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Hyperplane arrangements

Notations:

g a simple Lie algebra of rank n over C
h a Cartan subalgebra

Φ ⊂ h∗ the root system of g

Φ∨ ⊂ h the coroot system

W be the Weyl group of Φ

{α(h) = 0}α∈Φ defines in h a family H of intersecting hyperplanes.
H is called the hyperplane arrangement defined by Φ.
We call subspaces of H the intersections of elements of H,
and Sd(Φ) the set of d−dimensional subspaces of H.
W acts naturally on H and on Sd(Φ).
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Toric arrangements

The coroot system Φ∨ spans a lattice 〈Φ∨〉 in h.
T

.
= h/〈Φ∨〉 is a complex torus of rank n.

Each root α is a map h → C taking integer values on 〈Φ∨〉.
So it induces a map T → C/Z & C∗ that we denote eα.

{eα(t) = 1}α∈Φ defines in T a finite family T of codimension 1 subtori.
T is called the toric (or toral) arrangement defined by Φ.
We call components of T all the connected components of all the
intersections of elements of T , and we denote by Cd(Φ) the set of
d−dimensional components.
W acts naturally on T and on Cd(Φ).
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Kostant partition function

T provides a geometric way (De Concini and Procesi, 2005) to compute
the values of the Kostant partition function, that counts in how many
ways an element of the lattice 〈Φ〉 can be written as sum of positive roots.
It is involved in:

Kostant’s formula for weight multiplicities

Steinberg’s formula for Littlewood-Richardson coefficients

These formulas are efficient and have been implemented
in computer programs.
The values of Kostant partition functions are computed a sum
of ”residues” at some points, and the points giving nonzero contribution
are the elements of C0(Φ), that we call points of the arrangement.
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The cohomology of the complement

One can try to generalize to T well-known results for H.

Let C be the complement in h of the union of the elements of H.
The cohomology of C has been explicitly described.

Now, let R be the complement in T of the union of the elements of T .
The cohomology of R can be expressed as sum of contributions of the
components of T .
What do we know about these components?
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Abstract

Today we will:

1 count the components of T , describing the action of W on them.

2 compute the Euler characteristic and the Poincaré polynomial of the
complement R.
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Diagrams, subsystems and subgroups

Let α1, . . . ,αn be simple roots of Φ and α0 the lowest root.
Let Φp be the subsystem of Φ generated by {αi}0≤i≤n,i %=p.
Let Γ be the affine Dynkin diagram of Φ.
The set of its vertices V (Γ) is in bijection with {α0, α1, . . . ,αn}.
So the diagram Γp that we get removing from Γ its vertex p is the
(genuine) Dynkin diagram of Φp.
Let Wp be the Weyl group of Φp, i.e. the subgroup of W generated by all
the reflections sα0 , . . . , sαn except sαp .

For each t ∈ C0(Φ) let be

Φ(t)
.
= {α ∈ Φ|eα(t) = 1}.

and W (t) be the stabilizer of t in W .
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Points theorem

Theorem

There is a bijection V (Γ) ↔ C0(Φ)/W, having the property that
if Op is the orbit corresponding to the vertex p and t ∈ Op, then:

Φ(t) is W−conjugated to Φp;

W (t) is W−conjugated to Wp.

Then we have:

|C0(Φ)| =
∑

p∈V (Γ)

|W |
|Wp|

.

Luca Moci (Roma Tre) Combinatorics and invariants of toric arrangements March, 29 2008 8 / 30



Points theorem

Theorem

There is a bijection V (Γ) ↔ C0(Φ)/W, having the property that
if Op is the orbit corresponding to the vertex p and t ∈ Op, then:

Φ(t) is W−conjugated to Φp;

W (t) is W−conjugated to Wp.

Then we have:

|C0(Φ)| =
∑

p∈V (Γ)

|W |
|Wp|

.

Luca Moci (Roma Tre) Combinatorics and invariants of toric arrangements March, 29 2008 8 / 30



Points theorem

Theorem

There is a bijection V (Γ) ↔ C0(Φ)/W, having the property that
if Op is the orbit corresponding to the vertex p and t ∈ Op, then:

Φ(t) is W−conjugated to Φp;

W (t) is W−conjugated to Wp.

Then we have:

|C0(Φ)| =
∑

p∈V (Γ)

|W |
|Wp|

.

Luca Moci (Roma Tre) Combinatorics and invariants of toric arrangements March, 29 2008 8 / 30



Points theorem

Theorem

There is a bijection V (Γ) ↔ C0(Φ)/W, having the property that
if Op is the orbit corresponding to the vertex p and t ∈ Op, then:

Φ(t) is W−conjugated to Φp;

W (t) is W−conjugated to Wp.

Then we have:

|C0(Φ)| =
∑

p∈V (Γ)

|W |
|Wp|

.

Luca Moci (Roma Tre) Combinatorics and invariants of toric arrangements March, 29 2008 8 / 30



Points theorem

Theorem

There is a bijection V (Γ) ↔ C0(Φ)/W, having the property that
if Op is the orbit corresponding to the vertex p and t ∈ Op, then:

Φ(t) is W−conjugated to Φp;

W (t) is W−conjugated to Wp.

Then we have:

|C0(Φ)| =
∑

p∈V (Γ)

|W |
|Wp|

.

Luca Moci (Roma Tre) Combinatorics and invariants of toric arrangements March, 29 2008 8 / 30



Example: Case Cn

Φ = {h∗i − h∗j } ∪{ h∗i + h∗j } ∪ {±2h∗i }

Then on the torus T = {(t1, . . . , tn), ti ∈ C∗} the equations eα(t) = 1 are:

{ti t−1
j = 1} ∪{ ti tj = 1} ∪{ t2

i = 1}.

There are are 2n solutions: (±1, . . . ,±1)
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Example: Case Cn, 2

W & Sn ! (C2)n acts on these points permuting their coordinates.
Then orbits are given by the number of negative coordinates.
Let Op be the set of points with p negative coordinates.

Clearly the stabilizer of a such point is

Sp ×Sn−p ! (C2)
n

thus |Op| =
(n
p

)
and our formula is checked:

|C0(Φ)| =
n∑

p=0

(
n

p

)
= 2n.
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Example: Case Cn, 3

The previous choice is not canonical!
(we could define as well Op as the set of points
with p positive coordinates)

Observation:

Γ has a symmetry exchanging the vertices p and n − p.

Multiplication by −1 exchanges the corresponding orbits.
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The center

Given the coweight lattice

Λ(Φ)
.
= {h ∈ h|α(h) ∈ Z∀α ∈ Φ}

we define the center

Z (Φ)
.
=

Λ(Φ)

〈Φ∨〉 = {t ∈ T |Φ(t) = Φ}.

Thus:

Z (Φ) ⊆ C0(Φ);

Z (Φ) acts by multiplication on C0(Φ).
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Canonical bijection

We can make canonical the bijection between vertices and W−orbits
by identifying:

Aut(Γ)−conjugated vertices

Z (Φ)−conjugated orbits
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Complete subsystems and subspaces

We define the completion of Θ:

Θ
.
= 〈Θ〉R ∩ Φ

and we say that Θ is complete if Θ = Θ.

Let S be a d−dimensional subspace of H.
The set ΘS of the elements of Φ vanishing on S
is a complete subsystem of Φ of rank n − d .

The map S → ΘS gives a bijection between d−dimensional subspaces
and complete subsystems of rank n − d , whose inverse is

Θ → S(Θ)
.
= {h ∈ h|α(h) = 0∀α ∈ Θ}.
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Subspaces and components

The subspaces of H have been classified and counted,
and the W−orbits of Sd completely described.
This was done in 1980 by Orlik and Solomon
case-by-case according to the type of Φ.

We now show a how to extend this analysis to the components of T .
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A partition of the components

Given a component U of T let us consider

ΘU
.
= {α ∈ Φ|eα(t) = 1∀t ∈ U}.

In general ΘU is not complete.
Then for each Θ ∈ Kd let us define CΦ

Θ as the set of components
U such that ΘU = Θ.
This is clearly a partition of the set of d−dimensional components of T ,
i.e.

Cd(Φ) =
⊔

Θ∈Kd

CΦ
Θ

We may think of S(Θ) as the tangent space to each component in CΦ
Θ.

Then the problem of classifying and counting the components of T
reduces to classify and count the components of T having a given
tangent space, i.e. to describe CΦ

Θ for each Θ.
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Example: 1-dimensional components of C3

There are 3 conjugation classes of 1-dimensional subspaces of H,
having representatives

(h, h, h) , (h, h, 0) , (h, 0, 0) , h ∈ C

tangent respectively to 1, 2, 4 components of T :

(t, t, t) , (t, t,±1) , (t,±1,±1) , t ∈ C∗

This suggests to relate the components of CΦ
Θ to the 0-dimensional

components of a smaller toric arrangement.
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Reduction theorem

Notations:

Θ be a complete subsystem of Φ

W Θ its Weyl group

Z (Θ)
.
= Λ(Θ)

〈Θ∨〉 the center

D the toric arrangement defined by Θ on the torus D

C0(Θ) the set of 0-dimensional components of D

Theorem

There is a W Θ−equivariant surjective map

ϕ : CΦ
Θ → C0(Θ)/Z (Θ)

such that ker ϕ & Z (Φ) ∩ Z (Θ) and ΘU = Θ(ϕ(U)).
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The number of the components

Corollary

|CΦ
Θ| = n−1

Θ |C0(Θ)|

where nΘ
.
= |Z(Θ)|

|Z(Φ)∩Z(Θ)| .
Then

|Cd(Φ)| =
∑

Θ∈Kd

n−1
Θ |C0(Θ)|.

Moreover the reduction theorem yields a description
of the action of W on C(Φ).
Then we get a W−equivariant decomposition of the cohomology of R.
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Example: 1-dimensional components of F4

By Orlik and Solomon’s tables there are:

1 12 subspaces of type B3;

2 12 subspaces of type C3;

3 96 subspaces of type A1 × A2;

By our formula each subspace of type B3 is tangent to:

1 component of the same type;

1 components of type A3;

3 components of type A1 × A1 × A1.

We work in the same way for the other types.
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The Poincaré polynomial of R

Our results about the components yield more explicit description
of the cohomology.

Let d1, . . . , dn be the degrees of W .
It is well known that d1 . . . dn = |W |.
We define B(Φ)

.
= (d1 − 1) . . . (dn − 1).

By the known formulas for cohomology, the Poincaré polynomial is

PΦ(q) =
∑

U

B(ΘU)(q + 1)d(U)qn−d(U)

where U varies on all the components of T and d(U) is its dimension.
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The Euler characteristic

Theorem

The Euler characteristic χΦ is equal to (−1)n|W |

Proof.
1 When we evaluate the Poincaré polynomial in q = −1 all the

contributions vanish except for those of the points.

2 Applying points theorem we get

χΦ = (−1)n
n∑

p=0

|W |
|Wp|

B(Φp).

3 The equivalence between this expression and the claimed one

is the ”curious identity”
∑n

p=0
(dp

1−1)...(dp
n−1)

dp
1 ...dp

n
= 1

(where dp
1 , . . . , dp

n are the degrees of Wp).
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1 When we evaluate the Poincaré polynomial in q = −1 all the

contributions vanish except for those of the points.

2 Applying points theorem we get

χΦ = (−1)n
n∑

p=0

|W |
|Wp|

B(Φp).

3 The equivalence between this expression and the claimed one

is the ”curious identity”
∑n

p=0
(dp

1−1)...(dp
n−1)

dp
1 ...dp

n
= 1

(where dp
1 , . . . , dp

n are the degrees of Wp).

Luca Moci (Roma Tre) Combinatorics and invariants of toric arrangements March, 29 2008 22 / 30



The Euler characteristic

Theorem

The Euler characteristic χΦ is equal to (−1)n|W |

Proof.
1 When we evaluate the Poincaré polynomial in q = −1 all the
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The Poincaré polynomial

Theorem

PΦ(q) =
n∑

d=0

(q + 1)dqn−d
∑

Θ∈Kd

n−1
Θ |W Θ|

Notice that this formula allows to compute explicitly PΦ(q).
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Example: The Poincaré polynomial of F4

In dimension 1 there are:

1 12 subspaces of type B3

2 12 subspaces of type C3

3 96 subspaces of type A1 × A2
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Example: The Poincaré polynomial of F4, 2

We do the same in the other dimensions and we find that

PΦ(q) = 2153q4 + 1260q3 + 286q2 + 28q + 1.
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The End
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