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Definitions

Definition

{Ui} is a good cover of X if
Ui1 ∩ Ui2 ∩ · · · ∩ Uin 6= ∅ =⇒ Ui1 ∩ Ui2 · · · ∩ Uin is
contractible.

The strict covering type of a given space X , is the minimal
cardinality of a good cover for X .

We define the covering type of X as the minimal size of a
good cover of spaces that are homotopy equivalent to X :

ct(X ) := min{sct(Y ) | Y ' X}.

Examples: ct(X ) = 1 ⇔ X contractible.
ct(X ) = 2 ⇔ X disjoint union of two contractible sets.
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Examples

Examples

ct(S1) = 3 (picture);

ct(S2) = 4, in general ct(Sn) = n + 2;

ct(∞) = 4, Bernoulli lemniscate (picture);

Bh, or Mh, : the bouquet of h circles
sct(Bh) = h + 2 (picture)

[14]: Sg oriented surface of genus g > 2

2
√
g ≤ ct(Sg )≤ 3.5

√
g

The exact value is given by Borghini & Minian [3]

[14]: n + 2 ≤ ct(RPn) ≤ 2m + 3 wrong,
we show right estimate from below.

the Hawaiian earring X does not admit any good covers, i.e
sct(X ) =∞.
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Corollary (of the Aleksandroff map ϕ : X → |N(U)| and theorem)

A paracompact sp. admits a finite good cover iff it is homotopy
equivalent to a finite (simplicial or CW) complex.

gives X ∼ |N(U)|.

Theorem (Karoubi-Weibel)

X finite CW complex ⇒ ct(X ) = min. elements of a good closed
cover of some complex Y , Y ∼ X .
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Definition

For a finite polyhedron ∆(P) := min
{
card(K (0))

∣∣ |K | ≈ P
}
.

For a PL-manifold M we define
∆PL(M) := min

{
card(K (0))

∣∣K is a PL-triangulation of M
}
.

If X has the homotopy type of compact polyhedron we
introduce a homotopy analogue of ∆(P) as
∆'(X ) := min{∆(P) | P ' X} .

Computing ∆(P) and its variants is a hard and intensively studied
problem of combinatorial topology - see Datta [7] and Lutz [17] for
surveys of the vast body of work related to this question.
Clearly, ∆'(P) is a lower bound for other invariants, since

∆'(P) ≤ ∆(P), and if M is a PL-manifold ∆'(M) ≤ ∆PL(M).
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Theorem (4 .)

If X has the homotopy type of a finite polyhedron, then

ct(X ) = ∆'(X )

Conjecture (GMP - 2017)

If M is a closed PL-manifold, then ct(M) = ∆PL(M).
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ct(X ) versus cat(X ) - the Lusternik-Schnirelman category.

Definition (Lusternik-Schnirelman category, Geometric category)

cat(X ) := min. elements of a cover U = {Ui} such that
Ui  ∗ in X .

geometric category, defined as the minimal cardinality of a
cover of X by open contractible sets.
The geometric category is not a homotopy invariant of X , so
one defines the strong category, Cat(X ) as the min of
geometric categories of Y ' X .

cat(X ) ≤ Cat(X ) ≤ cat(X ) + 1 (see [6, Proposition 3.15])

Example

ct(Sn) = n + 2, cat(Sn) = 2 - the difference arbitrary large.
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ct(X ) versus cat(X ) - the Lusternik-Schnirelman category.

Definition (Lusternik-Schnirelman category, Geometric category)

cat(X ) := min. elements of a cover U = {Ui} such that
Ui  ∗ in X .

geometric category, defined as the minimal cardinality of a
cover of X by open contractible sets.
The geometric category is not a homotopy invariant of X , so
one defines the strong category, Cat(X ) as the min of
geometric categories of Y ' X .

cat(X ) ≤ Cat(X ) ≤ cat(X ) + 1 (see [6, Proposition 3.15])

Example

ct(Sn) = n + 2, cat(Sn) = 2 - the difference arbitrary large.

by Dejan Govc Wac law Marzantowicz Petar Pavešić Topological estimates
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Examples

For the wedge on n circles Wn we have sct(Wn) = n + 2,

while ct(Wn) =
⌈
3+
√
1+8n
2

⌉
(see [14, Proposition 4.1])

cat(X ) = n > 1 ⇒ dimX = n − 1
If X admits a good cover U of order ≤ n (i.e., at most n
different sets have non-empty intersection), then X is
homotopy equivalent to a simplicial complex of dimension
n − 1.
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Estimates by L-S category

Theorem (GMP)

ct(X ) ≥ 1

2
cat(X ) (cat(X ) + 1)

For real and complex projective spaces
cat(RPn) = cat(CPn) = n + 1

Corollary

ct(RPn) ≥ (n + 1)(n + 2)

2

ct(CPn) ≥ (n + 1)(n + 2)

2

We show that the above can be improved.
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More fine version of previous theorem

Theorem

ct(X ) ≥ 1 + hdim(X ) + 1
2 cat(X )(cat(X )− 1) ,

where hdim(X ) is the homotopy dimension.

A triangulation of a manifold is combinatorial if the
links of all vertices are triangulated spheres.

Corollary

Let K be a combinatorial triangulation of a d-dimensional and
c-connected closed manifold M. Then K has at least

1 + d + c · (cat(M)− 2) + 1
2 cat(M)(cat(M)− 1) vertices.

We used the known inequality (see [6])

cat(V ) ≤ hdim(V )

c + 1
+ 1 (1)
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For given n-tuple of positive integers i1, . . . , in ∈ N we say that X
admits an essential (i1, . . . , in)-product if there are coh. classes
xk ∈ H ik (X ), such that x1 · x2 · . . . · xn is non-trivial.

If X admits an essen. (i1, . . . , in)-prod. then so does every Y ' X .

Definition

We define the covering type of the n-tuple of positive integers
(i1, . . . , in) as
ct(i1, . . . , in) := min

{
ct(X ) | X admits an ess. (i1, . . . , in)−prod.

}
Proposition

ct(X ) ≥ max{ct(|x1|, . . . , |xn|) | for all 0 6= x1 · · · xn ∈ H∗(X )}
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Lemma

If X has non-trivial reduced homology groups in different
dimensions, then ct(X ) ≥ hdim(X ) + 3.

We are ready to prove the main result of this section, an
’arithmetic’ estimate for the covering type of a n-tuple:

Theorem

ct(i1, . . . in) ≥ i1 + 2 i2 + · · · + nin + (n + 1)

If i1, . . . in are not all equal, then

ct(i1, . . . in) ≥ i1 + 2 i2 + · · · + nin + (n + 2)
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Corollary

The covering type of projective spaces is bounded by:
ct(RPn) ≥ 1

2(n + 1)(n + 2), ct(CPn) ≥ (n + 1)2,
ct(HPn) ≥ (n + 1)(2n + 1).

For RPn and CPn these numbers are equal to the best know
estimate obtained by use of the combinatorial methods, so that
numerically it reproves the result of [2]. For HPn there is not
known an estimate of the cardinality of vertices of a ”minimal”
triangulation.

Corollary

For a product X = S i1 × · · · × S in , where i1 ≤ . . . ≤ in are not all
equal, Thm. 13 yields ct(X ) ≥ i1 + 2 i2 + · · · + nin + (n + 2),
while for a product of spheres of the same dimension we get

ct((S i )n) ≥ (n+1)(ni+2)
2 .

The last estimate can be sometimes improved by ad-hoc methods
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Corollary

The covering type of unitary groups is estimated as

ct(U(n)) ≥ 1

6
(4n3 +3n2 +5n+12) and ct(SU(n)) ≥ 1

6
(4n3 − 3n2 +5n+6).

These ↑ estimates are new.
—————————————————————-
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Recently: we described a lower bound for the number of
simplices that are needed to triangulate the Grassmann
manifold Gk(Rn).

We showed that the number of vertices and top-dimensional
simplices grow (at least) as a cubical function of n and that the
number of all simplices grows exponentially in n.
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Our computation has three main ingredients.

1 R. Stong’s [19] determination of the height of the first
Stiefel-Whitney class w1 in H∗(Gk(Rn)), and of non-trivial
products in the top dimension of H∗(Gk(Rn)) for k = 2, 3, 4.

2 Lower bounds for the number of vertices in a triangul. of
space whose coh. admits certain non-trivial products [10].

3 The Lower Bound Theorem (LBT) of Gromov [11], Kalai [13],
or Klee and I. Novik [15] that estimates the number of faces
in a triangulation of a (pseudo)manifold with a given number
of vertices.
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in a triangulation of a (pseudo)manifold with a given number
of vertices.
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Theorem (LBT)

Let K be a triangulation of a d-dimensional closed manifold, and
denote by fi , i = 0, . . . , d the number of i-dimensional simplices in
K . Then

fi ≥ f0 ·
(
d + 1

i

)
− i ·

(
d + 2

i + 1

)
for i = 0, . . . , d − 1

and
fd ≥ f0 · d − (d + 2)(d − 1).

Moreover, by adding up all inequalities we obtain an estimate for
the total number of simplices in K :

f0 + . . . + fd ≥ 2[(f0 − d)(2d+1 − 1) + 1].
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Surprising: Grassmannians admit simple decompositions into the
Schubert cells.

The standard decomposition of Gk(Rn) has
(n
k

)
cells (of which only

one 0-dimensional and one top-dimensional cell). A contrary

Example (The number of simplices in any triangulation is huge:)

G3(R9) is 18-dimensional and every triangulation requires at least
185 vertices. As a consequence, every triangulation of G3(R9)
must have at least

185 · 18− (18 + 2) · (18− 1) = 2990
facets and at least

2((185− 18) · (219 − 1) + 1) > 175 · 106

simplices!
G4(R9) is 20-dimensional and ∆(G4(R9)) ≥ 242. Therefore, every
triangulation of G4(R9) requires more than 4422 facets and more
than 930 · 106 simplices. The number of 4-dimensional simplices,
whose links should be examined to compute the first rational
Pontrjagin class by means of Gaifulin’s formula exceeds 1.3 million.
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Thank you !

, Dziȩkujȩ !

by Dejan Govc Wac law Marzantowicz Petar Pavešić Topological estimates
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