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Ghrist–Peterson Reconfigurable Systems [4]
Example. Planar “snake robots”:

A snake in the integer grid = a vertex in configuration space X
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Ghrist–Peterson Reconfigurable Systems [4]
Example. Planar “snake robots”:

A physical snake robot has thickness, motivating the constraints:
no backtracking, no self-intersection.
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Ghrist–Peterson Reconfigurable Systems [4]
Example. Planar “snake robots”:
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Ghrist–Peterson Reconfigurable Systems [4]
Example. Planar “snake robots”:
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Transitions with disjoint supports may be effected independetly and synchronously. . .
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Ghrist–Peterson Reconfigurable Systems [4]
Example. Planar “snake robots”:

Additional constraints may derive from obstacles. . .
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Ghrist–Peterson Reconfigurable Systems [4]
Example. Planar “snake robots”:

. . . not to mention optimality considerations. . .
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Ghrist–Peterson Reconfigurable Systems [4]
Example. Planar “snake robots”:

. . . e.g., wanting to avoid useless alcoves (see top obstacle).
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LEARNING Ghrist–Peterson Reconfigurable Systems [4]
Example. Planar “snake robots”:

. . . e.g., wanting to avoid useless alcoves (see top obstacle).

Problem. Given such a robot, how might it LEARN to navigate in X?

- without prior knowledge of situational constraints;
- only using [sufficient] sensory information?
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What does “learning to navigate in X” mean?
Definition. A SPLIT on a set V is a Boolean function σ : V → {0, 1}. Its
COMPLEMENT is the function σ∗ := 1− σ. A SPLIT SYSTEM on a set V is a
point-separating multi-set of splits on V that is symmetric under
complementation.  This will be our model of the robot’s sensory system
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2. representations Rt of X from the observation vectors (σ(xt))σ∈S;
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Loose Statement of the Overall Problem. Given a reconfigurable system
with configuration space X and a split system S on X(0), find an algorithm
that generates:

1. a walk w = (x0, . . . , xt, . . .) in X;

2. representations Rt of X from the observation vectors (σ(xt))σ∈S;

and gurantees a T ∈ N such that:

I Rt enables efficient navigation in X for t ≥ T;

I Rt does not change for t ≥ T;

I T is as small as possible (as a function of
∣∣S∣∣).
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Definition. A SPLIT on a set V is a Boolean function σ : V → {0, 1}. Its
COMPLEMENT is the function σ∗ := 1− σ. A SPLIT SYSTEM on a set V is a
point-separating multi-set of splits on V that is symmetric under
complementation.  This will be our model of the robot’s sensory system

A More Basic Problem. Given a contender algorithm,

I HOW DO WE QUANTIFY PROGRESS?

I HOW DO WE CERTIFY SUCCESS?

Today we explore one idea:

LEVERAGE THE GEOMETRY & TOPOLOGY OF X
TO ENCODE THE PROBLEM AS AN OPTIMIZATION PROBLEM

OVER THE SPACE OF SPLIT-SYSTEMS ON X(0).
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REVIEW AND PRELIMINARIES
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Reconfigurable Systems and Non-Positive Curvature
Theorem (Ghrist–Peterson [4]). The configuration space X of any
reconfigurable system is a NON-POSITIVELY CURVED cubical
complex (NPC3).

Examples to keep in mind:
I For collision-free navigation of N ≥ 2 particles on a graph

(Abrams–Ghrist [7]), X ∈NPC3 may be obtained.
I X is a cubing for a restricted class of snakes (Ardila et. al. [2]).

Remark. In fact, Ghrist-Peterson’s result is stronger: X is a special NPC cubical complex, excluding a range of pathologies.

This is important for the overall project, but not for this talk, and we omit this discussion in the interest of time.
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Non-Positive Curvature (NPC), see [3]
Definition. A complete geodesic metric space (X, d) is CAT(0), if all
geodesic triangles Mxyz are thinner than their Euclidean comparison
triangles:

Theorem. The metric d of a CAT(0) space (X, d) is convex. In
particular, geodesics are unique, and X is contractible.

Definition. A complete geodesic metric space (X, d) is NPC, if every
x ∈ X has rx > 0 such that the ball B̄d(x, rx) is CAT(0).

Alexandrov’s patchwork (AP): The universal cover X̃ of a NPC
space (X, d) is CAT(0). In particular, it is contractible.
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NPC Cubical Complexes (NPC3)

Theorem (Gromov [3]). A
cubical complex X is NPC if and
only if the link of every cube is a
flag simplicial complex.

Definition (Sageev [9]). A
CUBING is a simply connected
NPC cubical complex.

I Cubings are precisely the CAT(0) cubical complexes, by AP.
I In particular, every cubing is contractible.
I The Cartesian product of two cubings is a cubing.
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Representations for Cubings
Hyperplanes in Cubical Complexes (CCs):

In a CC, edges on opposite sides of a square are said to be parallel.
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Representations for Cubings
Hyperplanes in Cubical Complexes (CCs):

Each parallelism class P yields, via transitive closure. . .
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Representations for Cubings
Hyperplanes in Cubical Complexes (CCs):

Its DUAL HYPERPLANE: the union of perpendicular bisectors of every e ∈ P.
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Representations for Cubings
Hyperplanes in Cubical Complexes (CCs):

Its DUAL HYPERPLANE: the union of perpendicular bisectors of every e ∈ P.

Hyperplanes may separate (blue) or not (e.g. yellow,green). They may self-cross (red).
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Representations for Cubings
Suppose X is a cubing. Sageev-Roller duality [9, 8] provides:

I Every hyperplane in X is a convexly embedded cubing.

I Every hyperplane in X separates X into two convex components—the
HALFSPACES of X corresponding to that hyperplane.

I The graph X(1) is simple (no multiple edges) and bipartite.

I The containment order on h(X), the halfspace system of X, completely
encodes X.  we may regard h(X) as a split system on X(0)
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Suppose X is a cubing. Sageev-Roller duality [9, 8] provides:

I Every hyperplane in X is a convexly embedded cubing.

I Every hyperplane in X separates X into two convex components—the
HALFSPACES of X corresponding to that hyperplane.

I The graph X(1) is simple (no multiple edges) and bipartite.

I The containment order on h(X), the halfspace system of X, completely
encodes X.  we may regard h(X) as a split system on X(0)

Our earlier work [5, 6] shows:

I Given S = h(X), the inclusion order can be learned (e.g. from a
random walk), and leveraged for efficient navigation.

An alternative representation (PIPs [1, 2]) exists, but has some computational disadvantages:

1. the PIP representation encodes a pointed cubing (X, x), x ∈ X(0);

2. two relations (separation, incompatibility) on the collection of hyperplanes are used;

3. both relations change significantly as the observer’s state (the base vertex x) varies.
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PROBLEM STATEMENT AND RESULTS
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Today’s Problem Statement
Final Problem Statement when X is a Cubing. Assume:

I X is the configuration space of an RS;

I S is a vertex-separating collection of Boolean queries on X(0).

Find an algorithm which constructs a walk in X while using the observations
made along this walk to deform S into h(X).

What is required to approach the problem? First and foremost, a
certificate informing us when the job is done, such as:

I A functional ΨX on the space of split systems, minimized by h(X).

I We want h(X) to be the only minimum of ΨX;

I We need an efficient test determining whether ΨX(S) is minimal.

Hopes for the general case?

I Learn a cover X =
⋃

i Xi by cubings, with convex Xi ∩ Xj;

I Cellular sheaf co/homology: global certificate from local ones.
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Current result: Recongnizing a Cubing
Definition. Let Γ be a simple graph and S be a split system on Γ.
For a split σ : VΓ→ 2, the COBOUNDARY of σ is:

δσ := {e ∈ EΓ , σ separates the endpoints of e} (1)

We set:

ΦΓ(S) :=
∑

x∈VΓ

∑
σ∈S

∣∣δ{x} ∩ δσ∣∣ (2)

=
∑
e∈EΓ

∑
σ∈S

(δσ)(e) (3)

=
∑
σ∈S

∣∣δσ∣∣ (4)

=
∑
σ∈S

〈σ,∆σ〉 , (5)

where ∆ denotes the graph Laplacian.

WE WILL HAVE Γ = X(1) , THE 1-SKELETON OF OUR CUBING X.
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Current result: Recongnizing a Cubing
Why ΦX may seem like a good candidate? Focus on (3):

I S is vertex-separating, so every edge contributes at least 2 to ΦX(S).

I For S = h(X), every edge contributes exactly 2 to ΦX(S).

I Hence h(X) minimizes ΦX.
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h(X) has 3 hyperplanes (left), but there is an S with fewer elements (right), contributing to the same value of ΦX(S).
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Main Theorem. Suppose X is a cubing and S is a split system of maximum
cardinality among the split systems which minimize ΦX. Then, S coincides
with h(X).
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Current result: Recongnizing a Cubing
Main Theorem. Suppose X is a cubing and S is a split system of maximum
cardinality among the split systems which minimize ΦX. Then, S coincides
with h(X).

Some remarks:

I For any graph Γ, maximizing
∣∣S∣∣ for a given value of ΦΓ(S) requires

each σ ∈ S to be connected.

I Is ΨX(S) := ΦX(S)− α
∣∣S∣∣, α > 0 the functional we are looking

for?—Some evidence:

• Restricted to trees, it is, for α ∈ (0, 1).
• In fact, for α ∈ (0, 1), a minimizer of ΨΓ must contain all

half-spaces arising from bridges of Γ.
• If S is a ΨX minimizer and

∣∣S∣∣ ≤ ∣∣h(X)
∣∣ then S = h(X).

I By (4), ΨΓ(S) ≥ 0 for all S, but it is not clear anymore whether
ΨX(S) ≥ ΨX(h(X)) when X is a cubing.
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Current result: Recongnizing a Cubing
Main Theorem. Suppose X is a cubing and S is a split system of maximum
cardinality among the split systems which minimize ΦX. Then, S coincides
with h(X).

Corollary: If X1,X2 are cubings, and S is a split system on X := X1 × X2
minimizing ΦX, then

∣∣S∣∣ ≤ ∣∣h(X1)
∣∣+
∣∣h(X2)

∣∣.
 there is something information-theoretic about this inequality. . .

Question: is it true that h(X) is the unique minimum of the functional ΨX?

I What is the right value for α, if at all?

I Perhaps another regularization of ΦX could work?

I What is the connection with graph cohomology?

The answer to these questions is vital to understanding whether or not our
approach extends to NPC3s arising as state spaces of reconfigurable systems.
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Proof Sketch
The Hamming cube H(S) over S. Let n :=

∣∣S∣∣
I (∗)-SELECTIONS are subsets A ⊂ S with A∗ ∩ A = ∅;

I VERTICES OF H(S) are the (∗)-selections A with A∗ ∪ A = S;

I d-FACES OF H(S) correspond to (∗)-selections B with
∣∣B∣∣ = n−d

2 .

The vertices of the B-face are: VS(B) := {A ∈ H(S)
(0) ∣∣A ⊇ B}

Mapping X(0) into H(S).

Consider the function ι : X(0) → H(S) given by ι(x) = {σ ∈ S |σ(x) = 1}.
 this is the mapping of x to its “vector of Boolean sensations”

When S is a ΦX minimizer, ι extends to a cellular embedding:
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Proof Sketch
We study the mapping ι : X→ H(S). The heart of the argument is:

Lemma. The map ι induces a surjective (∗)-equivariant map ϕ : h(X)→ S
such that:

1. ι(δh) ⊆ δϕ(h) for all h ∈ h(X).
 H(S)-hyperplanes partition the X-hyperplanes

2. ι(∂h) ⊆ VS(ϕ(h)) for all h ∈ h(X).
 ϕ is “orientation-preserving”

3. ϕ−1({σ, σ∗}) 6= ∅ and nested.
 ι(X) intersects every facet of H(S)

 halfspace preimages are unions of nested halfspaces

4. ϕ is injective if and only if S = h(X).
 This seals the proof.
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THANK YOU!

 I’ve recently moved to University of Florida, MAE

 please contact me at danguralnik@ufl.edu
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