1980 by Orlik and Solomon case-by-case according to the type of Φ.

We now show how to extend this analysis to the components of \mathcal{T}.
The subspaces of H have been classified and counted, and the W—orbits of S_d completely described. This was done in 1980 by Orlik and Solomon case-by-case according to the type of Φ.

We now show how to extend this analysis to the components of \mathcal{T}.
A partition of the components

Given a component U of \mathcal{T} let us consider

$$\Theta_U \triangleq \{ \alpha \in \Phi | e^\alpha(t) = 1 \forall t \in U \}.$$

In general Θ_U is not complete.

Then for each $\Theta \in \mathcal{K}_d$ let us define C^Θ as the set of components U such that $\overline{\Theta_U} = \Theta$.

This is clearly a partition of the set of d–dimensional components of \mathcal{T}, i.e.

$$C_d(\Phi) = \bigsqcup_{\Theta \in \mathcal{K}_d} C^\Theta.$$

We may think of $S(\Theta)$ as the tangent space to each component in C^Θ.

Then the problem of classifying and counting the components of \mathcal{T} reduces to classify and count the components of \mathcal{T} having a given tangent space, i.e. to describe C^Θ for each Θ.
A partition of the components

Given a component U of \mathcal{T} let us consider

$$\Theta_U = \{ \alpha \in \Phi | e^\alpha(t) = 1 \forall t \in U \}.$$

In general Θ_U is not complete.

Then for each $\Theta \in \mathcal{K}_d$ let us define C^Θ_Φ as the set of components U such that $\overline{\Theta_U} = \Theta$.

This is clearly a partition of the set of $d-$dimensional components of \mathcal{T}, i.e.

$$C_d(\Phi) = \bigsqcup_{\Theta \in \mathcal{K}_d} C^\Theta_\Phi$$

We may think of $S(\Theta)$ as the tangent space to each component in C^Θ_Φ. Then the problem of classifying and counting the components of \mathcal{T} reduces to classify and count the components of \mathcal{T} having a given tangent space, i.e. to describe C^Θ_Φ for each Θ.
A partition of the components

Given a component U of \mathcal{T} let us consider

$$\Theta_U \doteq \{ \alpha \in \Phi \mid e^\alpha(t) = 1 \forall t \in U \}.$$

In general Θ_U is not complete. Then for each $\Theta \in \mathcal{K}_d$ let us define \mathcal{C}_Θ^Φ as the set of components U such that $\overline{\Theta_U} = \Theta$.

This is clearly a partition of the set of d–dimensional components of \mathcal{T}, i.e.

$$\mathcal{C}_d(\Phi) = \bigsqcup_{\Theta \in \mathcal{K}_d} \mathcal{C}_\Theta^\Phi$$

We may think of $S(\Theta)$ as the tangent space to each component in \mathcal{C}_Θ^Φ. Then the problem of classifying and counting the components of \mathcal{T} reduces to classify and count the components of \mathcal{T} having a given tangent space, i.e. to describe \mathcal{C}_Θ^Φ for each Θ.
A partition of the components

Given a component U of \mathcal{T} let us consider

$$\Theta_U \equiv \{ \alpha \in \Phi \mid e^\alpha(t) = 1 \forall t \in U \}.$$

In general Θ_U is not complete.

Then for each $\Theta \in \mathcal{K}_d$ let us define \mathcal{C}_Θ^Φ as the set of components U such that $\Theta_U = \Theta$.

This is clearly a partition of the set of d–dimensional components of \mathcal{T}, i.e.

$$\mathcal{C}_d(\Phi) = \bigcup_{\Theta \in \mathcal{K}_d} \mathcal{C}_\Theta^\Phi.$$

We may think of $S(\Theta)$ as the tangent space to each component in \mathcal{C}_Θ^Φ.

Then the problem of classifying and counting the components of \mathcal{T} reduces to classify and count the components of \mathcal{T} having a given tangent space, i.e. to describe \mathcal{C}_Θ^Φ for each Θ.
A partition of the components

Given a component U of \mathcal{T} let us consider

$$\Theta_U = \{ \alpha \in \Phi | e^\alpha(t) = 1 \forall t \in U \}. $$

In general Θ_U is not complete.

Then for each $\Theta \in \mathcal{K}_d$ let us define C_Θ^Φ as the set of components U such that $\bar{\Theta}_U = \Theta$.

This is clearly a partition of the set of d–dimensional components of \mathcal{T}, i.e.

$$C_d(\Phi) = \bigsqcup_{\Theta \in \mathcal{K}_d} C_\Theta^\Phi$$

We may think of $S(\Theta)$ as the tangent space to each component in C_Θ^Φ.

Then the problem of classifying and counting the components of \mathcal{T} reduces to classify and count the components of \mathcal{T} having a given tangent space, i.e. to describe C_Θ^Φ for each Θ.
Example: 1-dimensional components of C_3

There are 3 conjugation classes of 1-dimensional subspaces of H, having representatives

$$(h, h, h), (h, h, 0), (h, 0, 0), \ h \in \mathbb{C}$$

tangent respectively to 1, 2, 4 components of T:

$$(t, t, t), (t, t, \pm 1), (t, \pm 1, \pm 1), \ t \in \mathbb{C}^*$$

This suggests to relate the components of C_\emptyset to the 0-dimensional components of a smaller toric arrangement.
Example: 1-dimensional components of C_3

There are 3 conjugation classes of 1-dimensional subspaces of \mathcal{H}, having representatives

$$(h, h, h), (h, h, 0), (h, 0, 0), h \in \mathbb{C}$$

tangent respectively to 1, 2, 4 components of \mathcal{T}:

$$(t, t, t), (t, t, \pm 1), (t, \pm 1, \pm 1), t \in \mathbb{C}^*$$

This suggests to relate the components of C_Φ to the 0-dimensional components of a smaller toric arrangement.
Example: 1-dimensional components of C_3

There are 3 conjugation classes of 1-dimensional subspaces of \mathcal{H}, having representatives

$$(h, h, h), (h, h, 0), (h, 0, 0), \quad h \in \mathbb{C}$$

tangent respectively to 1, 2, 4 components of \mathcal{T}:

$$(t, t, t), (t, t, \pm 1), (t, \pm 1, \pm 1), \quad t \in \mathbb{C}^*$$

This suggests to relate the components of C_3^Φ to the 0-dimensional components of a smaller toric arrangement.
Example: 1-dimensional components of C_3

There are 3 conjugation classes of 1-dimensional subspaces of H, having representatives

$$(h, h, h), (h, h, 0), (h, 0, 0), h \in \mathbb{C}$$

tangent respectively to 1, 2, 4 components of T:

$$(t, t, t), (t, t, \pm 1), (t, \pm 1, \pm 1), t \in \mathbb{C}^*$$

This suggests to relate the components of C_Φ to the 0-dimensional components of a smaller toric arrangement.
Example: 1-dimensional components of C_3

There are 3 conjugation classes of 1-dimensional subspaces of \mathcal{H}, having representatives

$$(h, h, h), (h, h, 0), (h, 0, 0), \ h \in \mathbb{C}$$

tangent respectively to 1, 2, 4 components of \mathcal{T}:

$$(t, t, t), (t, t, \pm 1), (t, \pm 1, \pm 1), \ t \in \mathbb{C}^*$$

This suggests to relate the components of $C_\mathcal{G}$ to the 0-dimensional components of a smaller toric arrangement.
Reduction theorem

Notations:

- Θ be a complete subsystem of Φ
- W^Θ its Weyl group
- $Z(\Theta) \doteq \frac{\Lambda(\Theta)}{\langle \Theta^\vee \rangle}$ the center
- \mathcal{D} the toric arrangement defined by Θ on the torus D
- $\mathcal{C}_0(\Theta)$ the set of 0-dimensional components of \mathcal{D}

Theorem

There is a W^Θ—equivariant surjective map

$$\varphi : \mathcal{C}_0^\Phi \to \mathcal{C}_0(\Theta)/Z(\Theta)$$

such that $\ker \varphi \simeq Z(\Phi) \cap Z(\Theta)$ and $\Theta_U = \Theta(\varphi(U))$.
Reduction theorem

Notations:
- Θ be a complete subsystem of Φ
- W^Θ its Weyl group
- $Z(\Theta) \triangleq \frac{\Lambda(\Theta)}{\langle \Theta^\vee \rangle}$ the center
- D the toric arrangement defined by Θ on the torus D
- $C_0(\Theta)$ the set of 0-dimensional components of D

Theorem

There is a W^Θ-equivariant surjective map

$$\varphi : C_\Phi \to C_0(\Theta)/Z(\Theta)$$

such that $\ker \varphi \simeq Z(\Phi) \cap Z(\Theta)$ and $\Theta U = \Theta(\varphi(U))$.
The number of the components

Corollary

\[|C_\Theta^\Phi| = n_\Theta^{-1} |C_0(\Theta)| \]

where \(n_\Theta = \frac{|Z(\Theta)|}{|Z(\Phi) \cap Z(\Theta)|} \).

Then

\[|C_d(\Phi)| = \sum_{\Theta \in \mathcal{K}_d} n_\Theta^{-1} |C_0(\Theta)|. \]

Moreover the reduction theorem yields a description of the action of \(\mathcal{W} \) on \(C(\Phi) \).

Then we get a \(\mathcal{W} \)–equivariant decomposition of the cohomology of \(R \).
The number of the components

Corollary

\[|C^\Phi_\Theta| = n_{\Theta}^{-1} |C_0(\Theta)| \]

where \(n_\Theta \doteq \frac{|Z(\Theta)|}{|Z(\Phi) \cap Z(\Theta)|} \).

Then

\[|C_d(\Phi)| = \sum_{\Theta \in \mathcal{K}_d} n_{\Theta}^{-1} |C_0(\Theta)|. \]

Moreover the reduction theorem yields a description of the action of \(\mathcal{W} \) on \(C(\Phi) \).
Then we get a \(\mathcal{W} \)-equivariant decomposition of the cohomology of \(R \).
The number of the components

Corollary

\[|C^\Phi_\Theta| = n^{-1}_\Theta |C_0(\Theta)| \]

where \(n_\Theta \overset{\cdot}{=} \frac{|Z(\Theta)|}{|Z(\Phi) \cap Z(\Theta)|} \).

Then

\[|C_d(\Phi)| = \sum_{\Theta \in \mathcal{K}_d} n^{-1}_\Theta |C_0(\Theta)|. \]

Moreover the reduction theorem yields a description of the action of \(\mathcal{W} \) on \(C(\Phi) \).

Then we get a \(\mathcal{W} \)-equivariant decomposition of the cohomology of \(R \).
The number of the components

Corollary

\[|C_\Theta^\Phi| = n_\Theta^{-1} |C_0(\Theta)| \]

where \(n_\Theta = \frac{|Z(\Theta)|}{|Z(\Phi) \cap Z(\Theta)|} \).

Then

\[|C_d(\Phi)| = \sum_{\Theta \in \mathcal{K}_d} n_\Theta^{-1} |C_0(\Theta)|. \]

Moreover the reduction theorem yields a description of the action of \(W \) on \(C(\Phi) \).

Then we get a \(W \)--equivariant decomposition of the cohomology of \(R \).
The number of the components

\[|C^\Phi_{\Theta}| = n_{\Theta}^{-1} |C_0(\Theta)| \]

where \(n_{\Theta} = \frac{|Z(\Theta)|}{|Z(\Phi) \cap Z(\Theta)|} \).

Then

\[|C_d(\Phi)| = \sum_{\Theta \in \mathcal{K}_d} n_{\Theta}^{-1} |C_0(\Theta)|. \]

Moreover the reduction theorem yields a description of the action of \(\mathcal{W} \) on \(C(\Phi) \). Then we get a \(\mathcal{W} \)-equivariant decomposition of the cohomology of \(R \).
Example: 1-dimensional components of F_4

By Orlik and Solomon’s tables there are:

1. 12 subspaces of type B_3;
2. 12 subspaces of type C_3;
3. 96 subspaces of type $A_1 \times A_2$;

By our formula each subspace of type B_3 is tangent to:

- 1 component of the same type;
- 1 components of type A_3;
- 3 components of type $A_1 \times A_1 \times A_1$.

We work in the same way for the other types.
By Orlik and Solomon’s tables there are:

1. 12 subspaces of type B_3;
2. 12 subspaces of type C_3;
3. 96 subspaces of type $A_1 \times A_2$;

By our formula each subspace of type B_3 is tangent to:

- 1 component of the same type;
- 1 components of type A_3;
- 3 components of type $A_1 \times A_1 \times A_1$.

We work in the same way for the other types.
Example: 1-dimensional components of F_4

By Orlik and Solomon’s tables there are:

1. 12 subspaces of type B_3;
2. 12 subspaces of type C_3;
3. 96 subspaces of type $A_1 \times A_2$;

By our formula each subspace of type B_3 is tangent to:

- 1 component of the same type;
- 1 components of type A_3;
- 3 components of type $A_1 \times A_1 \times A_1$.

We work in the same way for the other types.
Example: 1-dimensional components of F_4

By Orlik and Solomon’s tables there are:

1. 12 subspaces of type B_3;
2. 12 subspaces of type C_3;
3. 96 subspaces of type $A_1 \times A_2$;

By our formula each subspace of type B_3 is tangent to:

- 1 component of the same type;
- 1 components of type A_3;
- 3 components of type $A_1 \times A_1 \times A_1$.

We work in the same way for the other types.
The Poincaré polynomial of R

Our results about the components yield more explicit description of the cohomology.

Let d_1, \ldots, d_n be the degrees of W. It is well known that $d_1 \ldots d_n = |W|$. We define $B(\Phi) = (d_1 - 1) \ldots (d_n - 1)$.

By the known formulas for cohomology, the Poincaré polynomial is

$$P_\Phi(q) = \sum_U B(\Theta_U)(q + 1)^{d(U)} q^{n-d(U)}$$

where U varies on all the components of \mathcal{T} and $d(U)$ is its dimension.
Our results about the components yield more explicit description of the cohomology.

Let d_1, \ldots, d_n be the degrees of W. It is well known that $d_1 \ldots d_n = |W|$. We define $B(\Phi) = (d_1 - 1) \ldots (d_n - 1)$.

By the known formulas for cohomology, the Poincaré polynomial is

$$P_\Phi(q) = \sum_U B(\Theta_U)(q + 1)^{d(U)} q^{n-d(U)}$$

where U varies on all the components of T and $d(U)$ is its dimension.
The Poincaré polynomial of \(R \)

Our results about the components yield more explicit description of the cohomology.

Let \(d_1, \ldots, d_n \) be the degrees of \(W \).
It is well known that \(d_1 \ldots d_n = |W| \).
We define \(B(\Phi) = (d_1 - 1) \ldots (d_n - 1) \).

By the known formulas for cohomology, the Poincaré polynomial is

\[
P_\Phi(q) = \sum_U B(\Theta_U)(q + 1)^{d(U)} q^{n-d(U)}
\]

where \(U \) varies on all the components of \(\mathcal{T} \) and \(d(U) \) is its dimension.
The Poincaré polynomial of R

Our results about the components yield more explicit description of the cohomology.

Let d_1, \ldots, d_n be the degrees of W.
It is well known that $d_1 \ldots d_n = |W|$.
We define $B(\Phi) \doteq (d_1 - 1) \ldots (d_n - 1)$.

By the known formulas for cohomology, the Poincaré polynomial is

$$P_\Phi(q) = \sum_U B(\Theta_U)(q + 1)^{d(U)} q^{n-d(U)}$$

where U varies on all the components of \mathcal{T} and $d(U)$ is its dimension.
The Euler characteristic

Theorem

The **Euler characteristic** χ_{Φ} is equal to $(-1)^n |W|$

Proof.

1. When we evaluate the Poincaré polynomial in $q = -1$ all the contributions vanish except for those of the points.

2. Applying points theorem we get

$$\chi_{\Phi} = (-1)^n \sum_{p=0}^{n} \frac{|W_p|}{|W_p|} B(\Phi_p).$$

3. The equivalence between this expression and the claimed one is the "curious identity" $\sum_{p=0}^{n} \frac{(d_1^p-1)(d_n^p-1)}{d_1^p \ldots d_n^p} = 1$

(where d_1^p, \ldots, d_n^p are the degrees of W_p).
The Euler characteristic

Theorem

The Euler characteristic χ_{Φ} is equal to $(-1)^n|W|$

Proof.

1. When we evaluate the Poincaré polynomial in $q = -1$ all the contributions vanish except for those of the points.

2. Applying points theorem we get

$$\chi_{\Phi} = (-1)^n \sum_{p=0}^{n} \frac{|W|}{|W_p|} B(\Phi_p).$$

3. The equivalence between this expression and the claimed one is the "curious identity" $\sum_{p=0}^{n} \frac{(d_1^p-1)...(d_n^p-1)}{d_1^p...d_n^p} = 1$

(Where d_1^p, \ldots, d_n^p are the degrees of W_p).
The Euler characteristic

Theorem

The Euler characteristic χ_Φ is equal to $(-1)^n|W|$

Proof.

1. When we evaluate the Poincaré polynomial in $q = -1$ all the contributions vanish except for those of the points.

2. Applying points theorem we get

$$\chi_\Phi = (-1)^n \sum_{p=0}^{n} \frac{|W|}{|W_p|} B(\Phi_p).$$

3. The equivalence between this expression and the claimed one is the "curious identity" $\sum_{p=0}^{n} \frac{(d_1^p-1)(d_2^p-1)\ldots(d_n^p-1)}{d_1^p\ldots d_n^p} = 1$

(where d_1^p, \ldots, d_n^p are the degrees of W_p).
The Euler characteristic

Theorem

The *Euler characteristic* χ_Φ is equal to $(-1)^n|W|$.

Proof.

1. When we evaluate the Poincaré polynomial in $q = -1$ all the contributions vanish except for those of the points.

2. Applying points theorem we get

 \[
 \chi_\Phi = (-1)^n \sum_{p=0}^{n} \frac{|W|}{|W_p|} B(\Phi_p).
 \]

3. The equivalence between this expression and the claimed one is the "curious identity" \[\sum_{p=0}^{n} \frac{(d_1^p-1)...(d_n^p-1)}{d_1^p...d_n^p} = 1 \]
 (where d_1^p, \ldots, d_n^p are the degrees of W_p).
The Poincaré polynomial

Theorem

\[P_\Phi(q) = \sum_{d=0}^{n} (q + 1)^d q^{n-d} \sum_{\Theta \in \mathcal{K}_d} n_{\Theta}^{-1} |W^{\Theta}| \]

Notice that this formula allows to compute explicitly \(P_\Phi(q) \).
The Poincaré polynomial

Theorem

\[P_\Phi(q) = \sum_{d=0}^{n} (q + 1)^d q^{n-d} \sum_{\Theta \in K_d} n_{\Theta}^{-1} |W^\Theta| \]

Notice that this formula allows to compute explicitly \(P_\Phi(q) \).
Example: The Poincaré polynomial of F_4

In dimension 1 there are:

1. 12 subspaces of type B_3
2. 12 subspaces of type C_3
3. 96 subspaces of type $A_1 \times A_2$
Example: The Poincaré polynomial of F_4

In dimension 1 there are:

1. 12 subspaces of type B_3 each contributing with $\frac{48}{2}(q + 1)q^2$;

2. 12 subspaces of type C_3

3. 96 subspaces of type $A_1 \times A_2$
Example: The Poincaré polynomial of F_4

In dimension 1 there are:

1. 12 subspaces of type B_3 each contributing with $\frac{48}{2}(q + 1)q^2$;

2. 12 subspaces of type C_3 each contributing with $\frac{48}{2}(q + 1)q^2$;

3. 96 subspaces of type $A_1 \times A_2$
Example: The Poincaré polynomial of F_4

In dimension 1 there are:

1. 12 subspaces of type B_3 each contributing with $\frac{48}{2}(q + 1)q^2$;

2. 12 subspaces of type C_3 each contributing with $\frac{48}{2}(q + 1)q^2$;

3. 96 subspaces of type $A_1 \times A_2$ each contributing with $\frac{12}{6}(q + 1)q^2$;
Example: The Poincaré polynomial of F_4

In dimension 1 there are:

1. 12 subspaces of type B_3 each contributing with $\frac{48}{2}(q + 1)q^2$;

2. 12 subspaces of type C_3 each contributing with $\frac{48}{2}(q + 1)q^2$;

3. 96 subspaces of type $A_1 \times A_2$ each contributing with $\frac{12}{6}(q + 1)q^2$;
Example: The Poincaré polynomial of $F_4, 2$

We do the same in the other dimensions and we find that

$$P_\Phi(q) = 2153q^4 + 1260q^3 + 286q^2 + 28q + 1.$$
Example: The Poincaré polynomial of F_4, 2

We do the same in the other dimensions and we find that

$$P_\Phi(q) = 2153q^4 + 1260q^3 + 286q^2 + 28q + 1.$$
The End