Geodesic complexity

David Recio-Mitter

Lehigh University

AMS Sectional Meeting University of Florida 2019

Motion planning problem

Preliminary definition

A continuous motion planner assigns to each pair of points on a space X a path between them in a continuous way. In other words, it is a section of the **free path fibration**

$$PX \rightarrow X \times X$$
, $\gamma \mapsto (\gamma(0), \gamma(1)).$

Definition (Farber '03) (ENR version)

The **topological complexity** TC(X) of a space X is the smallest k for which there exists a decomposition

$$X \times X = E_0 \cup \ldots \cup E_k, \quad E_i \cap E_j = \emptyset$$
 if $i \neq j$,

such that there exists a local section of the free path fibration over each E_i .

Definition

Let (X, d) be a metric space. We say a path γ is a *minimal geodesic* if $\ell(\gamma) = d(\gamma(0), \gamma(1))$. Let $GX \subset PX$ consist of the minimal geodesics. Restricting the free path fibration to GX results in a map

 $GX \rightarrow X \times X$.

Definition

The **geodesic complexity** GC(X) of a space X is the smallest k for which there exists a decomposition

 $X \times X = E_0 \cup \ldots \cup E_k, \quad E_i \cap E_j = \emptyset \text{ if } i \neq j,$

such that there exists a local section of $GX \rightarrow X \times X$ over each E_i .

Question

Clearly $TC(X) \leq GC(X)$, but when is TC(X) = GC(X)?

Theorem (Farber '03)

$$\mathsf{TC}(S^n) = egin{cases} 1 & ext{if } n ext{ is odd} \\ 2 & ext{if } n \geq 2 ext{ is even} \end{cases}$$

Corollary

Because the optimal motion planners given by Farber are geodesic:

 $GC(S^n) = TC(S^n)$

Theorem (Farber–Tabachnikov–Yuzvinsky '03)

$$\mathsf{TC}(\mathbb{R}P^n) = \begin{cases} n & \text{if } n = 1, 3, 7\\ \mathsf{Immdim}(\mathbb{R}P^n) & \text{otherwise} \end{cases}$$

Corollary

Because the motions planners given by Farber–Tabachnikov–Yuzvinsky can be modified to be geodesic:

$$GC(\mathbb{R}P^n) = TC(\mathbb{R}P^n)$$

Question

We just saw that in some cases TC(X) = GC(X). Can we find a metric space X such that TC(X) < GC(X)?

Elongated 3-sphere

Example

Let \tilde{S}^3 be the result of glueing two caps on the cylinder $S^2 \times I$. Clearly every geodesic motion planner on \tilde{S}^3 restricts to a motion planner on S^2 . Therefore:

$$\mathsf{GC}(\tilde{S}^3) \geq \mathsf{TC}(S^2) = 2 > 1 = \mathsf{TC}(S^3) = \mathsf{TC}(\tilde{S}^3)$$

Definition

A subspace Y of a metric space X is said to be **convex** if for any pair of points $x, y \in Y$, every minimal geodesic in X between x and y lies entirely in Y.

Theorem (R.-M.)

If Y is a convex subspace of X, then $TC(Y) \leq GC(Y) \leq GC(X)$.

Theorem (R.-M.)

There exists a metric d on S^{2k+1} such that $GC(S^{2k+1}, d) = 2k$ but $TC(S^{2k+1}) = 1$.

Theorem (R.-M.)

There exists a metric d on S^{2k+1} such that $GC(S^{2k+1}, d) = 2k$ but $TC(S^{2k+1}) = 1$.

Remark

This shows that the difference between $GC(S^{2k+1}, d)$ and $TC(S^{2k+1})$ can be arbitrarily large. This shows that GC(X) is very different from the efficient topological complexity $\ell TC(X)$ of Błaszczyk–Carrasquel, for which they show that $TC(X) \leq \ell TC(X) \leq TC(X) + 1$ if X is a closed Riemannian manifold ($\ell TC(X)$ is only defined for Riemannian manifolds).

Theorem (Cohen–Vandembroucq '18)

If K denotes the Klein bottle then TC(K) = 4.

Theorem (R.-M.)

If K denotes the Klein bottle (with the flat metric) then GC(K) = 4.

We show the **lower bound** directly. The lower bound $TC(K) \ge 4$ automatically extends to $GC(K) \ge TC(K) \ge 4$, but it is very hard to prove.

Definition

The **cut locus** of X is the subset $C \subset X \times X$ consisting of the pairs (x, y) for which there is more than one minimal geodesic γ from x to y.

Definition

The **cut locus slice** of a point x in X is the subset X consisting of all y such that (x, y) is in the cut locus C.

Proof of GC(K) = 4

Figure: Cut locus slice for x = (1/2, 1/2) in the Klein bottle.

Proof of GC(K) = 4

Figure: Cut locus slice for x going "up" from (1/2, 1/2) to (1/2, 1) in the Klein bottle. When x moves away from (1/2, 1/2) a new edge appears at the vertex and then it keeps growing, while another edge gets shorter.

Proof of GC(K) = 4

Definition

Let $S_k \subset K \times K$ consist of all pairs (x, y) such that there are precisely k minimal geodesics from x to y. Note that $GK \to K \times K$ is a branched covering. Over each S_k the map $GK \to K \times K$ restricts to a k-sheeted covering.

Figure: Neighborhood of y for (x, y) Figure: Neighborhood of y for (x, y) in S_2 . Two sheets coming together. in S_3 . Three sheets coming together.

David Recio-Mitter (Lehigh)

Geodesic complexity

AMS Sectional Meeting University of Florida

Definition

Let W^2 be the boundary of a 3-cube with the flat metric. We may call it a **flat sphere**. This example was suggested by Jarek Kędra.

Theorem (R.-M.)

$$\mathsf{GC}(W^2) \ge 3 > \mathsf{TC}(W^2) = \mathsf{TC}(S^2) = 2$$

Figure: Pair (x, y) in S_6 . Figure: Pair (x, y) in S_4 . Figure: Pair (x, y) in S_2 .

- Can we use GC(K) to compute TC(K)? There are currently two proofs of TC(K) = 4 and both are very technical.
- ② Compute the geodesic complexity of configuration spaces.
- Solution There are upper bounds TC(X) ≤ cat(X × X) ≤ dim(X × X). We know that the bound involving the LS-category cat(X × X) does not hold for GC(X).
 - * Does $GC(X) \leq \dim(X \times X)$ still hold?
 - * Is there a bound $GC(X) \leq Gcat(X \times X)$?

Thank you!