Topological estimates of the number of vertices of minimal triangulations

by Dejan Govc Wacław Marzantowicz

Petar Pavešić

Sectional Meeting: $3^{\text {rd }}$ of November 2019

The research gives new results on the notion of covering type introduced and studied in M. Karoubi, C. Weibel, On the covering type of a space, arXiv 1612.00532v1, L'Enseignement Math. (2016), 62 (2016), p. 457-474.

The research gives new results on the notion of covering type introduced and studied in M. Karoubi, C. Weibel, On the covering type of a space, arXiv 1612.00532v1, L'Enseignement Math. (2016), 62 (2016), p. 457-474.

based on an article published in Discrete Computational Geometry

Definitions

Definition

- $\left\{U_{i}\right\}$ is a good cover of X if $U_{i_{1}} \cap U_{i_{2}} \cap \cdots \cap U_{i_{n}} \neq \emptyset \Longrightarrow U_{i_{1}} \cap U_{i_{2}} \cdots \cap U_{i_{n}}$ is contractible.

Definitions

Definition

- $\left\{U_{i}\right\}$ is a good cover of X if $U_{i_{1}} \cap U_{i_{2}} \cap \cdots \cap U_{i_{n}} \neq \emptyset \quad \Longrightarrow \quad U_{i_{1}} \cap U_{i_{2}} \cdots \cap U_{i_{n}}$ is contractible.
- The strict covering type of a given space X, is the minimal cardinality of a good cover for X.

Definitions

Definition

- $\left\{U_{i}\right\}$ is a good cover of X if $U_{i_{1}} \cap U_{i_{2}} \cap \cdots \cap U_{i_{n}} \neq \emptyset \quad \Longrightarrow \quad U_{i_{1}} \cap U_{i_{2}} \cdots \cap U_{i_{n}}$ is contractible.
- The strict covering type of a given space X, is the minimal cardinality of a good cover for X.
- We define the covering type of X as the minimal size of a good cover of spaces that are homotopy equivalent to X :

$$
\operatorname{ct}(X):=\min \{\operatorname{sct}(Y) \mid Y \simeq X\}
$$

Definitions

Definition

- $\left\{U_{i}\right\}$ is a good cover of X if $U_{i_{1}} \cap U_{i_{2}} \cap \cdots \cap U_{i_{n}} \neq \emptyset \quad \Longrightarrow \quad U_{i_{1}} \cap U_{i_{2}} \cdots \cap U_{i_{n}}$ is contractible.
- The strict covering type of a given space X, is the minimal cardinality of a good cover for X.
- We define the covering type of X as the minimal size of a good cover of spaces that are homotopy equivalent to X :

$$
\operatorname{ct}(X):=\min \{\operatorname{sct}(Y) \mid Y \simeq X\}
$$

Examples: $\operatorname{ct}(X)=1 \Leftrightarrow X$ contractible. $\operatorname{ct}(X)=2 \Leftrightarrow X$ disjoint union of two contractible sets.

Examples

Examples

- $\operatorname{ct}\left(S^{1}\right)=3 \quad$ (picture);

Examples

Examples

- $\operatorname{ct}\left(S^{1}\right)=3 \quad$ (picture);
- $\operatorname{ct}\left(S^{2}\right)=4$, in general $\operatorname{ct}\left(S^{n}\right)=n+2$;

Examples

Examples

- $\operatorname{ct}\left(S^{1}\right)=3 \quad$ (picture);
- $\operatorname{ct}\left(S^{2}\right)=4$, in general $\operatorname{ct}\left(S^{n}\right)=n+2$;
- $\operatorname{ct}(\infty)=4$, Bernoulli lemniscate (picture);

Examples

Examples

- $\operatorname{ct}\left(S^{1}\right)=3 \quad$ (picture);
- $\operatorname{ct}\left(S^{2}\right)=4$, in general $\operatorname{ct}\left(S^{n}\right)=n+2$;
- $\operatorname{ct}(\infty)=4$, Bernoulli lemniscate (picture);
- B_{h}, or M_{h}, : the bouquet of h circles

$$
\operatorname{sct}\left(B_{h}\right)=h+2 \text { (picture) }
$$

Examples

Examples

- $\operatorname{ct}\left(S^{1}\right)=3 \quad$ (picture);
- $\operatorname{ct}\left(S^{2}\right)=4$, in general $\operatorname{ct}\left(S^{n}\right)=n+2$;
- $\operatorname{ct}(\infty)=4$, Bernoulli lemniscate (picture);
- B_{h}, or M_{h}, : the bouquet of h circles $\operatorname{sct}\left(B_{h}\right)=h+2$ (picture)
- [14]: S_{g} oriented surface of genus $g>2$

$$
2 \sqrt{g} \leq \operatorname{ct}\left(S_{g}\right) \leq 3.5 \sqrt{g}
$$

The exact value is given by Borghini \& Minian [3]

Examples

Examples

- $\operatorname{ct}\left(S^{1}\right)=3 \quad$ (picture);
- $\operatorname{ct}\left(S^{2}\right)=4$, in general $\operatorname{ct}\left(S^{n}\right)=n+2$;
- $\operatorname{ct}(\infty)=4$, Bernoulli lemniscate (picture);
- B_{h}, or M_{h}, : the bouquet of h circles $\operatorname{sct}\left(B_{h}\right)=h+2$ (picture)
- [14]: S_{g} oriented surface of genus $g>2$

$$
2 \sqrt{g} \leq \operatorname{ct}\left(S_{g}\right) \leq 3.5 \sqrt{g}
$$

The exact value is given by Borghini \& Minian [3]

- [14]: $n+2 \leq \operatorname{ct}\left(\mathbb{R} P^{n}\right) \leq 2 m+3$ wrong, we show right estimate from below.
- the Hawaiian earring X does not admit any good covers, i.e $\operatorname{sct}(X)=\infty$.

Corollary (of the Aleksandroff map $\varphi: X \rightarrow|N(\mathcal{U})|$ and theorem)

A paracompact $s p$. admits a finite good cover iff it is homotopy equivalent to a finite (simplicial or CW) complex.

Corollary (of the Aleksandroff map $\varphi: X \rightarrow|N(\mathcal{U})|$ and theorem)
A paracompact sp. admits a finite good cover iff it is homotopy equivalent to a finite (simplicial or CW) complex.
gives $X \sim|N(\mathcal{U})|$.
Theorem (Karoubi-Weibel)
X finite $C W$ complex $\Rightarrow \operatorname{ct}(X)=$ min. elements of a good closed cover of some complex $Y, Y \sim X$.

Definition

- For a finite polyhedron $\Delta(P):=\min \left\{\operatorname{card}\left(K^{(0)}\right)| | K \mid \approx P\right\}$.

Definition

- For a finite polyhedron $\Delta(P):=\min \left\{\operatorname{card}\left(K^{(0)}\right)| | K \mid \approx P\right\}$.
- For a PL-manifold M we define $\Delta^{P L}(M):=\min \left\{\operatorname{card}\left(K^{(0)}\right) \mid K\right.$ is a PL-triangulation of $\left.M\right\}$.

Definition

- For a finite polyhedron $\Delta(P):=\min \left\{\operatorname{card}\left(K^{(0)}\right)| | K \mid \approx P\right\}$.
- For a PL-manifold M we define $\Delta^{P L}(M):=\min \left\{\operatorname{card}\left(K^{(0)}\right) \mid K\right.$ is a PL-triangulation of $\left.M\right\}$.
- If X has the homotopy type of compact polyhedron we introduce a homotopy analogue of $\Delta(P)$ as $\Delta^{\simeq}(X):=\min \{\Delta(P) \mid P \simeq X\}$.

Computing $\Delta(P)$ and its variants is a hard and intensively studied problem of combinatorial topology - see Datta [7] and Lutz [17] for surveys of the vast body of work related to this question.
Clearly, $\Delta^{\simeq}(P)$ is a lower bound for other invariants, since
$\Delta^{\simeq}(P) \leq \Delta(P)$, and if M is a PL-manifold $\Delta^{\simeq}(M) \leq \Delta^{P L}(M)$.

Theorem (4.)

If X has the homotopy type of a finite polyhedron, then

$$
\operatorname{ct}(X)=\Delta^{\simeq}(X)
$$

Theorem (4.)

If X has the homotopy type of a finite polyhedron, then

$$
\operatorname{ct}(X)=\Delta^{\simeq}(X)
$$

Conjecture (GMP - 2017)

If M is a closed $P L$-manifold, then $\operatorname{ct}(M)=\Delta^{P L}(M)$.
$\operatorname{ct}(X)$ versus cat (X) - the Lusternik-Schnirelman category.
Definition (Lusternik-Schnirelman category, Geometric category)

- $\operatorname{cat}(X):=\min$. elements of a cover $\mathcal{U}=\left\{U_{i}\right\}$ such that $U_{i} \rightsquigarrow *$ in X.
$\operatorname{ct}(X)$ versus cat (X) - the Lusternik-Schnirelman category.

Definition (Lusternik-Schnirelman category, Geometric category)

- $\operatorname{cat}(X):=\min$. elements of a cover $\mathcal{U}=\left\{U_{i}\right\}$ such that $U_{i} \rightsquigarrow *$ in X.
- geometric category, defined as the minimal cardinality of a cover of X by open contractible sets.
The geometric category is not a homotopy invariant of X, so one defines the strong category, $\operatorname{Cat}(X)$ as the min of geometric categories of $Y \simeq X$.
$\operatorname{ct}(X)$ versus cat (X) - the Lusternik-Schnirelman category.
Definition (Lusternik-Schnirelman category, Geometric category)
- $\operatorname{cat}(X):=\min$. elements of a cover $\mathcal{U}=\left\{U_{i}\right\}$ such that $U_{i} \rightsquigarrow *$ in X.
- geometric category, defined as the minimal cardinality of a cover of X by open contractible sets.
The geometric category is not a homotopy invariant of X, so one defines the strong category, $\operatorname{Cat}(X)$ as the min of geometric categories of $Y \simeq X$.

$$
\operatorname{cat}(X) \leq \operatorname{Cat}(X) \leq \operatorname{cat}(X)+1(\text { see }[6, \text { Proposition } 3.15])
$$

Example

$$
\operatorname{ct}\left(S^{n}\right)=n+2, \quad \operatorname{cat}\left(S^{n}\right)=2-\text { the difference arbitrary large. }
$$

Examples

- For the wedge on n circles W_{n} we have $\operatorname{sct}\left(W_{n}\right)=n+2$, while $\operatorname{ct}\left(W_{n}\right)=\left\lceil\frac{3+\sqrt{1+8 n}}{2}\right\rceil$ (see [14, Proposition 4.1])
- $\operatorname{cat}(X)=n>1 \Rightarrow \operatorname{dim} X=n-1$

If X admits a good cover \mathcal{U} of order $\leq n$ (i.e., at most n different sets have non-empty intersection), then X is homotopy equivalent to a simplicial complex of dimension $n-1$.

Estimates by L-S category

Theorem (GMP)

$$
\operatorname{ct}(X) \geq \frac{1}{2} \operatorname{cat}(X)(\operatorname{cat}(X)+1)
$$

Estimates by L-S category

Theorem (GMP)

$$
\operatorname{ct}(X) \geq \frac{1}{2} \operatorname{cat}(X)(\operatorname{cat}(X)+1)
$$

For real and complex projective spaces
$\operatorname{cat}\left(\mathbb{R} P^{n}\right)=\operatorname{cat}\left(\mathbb{C} P^{n}\right)=n+1$
Corollary

$$
\begin{aligned}
& \operatorname{ct}\left(\mathbb{R} P^{n}\right) \geq \frac{(n+1)(n+2)}{2} \\
& \operatorname{ct}\left(\mathbb{C} P^{n}\right) \geq \frac{(n+1)(n+2)}{2}
\end{aligned}
$$

We show that the above can be improved.

More fine version of previous theorem

Theorem

$$
\begin{aligned}
& \operatorname{ct}(X) \geq 1+\operatorname{hdim}(X)+\frac{1}{2} \operatorname{cat}(X)(\operatorname{cat}(X)-1) \\
& \text { where hdim}(X) \text { is the homotopy dimension. }
\end{aligned}
$$

More fine version of previous theorem

Theorem

$$
\begin{aligned}
& \operatorname{ct}(X) \geq 1+\operatorname{hdim}(X)+\frac{1}{2} \operatorname{cat}(X)(\operatorname{cat}(X)-1) \\
& \text { where } \operatorname{hdim}(X) \text { is the homotopy dimension. }
\end{aligned}
$$

A triangulation of a manifold is combinatorial if the links of all vertices are triangulated spheres.

Corollary

Let K be a combinatorial triangulation of a d-dimensional and c-connected closed manifold M. Then K has at least

$$
1+d+c \cdot(\operatorname{cat}(M)-2)+\frac{1}{2} \operatorname{cat}(M)(\operatorname{cat}(M)-1) \text { vertices. }
$$

We used the known inequality (see [6])

$$
\begin{equation*}
\operatorname{cat}(V) \leq \frac{\operatorname{hdim}(V)}{c+1}+1 \tag{1}
\end{equation*}
$$

For given n-tuple of positive integers $i_{1}, \ldots, i_{n} \in \mathbb{N}$ we say that X admits an essential $\left(i_{1}, \ldots, i_{n}\right)$-product if there are coh. classes $x_{k} \in H^{i k}(X)$, such that $x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n}$ is non-trivial.

For given n-tuple of positive integers $i_{1}, \ldots, i_{n} \in \mathbb{N}$ we say that X admits an essential $\left(i_{1}, \ldots, i_{n}\right)$-product if there are coh. classes $x_{k} \in H^{i_{k}}(X)$, such that $x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n}$ is non-trivial.
If X admits an essen. $\left(i_{1}, \ldots, i_{n}\right)$-prod. then so does every $Y \simeq X$.

For given n-tuple of positive integers $i_{1}, \ldots, i_{n} \in \mathbb{N}$ we say that X admits an essential $\left(i_{1}, \ldots, i_{n}\right)$-product if there are coh. classes $x_{k} \in H^{i_{k}}(X)$, such that $x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n}$ is non-trivial.
If X admits an essen. $\left(i_{1}, \ldots, i_{n}\right)$-prod. then so does every $Y \simeq X$.

Definition

We define the covering type of the n-tuple of positive integers
$\left(i_{1}, \ldots, i_{n}\right)$ as
$\operatorname{ct}\left(i_{1}, \ldots, i_{n}\right):=\min \left\{\operatorname{ct}(X) \mid X\right.$ admits an ess. $\left(i_{1}, \ldots, i_{n}\right)-$ prod. $\}$

For given n-tuple of positive integers $i_{1}, \ldots, i_{n} \in \mathbb{N}$ we say that X admits an essential $\left(i_{1}, \ldots, i_{n}\right)$-product if there are coh. classes $x_{k} \in H^{i_{k}}(X)$, such that $x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n}$ is non-trivial.
If X admits an essen. $\left(i_{1}, \ldots, i_{n}\right)$-prod. then so does every $Y \simeq X$.

Definition

We define the covering type of the n-tuple of positive integers
$\left(i_{1}, \ldots, i_{n}\right)$ as
$\operatorname{ct}\left(i_{1}, \ldots, i_{n}\right):=\min \left\{\operatorname{ct}(X) \mid X\right.$ admits an ess. $\left(i_{1}, \ldots, i_{n}\right)-$ prod. $\}$

Proposition

$$
\operatorname{ct}(X) \geq \max \left\{\operatorname{ct}\left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right) \mid \text { for all } 0 \neq x_{1} \cdots x_{n} \in H^{*}(X)\right\}
$$

Lemma

If X has non-trivial reduced homology groups in different dimensions, then $\operatorname{ct}(X) \geq \operatorname{hdim}(X)+3$.

Lemma

If X has non-trivial reduced homology groups in different dimensions, then $\operatorname{ct}(X) \geq \operatorname{hdim}(X)+3$.

We are ready to prove the main result of this section, an 'arithmetic' estimate for the covering type of a n-tuple:

Theorem

$$
\operatorname{ct}\left(i_{1}, \ldots i_{n}\right) \geq i_{1}+2 i_{2}+\cdots+n i_{n}+(n+1)
$$

If $i_{1}, \ldots i_{n}$ are not all equal, then

$$
\operatorname{ct}\left(i_{1}, \ldots i_{n}\right) \geq i_{1}+2 i_{2}+\cdots+n i_{n}+(n+2)
$$

Corollary

The covering type of projective spaces is bounded by: $\operatorname{ct}\left(\mathbb{R} P^{n}\right) \geq \frac{1}{2}(n+1)(n+2), \operatorname{ct}\left(\mathbb{C} P^{n}\right) \geq(n+1)^{2}$, $\operatorname{ct}\left(\mathbb{H} P^{n}\right) \geq(n+1)(2 n+1)$.

Corollary

The covering type of projective spaces is bounded by: $\operatorname{ct}\left(\mathbb{R} P^{n}\right) \geq \frac{1}{2}(n+1)(n+2), \operatorname{ct}\left(\mathbb{C} P^{n}\right) \geq(n+1)^{2}$, $\operatorname{ct}\left(\mathbb{H} P^{n}\right) \geq(n+1)(2 n+1)$.

For $\mathbb{R} P^{n}$ and $\mathbb{C} P^{n}$ these numbers are equal to the best know estimate obtained by use of the combinatorial methods, so that numerically it reproves the result of [2]. For $\mathbb{H} P^{n}$ there is not known an estimate of the cardinality of vertices of a "minimal" triangulation.

Corollary

The covering type of projective spaces is bounded by: $\operatorname{ct}\left(\mathbb{R} P^{n}\right) \geq \frac{1}{2}(n+1)(n+2), \operatorname{ct}\left(\mathbb{C} P^{n}\right) \geq(n+1)^{2}$, $\operatorname{ct}\left(\mathbb{H} P^{n}\right) \geq(n+1)(2 n+1)$.

For $\mathbb{R} P^{n}$ and $\mathbb{C} P^{n}$ these numbers are equal to the best know estimate obtained by use of the combinatorial methods, so that numerically it reproves the result of [2]. For $\mathbb{H} P^{n}$ there is not known an estimate of the cardinality of vertices of a "minimal" triangulation.

Corollary

For a product $X=S^{i_{1}} \times \cdots \times S^{i_{n}}$, where $i_{1} \leq \ldots \leq i_{n}$ are not all equal, Thm. 13 yields $\operatorname{ct}(X) \geq i_{1}+2 i_{2}+\cdots+n i_{n}+(n+2)$, while for a product of spheres of the same dimension we get

$$
\operatorname{ct}\left(\left(S^{i}\right)^{n}\right) \geq \frac{(n+1)(n i+2)}{2} .
$$

The last estimate can be sometimes improved by ad-hoc methods

Corollary

The covering type of unitary groups is estimated as

$$
\operatorname{ct}(U(n)) \geq \frac{1}{6}\left(4 n^{3}+3 n^{2}+5 n+12\right) \quad \text { and } \quad \operatorname{ct}(S U(n)) \geq \frac{1}{6}\left(4 n^{3}-3 n^{2}+5 n+6\right) .
$$

These \uparrow estimates are new.

Recently: we described a lower bound for the number of simplices that are needed to triangulate the Grassmann manifold $G_{k}\left(\mathbb{R}^{n}\right)$.

Recently: we described a lower bound for the number of simplices that are needed to triangulate the Grassmann manifold $G_{k}\left(\mathbb{R}^{n}\right)$.

We showed that the number of vertices and top-dimensional simplices grow (at least) as a cubical function of n and that the number of all simplices grows exponentially in n.

Our computation has three main ingredients.
(1) R. Stong's [19] determination of the height of the first Stiefel-Whitney class w_{1} in $H^{*}\left(G_{k}\left(\mathbb{R}^{n}\right)\right)$, and of non-trivial products in the top dimension of $H^{*}\left(G_{k}\left(\mathbb{R}^{n}\right)\right)$ for $k=2,3,4$.

Our computation has three main ingredients.
(1) R. Stong's [19] determination of the height of the first Stiefel-Whitney class w_{1} in $H^{*}\left(G_{k}\left(\mathbb{R}^{n}\right)\right)$, and of non-trivial products in the top dimension of $H^{*}\left(G_{k}\left(\mathbb{R}^{n}\right)\right)$ for $k=2,3,4$.
(2) Lower bounds for the number of vertices in a triangul. of space whose coh. admits certain non-trivial products [10].

Our computation has three main ingredients.
(1) R. Stong's [19] determination of the height of the first Stiefel-Whitney class w_{1} in $H^{*}\left(G_{k}\left(\mathbb{R}^{n}\right)\right)$, and of non-trivial products in the top dimension of $H^{*}\left(G_{k}\left(\mathbb{R}^{n}\right)\right)$ for $k=2,3,4$.
(2) Lower bounds for the number of vertices in a triangul. of space whose coh. admits certain non-trivial products [10].
(3) The Lower Bound Theorem (LBT) of Gromov [11], Kalai [13], or Klee and I. Novik [15] that estimates the number of faces in a triangulation of a (pseudo)manifold with a given number of vertices.

Theorem (LBT)

Let K be a triangulation of a d-dimensional closed manifold, and denote by $f_{i}, i=0, \ldots, d$ the number of i-dimensional simplices in K. Then

$$
f_{i} \geq f_{0} \cdot\binom{d+1}{i}-i \cdot\binom{d+2}{i+1} \text { for } i=0, \ldots, d-1
$$

and

$$
f_{d} \geq f_{0} \cdot d-(d+2)(d-1)
$$

Moreover, by adding up all inequalities we obtain an estimate for the total number of simplices in K :

$$
f_{0}+\ldots+f_{d} \geq 2\left[\left(f_{0}-d\right)\left(2^{d+1}-1\right)+1\right] .
$$

Surprising: Grassmannians admit simple decompositions into the

 Schubert cells.Surprising: Grassmannians admit simple decompositions into the Schubert cells.
The standard decomposition of $G_{k}\left(\mathbb{R}^{n}\right)$ has $\binom{n}{k}$ cells (of which only one 0-dimensional and one top-dimensional cell). A contrary

Example (The number of simplices in any triangulation is huge:)

$G_{3}\left(\mathbb{R}^{9}\right)$ is 18 -dimensional and every triangulation requires at least 185 vertices. As a consequence, every triangulation of $G_{3}\left(\mathbb{R}^{9}\right)$ must have at least

$$
185 \cdot 18-(18+2) \cdot(18-1)=2990
$$

facets and at least

$$
2\left((185-18) \cdot\left(2^{19}-1\right)+1\right)>175 \cdot 10^{6}
$$

simplices!
$G_{4}\left(\mathbb{R}^{9}\right)$ is 20-dimensional and $\Delta\left(G_{4}\left(\mathbb{R}^{9}\right)\right) \geq 242$. Therefore, every triangulation of $G_{4}\left(\mathbb{R}^{9}\right)$ requires more than 4422 facets and more than $930 \cdot 10^{6}$ simplices. The number of 4-dimensional simplices, whose links should be examined to compute the first rational Pontrjagin class by means of Gaifulin's formula exceeds 1.3 million.

References

(K. Appel and W. Haken, Every planar map is four colorable, Contemp. Math 98 (1989).
P. Arnoux, A. Marin, The Kühnel triangulation of the complex projective plane from the view-point of complex cristallography (part II), Memoirs of Fac. Sc., Kyushu Univ. Ser. A 45 (1991), 167-244.
E. Borghini E. G. Minian, The covering type of closed surfaces and minimal triangulations, arXiv:math/171202833.

國 U. Brehm, W. Kühnel, Combinatorial manifolds with few vertices, Topology 26, 465-473 (1987).
B. Bagchi, B. Datta, Minimal triangulations of sphere bundles over the circle, J. Combin. Theory Ser. A 115 (2008), no. 5, 737- 752.

围 O．Cornea，G．Lupton，J．Oprea，D．Tanre，Lusternik－Schnirelmann category，Mathematical Surveys and Monograp hs，vol．103， （American Mathematical Society，2008）．

圊 B．Datta，Minimal triangulations of manifolds， arXiv：math／0701735．
（ A．A．Gaifullin，Configuration spaces，bistellar moves，and combinatorial formulas for the first Pontryagin class．，Proc．Steklov Inst．Math． 268 （2010），70－86．
目 I．M．Gel＇fand，R．D．MacPherson，A combinatorial formula for the Pontrjagin classes，Bull．Amer．Math．Soc．（N．S．） 26 （1992）， 304－309．
目 D．Govc，W．Marzantowicz and P．Pavešić，Estimates of covering type and the number of vertices of minimal triangulations，Discr． Comp．Geom．（2019）， https：／／doi．org／10．1007／s00454－019－00092－z

围 M．Gromov，Partial Differential Relations，（Springer，Berlin， Heidelberg，New York，1986）．

围 A．Hatcher，Algebraic Topology，（Cambridge University Press， 2002）．

围 G．Kalai，Rigidity and the lower bound theorem 1，Invent．Math． 88 （1987），125－151．

M．Karoubi，C．Weibel，On the covering type of a space， arXiv／math：161200532，L＇Enseignement Math．， 62 （2016）， 457－474．

目 S．Klee，I．Novik Face enumeration on simplicial complexes， arXiv：math／150506380．

围 M. Jungerman, G. Ringel, Minimal triangulations on orientable surfaces, Acta Math. Volume 145 (1980), 121-154.
F. Lutz, Triangulated Manifolds with Few Vertices: Combinatorial Manifolds, arXiv:math/0506372.
F. Lutz, Triangulated manifolds with few vertices and vertex-transitive group actions. (German summary) Dissertation, Technischen Universität Berlin, Berlin, 1999. Berichte aus der Mathematik. [Reports from Mathematics] Verlag Shaker, Aachen, 1999. vi +137 pp .

围 R. Stong, Cup products in Grassmannians, Top. Appl. 13 (1982), 103-113.
(1) M. Tancer, Intersection patterns of convex sets via simplicial complexes, a survey, arXiv 1102.0417v2
(M. Tancer, D. Tonkonog, Nerves of good covers are algorithmically unrecognizable. (English summary) SIAM J. Comput. 42 (2013), no. 4, 1697-1719.

围 G. W. Whitehead, Elements of Homotopy Theory, Graduate Texts in Mathematics, vol. 61, (Springer, Berlin, 1978).

