The Relative Topological Complexity of Pairs of Right-Angled Artin Groups

Robert Short
John Carroll University

November 2, 2019

Intuition - Motion Planning Algorithm

Figure 1: For motion planning algorithms, the input is a pair of points in $X \times X$, and the output is a continuous choice of path between them.

Intuition - Relative Motion Planning

Figure 2: For this variant on motion planning algorithms, the input is a pair of points in $X \times Y$ and the output is a path between them.

Relative Topological Complexity of a Pair

Relative Topological Complexity of a Pair

Let $Y \subset X$. Let $P_{X \times Y}$ be the space of paths in X with endpoints in $X \times Y$.

Relative Topological Complexity of a Pair

Let $Y \subset X$. Let $P_{X \times Y}$ be the space of paths in X with endpoints in $X \times Y$. There is a fibration $\pi^{\prime}: P_{X \times Y} \rightarrow X \times Y$ where $\pi^{\prime}(\sigma)=(\sigma(0), \sigma(1))$.

Relative Topological Complexity of a Pair

Let $Y \subset X$. Let $P_{X \times Y}$ be the space of paths in X with endpoints in $X \times Y$. There is a fibration $\pi^{\prime}: P_{X \times Y} \rightarrow X \times Y$ where $\pi^{\prime}(\sigma)=(\sigma(0), \sigma(1))$.

Definition

A continuous motion planning algorithm of size n on $X \times Y$ is an partition $\left\{E_{i}\right\}_{i=1}^{n}$ of $X \times Y$ where each E_{i} is a Euclidean Neighborhood Retract, and there exists continuous sections of $\pi^{\prime}, s_{i}: E_{i} \rightarrow P_{X \times Y}$, for each E_{i}.

Relative Topological Complexity of a Pair

Let $Y \subset X$. Let $P_{X \times Y}$ be the space of paths in X with endpoints in $X \times Y$. There is a fibration $\pi^{\prime}: P_{X \times Y} \rightarrow X \times Y$ where $\pi^{\prime}(\sigma)=(\sigma(0), \sigma(1))$.

Definition

A continuous motion planning algorithm of size n on $X \times Y$ is an partition $\left\{E_{i}\right\}_{i=1}^{n}$ of $X \times Y$ where each E_{i} is a Euclidean Neighborhood Retract, and there exists continuous sections of $\pi^{\prime}, s_{i}: E_{i} \rightarrow P_{X \times Y}$, for each E_{i}.

Definition

The relative topological complexity of the pair (X, Y), denoted $\mathrm{TC}(X, Y)$, is the smallest n for which there is a continuous motion planning algorithm of size n on $X \times Y$.

Lower Bound for TC(X, Y)

Lower Bound for TC(X,Y)

Proposition (S., 2018)

If there are elements $v_{1}, \ldots, v_{p} \in \operatorname{ker}\left[H^{*} X \otimes H^{*} Y \rightarrow H^{*} Y\right]$ such that $v_{1} \smile \cdots \smile v_{p} \neq 0$, then $\mathrm{TC}(X, Y)>p$.

Lower Bound for TC(X,Y)

Proposition (S., 2018)

If there are elements $v_{1}, \ldots, v_{p} \in \operatorname{ker}\left[H^{*} X \otimes H^{*} Y \rightarrow H^{*} Y\right]$ such that $v_{1} \smile \cdots \smile v_{p} \neq 0$, then $\mathrm{TC}(X, Y)>p$.

Proposition (S., 2018)

Let $\iota: Y \rightarrow X$ be the inclusion map. Then, $\operatorname{ker}\left[H^{*} X \otimes H^{*} Y \rightarrow H^{*} Y\right]$ is generated as an ideal by elements of the form $\bar{v}=v \otimes 1-1 \otimes \iota^{*}(v)$ where $v \in H^{*} X$.

Relation to LS-Cat and TC

Relation to LS-Cat and TC

```
Proposition (S., 2018)
cat}(X)\leq\textrm{TC}(X,Y)\leq\textrm{TC}(X
```


Relation to LS-Cat and TC

```
Proposition (S., 2018)
cat(X) \leqTC}(X,Y)\leqTC(X
```


Proposition (S., 2018)

$\mathrm{TC}\left(X,\left\{x_{0}\right\}\right)=\operatorname{cat}(X)$ for any $x_{0} \in X$. $\mathrm{TC}(X, X)=\mathrm{TC}(X)$.

Relation to LS-Cat and TC

Proposition (S., 2018)

 $\operatorname{cat}(X) \leq \mathrm{TC}(X, Y) \leq \mathrm{TC}(X)$
Proposition (S., 2018)

$\mathrm{TC}\left(X,\left\{x_{0}\right\}\right)=\operatorname{cat}(X)$ for any $x_{0} \in X$. $\mathrm{TC}(X, X)=\mathrm{TC}(X)$.

Question

Is each $\operatorname{cat}(X) \leq k \leq \mathrm{TC}(X)$ realized as $\mathrm{TC}(X, Y)=k$ by some $Y \subset X$?

Example: Spheres

Example: Spheres

Theorem (Farber, 2003)
$\mathrm{TC}\left(S^{n}\right)= \begin{cases}2 & \text { if } n \text { is odd; and } \\ 3 & \text { if } n \text { is even. }\end{cases}$

Example: Spheres

Theorem (Farber, 2003)

$$
\mathrm{TC}\left(S^{n}\right)= \begin{cases}2 & \text { if } n \text { is odd; and } \\ 3 & \text { if } n \text { is even }\end{cases}
$$

Proposition (S., 2018)

Let $Y \subsetneq S^{n}$. Then,

$$
\mathrm{TC}\left(S^{n}, Y\right)=2
$$

Example: Spheres

Theorem (Farber, 2003)

$$
\mathrm{TC}\left(S^{n}\right)= \begin{cases}2 & \text { if } n \text { is odd; and } \\ 3 & \text { if } n \text { is even }\end{cases}
$$

Proposition (S., 2018)

Let $Y \subsetneq S^{n}$. Then,

$$
\mathrm{TC}\left(S^{n}, Y\right)=2
$$

In particular, if $n>m$,

$$
\mathrm{TC}\left(S^{n}, S^{m}\right)=2
$$

Right-Angled Artin Groups

Right-Angled Artin Groups

Definition

A group G is a right-angled Artin group, sometimes called a graph group, if it has a presentation with generators $s_{1}, \ldots s_{n}$ and where all relations are of the form $s_{i} s_{j}=s_{j} s_{i}$ for select index pairs $i<j$.

Right-Angled Artin Groups

Definition

A group G is a right-angled Artin group, sometimes called a graph group, if it has a presentation with generators $s_{1}, \ldots s_{n}$ and where all relations are of the form $s_{i} s_{j}=s_{j} s_{i}$ for select index pairs $i<j$.

Recurring Examples:

Right-Angled Artin Groups

Definition

A group G is a right-angled Artin group, sometimes called a graph group, if it has a presentation with generators $s_{1}, \ldots s_{n}$ and where all relations are of the form $s_{i} s_{j}=s_{j} s_{i}$ for select index pairs $i<j$.

Recurring Examples:

- The free group on n generators, $\mathbb{F}(n)$, is a RAAG.

Right-Angled Artin Groups

Definition

A group G is a right-angled Artin group, sometimes called a graph group, if it has a presentation with generators $s_{1}, \ldots s_{n}$ and where all relations are of the form $s_{i} s_{j}=s_{j} s_{i}$ for select index pairs $i<j$.

Recurring Examples:

- The free group on n generators, $\mathbb{F}(n)$, is a RAAG.
- The free abelian group on n generators, $\mathbb{Z}(n)$, is a RAAG.

Right-Angled Artin Groups

Definition

A group G is a right-angled Artin group, sometimes called a graph group, if it has a presentation with generators $s_{1}, \ldots s_{n}$ and where all relations are of the form $s_{i} s_{j}=s_{j} s_{i}$ for select index pairs $i<j$.

Recurring Examples:

- The free group on n generators, $\mathbb{F}(n)$, is a RAAG.
- The free abelian group on n generators, $\mathbb{Z}(n)$, is a RAAG.
- $A=\langle a, b, c, d \mid a b=b a, a d=d a, b d=d b, b c=c b\rangle$ is a RAAG.

The Graph of a Graph Group

For a RAAG, G, we can construct a finite simple graph Γ_{G} where:

The Graph of a Graph Group

For a RAAG, G, we can construct a finite simple graph Γ_{G} where:

- $\mathcal{V}\left(\Gamma_{G}\right)=\left\{s_{1}, \ldots, s_{n}\right\}$, and

The Graph of a Graph Group

For a RAAG, G, we can construct a finite simple graph Γ_{G} where:

- $\mathcal{V}\left(\Gamma_{G}\right)=\left\{s_{1}, \ldots, s_{n}\right\}$, and
- $\left\{s_{i}, s_{j}\right\} \in \mathcal{E}\left(\Gamma_{G}\right) \Longleftrightarrow s_{i} s_{j}=s_{j} s_{i}$ is a relation of G.

The Graph of a Graph Group

For a RAAG, G, we can construct a finite simple graph Γ_{G} where:

- $\mathcal{V}\left(\Gamma_{G}\right)=\left\{s_{1}, \ldots, s_{n}\right\}$, and
- $\left\{s_{i}, s_{j}\right\} \in \mathcal{E}\left(\Gamma_{G}\right) \Longleftrightarrow s_{i} s_{j}=s_{j} s_{i}$ is a relation of G.

Recurring Examples:

The Graph of a Graph Group

For a RAAG, G, we can construct a finite simple graph Γ_{G} where:

- $\mathcal{V}\left(\Gamma_{G}\right)=\left\{s_{1}, \ldots, s_{n}\right\}$, and
- $\left\{s_{i}, s_{j}\right\} \in \mathcal{E}\left(\Gamma_{G}\right) \Longleftrightarrow s_{i} s_{j}=s_{j} s_{i}$ is a relation of G.

Recurring Examples:

- $\Gamma_{\mathbb{F}(n)}$ is a graph with n vertices and no edges.

The Graph of a Graph Group

For a RAAG, G, we can construct a finite simple graph Γ_{G} where:

- $\mathcal{V}\left(\Gamma_{G}\right)=\left\{s_{1}, \ldots, s_{n}\right\}$, and
- $\left\{s_{i}, s_{j}\right\} \in \mathcal{E}\left(\Gamma_{G}\right) \Longleftrightarrow s_{i} s_{j}=s_{j} s_{i}$ is a relation of G.

Recurring Examples:

- $\Gamma_{\mathbb{F}(n)}$ is a graph with n vertices and no edges.
- $\Gamma_{\mathbb{Z}(n)}$ is the complete graph of n vertices, K_{n}.

The Graph of a Graph Group

For a RAAG, G, we can construct a finite simple graph Γ_{G} where:

- $\mathcal{V}\left(\Gamma_{G}\right)=\left\{s_{1}, \ldots, s_{n}\right\}$, and
- $\left\{s_{i}, s_{j}\right\} \in \mathcal{E}\left(\Gamma_{G}\right) \Longleftrightarrow s_{i} s_{j}=s_{j} s_{i}$ is a relation of G.

Recurring Examples:

- $\Gamma_{\mathbb{F}(n)}$ is a graph with n vertices and no edges.
- $\Gamma_{\mathbb{Z}(n)}$ is the complete graph of n vertices, K_{n}.
- Γ_{A} is depicted below.

The Graph of a Graph Group

For a RAAG, G, we can construct a finite simple graph Γ_{G} where:

- $\mathcal{V}\left(\Gamma_{G}\right)=\left\{s_{1}, \ldots, s_{n}\right\}$, and
- $\left\{s_{i}, s_{j}\right\} \in \mathcal{E}\left(\Gamma_{G}\right) \Longleftrightarrow s_{i} s_{j}=s_{j} s_{i}$ is a relation of G.

Recurring Examples:

- $\Gamma_{\mathbb{F}(n)}$ is a graph with n vertices and no edges.
- $\Gamma_{\mathbb{Z}(n)}$ is the complete graph of n vertices, K_{n}.
- Γ_{A} is depicted below.

The Salvetti Complex

For a RAAG, G, we can construct its Salvetti Complex, denoted \mathcal{S}_{G} in the following way:

The Salvetti Complex

For a RAAG, G, we can construct its Salvetti Complex, denoted \mathcal{S}_{G} in the following way:

- $\mathcal{S}_{G}^{1}=\bigvee_{i=1}^{n} S^{1}$ where each circle is labeled by a generator of G.

The Salvetti Complex

For a RAAG, G, we can construct its Salvetti Complex, denoted \mathcal{S}_{G} in the following way:

- $\mathcal{S}_{G}^{1}=\bigvee_{i=1}^{n} S^{1}$ where each circle is labeled by a generator of G.
- \mathcal{S}_{G}^{2} is formed by attaching a 2-cell to any pair of circles labeled by commuting generators in G.

The Salvetti Complex

For a RAAG, G, we can construct its Salvetti Complex, denoted \mathcal{S}_{G} in the following way:

- $\mathcal{S}_{G}^{1}=\bigvee_{i=1}^{n} S^{1}$ where each circle is labeled by a generator of G.
- \mathcal{S}_{G}^{2} is formed by attaching a 2-cell to any pair of circles labeled by commuting generators in G. (Forming a T^{2} structure.)

The Salvetti Complex

For a RAAG, G, we can construct its Salvetti Complex, denoted \mathcal{S}_{G} in the following way:

- $\mathcal{S}_{G}^{1}=\bigvee_{i=1}^{n} S^{1}$ where each circle is labeled by a generator of G.
- \mathcal{S}_{G}^{2} is formed by attaching a 2-cell to any pair of circles labeled by commuting generators in G. (Forming a T^{2} structure.)
- \mathcal{S}_{G}^{k} is formed by attaching a k-cell to any k circles where any pair of labeled generators commutes in G.

The Salvetti Complex

For a RAAG, G, we can construct its Salvetti Complex, denoted \mathcal{S}_{G} in the following way:

- $\mathcal{S}_{G}^{1}=\bigvee_{i=1}^{n} S^{1}$ where each circle is labeled by a generator of G.
- \mathcal{S}_{G}^{2} is formed by attaching a 2-cell to any pair of circles labeled by commuting generators in G. (Forming a T^{2} structure.)
- \mathcal{S}_{G}^{k} is formed by attaching a k-cell to any k circles where any pair of labeled generators commutes in G.
(Forming a T^{k} structure with the lower-dimensional cells.)

Salvetti Complex Examples

Recurring Examples:

Salvetti Complex Examples

Recurring Examples:

- $\mathcal{S}_{\mathbb{F}(n)}=\bigvee_{i=1}^{n} S^{1}$.

Salvetti Complex Examples

Recurring Examples:

- $\mathcal{S}_{\mathbb{F}(n)}=\bigvee_{i=1}^{n} S^{1}$.
- $\mathcal{S}_{\mathbb{Z}(n)}=T^{n}$.

Salvetti Complex Examples

Recurring Examples:

- $\mathcal{S}_{\mathbb{F}(n)}=\bigvee_{i=1}^{n} S^{1}$.
- $\mathcal{S}_{\mathbb{Z}(n)}=T^{n}$.
- The cells of \mathcal{S}_{A} are listed below.

Salvetti Complex Examples

Recurring Examples:

- $\mathcal{S}_{\mathbb{F}(n)}=\bigvee_{i=1}^{n} S^{1}$.
- $\mathcal{S}_{\mathbb{Z}(n)}=T^{n}$.
- The cells of \mathcal{S}_{A} are listed below.

$$
\begin{array}{cc}
\text { Dimension } k & \text { Set of } k \text {-cells } \\
3 & \{a b d\} \\
2 & \{a b, a d, b d, b c\} \\
1 & \{a, b, c, d\} \\
0 & \left\{x_{0}\right\}
\end{array}
$$

The Full Picture for RAAGs

Group G

Graph Γ_{G} Salvetti Complex \mathcal{S}_{G}

| \{generators $\}$ | \longleftrightarrow | \{vertices $\}$ | \longleftrightarrow |
| :---: | :---: | :---: | :---: | | \{1-cells $\}$ |
| :--- |
| \{relations $\}$ |
| |
| \{edges $\}$ |
| |
| |

Notes on the Topology of \mathcal{S}_{G}

Notes on the Topology of \mathcal{S}_{G}

- \mathcal{S}_{G} is a cellular subcomplex of T^{n} when G has n generators.

Notes on the Topology of \mathcal{S}_{G}

- \mathcal{S}_{G} is a cellular subcomplex of T^{n} when G has n generators.
- Each k-cell corresponds to a generator in $H^{k}\left(\mathcal{S}_{G}\right)$.

Notes on the Topology of \mathcal{S}_{G}

- \mathcal{S}_{G} is a cellular subcomplex of T^{n} when G has n generators.
- Each k-cell corresponds to a generator in $H^{k}\left(\mathcal{S}_{G}\right)$.
- \mathcal{S}_{G} is a $K(G, 1)$.

Notes on the Topology of \mathcal{S}_{G}

- \mathcal{S}_{G} is a cellular subcomplex of T^{n} when G has n generators.
- Each k-cell corresponds to a generator in $H^{k}\left(\mathcal{S}_{G}\right)$.
- \mathcal{S}_{G} is a $K(G, 1)$.

Some Notation

For any RAAG G with subgroup H a RAAG,

- $H^{*}(G):=H^{*}\left(\mathcal{S}_{G}\right)$
- $\mathrm{TC}(G):=\mathrm{TC}\left(\mathcal{S}_{G}\right)$
- TC $(G, H):=\operatorname{TC}\left(\mathcal{S}_{G}, \mathcal{S}_{H}\right)$

Topological Complexity for RAAGs

Topological Complexity for RAAGs

Theorem (Cohen-Pruidze, 2008)

If G is a RAAG, then $\operatorname{TC}(G)=1+\max \left\{\left|\mathcal{V}\left(K_{1}\right)\right|+\left|\mathcal{V}\left(K_{2}\right)\right|\right\}$ where the max is taken over dijoint cliques $K_{1}, K_{2} \subset \Gamma_{G}$.

Topological Complexity for RAAGs

Theorem (Cohen-Pruidze, 2008)

If G is a RAAG, then $\operatorname{TC}(G)=1+\max \left\{\left|\mathcal{V}\left(K_{1}\right)\right|+\left|\mathcal{V}\left(K_{2}\right)\right|\right\}$ where the max is taken over dijoint cliques $K_{1}, K_{2} \subset \Gamma_{G}$.

Recurring Examples:

Topological Complexity for RAAGs

Theorem (Cohen-Pruidze, 2008)

If G is a RAAG, then $\operatorname{TC}(G)=1+\max \left\{\left|\mathcal{V}\left(K_{1}\right)\right|+\left|\mathcal{V}\left(K_{2}\right)\right|\right\}$ where the max is taken over dijoint cliques $K_{1}, K_{2} \subset \Gamma_{G}$.

Recurring Examples:

- $\operatorname{TC}(\mathbb{F}(n))=\operatorname{TC}\left(\bigvee_{i=1}^{n} S^{1}\right)=3$ (if $n \geq 2$).

Topological Complexity for RAAGs

Theorem (Cohen-Pruidze, 2008)

If G is a RAAG, then $\operatorname{TC}(G)=1+\max \left\{\left|\mathcal{V}\left(K_{1}\right)\right|+\left|\mathcal{V}\left(K_{2}\right)\right|\right\}$ where the max is taken over dijoint cliques $K_{1}, K_{2} \subset \Gamma_{G}$.

Recurring Examples:

- $\mathrm{TC}(\mathbb{F}(n))=\mathrm{TC}\left(\bigvee_{i=1}^{n} S^{1}\right)=3$ (if $n \geq 2$).
- $\operatorname{TC}(\mathbb{Z}(n))=\mathrm{TC}\left(T^{n}\right)=n+1$.

Topological Complexity for RAAGs

Theorem (Cohen-Pruidze, 2008)

If G is a RAAG, then $\operatorname{TC}(G)=1+\max \left\{\left|\mathcal{V}\left(K_{1}\right)\right|+\left|\mathcal{V}\left(K_{2}\right)\right|\right\}$ where the max is taken over dijoint cliques $K_{1}, K_{2} \subset \Gamma_{G}$.

Recurring Examples:

- $\mathrm{TC}(\mathbb{F}(n))=\mathrm{TC}\left(\bigvee_{i=1}^{n} S^{1}\right)=3$ (if $n \geq 2$).
- $\mathrm{TC}(\mathbb{Z}(n))=\mathrm{TC}\left(T^{n}\right)=n+1$.
- $\mathrm{TC}(A)=5$.

Relative Topological Complexity for RAAGs

Relative Topological Complexity for RAAGs

Definition

Let G be a RAAG. We call H a special subgroup of G if $\mathcal{V}\left(\Gamma_{H}\right) \subset \mathcal{V}\left(\Gamma_{G}\right)$ and $\mathcal{E}\left(\Gamma_{H}\right)=\left.\mathcal{E}\left(\Gamma_{G}\right)\right|_{\mathcal{V}\left(\Gamma_{H}\right)}$.

Relative Topological Complexity for RAAGs

Definition

Let G be a RAAG. We call H a special subgroup of G if $\mathcal{V}\left(\Gamma_{H}\right) \subset \mathcal{V}\left(\Gamma_{G}\right)$ and $\mathcal{E}\left(\Gamma_{H}\right)=\left.\mathcal{E}\left(\Gamma_{G}\right)\right|_{\mathcal{V}\left(\Gamma_{H}\right)}$. In other words, we call H a special subgroup of G if Γ_{H} is an induced subgraph of Γ_{G}.

Relative Topological Complexity for RAAGs

Definition

Let G be a RAAG. We call H a special subgroup of G if $\mathcal{V}\left(\Gamma_{H}\right) \subset \mathcal{V}\left(\Gamma_{G}\right)$ and $\mathcal{E}\left(\Gamma_{H}\right)=\left.\mathcal{E}\left(\Gamma_{G}\right)\right|_{\mathcal{V}\left(\Gamma_{H}\right)}$.
In other words, we call H a special subgroup of G if
Γ_{H} is an induced subgraph of Γ_{G}.

Theorem (S., 2018)

If H is a special subgroup of a RAAG G, then $\mathrm{TC}(G, H)=1+\max \left\{\left|\mathcal{V}\left(K_{G}\right) \cup \mathcal{V}\left(K_{H}\right)\right|\right\}$ where the max runs over pairs of cliques $\left\{K_{G}, K_{H}\right\}$ with $K_{G} \subset \Gamma_{G}$ and $K_{H} \subset \Gamma_{H}$.

Example: A with special subgroup B

Example: A with special subgroup B

Let $B=\langle a, d \mid a d=d a\rangle$.

Example: A with special subgroup B

Let $B=\langle a, d \mid a d=d a\rangle$. Then B is a special subgroup of A with Γ_{B} depicted below.

Example: A with special subgroup B

Let $B=\langle a, d \mid a d=d a\rangle$. Then B is a special subgroup of A with Γ_{B} depicted below.

The generators of $H^{*}(A)$ and $H^{*}(B)$ are listed below.
Dimension
$H^{*}(A)$ Gens
$H^{*}(B)$ Gens
abd
3
2
ab, ad, bd, bc
ad
1
a, b, c, d
a, d
0
1
1

Example: A with special subgroup B

Let $B=\langle a, d \mid a d=d a\rangle$. Then B is a special subgroup of A with Γ_{B} depicted below.

The generators of $H^{*}(A)$ and $H^{*}(B)$ are listed below.
Dimension
$H^{*}(A)$ Gens
$H^{*}(B)$ Gens
abd
2
1
0
ab, ad, bd, bc ad
a, b, c, d
a, d
$1 \quad 1$

Example: A with special subgroup B

Let $B=\langle a, d \mid a d=d a\rangle$. Then B is a special subgroup of A with Γ_{B} depicted below.

The generators of $H^{*}(A)$ and $H^{*}(B)$ are listed below.

Dimension
3
2
1
0
$H^{*}(A)$ Gens $\quad H^{*}(B)$ Gens
abd

$$
\begin{array}{cc}
\text { ab, ad, bd, bc } & \text { ad } \\
\text { a, b, c, d } & a, d \\
1 & 1
\end{array}
$$

Example: A with special subgroup B

Example: A with special subgroup B

Sample Result

$\mathrm{TC}(A, B)=5$

Example: A with special subgroup B

Sample Result

$\mathrm{TC}(A, B)=5$
Proof: $\mathrm{TC}(A, B) \leq \mathrm{TC}(A)=5$

Example: A with special subgroup B

Sample Result

$\mathrm{TC}(A, B)=5$

$$
\text { Proof: } \mathrm{TC}(A, B) \leq \mathrm{TC}(A)=5
$$

Consider $\bar{a} \smile \bar{b} \smile \bar{c} \smile \bar{d} \in \operatorname{ker}\left[H^{*}(A) \otimes H^{*}(B) \rightarrow H^{*}(B)\right]$.

Example: A with special subgroup B

Sample Result

$\mathrm{TC}(A, B)=5$
Proof: $\mathrm{TC}(A, B) \leq \mathrm{TC}(A)=5$
Consider $\bar{a} \smile \bar{b} \smile \bar{c} \smile \bar{d} \in \operatorname{ker}\left[H^{*}(A) \otimes H^{*}(B) \rightarrow H^{*}(B)\right]$.

$$
\begin{gathered}
\bar{a} \smile \bar{b} \smile \bar{c} \smile \bar{d}=\left(a \otimes 1-1 \otimes \iota^{*}(a)\right) \smile\left(b \otimes 1-1 \otimes \iota^{*}(b)\right) \\
\smile\left(c \otimes 1-1 \otimes \iota^{*}(c)\right) \smile\left(d \otimes 1-1 \otimes \iota^{*}(d)\right) \\
=(a \otimes 1-1 \otimes a)(b \otimes 1)(c \otimes 1)(d \otimes 1-1 \otimes d) \\
=b c \otimes a d \neq 0
\end{gathered}
$$

Example: A with special subgroup B

Sample Result

$\mathrm{TC}(A, B)=5$
Proof: $\mathrm{TC}(A, B) \leq \mathrm{TC}(A)=5$
Consider $\bar{a} \smile \bar{b} \smile \bar{c} \smile \bar{d} \in \operatorname{ker}\left[H^{*}(A) \otimes H^{*}(B) \rightarrow H^{*}(B)\right]$.

$$
\begin{gathered}
\bar{a} \smile \bar{b} \smile \bar{c} \smile \bar{d}=\left(a \otimes 1-1 \otimes \iota^{*}(a)\right) \smile\left(b \otimes 1-1 \otimes \iota^{*}(b)\right) \\
\smile\left(c \otimes 1-1 \otimes \iota^{*}(c)\right) \smile\left(d \otimes 1-1 \otimes \iota^{*}(d)\right) \\
=(a \otimes 1-1 \otimes a)(b \otimes 1)(c \otimes 1)(d \otimes 1-1 \otimes d) \\
=b c \otimes a d \neq 0
\end{gathered}
$$

Thus, $\mathrm{TC}(A, B)>4 \Longrightarrow \mathrm{TC}(A, B)=5$.

Current/Future Work: Subcomplexes of Tori

Let X be a cellular subcomplex of a torus. Cohen and Pruidze utilize the following correspondence to compute $\mathrm{TC}(X)$:

Simplicial Complex Γ_{X} Cell Complex X

$$
\begin{array}{ccc}
\text { \{0-simplices }\} & \longleftrightarrow & \{1 \text {-cells }\} \\
\text { \{1-simplicess }\} & \longleftrightarrow & \{2 \text {-cells }\} \\
\{(k-1) \text {-simplices }\} & \longleftrightarrow & \{k \text {-cells }\}
\end{array}
$$

Theorem (S., 2019)

If Y is a cellular subcomplex of X, a cellular subcomplex of T^{n}, then $\mathrm{TC}(X, Y)=1+\max \left\{\left|K_{X} \cup K_{Y}\right|\right\}$ where the max runs over pairs of $(k-1)$-simplices $\left\{K_{X}, K_{Y}\right\}$ with $K_{X} \subset \Gamma_{X}$ and $K_{Y} \subset \Gamma_{Y}$.

Subcomplexes of Tori Fail to Answer the Question

Subcomplexes of Tori Fail to Answer the Question

Question

Is each $\operatorname{cat}(X) \leq k \leq \mathrm{TC}(X)$ realized as $\mathrm{TC}(X, Y)=k$ by some $Y \subset X$?

Subcomplexes of Tori Fail to Answer the Question

Question

Is each $\operatorname{cat}(X) \leq k \leq \mathrm{TC}(X)$ realized as $\mathrm{TC}(X, Y)=k$ by some $Y \subset X$?

Theorem (S., 2019)

Let X be a cellular subcomplex of T^{n}. Then, for each $\operatorname{cat}(X) \leq k \leq \mathrm{TC}(X)$, there is some cellular subcomplex $Y \subset X$ such that $\mathrm{TC}(X, Y)=k$.

Subcomplexes of Tori Fail to Answer the Question

Question

 Is each $\operatorname{cat}(X) \leq k \leq \mathrm{TC}(X)$ realized as $\mathrm{TC}(X, Y)=k$ by some $Y \subset X$?
Theorem (S., 2019)

Let X be a cellular subcomplex of T^{n}. Then, for each $\operatorname{cat}(X) \leq k \leq \mathrm{TC}(X)$, there is some cellular subcomplex $Y \subset X$ such that $\mathrm{TC}(X, Y)=k$.

Lemma (S., 2019)

Let $Y \subset X$ be a cellular subcomplex, and suppose $Y^{\prime}=Y \cup e$ is another cellular subcomplex of X. Then, $\mathrm{TC}(X, Y) \leq \mathrm{TC}\left(X, Y^{\prime}\right) \leq \mathrm{TC}(X, Y)+1$.

Thank you for your attention!

References

- R. Charney, An introduction to right-angled Artin groups, Geometriae Dedicata 125 (2007) 141-158.
- D. Cohen and G. Pruidze, Motion planning in tori, Bull. London Math. Soc. 40 (2008), 249-262.
- M. Farber Topological Complexity of Motion Planning. Discrete and Computational Geometry 29 (2003), 211-221.
- M. Grant, G. Lupton, and J. Oprea, New lower bounds for the topological complexity of aspherical spaces. Topology and its Applications 189 (2015), 78-91.
- R. Short. Relative topological complexity of a pair. Topology and its Applications 248 (2018), 7-23.

