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Introduction

• Consider an arrangement A of hyperplanes

defined by linear forms with integral

coefficients.

A = {H1, . . . , Hn}, Hj : c1jx1 + · · · + cmjxm = 0,

cij ∈ Z, (m : dimension, central case)

• Finite field method: consider A in Fm
q , where q

is a large prime. Write Aq.

– Complement of Aq: M(Aq) = Fm
q \ ∪iHi
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– For sufficiently large q, the characteristic

polynomial of A coincides with the

cardinality of M(Aq).

χ(A, q) = |M(Aq)|

– For some problems, this relation is useful,

because we can count |M(Aq)| by computer.

This is “brute force”, but numerical results

may suggest theoretical results.
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• Question: the characteristic polynomial χ(A, t)

can be evaluated at a non-prime q. We can

also define arrangement of “hyperplanes” in

Zm
q , Zq = Z/(qZ), by

Hj,q : c1jx1 + · · · + cmjxm ≡ 0 (mod q)

and count the number of points in the

complement of Aq. Are they the same?

⇒ generally NO!

• However |M(Aq)| is a quasi-polynomial (i.e.,

coefficients are periodic) in q ∈ Z>0.

⇒ “characteristic quasi-polynomial”
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• Intuitively, the hyperplanes have more chances to
meet at integer points, if q has many divisors.

q q+1

x-2y=0

2x-y=0
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• NOTE: for a non-prime q, the set

H : c1x1 + · · · + cmxm ≡ 0 (mod q)

depends on the choice of normalization of the

coefficient vector.

• H defined in terms of c × (c1, . . . , cm) is

generally different if gcd(c, q) > 1. (Even for

prime q, H obviously depends on q|c or not.)
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• When q is not a prime, Zm
q is not a vector

space. In this case it may not be appropriate

to call H a hyperplane. However abusing the

terminology we still call H a “hyperplane”.
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Results on characteristic

quasi-polynomials

• Coefficient matrix C = (cij) : m × n. Each

column determines a hyperplane.

• Let J ⊆ {1, . . . , n} be a subset of hyperplanes

and let CJ denote the submatrix of C

consisting of columns j ∈ J .

• Let e(J) denote the largest elementary divisor

of CJ.
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• Let

ρ0 = lcm{e(J) | J ⊆ {1, . . . , n}, J '= ∅}.

Theorem 1 The function |M(Aq)| is a monic

quasi-polynomial in q ∈ Z>0 of degree m with a

period ρ0. Furthermore the coefficients of the

(constituents of the) quasi-polynomial depend only

on gcd{ρ0, q}.
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An example

• Let

C =



 1 1 −2

−1 1 1



 .

• Corresponding hyperplanes in

R2 = {(x, y) : x, y ∈ R} is A = {H1, H2, H3}:

H1 : x−y = 0, H2 : x+y = 0, H3 : −2x+y = 0.

• ρ0 = 6.
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• Characteristic quasi-polynomial:

|M(Aq)| =






q2 − 3q + 2 when gcd{6, q} = 1,

q2 − 3q + 3 when gcd{6, q} = 2,

q2 − 3q + 4 when gcd{6, q} = 3,

q2 − 3q + 5 when gcd{6, q} = 6.
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• Relation to the characteristic polynomial

(already stated by Athanasiadis).

Theorem 2 Let ρ be a period of the

quasi-polynomial |M(Aq)| and q be a positive

integer relatively prime to ρ. Then

|M(Aq)| = χ(A, q).

• This theorem shows that we can apply the

“finite field method” with a composite q

relatively prime to ρ for obtaining the

characteristic polynomial of A.
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Periodicity of intersection posets

• The intersection posets of Aq are also periodic.

• Periodicity of |M(Aq)| and that of the

intersection poset are not equivalent.

• Our example:

H1 : x−y = 0, H2 : x+y = 0, H3 : −2x+y = 0.
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• “Hyperplanes” (all modulo q)

H1,q = {(0, 0), (1, 1), . . . , (q − 1, q − 1)}
H2,q = {(0, 0), (1, q − 1), . . . , (q − 1, 1)}
H3,q = {(0, 0), (1, 2), (2, 4), . . . , (q − 1, q − 2)}
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• Intersections for q ≥ 4,

H{1,2},q =





{(0, 0)}, q : odd,

{(0, 0), (q
2
, q

2
)}, q : even,

H{2,3},q =





{(0, 0)}, 3 ' | q,

{(0, 0), (q
3
, 2q

3
), (2q

3
, q

3
)}, 3 | q,

H{1,3},q = H{1,2,3},q = {(0, 0)}

(all modulo q)
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• Hasse diagrams of intersection lattices for

q ≥ 4

gcd{6, q} = 1
V

!
!!

"
""

H1 H2 H3

"
""

!
!!

{(0, 0)}

gcd{6, q} = 2
V

!
!!

"
""

H1 H2 H3

"" !!
H{1,2}

#
#

#
##""

{(0, 0)}
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gcd{6, q} = 3
V

!
!!

"
""

H1 H2 H3

"" !!
H{2,3}

$
$

$
$$ !!

{(0, 0)}

gcd{6, q} = 6
V

!
!!

"
""

H1 H2 H3

"" !!
H{2,3}

""

"" !!
H{1,2}

!!

{(0, 0)}
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Theorem 3 The intersection lattices L(Aq)

are periodic for all sufficiently large q with a

period ρ0.

• NOTE: |M(Aq)| is periodic for all q > 0. On

the other hand L(Aq) are periodic from some q

on.
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Proof via elementary divisor theory

(sketch)

• Let V = Zm
q .

• Let IY ( · ), Y ⊆ V : the characteristic function

(indicator function) of Y : IY (x) = 1, x ∈ Y

and IY (x) = 0, x ∈ V \ Y .
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• For every x ∈ V ,

n∏

j=1

(
1 − IHj,q (x)

)
=

∑

J⊆{1,...,n}

(−1)|J|IHJ,q (x)

= IV (x) +
∑

∅#=J⊆{1,...,n}

(−1)|J|IHJ,q (x),

where

HJ,q = ∩j∈JHj,q = {x ∈ Zm
q | xCJ = 0}.
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• From the relation

x ∈ M(Aq) ⇔ 1 =
n∏

j=1

(1 − IHj,q (x)),

we have

|M(Aq)| =
∑

x∈V

n∏

j=1

(
1 − IHj,q (x)

)

= qm +
∑

∅#=J⊆{1,...,n}

(−1)|J| |HJ,q| ,

• It suffices to verify that for each J '= ∅ the

cardinality of HJ,q is a quasi-polynomial in

q ∈ Z>0.
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• The Smith normal form and elementary

divisors.

– Let

SCJT =



EJ O

O O



 ∈ Matm×|J|(Z),

EJ = diag(e1, . . . , e!(J)), #(J) = rankCJ,

e1, . . . , e!(J) ∈ Z>0, e1|e2| · · · |e!(J).

– S ∈ Matm×m(Z) and T ∈ Mat|J|×|J|(Z) are

unimodular matrices.
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• Take the q-reduction of the Smith normal form:

[S]q[CJ]q[T ]q = diag([e1]q, . . . , [e!(J)]q, 0, . . . , 0).

• [S]q and [T ]q remain unimodular.

• The cardinality of the kernel

HJ,q = {x ∈ Zm
q | xCJ = 0}

is described by the behavior of the q-reduction

of the elementary divisors [e1]q, . . . , [e!(J)]q for

each J .
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• [e1]q, . . . , [e!(J)]q are periodic in q for each J .

• As a period we can use

ρ0 = lcm{e!(J) | J ⊆ {1, . . . , n}, J '= ∅}.
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Relation to Ehrhart polynomial

theory

• As suggested in the figure on p.6, Zm
q are cut

into chambers by the hyperplanes.

• We can apply the Ehrhart polynomial theory

to each chamber.

• We get the periodicity result for |M(Aq)| by

this argument.
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• However the period guaranteed by the Ehrhart

polynomial theory is generally larger than ρ0.

• In our problem, the quasi-polynomial depends

only on gcd{ρ0, q}. This fact can not be proved

by the Ehrhart polynomial theory.
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Summary and concluding remarks

• We have extended the finite field method to

non-prime q and defined a characteristic

quasi-polynomial.

• Properties of the characteristic

quasi-polynomial have been derived by the

theory of elementary divisors.
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• We have recently extended our results to

non-central cases. In the non-central case,

|M(Aq)| is again a quasi-polynomial with the

same period as the central case. However

unlike the central case, the periodicity holds

from some q on.

• ρ0 may not be the actual minimum period for

|M(Aq)|. The question of “period collapse”

seems to be a hard question.
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