Bounding coindices of function spaces via motion planning

Florian Frick, joint with Matt Superdock

November 2, 2019

AMS Fall Southeastern Sectional Meeting, Gainesville

We set out to prove a result in functional analysis.
We succeeded, and along the way we had to prove a result about motion planning algorithms (mpa) in an equivariant setting.

We define a weak notion of (equivariant) mpa that instead of contractibility gives weaker bounds for the topology.
https://arxiv.org/abs/1906.04417

Hobby and Rice (1965)
Let $f_{j}:[0,1] \rightarrow \mathbb{R}, j=1,2, \ldots, n$ be integrable functions. Then there are $0=\xi_{0} \leq \xi_{1} \leq \cdots \leq \xi_{n+1}=1$ such that

$$
\sum \int_{\xi_{i}}^{\xi_{i+1}}(-1)^{i} f_{j}(t) d t=0
$$

for all j.

Let $f_{j}:[0,1] \rightarrow \mathbb{R}, j=1,2, \ldots, n$ be L^{2} functions.
Then there is $g:[0,1] \rightarrow\{-1,1\}$ that changes sign at most n times such that $\left\langle f_{j}, g\right\rangle_{L^{2}}=0$ for all j.

Lazarev and Lieb (2013)

$$
\text { Let } f_{j}:[0,1] \rightarrow \mathbb{C}, j=1,2, \ldots, n \text { be } L^{2} \text { functions. }
$$

Then there is smooth $g:[0,1] \rightarrow S^{1} \subset \mathbb{C}$ such that $\left\langle f_{j}, g\right\rangle_{L^{2}}=0$ for all j.

Lazarev and Lieb prove this with a technical approximation argument using the Hobby-Rice theorem and ask whether there is a more conceptual Borsuk-Ulam type result that implies their theorem.

Rutherfoord showed that g can be chosen with $\|g\|_{W^{1,1}} \leq 1+5 \pi n$.

Lazarev and Lieb - restated

Let $\psi: C^{\infty}\left([0,1] ; S^{1}\right) \rightarrow \mathbb{C}^{n}$ be continuous with respect to the L^{2}-norm and linear. Then there exists $g \in C^{\infty}\left([0,1] ; S^{1}\right)$ with

$$
\psi(g)=0
$$

Goal: Prove a Borsuk-Ulam type result for $C^{\infty}\left([0,1] ; S^{1}\right)$ with the L^{2}-norm. What if ψ is not necessarily linear but only a $\mathbb{Z} / 2$-map:

$$
\psi(-h)=-\psi(h) \text { for all } h \in C^{\infty}\left([0,1] ; S^{1}\right) ?
$$

F. and Superdock (2019)

Let $\psi: C^{\infty}\left([0,1] ; S^{1}\right) \rightarrow \mathbb{R}^{n}$ be continuous with respect to the L^{p}-norm, $p<\infty$, such that $\psi(-h)=-\psi(h)$ for all
$h \in C^{\infty}\left([0,1] ; S^{1}\right)$. Then there exists $g \in C^{\infty}\left([0,1] ; S^{1}\right)$ with

$$
\psi(g)=0 \text { and }\|g\|_{W^{1,1}} \leq 1+\pi n .
$$

In particular, this improves Rutherfoord's bound for the linear case from $\|g\|_{W^{1,1}} \leq 1+5 \pi n$ to $\|g\|_{W^{1,1}} \leq 1+2 \pi n$.

Show that there is a $\mathbb{Z} / 2$-map $S^{n} \rightarrow C^{\infty}\left([0,1] ; S^{1}\right)$ such that any element g in the image satisfies $\|g\|_{W^{1,1}} \leq 1+\pi n$.
If X is a space with a $\mathbb{Z} / 2$-action, the largest n such that there is a $\mathbb{Z} / 2$-map $S^{n} \rightarrow X$ is called the coindex of X.

Borsuk-Ulam theorem

If X has coindex n then any $\mathbb{Z} / 2$-map $X \rightarrow \mathbb{R}^{n}$ has a zero.

Maps $S^{n} \rightarrow X$ can be constructed using obstruction theory. If a $\mathbb{Z} / 2$-map $f: S^{n-1} \rightarrow X$ is homotopically trivial, it can be extended to the upper hemisphere of S^{n}, and-by symmetry-to the lower hemisphere.

Inductive construction

Shoot rays from the upper hemisphere straight down to the lower hemisphere and extend the map along those paths.
0

Let $P X$ be the space of paths in X with the compact-open topology.

If $s: X \times X \rightarrow P X$ satisfies $s(x, x)=c_{X}$ then this can be used to extend a map $S^{n-1} \rightarrow X$ to S^{n} (for any n). But for s to exist, X has to be contractible.

Is there a weaker notion, perhaps a partially defined s, that gives lower bounds for the topology that are weaker than contractibility?

We will also use the map $\phi: C^{\infty}([0,1] ; \mathbb{R}) \rightarrow C^{\infty}\left([0,1] ; S^{1}\right)$ given by $\phi(g)(x)=e^{i g(x)}$.

This map is continuous but not a covering space if the topology is induced by an L^{p}-norm, $p<\infty$.

Lastly, we will introduce a time parameter as another degree of freedom.

Let $\phi: Y \rightarrow Z$ be continuous, (\preceq) a preorder on Y, and let

$$
Y_{\preceq}^{2}=\left\{\left(y_{0}, y_{1}\right) \in Y^{2}: y_{0} \preceq y_{1}\right\} .
$$

A lifted motion planning algorithm (or lifted mpa) for
(Y, Z, ϕ, \preceq) is a family of maps $s_{w}: Y_{\preceq}^{2} \rightarrow P Y$ for $w \in(0,1]$ with
$s_{w}\left(y_{0}, y_{1}\right)(0)=y_{0}$ and $s_{w}\left(y_{0}, y_{1}\right)(1)=y_{1}$, assembling into a continuous map s: $(0,1] \times Y_{\preceq}^{2} \rightarrow P Y$, with the following continuity property:

For all $y \in Y$ and all neighborhoods V of $\phi(y) \in Z$, there exists a neighborhood U of $\phi(y) \in Z$ and $\delta>0$ such that: if $\phi\left(y_{0}\right), \phi\left(y_{1}\right) \in U, \quad w<\delta$, then $\phi\left(s_{w}\left(y_{0}, y_{1}\right)(t)\right) \in V$ for all $t \in[0,1]$.

Note that an mpa $s: Z \times Z \rightarrow P Z$ satisfying $s(z, z)=c_{z}$ for all $z \in Z$ extends to a lifted mpa for $\left(Z, Z, 1_{Z}\right)$ by taking $s_{w}=s$ for all w; the continuity property just restates the continuity of s at diagonal points $(z, z) \in Z \times Z$.

The definition of lifted mpa gives us three degrees of freedom:

1. Preorder \preceq to restrict the domain
2. s has additional time parameter $(0,1]$
3. Can choose $Z \neq Y$ and argue about continuous image Z of Y
(Y, ρ) a \mathbb{Z}-space, (Z, σ) a $\mathbb{Z} / 2$-space, $\phi: Y \rightarrow Z$ continuous and equivariant. Let (\preceq) be a preorder on Y and $s:(0,1] \times Y_{\preceq}^{2} \rightarrow P Y$ a lifted mpa for (Y, Z, ϕ, \preceq) such that:
4. $y \preceq \rho(y)$.
5. $\rho\left(y_{0}\right) \preceq \rho\left(y_{1}\right)$ if and only if $y_{0} \preceq y_{1}$.
6. $y_{0} \preceq y_{1}$ implies $y_{0} \preceq s_{w}\left(y_{0}, y_{1}\right)(t) \preceq y_{1}$, for all $w \in(0,1]$, $t \in[0,1]$.

Then for each integer $n \geq 0$, there exists a $\mathbb{Z} / 2$-map $\beta_{n}: S^{n} \rightarrow Z$. Moreover, for any choice of initial point $y^{*} \in Y$, the maps β_{n} can be chosen such that β_{n} maps each positive point of S^{n} to a point in Z of the form $\phi(y)$, with $y^{*} \preceq y \preceq \rho^{n}\left(y^{*}\right)$, that is, the subspace of these points $\phi(y)$ and their antipodes $\sigma(\phi(y))$ in Z has coindex at least n.

Corollary

Let Y be a \mathbb{Z}-space, Z a $\mathbb{Z} / 2$-space. Let $\phi: Y \rightarrow Z$ be continuous and equivariant. If there is a lifted mpa for (Y, Z, ϕ) for the full preorder, then there exists a $\mathbb{Z} / 2$-map $\beta_{n}: S^{n} \rightarrow Z$ for all integers $n \geq 0$.

Proof of the Hobby-Rice theorem

Let $f_{j}:[0,1] \rightarrow \mathbb{R}, j=1,2, \ldots, n$ be L^{2} functions.
Then there is $g:[0,1] \rightarrow\{-1,1\}$ that changes sign at most n times such that $\left\langle f_{j}, g\right\rangle_{L^{2}}=0$ for all j.

The idea is to lift the space of functions with range in $\{ \pm 1\}$ to nondecreasing functions with range in \mathbb{Z}. By describing a continuous map from pairs of such functions to paths between them, we will produce a lifted mpa.

Let Y be the space of nondecreasing functions $g:[0,1] \rightarrow \mathbb{Z}$ with finite range, and let Z be the space of functions $h:[0,1] \rightarrow\{ \pm 1\}$. Define $\rho(g)=g+1, \sigma(h)=-h$, and

$$
\phi(g)(x)= \begin{cases}1 & g(x) \text { even } \\ -1 & g(x) \text { odd }\end{cases}
$$

Let $g_{0} \preceq g_{1}$ if $g_{0}(x) \leq g_{1}(x)$ for all $x \in[0,1]$. Finally, for $g_{0} \preceq g_{1}$ define $s_{w}\left(g_{0}, g_{1}\right)$ to be the path (in t) of functions following g_{0} on $[0,1-t)$ and g_{1} on $[1-t, 1]$:

$$
s_{w}\left(g_{0}, g_{1}\right)(t)(x)= \begin{cases}g_{0}(x) & x<1-t \\ g_{1}(x) & x \geq 1-t\end{cases}
$$

We obtain a $\mathbb{Z} / 2$-map $\beta_{n}: S^{n} \rightarrow Z$. Applying the Borsuk-Ulam theorem to $\psi \circ \beta_{n}: S^{n} \rightarrow \mathbb{R}^{n}$, where $\psi: h \mapsto\left(\int_{0}^{1} f_{j}(x) h(x) d x\right)_{j}$, we obtain $x \in S^{n}$ with $\psi\left(\beta_{n}(x)\right)=0$. Hence also $\psi\left(\beta_{n}(-x)\right)=0$, so we may assume x is positive. Taking $y^{*}=0$, we may ensure that β_{n} maps each positive point of S^{n} to a point in Z of the form $\phi(g)$ with $0 \leq g \leq n$, so that $\phi(g)$ has at most n sign changes. This completes the proof.

Nonlinear Lazarev-Lieb theorem

Let $\psi: C^{\infty}\left([0,1] ; S^{1}\right) \rightarrow \mathbb{R}^{n}$ be continuous with respect to the L^{p}-norm, $p<\infty$, such that $\psi(-h)=-\psi(h)$ for all $h \in C^{\infty}\left([0,1] ; S^{1}\right)$. Then there exists $g \in C^{\infty}\left([0,1] ; S^{1}\right)$ with $\psi(g)=0$ and $\|g\|_{W^{1,1}} \leq 1+\pi n$.

Consider the space $C^{\infty}([0,1] ; \mathbb{R})$ with the L^{2}-norm, and let Y be the subspace of nondecreasing functions in $C^{\infty}([0,1] ; \mathbb{R})$, equipped with the action $\rho: g \mapsto g+\pi$. Let Z be $C^{\infty}\left([0,1] ; S^{1}\right)$ with the L^{2}-norm, equipped with the action $\sigma: h \mapsto-h$.

Define $\phi: Y \rightarrow Z$ by $\phi(g)(x)=e^{i g(x)}$;
Define $(\underline{)}$) on Y as (\leq) pointwise.

Let $\tau: \mathbb{R} \rightarrow[0,1]$ be a smooth, nondecreasing function with $\tau(x)=0$ for $x \leq-1$, and $\tau(x)=1$ for $x \geq 1$. (For example, take an integral of a mollifier.) Then define $s_{w}: Y_{\preceq}^{2} \rightarrow P Y$ by

$$
\begin{gathered}
s_{w}\left(g_{0}, g_{1}\right)(t)(x)= \\
\left(1-\tau\left(\frac{x-(1-t)}{w}\right)\right) g_{0}(x)+\tau\left(\frac{x-(1-t)}{w}\right) g_{1}(x)
\end{gathered}
$$

There exist $f_{1}, \ldots, f_{n} \in L^{1}([0,1] ; \mathbb{R})$, such that for any $h \in C^{1}\left([0,1] ; S^{1}\right)$ with

$$
\begin{aligned}
& \left\langle f_{j}, h\right\rangle_{L^{2}}=0 \quad j=1, \ldots, n \\
& \text { we have }\|h\|_{W^{1,1}}>\pi n+1
\end{aligned}
$$

For integer $n \geq 1$ let Y_{n} denote the space of C^{∞}-functions $f:[0,1] \rightarrow S^{1}$ with $\|f\|_{W^{1,1}} \leq 1+\pi n$. Then

$$
n \leq \operatorname{coind} Y_{n} \leq 2 n-1
$$

