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Motion Planning Problem (MPP)

Robot: A mechanical system capable of moving
autonomously.

Configuration space: The collection of all possible states of the
system.

MPP: Given an initial state A and a final state B, find a
path in X that moves the robot from A to B.



Motion Planning Algorithm (MPA)

A MPA is a section of the evaluation map

s : X × X → PX
(A,B) 7→ αA,B

Definition
The topological complexity TC(X) is the least integer k such that
X × X may be covered by k open sets {U1, . . . ,Uk}, on each of
which there is a continuous section si : Ui → PX such that

ev ◦ si = iUi : Ui ↪→ X × X.



A group G acting on X

Equivariant Motion Planning Problem?



Equivariant MPP

Version 1
Given configurations x and y, find a path α between x and y, such
that the path between configurations gx and gy is gα.
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Equivariant MPP

Version 2
Given configurations x and y, find a “broken path” (α, β) between
them, such that the path between configurations hx and ky is
(hα, kβ).
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Equivariant TC (Colman-Grant)

G × PX → PX, G × (X × X) → X × X,

g(γ)(t) = g(γ(t)), g(x, y) = (gx, gy).

The equivariant topological complexity of X, TCG(X), is the least
integer k such that X × X may be covered by k G-invariant open
sets {U1, . . . ,Uk}, on each of which there is a G-equivariant map
si : Ui → PX such that the diagram commutes:

PX
ev
��

Ui

si
<<xxxxxxxxx

// X × X



Invariant TC (Lubawski-Marzantowicz)

P′X = PX ×X/G PX =
{
(α, β) ∈ PX × PX : Gα(1) = Gβ(0)

}
ev′ : P′X → X × X given by ev(α, β) =

(
α(0), β(1)

)
is a

(G × G)-fibration.

The invariant topological complexity of X, TCG(X), is the least
integer k such that X × X may be covered by k (G × G)-invariant
open sets {U1, . . . ,Uk}, on each of which there is a
(G × G)-equivariant section si : Ui → P′X such that the diagram
commutes:

P′X
ev′

��
Ui

si
<<xxxxxxxxx

// X × X



Notion of equivalence for group actions

▶ Let G be a Lie group acting continuously on a space X,
notation G ⋉ X

▶ φ⋉ ϵ : G ⋉ X → K ⋉ Y equivariant map if ϵ(gx) = φ(g)ϵ(x)

Equivalent actions



Essential Equivalence φ⋉ ϵ : G ⋉ X → K ⋉ Y

1. (essentially surjective) ϕ′ ◦ π is an open surjection:

X ×Y (K × Y) π //

��

K × Y ϕ′ //

p2

��

Y

X ϵ // Y
2. (fully faithful) the following diagram is a pullback:

G × X
(p2,ϕ)
��

φ×ϵ // K × Y
(p2,ϕ′)
��

X × X ϵ×ϵ // Y × Y
G × X = {((k, y), (x, x′))|y = ϵ(x), ky = ϵ(x′)}.
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An ee has to reach to all orbits and there is a bijection induced by
φ: {g ∈ G|x′ = gx} → {k ∈ K|ϵ(x′) = kϵ(x)}.



Morita Equivalence ∼

Two actions G × X → X and K × Y → Y are Morita equivalent if
there is a third action J × Z → Z and two essential equivalences

G ⋉ X J ⋉ Z φ⋉ϵ //ψ⋉σoo K ⋉ Y.

We write G ⋉ X ∼ K ⋉ Y.

Any notion relevant to the geometric object defined by the action,
should be invariant under Morita equivalence.



Examples

1. Let G be a topological group, then

e ⋉ X ∼ G ⋉ (G × X)

2. If H is a subgroup of G acting on X, then

H ⋉ X ∼ G ⋉ (G ×H X)

where [gh, x] = [g, hx].

(G acting trivially on X and by multiplication on G)



Example Z2 ⋉ I ∼ϵ S1 ⋉ M

There is an essential equivalence between the mirror action of Z2

on the interval I = (−1, 1) and the action of S1 on the Moebius
band M.

ϵ



Examples

1. If G acts freely on X, then G ⋉ X ∼ e ⋉ X/G
2. If H ⊴ G acts freely on X, then G ⋉ X ∼ G/H ⋉ X/H



Example (Z2 × Z2)⋉ S1 ∼ Z2 ⋉ S1

There is an essential equivalence between the action of Z2 × Z2 on
the circle by rotation+reflection and the action of Z2 on S1 by just
reflection.

Z2 × Z2 = {e, ρ, σ, ρσ}

acting on S1

Z2×Z2/<ρ> =< σ >= Z2

acting on S1
/<ρ> = S1



Pronk-Scull characterization

Any essential equivalence is a composite of maps as below:

1. (quotient map) G ⋉ X → G/K ⋉ X/K
where K ⊴ G and K acts freely on X.

2. (inclusion map) K ⋉ Z → H ⋉ (H ×K Z)
where K ≤ H acting on Z and H ×K Z = H × Z/ ∼ with
[hk, z] ∼ [h, kz] for any k ∈ K.



Equivariant LS-category

The equivariant category of a G-space X, catG(X), is the least
integer k such that X may be covered by k invariant open sets
{U1, . . . ,Uk}, each of which is G-compressible into a single orbit.

That is, inclusion map i : U → X is G-homotopic to a G-map
c : U → X with c(U) ⊆ orbG(z) for some z ∈ X.

A
A
AAU �

�
���

−→iU X

orbG(z)



Equivariant Clapp-Puppe A-category

Let A be a class of G-invariant subsets of X. The equivariant
A-category, AcatG(X), is the least integer k such that X may be
covered by k G-invariant open sets {U1, . . . ,Uk}, each
G-compressible into some space A ∈ A.

A
A
AAU �

�
���

−→iU X

A
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Let A be a class of G-invariant subsets of X. The equivariant
A-category, AcatG(X), is the least integer k such that X may be
covered by k G-invariant open sets {U1, . . . ,Uk}, each
G-compressible into some space A ∈ A.

A
A
AAU �

�
���

−→iU X

A
In particular, AcatG(X) = catG(X) when A = orbits.



Equivariant TC as A-category

Theorem
For a G-space X, the following statements are equivalent:

1. TCG(X) ≤ n.
2. ∆(X)catG(X × X) ≤ n: there exist G-invariant open sets

U1, . . . ,Uk which cover X × X which are G-compressible into
∆(X).

TCG(X) is NOT invariant under Morita equivalence.

Counterexample: S1 acting on S1 by rotation
TCS1(S1) ≥ 2 and TC(∗) = 1



Invariant TC as A-category

Let ∆G×G(X) be the saturation of the diagonal ∆(X) with respect
to the (G × G)-action.

Theorem
For a G-space X the following are equivalent:

1. TCG(X) ≤ n.
2. ∆G×G(X)catG×G(X × X) ≤ n: there exist (G × G)-invariant

open sets U1, . . . ,Uk which cover X × X which are
(G × G)-compressible into ∆G×G(X).



Equivariant A-cat is Morita invariant

Theorem (Angel, Colman, Grant, Oprea)
Let G be a compact Lie group acting on a metrizable space X,
H ≤ G and K ◁ G acting freely on X. If A is a class of G-invariant
subsets of X and B is a class of H-invariant subsets of X, let
A/K = {A/K | A ∈ A} and G ×H B = {G ×H B | A ∈ B}. Then

1. AcatGX =A/K catG/K(X/K)

2. BcatHX =G×HB catG(G ×H X).



Invariance under Morita equivalence

Corollary
Let G and H be compact Lie groups. If G ⋉ X ∼ H ⋉ Y, then

1. catGX = catHY
2. TCGX = TCHY



TC for orbifolds

Definition
A representable orbifold X is a space X equipped with a Morita
equivalence class of orbifold structures. A specific such structure is
given by a G compact group acting on X with finite isotropy.
If two group actions are Morita equivalent, then they define the
same orbifold.

∼
Orbifold

∥ )



TC for orbifolds

Let X be a representable orbifold presented by the action G ⋉ X
where G is a compact Lie group and X a metrizable space. The
orbifold invariant topological complexity of X , TCO(X ), is the
invariant topological complexity of the group action G ⋉ X; that is
TCO(X ) = TCG(X).

For instance, if X = ∥ ) then TCO(X ) = 1.
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