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Outline

• Lines and points in the plane

• Jacobian ideals of hyperplane arrangements

• Jacobian ideals of subspace arrangements

• Hilbert schemes
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• Setting: the real plane, R2.

• Characters: (1) a collection of lines in R2 say
A = {H1, . . . , Hn} such that no two lines are parallel
and (2) their intersection points L(A).
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Question: If we remember the number of lines that passes
through each intersection then can we reconstruct the
original lines?
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Answer

NO! If there is only one intersection point:
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Answer

NO! If there is only one intersection point:

Yes! If there is more than one intersection point.
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Solution

• Let µ : L(A)→ Z be defined by

µ(p) = |{lines passing through p}| − 1

• Let L be the set of all lines in R2.
• Let µA : L → Z be defined by

µA(H) =
∑

p∈H

µ(p)

•
A = {H ∈ L|µA(H) = max(µA)}
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If you are bored...

Setting: R3

Characters: lines in R3 such that each line intersects with at
least two other lines

Question: Is the same true here?
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Jacobian ideals

Setting: V ∼= C!

Characters:

• an arrangement of hyperplanes A = {H1, . . . , Hn}

• it’s intersection lattice L(A)

• the Möbius function µ : L(A)→ Z

• the polynomial ring S = C[x1, . . . , x!] ∼= S(V ∗)

• the Jacobian ideal of A:

J(A) = (∂Q/∂x1 , . . . , ∂Q/∂x1)

where Q is the product of the linear forms defining Hi
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Why J(A)?

• Zero locus is the singular locus
Thus, codim(J(A)) = 2

• The module of logarithmic vector fields is a module
over the polynomial ring S given by

D(A) =

{
θ ∈

!⊕

i=1

S
∂

∂xi

: θ(Q) ∈ QS

}

There is an exact sequence:

0 → D(A)→ S!+1 → S → S/J(A)→ 0

Theorem (Terao, 1981)

D(A) is a free S-module if and only if S/J(A) is a
Cohen-Macaulay ring.
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Related results

Theorem (Dolgachev and Kapranov, 1993)

Let A be a generic arrangement. Then we can reconstruct
A from D(A).

Used the sheafification D̃(A) and its set of jumping lines to
reconstruct A.
Generalized to a larger class of arrangements by Dolgachev
in 2007.

Theorem (Donagi, 1983)

Let f be a homogeneous polynomial. Then f can be
recovered from J(f ) up to a projective linear transformation.
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Main result

Since J(A) is a homogeneous ideal we have an associated
projective scheme

ProjS/J(A)

Theorem
Suppose that A is a central and essential arrangement in
dimension # ≥ 3. Then we can reconstruct A from the
scheme ProjS/J(A).

Idea of proof: (very elementary)

• Intersect ProjS/J(A) with arbitrary hyperplanes
• Calculate degree of this intersection
• Show that this degree is given by summing up the

Möbius function along the hyperplane
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General Jacobian ideals

• Assume I = (f1, . . . , fs) is a pure c codimensional
radical ideal in the polynomial ring S

• let J(I) be the ideal generated by all c × c minors of the
Jacobian matrix (

∂fi
∂xj

)

• Then the singular locus of I is the zero locus of J(I)

In order to write down generators, one would like to ‘iterate’
Jacobian ideals.

Unfortunately, J(A) is far from being radical!

Fact: there exists an A such that J(A) has no embedded
associated primes and pdim(S/J(A)) > 2.
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Generic arrangements

Theorem
If A is a generic arrangement then Sat(J(A)) is radical and
of pure codimension 2.

Theorem
If A is a generic essential arrangement then Sat(J(A)) can
be reconstructed from J(Sat(J(A))).

Idea of proof: Basically the same.

What about general subspaces?

Computing degree’s of certain schemes is difficult. Plus.......
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Example
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Corollary’s?

• Let H(CP!−1, k) be the Hilbert scheme of zero
dimensional schemes in CP!−1 of degree k

• Let M(#, k) be the moduli space of all essential and
central arrangements A in dimension # such that

deg J(A) =
∑

X∈L(A)2

µ(X )2 = k

Corollary

The map given by taking the Jacobian

M(3, k)→ H(CP2, k)

is an injection.
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Corollary’s

• Let GM(4, k) be the moduli space of all essential,
central, generic arrangements A in dimension 4 such
that

deg J(A) =

(
n
2

)
= k

here n = |A|

Corollary

The map given by taking the Jacobian of the saturation of
the Jacobian

GM(4, k)→ H(CP3, k)

is an injection.
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Wakefield, M., and Yoshinaga, M. The Jacobian ideal of a
hyperplane arrangement. to appear in Math. Res. Lett.,
arXiv:0707.2672.

THANK YOU!!
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