The Relative Topological Complexity of Pairs of Right-Angled Artin Groups

Robert Short

John Carroll University

November 2, 2019

Intuition – Motion Planning Algorithm

Figure 1: For motion planning algorithms, the input is a pair of points in $X \times X$, and the output is a continuous choice of path between them.

Intuition – Relative Motion Planning

Figure 2: For this variant on motion planning algorithms, the input is a pair of points in $X \times Y$ and the output is a path between them.

Let $Y \subset X$. Let $P_{X \times Y}$ be the space of paths in X with endpoints in $X \times Y$.

Let $Y \subset X$. Let $P_{X \times Y}$ be the space of paths in X with endpoints in $X \times Y$. There is a fibration $\pi' : P_{X \times Y} \to X \times Y$ where $\pi'(\sigma) = (\sigma(0), \sigma(1))$.

Let $Y \subset X$. Let $P_{X \times Y}$ be the space of paths in X with endpoints in $X \times Y$. There is a fibration $\pi' : P_{X \times Y} \to X \times Y$ where $\pi'(\sigma) = (\sigma(0), \sigma(1))$.

Definition

A continuous motion planning algorithm of size n on $X \times Y$ is an partition $\{E_i\}_{i=1}^n$ of $X \times Y$ where each E_i is a Euclidean Neighborhood Retract, and there exists continuous sections of π' , $s_i : E_i \to P_{X \times Y}$, for each E_i .

Let $Y \subset X$. Let $P_{X \times Y}$ be the space of paths in X with endpoints in $X \times Y$. There is a fibration $\pi' : P_{X \times Y} \to X \times Y$ where $\pi'(\sigma) = (\sigma(0), \sigma(1))$.

Definition

A continuous motion planning algorithm of size n on $X \times Y$ is an partition $\{E_i\}_{i=1}^n$ of $X \times Y$ where each E_i is a Euclidean Neighborhood Retract, and there exists continuous sections of π' , $s_i : E_i \to P_{X \times Y}$, for each E_i .

Definition

The relative topological complexity of the pair (X, Y), denoted TC(X, Y), is the smallest *n* for which there is a continuous motion planning algorithm of size *n* on $X \times Y$.

Lower Bound for TC(X, Y)

Lower Bound for TC(X, Y)

Proposition (S., 2018)

If there are elements $v_1, \ldots, v_p \in \ker[H^*X \otimes H^*Y \to H^*Y]$ such that $v_1 \smile \cdots \smile v_p \neq 0$, then $\operatorname{TC}(X, Y) > p$.

If there are elements $v_1, \ldots, v_p \in \ker[H^*X \otimes H^*Y \to H^*Y]$ such that $v_1 \smile \cdots \smile v_p \neq 0$, then $\operatorname{TC}(X, Y) > p$.

Proposition (S., 2018)

Let $\iota: Y \to X$ be the inclusion map. Then, ker $[H^*X \otimes H^*Y \to H^*Y]$ is generated as an ideal by elements of the form $\overline{v} = v \otimes 1 - 1 \otimes \iota^*(v)$ where $v \in H^*X$.

 $\mathsf{cat}(X) \leq \mathsf{TC}(X, Y) \leq \mathsf{TC}(X)$

 $\mathsf{cat}(X) \leq \mathsf{TC}(X,Y) \leq \mathsf{TC}(X)$

Proposition (S., 2018)

 $\mathsf{TC}(X, \{x_0\}) = \mathsf{cat}(X) \text{ for any } x_0 \in X.$ $\mathsf{TC}(X, X) = \mathsf{TC}(X).$

 $\mathsf{cat}(X) \leq \mathsf{TC}(X,Y) \leq \mathsf{TC}(X)$

Proposition (S., 2018)

$$TC(X, \{x_0\}) = cat(X) \text{ for any } x_0 \in X.$$

$$TC(X, X) = TC(X).$$

Question

Is each $cat(X) \le k \le TC(X)$ realized as TC(X, Y) = k by some $Y \subset X$?

Theorem (Farber, 2003)

$$\mathsf{TC}(S^n) = \begin{cases} 2 & \text{ if } n \text{ is odd; and} \\ 3 & \text{ if } n \text{ is even.} \end{cases}$$

Theorem (Farber, 2003)

$$\mathsf{TC}(S^n) = \begin{cases} 2 & \text{if } n \text{ is odd; and} \\ 3 & \text{if } n \text{ is even.} \end{cases}$$

Proposition (S., 2018)

Let $Y \subsetneq S^n$. Then,

$$TC(S^n, Y) = 2.$$

Theorem (Farber, 2003)

$$\mathsf{TC}(S^n) = egin{cases} 2 & ext{if } n ext{ is odd; and} \\ 3 & ext{if } n ext{ is even.} \end{cases}$$

Proposition (S., 2018)

Let $Y \subsetneq S^n$. Then,

$$\mathsf{TC}(S^n, Y) = 2.$$

In particular, if n > m,

$$\mathsf{TC}(S^n,S^m)=2.$$

Right-Angled Artin Groups

A group G is a right-angled Artin group, sometimes called a graph group, if it has a presentation with generators $s_1, \ldots s_n$ and where all relations are of the form $s_i s_j = s_j s_i$ for select index pairs i < j.

A group G is a right-angled Artin group, sometimes called a graph group, if it has a presentation with generators $s_1, \ldots s_n$ and where all relations are of the form $s_i s_j = s_j s_i$ for select index pairs i < j.

A group G is a right-angled Artin group, sometimes called a graph group, if it has a presentation with generators $s_1, \ldots s_n$ and where all relations are of the form $s_i s_j = s_j s_i$ for select index pairs i < j.

Recurring Examples:

• The free group on *n* generators, $\mathbb{F}(n)$, is a RAAG.

A group G is a right-angled Artin group, sometimes called a graph group, if it has a presentation with generators $s_1, \ldots s_n$ and where all relations are of the form $s_i s_j = s_j s_i$ for select index pairs i < j.

- The free group on *n* generators, $\mathbb{F}(n)$, is a RAAG.
- The free abelian group on *n* generators, $\mathbb{Z}(n)$, is a RAAG.

A group G is a right-angled Artin group, sometimes called a graph group, if it has a presentation with generators $s_1, \ldots s_n$ and where all relations are of the form $s_i s_j = s_j s_i$ for select index pairs i < j.

- The free group on *n* generators, $\mathbb{F}(n)$, is a RAAG.
- The free abelian group on *n* generators, $\mathbb{Z}(n)$, is a RAAG.
- $A = \langle a, b, c, d | ab = ba, ad = da, bd = db, bc = cb \rangle$ is a RAAG.

For a RAAG, G, we can construct a finite simple graph Γ_G where:

For a RAAG, G, we can construct a finite simple graph Γ_G where: • $\mathcal{V}(\Gamma_G) = \{s_1, \dots, s_n\}$, and

For a RAAG, G, we can construct a finite simple graph Γ_G where:

•
$$\mathcal{V}(\Gamma_G) = \{s_1, ..., s_n\}$$
, and

•
$$\{s_i, s_j\} \in \mathcal{E}(\Gamma_G) \iff s_i s_j = s_j s_i$$
 is a relation of G .

For a RAAG, G, we can construct a finite simple graph Γ_G where:

•
$$\mathcal{V}(\Gamma_G) = \{s_1, \ldots, s_n\}$$
, and

•
$$\{s_i, s_j\} \in \mathcal{E}(\Gamma_G) \iff s_i s_j = s_j s_i$$
 is a relation of G .

For a RAAG, G, we can construct a finite simple graph Γ_G where:

•
$$\mathcal{V}(\Gamma_G) = \{s_1, ..., s_n\}$$
, and

•
$$\{s_i, s_j\} \in \mathcal{E}(\Gamma_G) \iff s_i s_j = s_j s_i$$
 is a relation of G .

Recurring Examples:

• $\Gamma_{\mathbb{F}(n)}$ is a graph with *n* vertices and no edges.

For a RAAG, G, we can construct a finite simple graph Γ_G where:

•
$$\mathcal{V}(\Gamma_G) = \{s_1, \dots, s_n\}$$
, and

•
$$\{s_i, s_j\} \in \mathcal{E}(\Gamma_G) \iff s_i s_j = s_j s_i$$
 is a relation of G .

- $\Gamma_{\mathbb{F}(n)}$ is a graph with *n* vertices and no edges.
- $\Gamma_{\mathbb{Z}(n)}$ is the complete graph of *n* vertices, K_n .

For a RAAG, G, we can construct a finite simple graph Γ_G where:

•
$$\mathcal{V}(\Gamma_G) = \{s_1, \dots, s_n\}$$
, and

•
$$\{s_i, s_j\} \in \mathcal{E}(\Gamma_G) \iff s_i s_j = s_j s_i$$
 is a relation of G .

- $\Gamma_{\mathbb{F}(n)}$ is a graph with *n* vertices and no edges.
- $\Gamma_{\mathbb{Z}(n)}$ is the complete graph of *n* vertices, K_n .
- Γ_A is depicted below.

For a RAAG, G, we can construct a finite simple graph Γ_G where:

•
$$\mathcal{V}(\Gamma_G) = \{s_1, \dots, s_n\}$$
, and

•
$$\{s_i, s_j\} \in \mathcal{E}(\Gamma_G) \iff s_i s_j = s_j s_i$$
 is a relation of G .

- $\Gamma_{\mathbb{F}(n)}$ is a graph with *n* vertices and no edges.
- $\Gamma_{\mathbb{Z}(n)}$ is the complete graph of *n* vertices, K_n .
- Γ_A is depicted below.

For a RAAG, G, we can construct its Salvetti Complex, denoted S_G in the following way:

For a RAAG, G, we can construct its Salvetti Complex, denoted S_G in the following way:

• $S_G^1 = \bigvee_{i=1}^n S^1$ where each circle is labeled by a generator of G.

For a RAAG, G, we can construct its Salvetti Complex, denoted S_G in the following way:

- $S_G^1 = \bigvee_{i=1}^n S^1$ where each circle is labeled by a generator of G.
- S_G^2 is formed by attaching a 2-cell to any pair of circles labeled by commuting generators in G.
For a RAAG, G, we can construct its Salvetti Complex, denoted S_G in the following way:

- $S_G^1 = \bigvee_{i=1}^n S^1$ where each circle is labeled by a generator of G.
- S_G^2 is formed by attaching a 2-cell to any pair of circles labeled by commuting generators in G. (Forming a T^2 structure.)

For a RAAG, G, we can construct its Salvetti Complex, denoted S_G in the following way:

- $S_G^1 = \bigvee_{i=1}^n S^1$ where each circle is labeled by a generator of G.
- S_G^2 is formed by attaching a 2-cell to any pair of circles labeled by commuting generators in *G*. (Forming a T^2 structure.)
- S_G^k is formed by attaching a *k*-cell to any *k* circles where any pair of labeled generators commutes in *G*.

For a RAAG, G, we can construct its Salvetti Complex, denoted S_G in the following way:

- $S_G^1 = \bigvee_{i=1}^n S^1$ where each circle is labeled by a generator of G.
- S_G^2 is formed by attaching a 2-cell to any pair of circles labeled by commuting generators in G. (Forming a T^2 structure.)
- S^k_G is formed by attaching a k-cell to any k circles where any pair of labeled generators commutes in G.
 (Forming a T^k structure with the lower-dimensional cells.)

•
$$\mathcal{S}_{\mathbb{F}(n)} = \bigvee_{i=1}^n S^1$$
.

•
$$\mathcal{S}_{\mathbb{F}(n)} = \bigvee_{i=1}^n S^1$$

- $\mathcal{S}_{\mathbb{Z}(n)} = T^n$.
- The cells of \mathcal{S}_A are listed below.

•
$$\mathcal{S}_{\mathbb{F}(n)} = \bigvee_{i=1}^n S^1$$

•
$$\mathcal{S}_{\mathbb{Z}(n)} = T^n$$
.

• The cells of \mathcal{S}_A are listed below.

$$\begin{array}{ccc} \text{Dimension } k & \text{Set of } k\text{-cells} \\ 3 & \{abd\} \\ 2 & \{ab, ad, bd, bc\} \\ 1 & \{a, b, c, d\} \\ 0 & \{x_0\} \end{array}$$

Group G		Graph Γ_G		Salvetti Complex $\mathcal{S}_{\mathcal{G}}$
$\{generators\}$	\longleftrightarrow	{vertices}	\longleftrightarrow	$\{1\text{-cells}\}$
$\{relations\}$	\longleftrightarrow	$\{edges\}$	\longleftrightarrow	$\{2-cells\}$
		{ <i>k</i> -cliques}	\longleftrightarrow	$\{k$ -cells $\}$

_

• S_G is a cellular subcomplex of T^n when G has n generators.

- S_G is a cellular subcomplex of T^n when G has n generators.
- Each k-cell corresponds to a generator in $H^k(\mathcal{S}_G)$.

- S_G is a cellular subcomplex of T^n when G has n generators.
- Each k-cell corresponds to a generator in $H^k(\mathcal{S}_G)$.
- \mathcal{S}_G is a K(G, 1).

- S_G is a cellular subcomplex of T^n when G has n generators.
- Each k-cell corresponds to a generator in $H^k(\mathcal{S}_G)$.
- \mathcal{S}_G is a K(G, 1).

Some Notation

For any RAAG G with subgroup H a RAAG,

•
$$H^*(G) := H^*(\mathcal{S}_G)$$

•
$$TC(G) := TC(S_G)$$

•
$$\mathsf{TC}(G, H) := \mathsf{TC}(\mathcal{S}_G, \mathcal{S}_H)$$

Topological Complexity for RAAGs

If G is a RAAG, then $TC(G) = 1 + \max\{|\mathcal{V}(K_1)| + |\mathcal{V}(K_2)|\}$ where the max is taken over dijoint cliques $K_1, K_2 \subset \Gamma_G$.

If G is a RAAG, then $TC(G) = 1 + \max\{|\mathcal{V}(K_1)| + |\mathcal{V}(K_2)|\}$ where the max is taken over dijoint cliques $K_1, K_2 \subset \Gamma_G$.

If G is a RAAG, then $TC(G) = 1 + \max\{|\mathcal{V}(K_1)| + |\mathcal{V}(K_2)|\}$ where the max is taken over dijoint cliques $K_1, K_2 \subset \Gamma_G$.

•
$$\operatorname{TC}(\mathbb{F}(n)) = \operatorname{TC}(\bigvee_{i=1}^n S^1) = 3$$
 (if $n \ge 2$).

If G is a RAAG, then $TC(G) = 1 + \max\{|\mathcal{V}(K_1)| + |\mathcal{V}(K_2)|\}$ where the max is taken over dijoint cliques $K_1, K_2 \subset \Gamma_G$.

•
$$TC(\mathbb{F}(n)) = TC(\bigvee_{i=1}^{n} S^{1}) = 3$$
 (if $n \ge 2$).

•
$$\mathsf{TC}(\mathbb{Z}(n)) = \mathsf{TC}(T^n) = n+1.$$

If G is a RAAG, then $TC(G) = 1 + \max\{|\mathcal{V}(K_1)| + |\mathcal{V}(K_2)|\}$ where the max is taken over dijoint cliques $K_1, K_2 \subset \Gamma_G$.

Recurring Examples:

•
$$\mathsf{TC}(\mathbb{F}(n)) = \mathsf{TC}(\bigvee_{i=1}^n S^1) = 3 \text{ (if } n \geq 2).$$

•
$$\mathsf{TC}(\mathbb{Z}(n)) = \mathsf{TC}(T^n) = n+1.$$

• TC(A) = 5.

Relative Topological Complexity for RAAGs

Relative Topological Complexity for RAAGs

Definition

Let G be a RAAG. We call H a special subgroup of G if $\mathcal{V}(\Gamma_H) \subset \mathcal{V}(\Gamma_G)$ and $\mathcal{E}(\Gamma_H) = \mathcal{E}(\Gamma_G)|_{\mathcal{V}(\Gamma_H)}$.

Relative Topological Complexity for RAAGs

Definition

Let G be a RAAG. We call H a special subgroup of G if $\mathcal{V}(\Gamma_H) \subset \mathcal{V}(\Gamma_G)$ and $\mathcal{E}(\Gamma_H) = \mathcal{E}(\Gamma_G)|_{\mathcal{V}(\Gamma_H)}$. In other words, we call H a special subgroup of G if Γ_H is an induced subgraph of Γ_G .

Definition

Let G be a RAAG. We call H a special subgroup of G if $\mathcal{V}(\Gamma_H) \subset \mathcal{V}(\Gamma_G)$ and $\mathcal{E}(\Gamma_H) = \mathcal{E}(\Gamma_G)|_{\mathcal{V}(\Gamma_H)}$. In other words, we call H a special subgroup of G if Γ_H is an induced subgraph of Γ_G .

Theorem (S., 2018)

If *H* is a special subgroup of a RAAG *G*, then $\mathsf{TC}(G, H) = 1 + \max\{|\mathcal{V}(K_G) \cup \mathcal{V}(K_H)|\}$ where the max runs over pairs of cliques $\{K_G, K_H\}$ with $K_G \subset \Gamma_G$ and $K_H \subset \Gamma_H$.

Let $B = \langle a, d | ad = da \rangle$.

Let $B = \langle a, d | ad = da \rangle$. Then B is a special subgroup of A with Γ_B depicted below.

Let $B = \langle a, d | ad = da \rangle$. Then B is a special subgroup of A with Γ_B depicted below.

The generators of $H^*(A)$ and $H^*(B)$ are listed below.

Dimension	$H^*(A)$ Gens	$H^*(B)$ Gens
3	abd	
2	ab, ad, bd, bc	ad
1	a, b, c, d	a, d
0	1	1

Let $B = \langle a, d | ad = da \rangle$. Then B is a special subgroup of A with Γ_B depicted below.

The generators of $H^*(A)$ and $H^*(B)$ are listed below.

Dimension	$H^*(A)$ Gens	$H^*(B)$ Gens
3	abd	
2	ab, ad, bd, bc	ad
1	a, b, c, d	a, d
0	1	1

Let $B = \langle a, d | ad = da \rangle$. Then B is a special subgroup of A with Γ_B depicted below.

The generators of $H^*(A)$ and $H^*(B)$ are listed below.

Dimension	$H^*(A)$ Gens	$H^*(B)$ Gens
3	abd	
2	ab, ad, bd, <mark>bc</mark>	ad
1	a, b, c, d	a, d
0	1	1

Sample Result

TC(A, B) = 5

Sample Result

TC(A, B) = 5

Proof: $TC(A, B) \leq TC(A) = 5$

Sample Result

TC(A, B) = 5

Proof: $TC(A, B) \leq TC(A) = 5$ Consider $\overline{a} \smile \overline{b} \smile \overline{c} \smile \overline{d} \in ker[H^*(A) \otimes H^*(B) \rightarrow H^*(B)].$

Sample Result

TC(A, B) = 5

Ρ

$$\begin{aligned} \operatorname{roof:} & \operatorname{TC}(A,B) \leq \operatorname{TC}(A) = 5 \\ & \operatorname{Consider} \, \overline{a} \smile \overline{b} \smile \overline{c} \smile \overline{d} \in \ker[H^*(A) \otimes H^*(B) \to H^*(B)]. \\ & \overline{a} \smile \overline{b} \smile \overline{c} \smile \overline{d} = (a \otimes 1 - 1 \otimes \iota^*(a)) \smile (b \otimes 1 - 1 \otimes \iota^*(b)) \\ & \smile (c \otimes 1 - 1 \otimes \iota^*(c)) \smile (d \otimes 1 - 1 \otimes \iota^*(d)) \\ & = (a \otimes 1 - 1 \otimes a)(b \otimes 1)(c \otimes 1)(d \otimes 1 - 1 \otimes d) \\ & = bc \otimes ad \neq 0 \end{aligned}$$

Sample Result

TC(A, B) = 5

Proof:
$$TC(A, B) \leq TC(A) = 5$$

Consider $\overline{a} \smile \overline{b} \smile \overline{c} \smile \overline{d} \in \ker[H^*(A) \otimes H^*(B) \rightarrow H^*(B)].$
 $\overline{a} \smile \overline{b} \smile \overline{c} \smile \overline{d} = (a \otimes 1 - 1 \otimes \iota^*(a)) \smile (b \otimes 1 - 1 \otimes \iota^*(b))$
 $\smile (c \otimes 1 - 1 \otimes \iota^*(c)) \smile (d \otimes 1 - 1 \otimes \iota^*(d))$
 $= (a \otimes 1 - 1 \otimes a)(b \otimes 1)(c \otimes 1)(d \otimes 1 - 1 \otimes d)$
 $= bc \otimes ad \neq 0$

Thus, $TC(A, B) > 4 \implies TC(A, B) = 5.$
Current/Future Work: Subcomplexes of Tori

Let X be a cellular subcomplex of a torus. Cohen and Pruidze utilize the following correspondence to compute TC(X):

Simplicial Complex Γ_X		Cell Complex X
$\{0\text{-simplices}\}$	\longleftrightarrow	$\{1\text{-cells}\}$
$\{1$ -simplicess $\}$	\longleftrightarrow	$\{2-cells\}$
$\{(k-1)$ -simplices $\}$	\longleftrightarrow	$\{k$ -cells $\}$

Theorem (S., 2019)

If Y is a cellular subcomplex of X, a cellular subcomplex of T^n , then $TC(X, Y) = 1 + \max\{|K_X \cup K_Y|\}$ where the max runs over pairs of (k-1)-simplices $\{K_X, K_Y\}$ with $K_X \subset \Gamma_X$ and $K_Y \subset \Gamma_Y$.

Question

Is each $cat(X) \le k \le TC(X)$ realized as TC(X, Y) = k by some $Y \subset X$?

Question

Is each $cat(X) \le k \le TC(X)$ realized as TC(X, Y) = k by some $Y \subset X$?

Theorem (S., 2019)

Let X be a cellular subcomplex of T^n . Then, for each $cat(X) \le k \le TC(X)$, there is some cellular subcomplex $Y \subset X$ such that TC(X, Y) = k.

Question

Is each $cat(X) \le k \le TC(X)$ realized as TC(X, Y) = k by some $Y \subset X$?

Theorem (S., 2019)

Let X be a cellular subcomplex of T^n . Then, for each $cat(X) \le k \le TC(X)$, there is some cellular subcomplex $Y \subset X$ such that TC(X, Y) = k.

Lemma (S., 2019)

Let $Y \subset X$ be a cellular subcomplex, and suppose $Y' = Y \cup e$ is another cellular subcomplex of X. Then, $TC(X, Y) \leq TC(X, Y') \leq TC(X, Y) + 1$.

Thank you for your attention!

- R. Charney, *An introduction to right-angled Artin groups*, Geometriae Dedicata **125** (2007) 141–158.
- D. Cohen and G. Pruidze, *Motion planning in tori*, Bull. London Math. Soc. **40** (2008), 249–262.
- M. Farber *Topological Complexity of Motion Planning*. Discrete and Computational Geometry **29** (2003), 211-221.
- M. Grant, G. Lupton, and J. Oprea, *New lower bounds for the topological complexity of aspherical spaces*. Topology and its Applications **189** (2015), 78-91.
- R. Short. *Relative topological complexity of a pair*. Topology and its Applications **248** (2018), 7-23.