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Intuition – Motion Planning Algorithm

Figure 1: For motion planning algorithms, the input is a pair of points in X × X ,
and the output is a continuous choice of path between them.
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Intuition – Relative Motion Planning

Figure 2: For this variant on motion planning algorithms, the input is a pair of
points in X × Y and the output is a path between them.
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Relative Topological Complexity of a Pair

Let Y ⊂ X . Let PX×Y be the space of paths in X with endpoints in
X × Y . There is a fibration π′ : PX×Y → X × Y where
π′(σ) = (σ(0), σ(1)).

Definition

A continuous motion planning algorithm of size n on X × Y is an partition
{Ei}ni=1 of X × Y where each Ei is a Euclidean Neighborhood Retract,
and there exists continuous sections of π′, si : Ei → PX×Y , for each Ei .

Definition

The relative topological complexity of the pair (X ,Y ), denoted TC(X ,Y ),
is the smallest n for which there is a continuous motion planning algorithm
of size n on X × Y .
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Lower Bound for TC(X ,Y )

Proposition (S., 2018)

If there are elements v1, . . . , vp ∈ ker[H∗X ⊗ H∗Y → H∗Y ]
such that v1 ^ · · ·^ vp 6= 0,
then TC(X ,Y ) > p.

Proposition (S., 2018)

Let ι : Y → X be the inclusion map. Then, ker[H∗X ⊗ H∗Y → H∗Y ] is
generated as an ideal by elements of the form v = v ⊗ 1− 1⊗ ι∗(v) where
v ∈ H∗X .

Robert Short (JCU) AMS Fall SE Section Meeting 2019 November 2, 2019 5 / 23



Lower Bound for TC(X ,Y )

Proposition (S., 2018)

If there are elements v1, . . . , vp ∈ ker[H∗X ⊗ H∗Y → H∗Y ]
such that v1 ^ · · ·^ vp 6= 0,
then TC(X ,Y ) > p.

Proposition (S., 2018)

Let ι : Y → X be the inclusion map. Then, ker[H∗X ⊗ H∗Y → H∗Y ] is
generated as an ideal by elements of the form v = v ⊗ 1− 1⊗ ι∗(v) where
v ∈ H∗X .

Robert Short (JCU) AMS Fall SE Section Meeting 2019 November 2, 2019 5 / 23



Lower Bound for TC(X ,Y )

Proposition (S., 2018)

If there are elements v1, . . . , vp ∈ ker[H∗X ⊗ H∗Y → H∗Y ]
such that v1 ^ · · ·^ vp 6= 0,
then TC(X ,Y ) > p.

Proposition (S., 2018)

Let ι : Y → X be the inclusion map. Then, ker[H∗X ⊗ H∗Y → H∗Y ] is
generated as an ideal by elements of the form v = v ⊗ 1− 1⊗ ι∗(v) where
v ∈ H∗X .

Robert Short (JCU) AMS Fall SE Section Meeting 2019 November 2, 2019 5 / 23



Relation to LS-Cat and TC

Proposition (S., 2018)

cat(X ) ≤ TC(X ,Y ) ≤ TC(X )

Proposition (S., 2018)

TC(X , {x0}) = cat(X ) for any x0 ∈ X .
TC(X ,X ) = TC(X ).

Question

Is each cat(X ) ≤ k ≤ TC(X ) realized as TC(X ,Y ) = k by some Y ⊂ X?
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Example: Spheres

Theorem (Farber, 2003)

TC(Sn) =

{
2 if n is odd; and

3 if n is even.

Proposition (S., 2018)

Let Y ( Sn. Then,
TC(Sn,Y ) = 2.

In particular, if n > m,
TC(Sn,Sm) = 2.
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Right-Angled Artin Groups

Definition

A group G is a right-angled Artin group, sometimes called a graph group,
if it has a presentation with generators s1, . . . sn and where all relations are
of the form si sj = sjsi for select index pairs i < j .

Recurring Examples:

The free group on n generators, F(n), is a RAAG.

The free abelian group on n generators, Z(n), is a RAAG.

A = 〈a, b, c , d | ab = ba, ad = da, bd = db, bc = cb〉 is a RAAG.
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The Graph of a Graph Group

For a RAAG, G , we can construct a finite simple graph ΓG where:

V(ΓG ) = {s1, . . . , sn}, and

{si , sj} ∈ E(ΓG ) ⇐⇒ si sj = sjsi is a relation of G .

Recurring Examples:

ΓF(n) is a graph with n vertices and no edges.

ΓZ(n) is the complete graph of n vertices, Kn.

ΓA is depicted below.

a c

b

d
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The Salvetti Complex

For a RAAG, G , we can construct its Salvetti Complex, denoted SG in the
following way:

S1
G =

∨n
i=1 S

1 where each circle is labeled by a generator of G .

S2
G is formed by attaching a 2-cell to any pair of circles labeled by

commuting generators in G . (Forming a T 2 structure.)

SkG is formed by attaching a k-cell to any k circles where any pair of
labeled generators commutes in G .
(Forming a T k structure with the lower-dimensional cells.)
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Salvetti Complex Examples

Recurring Examples:

SF(n) =
∨n

i=1 S
1.

SZ(n) = T n.

The cells of SA are listed below.

Dimension k Set of k-cells
3 {abd}
2 {ab, ad , bd , bc}
1 {a, b, c , d}
0 {x0}
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The Full Picture for RAAGs

Group G Graph ΓG Salvetti Complex SG

{generators} ←→ {vertices} ←→ {1-cells}

{relations} ←→ {edges} ←→ {2-cells}

{k-cliques} ←→ {k-cells}
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Notes on the Topology of SG

SG is a cellular subcomplex of T n when G has n generators.

Each k-cell corresponds to a generator in Hk(SG ).

SG is a K (G , 1).

Some Notation

For any RAAG G with subgroup H a RAAG,

H∗(G ) := H∗(SG )

TC(G ) := TC(SG )

TC(G ,H) := TC(SG ,SH)
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Topological Complexity for RAAGs

Theorem (Cohen-Pruidze, 2008)

If G is a RAAG, then TC(G ) = 1 + max{|V(K1)|+ |V(K2)|} where the
max is taken over dijoint cliques K1,K2 ⊂ ΓG .

Recurring Examples:

TC(F(n)) = TC
(∨n

i=1 S
1
)

= 3 (if n ≥ 2).

TC(Z(n)) = TC(T n) = n + 1.

TC(A) = 5.
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Relative Topological Complexity for RAAGs

Definition

Let G be a RAAG. We call H a special subgroup of G if V(ΓH) ⊂ V(ΓG )
and E(ΓH) = E(ΓG )|V(ΓH).
In other words, we call H a special subgroup of G if
ΓH is an induced subgraph of ΓG .

Theorem (S., 2018)

If H is a special subgroup of a RAAG G , then
TC(G ,H) = 1 + max{|V(KG ) ∪ V(KH)|} where the max runs over pairs of
cliques {KG ,KH} with KG ⊂ ΓG and KH ⊂ ΓH .
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Example: A with special subgroup B

Let B = 〈a, d |ad = da〉. Then B is a special subgroup of A with ΓB

depicted below.

a

d

The generators of H∗(A) and H∗(B) are listed below.

Dimension H∗(A) Gens H∗(B) Gens
3 abd
2 ab, ad, bd, bc ad
1 a, b, c, d a, d
0 1 1
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Example: A with special subgroup B

Sample Result

TC(A,B) = 5

Proof: TC(A,B) ≤ TC(A) = 5

Consider a^ b ^ c ^ d ∈ ker[H∗(A)⊗ H∗(B)→ H∗(B)].

a^ b ^ c ^ d = (a⊗ 1− 1⊗ ι∗(a)) ^ (b⊗ 1− 1⊗ ι∗(b))

^ (c⊗1−1⊗ι∗(c)) ^ (d⊗1−1⊗ι∗(d))

= (a⊗ 1− 1⊗ a)(b ⊗ 1)(c ⊗ 1)(d ⊗ 1− 1⊗ d)

= bc ⊗ ad 6= 0

Thus, TC(A,B) > 4 =⇒ TC(A,B) = 5.

�
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Current/Future Work: Subcomplexes of Tori

Let X be a cellular subcomplex of a torus. Cohen and Pruidze utilize the
following correspondence to compute TC(X ):

Simplicial Complex ΓX Cell Complex X

{0-simplices} ←→ {1-cells}

{1-simplicess} ←→ {2-cells}

{(k − 1)-simplices} ←→ {k-cells}

Theorem (S., 2019)

If Y is a cellular subcomplex of X , a cellular subcomplex of T n, then
TC(X ,Y ) = 1 + max{|KX ∪ KY |} where the max runs over pairs of
(k − 1)-simplices {KX ,KY } with KX ⊂ ΓX and KY ⊂ ΓY .
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Subcomplexes of Tori Fail to Answer the Question

Question

Is each cat(X ) ≤ k ≤ TC(X ) realized as TC(X ,Y ) = k by some Y ⊂ X?

Theorem (S., 2019)

Let X be a cellular subcomplex of T n. Then, for each
cat(X ) ≤ k ≤ TC(X ), there is some cellular subcomplex Y ⊂ X such that
TC(X ,Y ) = k .

Lemma (S., 2019)

Let Y ⊂ X be a cellular subcomplex, and suppose Y ′ = Y ∪ e is another
cellular subcomplex of X . Then, TC(X ,Y ) ≤ TC(X ,Y ′) ≤ TC(X ,Y ) + 1.
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Thank you for your attention!
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