Geodesic complexity

David Recio-Mitter

Lehigh University

AMS Sectional Meeting
University of Florida 2019

Motion planning problem

R.O.B.O.T. Comics

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Topological complexity

Preliminary definition

A continuous motion planner assigns to each pair of points on a space X a path between them in a continuous way. In other words, it is a section of the free path fibration

$$
P X \rightarrow X \times X \quad, \quad \gamma \mapsto(\gamma(0), \gamma(1)) .
$$

Definition (Farber '03) (ENR version)

The topological complexity $\mathrm{TC}(X)$ of a space X is the smallest k for which there exists a decomposition

$$
X \times X=E_{0} \cup \ldots \cup E_{k}, \quad E_{i} \cap E_{j}=\emptyset \text { if } i \neq j
$$

such that there exists a local section of the free path fibration over each E_{i}.

Geodesic complexity

Definition

Let $(X, \mathrm{~d})$ be a metric space. We say a path γ is a minimal geodesic if $\ell(\gamma)=\mathrm{d}(\gamma(0), \gamma(1))$. Let $G X \subset P X$ consist of the minimal geodesics. Restricting the free path fibration to $G X$ results in a map

$$
G X \rightarrow X \times X
$$

Definition

The geodesic complexity $\mathrm{GC}(X)$ of a space X is the smallest k for which there exists a decomposition

$$
X \times X=E_{0} \cup \ldots \cup E_{k}, \quad E_{i} \cap E_{j}=\emptyset \text { if } i \neq j
$$

such that there exists a local section of $G X \rightarrow X \times X$ over each E_{i}.

Comparing TC and GC

Question

Clearly $\mathrm{TC}(X) \leq \mathrm{GC}(X)$, but when is $\mathrm{TC}(X)=\mathrm{GC}(X)$?

TC of spheres

Theorem (Farber '03)

$$
\mathrm{TC}\left(S^{n}\right)= \begin{cases}1 & \text { if } n \text { is odd } \\ 2 & \text { if } n \geq 2 \text { is even }\end{cases}
$$

Corollary

Because the optimal motion planners given by Farber are geodesic:

$$
\mathrm{GC}\left(S^{n}\right)=\mathrm{TC}\left(S^{n}\right)
$$

TC of projective spaces

Theorem (Farber-Tabachnikov-Yuzvinsky '03)

$$
\mathrm{TC}\left(\mathbb{R} P^{n}\right)=\left\{\begin{array}{cl}
n & \text { if } n=1,3,7 \\
\operatorname{Immdim}\left(\mathbb{R} P^{n}\right) & \text { otherwise }
\end{array}\right.
$$

Corollary

Because the motions planners given by Farber-Tabachnikov-Yuzvinsky can be modified to be geodesic:

$$
\mathrm{GC}\left(\mathbb{R} P^{n}\right)=\mathrm{TC}\left(\mathbb{R} P^{n}\right)
$$

Comparing TC and GC

Question

We just saw that in some cases $\mathrm{TC}(X)=\mathrm{GC}(X)$. Can we find a metric space X such that $\mathrm{TC}(X)<\mathrm{GC}(X)$?

Elongated 3-sphere

Example

Let \tilde{S}^{3} be the result of glueing two caps on the cylinder $S^{2} \times I$. Clearly every geodesic motion planner on \tilde{S}^{3} restricts to a motion planner on S^{2}. Therefore:

$$
\operatorname{GC}\left(\tilde{S}^{3}\right) \geq \mathrm{TC}\left(S^{2}\right)=2>1=\mathrm{TC}\left(S^{3}\right)=\mathrm{TC}\left(\tilde{S}^{3}\right)
$$

Totally convex submanifolds

Definition

A subspace Y of a metric space X is said to be convex if for any pair of points $x, y \in Y$, every minimal geodesic in X between x and y lies entirely in Y.

Theorem (R.-M.)

If Y is a convex subspace of X, then $\mathrm{TC}(Y) \leq \mathrm{GC}(Y) \leq \mathrm{GC}(X)$.

Theorem (R.-M.)

There exists a metric d on $S^{2 k+1}$ such that $\mathrm{GC}\left(S^{2 k+1}, \mathrm{~d}\right)=2 k$ but $\mathrm{TC}\left(S^{2 k+1}\right)=1$.

Totally convex submanifolds

Theorem (R.-M.)

There exists a metric d on $S^{2 k+1}$ such that $\mathrm{GC}\left(S^{2 k+1}, \mathrm{~d}\right)=2 k$ but $\mathrm{TC}\left(S^{2 k+1}\right)=1$.

Remark

This shows that the difference between $\mathrm{GC}\left(S^{2 k+1}, \mathrm{~d}\right)$ and $\mathrm{TC}\left(S^{2 k+1}\right)$ can be arbitrarily large. This shows that $\mathrm{GC}(X)$ is very different from the efficient topological complexity $\ell T C(X)$ of Błaszczyk-Carrasquel, for which they show that $T C(X) \leq \ell T C(X) \leq T C(X)+1$ if X is a closed Riemannian manifold ($\ell T C(X)$ is only defined for Riemannian manifolds).

Klein bottle

Theorem (Cohen-Vandembroucq '18)

If K denotes the Klein bottle then $\mathrm{TC}(K)=4$.

Theorem (R.-M.)
If K denotes the Klein bottle (with the flat metric) then $\mathrm{GC}(K)=4$.

We show the lower bound directly. The lower bound $\mathrm{TC}(K) \geq 4$ automatically extends to $\mathrm{GC}(K) \geq \mathrm{TC}(K) \geq 4$, but it is very hard to prove.

Motion planning on K

Proof of $\mathrm{GC}(K)=4$

Definition

The cut locus of X is the subset $C \subset X \times X$ consisting of the pairs (x, y) for which there is more than one minimal geodesic γ from x to y.

Definition

The cut locus slice of a point x in X is the subset X consisting of all y such that (x, y) is in the cut locus C.

Proof of $\mathrm{GC}(K)=4$

Figure: Cut locus slice for $x=(1 / 2,1 / 2)$ in the Klein bottle.

Proof of $\mathrm{GC}(K)=4$

Figure: Cut locus slice for x going "up" from $(1 / 2,1 / 2)$ to $(1 / 2,1)$ in the Klein bottle. When x moves away from $(1 / 2,1 / 2)$ a new edge appears at the vertex and then it keeps growing, while another edge gets shorter.

Proof of $\mathrm{GC}(K)=4$

Definition

Let $S_{k} \subset K \times K$ consist of all pairs (x, y) such that there are precisely k minimal geodesics from x to y. Note that $G K \rightarrow K \times K$ is a branched covering. Over each S_{k} the map $G K \rightarrow K \times K$ restricts to a k-sheeted covering.

Figure: Neighborhood of y for (x, y) Figure: Neighborhood of y for (x, y) in S_{2}. Two sheets coming together. in S_{3}. Three sheets coming together.

Flat sphere

Definition

Let W^{2} be the boundary of a 3-cube with the flat metric. We may call it a flat sphere. This example was suggested by Jarek Kędra.

> Theorem (R.-M.)
> $\mathrm{GC}\left(W^{2}\right) \geq 3>\mathrm{TC}\left(W^{2}\right)=\mathrm{TC}\left(S^{2}\right)=2$

Flat sphere

Figure: Pair (x, y) in S_{6}.Figure: Pair (x, y) in S_{4}.Figure: Pair (x, y) in S_{2}.

Further work

(1) Can we use $\mathrm{GC}(K)$ to compute $\mathrm{TC}(K)$? There are currently two proofs of $\mathrm{TC}(K)=4$ and both are very technical.
(2) Compute the geodesic complexity of configuration spaces.
(3) There are upper bounds $\mathrm{TC}(X) \leq \operatorname{cat}(X \times X) \leq \operatorname{dim}(X \times X)$. We know that the bound involving the LS-category $\operatorname{cat}(X \times X)$ does not hold for $\mathrm{GC}(X)$.

* Does $\mathrm{GC}(X) \leq \operatorname{dim}(X \times X)$ still hold?
* Is there a bound $\mathrm{GC}(X) \leq \operatorname{Gcat}(X \times X)$?

Thank you!

