Morita Invariance of Invariant Topological Complexity

Hellen Colman Wright College, Chicago

Joint work A. Angel, M. Grant and J. Oprea

Motion Planning Problem (MPP)

Robot: A mechanical system capable of moving autonomously.

- Configuration space: The collection of all possible states of the system.
 - MPP: Given an initial state A and a final state B, find a path in X that moves the robot from A to B.

Motion Planning Algorithm (MPA)

A MPA is a section of the evaluation map

$$s: X \times X \to PX$$
$$(A, B) \mapsto \alpha_{A, B}$$

Definition

The topological complexity $\mathbf{TC}(X)$ is the least integer k such that $X \times X$ may be covered by k open sets $\{U_1, \ldots, U_k\}$, on each of which there is a continuous section $s_i : U_i \to PX$ such that

$$ev \circ s_i = i_{U_i} : U_i \hookrightarrow X \times X.$$

A group G acting on X

Equivariant Motion Planning Problem?

Version 1

Given configurations x and y, find a path α between x and y, such that the path between configurations gx and gy is $g\alpha$.

Version 1

Given configurations x and y, find a path α between x and y, such that the path between configurations gx and gy is $g\alpha$.

Version 1

Given configurations x and y, find a path α between x and y, such that the path between configurations gx and gy is $g\alpha$.

Version 2

Given configurations x and y, find a "broken path" (α, β) between them, such that the path between configurations hx and ky is $(h\alpha, k\beta)$.

Version 2

Given configurations x and y, find a "broken path" (α, β) between them, such that the path between configurations hx and ky is $(h\alpha, k\beta)$.

Version 2

Given configurations x and y, find a "broken path" (α, β) between them, such that the path between configurations hx and ky is $(h\alpha, k\beta)$.

Equivariant TC (Colman-Grant)

$$G \times PX \rightarrow PX,$$
 $G \times (X \times X) \rightarrow X \times X,$
 $g(\gamma)(t) = g(\gamma(t)),$ $g(x, y) = (gx, gy).$

The equivariant topological complexity of X, $\text{TC}_G(X)$, is the least integer k such that $X \times X$ may be covered by k G-invariant open sets $\{U_1, \ldots, U_k\}$, on each of which there is a G-equivariant map $s_i : U_i \to PX$ such that the diagram commutes:

Invariant TC (Lubawski-Marzantowicz)

$$\begin{split} & \textit{P'X} = \textit{PX} \times_{\textit{X/G}} \textit{PX} = \left\{ (\alpha,\beta) \in \textit{PX} \times \textit{PX} : \textit{G}\alpha(1) = \textit{G}\beta(0) \right\} \\ & \text{ev}' : \textit{P'X} \rightarrow \textit{X} \times \textit{X} \text{ given by } \text{ev}(\alpha,\beta) = \left(\alpha(0),\beta(1) \right) \text{ is a} \\ & (\textit{G} \times \textit{G})\text{-fibration.} \end{split}$$

The invariant topological complexity of X, $\text{TC}^{G}(X)$, is the least integer k such that $X \times X$ may be covered by k ($G \times G$)-invariant open sets { U_1, \ldots, U_k }, on each of which there is a ($G \times G$)-equivariant section $s_i : U_i \to P'X$ such that the diagram commutes:

Notion of equivalence for group actions

- ► Let G be a Lie group acting continuously on a space X, notation G × X
- $\varphi \ltimes \epsilon : G \ltimes X \to K \ltimes Y$ equivariant map if $\epsilon(gx) = \varphi(g)\epsilon(x)$

Equivalent actions

1. (essentially surjective) $\phi' \circ \pi$ is an open surjection:

2. (fully faithful) the following diagram is a pullback:

$$G \times X \xrightarrow{\varphi \times \epsilon} K \times Y$$

$$\downarrow^{(p_2,\phi)} \qquad \downarrow^{(p_2,\phi')}$$

$$X \times X \xrightarrow{\epsilon \times \epsilon} Y \times Y$$

$$G \times X = \{((k,y), (x,x')) | y = \epsilon(x), ky = \epsilon(x')\}.$$

1. (essentially surjective) $\phi' \circ \pi$ is an open surjection:

2. (fully faithful) the following diagram is a pullback:

$$G \times X \xrightarrow{\varphi \times \epsilon} K \times Y$$

$$\downarrow^{(p_2,\phi)} \qquad \qquad \downarrow^{(p_2,\phi')}$$

$$X \times X \xrightarrow{\epsilon \times \epsilon} Y \times Y$$

$$G \times X = \{((k, y), (x, x')) | y = \epsilon(x), ky = \epsilon(x')\}.$$

1. (essentially surjective) $\phi' \circ \pi$ is an open surjection:

$$\begin{array}{ccc} X \times_Y (K \times Y) \xrightarrow{\pi} & K \times Y \xrightarrow{\phi'} & Y \\ & & & \downarrow^{p_2} \\ & X \xrightarrow{\epsilon} & Y \end{array}$$

2. (fully faithful) the following diagram is a pullback:

$$G \times X \xrightarrow{\varphi \times \epsilon} K \times Y$$

$$\downarrow^{(p_2,\phi)} \downarrow^{(p_2,\phi')}$$

$$X \times X \xrightarrow{\epsilon \times \epsilon} Y \times Y$$

$$G \times X = \{((k,y), (x,x')) | y = \epsilon(x), ky = \epsilon(x')\}.$$

1. (essentially surjective) $\phi' \circ \pi$ is an open surjection:

$$\begin{array}{ccc} X \times_Y (K \times Y) \xrightarrow{\pi} & K \times Y \xrightarrow{\phi'} & Y \\ & & & \downarrow \\ & & & \downarrow \\ & & & \downarrow \\ & X \xrightarrow{\epsilon} & & Y \end{array}$$

2. (fully faithful) the following diagram is a pullback:

$$G \times X \xrightarrow{\varphi \times \epsilon} K \times Y$$

$$\downarrow^{(p_2,\phi)} \qquad \downarrow^{(p_2,\phi')}$$

$$X \times X \xrightarrow{\epsilon \times \epsilon} Y \times Y$$

$$G \times X = \{((k,y), (x,x')) | y = \epsilon(x), ky = \epsilon(x')\}.$$

An ee has to reach to all orbits and there is a bijection induced by φ : $\{g \in G | x' = gx\} \rightarrow \{k \in K | \epsilon(x') = k\epsilon(x)\}.$

Two actions $G \times X \to X$ and $K \times Y \to Y$ are Morita equivalent if there is a third action $J \times Z \to Z$ and two essential equivalences

$$G \ltimes X \stackrel{\psi \ltimes \sigma}{\longleftarrow} J \ltimes Z \stackrel{\varphi \ltimes \epsilon}{\longrightarrow} K \ltimes Y.$$

We write $G \ltimes X \sim K \ltimes Y$.

Any notion relevant to the geometric object defined by the action, should be invariant under Morita equivalence.

Examples

1. Let G be a topological group, then

$$e \ltimes X \sim G \ltimes (G \times X)$$

2. If *H* is a subgroup of *G* acting on *X*, then $H \ltimes X \sim G \ltimes (G \times_H X)$

where [gh, x] = [g, hx].

(G acting trivially on X and by multiplication on G)

Example $\mathbb{Z}_2 \ltimes I \sim_{\epsilon} S^1 \ltimes M$

There is an essential equivalence between the mirror action of \mathbb{Z}_2 on the interval I = (-1, 1) and the action of S^1 on the Moebius band M.

Examples

1. If G acts freely on X, then $G \ltimes X \sim e \ltimes X/G$ 2. If $H \trianglelefteq G$ acts freely on X, then $G \ltimes X \sim G/H \ltimes X/H$

Example $(\mathbb{Z}_2 \times \mathbb{Z}_2) \ltimes S^1 \sim \mathbb{Z}_2 \ltimes S^1$

There is an essential equivalence between the action of $\mathbb{Z}_2 \times \mathbb{Z}_2$ on the circle by rotation+reflection and the action of \mathbb{Z}_2 on S^1 by just reflection.

$$\mathbb{Z}_2 \times \mathbb{Z}_2 = \{ \mathbf{e}, \rho, \sigma, \rho\sigma \}$$

acting on S^1

Any essential equivalence is a composite of maps as below:

- 1. (quotient map) $G \ltimes X \to G/K \ltimes X/K$ where $K \trianglelefteq G$ and K acts freely on X.
- 2. (inclusion map) $K \ltimes Z \to H \ltimes (H \times_K Z)$ where $K \leq H$ acting on Z and $H \times_K Z = H \times Z / \sim$ with $[hk, z] \sim [h, kz]$ for any $k \in K$.

The equivariant category of a *G*-space *X*, $\operatorname{cat}_{G}(X)$, is the least integer *k* such that *X* may be covered by *k* invariant open sets $\{U_1, \ldots, U_k\}$, each of which is *G*-compressible into a single orbit.

That is, inclusion map $i: U \to X$ is G-homotopic to a G-map $c: U \to X$ with $c(U) \subseteq \operatorname{orb}_{G}(z)$ for some $z \in X$.

Let \mathcal{A} be a class of G-invariant subsets of X. The equivariant \mathcal{A} -category, $\mathcal{A}cat_G(X)$, is the least integer k such that X may be covered by k G-invariant open sets $\{U_1, \ldots, U_k\}$, each G-compressible into some space $A \in \mathcal{A}$.

Equivariant Clapp-Puppe *A*-category

Let \mathcal{A} be a class of G-invariant subsets of X. The equivariant \mathcal{A} -category, $\mathcal{A}cat_G(X)$, is the least integer k such that X may be covered by k G-invariant open sets $\{U_1, \ldots, U_k\}$, each G-compressible into some space $A \in \mathcal{A}$.

In particular, $_{\mathcal{A}} cat_{\mathcal{G}}(X) = cat_{\mathcal{G}}(X)$ when $\mathcal{A} = orbits$.

Theorem

For a G-space X, the following statements are equivalent:

- 1. $\operatorname{TC}_{G}(X) \leq n$.
- 2. $\Delta(X) \operatorname{cat}_{G}(X \times X) \leq n$: there exist G-invariant open sets U_1, \ldots, U_k which cover $X \times X$ which are G-compressible into $\Delta(X)$.

 $TC_{G}(X)$ is NOT invariant under Morita equivalence.

Counterexample: S^1 acting on S^1 by rotation $TC_{S^1}(S^1) \ge 2$ and TC(*) = 1

Let $\Delta^{G \times G}(X)$ be the saturation of the diagonal $\Delta(X)$ with respect to the $(G \times G)$ -action.

Theorem

- For a G-space X the following are equivalent:
 - 1. $\mathrm{TC}^{G}(X) \leq n$.
 - Δ^{G×G}(X)cat_{G×G}(X × X) ≤ n: there exist (G × G)-invariant open sets U₁,..., U_k which cover X × X which are (G × G)-compressible into Δ^{G×G}(X).

Theorem (Angel, Colman, Grant, Oprea)

Let G be a compact Lie group acting on a metrizable space X, $H \leq G$ and $K \triangleleft G$ acting freely on X. If \mathcal{A} is a class of G-invariant subsets of X and \mathcal{B} is a class of H-invariant subsets of X, let $\mathcal{A}/K = \{A/K \mid A \in \mathcal{A}\}$ and $G \times_H \mathcal{B} = \{G \times_H B \mid A \in \mathcal{B}\}$. Then

1.
$$_{\mathcal{A}} \operatorname{cat}_{G} X =_{\mathcal{A}/K} \operatorname{cat}_{G/K}(X/K)$$

2.
$$\mathcal{B}\operatorname{cat}_{H} X =_{G \times_{H} \mathcal{B}} \operatorname{cat}_{G} (G \times_{H} X).$$

Corollary

Let G and H be compact Lie groups. If $G \ltimes X \sim H \ltimes Y$, then

1.
$$\operatorname{cat}_{G} X = \operatorname{cat}_{H} Y$$

2.
$$\mathrm{TC}^{G}X = \mathrm{TC}^{H}Y$$

Definition

A representable orbifold \mathcal{X} is a space X equipped with a Morita equivalence class of orbifold structures. A specific such structure is given by a G compact group acting on X with finite isotropy.

If two group actions are Morita equivalent, then they define the same orbifold.

Orbifold

Let \mathcal{X} be a representable orbifold presented by the action $G \ltimes X$ where G is a compact Lie group and X a metrizable space. The orbifold invariant topological complexity of \mathcal{X} , $\mathrm{TC}_{\mathcal{O}}(\mathcal{X})$, is the invariant topological complexity of the group action $G \ltimes X$; that is $\mathrm{TC}_{\mathcal{O}}(\mathcal{X}) = \mathrm{TC}^{G}(X)$.

For instance, if $\mathcal{X} = +$ then $\mathrm{TC}_{\mathcal{O}}(\mathcal{X}) = 1$.

Let \mathcal{X} be a representable orbifold presented by the action $G \ltimes X$ where G is a compact Lie group and X a metrizable space. The orbifold invariant topological complexity of \mathcal{X} , $\mathrm{TC}_{\mathcal{O}}(\mathcal{X})$, is the invariant topological complexity of the group action $G \ltimes X$; that is $\mathrm{TC}_{\mathcal{O}}(\mathcal{X}) = \mathrm{TC}^{G}(X)$.

For instance, if $\mathcal{X} =$ then $TC_{\mathcal{O}}(\mathcal{X}) = 1$.

Let \mathcal{X} be a representable orbifold presented by the action $G \ltimes X$ where G is a compact Lie group and X a metrizable space. The orbifold invariant topological complexity of \mathcal{X} , $\mathrm{TC}_{\mathcal{O}}(\mathcal{X})$, is the invariant topological complexity of the group action $G \ltimes X$; that is $\mathrm{TC}_{\mathcal{O}}(\mathcal{X}) = \mathrm{TC}^{G}(X)$.

For instance, if $\mathcal{X} =$ then $TC_{\mathcal{O}}(\mathcal{X}) = 1$.

Let \mathcal{X} be a representable orbifold presented by the action $G \ltimes X$ where G is a compact Lie group and X a metrizable space. The orbifold invariant topological complexity of \mathcal{X} , $\mathrm{TC}_{\mathcal{O}}(\mathcal{X})$, is the invariant topological complexity of the group action $G \ltimes X$; that is $\mathrm{TC}_{\mathcal{O}}(\mathcal{X}) = \mathrm{TC}^{G}(X)$.

For instance, if $\mathcal{X} =$ then $TC_{\mathcal{O}}(\mathcal{X}) = 1$.

