March. 29, 2008 (Arrangements and Related Topics, at LSU, Baton Rouge)

Generic section of a hyperplane arrangement and twisted Hurewicz maps

Masahiko Yoshinaga

Kobe University

<u>Notation</u>

A hyperplane arrangement is a collection

$$\mathcal{A} = \{H_1, H_2, \dots, H_n\}$$

of affine hyperplanes $H_i \subset \mathbb{C}^{\ell}$. And denote

$$M(\mathcal{A}) = \mathbb{C}^{\ell} - \bigcup_{H \in \mathcal{A}} H.$$

<u>0</u> Contents

- 1. Randell's result on Hurewicz maps.
- 2. Twisted Hurewicz maps.
- 3. Main results:

Surjectivity of twisted Hurewicz maps.

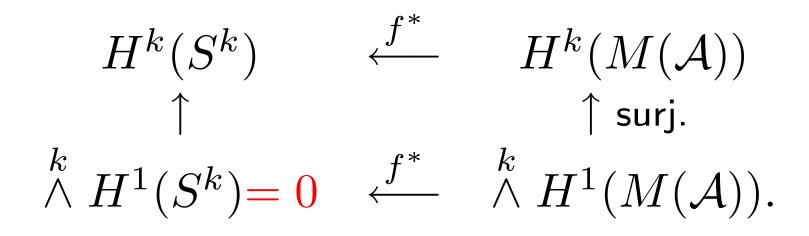
- 4. Proof.
- 5. Corollary.

1 Randell's result

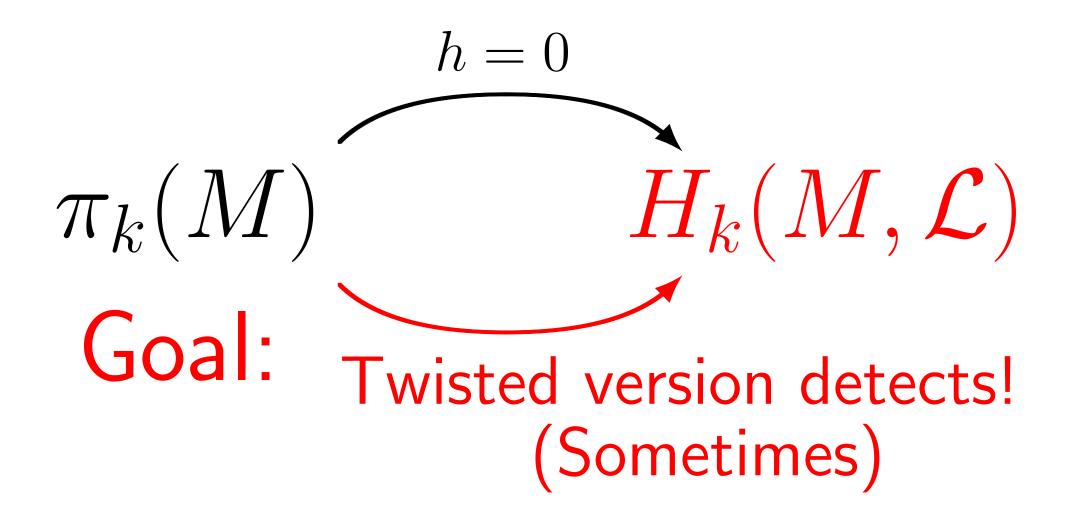
<u>Thm.</u> (Randell) If $k \geq 2$, the Hurewicz map

 $h: \pi_k(M(\mathcal{A}), x_0) \longrightarrow H_k(M(\mathcal{A}), \mathbb{Z})$

is the zero map. (Proof) Let $f: S^k \to M(\mathcal{A})$. Consider



1 Randell's result



2 Twisted Hurewicz maps

<u>Generalities</u>:

Let \mathcal{L} be a local system on X, C be a closed manifold of $\dim_{\mathbb{R}} C = k$,

$$f: (C, *) \to (X, x_0)$$

a continuous map. The map f and a section

$$t \in \Gamma(C, f^*\mathcal{L})$$

determines a twisted cycle $[f] \otimes t \in H_k(X, \mathcal{L})$.

2 Twisted Hurewicz maps

Let \mathcal{L} be a rank one local system on $M(\mathcal{A})$,

$$f: (S^k, *) \to (M(\mathcal{A}), x_0)$$

a continuous map. $k \ge 2$. Since S^k is simply connected, $f^*\mathcal{L}$ on S^k is trivial and hence

$$\Gamma(S^k, f^*\mathcal{L}) \cong \mathcal{L}_{x_0}.$$

2 Twisted Hurewicz maps

We have

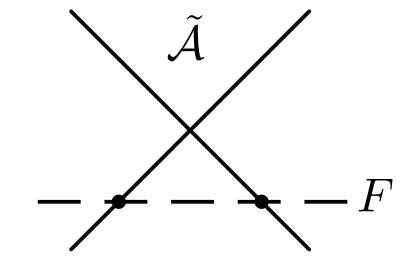
$$h: \pi_k(S^k, *) \otimes \mathcal{L}_{x_0} \longrightarrow H_k(M(\mathcal{A}), \mathcal{L})$$

the *twisted Hurewicz map*. (Note that it is defined only when $k \ge 2$.)

e.g. If \mathcal{L} is a trivial local system, then h is the classical one.

3 Main result

<u>Def.</u> An arrangement \mathcal{A} in \mathbb{C}^{ℓ} is called generic-section type if there is another arrangement $\tilde{\mathcal{A}}$ of rank $(\ell + 1)$ in $\mathbb{C}^{\ell+1}$ and a generic hyperplane $F \subset \mathbb{C}^{\ell+1}$ such that \mathcal{A} is isomorphic to $F \cap \tilde{\mathcal{A}}$.



3 Main result

<u>Thm.</u> Assume $\ell \geq 2$. If \mathcal{A} is generic-section type and \mathcal{L} is nonresonant, then the top twisted Hurewicz map

$$h: \pi_{\ell}(M(\mathcal{A}), x_0) \otimes \mathcal{L}_{x_0} \longrightarrow H_{\ell}(M(\mathcal{A}), \mathcal{L})$$

is surjective.

Note: $H_{\ell}(M(\mathcal{A}), \mathcal{L}) \cong \mathbb{C}^{|\chi(M)|}$. Hence $\pi_{\ell}(M) \neq 0$ (Randell).

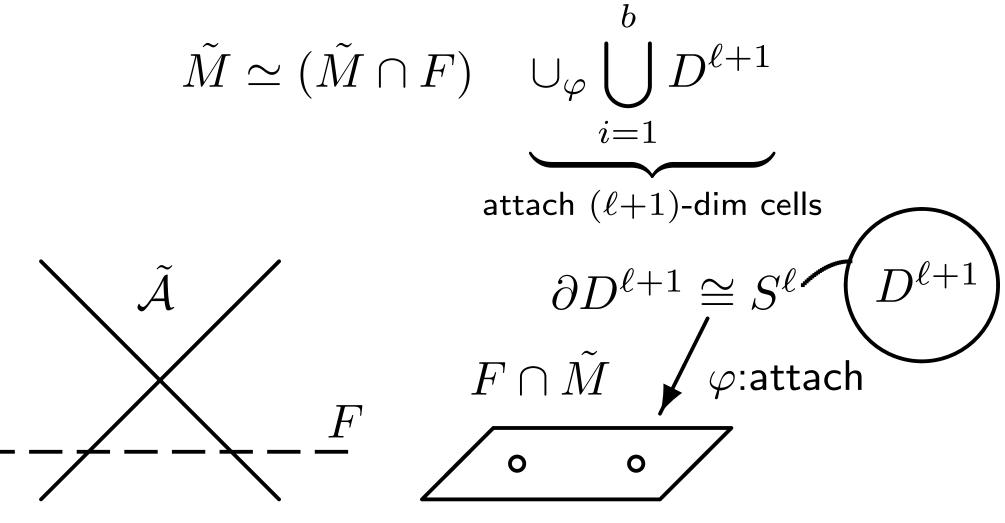
Proof is based on two results:

- Lefschetz Theorem on hyperplane section, (or minimality of $M(\mathcal{A})$).
- Nonresonance theorem for local system homology groups.

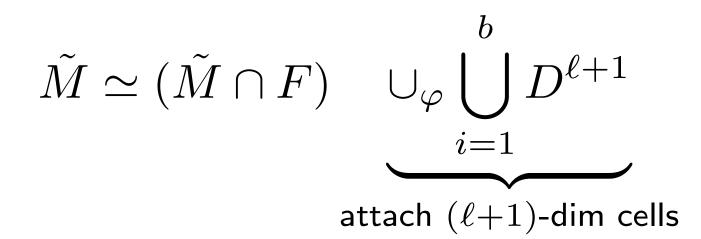
 $\tilde{M} = M(\tilde{A}),$ $F \subset \mathbb{C}^{\ell+1}$: a generic. hyperplane. <u>Thm.</u> (Lefschetz)

$$\tilde{M} \simeq (\tilde{M} \cap F) \quad \bigcup_{\varphi} \bigcup_{i=1}^{b} D^{\ell+1}$$

attach $(\ell+1)$ -dim cells



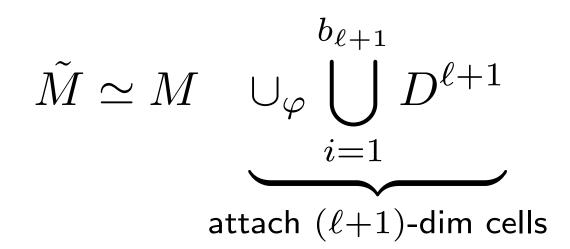
Hyperplane section



How many $(\ell + 1)$ -dim cells to attach? Minimality (Dimca-Papadima-Randell-Suciu)

$$\implies b = b_{\ell+1}(\tilde{M}).$$

$$\tilde{M} = M(\tilde{\mathcal{A}})$$
 and $M = M(\mathcal{A}) = \tilde{M} \cap F$.



Associated twisted chain complexes:

$$C_{\bullet}(\tilde{M}) = C_{\bullet}(M) \oplus \mathbb{C}^{b_{\ell+1}}.$$

Nonresonance Theorem:

Suppose \mathcal{L} is a generic local system. Then only $H_{\ell+1}(C_{\bullet}(\tilde{M}))$ and $H_{\ell}(C_{\bullet}(M))$ survive.

Only $H_{\ell+1}(C_{\bullet}(\tilde{M}))$ and $H_{\ell}(C_{\bullet}(M))$ survive. Observation 1:

 $\partial_{\mathcal{L}}: C_{\ell+1}(\tilde{M}) \to H_{\ell}(M, \mathcal{L})$ is surjective.

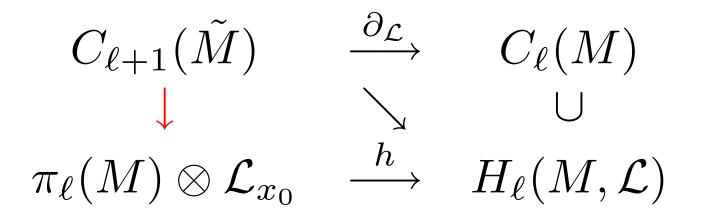
Recall the decomposition

$$\tilde{M} \simeq M \cup_{\varphi} \bigcup_{i=1}^{b_{\ell+1}} D^{\ell+1}$$

is defined by attaching maps

$$\varphi_i: \partial(D^{\ell+1}) = S^\ell \longrightarrow M.$$

<u>Observation 2</u>: The twisted boundary map splits



to the twisted Hurewicz map h. Thus

$$h: \pi_{\ell}(M) \otimes \mathcal{L}_{x_0} \longrightarrow H_{\ell}(M, \mathcal{L})$$

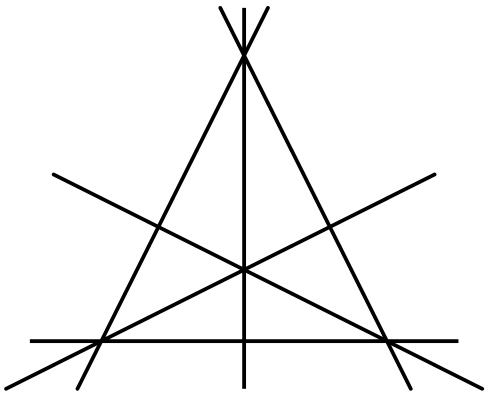
is surjective.

5 Corollary

Let \mathcal{A} be an arrangement in \mathbb{C}^{ℓ} of generic section type and \mathcal{L} be a nonresonant rank one local system. Then every twisted ℓ -cycle is represented by an ℓ -dimensional sphere.

5 Corollary

(Falk) Let \mathcal{A} be a line arrangement in \mathbb{C}^2 with $|\mathcal{A}| \geq 3$. Suppose no two lines are parallel. Then $\pi_2(M(\mathcal{A})) \neq 0$.



5 Corollary

(Falk) Let \mathcal{A} be a line arrangement in \mathbb{C}^2 . Let F be a generic line. Then $\mathcal{A} \cup \{F\}$ is not $K(\pi, 1)$.

<u>6 Reference</u>

M. Falk, $K(\pi, 1)$ arrangements. *Topology*, **34** (1995) 141–154.

R. Randell, Homotopy and group cohomology of arrangements. *Topology and its applications*, **78** (1997) 201–213.

M. Yoshinaga, Generic section of a hyperplane arrangement and twisted Hurewicz maps. *Topology and its applications*, 2008 (to appear).