Ghrist-Peterson configuration spaces, cubings, and Boolean queries

Dan P. Guralnik, joint with Robert Ghrist

University of Pennsylvania ESE and Mathematics

Funded by AFRL-DARPA contract No. FA8650-18-2-7840

November 3, 2019

Example. Planar "snake robots":

A *snake* in the integer grid = a vertex in configuration space \mathbf{X}

Example. Planar "snake robots":

A physical snake robot has thickness, motivating the constraints:

no backtracking, no self-intersection.

Example. Planar "snake robots":

Movement is modelled by local reconfigurations, inducing edges in X: a 'diagonal wiggle'...

Example. Planar "snake robots":

Movement is modelled by local reconfigurations, inducing edges in X: a 'diagonal wiggle'...

Example. Planar "snake robots":

... a turn of the tail (or head).

Example. Planar "snake robots":

... a turn of the tail (or head).

Example. Planar "snake robots":

Here is another wiggle.

Example. Planar "snake robots":

Here is another wiggle.

Example. Planar "snake robots":

Transitions with disjoint supports may be effected independetly and synchronously...

Example. Planar "snake robots":

Transitions with disjoint supports may be effected independetly and synchronously...

Example. Planar "snake robots":

Additional constraints may derive from obstacles...

Example. Planar "snake robots":

... not to mention optimality considerations...

Example. Planar "snake robots":

...e.g., wanting to avoid useless alcoves (see top obstacle).

LEARNING Ghrist–Peterson Reconfigurable Systems [4]

Example. Planar "snake robots":

...e.g., wanting to avoid useless alcoves (see top obstacle).

Problem. Given such a robot, how might it LEARN to navigate in X?

LEARNING Ghrist–Peterson Reconfigurable Systems [4]

Example. Planar "snake robots":

...e.g., wanting to avoid useless alcoves (see top obstacle).

Problem. Given such a robot, how might it LEARN to navigate in X?

- without prior knowledge of situational constraints;

LEARNING Ghrist–Peterson Reconfigurable Systems [4]

Example. Planar "snake robots":

...e.g., wanting to avoid useless alcoves (see top obstacle).

Problem. Given such a robot, how might it LEARN to navigate in X?

- without prior knowledge of situational constraints;
- only using [sufficient] sensory information?

Definition. A SPLIT on a set V is a Boolean function $\sigma : V \to \{0, 1\}$. Its COMPLEMENT is the function $\sigma^* := 1 - \sigma$. A SPLIT SYSTEM on a set V is a point-separating multi-set of splits on V that is symmetric under complementation.

 \rightsquigarrow This will be our model of the robot's sensory system

Definition. A SPLIT on a set *V* is a Boolean function $\sigma: V \to \{0, 1\}$. Its **COMPLEMENT** is the function $\sigma^* := 1 - \sigma$. A SPLIT SYSTEM on a set *V* is a point-separating multi-set of splits on *V* that is symmetric under complementation. \rightsquigarrow This will be our model of the robot's sensory system

Loose Statement of the Overall Problem. Given a reconfigurable system with configuration space **X** and a split system *S* on $\mathbf{X}^{(0)}$, find an algorithm that generates:

Definition. A SPLIT on a set *V* is a Boolean function $\sigma: V \to \{0, 1\}$. Its **COMPLEMENT** is the function $\sigma^* := 1 - \sigma$. A SPLIT SYSTEM on a set *V* is a point-separating multi-set of splits on *V* that is symmetric under complementation. \rightsquigarrow This will be our model of the robot's sensory system

Loose Statement of the Overall Problem. Given a reconfigurable system with configuration space **X** and a split system *S* on $\mathbf{X}^{(0)}$, find an algorithm that generates:

- 1. a walk $w = (x_0, ..., x_t, ...)$ in **X**;
- 2. representations R_t of **X** from the observation vectors $(\sigma(x_t))_{\sigma \in S}$;

Definition. A SPLIT on a set *V* is a Boolean function $\sigma: V \to \{0, 1\}$. Its **COMPLEMENT** is the function $\sigma^* := 1 - \sigma$. A SPLIT SYSTEM on a set *V* is a point-separating multi-set of splits on *V* that is symmetric under complementation. \rightsquigarrow This will be our model of the robot's sensory system

Loose Statement of the Overall Problem. Given a reconfigurable system with configuration space **X** and a split system *S* on $\mathbf{X}^{(0)}$, find an algorithm that generates:

1. a walk $w = (x_0, ..., x_t, ...)$ in **X**;

2. representations R_t of **X** from the observation vectors $(\sigma(x_t))_{\sigma \in S}$;

and gurantees a $T \in \mathbb{N}$ such that:

- R_t enables efficient navigation in **X** for $t \ge T$;
- R_t does not change for $t \ge T$;
- *T* is as small as possible (as a function of |S|).

Definition. A SPLIT on a set *V* is a Boolean function $\sigma : V \to \{0, 1\}$. Its COMPLEMENT is the function $\sigma^* := 1 - \sigma$. A SPLIT SYSTEM on a set *V* is a point-separating multi-set of splits on *V* that is symmetric under complementation.

 \rightsquigarrow This will be our model of the robot's sensory system

- A More Basic Problem. Given a contender algorithm,
 - ► HOW DO WE QUANTIFY PROGRESS?
 - ► HOW DO WE CERTIFY SUCCESS?

Definition. A SPLIT on a set *V* is a Boolean function $\sigma: V \to \{0, 1\}$. Its **COMPLEMENT** is the function $\sigma^* := 1 - \sigma$. A SPLIT SYSTEM on a set *V* is a point-separating multi-set of splits on *V* that is symmetric under complementation. \rightsquigarrow This will be our model of the robot's sensory system

• This will be but model of the tobol's sensory syste

- A More Basic Problem. Given a contender algorithm,
 - ► HOW DO WE QUANTIFY PROGRESS?
 - ► HOW DO WE CERTIFY SUCCESS?

Today we explore one idea:

Leverage the geometry & topology of ${\bf X}$ to encode the problem as an optimization problem over the space of split-systems on ${\bf X}^{(0)}.$

REVIEW AND PRELIMINARIES

Reconfigurable Systems and Non-Positive Curvature

Theorem (Ghrist–Peterson [4]). *The configuration space* **X** *of any reconfigurable system is a* **NON-POSITIVELY CURVED** *cubical complex* (NPC³).

Examples to keep in mind:

- For collision-free navigation of N ≥ 2 particles on a graph (Abrams–Ghrist [7]), X ∈NPC³ may be obtained.
- ▶ X is a cubing for a restricted class of snakes (Ardila *et. al.* [2]).

Remark. In fact, Ghrist-Peterson's result is stronger: X is a special NPC cubical complex, excluding a range of pathologies.

This is important for the overall project, but not for this talk, and we omit this discussion in the interest of time.

Non-Positive Curvature (NPC), see [3]

Definition. A complete geodesic metric space (X, d) is CAT(0), if all geodesic triangles $\triangle xyz$ are thinner than their Euclidean comparison triangles: in X: $in E^2$:

Theorem. The metric d of a CAT(0) space (X, d) is convex. In particular, geodesics are unique, and X is contractible.

Definition. A complete geodesic metric space (X, d) is NPC, if every $x \in X$ has $r_x > 0$ such that the ball $\overline{B}_d(x, r_x)$ is CAT(0).

Alexandrov's patchwork (AP): The universal cover \tilde{X} of a NPC space (X, d) is CAT(0). In particular, it is contractible.

NPC Cubical Complexes (NPC³)

Theorem (Gromov [3]). *A cubical complex* **X** *is NPC if and only if the link of every cube is a flag simplicial complex.*

Definition (Sageev [9]). A **CUBING** is a simply connected NPC cubical complex.

- Cubings are precisely the CAT(0) cubical complexes, by AP.
- ► In particular, every cubing is contractible.
- The Cartesian product of two cubings is a cubing.

Hyperplanes in Cubical Complexes (CCs):

In a CC, edges on opposite sides of a square are said to be parallel.

Hyperplanes in Cubical Complexes (CCs):

Each parallelism class P yields, via transitive closure...

Hyperplanes in Cubical Complexes (CCs):

Its **DUAL HYPERPLANE**: the union of perpendicular bisectors of every $e \in P$.

Hyperplanes in Cubical Complexes (CCs):

Its **DUAL HYPERPLANE**: the union of perpendicular bisectors of every $e \in P$.

Hyperplanes may separate (blue) or not (e.g. yellow,green). They may self-cross (red).

Suppose X is a cubing. Sageev-Roller duality [9, 8] provides:

- Every hyperplane in **X** is a convexly embedded cubing.
- ► Every hyperplane in X separates X into two convex components—the HALFSPACES of X corresponding to that hyperplane.
- The graph $\mathbf{X}^{(1)}$ is simple (no multiple edges) and bipartite.
- ► The containment order on h(X), the halfspace system of X, completely encodes X.
 ~> we may regard h(X) as a split system on X⁽⁰⁾

Suppose X is a cubing. Sageev-Roller duality [9, 8] provides:

- Every hyperplane in **X** is a convexly embedded cubing.
- ► Every hyperplane in X separates X into two convex components—the HALFSPACES of X corresponding to that hyperplane.
- The graph $\mathbf{X}^{(1)}$ is simple (no multiple edges) and bipartite.
- ► The containment order on h(X), the halfspace system of X, completely encodes X.
 → we may regard h(X) as a split system on X⁽⁰⁾

Our earlier work [5, 6] shows:

► Given S = h(X), the inclusion order can be learned (e.g. from a random walk), and leveraged for efficient navigation.

An alternative representation (PIPs [1, 2]) exists, but has some computational disadvantages:

- 1. the PIP representation encodes a pointed cubing $(\mathbf{X}, x), x \in \mathbf{X}^{(0)}$;
- 2. two relations (separation, incompatibility) on the collection of hyperplanes are used;
- 3. both relations change significantly as the observer's state (the base vertex x) varies.

PROBLEM STATEMENT AND RESULTS

Today's Problem Statement

Final Problem Statement when X is a Cubing. Assume:

- **X** is the configuration space of an RS;
- S is a vertex-separating collection of Boolean queries on $\mathbf{X}^{(0)}$.

Find an algorithm which constructs a walk in \mathbf{X} while using the observations made along this walk to deform S into $\mathfrak{h}(\mathbf{X})$.

What is required to approach the problem? First and foremost, a certificate informing us when the job is done, such as:

- A functional $\Psi_{\mathbf{X}}$ on the space of split systems, minimized by $\mathfrak{h}(\mathbf{X})$.
- We want $\mathfrak{h}(\mathbf{X})$ to be the only minimum of $\Psi_{\mathbf{X}}$;
- We need an efficient test determining whether $\Psi_{\mathbf{X}}(S)$ is minimal.

Hopes for the general case?

- Learn a cover $\mathbf{X} = \bigcup_i \mathbf{X}_i$ by cubings, with convex $\mathbf{X}_i \cap \mathbf{X}_j$;
- Cellular sheaf co/homology: global certificate from local ones.

Definition. Let Γ be a simple graph and *S* be a split system on Γ . For a split $\sigma: V\Gamma \to \mathbf{2}$, the COBOUNDARY of σ is:

 $\delta \sigma := \{ e \in E\Gamma, \ \sigma \text{ separates the endpoints of } e \}$ (1)

We set:

$$\Phi_{\Gamma}(S) := \sum_{x \in V\Gamma} \sum_{\sigma \in S} \left| \delta\{x\} \cap \delta\sigma \right|$$
(2)

$$= \sum_{e \in E\Gamma} \sum_{\sigma \in S} (\delta\sigma)(e) \tag{3}$$

$$= \sum_{\sigma \in S} \left| \delta \sigma \right| \tag{4}$$

$$= \sum_{\sigma \in S} \langle \sigma, \Delta \sigma \rangle , \qquad (5)$$

where Δ denotes the graph Laplacian.

We will have $\Gamma = \mathbf{X}^{(1)}$, the 1-skeleton of our cubing \mathbf{X} .

Why Φ_X may seem like a good candidate? Focus on (3):

- S is vertex-separating, so every edge contributes at least 2 to $\Phi_{\mathbf{X}}(S)$.
- For $S = \mathfrak{h}(X)$, every edge contributes exactly 2 to $\Phi_{\mathbf{X}}(S)$.
- Hence $\mathfrak{h}(X)$ minimizes Φ_X .

Why Φ_X may seem like a good candidate? Focus on (3):

- S is vertex-separating, so every edge contributes at least 2 to $\Phi_{\mathbf{X}}(S)$.
- For $S = \mathfrak{h}(X)$, every edge contributes exactly 2 to $\Phi_{\mathbf{X}}(S)$.
- Hence $\mathfrak{h}(X)$ minimizes Φ_X .

But Φ_X is NOT a good candidate. $\mathfrak{h}(X)$ is NOT the only minimizer of Φ_X :

 $\mathfrak{h}(\mathbf{X})$ has 3 hyperplanes (left), but there is an S with fewer elements (right), contributing to the same value of $\Phi_{\mathbf{X}}(S)$.

Why Φ_X may seem like a good candidate? Focus on (3):

- S is vertex-separating, so every edge contributes at least 2 to $\Phi_{\mathbf{X}}(S)$.
- For $S = \mathfrak{h}(X)$, every edge contributes exactly 2 to $\Phi_{\mathbf{X}}(S)$.
- Hence $\mathfrak{h}(X)$ minimizes Φ_X .

But Φ_X is NOT a good candidate. $\mathfrak{h}(X)$ is NOT the only minimizer of Φ_X :

 $\mathfrak{h}(\mathbf{X})$ has 3 hyperplanes (left), but there is an S with fewer elements (right), contributing to the same value of $\Phi_{\mathbf{X}}(S)$.

Main Theorem. Suppose **X** is a cubing and *S* is a split system of maximum cardinality among the split systems which minimize $\Phi_{\mathbf{X}}$. Then, *S* coincides with $\mathfrak{h}(\mathbf{X})$.

Main Theorem. Suppose **X** is a cubing and S is a split system of maximum cardinality among the split systems which minimize $\Phi_{\mathbf{X}}$. Then, S coincides with $\mathfrak{h}(\mathbf{X})$.

Some remarks:

- For any graph Γ, maximizing |S| for a given value of Φ_Γ(S) requires each σ ∈ S to be connected.
- Is Ψ_X(S) := Φ_X(S) − α|S|, α > 0 the functional we are looking for?—Some evidence:
 - Restricted to trees, it is, for $\alpha \in (0, 1)$.
 - In fact, for α ∈ (0, 1), a minimizer of Ψ_Γ must contain all half-spaces arising from bridges of Γ.
 - If S is a $\Psi_{\mathbf{X}}$ minimizer and $|S| \leq |\mathfrak{h}(\mathbf{X})|$ then $S = \mathfrak{h}(\mathbf{X})$.
- By (4), Ψ_Γ(S) ≥ 0 for all S, but it is not clear anymore whether Ψ_X(S) ≥ Ψ_X(𝔥(X)) when X is a cubing.

Main Theorem. Suppose **X** is a cubing and S is a split system of maximum cardinality among the split systems which minimize $\Phi_{\mathbf{X}}$. Then, S coincides with $\mathfrak{h}(\mathbf{X})$.

Corollary: If $\mathbf{X}_1, \mathbf{X}_2$ are cubings, and *S* is a split system on $\mathbf{X} := \mathbf{X}_1 \times \mathbf{X}_2$ minimizing $\Phi_{\mathbf{X}}$, then $|S| \le |\mathfrak{h}(\mathbf{X}_1)| + |\mathfrak{h}(\mathbf{X}_2)|$.

 \rightsquigarrow there is something information-theoretic about this inequality...

Question: is it true that $\mathfrak{h}(\mathbf{X})$ is the unique minimum of the functional $\Psi_{\mathbf{X}}$?

- What is the right value for α , if at all?
- Perhaps another regularization of $\Phi_{\mathbf{X}}$ could work?
- What is the connection with graph cohomology?

The answer to these questions is vital to understanding whether or not our approach extends to NPC³s arising as state spaces of reconfigurable systems.

Proof Sketch

The Hamming cube $\mathbb{H}(S)$ over *S*. Let n := |S|

- (*)-SELECTIONS are subsets $A \subset S$ with $A^* \cap A = \emptyset$;
- ▶ VERTICES OF $\mathbb{H}(S)$ are the (*)-selections *A* with $A^* \cup A = S$;
- ► *d*-FACES OF $\mathbb{H}(S)$ correspond to (*)-selections *B* with $|B| = \frac{n-d}{2}$. The vertices of the *B*-face are: $V_S(B) := \{A \in \mathbb{H}(S)^{(0)} | A \supseteq B\}$

Mapping $\mathbf{X}^{(0)}$ into $\mathbb{H}(S)$.

Consider the function $\iota : \mathbf{X}^{(0)} \to \mathbb{H}(S)$ given by $\iota(x) = \{\sigma \in S \mid \sigma(x) = 1\}$. \rightsquigarrow this is the mapping of x to its "vector of Boolean sensations"

When S is a Φ_X minimizer, ι extends to a cellular embedding:

Proof Sketch

We study the mapping $\iota : \mathbf{X} \to \mathbb{H}(S)$. The heart of the argument is:

Lemma. The map ι induces a surjective (*)-equivariant map $\varphi : \mathfrak{h}(\mathbf{X}) \to S$ such that:

1.
$$\iota(\delta h) \subseteq \delta \varphi(h)$$
 for all $h \in \mathfrak{h}(\mathbf{X})$.

 $\rightsquigarrow \mathbb{H}(S)$ -hyperplanes partition the **X**-hyperplanes

2.
$$\iota(\partial h) \subseteq V_{\mathcal{S}}(\varphi(h))$$
 for all $h \in \mathfrak{h}(\mathbf{X})$.

 $\rightsquigarrow \varphi$ is "orientation-preserving"

3.
$$\varphi^{-1}(\{\sigma,\sigma^*\}) \neq \emptyset$$
 and nested.

 $\rightsquigarrow \iota(\mathbf{X})$ intersects every facet of $\mathbb{H}(S)$

→ halfspace preimages are unions of nested halfspaces

4. φ is injective if and only if $S = \mathfrak{h}(\mathbf{X})$.

 \rightsquigarrow This seals the proof.

THANK YOU!

References

- Federico Ardila, Tia Baker, and Rika Yatchak. Moving robots efficiently using the combinatorics of CAT (0) cubical complexes. SIAM Journal on Discrete Mathematics, 28(2):986–1007, 2014.
- [2] Federico Ardila, Hanner Bastidas, Cesar Ceballos, and John Guo. The configuration space of a robotic arm in a tunnel. SIAM Journal on Discrete Mathematics, 31(4):2675–2702, 2017.
- [3] Martin R. Bridson and André Haefliger. Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999.
- [4] Robert Ghrist and Valerie Peterson. The geometry and topology of reconfiguration. Advances in applied mathematics, 38(3):302–323, 2007.
- [5] D.P. Guralnik and D.E. Koditschek. Toward a memory model for autonomous topological mapping and navigation: The case of binary sensors and discrete actions. In Communication, Control, and Computing (Allerton), 2012 50th Annual Allerton Conference on, pages 936–945, 2012.
- [6] D.P. Guralnik and D.E. Koditschek. Iterated Belief Revision Under Resource Constraints: Geometry instead of Logic. preprint, 2018.
- [7] Abrams, Aaron and Ghrist, Robert. Finding topology in a factory: configuration spaces. The American mathematical monthly, 109(2):140–150, 2002.
- [8] M.A. Roller. Poc Sets, Median Algebras and Group Actions. University of Southampton, Faculty of Math. stud., preprint series, 1998.
- [9] Michah Sageev. Ends of groups pairs and non-positively curved cube complexes. Proc. London Math. Soc., 3(71):586–617, 1995.