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Introduction

e Consider an arrangement A of hyperplanes
defined by linear forms with integral

coeflicients.

A:{Hl,...,Hn}, HjiClj.’,Bl—I—'"—l—ij(L‘m:O,

cij € Z, (m : dimension, central case)

e Finite field method: consider A in F7*, where g

is a large prime. Write A,,.

— Complement of A,: M(A,) =F7\ U;H;



— For sufficiently large g, the characteristic

polynomial of A coincides with the
cardinality of M (A,).

X(A, q) = |M(ACJ)|

— For some problems, this relation is useful,
because we can count |M (A,)| by computer.
This is “brute force”, but numerical results

may suggest theoretical results.



e Question: the characteristic polynomial x(A,t)
can be evaluated at a non-prime qg. We can

also define arrangement of “hyperplanes” in
L3y Lg = Z/(gZ), by

H;,:cijx1+ -+ cmjxm =0 (mod q)

and count the number of points in the
complement of A,. Are they the same?
= generally NO!

e However |M(A,)| is a quasi-polynomial (i.e.,
coefficients are periodic) in q € Z~g.

= “characteristic quasi-polynomial”



® Intuitively, the hyperplanes have more chances to

meet at integer points, if g has many divisors.

q g+1




e NOTE: for a non-prime ¢q, the set
H:cix:1+ -4+ cmxm =0 (mod q)

depends on the choice of normalization of the

coeflicient vector.

e H defined in terms of ¢ X (¢1,...,¢Cy,) is
generally different if gcd(c,q) > 1. (Even for

prime g, H obviously depends on g|c or not.)



e When ¢ is not a prime, Z'g‘ is not a vector
space. In this case it may not be appropriate
to call H a hyperplane. However abusing the

terminology we still call H a “hyperplane”.



Results on characteristic

quasi-polynomials

e Coefficient matrix C = (¢;;) : m X n. Each

column determines a hyperplane.

o Let J C {1,...,n} be a subset of hyperplanes
and let Cj; denote the submatrix of C

consisting of columns 3 € J.

e Let e(J) denote the largest elementary divisor
of CJ.



e Let

po = lem{e(J) | J C {1,...,n},J # 0}.

Theorem 1 The function |M(A,)| is a monic
quasi-polynomial in g € Z~( of degree m with a
period pg. Furthermore the coefficients of the
(constituents of the) quasi-polynomial depend only

on gcd{po,q}.
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An example

o Let
1 1 -2
—1 1 1

C =

e Corresponding hyperplanes in
R? = {(x,y) : ¢,y € R} is A = {H,, H,, H3}:

H,:z—y=0, Hy;:x4+y=0, Hj3z:-—-2x+y = 0.

o p0:6.
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e Characteristic quasi-polynomial:

[M(Aqg)| = 1

(
q®> — 3q + 2
qg> —3q+3
q* — 3q +4

@ —3q+5
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when gcd{6,q} = 1,
when gcd{6, q} = 2,
when gcd{6, q} = 3,
when gcd{6,q} = 6.



e Relation to the characteristic polynomial
(already stated by Athanasiadis).

Theorem 2 Let p be a period of the
quasi-polynomial |M(A,)| and g be a positive
integer relatively prime to p. Then

[M(Ag)| = x(A; q)-

e This theorem shows that we can apply the
“finite field method” with a composite q
relatively prime to p for obtaining the

characteristic polynomial of A.
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Periodicity of intersection posets

e The intersection posets of A, are also periodic.

e Periodicity of [M(.A,)| and that of the

intersection poset are not equivalent.

e Our example:
H,:x—y=0,Hy: x+y=0,Hz: —2x+y = 0.
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e “Hyperplanes” (all modulo q)

H,q,=1{(0,0),(1,1),...,(¢g—1,q—1)}
H>,={(0,0),(1,g—1),...,(q—1,1)}
Hs, = {(0,0),(1,2),(2,4),...,(q —1,q — 2)}
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e Intersections for q > 4,

o [ {(0,0)}, g : odd,

1,2}Y,q =

Hoah {(0,0),(4,9)}, q: even,
{(0,0)} 3 fq

H{273}9q — ’ ’ ’

{(0,0), (%7 %)7 (%9 g)}a 3| q,
H{131, = Hyzsye = {(0,0)}

(all modulo gq)
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e Hasse diagrams of intersection lattices for
q >4

{(0,0)}
{(0,0)} /

N, R

H1 H2 H3 H1 H2 H3
Vv Vv

gcd{6,q} =1 gcd{6,q} = 2
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{(0,0)} {(0,0)}

/\ VRN

H 2,3} H{1,2yH (2,3}

/" \ /" N\ \

Hl H2 H3 Hl H2 H3

N NS
174 1%4

gcd{6,q} = 3 gcd{6,q} = 6

18



Theorem 3 The intersection lattices L(.A,)
are periodic for all sufficiently large g with a

period pg.

NOTE: |M(A,;)| is periodic for all ¢ > 0. On
the other hand L(.A,) are periodic from some g

o1l.
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Proof via elementary divisor theory
(sketch)

@ Let V = Z;"'.

e Let Iy(:), Y C V: the characteristic function
(indicator function) of Y : Iy(x) =1, x €Y
and Iy (x) =0, x € V\Y.
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e For every x € V,
Iy, @)= > (~)¥In,,(2)

1 JC{1,...,n}

=L@+ Y (~)Vg,, ().

0#£JC{1,...,n}

J

where

Hjq=NjesHjq={x € Z;n | zC; = 0}.
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e From the relation

re M(A,) & 1= ﬁ(l — In,,(x)),

j=1
we have
IM(A)l = > ] (@ -1y, (=)
x€V j=1
= q"+ >  (—-DYH,4,
0£JC{1,...,n}

e It suffices to verify that for each J # () the
cardinality of H;, is a quasi-polynomial in
q € Z>o-
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e The Smith normal form and elementary

divisors.
— Let
E; O
SC;T = & Math|J|(Z),
O O

E; = diag(e1,...,eu)), £(J) = rankCy,

€1y+--5€00) € Lo, e€1lez|---|eq.

— 8§ € Mat,,xm(Z) and T € Mat, ;x5 (Z) are

unimodular matrices.
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e Take the g-reduction of the Smith normal form:
[S14lClqlT)q = diag([ei]q, - - -5 [€er)]q 05 - - -, 0).

e [S], and [T], remain unimodular.

e The cardinality of the kernel
Hjo={z € Z | zC; = 0}

is described by the behavior of the g-reduction

of the elementary divisors [e]q, ..., [esu)]q for
each J.
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® |e1]q,- .-, eeu)]q are periodic in g for each J.

e As a period we can use

Po — lCIn{eE(J) | J C {17 . °9n}9J = 0}
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Relation to Ehrhart polynomial
theory

e As suggested in the figure on p.6, 2y are cut

into chambers by the hyperplanes.

e We can apply the Ehrhart polynomial theory

to each chamber.

e We get the periodicity result for |[M(A,)| by

this argument.
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e However the period guaranteed by the Ehrhart

polynomial theory is generally larger than p.

e In our problem, the quasi-polynomial depends
only on gcd{pg, q}. This fact can not be proved
by the Ehrhart polynomial theory.
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Summary and concluding remarks

® We have extended the finite field method to
non-prime g and defined a characteristic

quasi-polynomaial.

e Properties of the characteristic
quasi-polynomial have been derived by the

theory of elementary divisors.
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e We have recently extended our results to
non-central cases. In the non-central case,
|M (A,)| is again a quasi-polynomial with the
same period as the central case. However
unlike the central case, the periodicity holds

from some g on.

® po may not be the actual minimum period for
|M (A,)|. The question of “period collapse”
seems to be a hard question.
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