Topological and geodesic complexity of n-dimensional Klein bottle

Don Davis

Gainesville Special Session, November, 2019

Planar polygon space

$$
\bar{M}(\ell)=\bar{M}\left(\ell_{1}, \ldots, \ell_{n}\right)=\left\{\left(z_{1}, \ldots, z_{n}\right) \in\left(S^{1}\right)^{n}: \sum \ell_{i} z_{i}=0\right\} / O(n)
$$

($n-3$)-manifold if generic (no straight-line polygons)

Planar polygon space

$$
\bar{M}(\ell)=\bar{M}\left(\ell_{1}, \ldots, \ell_{n}\right)=\left\{\left(z_{1}, \ldots, z_{n}\right) \in\left(S^{1}\right)^{n}: \sum \ell_{i} z_{i}=0\right\} / O(n)
$$

($n-3$)-manifold if generic (no straight-line polygons)

Planar polygon space

$$
\bar{M}(\ell)=\bar{M}\left(\ell_{1}, \ldots, \ell_{n}\right)=\left\{\left(z_{1}, \ldots, z_{n}\right) \in\left(S^{1}\right)^{n}: \sum \ell_{i} z_{i}=0\right\} / O(n)
$$

($n-3$)-manifold if generic (no straight-line polygons)

Planar polygon space

$$
\bar{M}(\ell)=\bar{M}\left(\ell_{1}, \ldots, \ell_{n}\right)=\left\{\left(z_{1}, \ldots, z_{n}\right) \in\left(S^{1}\right)^{n}: \sum \ell_{i} z_{i}=0\right\} / O(n)
$$

($n-3$)-manifold if generic (no straight-line polygons)

134 7-gon spaces, 2469 8-gon spaces

For most $\ell, \quad 2 n-7 \leq \mathrm{TC}(\bar{M}(\ell)) \leq 2 n-6$.
e.g., of the 24698 -gon spaces, 2465 satisfy this, two do not, and for two, it is not known.

These are the only known examples of $\mathrm{TC}(\bar{M}(\ell))<2 n-7$.

For most $\ell, \quad 2 n-7 \leq \mathrm{TC}(\bar{M}(\ell)) \leq 2 n-6$.
e.g., of the 2469 8-gon spaces, 2465 satisfy this, two do not, and for two, it is not known.

$$
\bar{M}\left(\frac{1}{n}, \ldots, \frac{1}{n}, 1,1,1\right) \approx T^{n-3} . \mathrm{TC}=n-3 .
$$

\square

For most $\ell, \quad 2 n-7 \leq \mathrm{TC}(\bar{M}(\ell)) \leq 2 n-6$.
e.g., of the 24698 -gon spaces, 2465 satisfy this, two do not, and for two, it is not known.

$$
\bar{M}\left(\frac{1}{n}, \ldots, \frac{1}{n}, 1,1,1\right) \approx T^{n-3} . \mathrm{TC}=n-3 .
$$

$$
\bar{M}(1, \ldots, 1, n-2) \approx R P^{n-3} . \mathrm{TC}=\mathrm{imm} \operatorname{dim}, \text { usually }<2 n-7
$$

For most $\ell, \quad 2 n-7 \leq \mathrm{TC}(\bar{M}(\ell)) \leq 2 n-6$.
e.g., of the 24698 -gon spaces, 2465 satisfy this, two do not, and for two, it is not known.
$\bar{M}\left(\frac{1}{n}, \ldots, \frac{1}{n}, 1,1,1\right) \approx T^{n-3} . \mathrm{TC}=n-3$.
$\bar{M}(1, \ldots, 1, n-2) \approx R P^{n-3}$. TC $=$ imm dim, usually $<2 n-7$.

These are the only known examples of $\mathrm{TC}(\bar{M}(\ell))<2 n-7$.

$$
\begin{aligned}
& \bar{M}\left(\frac{1}{n}, \ldots, \frac{1}{n}, 1,1,1,2\right) \\
& H^{*}(-) \Rightarrow \mathrm{TC} \geq n-1 \text { for } n \geq 6
\end{aligned}
$$

$$
\begin{aligned}
& \bar{M}\left(\frac{1}{n}, \ldots, \frac{1}{n}, 1,1,1,2\right) \\
& H^{*}(-) \Rightarrow \mathrm{TC} \geq n-1 \text { for } n \geq 6
\end{aligned}
$$

$$
\approx K_{n}=\mathbf{R}^{n} /\left(x+e_{i} \sim x\right), i<n
$$

$$
\left(x_{1}, \ldots, x_{n}\right) \sim\left(1-x_{1}, \ldots, 1-x_{n-1}, x_{n}+1\right)
$$

$G C(X)=\min \left\{k: \exists E_{0} \sqcup \cdots \sqcup E_{k}=X \times X\right.$ with continuous choice of geodesics on $\left.E_{i}\right\}$.

Theorem (with David Recio-Mitter). GC $\left(K_{n}\right)=2 n$.

$G C(X)=\min \left\{k: \exists E_{0} \sqcup \cdots \sqcup E_{k}=X \times X\right.$ with continuous choice of geodesics on $\left.E_{i}\right\}$.

Theorem (with David Recio-Mitter). GC $\left(K_{n}\right)=2 n$.

For $P \in I^{n}, \mathcal{R}(P)=$ polytope centered at P bounded by \perp bisectors of segments from P to equivalent points. Interior is points with unique geodesic from P.

For $P \in I^{n}, \mathcal{R}(P)=$ polytope centered at P bounded by \perp bisectors of segments from P to equivalent points. Interior is points with unique geodesic from P.

$$
n=2
$$

$$
n=3
$$

Here $n \leq 5$. Similar but more complicated for $n \geq 6$.
Let $\mathcal{D}_{\alpha}=D_{1} \times \cdots \times D_{n}$, with
$D_{i}= \begin{cases}\left(\left(0, \frac{1}{2}\right) \cup\left(\frac{1}{2}, 1\right)\right)^{n-1} \text { or }\left\{0, \frac{1}{2}\right\} & i<n \\ (0,1) \text { or }\{0\} & i=n .\end{cases}$
On $\mathcal{D}_{\alpha}, \mathcal{R}(P)$ varies continuously bijectively with P, preserving \sim.

Let $R_{j}(P)$ be the set of equivalence classes of j-faces of $\mathcal{R}(P)$. Choose a representative of each equivalence class, and let $R_{j}^{\prime}(P)$ denote their union.

Let $E_{\alpha, j}=\left\{(p(P), p(Q)): P \in \mathcal{D}_{\alpha}, Q \in R_{j}^{\prime}(P)\right\}$.
Geodesic motion planning rule on $E_{\alpha, j}$:
$s(p(P), p(Q))=p\left(\sigma_{P, Q}\right)$, where $\sigma_{P, Q}$ is linear path from P to $Q_{\overline{\bar{D}}}$,

Here $n \leq 5$. Similar but more complicated for $n \geq 6$.
Let $\mathcal{D}_{\alpha}=D_{1} \times \cdots \times D_{n}$, with

$$
D_{i}= \begin{cases}\left(\left(0, \frac{1}{2}\right) \cup\left(\frac{1}{2}, 1\right)\right)^{n-1} \text { or }\left\{0, \frac{1}{2}\right\} & i<n \\ (0,1) \text { or }\{0\} & i=n\end{cases}
$$

On $\mathcal{D}_{\alpha}, \mathcal{R}(P)$ varies continuously bijectively with P, preserving \sim.

Let $R_{j}(P)$ be the set of equivalence classes of j-faces of $\mathcal{R}(P)$. Choose a representative of each equivalence class, and let $R_{i}^{\prime}(P)$ denote their union.

Geodesic motion planning rule on $E_{\alpha, j}$: $s(p(P), p(Q))=p\left(\sigma_{P, Q}\right)$, where $\sigma_{P, Q}$ is linear path from P to Q.

Here $n \leq 5$. Similar but more complicated for $n \geq 6$.
Let $\mathcal{D}_{\alpha}=D_{1} \times \cdots \times D_{n}$, with

$$
D_{i}= \begin{cases}\left(\left(0, \frac{1}{2}\right) \cup\left(\frac{1}{2}, 1\right)\right)^{n-1} \text { or }\left\{0, \frac{1}{2}\right\} & i<n \\ (0,1) \text { or }\{0\} & i=n\end{cases}
$$

On $\mathcal{D}_{\alpha}, \mathcal{R}(P)$ varies continuously bijectively with P, preserving \sim.

Let $R_{j}(P)$ be the set of equivalence classes of j-faces of $\mathcal{R}(P)$. Choose a representative of each equivalence class, and let $R_{j}^{\prime}(P)$ denote their union.

Here $n \leq 5$. Similar but more complicated for $n \geq 6$.
Let $\mathcal{D}_{\alpha}=D_{1} \times \cdots \times D_{n}$, with

$$
D_{i}= \begin{cases}\left(\left(0, \frac{1}{2}\right) \cup\left(\frac{1}{2}, 1\right)\right)^{n-1} \text { or }\left\{0, \frac{1}{2}\right\} & i<n \\ (0,1) \text { or }\{0\} & i=n\end{cases}
$$

On $\mathcal{D}_{\alpha}, \mathcal{R}(P)$ varies continuously bijectively with P, preserving \sim.

Let $R_{j}(P)$ be the set of equivalence classes of j-faces of $\mathcal{R}(P)$. Choose a representative of each equivalence class, and let $R_{j}^{\prime}(P)$ denote their union.

Let $E_{\alpha, j}=\left\{(p(P), p(Q)): P \in \mathcal{D}_{\alpha}, Q \in R_{j}^{\prime}(P)\right\}$.
Geodesic motion planning rule on $E_{\alpha, j}$: $s(p(P), p(Q))=p\left(\sigma_{P, Q}\right)$, where $\sigma_{P, Q}$ is linear path from P to Q.

Proposition. If $\operatorname{dim}\left(\mathcal{D}_{\alpha}\right)+j=\operatorname{dim}\left(\mathcal{D}_{\alpha^{\prime}}\right)+j^{\prime}$, then $E_{\alpha, j}$ and $E_{\alpha^{\prime}, j^{\prime}}$ are topologically disjoint.

Corollary. $G C\left(K_{n}\right) \leq 2 n$.

Proof. Have geodesic MP rules on $S_{0}, \ldots, S_{2 n}$, where

Proposition. If $\operatorname{dim}\left(\mathcal{D}_{\alpha}\right)+j=\operatorname{dim}\left(\mathcal{D}_{\alpha^{\prime}}\right)+j^{\prime}$, then $E_{\alpha, j}$ and $E_{\alpha^{\prime}, j^{\prime}}$ are topologically disjoint.

Corollary. $G C\left(K_{n}\right) \leq 2 n$.

Proof. Have geodesic MP rules on $S_{0}, \ldots, S_{2 n}$, where

$$
S_{i}=\bigcup_{\operatorname{dim}\left(\mathcal{D}_{\alpha}\right)+j=i} E_{\alpha, j} .
$$

If $n=6$, the domain $\left(0, \frac{1}{2}\right)^{5} \times(0,1)$, must be split into parts separated by
$\sum_{i=1}^{5}\left(a_{i}-\frac{1}{4}\right)^{2}=\frac{1}{16}$. When it is $<\frac{1}{16}$, the top and bottom pyramids intersect inside the walls, and the top and bottom pyramids need to be truncated above and below. So there is not a uniform way to choose geodesics in polytopes of the two types.

