Ghrist-Peterson configuration spaces, cubings, and Boolean queries

Dan P. Guralnik, joint with Robert Ghrist
University of Pennsylvania
ESE and Mathematics

Funded by AFRL-DARPA contract No. FA8650-18-2-7840

November 3, 2019

Ghrist-Peterson Reconfigurable Systems [4]

Example. Planar "snake robots":

A snake in the integer grid = a vertex in configuration space \mathbf{X}

Ghrist-Peterson Reconfigurable Systems [4]

Example. Planar "snake robots":

A physical snake robot has thickness, motivating the constraints: no backtracking, no self-intersection.

Ghrist-Peterson Reconfigurable Systems [4]

Example. Planar "snake robots":

Movement is modelled by local reconfigurations, inducing edges in \mathbf{X} : a 'diagonal wiggle'...

Ghrist-Peterson Reconfigurable Systems [4]

Example. Planar "snake robots":

Movement is modelled by local reconfigurations, inducing edges in \mathbf{X} : a 'diagonal wiggle'...

Ghrist-Peterson Reconfigurable Systems [4]

Example. Planar "snake robots":

Ghrist-Peterson Reconfigurable Systems [4]

Example. Planar "snake robots":

Ghrist-Peterson Reconfigurable Systems [4]

Example. Planar "snake robots":

Here is another wiggle.

Ghrist-Peterson Reconfigurable Systems [4]

Example. Planar "snake robots":

Here is another wiggle.

Ghrist-Peterson Reconfigurable Systems [4]

Example. Planar "snake robots":

Transitions with disjoint supports may be effected independetly and synchronously...

Ghrist-Peterson Reconfigurable Systems [4]

Example. Planar "snake robots":

Transitions with disjoint supports may be effected independetly and synchronously...

Ghrist-Peterson Reconfigurable Systems [4]

Example. Planar "snake robots":

...inducing [combinatorially] embedded cubes in \mathbf{X}.

Ghrist-Peterson Reconfigurable Systems [4]

Example. Planar "snake robots":

...inducing [combinatorially] embedded cubes in \mathbf{X}.

Ghrist-Peterson Reconfigurable Systems [4]

Example. Planar "snake robots":

...inducing [combinatorially] embedded cubes in \mathbf{X}.

Ghrist-Peterson Reconfigurable Systems [4]

Example. Planar "snake robots":

...inducing [combinatorially] embedded cubes in \mathbf{X}.

Ghrist-Peterson Reconfigurable Systems [4]

Example. Planar "snake robots":

...inducing [combinatorially] embedded cubes in \mathbf{X}.

Ghrist-Peterson Reconfigurable Systems [4]

Example. Planar "snake robots":

...inducing [combinatorially] embedded cubes in \mathbf{X}.

Ghrist-Peterson Reconfigurable Systems [4]

Example. Planar "snake robots":

...inducing [combinatorially] embedded cubes in \mathbf{X}.

Ghrist-Peterson Reconfigurable Systems [4]

Example. Planar "snake robots":

...inducing [combinatorially] embedded cubes in \mathbf{X}.

Ghrist-Peterson Reconfigurable Systems [4]

Example. Planar "snake robots":

Additional constraints may derive from obstacles...

Ghrist-Peterson Reconfigurable Systems [4]

Example. Planar "snake robots":

...not to mention optimality considerations...

Ghrist-Peterson Reconfigurable Systems [4]

Example. Planar "snake robots":

...e.g., wanting to avoid useless alcoves (see top obstacle).

Learning Ghrist-Peterson Reconfigurable Systems [4]

Example. Planar "snake robots":

...e.g., wanting to avoid useless alcoves (see top obstacle).

Problem. Given such a robot, how might it LEARN to navigate in \mathbf{X} ?

Learning Ghrist-Peterson Reconfigurable Systems [4]

Example. Planar "snake robots":

...e.g., wanting to avoid useless alcoves (see top obstacle).

Problem. Given such a robot, how might it LEARN to navigate in \mathbf{X} ?

- without prior knowledge of situational constraints;

Learning Ghrist-Peterson Reconfigurable Systems [4]

Example. Planar "snake robots":

...e.g., wanting to avoid useless alcoves (see top obstacle).

Problem. Given such a robot, how might it LEARN to navigate in \mathbf{X} ?

- without prior knowledge of situational constraints;
- only using [sufficient] sensory information?

What does "learning to navigate in \mathbf{X} " mean?

Definition. A split on a set V is a Boolean function $\sigma: V \rightarrow\{0,1\}$. Its complement is the function $\sigma^{*}:=1-\sigma$. A Split system on a set V is a point-separating multi-set of splits on V that is symmetric under complementation.
\rightsquigarrow This will be our model of the robot's sensory system

What does "learning to navigate in \mathbf{X} " mean?

Definition. A split on a set V is a Boolean function $\sigma: V \rightarrow\{0,1\}$. Its complement is the function $\sigma^{*}:=1-\sigma$. A Split system on a set V is a point-separating multi-set of splits on V that is symmetric under complementation.
\rightsquigarrow This will be our model of the robot's sensory system
Loose Statement of the Overall Problem. Given a reconfigurable system with configuration space \mathbf{X} and a split system S on $\mathbf{X}^{(0)}$, find an algorithm that generates:

What does "learning to navigate in \mathbf{X} " mean?

Definition. A split on a set V is a Boolean function $\sigma: V \rightarrow\{0,1\}$. Its COMPLEMENT is the function $\sigma^{*}:=1-\sigma$. A SPLIT SYSTEM on a set V is a point-separating multi-set of splits on V that is symmetric under complementation.
\rightsquigarrow This will be our model of the robot's sensory system
Loose Statement of the Overall Problem. Given a reconfigurable system with configuration space \mathbf{X} and a split system S on $\mathbf{X}^{(0)}$, find an algorithm that generates:

1. a walk $w=\left(x_{0}, \ldots, x_{t}, \ldots\right)$ in \mathbf{X};
2. representations R_{t} of \mathbf{X} from the observation vectors $\left(\sigma\left(x_{t}\right)\right)_{\sigma \in S}$;

What does "learning to navigate in \mathbf{X} " mean?

Definition. A split on a set V is a Boolean function $\sigma: V \rightarrow\{0,1\}$. Its complement is the function $\sigma^{*}:=1-\sigma$. A Split system on a set V is a point-separating multi-set of splits on V that is symmetric under complementation.
\leadsto This will be our model of the robot's sensory system
Loose Statement of the Overall Problem. Given a reconfigurable system with configuration space \mathbf{X} and a split system S on $\mathbf{X}^{(0)}$, find an algorithm that generates:

1. a walk $w=\left(x_{0}, \ldots, x_{t}, \ldots\right)$ in \mathbf{X};
2. representations R_{t} of \mathbf{X} from the observation vectors $\left(\sigma\left(x_{t}\right)\right)_{\sigma \in S}$; and gurantees a $T \in \mathbb{N}$ such that:

- R_{t} enables efficient navigation in \mathbf{X} for $t \geq T$;
- R_{t} does not change for $t \geq T$;
- T is as small as possible (as a function of $|S|$).

What does "learning to navigate in \mathbf{X} " mean?

Definition. A split on a set V is a Boolean function $\sigma: V \rightarrow\{0,1\}$. Its complement is the function $\sigma^{*}:=1-\sigma$. A Split system on a set V is a point-separating multi-set of splits on V that is symmetric under complementation.
\rightsquigarrow This will be our model of the robot's sensory system
A More Basic Problem. Given a contender algorithm,

- How do we quantify progress?
- How do we certify success?

What does "learning to navigate in \mathbf{X} " mean?

Definition. A split on a set V is a Boolean function $\sigma: V \rightarrow\{0,1\}$. Its complement is the function $\sigma^{*}:=1-\sigma$. A Split system on a set V is a point-separating multi-set of splits on V that is symmetric under complementation.
\rightsquigarrow This will be our model of the robot's sensory system
A More Basic Problem. Given a contender algorithm,

- How do we quantify progress?
- How do we certify success?

Today we explore one idea:

LEVERAGE THE GEOMETRY \& TOPOLOGY OF X
TO ENCODE THE PROBLEM AS AN OPTIMIZATION PROBLEM OVER THE SPACE OF SPLIT-SYSTEMS ON $\mathbf{X}^{(0)}$.

Review and Preliminaries

Reconfigurable Systems and Non-Positive Curvature

Theorem (Ghrist-Peterson [4]). The configuration space \mathbf{X} of any reconfigurable system is a NON-POSITIVELY CURVED cubical complex (NPC^{3}).

Examples to keep in mind:

- For collision-free navigation of $N \geq 2$ particles on a graph (Abrams-Ghrist [7]), $X \in \mathrm{NPC}^{3}$ may be obtained.
- $\underline{\mathbf{X}}$ is a cubing for a restricted class of snakes (Ardila et. al. [2]).

Remark. In fact, Ghrist-Peterson's result is stronger: \mathbf{X} is a special NPC cubical complex, excluding a range of pathologies.
This is important for the overall project, but not for this talk, and we omit this discussion in the interest of time.

Non-Positive Curvature (NPC), see [3]

Definition. A complete geodesic metric space (X, d) is CAT(0), if all geodesic triangles $\triangle x y z$ are thinner than their Euclidean comparison triangles:

Theorem. The metric d of a $C A T(0)$ space (X, d) is convex. In particular, geodesics are unique, and X is contractible.
Definition. A complete geodesic metric space (X, d) is NPC, if every $x \in X$ has $r_{x}>0$ such that the ball $\bar{B}_{d}\left(x, r_{x}\right)$ is CAT(0).
Alexandrov's patchwork (AP): The universal cover \tilde{X} of a NPC space (X, d) is $\operatorname{CAT}(0)$. In particular, it is contractible.

NPC Cubical Complexes $\left(\mathrm{NPC}^{3}\right)$

Theorem (Gromov [3]). A cubical complex \mathbf{X} is NPC if and only if the link of every cube is a flag simplicial complex.

Definition (Sageev [9]). A
CUBING is a simply connected NPC cubical complex.

positive curvature
null curvature
negative curvature

- Cubings are precisely the CAT(0) cubical complexes, by AP.
- In particular, every cubing is contractible.
- The Cartesian product of two cubings is a cubing.

Representations for Cubings

Hyperplanes in Cubical Complexes (CCs):

In a CC, edges on opposite sides of a square are said to be parallel.

Representations for Cubings

Hyperplanes in Cubical Complexes (CCs):

Each parallelism class P yields, via transitive closure...

Representations for Cubings

Hyperplanes in Cubical Complexes (CCs):

Its DUAL HYPERPLANE: the union of perpendicular bisectors of every $e \in P$.

Representations for Cubings

Hyperplanes in Cubical Complexes (CCs):

Its DUAL HYPERPLANE: the union of perpendicular bisectors of every $e \in P$.

Hyperplanes may separate (blue) or not (e.g. yellow,green). They may self-cross (red).

Representations for Cubings

Suppose \mathbf{X} is a cubing. Sageev-Roller duality [9, 8] provides:

- Every hyperplane in \mathbf{X} is a convexly embedded cubing.
- Every hyperplane in \mathbf{X} separates \mathbf{X} into two convex components-the halfspaces of \mathbf{X} corresponding to that hyperplane.
- The graph $\mathbf{X}^{(1)}$ is simple (no multiple edges) and bipartite.
- The containment order on $\mathfrak{h}(\mathbf{X})$, the halfspace system of \mathbf{X}, completely encodes \mathbf{X}.
\rightsquigarrow we may regard $\mathfrak{h}(\mathbf{X})$ as a split system on $\mathbf{X}^{(0)}$

Representations for Cubings

Suppose \mathbf{X} is a cubing. Sageev-Roller duality [9, 8] provides:

- Every hyperplane in \mathbf{X} is a convexly embedded cubing.
- Every hyperplane in \mathbf{X} separates \mathbf{X} into two convex components-the HALFSPACES of \mathbf{X} corresponding to that hyperplane.
- The graph $\mathbf{X}^{(1)}$ is simple (no multiple edges) and bipartite.
- The containment order on $\mathfrak{h}(\mathbf{X})$, the halfspace system of \mathbf{X}, completely encodes \mathbf{X}.
\rightsquigarrow we may regard $\mathfrak{h}(\mathbf{X})$ as a split system on $\mathbf{X}^{(0)}$
Our earlier work [5, 6] shows:
- Given $S=\mathfrak{h}(\mathbf{X})$, the inclusion order can be learned (e.g. from a random walk), and leveraged for efficient navigation.

An alternative representation (PIPs [1, 2]) exists, but has some computational disadvantages:

1. the PIP representation encodes a pointed cubing $(\mathbf{X}, x), x \in \mathbf{X}^{(0)}$;
2. two relations (separation, incompatibility) on the collection of hyperplanes are used;
3. both relations change significantly as the observer's state (the base vertex x) varies.

Problem Statement and Results

Today's Problem Statement

Final Problem Statement when \mathbf{X} is a Cubing. Assume:

- \mathbf{X} is the configuration space of an $R S$;
- S is a vertex-separating collection of Boolean queries on $\mathbf{X}^{(0)}$.

Find an algorithm which constructs a walk in \mathbf{X} while using the observations made along this walk to deform S into $\mathfrak{h}(\mathbf{X})$.

What is required to approach the problem? First and foremost, a certificate informing us when the job is done, such as:

- A functional $\Psi_{\mathbf{X}}$ on the space of split systems, minimized by $\mathfrak{h}(\mathbf{X})$.
- We want $\mathfrak{h}(\mathbf{X})$ to be the only minimum of $\Psi_{\mathbf{X}}$;
- We need an efficient test determining whether $\Psi_{\mathbf{X}}(S)$ is minimal.

Hopes for the general case?

- Learn a cover $\mathbf{X}=\bigcup_{i} \mathbf{X}_{i}$ by cubings, with convex $\mathbf{X}_{i} \cap \mathbf{X}_{j}$;
- Cellular sheaf co/homology: global certificate from local ones.

Current result: Recongnizing a Cubing

Definition. Let Γ be a simple graph and S be a split system on Γ.
For a split $\sigma: V \Gamma \rightarrow \mathbf{2}$, the coboundary of σ is:

$$
\begin{equation*}
\delta \sigma:=\{e \in E \Gamma, \sigma \text { separates the endpoints of } e\} \tag{1}
\end{equation*}
$$

We set:

$$
\begin{align*}
\Phi_{\Gamma}(S) & :=\sum_{x \in V \Gamma} \sum_{\sigma \in S}|\delta\{x\} \cap \delta \sigma| \tag{2}\\
& =\sum_{e \in E \Gamma} \sum_{\sigma \in S}(\delta \sigma)(e) \tag{3}\\
& =\sum_{\sigma \in S}|\delta \sigma| \tag{4}\\
& =\sum_{\sigma \in S}\langle\sigma, \Delta \sigma\rangle, \tag{5}
\end{align*}
$$

where Δ denotes the graph Laplacian.

Current result: Recongnizing a Cubing

Why $\Phi_{\mathbf{X}}$ may seem like a good candidate? Focus on (3):

- S is vertex-separating, so every edge contributes at least 2 to $\Phi_{\mathbf{X}}(S)$.
- For $S=\mathfrak{h}(X)$, every edge contributes exactly 2 to $\Phi_{\mathbf{X}}(S)$.
- Hence $\mathfrak{h}(X)$ minimizes $\Phi_{\mathbf{X}}$.

Current result: Recongnizing a Cubing

Why $\Phi_{\mathbf{X}}$ may seem like a good candidate? Focus on (3):

- S is vertex-separating, so every edge contributes at least 2 to $\Phi_{\mathbf{X}}(S)$.
- For $S=\mathfrak{h}(X)$, every edge contributes exactly 2 to $\Phi_{\mathbf{X}}(S)$.
- Hence $\mathfrak{h}(X)$ minimizes $\Phi_{\mathbf{X}}$.

But $\Phi_{\mathbf{X}}$ is NOT a good candidate. $\mathfrak{h}(X)$ is not the only minimizer of $\Phi_{\mathbf{X}}$:

$\mathfrak{h}(\mathbf{X})$ has 3 hyperplanes (left), but there is an S with fewer elements (right), contributing to the same value of $\Phi_{\mathbf{X}}(S)$.

Current result: Recongnizing a Cubing

Why $\Phi_{\mathbf{X}}$ may seem like a good candidate? Focus on (3):

- S is vertex-separating, so every edge contributes at least 2 to $\Phi_{\mathbf{X}}(S)$.
- For $S=\mathfrak{h}(X)$, every edge contributes exactly 2 to $\Phi_{\mathbf{X}}(S)$.
- Hence $\mathfrak{h}(X)$ minimizes $\Phi_{\mathbf{X}}$.

But $\Phi_{\mathbf{X}}$ is NOT a good candidate. $\mathfrak{h}(X)$ is NOT the only minimizer of $\Phi_{\mathbf{X}}$:

$\mathfrak{h}(\mathbf{X})$ has 3 hyperplanes (left), but there is an S with fewer elements (right), contributing to the same value of $\Phi_{\mathbf{X}}(S)$.

Main Theorem. Suppose \mathbf{X} is a cubing and S is a split system of maximum cardinality among the split systems which minimize $\Phi_{\mathbf{X}}$. Then, S coincides with $\mathfrak{h}(\mathbf{X})$.

Current result: Recongnizing a Cubing

Main Theorem. Suppose \mathbf{X} is a cubing and S is a split system of maximum cardinality among the split systems which minimize $\Phi_{\mathbf{X}}$. Then, S coincides with $\mathfrak{h}(\mathbf{X})$.

Some remarks:

- For any graph Γ, maximizing $|S|$ for a given value of $\Phi_{\Gamma}(S)$ requires each $\sigma \in S$ to be connected.
- Is $\Psi_{\mathbf{X}}(S):=\Phi_{\mathbf{X}}(S)-\alpha|S|, \alpha>0$ the functional we are looking for?-Some evidence:
- Restricted to trees, it is, for $\alpha \in(0,1)$.
- In fact, for $\alpha \in(0,1)$, a minimizer of Ψ_{Γ} must contain all half-spaces arising from bridges of Γ.
- If S is a $\Psi_{\mathbf{x}}$ minimizer and $|S| \leq|\mathfrak{h}(\mathbf{X})|$ then $S=\mathfrak{h}(\mathbf{X})$.
- By (4), $\Psi_{\Gamma}(S) \geq 0$ for all S, but it is not clear anymore whether $\Psi_{\mathbf{X}}(S) \geq \Psi_{\mathbf{X}}(\mathfrak{h}(\mathbf{X}))$ when \mathbf{X} is a cubing.

Current result: Recongnizing a Cubing

Main Theorem. Suppose \mathbf{X} is a cubing and S is a split system of maximum cardinality among the split systems which minimize $\Phi_{\mathbf{X}}$. Then, S coincides with $\mathfrak{h}(\mathbf{X})$.

Corollary: If $\mathbf{X}_{1}, \mathbf{X}_{2}$ are cubings, and S is a split system on $\mathbf{X}:=\mathbf{X}_{1} \times \mathbf{X}_{2}$ minimizing $\Phi_{\mathbf{X}}$, then $|S| \leq\left|\mathfrak{h}\left(\mathbf{X}_{1}\right)\right|+\left|\mathfrak{h}\left(\mathbf{X}_{2}\right)\right|$.
\rightsquigarrow there is something information-theoretic about this inequality...
Question: is it true that $\mathfrak{h}(\mathbf{X})$ is the unique minimum of the functional $\Psi_{\mathbf{X}}$?

- What is the right value for α, if at all?
- Perhaps another regularization of $\Phi_{\mathbf{X}}$ could work?
- What is the connection with graph cohomology?

The answer to these questions is vital to understanding whether or not our approach extends to $\mathrm{NPC}^{3} \mathrm{~s}$ arising as state spaces of reconfigurable systems.

Proof Sketch

The Hamming cube $\mathbb{H}(S)$ over S. Let $n:=|S|$

- (*)-selections are subsets $A \subset S$ with $A^{*} \cap A=\varnothing$;
- vertices of $\mathbb{H}(S)$ are the $(*)$-selections A with $A^{*} \cup A=S$;
- d-faces of $\mathbb{H}(S)$ correspond to $(*)$-selections B with $|B|=\frac{n-d}{2}$. The vertices of the B-face are: $V_{S}(B):=\left\{A \in \mathbb{H}(S)^{(0)} \mid A \supseteq B\right\}$

Mapping $\mathbf{X}^{(0)}$ into $\mathbb{H}(S)$.
Consider the function $\iota: \mathbf{X}^{(0)} \rightarrow \mathbb{H}(S)$ given by $\iota(x)=\{\sigma \in S \mid \sigma(x)=1\}$.
\rightsquigarrow this is the mapping of x to its "vector of Boolean sensations"
When S is a $\Phi_{\mathbf{X}}$ minimizer, ι extends to a cellular embedding:

Proof Sketch

We study the mapping $\iota: \mathbf{X} \rightarrow \mathbb{H}(S)$. The heart of the argument is:
Lemma. The map ι induces a surjective $(*)$-equivariant map $\varphi: \mathfrak{h}(\mathbf{X}) \rightarrow S$ such that:

1. $\iota(\delta h) \subseteq \delta \varphi(h)$ for all $h \in \mathfrak{h}(\mathbf{X})$.
$\rightsquigarrow \mathbb{H}(S)$-hyperplanes partition the \mathbf{X}-hyperplanes
2. $\iota(\partial h) \subseteq V_{S}(\varphi(h))$ for all $h \in \mathfrak{h}(\mathbf{X})$.
$\leadsto \varphi$ is "orientation-preserving"
3. $\varphi^{-1}\left(\left\{\sigma, \sigma^{*}\right\}\right) \neq \varnothing$ and nested.
$\rightsquigarrow \iota(\mathbf{X})$ intersects every facet of $\mathbb{H}(S)$
\rightsquigarrow halfspace preimages are unions of nested halfspaces
4. φ is injective if and only if $S=\mathfrak{h}(\mathbf{X})$.
\rightsquigarrow This seals the proof.

Thank You!

\leadsto I've recently moved to University of Florida, MAE
\leadsto please contact me at danguralnik@ufl.edu

References

[1] Federico Ardila, Tia Baker, and Rika Yatchak. Moving robots efficiently using the combinatorics of CAT (0) cubical complexes. SIAM Journal on Discrete Mathematics, 28(2):986-1007, 2014.
[2] Federico Ardila, Hanner Bastidas, Cesar Ceballos, and John Guo. The configuration space of a robotic arm in a tunnel. SIAM Journal on Discrete Mathematics, 31(4):2675-2702, 2017.
[3] Martin R. Bridson and André Haefliger. Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999.
[4] Robert Ghrist and Valerie Peterson. The geometry and topology of reconfiguration. Advances in applied mathematics, 38(3):302-323, 2007.
[5] D.P. Guralnik and D.E. Koditschek. Toward a memory model for autonomous topological mapping and navigation: The case of binary sensors and discrete actions. In Communication, Control, and Computing (Allerton), 201250 th Annual Allerton Conference on, pages 936-945, 2012.
[6] D.P. Guralnik and D.E. Koditschek. Iterated Belief Revision Under Resource Constraints: Geometry instead of Logic. preprint, 2018.
[7] Abrams, Aaron and Ghrist, Robert. Finding topology in a factory: configuration spaces. The American mathematical monthly, 109(2):140-150, 2002.
[8] M.A. Roller. Poc Sets, Median Algebras and Group Actions. University of Southampton, Faculty of Math. stud., preprint series, 1998.
[9] Michah Sageev. Ends of groups pairs and non-positively curved cube complexes. Proc. London Math. Soc., 3(71):586-617, 1995.

