
Miscellaneous Information

The invited lectures will be held in Room 148 of Pleasant Hall. The
parallel sessions for contributed papers will be held in Room 148, Room
E113 (in the wing of Pleasant Hall closest to Highland Road), Room
48A-B and Room 50 (in the basement below Room 148).

Rgistration will be held in the lobby of Pleasant Hall beginning Sunday
5:00–8:00 p.m. and continuing Monday 7:45 a.m.–6:00 p.m., Tuesday
7:45 a.m.–12:30 p.m., Wednesday and Thursday 7:45 a.m.–6:00 p.m.,
and Friday 8:00 a.m.–12:00 noon.

To leave an important message, phone the registration desk at (225)
578-6264. There will be a bulletin board in the lobby of Pleasant Hall.

Word processing, photocopying, and blank transparancies are available
at Kinko’s behind Pleasant Hall on State Street.

Coffee, soft drinks, and rolls will be available in the south half of Room
148 Pleasant Hall beginning Monday morning.

A book display will be set up in the library of Pleasant Hall, which is
a small room adjoining the lobby.

A shuttle bus service will run between the conference hotel and Pleasant
Hall. A schedule of times of service will be available at the hotel and
conference registration desks.
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Social Events

Sunday, February 25

The Pre-Conference Mixer will be held from 6:00 to 8:00 p.m. in Room
148 Pleasant Hall. The registration desk will be open from 5:00 to
8:00 p.m. in the lobby of Pleasant Hall.

Monday, February 26

The Conference Wine-and-Cheese Reception will be held from 6:00 to
8:30 p.m. in the Faculty Club on Highland Road diagonally opposite
the Student Union.

Tuesday, February 27

There will be a bus trip to New Orleans to view some of the Mardi Gras
parades. The cost will be $30 per person. The bus will leave Pleasant
Hall at 1:30 p.m. and leave New Orleans to return to Pleasant Hall at
10:30 p.m. Please sign up for this trip at the registration desk. Space
is limited and will be allocated on the first-come first-served basis.

Wednesday, February 28

The Conference Louisiana Banquet will be held from 7:00 to 10:00 p.m. in
the Cotillion Ballrom of the LSU Student Union Building. Beer, wine,
and soft drinks will be available at a cash bar. This will be a buffet.

Thursday, March 1

A Survivors’ Dessert Party will be held from 8:00 to 9:30 p.m. in Room
148 of Pleasant Hall.
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Invited Instructional Lectures

All invited lectures will be held in Room 148 of Pleasant Hall.

Monday, February 26

Professor Herbert Wilf of the University of Pennsylvania will lecture at
9:00 a.m. on Search Engines, Eigenvectors, and Chromatic Numbers ,
and at 1:30 p.m. on The Lean, Mean, Bijection Machine.

Tuesday, February 27

Professor Paul Seymour of Princeton University will lecture at 9:00 a.m. on
The Structure of Berge Graphs.

Wednesday, February 28

Professor Noga Alon of Tel Aviv University will lecture at 9:00 a.m. on
Polynomials in Discrete Mathematics I: Geometric and Number Theo-
retic Applications, and at 1:30 p.m. on Polynomials in Discrete Math-
ematics II: Graph Theoretic Applications.

Thursday, March 1

Professor Alexander Schrijver of CWI and the University of Amsterdam
will lecture at 9:00 a.m. on Permanents and Edge-Colouring and at
1:30 p.m. on Graph Embedding and Eigenvalues.

Friday, March 2

Professor William Cook of Rice University will lecture at 9:00 a.m. on
Optimization via Branch Decomposition and at 11:30 a.m. on The Trav-
eling Salesman Problem.
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Index

Abay-Asmerom M 5:00 148
Adachi W 11:20 48A-B
Adamsson M 10:20 148
Agnarsson Th 5:40 E113
Albertson M 10:20 E113
Alsardary Th 5:40 148
Anderson W 2:40 50
Aulicino W 3:20 E113
Axenovich W 12:00 148
Bagga Th 5:20 E113
Balogh Th 4:20 148
Bartha Tu 12:00 148
Bate M 11:00 48A-B
Beronque Th 2:40 50
Blankenship M 4:00 148
Bloom Tu 10:40 E113
Bode Th 11:40 50
Boehme Th 4:00 48A-B
Bollman Tu 11:20 E113
Bonato W 3:00 E113
Bonn W 11:00 48A-B
Buckley F 10:20 E113
Caporossi Th 4:00 50
Cariolaro W 10:20 E113
Cater M 5:20 48A-B
Cazaran F 10:20 50
Cheng F 10:40 48A-B
Chiang M 12:00 50
Chichisan Tu 11:40 48A-B
Chinn M 2:40 48A-B
Chipman Tu 12:00 E113
Chopra F 11:00 E113
Cieslik F 1:50 148
Cimikowski M 11:00 148
Claassen W 4:40 50
Cockayne Tu 10:40 148
Colijn Th 5:40 50
Crespi M 11:20 148
Cropper W 5:00 148
Cummings Th 10:40 50
Cutler Th 10:20 E113
Dankelmann W 3:00 48A-B
de Abreu Th 5:00 E113
Dean M 2:40 E113
DeLaVina Th 11:40 148
Dementieva Th 3:20 148
Denley M 10:40 48A-B
DeVos Tu 10:20 148
Dlamini F 10:40 E113
Dobson M 4:00 48A-B
Domke W 2:40 48A-B
Durairaju Th 5:00 50

Durocher M 4:40 148
Ealy W 11:40 50
Ebert Th 3:00 50
Egecioglu M 11:00 E113
Eggleton Th 4:00 148
El-Zanati W 5:00 E113
El-hashash Th 11:00 E113
Ellis-Monaghan M 5:40 48A-B
Emert Th 3:00 48A-B
Ferencak W 10:40 48A-B
Ferguson W 11:20 50
Finbow W 4:40 E113
Findley Th 5:40 48A-B
Foster Th 11:40 48A-B
Fricke F 11:00 148
Froncek Tu 10:20 48A-B
Gargano M 5:40 50
Gavlas Tu 11:20 148
Gethner W 2:40 148
Getu W 3:20 50
Gimbel W 3:20 48A-B
Gimbert Th 11:00 48A-B
Gitler Th 4:00 E113
Godbole Th 11:20 E113
Goddyn Tu 10:20 50
Goldwasser Th 4:40 148
Golumbic W 2:40 E113
Gordon M 5:00 E113
Greenberg W 11:20 E113
Grimaldi Th 10:20 148
Guan F 2:10 48A-B
Gui W 3:20 148
Guichard F 2:30 48A-B
Guneri F 10:40 50
Gupta W 5:00 50
Haas W 5:00 48A-B
Hackmann W 4:40 148
Hansen Th 4:20 50
Harary W 5:30 148
Harboth M 3:00 148
Hartnell Th 4:20 48A-B
Harutyunyun F 2:30 E113
Heckman F 10:20 148
Hedetniemi M 5:20 E113
Hegde F 2:30 148
Henning F 1:30 E113
Heubach M 3:00 48A-B
Hilton M 10:20 48A-B
Hobbs W 4:00 E113
Hochberg M 3:20 50
Hoffman, D. M 11:00 50
Holliday, J. F 1:50 48A-B
Holliday, S. M 10:40 50
Hurd M 2:40 50

4



Hutchinson W 4:00 148
Hynds W 11:00 E113
Jacobs M 5:40 E113
Janssen W 11:20 148
Johnson, P. Tu 10:20 E113
Kaneko Th 10:20 48A-B
Kanno Th 4:40 E113
Kemnitz W 11:00 148
Kezdy Tu 11:40 148
Kirkpatrick M 4:20 50
Knisley W 4:20 48A-B
Kountanis F 2:10 50
Kruskal M 4:40 50
Kubale Th 3:20 48A-B
Küçükçifçi W 12:00 48A-B
Lai W 4:20 50
Lam W 3:00 148
Laskar W 10:40 50
Laue M 11:40 48A-B
Lawrencenko M 12:00 148
Lee F 1:50 E113
Lemos Tu 10:40 50
Lewinter F 2:10 E113
Li Th 10:40 E113
Liatti W 4:20 E113
Linderman Th 11:40 E113
Lipman F 10:20 48A-B
Lundgren Tu 12:00 48A-B
Manickam F 1:50 50
Martini M 3:20 148
McKee Th 4:20 E113
McKenzie Th 5:20 48A-B
McNulty Tu 11:00 50
Mellinger Th 3:20 50
Micikevicius Th 11:00 50
Mills Tu 11:20 50
Molina W 10:40 E113
Montágh W 11:40 148
Moon M 11:20 50
Moriya Tu 11:00 E113
Muntean Tu 11:20 48A-B
Mutoh W 11:40 48A-B
Mynhardt Tu 11:00 148
Myrvold F 10:40 148
Narayan Th 10:40 48A-B
Nayak F 1:30 50
Neal Th 11:20 48A-B
Neel Tu 12:00 50
Neudauer Tu 11:40 50
Pebody M 11:40 E113
Peng Th 3:00 148
Petingi M 4:20 E113
Phillips, B. Th 5:20 48A-B
Phillips, J. M 12:00 48A-B

Piotrowski Th 5:00 148
Plagne Th 10:40 148
Pootheri M 4:00 50
Pott Th 3:00 E113
Pritikin Th 4:40 50
Proffitt W 4:40 48A-B
Qiu M 3:20 48A-B
Quintas Th 2:40 48A-B
Radziszowski Th 11:20 148
Raines W 10:20 48A-B
Rall Th 4:40 48A-B
Ramras M 4:40 E113
Rao F 11:00 48A-B
Raychaudhuri W 10:20 50
Reyes F 2:10 148
Rieck M 12:00 E113
Robinson M 5:00 48A-B
Rodger Th 2:40 E113
Saenpholphat Tu 11:00 48A-B
Sagols F 11:00 50
Sanders F 1:30 148
Sarvate M 3:00 50
Schiermeyer Th 11:00 148
Seager W 4:00 48A-B
Seo Th 11:20 50
Shapiro M 5:20 50
Shauger M 11:40 148
Shen W 12:00 50
Sheng M 10:20 50
Shiu M 3:20 E113
Sinclair W 4:00 50
Sissokho M 10:40 148
Skala M 4:20 148
Smith, D. W 11:00 50
Snevily M 2:40 148
Sudakov W 10:40 148
Suraweera Th 5:20 50
Tang M 5:40 148
Thürmann M 3:00 E113
Turner Th 10:20 50
Unger M 4:00 E113
Valdés M 5:00 50
Van Bussel M 11:40 50
Vertigan W 10:20 148
Viglione M 4:40 48A-B
Villalpando Th 5:00 48A-B
Vishnoi M 10:40 E113
Voigt W 4:20 148
Vu Th 2:40 148
Vušković M 5:20 148
Walsh Th 5:20 148
Wang W 11:40 E113
Wanless M 11:20 48A-B
Wassermann Tu 11:40 E113
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Watkins W 12:00 E113
Wehrung Th 3:20 E113
Wierman M 11:20 E113
Woan W 3:00 50
Wojciechowski F 1:30 48A-B
Wu M 4:20 48A-B
Zhang Tu 10:40 48A-B
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Monday

8:45–9:00
Opening

9:00–10:00
148 Herbert Wilf, Search Engines, Eigenvectors, and Chromatic Numbers

10:00–10:20
Coffee break

10:20–10:35
148 Jay Adamsson, The Crossing Number of Cm × Cn

E113 Michael O. Albertson*, Debra Boutin, The Isometry Dimension of a Finite Group
48A-B A.J.W. Hilton*, M. Mays, C.St.J.A. Nash-Williams, C.A. Rodger, On the Existence of

Pairs of Mutually Orthogonal Symmetric Hamiltonian Double Latin Squares
50 Li Sheng, A Characterization for a Tree to be a Unit Probe Interval Graph

10:40–10:55
148 Michelangelo Grigni, Papa A. Sissokho*, Apex Planar Graphs Have Bounded Detour

Gap Number
E113 Nisheeth Vishnoi, Note: An Algebraic Proof of Alon’s Combinatorial Nullstellensatz

48A-B Tristan Denley, On a Conjecture of Haggkvist on Filling Partial Latin Squares
50 S. H. Holliday*, P. D. Johnson, The Shields-Harary Number of a Tree

11:00–11:15
148 Robert Cimikowski, Crossing Number Bounds for the Twisted Cube

E113 Omer Egecioglu*, C. Ryavec, Polynomial Families Satisfying a Riemann Hypothesis
48A-B J.A. Bate*, G.H.J. van Rees, Minimal and Near-Minimal Critical Sets in Back-Circulant

Latin Squares
50 Dean Hoffman*, Matt Walsh, Even Spanning Trees in Bipartite Graphs

11:20–11:35
148 Reneta Barneva, Valentin Brimkov, Bruno Codenotti, Valentino Crespi*, Mauro Leoncini,

On the Lovász Number of Very Sparse Circulant Graphs
E113 John C. Wierman, Site Percolation Critical Probability Bounds for Two Archimedean

Lattices
48A-B Ian Wanless, Generalized Transversals of Latin Squares

50 A. Meir, J.W. Moon*, M.A. Steel, A Limiting Theorem on 2-Coloured Trivalent Trees

11:40–11:55
148 Dale Daniel, Stephen E. Shauger*, More Results on the Erdős-Gyárfás Conjecture in

Claw-Free Graphs
E113 Luke Pebody, Combinatorial Reconstruction

48A-B Reinhard Laue*, Anton Betten, Evi Haberberger, A Simple 6-Design on 14 Points and
5-Designs without Automorphisms from A4

50 Frank Van Bussel, 0-Centred and 0-Ubiquitously Graceful Trees

12:00–12:15
148 Onyeje Bose, Serge Lawrencenko*, A Note on g-Outer Graphs

E113 Michael Q. Rieck, On the Intersection Numbers of Association Schemes Based on
Isotropic Subspaces

48A-B James B. Phillips*, Peter J. Slater, Colored Distance in Grid Graphs
50 Nam-Po Chiang, The Maximum Total Relative Displacement of Permutations of a Path

12:15–1:30
Lunch

1:30–2:30
148 Herbert Wilf, The Lean, Mean, Bijection Machine
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2:40–2:55
148 Hunter Snevily, A Sharp Bound for the Number of Sets that Pairwise Intersect at k

Positive Values
E113 Nathaniel Dean, Rectilinear Crossing Minimization

48A-B Phyllis Chinn*, Ralph Grimaldi, Silvia Heubach, The Frequency of Summands of a
Particular Size in Palindromic Compositions

50 Spencer P. Hurd*, Dinesh G. Sarvate, Minimal Standard Enclosings of Triple Systems

3:00–3:15
148 Heiko Harborth, Smallest Limited Edge-to-Edge Snakes in Euclidean Tessellations

E113 Christian Thürmann, Minimum Number of Edges with At Most s Crossings in Recti-
linear Drawings of the Complete Graph

48A-B Silvia Heubach*, Phyllis Chinn, Ralph Grimaldi, Rises, Levels, Falls and “+” Signs in
Compositions and Palindromes

50 Spencer P. Hurd, Dinesh G. Sarvate*, On Point Enclosings of Triple Systems

3:20–3:35
148 Horst Martini, On Geometric Graphs

E113 Wai Chee Shiu*, Peter Che Bor Lam, On the `-Distance Face Coloring of 6-Regular
Plane Graphs

48A-B Ke Qiu, Adjacency Matrix and Eigenvalues of the Hypercube
50 Robert Hochberg*, Michael Reid, Tiling with Notched Cubes

3:35–4:00
Coffee break

4:00–4:15
148 Robin Blankenship*, Bogdan Oporowski, Book Embeddings of Graphs and Minor-

Closed Classes
E113 Thomas Boehme, Frank Goering, Herwig Unger*, Random Models for the Propagation

of Information in the World Wide Web
48A-B Edward Dobson, On Solvable Groups and Cayley Graphs

50 Sridar Kuttan Pootheri, Counting Classes of Labeled 2-Connected Graphs

4:20–4:35
148 Matthew Skala*, Wendy Myrvold, Fast Generation of Graphs Embedded on the Torus

E113 Louis Petingi*, Jose Rodriguez, Reliability of Networks with Delay Constraints
48A-B Tristan Denley, Haidong Wu*, Long Cycles Through Many Specified Edges

50 Kimberly S. Kirkpatrick, Doyen-Wilson Theorem for K3 with Two Pendant Edges

4:40–4:55
148 Alex Brodsky, Stephane Durocher*, Ellen Gethner, Toward the Rectilinear Crossing

Number of Kn: New Drawings, Upper Bounds, and Asymptotics
E113 Daniel Ramras*, Sam Greenberg, Cliques and Independent Neighbor Sets in Random

Graphs
48A-B Felix Lazebnik and Raymond Viglione*, A New Infinite Series of Edge- but not Vertex-

Transitive Graphs
50 Clyde P. Kruskal, The Chromatic Number of the Plane: the Bounded Case

5:00–5:15
148 Ghidewon Abay-Asmerom, On Imbeddings of Rejection and Exclusion of Graphs

E113 Gary Gordon, Expected Value for Trees and Rooted Graphs
48A-B Frank Harary, Robert W. Robinson*, Identity Digraphs of Minimum Size

50 Linda Valdés, Edge-Magic Kp

5:20–5:35
148 Michele Conforti, Gérard Cornuéjols, Kristina Vušković*, Square-Free Perfect Graphs

E113 S.M. Hedetniemi, S.T. Hedetniemi*, D.P. Jacobs, P.K. Srimani, Self-Stabilizing Algo-
rithms for Minimal Dominating and Maximal Independent Sets

48A-B Steven C. Cater*, Frank Harary, Robert W. Robinson, One-Color Triangle Avoidance
Games
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50 Lou Shapiro*, Frank Schmidt, The Fibonacci Numbers, Matching Polynomials, and
Normality

5:40–5:55
148 Dionysios Kountanis, Sha Tang*, Query Optimization for Multilist Files Using Internal

Graphs
E113 J.R.S. Blair, S.M. Hedetniemi, S.T. Hedetniemi, D.P. Jacobs*, Self-Stabilizing Maxi-

mum Matchings
48A-B Joanna A. Ellis-Monaghan, Relations for Skein-Type Graph Polynomials

50 Michael L. Gargano*, William Edelson, Optimal Sequenced Matroid Bases Solved by
Genetic Algorithms

6:00–8:30
Wine and Cheese Reception
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Invited Instructional Lectures

Monday 9:00–10:00, Room 148

Search Engines, Eigenvectors, and Chromatic Numbers

Herbert Wilf, University of Pennsylvania

A search engine can return a list of hits ranked in descending order of importance. How can they
determine the importance of the web sites involved? The Kendall-Wei ranking scheme uses the
Perron eigenvector of the matrix whose elements measure the influence of each site on the others.
We will discuss this scheme, and the Perron-Frobenius theorem that underlies it. Applications will
be given to web search, ranking of tournaments, football pools, etc.

Monday 1:30–2:30, Room 148

The Lean, Mean, Bijection Machine

Herbert Wilf, University of Pennsylvania

Beginning in the 1980’s and continuing to the present, great strides have been made towards the goal
of automating the discovery of bijective mappings that establish counting theorems in combinatorics.
These include the Garsia-Milne Involution Principle, and later work by Remmel, Gordon, O’Hara,
myself, and others. We’ll survey these results, particularly as they apply to integer partitions, where
they supply automated discovery and proof of theorems of the form “There are the same number of
partitions of n such that . . . as there are such that . . . ”.
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Monday, 10:20–10:35

Room 148

The Crossing Number of Cm × Cn

Jay Adamsson, Department of National Defence, Canada

Motivated by the problem of determining the crossing number of the Cartesian product Cm×Cn of
two cycles, we introduce the notion of an (m,n)-arrangement, which is a set {S, T, C1, C2, . . . , Cn}
of closed curves and a set {P1, P2, . . . , Pm} of paths in the plane, such that S and T are disjoint and
in the same face of C1 ∪C2 ∪ . . .∪Cn, each Pi joins a point on S to a point on T , and each Pi has a
vertex vi,j on Cj so that in traversing Pi from S to T , the vi,j occur in the order vi,1, vi,2, . . . , vi,n.
The main result is that every (m,n)-arrangement has at least (m − 2)n crossings. This is used
to show that “(m,n)-circular arrangements” (no S and T and the Pi are closed curves) which can
be broken up into disjoint arrangements have (m − 2)n crossings. This last fact implies that the
crossing number of C7×Cn is 5n, in agreement with the general conjecture that the crossing number
of Cm × Cn is (m− 2)n, for 3 ≤ m ≤ n.

Room E113

The Isometry Dimension of a Finite Group

Michael O. Albertson*, Smith College
Debra Boutin, Hamilton College

A set of points W in Euclidean space is said to realize the finite group G if the isometry group of
W is precisely G. Using the Cayley graph and the Implicit Function Theorem we show that every
finite group G can be realized by a finite subset of some Rn, with n < |G|. The minimum dimension
of a Euclidean space in which G can be realized is called its isometry dimension. We report on work
of ourselves and others specifying the isometry dimension of various groups.
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Room 48A–B

On the Existence of Pairs of Mutually Orthogonal Symmetric Hamiltonian Double
Latin Squares

A.J.W. Hilton*, University of Reading
M. Mays, West Virginia University

C.St.J.A. Nash-Williams, University of Reading
C.A. Rodger, Auburn University

A double latin square is a 2n × 2n array on n symbols with each symbol occurring twice in each
row and column. This has a natural interpretation as a 2-factorization of the complete bipar-
tite graph K(2n, 2n) in which one vertex set represents the rows and the other the columns. If this
2-factorization is in fact a decomposition into Hamilton cycles, we call the double latin square Hamil-
tonian. Two double latin squares are orthogonal if there are 4 pairs of corresponding cells containing
each ordered pair of symbols. We discuss the problem of existence of pairs of MOSHLS(2n), i.e. mu-
tually orthogonal symmetric Hamiltonian double latin squares. There is a very useful interpretation
in terms of graph theory which we shall discuss.

Room 50

A Characterization for a Tree to be a Unit Probe Interval Graph

Li Sheng*, Drexel University

A probe interval graph is an variation of interval graph that arose from the DNA physical mapping of
molecular biology. Given a graph, and a partition of its vertex set into probe vertices and non-probe
vertices. The graph is called a probe interval graph if an interval can be assigned to each vertex
such that two vertices are adjacent if and only if their corresponding intervals have a nonempty
intersection, and at least one of the interval is a probe vertex. Unit probe interval graph is a special
case of probe interval graph where we require that all the intervals assigned to the vertices must
have the same length. We give a characterization for a cycle free graph to be a unit probe interval
graph using a list of forbidden subgraphs.
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Monday, 10:40–10:55

Room 148

Apex Planar Graphs have bounded Detour Gap number

Michelangelo Grigni, Emory University
Papa A. Sissokho*, Emory University

Given an edge weighted graph, we want to find a spanning subgraph with low total weight, and
which closely approximates shortest path distances in the original graph. Althöfer et al. presented a
tradeoff between these two objectives in planar graphs. We extend their result to larger minor-closed
graph families by analyzing the detour gap number. In particular we show that the apex of a planar
graph has bounded gap number, and therefore such a tradeoff.

Room E113

Note: An Algebraic Proof of Alon’s Combinatorial Nullstellensatz

Nisheeth Vishnoi, Georgia Institute of Technology

Alon proved the following using elementary ideas. Let k be a field and let f ∈ k[x1, x2, . . . , xn].
Given nonempty subsets S1, . . . , Sn ⊂ k, for 1 ≤ i ≤ n, define gi(xi) =

∏
s∈Si(xi − s). If f vanishes

on S1 × · · · × Sn, then f =
∑n
i=1 higi, for some hi ∈ k[x1, . . . , kn], 1 ≤ i ≤ n. In this note we give

an algebraic proof of the same fact which uses some basic ideas from commutative algebra, hoping
that it might lead to generalization of Alon’s important result and yielding further applications.
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Room 48A–B

On a Conjecture of Häggkvist on Filling Partial Latin Squares

Tristan Denley, University of Mississippi

Since Evans made his famous conjecture about partial latin squares there have been numerous
attempts to generalise the condition of n− 1 filled cells, be it to increase the number of filled cells,
or limit the possible configurations. One such is the following conjecture of Häggkvist
Conjecture (1980) Any partial nr × nr latin square whose filled cells lie in (n− 1) disjoint r × r
squares can be completed.
This talk will present some recent progress made on this conjecture.

Room 50

The Shields-Harary Number of a Tree

S.H. Holliday*, Auburn University
P.D. Johnson, Auburn University

The Shields-Harary graph parameter is a measure of the robustness or integrity of a graph. The
parameters were first discussed by Frank Harary and the late Allen Shields in 1972 A.D. In this
paper, we will give some results about the Shields-Harary numbers of trees.
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Monday, 11:00–11:15

Room 148

Crossing Number Bounds for the Twisted Cube

Robert Cimikowski, Montana State University

The twisted cube has been proposed as a model for parallel computing architectures. The network
is formed by exchanging a pair of independent edges of any 4-cycle of the hypercube. The resulting
graph has diameter n − 1, compared with n for the hypercube. We derive asymptotic upper and
lower bounds for the crossing numbers of the twisted cube and generalized twisted cube.

Room E113

Polynomial Families Satisfying a Riemann Hypothesis

Omer Egecioglu*, University of California, Santa Barbara
C. Ryavec, University of California, Santa Barbara

Consider a linear transformation T : IR[x]→ IR[x] defined on basis elements 1, x, x2, . . . by

T [xk] =
(x)k
k!

where (x)k = x(x+1)(x+2) · · · (x+k−1), k ≥ 0. We create several infinite families of polynomials
of the form T [pn(x)], each member of which satisfies a Riemann hypothesis; i.e., their zeros lie
on the line [s = 1

2 + it : t real]. These include, for example, pn(x) = (x + r)n + (1 − x + r)n

for n ≥ 2 and where r is any real number. Our proof uses a positivity argument together with
certain elements of the theory of 3–term polynomial recursions. Numerical evidence suggests that
the interleaving property of the zeros of orthogonal polynomials extends to the zeros of a wide class
of image polynomials T [qn(x)] which satisfy 4–term and higher order recursions.
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Room 48A–B

Minimal and Near-Minimal Critical Sets in Back-Circulant Latin Squares

J.A. Bate*, University of Manitoba
G.H.J. van Rees, University of Manitoba

A critical set in a latin square is a subset of its elements with the following properties.
1) No other latin square exists which also contains that subset.
2) No element may be deleted without destroying property 1.
It is conjectured that the cardinality of the smallest critical set in an NxN latin square scs(N) =
bN2/4c, and that only back-circulant latin squares contain critical sets of this size. These conjectures
have been proven for N ≤ 7. In this paper, we further conjecture that in a back-circulant latin square
of size N > 4, the critical set of size scs(N) is unique up to isomorphism, and that no critical set
of size scs(N)+1 exists if N is even. Using a combination of analysis, automorphism groups, and
backtrack searches, these conjectures are proven for all N ≤ 12 except N = 9 and N = 11.

Room 50

Even Spanning Trees in Bipartite Graphs

Dean Hoffman*, Auburn University
Matt Walsh, Auburn University

A tree is defined to be even if the distance between any pair of leaves is even. We answer a question
raised by Teresa W. Haynes by giving a polynomial algorithm to determine if a given bipartite
graph has an even spanning tree. We also give Hall-type necessary and sufficient conditions for the
existence of such a tree.
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Monday, 11:20–11:35

Room 148

On the Lovász Number of Very Sparse Circulant Graphs

Reneta Barneva, Eastern Mediterranean University, TRNC.
Valentin Brimkov, Eastern Mediterranean University, TRNC.

Bruno Codenotti, IMC-CNR, Pisa, Italy
Valentino Crespi*, ISTS, Dartmouth College
Mauro Leoncini, Università di Foggia, Italy

The Lovász theta function of a graph attracts a lot of interest due to its relations to communication
issues, as well as to some central combinatorial optimization problems. A remarkable property of this
function is that it is computable in polynomial time, despite being “sandwiched” between two hard
to compute integers, i.e., clique and chromatic number. Very little is known about the explicit value
of the theta function for special classes of graphs. In this paper we undertake the investigation of
the value of the Lovász function for some special classes of sparse circulant graphs. More precisely,
we provide the explicit formula for the Lovász function of the union of two cycles in two special
cases, and an efficient linear time algorithm, for the general case. Indeed our algorithm takes time
proportional to j, where j is the displacement between the two cycles.

Room E113

Site Percolation Critical Probability Bounds for Two Archimedean Lattices

John C. Wierman, Johns Hopkins University

In a site percolation model, each vertex of an infinite connected locally-finite graph G is randomly
declared to be open with probability p, 0 < p < 1, and closed otherwise, independently of other
vertices. Percolation theory is concerned with the subgraph of G induced by the set of open vertices.
Of particular interest is the critical probability pc(G), above which the subgraph of open vertices
contains an infinite component.
Determination of critical probabilities for periodic graphs has been a long-standing problem. Exact
solutions are known for only regular trees and a small number of two-dimensional graphs. There
has been continuing effort devoted to estimating critical probabilities (by the physics community),
and to determining rigorous mathematical bounds for critical probabilities.
Site percolation on Archimedean lattices have been studied recently in the physics literature. A
regular tiling of the plane is a tiling involving only regular polygons. An Archimedean lattice is the
graph of a regular tiling of the plan which is vertex-transitive. There are exactly eleven Archimedean
lattices.
We prove upper and lower bounds for the site percolation critical probabilities of two Archimedean
lattices, named the (4,8,8) and (4,6,12) lattices according to the numbers of sides of successive faces
around a vertex. In these cases, the upper and lower bounds are closer than for any other graph
that is not exactly solved. The bounds are derived via the bond-to-site transformation, containment
principle, and substitution method.
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Room 48A–B

Generalized Transversals of Latin Squares

Ian Wanless, Christ Church, Oxford, United Kingdom

A Latin square of order n is an n × n matrix in which n symbols occur and each symbol occurs
once in each row and once in each column. A transversal of such a square is a set of n entries
which includes one representative of each row, column and symbol. We consider a generalisation
of this concept, called a k-plex. A k-plex is a set of kn entries which includes k entries from each
row, column and symbol. We consider questions such as which squares possess k-plexes? Going
the other way, if given a partial Latin square with kn entries (k in each row,column,symbol), under
what conditions can we complete the Latin square?

Room 50

A Limiting Theorem on 2-Coloured Trivalent Trees

A. Meir, York University, Canada
J.W. Moon*, University of Alberta

M.A. Steel, University of Canterbury, New Zealand

Let Tn denote one of the (2n−5)!! trivalent trees with n leaves labelled 1, 2, . . . , n and n−2 unlabelled
interior nodes of degree three. Such trees are widely used to represent evolutionary relationships in
biology; the labels of the leaves correspond to different species. Any binary property of the species
can be represented by a 2-colouring of the associated tree Tn. The parsimony) length of Tn with
respect to a given 2-colouring is the minimum number w of edges that join nodes with different
colours over all the extensions of the given 2-colouring to a 2-colouring of all the nodes of Tn. This
quantity w is the basis of the maximum parsimony approach for reconstructing phylogenetic trees
from discrete data. A natural question in biostatistics asks for the distribution of the parsimony
length w of a randomly chosen leaf-labelled trivalent tree Tn relative to a random 2-colouring in
which each leaf is assigned a colour independently with constant probabilities. We show that this
distribution is asymptotically normal and determine the leading terms of its mean and variance.
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Monday, 11:40–11:55

Room 148

More Results on the Erdős-Gyárfás Conjecture in Claw-Free Graphs

Dale Daniel, Lamar University
Stephen E. Shauger*, Texas A&M University

We show that any claw-free planar graph with minimum degree at least three has a 2k-cycle. Using
an idea of Dean, we also show how to guarantee other cycle lengths in planar and toric graphs.

Room E113

Combinatorial Reconstruction

Luke Pebody, University of Memphis

Given an action of a group G upon a set X, a positive integer k and a finite subset S of X, the
k-deck of S is the mapping that assigns to every T ⊆ X with |T | = k the number of distinct images
of T under G which are subsets of S. The reconstruction problem for a group action G : X asks for
the minimal k, if such exists, such that all subsets S of X is determined, up to translation by G, by
its k-deck.
Building on earlier results of Alon, Caro, Krasikov and Roddity and of Radcliffe and Scott, the
author gave a complete solution to the reconstruction problem for Abelian groups. We will provide
details of the proof and related results.
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Room 48A–B

A Simple 6-Design on 14 Points and 5-Designs without Automorphisms from A4

Reinhard Laue*, University of Bayreuth, Germany
Anton Betten, University of Bayreuth, Germany

Evi Haberberger, University of Bayreuth, Germany

A new simple 6-(14,7,4) design is presented with full automorphism group A4. Combining the
derived design with a residual design of one of the two known other simple 6-(14,7,4) designs with
automorphism group C13 yield nearly 40 million isomorphism types of 5-(14,7,18) designs with trivial
automorphism group.

Room 50

0-Centred and 0-Ubiquitously Graceful Trees

Frank Van Bussel, University of Toronto

We look at some empirical and theoretical results concerning graceful labellings of trees with respect
to the assignment of specified labels to specified vertices. The main focus is on where in a tree the
label 0 can be assigned gracefully. The following are defined:

1. k-centred labellings. The labelling f of the tree T is k centred if for T ’s centre vertex v we
have f(v) = k. If T has odd diameter then either endpoint of the centre edge is acceptable.

2. k-ubiquitously graceful trees. The tree T is k ubiquitously graceful if for every vertex v ∈ V (T )
there is a graceful labelling of T such that f(v) = k. If T is k ubiquitously graceful for all k
in the range {0, . . . , |E(T )|} then T is simply ubiquitously graceful.

We consider two very intriguing empirical findings concerning non-0-centred graceful and non-0-
ubiquitously graceful trees. The first of these findings suggests that the only trees which do not
possess 0-centred graceful labellings are a very small and easily characterized subset of diameter 4
trees; the second suggests that all trees which are not 0-ubiquitously graceful are generated by these
diameter 4 trees in an exceedingly simple way. We are able to confirm these findings rigourously for
all trees of diameter ≤ 4.
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Monday, 12:00–12:15

Room 148

A Note on g-Outer Graphs

Onyeje Bose, Rochester Institute of Technology
Serge Lawrencenko*, Rochester Institute of Technology

We generalize the concept of an outer-planar graph G for surfaces Sg of arbitrary genus g. We
suggest three definitions for a g-outer graph. All three definitions require the existence of a face
which contains all the vertices of G in its boundary. We attack the problem of generalizing Harary’s
characterization of a 0-outer graph for g-outer graphs for a given g. Namely, we prove that there
exists a characterization in terms of necessary subgraphs. Furthermore, we show that the family of
necessary subgraphs is finite. However, we also show that to list all the members of that family,
is analogous in difficulty to the task of characterizing the graphs of genus g in terms of forbidden
subgraphs.

Room E113

On the Intersection Numbers of Association Schemes Based on Isotropic Subspaces

Michael Q. Rieck, Drake University

Let n be a positive integer and q an odd prime power. The vector space V = GF(q)n equipped with
an orthogonal, unitary or symplectic geometry (i.e. a special nondegenerate form) is said to have
Witt index d if this is the dimension of a maximal isotopic subspace. A subspace is isotropic if the
form vanishes identically on it. It is well known that such subspaces form the vertices of a distance-
transitive graph (called a dual polar graph), whose intersection numbers and eigenvalues have been
computed by D. Stanton and others.
Less studied seems to be the association scheme based on the isotropicm-subspaces, where 1 < m < d
(m fixed), together with the orbitals associated with the isometry group of V acting on the set of
isotropic m-subspaces. This action is generously transitive. The sizes of the orbits of the subgroup
stabilizing two of these subspaces is here enumerated in a more or less direct manner, without the
need for representation theory. This is accomplished by relying on a certain amount of modular
lattice theory. The intersection numbers of the association scheme are then readily computed.
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Room 48A–B

Colored Distance in Grid Graphs

James B. Phillips*, University of Alabama
Peter J. Slater, University of Alabama

For a graph facility location problem, each vertex is considered to be the location of a department.
One seeks to optimally locate the departments in order to minimize some function of the distances
between departments. For example, consider a factory that has rectangular planar area where L is
the length and W is the width. Suppose that there are t-departments and department i requires
a total area of ni and the sum of the ni’s is equal to L ∗W , the total area. Members of the same
department are not required to talk to each other but must talk with everyone else in each of the
other departments. Here, we seek to minimize the total distance between members of different
departments. We assume that each member is a 1× 1 grid. Thus each department i has a total of
ni 1 × 1 grids, but these grids are not required to be adjacent. This is a particular instance of the
colored distance problem, in which a general graph is colored with t-colors and the colored distance
is the sum of the distances between vertices of different colors. Meiers and Slater studied the two
color grid graph problem, and we discuss an extension of these results to the general case for t-colors
where t ≥ 2, with an emphasis on the equitable and nearly-equitable cases, where all colors occupy
an equal or nearly equal number of vertices in the grid.

Room 50

The Maximum Total Relative Displacement of Permutations of a Path

Nam-Po Chiang, Tatung University, Taiwan, R.O.C.

Let G = (V,E) be a connected graph and let φ be a permutation of V . Define the total relative
displacement of permutation φ of G to be

δφ(G) =
∑
x,y∈V

|dG(x, y)− dG(φ(x), φ(y))|

.
In this paper, we study the maximum value of δφ(G) among all permutations of a path.
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Monday, 2:40–2:55

Room 148

A Sharp Bound for the Number of Sets that Pairwise Intersect at k Positive Values

Hunter Snevily, University of Idaho

In this talk we prove that if L is a let of k positive integers and {A1, . . . , Am} is a family of subset
of an n-element set satisfying |Ai ∩ Aj | ∈ L for all 1 ≤ i < j ≤ m, then m ≤

∑k
i=0

(
n−1
i

)
. The case

k = 1 was proven more than 45 years ago by Majumdar.

Room E113

Rectilinear Crossing Minimization

Nathaniel Dean, Rice University

In a rectilinear drawing of a simple graph G each vertex is mapped to a distinct point in the plane
and each edge is represented by a straight-line segment with appropriate ends. The goal of rectilinear
crossing minimization is to find a rectilinear drawing of G with as few edge crossings as possible. This
minimum value rcnG is called the rectilinear crossing number of G. Some new results on rectilinear
crossing minimization are presented including (1) a mathematical programming formulation of the
problem and (2) a comparative sizing of the problem for various graph families
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Room 48A–B

The Frequency of Summands of a Particular Size in Palindromic Compositions

Phyllis Chinn*, Humboldt State University
Ralph Grimaldi, Rose-Hulman Institution of Technology

Silvia Heubach, California State University

A composition of a whole number n consists of an ordered sequence of numbers whose sum is n. A
palindromic composition is one for which the sequence is the same from left to right as from right to
left. This paper shows various ways of generating all palindromic compositions, counts the number
of times each number appears as a summand among all the palindromic compositions of n, and
describes several patterns among the numbers generated in the process of enumeration.

Room 50

Minimal Standard Enclosings of Triple Systems

Spencer P. Hurd*, The Citadel, Charleston, SC, USA
Dinesh G. Sarvate, The University of Charleston, Charleston, SC, USA

We solve the problem of existence of minimal standard enclosings of X = BIBD(v, k, u) into Y =
BIBD(v+ 1, 3, u+w) for a minimal positive w. The number of points v in the design X may be any
number, and the index u is 6 or less.
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Monday, 3:00–3:15

Room 148

Smallest Limited Edge-to-Edge Snakes in Euclidean Tessellations

Heiko Harborth, Techn. Univ. Braunschweig, Germany

A snake is a sequence of n cells of a Euclidean tessellation such that both end cells have exactly one
and all other n − 2 cells have exactly two edge-to-edge neighboring cells. A snake is called limited
if it is not a proper subsnake of another snake The minimum numbers n = 20, 19, and 13 of cells
of limited snakes are determined for triangles, aquares, and hexagons, respectively. (Common with
T. Bisztriczky)

Room E113

Minimum Number of Edges with At Most s Crossings in Rectilinear Drawings of the
Complete Graph

Christian Thürmann, Technische Universität Braunschweig, Germany

The minimum number rs(n) of edges with at most s crossings in rectilinear drawings of the complete
graph Kn will be discussed. Each rectilinear drawing has at least five edges without crossings for
n ≥ 5. We ask for the minimum number of vertices such that rs(n) = 5.
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Room 48A–B

Rises, Levels, Falls and “+” Signs in Compositions and Palindromes

Silvia Heubach*, California State University
Phyllis Chinn, Humboldt State University

Ralph Grimaldi, Rose-Hulman Institution of Technology

A composition of a whole number n consists of an ordered sequence of positive integers whose
sum is n. A palindromic composition is one for which the sequence reads the same forwards and
backwards. We derive results for the number of “+” signs, levels (a summand followed by itself),
rises (a summand followed by a larger one), and falls (a summand followed by a smaller one) for both
compositions and palindromes of n. This paper extends some of the results by Alladi and Hoggatt
who considered compositions and palindromes whose only summands are 1 and 2. Several patterns
for the quantities of interest will be established, as well as a connection to the Jacobsthal sequence.

Room 50

On Point Enclosings of Triple Systems

Spencer P. Hurd, The Citadel, Charleston
Dinesh G. Sarvate*, University of Charleston

We define a new minimum point enclosing and solved completely the problem using graph theory
and group divisible designs for index 1,2,3,and 5 and obtained Partial results for index 4 and 6.
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Monday, 3:20–3:35

Room 148

On Geometric Graphs

Horst Martini, University of Technology Chemnitz, Germany

A geometric graph G(V,E) (without isolated vertices) any two edges of which intersect is said to
be an intersector. (E.g., special intersectors are interesting in connection with Conway’s Thrackle
Conjecture.) On the other hand, G(V,E) is called a successor if for each vertex v from V the
subgraph of edges incident with v is a convex star whose edges form a succession in the angle
ordering of their affine hulls. We present a collection of topological and combinatorial properties of
such geometric graphs (and slight modifications). Further on, we will show that both these notions
have surprisingly many applications, e.g. with respect to metrical problems from planar geometry.
In particular, we will discuss how intersectors and successors are used for proving theorems on
- the weak circular intersection property of planar point sets,
- isoperimetric inequalities for sets of constant width,
- the time-optimal exhaustive construction of Reuleaux polygons in the spirit of computational
geometry.

Room E113

On the `-Distance Face Coloring of 6-Regular Plane Graphs

Wai Chee Shiu*, Hong Kong Baptist University
Peter Che Bor Lam, Hong Kong Baptist University

The `-distance face chromatic number of a connected plane graph is the minimum number of colors
in such a coloring of its faces that whenever two different faces are at distance ` or less, they receive
different colors. In this paper, we estimate `-distance face chromatic numbers for connected 6-regular
plane graphs.
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Room 48A–B

Adjacency Matrix and Eigenvalues of the Hypercube

Ke Qiu, Acadia University, Canada

We study the adjacency matrix and eigenvalues of the hypercube. In particular, we characterize
the eigenvalues of the adjacency matrices of hypercubes of different dimensions, including the actual
values and their multiplicity.

Room 50

Tiling with Notched Cubes

Robert Hochberg*, East Carolina University
Michael Reid, University of Massachusetts

Any polyomino which tiles a rectangle also tiles a larger copy of itself. That’s been proven. It
is unknown whether the converse is true—that any polyomino which tiles a larger copy of itself
must also tile a rectangle. There is no great reason to believe that the converse is true, but no
counterexamples have been found. We settle the question in all dimensions greater than 2 by
considering a “notched cube,” which turns out to have some excellent tiling properties, not the least
of which is the property of having exactly one way of tiling an octant (orthant).
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Monday, 4:00–4:15

Room 148

Book Embeddings of Graphs and Minor-Closed Classes

Robin Blankenship*, Louisiana State University
Bogdan Oporowski, Louisiana State University

A book consists of a finite collection of half-planes, called pages, whose boundaries have been identified
to form a line, called the spine. A book embedding of a graph places the vertices on the spine and
assigns edges to pages so that each edge lies on a single page and no two edges cross. The minimum
number of pages needed to embed a graph in a book is the book thickness of the graph.
We use methods and results of Heath and a structure theorem of Robertson and Seymour to prove
that for every minor-closed class of graphs, other than the class of all graphs, there is an integer K
such that all members of the class have book thickness at most K.

Room E113

Random Models for the Propagation of Information in the World Wide Web

Thomas Boehme, Ilmenau Technical University, Germany
Frank Goering, Ilmenau Technical University, Germany

Herwig Unger*, University of Rostock, Germany

In this talk we consider the propagation of information in a computer network with a completely
decentralized information management.
One of the models we consider consists in a finite set X which is initially partitioned into a finite
number of subsets X1, . . . , Xk, called colors. The coloring (X1, . . . , Xk) is subject to an evolutionary
process as follows. In each step of this process for any element x ∈ X a subset Ax of X is chosen
at random. The color of x in the next step is determined by its actual coloring and the induced
coloring of Ax. It is proved that the evolutionary process tends to a stable state whenever some
natural condition are satified.
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Room 48A–B

On Solvable Groups and Cayley Graphs

Edward Dobson, Mississippi State University

A graph Γ is vertex-transitive if Aut(Γ), the automorphism group of Γ, acts transitive on the vertex
set of Γ. Perhaps the most important class of vertex-transitive graphs are Cayley graphs. These
graphs are most succintly described as those vertex-transitive graphs whose automorphism group
contains a transitive subgroup whose order is the order of the graph. In 1983, Marus̆ic̆ asked for
which values of n is every vertex-transitive graph of order n a Cayley graph of n? Much work has
been done on this problem, and this work generally falls into two categories: those vertex-transitive
graphs such that the minimal transitive subgroup of the automorphism group is solvable, and those
whose minimal transitive subgroup is nonsolvable. We are interested in those vertex-transitive graphs
such that the minimal transitive subgroup of the automorphism group is solvable. It is known that
such a vertex-transitive graph is necessarily a Cayley graph if the number n of vertices is p, p2, p3, (p
a prime), 12, n = pqr, r < q < p are distinct primes and r does not divide q− 1 or q does not divide
p− 1, or if the greatest common divisor of n and ϕ(n) (Euler’s phi function) is 1. It is also known
that there exists vertex-transitive graphs whose minimal transitive subgroup of their automorphism
group is solvable that are not Cayley graphs if p2 divides n (with the above mentioned exception
of n = 12), if there exists a primes p and q dividing n such that q2 divides p − 1, or if there exists
primes r < q < p dividing n such that r divides q − 1 and q divides p − 1. Let n be a square-free
positive integer such that the greatest common divisor of n and ϕ(n)) is q a prime, and if p|n is
prime, then q2 6 | (p − 1). We prove that a vertex-transitive graph Γ of order n is isomorphic to a
Cayley graph of order n if and only if Aut(Γ) contains a transitive solvable subgroup.

Room 50

Counting Classes of Labeled 2-Connected Graphs

Sridar Kuttan Pootheri, Lawrence Berkeley National Laboratory

Tutte’s theorem decomposes 2-connected graphs into bonds and cycles with at least three edges, and
3-connected graphs. Based on this theorem unique structural characterizations of several classes of
2-connected graphs were provided in author’s Ph.D. thesis.
In this paper three of the decomposition theorems are translated into exponential generating func-
tions and exact counting equations are derived for labeled versions of minimally 2-connected graphs,
2-connected minimally 2-edge-connected graphs, and 2-connected 3-edge-connected graphs. Stan-
dard methods are then applied to count labeled 3-edge-connected graphs and minimally 2-edge-
connected graphs (not necessarily 2-connected). Tables of results computed from the derived count-
ing equations are included for all five classes of graphs.
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Monday, 4:20–4:35

Room 148

Fast Generation of Graphs Embedded on the Torus

Matthew Skala*, University of Victoria, Canada
Wendy Myrvold, University of Victoria, Canada

A graph is planar if it can be drawn without any edges crossing on the plane. Similarly, a graph is
toroidal if it can be drawn without any edges crossing on the torus, a surface shaped like a doughnut
and created by adding one handle to the plane. A graph may be drawn on a surface in several
distinct ways, called embeddings. We describe and implement an algorithm to generate, without
duplication, all embeddings on the torus of graphs that are not planar, up to a chosen number of
vertices and edges. The resulting lists of embeddings, as well as being of interest in themselves, are
useful in investigating torus obstructions, the simplest graphs that are not toroidal.

Room E113

Reliability of Networks with Delay Constraints

Louis Petingi*, College of Staten Island
Jose Rodriguez, Long Island University

Let G = (V,E) be graph with a distinguished set K ⊆ V . We define the K-diameter of G as the
maximum distance between any pair of nodes of K. If the edges fail randomly and independently
with known probabilities (nodes are always operational), we define the Diameter-bounded K-terminal
Reliability of G, RK(G,D), as the probability that surviving edges span a subgraph whose K-
diameter does not exceed D.
If, in a network (modeled by a graph G = (V,E)), the links fail randomly and independently, and
the transmissions between every two nodes in a distinguished subset K are required to experience
a maximum delay DT (where T is the delay experienced at single node), then the probability that
after random failures of the communication links, the surviving network meets the maximum delay
requirement is precisely RK(G,D).
The diameter-bounded K-terminal reliability measure subsumes the classical K-terminal Reliability
measure R(G). Indeed, R(G) = R(G,n − 1) where n is the number of nodes of G. In this talk we
present some results and open problems related to the Diameter-bounded K-terminal Reliability.
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Room 48A–B

Long Cycles Through Many Specified Edges

Tristan Denley,University of Mississippi
Haidong Wu*, University of Mississippi

Egawa, Glas, and Locke generalized two well-known theorems of Dirac by proving the following
result. Suppose that G is a k-connected graph (where k ≥ 2) of order at least 2δ and with minimum
degree δ. Then given any set S of vertices of size k, there is a cycle of length at least 2δ containing
all vertices of S. In this paper, we study long cycles containing many independent specified edges
or paths. Häggkvist and Thomassen proved that for any set S of independent edges of size k in
a (k + 1)-connected graph, where k ≥ 1, there is a cycle containing all edges of S. Enomoto and
Hirohata, respectively, proved that any edge in a 3-connected graph is contained in a long cycle.
Suppose that G is a (k + 2)-connected graph of order at least 2δ − k and with minimum degree
δ. We show that given any set of k independent edges (where k ≥ 0), there is a cycle of length at
least 2δ − k containing all edges of S. We also prove some extensions which generalize Enomoto’s
theorem. This is a preliminary report.

Room 50

Doyen-Wilson Theorem for K3 with Two Pendant Edges

Kimberly S. Kirkpatrick, Transylvania University

We investigate partitioning the edges of a complete graph on n vertices with a hole of size v (Kn/Kv)
into isomorphic copies of K3 with a pendant edge at two vertices. We will present the necessary and
sufficient conditions as well as some of the techniques used in the proof.
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Monday, 4:40–4:55

Room 148

Toward the Rectilinear Crossing Number of Kn: New Drawings, Upper Bounds, and
Asymptotics

Alex Brodsky, University of British Columbia
Stephane Durocher*, University of British Columbia

Ellen Gethner, University of British Columbia

Scheinerman and Wilf (1994) assert that “an important open problem in the study of graph em-
beddings is to determine the rectilinear crossing number of the complete graph Kn.” A rectilinear
drawing of Kn is an arrangement of n vertices in the plane, every pair of which is connected by an
edge that is a line segment. We assume that no three vertices are collinear, and that no three edges
intersect in a point unless that point is an endpoint of all three. The rectilinear crossing number of
Kn, denoted cr(Kn), is the fewest number of edge crossings attainable over all rectilinear drawings of
Kn. Given an arbitrary graph G, determining a drawing of G in the plane that produces the fewest
number of edge crossings is NP-Complete. The complexity is not known for an arbitrary graph when
the edges are assumed to be line segments. We study the specific instance of determining cr(Kn) and
we offer drawings with “few” edge crossings. The difficulty of determining the exact value of cr(Kn),
even for small values of n, manifests itself in the sparsity of literature. Jensen (1971) and Hayward
(1987) contribute general constructions that yield upper bounds and asymptotics, none of which
lead to exact values of cr(Kn) for all n. Starting with a recursive construction of Singer (1971),
we observe that the edges originating from different sides of particular subgraphs have different
responsibilities (number of edge crossings). Exploiting this fact, we exhibit a recursive asymmetric
construction for a family of rectilinear drawings of Kn that is asymptotically better than any other
available construction; specifically, we show limn→∞

cr(Kn)

(n4)
≤ 6467

16848 ≈ 0.3838. Moreover, we provide

some novel constructions that yield good asymptotics.

Room E113

Cliques and Independent Neighbor Sets in Random Graphs

Daniel Ramras*, Cornell University
Sam Greenberg, Oberlin College

The random graph G(n, p) is the graph on n vertices formed by placing each edge with probability
p. The clique number, cl(G), of a graph G is the cardinality of the largest complete subgraph of G.
D.W. Matula showed, in 1972, that there is a function d(n, p) such that as n → ∞, P [cl(G(n, p))
= d(n, p) or d(n, p) + 1] → 1. This result was originally proven only for constant p, but has been
improved to deal with any function p(n) satisfying c < p(n) < 1 − 1

nδ
for each δ > 0 and for some

c > 0. We improve this result further to deal with any function p(n) satisfying 1
nδ
< p(n) < 1− 1

nδ

for each δ > 0. Using this result, we then prove a similar two-point concentration on the size of the
largest independent neighbor set of a vertex of G(n, p). (An independent neighbor set of a vertex
v is a set N of neighbors of v such that no two members of N are connected by an edge.) This
concentration holds in the same range of p(n) as mentioned above. Concentrations of several closely
related graph invariants are also obtained. Independent neighbor sets were originally studied by
Fred Galvin, and he showed that if f(v) denotes the cardinality of the largest independent neighbor
set of a vertex v in a graph G, then the average value of f(v), taken over all vertices of G, is never
more than n

2 . Our results easily give the expectation of this average on G(n, p).
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Room 48A–B

A New Infinite Series of Edge- but not Vertex-Transitive Graphs

Felix Lazebnik, University of Delaware
Raymond Viglione*, University of Delaware

Regular edge transitive graphs that are not vertex transitive are not easy to construct. Examples of
such graphs are relatively rare. We construct an infinite two-parameter family Gn(q) of such graphs
for any integer n ≥ 3 when q is any prime power, and for n = 2 when q is an odd prime power.
Graphs Gn(q) are q-regular of order 2qn+1, and are connected when n < q. They are defined via
systems of polynomial equations over the finite field GF (q). Some results on the automorphism
groups of these graphs are obtained.

Room 50

The Chromatic Number of the Plane: the Bounded Case

Clyde P. Kruskal, University of Maryland

The chromatic number of the plane is the fewest colors needed in order to paint each point of the
plane so that no two points distance (exactly) 1 apart are the same color. It is known that seven
colors suffice and at least four colors are necessary.
We investigate how large a bounded region can be, and still be 2-colorable or 3-colorable. We obtain
tight bounds for coloring regions enclosed by circles, regular polygons, and rectangles.
It turns out that if a region is 2-colorable or 3-colorable, there is a simple coloring for the region.
Mostly, we will look at “pretty” pictures.
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Monday, 5:00–5:15

Room 148

On Imbeddings of Rejection and Exclusion of Graphs

Ghidewon Abay-Asmerom, Virginia Commonwealth University

In this paper we consider genus imbeddings of the rejection and exclusion of graphs H and G.
For their vertex sets both rejection and exclusion have V (H)× V (G), the cartesian product of the
vertex sets of H an G. The edge set for the rejection consists of edges {(u1, v1)(u2, v2)} whenever
u1u2 ∈ E(H̄) and v1v2 ∈ E(G). Exclusion has the edges {(u1, v1)(u2, v2)} whenever v1 = v2 and
u1u2 ∈ E(H) or u1u2 ∈ E(H) and v1v2 ∈ E(Ḡ). We denote the rejection of H and G by H/G and
that of the exclusion of H and G by HΘG. The rejection of graphs was first introduced by Harary
and Wilcox.

When G is a regular graph, both rejection and exclusion can be regarded as covering spaces of
voltage graphs H∗ obtained by modifying H according to the configuration of G. This always starts
with a suitable imbedding of H in some orientable surface followed by a modification of the edges
of H to get H∗. Conditions are put on H and G so that the imbedding of the covering graph of H∗

is minimal. Minimum genus results for H/G, and HΘG of some special graphs will be presented.

Room E113

Expected Value for Trees and Rooted Graphs

Gary Gordon, Lafayette College

When G is a rooted graph where each edge may succeed with probability p, we consider the expected
number of vertices in the operational component of G containing the root. This expected value
EV (G; p) is a polynomial in p. We present several distinct equivalent formulations of EV (G; p),
unifying prior treatments of this topic. Results on network resilience (introduced by Colbourn) are
used to obtain complexity results for computing EV (G; p). We derive closed form expressions for
EV (G; p) for some specific classes of graphs. For trees and rooted trees, we present extremal results
that determine both the largest and smallest expected values, and precisely when these extreme
bounds are achieved. We conclude by considering ‘uniformly optimal’ rooted graphs, optimal root
placement and some counterexamples. (Several undergraduate students have worked on various
aspects of this project, some through an NSF-REU program at Lafayette College.)
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Room 48A–B

Identity Digraphs of Minimum Size

Frank Harary, New Mexico State University
Robert W. Robinson*, University of Georgia

The minimum size σ(n) for an identity digraph of any given order n is determined in a way that
provides for efficient calculation. Here the order is the number of vertices and the size is the number
of edges. An identity digraph is one for which the identity is the only automorphism. It is shown
that σ(n) = n− δ(n) where δ(n) is a positive nondecreasing function with growth rate Θ(n/ log n).
The number ν(n) of nonisomorphic identity digraphs of minimum size and order n is also studied;
it takes the value 1 infinitely often but is unbounded.

Room 50

Edge-Magic Kp

Linda Valdés, San José State University

Gerhard Ringel, one of the principal speakers at the Eighth Quadrennial International Conference
on Graph Theory, Combinatorics, and Algorithms introduced several open questions. In particular,
he spoke of the question of when Kp is edge-magic. He and Erdos had discovered that K6 was
edge-magic, but had not determined if this was true for any other p > 6. It will be shown that Kp

is edge-magic only when p = 1, 2, 3, 4, and 6.
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Monday, 5:20–5:35

Room 148

Square-Free Perfect Graphs

Michele Conforti, Università di Padova, Italy
Gérard Cornuéjols, Carnegie Mellon University

Kristina Vušković*, University of Leeds, United Kingdom

A graph is square-free if it does not contain a chordless cycle of length 4 as an induced subgraph. We
prove that square-free perfect graphs are bipartite graphs or line graphs of bipartite graphs or have
a 2-join or a star cutset. It follows that the Strong Perfect Graph Conjecture holds for square-free
graphs.

Room E113

Self-Stabilizing Algorithms for Minimal Dominating and Maximal Independent Sets

S.M. Hedetniemi, Clemson University
S.T. Hedetniemi*, Clemson University

D.P. Jacobs, Clemson University
P.K. Srimani, Clemson University

Self-stabilization is a relatively new algorithmic paradigm for distributed computation. In a self-
stabilizing algorithm each node has only a local view of the system. Yet, in a finite amount of time,
the system converges to a global state satisfying some desired property. It appears that, in the
literature, the only self-stabilizing method for constructing a maximal independent set or a minimal
dominating set is one that is a byproduct of a coloring algorithm. In this paper we present more
efficient self-stabilizing algorithms for finding a maximal independent set and a minimal dominating
set in any graph.
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Room 48A–B

One-Color Triangle Avoidance Games

Steven C. Cater*, Kettering University
Frank Harary, New Mexico State University
Robert W. Robinson, University of Georgia

The results of computational analysis of the game digraphs for triangle avoidance on n ≤ 12 nodes
are reported. Computational methods and related games are also discussed.

Room 50

The Fibonacci Numbers, Matching Polynomials, and Normality

Lou Shapiro*, Howard University
Frank Schmidt, Herndon, Virginia

It is easy to show, using Godsil and Harper’s work on matching polynomials, that the rows of the
Fibonacci matrix approach a normal distribution. It takes a bit more to find the mean and variance.
We show that some similar families also approach a normal distribution and we also obtain results
involving Lucas and Pell numbers using various kinds of Chebyshev polynomials along the way.
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Monday, 5:40–5:55

Room 148

Query Optimization for Multilist Files Using Internal Graphs

Dionysios Kountanis, Western Michigan University
Sha Tang*, Western Michigan University

Given a multilist file structure and a query to the file, a critical question is how to minimize the
number of records retrieved from the file. The file can be represented by a line graph. The graph
is used to reorganize the file structure and to create an appropriate directory so the query can be
processed to reduce the records retrieved from the file. The main idea in our approach is to reduce
the overall overlap of lines on the line graph. Experimental results compare the new approach with
other approaches to the query optimization problem. The results indicate that our process reduces
the number of retrieved records.

Room E113

Self-Stabilizing Maximum Matchings

J.R.S. Blair, United States Military Academy
S.M. Hedetniemi, Clemson University
S.T. Hedetniemi, Clemson University

D.P. Jacobs*, Clemson University

Self-stabilization is a relatively new algorithmic paradigm for distributed computation. In a self-
stabilizing algorithm each node has only a local view of the system. Yet, in a finite amount of time,
the system converges to a global state satisfying some desired property. In the literature there exists
a self-stabilizing algorithm for constructing maximal, but not necessarily maximum, matchings in
any graph. In this paper we describe a self-stabilizing algorithm for finding a matching of maximum
size in a tree.
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Room 48A–B

Relations for Skein-Type Graph Polynomials

Joanna A. Ellis-Monaghan, University of Vermont

The Penrose, Tutte, and circuit partition (a translation of the Martin polynomial) polynomials can
all be viewed, in at least certain cases, as skein-type polynomials, i.e. those that are computed via
local reconfigurations at the vertices. Furthermore, these polynomials are interrelated in ways that
reveal properties of important classes of graphs such as Eulerian, planar, cubic, and bipartite graphs.
These interrelations also mean that new results for one of these polynomials immediately yield new
insights and valuations for the others. Since significant advances have been made recently for the
circuit partition polynomials, we have new results for the Penrose and Tutte polynomials as well.

Room 50

Optimal Sequenced Matroid Bases Solved by Genetic Algorithms

Michael L. Gargano*, Pace University
William Edelson, Long Island University

We consider an extension to the optimal matroid base problem whereby the matroid element costs
are not fixed, but are time dependent. We propose a genetic algorithm (GA) approach to solve the
optimal sequenced matroid base problem (OSMBP) by employing efficient codes which are suffixed
by a standard permutation code. These novel encoding schemes insure feasibility after performing the
classical operations of crossover and mutation and also ensure the feasibility of the initial randomly
generated population (i.e., generation 0). A variety of real world practical matroid applications with
time dependent costs will also be presented.
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Tuesday
9:00–10:00

148 Paul Seymour, The Structure of Berge Graphs

10:00–10:20
Coffee break

10:20–10:35
148 Matt DeVos*, Paul Seymour, Packing T -Joins

E113 P.D. Johnson Jr.*, E.B. Wantland, More Problems Involving Hall’s Condition
48A-B Dalibor Froncek, Scheduling the Czech National Basketball League

50 L. Goddyn*, P. Hliněný, W. Hochstättler, Circular Chromatic Number of an Orientable
Matroid

10:40–10:55
148 E.J. Cockayne*, A.P. Burger, C.M. Mynhardt, The n-Queens Problem on the Torus

E113 Gary S. Bloom*, Samer Salame, Constructing More Graceful Trees
48A-B Robert C. Brigham, Gary Chartrand, Ronald D. Dutton, Ping Zhang*, Full Domina-

tion in Graphs
50 Manoel Lemos, Matroids with Many Common Bases

11:00–11:15
148 A.P. Burger, C.M. Mynhardt*, The Queens Domination Problem on the Torus

E113 Kengo Shirakata, Etsuro Moriya*, Parallelization in Extended µH Systems and its
Universality

48A-B Varaporn Saenpholphat*, Ping Zhang, Connected Resolvability of Graphs
50 Talal Al-Hawary, Jenny McNulty*, On Closure Matroids

11:20–11:35
148 Peter Adams, Darryn Bryant, Heather Gavlas*, Decompositions of the Complete Graph

into Small 2-Regular Graphs
E113 Dorothy Bollman*, Edusmildo Orozco, A Faster Algorithm for the Solution of the n-

Queens Problem
48A-B Gary Chartrand, Raluca Muntean*, Varaporn Saenpholphat, Ping Zhang, Graphs and

Divisibility of Positive Integers
50 Allan D. Mills, Perfect Binary Matroids

11:40–11:55
148 Andre Kezdy*, Hunter Snevily, Distinct Sums Modulo n and Tree Embeddings

E113 Patric R.J. Österg̊ard, Alfred Wassermann*, A New Lower Bound for the Football Pool
Problem for 6 Matches

48A-B Gary Chartrand, Alice Chichisan*, Ping Zhang, Curtiss E. Wall, On Convexity in
Graphs

50 Nancy Ann Neudauer*, Brett Stevens, Enumeration of the Bases of the Bicircular
Matroid on a Complete Bipartite Graph

12:00–12:15
148 Miklós Bartha*, Miklós Krész, Open Graphs with Perfect Internal Matchings

E113 L. Eugene Chipman*, Clyde P. Kruskal, The Complexity of Some Common Strategy
Games

48A-B David Brown, J. Richard Lundgren*, Cary Miller, On Probe-Clone Interval Graphs
50 David Neel, Modular Contractibility in Binary Matroids
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Invited Instructional Lecture

Tuesday 9:00–10:00, Room 148

The Structure of Berge Graphs

Paul Seymour, Princeton University

A hole in a graph means an induced cycle of length at least 4, and an antihole is an induced subgraph
whose complement is a cycle of length at least 4. A graph is Berge if it has no odd holes or antiholes.
Berge’s strong perfect graph conjecture states that every Berge graph has chromatic number equal
to the size of its largest clique, but that remains open. A great deal is known about the structure
of a minimum counterexample to this conjecture, if one exists; but not so much is known about
Berge graphs in general. This talk is a collection of conjectures, and some partial results, about the
structure of Berge graphs. For instance, is there a reason why none of the natural classes of Berge
graphs have both big holes and big antiholes?
Complicated Berge graphs show a tendency to admit skew partitions (a partition of the vertex set
into four non-empty subsets A, B, C, D, so that there are no edges between A and B and every
edge is present between C and D); and we have found some little Berge graphs so that every Berge
graph containing one of our little ones must admit a skew partition. We sketch these results. This
is joint work with Neil Robertson and Robin Thomas, and also partly with Jim Geelen and Carsten
Thomassen.
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Tuesday, 10:20–10:35

Room 148

Packing T-Joins

Matt DeVos*, Rice University
Paul Seymour, Princeton University

Let G = (V,E) together with the set T ⊆ V be a graft. We let τ(G) denote the size of the smallest
T -cut and we let ν(G) denote the size of the largest collection of disjoint T -joins. Since every T -cut
meets every T -join, ν(G) ≤ τ(G).
A number of important problems in graph theory concern finding lower bounds on ν in terms
of τ . For instance, Menger’s theorem on edge-disjoint paths is equivalent to the statement that
ν(G) = τ(G) when |T | = 2. Also, if G is k-regular and T = V , then ν(G) = τ(G) if and only if G is
k-edge-colorable.
We prove that ν(G) ≥ b 1

6τ(G)c for every graft G. In the special case that G is Eulerian or T = {v ∈
V | deg(v) is odd}, we prove that ν(G) ≥ b 1

2τ(G)c.

Room E113

More Problems Involving Hall’s Condition

P.D. Johnson Jr.*, Auburn University
E.B. Wantland, Western College of the University of Montana

Suppose G is a simple graph, L is an assignment of finite sets (“lists”) to the vertices of G, and κ is
an assignment of non-negative integers to the vertices of G. A proper (L, κ)-coloring of G is a choice
function φ on V (G) such that φ(v) ⊆ L(v) for every v ∈ V (G), |φ(v)| = κ(v) for each v ∈ V (G),
and φ(u) and φ(v) are disjoint, if u and v are adjacent in G.
Hall’s condition is a fairly well known numerical relation involving G, L, and κ, a conjunction of
inequalities necessary for the existence of a proper (L, κ)-coloring of G. There is some interest in
the question of when Hall’s condition is sufficient for such a coloring. Here we solve two problems:
(i) supposing V is a finite set, which κ : V → {0, 1, 2, . . .} have the property that for every G with
V (G) = V and list assignment L to V such that G, L, and κ satisfy Hall’s condition, there is a
proper (L, κ)-coloring of G?
(ii) Which G and κ have the property that for every list assignment L to V (G) satisfying Hall’s
condition with G and κ, there is a proper (L, κ)-coloring of G?
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Room 48A–B

Scheduling the Czech National Basketball League

Dalibor Froncek, University of Vermont and Technical University Ostrava

The first part of the Czech National Basketball League is played as a two-leg round robin tournament
with twelve teams. Due to the scheduling pattern used until 1999, some teams had to play six
consecutive games in opponents’ fields while some others played six consecutive games in their home
fields. There was even one team that was scheduled to play seven out of eight consecutive games at
opponents’ fields.
In this talk we present several schedules that were constructed by the author for the Czech Basketball
Federation. These schedules decreased the number of consecutive games in opponents’ fields or in
home fields to three or four, depending on the type of schedule. One of the suggested schedules was
actually adopted by the Federation and used in 1999/2000 season, another one in 2000/2001.

Room 50

Circular Chromatic Number of an Orientable Matroid

L. Goddyn*, Simon Fraser University, Canada
P. Hliněný, Victoria University, New Zealand

W. Hochstättler, Universität Clausthal, Germany

An old formula of Minty expresses the (circular) chromatic number of a graph in terms of finding
an orientation for which all circuits are ‘balanced in ratio’. This vertex-free viewpoint allows one
to extend the notion of ‘chromatic number’ to the very general setting of orientable matroids and
pseudosphere complexes.
We give a gentle introduction to the topic and prove, with a probabilistic argument, that the circular
chromatic nubmer of any loopless orientable matroid is bounded above by a function of its corank.
This generalizes the fact that the chromatic number of any loopless connected graph (V,E) is
bounded above by approximately the square root of its Beti number |E| − |V |+ 1.
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Tuesday, 10:40–10:55

Room 148

The n-Queens Problem on the Torus

E.J. Cockayne*, University of Victoria, Canada
A.P. Burger,University of South Africa

C.M. Mynhardt, University of South Africa

We consider the independence number of toroidal queens graphs, i.e., graphs obtained from the
moves of queens on chessboards drawn on the torus, and give exact values for this parameter in
infinitely many cases and bounds otherwise.

Room E113

Constructing More Graceful Trees

Gary S. Bloom*, CIty College (CUNY) and the Graduate Center of CUNY
Samer Salame, The Graduate Center of CUNY

Starting with small graceful trees, we construct families of larger and more complex trees by using
the “canonical adjacency matrices” of the smaller trees. A set of matrix transformations and merging
operations are the basis of these constructions.
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Room 48A–B

Full Domination in Graphs

Robert C. Brigham, University of Central Florida
Gary Chartrand, Western Michigan University

Ronald D. Dutton, University of Central Florida
Ping Zhang*, Western Michigan University

For a graph G, let f be a function from V (G) to the set of all subgraphs of G. A vertex v in G is said
to dominate the subgraph f(v), as well as every vertex and edge of f(v). A set S of vertices of G is
a full dominating set (with respect to f) if S dominates G, that is, if every vertex of G is dominated
by some vertex of S, as is every edge of f(v). The minimum cardinality of a full dominating set in G
(with respect to f) is its full domination number. We discuss some results involving full domination
numbers for three such functions f .

Room 50

Matroids with Many Common Bases

Manoel Lemos, Universidade Federal de Pernambuco, Brazil

In this talk we shall present a solution for Mills’s conjecture: for two (k + 1)-connected matroids
whose symmetric difference between theirs bases collections has size at most k, there is a matroid
which is obtained from one of these matroids by relaxing n1 circuit-hyperplanes and from the other
by relaxing n2 circuit-hyperplanes, where n1 and n2 are non-negative integers such that n1 +n2 ≤ k.
We shall also discuss some extensions of this result.
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Tuesday, 11:00–11:15

Room 148

The Queens Domination Problem on the Torus

A.P. Burger University of South Africa
C.M. Mynhardt*, University of South Africa

We determine exact values for the domination and independent domination numbers of toroidal
queens graphs in infinitely many cases, and bounds - some good and some not so good - in other
cases.

Room E113

Parallelization in Extended µH Systems and its Universality

Kengo Shirakata, Waseda University, Japan
Etsuro Moriya*, Waseda University, Japan

Splicing system is a rewriting system which models the process of cut and recombination of DNA
sequences under the influence brought by restriction enzymes and lygases. Among a variety of
splicing systems, the extended µH system uses only natual operations (in the sense that they are
based on biological reality or realizable by the present technology). Instead of imposing restrictions
on the use of rewriting rules as other systems do, it utilizes the notion of “multiset” so that rewritable
strings are restricted to those whose mutiplicity are just one, which gives it the universal power of
generation at the sacrifice of loss of the most appealing characteristics of DNA-based computations,
the capability of massive parallel generation.
In this paper, we extend the extended µH system so that it can rewrite strings in parallel. This
is done by giving each string its own number. Furthermore we introduce a new splicing operation
based on really existing enzyme which cuts DNA sequences at the positions at some distance from
the recognition sites, which can reduce the complicatedness of the rewriting rules in our new system.
Our new system has only finitely many initial strings (axioms) as well as finitely many rewriting
rules (splicing rules), but it is still universal.

48



Room 48A–B

Connected Resolvability of Graphs

Varaporn Saenpholphat*, Western Michigan University
Ping Zhang, Western Michigan University

For an ordered set W = {w1, w2, . . . , wk} of vertices and a vertex v in a connected graph G, the
representation of v with respect to W is the k-vector r(v|W ) = (d(v, w1), d(v, w2), . . . , d(v, wk)),
where d(x, y) represents the distance between the vertices x and y. The set W is a connected
resolving set for G if distinct vertices of G have distinct representations and the subgraph 〈W 〉
induced by W is a nontrivial connected subgraph of G. We present some results in this area.

Room 50

On Closure Matroids

Talal Al-Hawary, Mu’tah University, Jordan
Jenny McNulty*, The University of Montana

A closure matroid is defined as a matroid M such that A ∪ B = A ∪B for all subsets A and B
of E(M). We relate closure matroids to modular matroids, show closure matroids play a role in
analyzing strong maps, characterize this class of matroids in terms of flats and classify all closure
matroids.
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Tuesday, 11:20–11:35

Room 148

Decompositions of the Complete Graph into Small 2-Regular Graphs

Peter Adams University of Queensland, Australia
Darryn Bryant, University of Queensland, Australia

Heather Gavlas*, Grand Valley State University

An H-decomposition of the complete graph Kn is a set S of subgraphs of Kn, each of which is
isomorphic to H, such that each edge of Kn appears in exactly one of the subgraphs in S. For all
positive integers n and every 2-regular graph H with no more than ten vertices, we prove necessary
and sufficient conditions for the existence of an H-decomposition of Kn.

Room E113

A Faster Algorithm for the Solution of the n-Queens Problem

Dorothy Bollman*, University of Puerto Rico
Edusmildo Orozco, University of Puerto Rico

The 8-queens problem is a classical combinatorial problem in which it is required to place eight
queens on an 8 × 8 chessboard so that no two can attack, that is, so that no two of them are on
the same row, column, or diagonal. A trivial generalization of this problem requires one to place
n queens on an n × n chessboard so that no two can attack. Thus, each solution of the n-queens
problem is a permutation matrix such that for any pair of positions (i, j) and (k, l) containing a
one, we have |i − k| 6= |j − k|. Alternativel, each solution can be viewd as a permutation π on
Nn = {1, 2, . . . , n} in which |π(i+ d)− π(i)| 6= d for all i = 1, 2, . . . , n− d and all d = 1, 2, . . . , n− 1.
In this work we develop a new backtracking algorithm for generating solutions of the n-queens
problem. This algorithm differs from the usual backtracking algorithms in two aspects. First, our
algorithm juxtaposes terms to both (not just one) sides of a sequence, as in ordinary backtracking.
Second, it exploits the fact that the set of permutations satisfying the n-queens property is invariant
under the group of rigid motions of the square generated by reflections about the horizontal and
vertical axes.
A sequential implementation of our algorithm on a Sun Sparc V runs more than seven times faster
that the standard algorithm. We achieve parallelism by using the manager-worker technique. Im-
plementation of the parallel version in C-MPI on an SGI Origin 2000 yields almost linear speedup.
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Room 48A–B

Graphs and Divisibility of Positive Integers

Gary Chartrand, Western Michigan University
Raluca Muntean*, Western Michigan University

Varaporn Saenpholphat, Western Michigan University
Ping Zhang, Western Michigan University

We study a class of graphs defined in terms of divisibility of positive integers and present some
results.

Room 50

Perfect Binary Matroids

Allan D. Mills, Tennessee Tech. University

Since being introduced by Berge, perfect graphs have been extensively studied. In this paper a
definition of perfect binary matroids is considered and it is shown that, analogous to the Perfect
Graph Theorem of Lovasz and Fulkerson, the complement of a perfect matroid is also a perfect
matroid. In addition, the classes of critically imperfect graphic matroids and critically imperfect
graphs are compared.
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Tuesday, 11:40–11:55

Room 148

Distinct Sums Modulo n and Tree Embeddings

Andre Kezdy*, University of Louisville
Hunter Snevily, University of Idaho

In this talk we first address the following conjecture due to Snevily:

CONJECTURE: For any positive integers n and k satisfying k < n, and any sequence
a1, a2, . . . , ak of not necessarily distinct elements of Zn, there exists a permutation π ∈ Sk
such that the elements aπ(i) + i are all distinct modulo n.

We prove this conjecture when 2k ≤ n+1. We then apply this result to tree embeddings. Specifically
we show that, if T is a tree with n edges and radius r, then T decomposes Kt for some t ≤
32(2r + 4)n2 + 1.

Room E113

A New Lower Bound for the Football Pool Problem for 6 Matches

Patric R.J. Österg̊ard, Helsinki University of Technology, Finland
Alfred Wassermann*, University of Bayreuth, Germany

In the football pool problem one wants to minimize the cardinality of a ternary code, C ⊆ Fn3 , with
covering radius one, and the size of a minimum code is denoted by σn. The smallest unsettled case
is 63 ≤ σ6 ≤ 73. The lower bound is here improved to 65 in a coordinate by coordinate backtrack
search using lattice basis reduction and complete equivalence checking of subcodes.
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Room 48A–B

On Convexity in Graphs

Gary Chartrand, Western Michigan University
Alice Chichisan*, Western Michigan University

Ping Zhang, Western Michigan University
Curtiss E. Wall, Norfolk State University

For two vertices u and v of a connected graph G, the set I[u, v] consists of all those vertices lying
on a u− v shortest path in G, while for a set S of vertices of G, the set I[S] is the union of all sets
I[u, v] for u, v ∈ S. A set S is convex if I[S] = S. The convexity number of G is the maximum
cardinality of a proper convex set of G. We present some results in this area.

Room 50

Enumeration of the Bases of the Bicircular Matroid on a Complete Bipartite Graph

Nancy Ann Neudauer*, Pacific Lutheran University
Brett Stevens, Simon Fraser University, Canada

Let G be a graph (loops and parallel edges allowed) with vertex set V = {1, 2, . . . , n} and edge set
E. The bicircular matroid of G is the matroid B(G) defined on E whose circuits are the subgraphs
which are subdivisions of one of the graphs: (i) two loops on the same vertex, (ii) two loops joined
by an edge, (iii) three edges joining the same pair of vertices. A set of edges is independent in B(G)
provided that each connected component contains at most one cycle of G. If G is a connected graph
that is not a tree, then the bases of B(G) are the spanning subgraphs of G each of whose connected
components is a unicyclic subgraph of G. We enumerate the bases of the bicircular matroid on Km,n.
We first find the number of single-component bases of the bicircular matroid on Km,n, then use this
to calculate the total number of bases. The techniques herein may enable the enumeration of the
bases of bicircular matroids on larger classes of graphs; indeed one of the motivations for this work
is to show the extendibility of the techniques recently used to enumerate the bases of the bicircular
matroid on Kn in a paper of Neudauer and Meyers.
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Tuesday, 12:00–12:15

Room 148

Open Graphs with Perfect Internal Matchings

Miklós Bartha*, Memorial University of Newfoundland, Canada
Miklós Krész, University of Szeged, Hungary

A perfect internal matching of a graph G is a matching that covers all vertices of G with degree
at least two. Such vertices are called internal, while vertices of degree one are external in G. An
open graph is one that has at least one external vertex. Open graphs serve as underlying objects
for certain molecular switching devices called soliton automata.
Open graphs having a perfect internal matching are decomposed into elementary components, and
these components are grouped into pairwise disjoint families according to the so called “two-way
accessible” relationship among them. Each family is then arranged in a family tree reflecting the
order in which family members are accessible by external alternating paths. Every component in
the family has not only a unique father, but also a unique mother, being the canonical class of the
father component from which the offspring is two-way accessible. The families themselves are also
arranged in a partial order, which again reflects the order in which they can be covered by external
alternating paths.

Room E113

The Complexity of Some Common Strategy Games

L. Eugene Chipman*, University of Maryland
Clyde P. Kruskal, University of Maryland

One way to measure complexity of a game is to count how many possible games can be played.
This can be estimated with computers using statistical methods based around Knuth’s backtracking
algorithm. For some games this is a useful exercise, which provides interesting insights such as
whether a specific player may be favored or how the difficulty of the game (measured as average
branching factor) varies over the course of the game. We study othello, backgammon, bridgit, and
hex.
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Room 48A–B

On Probe-Clone Interval Graphs

David Brown, University of Colorado at Denver
J. Richard Lundgren*, University of Colorado at Denver

Cary Miller, University of Colorado at Denver

Interval graphs originated in Benzer’s original work on DNA in 1959. More recently, in 1997 Zhang
introduced probe interval graphs as a means of studying various problems associated with physical
mapping of DNA. Interval graphs are a special case of probe interval graphs. Possible applications
to these same problems have led us to introduce a new graph called a Probe-Clone Bipartite Interval
Graph(PCBIG). A bipartite graph G with bipartition P and C is a PCBIG if each vertex v can
be assigned an interval I(v) such that for x in P and y in C, then xy is an edge iff I(x) and I(y)
overlap. For bipartite noncyclic graphs, we show that the sets of interval graphs, probe interval
graphs, and also interval bigraphs are all properly contained in the set of PCBIG’s. We also give a
characterization of PCBIG’s in the noncyclic case and some general properties in the cyclic case.

Room 50

Modular Contractibility in Binary Matroids

David Neel, Truman State University

If all contractions of a matroid M are modular, we say that M is modularly contractible. This paper
examines the problem of characterizing binary modularly contractible matroids.
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Wednesday

9:00–10:00
148 Noga Alon, Polynomials in Discrete Mathematics I: Geometric and Number Theoretic

Applications

10:00–10:20
Coffee break

10:20–10:35
148 Dirk Vertigan*, Matt DeVos, Luis Goddyn, Bojan Mohar, Xuding Zhu, Near Duality

of Circular Coloring and Circular Flow in Orientable Surfaces
E113 David Cariolaro*, Anthony J.W. Hilton, Regular Graphs of Even Order and High De-

gree are 1-Factorizable
48A-B Peter Horák, David Pike, Michael Raines*, Hamilton Cycles in Block-Intersection

Graphs of Triple Systems
50 Arundhati Raychaudhuri, Distance-2 Labeling for Strongly Chordal Graphs and 2−K2

Free Graphs

10:40–10:55
148 Bruce Reed, Benny Sudakov*, Asymptotically the List Colouring Constants are 1

E113 Robert Molina*, Ken Smith, Pn-Randomly Decomposable Graphs
48A-B M.N. Ferencak*, A.J.W. Hilton, Outline and Amalgamated Triple Systems

50 D. Pillone, R. Laskar*, Extremal Results in Rankings

11:00–11:15
148 Arnfried Kemnitz*, Massimiliano Marangio, Colorings and List Colorings of Integer

Distance Graphs
E113 Ronald J. Gould, Emily A. Hynds*, Forbidden Subgraphs and 2-Factors

48A-B Jeff Bonn, Ordering Steiner Triple Systems and the Codes of Their Points
50 David R. Berman, Sandra C. McLaurin, Douglas D. Smith*, Fair Team Tournaments

11:20–11:35
148 Jeannette Janssen, Partial List Colourings of Graphs with Bounded Degree

E113 Sam Greenberg, Multiple Matchings
48A-B Tomoko Adachi*, Masakazu Jimbo, Sanpei Kageyama, Combinatorial Structure of

GDDs without Nontrivial α-Resolution Classes in Each Group
50 Richard Anstee, Ron Ferguson*, J.R. Griggs, Circular Permutations with Low Discrep-

ancy Consecutive k-Sums

11:40–11:55
148 Balázs Montágh, Anti-Ramsey Theorems on Spanning Trees

E113 Hong Wang, Vertex-Disjoint Quadrilaterals in Graphs
48A-B Yukiyasu Mutoh*, Toshio Morihara, Masakazu Jimbo, A Grid Design Related to DNA

Library Screening
50 Clifton E. Ealy Jr.*, On the Genus of Semiλ-Partialplanes

12:00–12:15
148 Maria Axenovich*, Tao Jiang, Anti-Ramsey Numbers for Small Bipartite Graphs

E113 John J. Watkins*, Jesse Gilbert, Packing Caterpillars into Complete Graphs
48A-B Selda Küçükçifçi∗, C.C. Lindner, The Metamorphosis of λ-Fold Block Designs with

Block Size Four into λ-Fold (K4 \ e)-Systems, λ ≥ 2
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50 Adrian Bondy, Jian Shen*, Stéphan Thomassé, Carsten Thomassen, Density Condi-
tions Implying Trangles in k-Partite Graphs

12:15–1:30
Lunch

1:30–2:30
148 Noga Alon, Polynomials in Discrete Mathematics I: Graph Theoretic Applications

2:40–2:55
148 Ellen Gethner*, David G. Kirkpatrick, Nicholas Pippenger, M.C. Escher Inspires a

Coloring Problem of a Different Colour: Art, Mathematics, and Computer Science
Collide

E113 Martin Charles Golumbic*, Marina Lipshteyn, On the Hierarchy of Tolerance, Probe,
and Interval Graphs

48A-B Gayla S. Domke*, Jean E. Dunbar, Lisa R. Markus, The Inverse Domination Number
of a Graph

50 Charles A. Anderson, Some Sequences Related to the Catalan Numbers

3:00–3:15
148 Peter C. B. Lam* and W. C. Shiu, A Class of Graphs with χ∗ Close to χ− 1

E113 Anthony Bonato*, Peter Cameron, Dejan Delić, Stéphan Thomassé, New Vertex Par-
titions Properties of Graphs and Digraphs

48A-B Peter Dankelmann, Size and Domination in Graphs
50 Wen-jin Woan, Diagonal Lattice Paths

3:20–3:35
148 Chao Gui*, Ronald D. Dutton, Distribution of In-Degree in Random Digraphs

E113 D. Aulicino*, M. Lewinter, Pan-Central Graphs
48A-B John Gimbel*, Mihaela Nicolescu, Cherie Umstead, Nicole Vaiana, Brian D. Van Gor-

den, Location with Dominating Sets
50 Seyoum Getu, A ‘dot’ Product and Lattice Paths

3:35–4:00
Coffee break

4:00–4:15
148 Joan P. Hutchinson, Three- and Four-Coloring Nearly Triangulated Surfaces

E113 Arthur M. Hobbs*, Louis Petingi, The Weighted-Edge Case of Strength and Fractional
Arboricity in Graphs

48A-B David C. Fisher, Suzanne M. Seager*, The Total Domination Number of Graphs of
Maximum Degree 3

50 D. Elizabeth “Betsy” Sinclair*, Julia Eaton, Competition Between Geometric Random
Variables I: One-Dimensional Results

4:20–4:35
148 Jan Kratochv́ıl, Zsolt Tuza, Margit Voigt*, b-Colorings of Graphs

E113 Dean Hoffman, Mark Liatti*, Partitioning the Edges of 2Kc,d into Copies of Ka,b

48A-B Teresa Haynes, Debra Knisley*, Colored Domination in Graphs
50 Yung-Ling Lai, On the Profile of the Tensor Product of Paths with Complete Bipartite

Graphs
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4:40–4:55
148 Andrea Hackmann, Critically Edge Colourable Planar Graphs

E113 Art Finbow*, Bert Hartnell, Richard Nowakowski, Michael D. Plummer, On Well-
Covered 5-Connected Triagulations

48A-B Kenneth Proffitt*, Teresa W. Haynes, Peter J. Slater, Paired-Domination in Grid
Graphs

50 Dorea Claassen, The Bandwidth of a Random Graph

5:00–5:15
148 Mathew Cropper*, Andras Gyarfas, Jeno Lehel, Mike Jacobson, Comparing the Hall

Ratio and the Chromatic Number
E113 Saad I. El-Zanati, On Generalizations of the Oberwolfach Problem

48A-B Ruth Haas*, Thomas Wexler, Signed Domination Number of a Graph and Its Comple-
ment

50 Narsingh Deo, Pankaj Gupta*, Sampling the Web Graph With Random Walks

5:30–6:00
148 Frank Harary, Graphs and Their Games

7:00–10:00
Banquet
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Invited Instructional Lectures

Wednesday 9:00–10:00, Room 148

Polynomials in Discrete Mathematics I: Geometric and Number Theoretic
Applications

Noga Alon, Tel Aviv University

Elementary properties of polynomials can be very powerful in the study of various combinatorial
problems. I will illustrate this fact by discussing several problems in Combinatorial Geometry and
by describing a general technique that can be called ”Combinatorial Nullstellensatz” together with
some of its applications in Additive Number Theory. Some of its Graph Theoretic applications will
be described in the second lecture.

Wednesday 1:30–2:30, Room 148

Polynomials in Discrete Mathematics II: Graph Theoretic Applications

Noga Alon, Tel Aviv University

I will illustrate how polynomials can be used to attack problems in Graph Theory. These include
extremal problems, graph coloring problems, and the study of the Shannon capacity of graphs, which
is motivated by questions in Information Theory.
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Wednesday, 10:20–10:35

Room 148

Near Duality of Circular Coloring and Circular Flow in Orientable Surfaces
Dirk Vertigan*, Louisiana State University

Matt DeVos, Rice University
Luis Goddyn, Simon Fraser University, Canada
Bojan Mohar, University of Ljublijana, Slovenia

Xuding Zhu, National Sun Yat-Sen University, Taiwan

Suppose G = (V,E) is a graph and r ≥ 2 is a real number. A proper r-coloring of G is a mapping
f : V → [0, r) such that for every edges xy of G, 1 ≤ |f(x)− f(y)| ≤ r − 1. The circular chromatic
number χc(G) of G is the least r for which G is r-colorable. For an oriented graph G, a flow is a
mapping f : E → R such that for each vertex v, Σe∈E+(v)f(e) = Σe∈E−(v)f(e). A proper r-flow is a
flow f such that for each edge e, 1 ≤ |f(e)| ≤ r−1. The circular flow number Φc(G) of a undirected
graph G is the least r for which an orientation of G admits a proper r-flow.
It is not difficult to derive from the definition that for any graph

χ(G)− 1 < χc(G) ≤ χ(G),

Φ(G)− 1 < Φc(G) ≤ Φ(G).

Moreover, circular coloring and flow are dual concepts in the sense that, for a planar graph G and
its dual G∗,

χc(G) = Φc(G∗).

This extends to regular matroids.
Here, we consider the relationship between the circular chromatic number of a graph G on a surface
Σ, and the circular flow number of its surface dual GΣ∗. The edge-width of G on the surface Σ is
the length of the shortest non–null homotopic circuit. We prove the following theorem. Suppose Σ

is an orientable surface. For any ε > 0, there exists a constant c such that if G is a graph embedded
in Σ with edge-width at least c then

Φc(GΣ∗) ≤ χc(G) ≤ Φc(GΣ∗) + ε.

A related result holds for all surfaces.

Room E113

Regular Graphs of Even Order and High Degree are 1-Factorizable

David Cariolaro*, University of Reading, United Kingdom
Anthony J.W. Hilton, University of Reading, United Kingdom

An old conjecture states that a regular graph with 2n vertices and degree at least n is 1-factorizable,
i.e. its edge set can be partitioned into 1-factors (perfect matchings). Despite major efforts by a
large number of mathematicians over the past two generations, the conjecture remains unsettled. In
1989 Chetwynd & Hilton proved the conjecture for all graphs G with d(G) ≥ 5n/3, where d(G) is
the degree of the regular graph G. We have improved this to d(G) ≥ 3n/2, and in this talk we give
an outline of the proof.
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Room 48A–B

Hamilton Cycles in Block-Intersection Graphs of Triple Systems

Peter Horák, Kuwait University
David Pike, Memorial University of Newfoundland

Michael Raines*, Western Michigan University

Given a BIBD S = (V,B), its 1-block-intersection graph GS has as vertices the elements of B; two
vertices B1, B2 ∈ B are adjacent in GS if |B1 ∩B2| = 1. In this talk, we consider the hamiltonicity
of GS when S is a λ-fold triple system.

Room 50

Distance-2 Labeling for Strongly Chordal Graphs and 2−K2 Free Graphs

Arundhati Raychaudhuri, College of Staten Island

We present some results on distance-2 labeling for Strongly Chordal graphs and 2−K2 free graphs.
In distance-2 labeling, each vertex of a graph G is assigned a positive integer f(x), such that, if the
distance between vertices x and y in G is 2, then f(x) and f(y) must be different, and if the distance
is 1, then the absolute value of f(x)− f(y) must be at least 2. There is no constraint on the labels
if the distance between two vertices is greater than 2. The span of this labeling is denoted by sp(f),
which is maximum value of f(x) over all vertices of G. The goal is to estimate λ2(G), which is the
minimum value of sp(f) over all distance-2 colorings. It is known that λ2(G) is at most d2 + 2d for
an arbitrary graph G, where d is the maximum degree of a vertex in G. For a Strongly Chordal
graph, using a strong elimination orderiung of V (G), we improve this upper bound to 3d− 2. Also,
for 2−K2 free graphs, we ! show that λ2(G) is at most d2; it has been conjectured that this is true
for all graphs.
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Wednesday, 10:40–11:00

Room 148

Asymptotically the List Colouring Constants are 1

Bruce Reed, CNRS, France
Benny Sudakov*, Princeton University and Institute for Advanced Study

The semirandom method (Rödl Nibble) is the general approach to prove the existence of something
by generating it through many iterations, applying probabilistic reasoning at each step.
One area of Combinatorics where semirandom method has had the greatest impact is graph coloring.
In fact, many of the strongest result in graph coloring over the past decade are examples of this
method. We will illustrate how semirandom method works by proving the following result:
Let G = (V,E) be a graph with the sets of lists S(v), one for each vertex v of G, such that

• for every vertex |S(v)| = (1 + o(1))d and

• for each color c ∈ S(v), the number of neighbors of v that have c in their list is at most d.

Then there exist a proper coloring of G from these lists.

Room E113

Pn-Randomely Decomposable Graphs

Robert Molina*, Alma College
Ken Smith, Central Michigan University

A decomposition of a nonempty graph G is a family of subgraphs of G such that their edge sets
form a partition of the edge set of G. If all of the subgraphs in such a decomposition are isomorphic
to some graph H, we say that G is H–decomposable. We say that G is randomly H–decomposable
if every family of edge disjoint subgraphs of G, each subgraph isomorphic to H, can be extended to
an H–decomposition of G. We will investigate Pn–randomly decomposable graphs, focusing mainly
on the case when G is the union of two paths with common end vertices. A characterization of such
graphs with 4 or fewer vertices of degree 4 is given.
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Room 48A–B

Outline and Amalgamated Triple Systems

M.N. Ferencak*, University of Pittsburgh at Johnstown
A.J.W. Hilton, Reading University

A triple system of order n and index λ is thought of as a decomposition of the λ-fold complete
graph on n vertices into edge disjoint copies of K3. An amalgamated triple system is derived from
a triple system by identifying a subset (or several subsets) of the vertex set while preserving all
edge adjacencies at the new vertex (or vertices). Edges between amalgamated vertices become loops
on the new vertex. The amalgamation of a directed triple system is defined analogously. We will
discuss some recent results on embedding partial triple systems and partial directed triple systems
using the technique of amalgamation.

Room 50

Extremal Results in Rankings

D. Pillone, Scientific Games
R. Laskar*, Clemson University

For a graph G = (V,E), a function f : V (G) → {1, 2, . . . , k} is a k-ranking for G if f(u) = f(v)
implies that every u− v path contains a vertex w such that f(w) > f(u). The rank number χr(G)
and the arank number ψr(G) are, respectively, the minimum and maximum value of k such that G
has a minimal k-ranking.
Let n, k be positive integers with n ≥ k. We define χ+

r (n, k) = max{| E(G) |:| V (G) |= n and χr(G) =
k for some graph G}, ψ+

r (n, k) = max{| E(G) |:| V (G) |= n and ψr(G) = k for some graph G},
χ−r (n, k) = min{| E(G) |:| V (G) |= n and χr(G) = k for some graph G}, ψ−r (n, k) = min{| E(G) |:|
V (G) |= n and ψr(G) = k for some graph G}. In this paper these parameters are investigated.
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Wednesday, 11:00–11:15

Room 148

Colorings and List Colorings of Integer Distance Graphs

Arnfried Kemnitz*, Techn. Univ. Braunschweig, Germany
Massimiliano Marangio, Techn. Univ. Braunschweig, Germany

An integer distance graph is a graph G(D) with the set of integers as vertex set and with an edge
joining two vertices u and v if and only if |u− v| ∈ D where the distance set D is a subset of the set
of positive integers.
A (vertex) coloring of a graph G is an assignment of colors to the vertices of G such that adjacent
vertices are colored differently. The minimum number of colors necessary to color the vertices of G
is the chromatic number χ(G) of G.
If L = {L(v) : v ∈ V (G)} is a set of lists of colors then an L-list (vertex) coloring of a graph G is a
coloring of G such that each vertex obtains a color from its own list. A graph G is called k-choosable
if such a coloring exists for each choice of lists L(v) of cardinality at least k. The minimum k such
that G is k-choosable is the choice number χ(G) of G.
We present some general upper bounds for the chromatic number and the choice number of integer
distance graphs and some exact values for graphs with distance sets of small cardinality.

Room E113

Forbidden Subgraphs and 2-Factors

Ronald J. Gould, Emory University
Emily A. Hynds*, Samford University

Every 2-factor of a graph G consists of a spanning collection of vertex disjoint cycles. In particular,
a hamiltonian cycle is an example of a 2-factor consisting of precisely one cycle. A characterization
has been given of all pairs of forbidden subgraphs that imply a 2-connected graph of order n ≥ 10
is hamiltonian. We generalize this idea by examining some pairs of forbidden subgraphs that imply
a 2-connected graph of order n > 3k + 15 contains a 2-factor consisting of k disjoint cycles (k ≥ 1).
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Room 48A–B

Ordering Steiner Triple Systems and the Codes of Their Points

Jeff Bonn, Michigan Technological University

A Steiner Triple System has a code of the points as the row space over GF(2) of the point-by-block
incidence matrix of the Steiner Triple System. It has been conjectured that non-isomorphic Steiner
Triple Systems will always give rise to non-isomorphic codes of their points as has been seen for
the 80 Steiner Triple Systems of order 15. Ordering Steiner Triple Systems give rise to why the
conjecture should be true.

Room 50

Fair Team Tournaments

David R. Berman, University of North Carolina at Wilmington
Sandra C. McLaurin, University of North Carolina at Wilmington
Douglas D. Smith*, University of North Carolina at Wilmington

The question of fairness arises in team tournaments such as whist and spouse-avoiding mixed dou-
bles round-robin tournaments because individuals play on different teams during the course of a
tournament. The design of the tournament may, under some reasonable criteria for projecting wins,
provide an advantage for some players over others. We have previously considered fairness by pro-
jecting the outcome of each match as either a win for one team or a tie. However, the actual outcome
of each match will be a win for some team, with no ties permitted. In this paper we investigate
fairness relative to an intuitively appealing scheme for projecting wins or losses, with no ties.
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Wednesday, 11:20–11:35

Room 148

Partial List Colourings of Graphs with Bounded Degree

Jeannette Janssen, Dalhousie University, Canada

Let G be a graph, and Lt an assignment of lists of size t to the vertices of G. A partial list colouring
of G is a proper colouring of a maximum number of vertices of G so that each coloured vertex
received a colour from its list. The size of the partial list colouring is the number of vertices that
are coloured. We consider the parameter λt(G), which is the minimum, taken over all assignments
of lists of size t, of the size of a partial colouring of G with the given lists. It was conjectured by
Albertson, Grossman and Haas that for any s-choosable graph, λt(G) ≥ (t/s)n, where n is the size
of G. We show that this conjecture holds if G has maximum degree s.

Room E113

Multiple Matchings

Sam Greenberg, Oberlin College

For a given graph, we define a perfect matching as a set of edges such that every vertex is contained
in exactly one edge. A random perfect matching is a perfect matching chosen at random from the
entire set of possible perfect matchings on the graph.
We look at the expected value of the size of the intersection of two random perfect matchings to
find the expected number of edges that appear both times, depending on the graph. We examine a
variety of graphs, eventually focusing on the 2× n and 3× n lattices. The analysis uses interesting
Fibonacci methods and generating functions.
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Room 48A–B

Combinatorial Structure of GDDs without Nontrivial α-Resolution Classes in Each
Group

Tomoko Adachi*, Keio University, Japan
Masakazu Jimbo, Keio University, Japan

Sanpei Kageyama, Hiroshima University, Japan

Let v = mn (m,n≥2), r, k, λ1 and λ2 be positive integers. A group divisible design (GDD) with
parameters v = mn, r, k, λ1 and λ2 is a pair (V,B,G) where V is a v-set of points, B is a collection
of k-subsets (called blocks) of V and G ={G1, · · · , Gm} is a division of V into m groups of n points
each such that every point of V occurs in r blocks of B, and that any two distinct points in the same
group occur together in exactly λ1 blocks of B, while those in different groups occur together in
exactly λ2 blocks of B. In particular, when λ1 is equal to λ2, a GDD is called a balanced incomplete
block design (BIBD) with parameters v, r, k and λ(= λ1 = λ2).
For positive integers v′, r and λ, an (r, λ)-design with parameters v′, r and λ is a pair (V ′,B′) where
V ′ is a v′-set of points and B′ is a collection of subsets of V ′ such that every point of V ′ occurs in
r blocks of B′, and that any two distinct points of V ′ occur together in exactly λ blocks of B′. In
particular, when every block has the same size (=k), an (r, λ)-design is a BIBD with parameters v, r,
k and λ. For a subcollection B′′ (⊂ B′), if every point of V ′ occurs in exactly α blocks (1≤α≤r− 1)
of B′′, then B′′ is called a nontrivial α-resolution class of (V ′,B′).
Jimbo and Kageyama (2000, to appear in ICA Bulletin) showed that GDDs with r = λ1 + 1 are
characterized in terms of Hadamard tournaments and strongly regular graphs from the viewpoint of
the construction.
We show that combinatorial structure of GDDs without nontrivial α-resolution classes in each group
are also specified by Hadamard tournaments and strongly regular graphs. The result in GDDs with
r = λ1 + 1 is included in our result as a special case.

Room 50

Circular Permutations with Low Discrepancy Consecutive k-Sums

Richard Anstee, University of British Columbia, Canada
Ron Ferguson*, University of British Columbia, Canada

J.R. Griggs, University of South Carolina

Let k, n be given and let π be a permutation of 1, 2, . . . , n. Consider the permutation as being
placed on a circle so that indices are taken modulo n. There are n sums of k consecutive entries
and their average is k(n+ 1)/2. We say the maximum difference of any consecutive k-sum from the
expected value of k(n+ 1)/2 is the discrepancy of the permutation and then seek a permutation of
minimum discrepancy. We obtain a number of results that show that the discrepancy can be made
small (always ≤ 7/2 where gcd(n, k) > 1 and ≤ k+6 where gcd(n, k) = 1), and obtain lower bounds
that show that in certain cases it cannot be made smaller (sometimes Ω(k)).
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Wednesday, 11:40–1:55

Room 148

Anti-Ramsey Theorems on Spanning Trees

Balázs Montágh, University of Memphis

Erdős, Simonovits and Sós initiated the investigation of anti-Ramsey problems for graphs. Call a
graph totally multicolored (TMC, for short) if any two edges have different colors. Given a family
L of graphs, let AR(n,L) be the maximum of t for which there exist t-colorings of the edges of Kn,
where every color is used at least once, without a TMC subgraph that belongs to L. It is easy to
see that AR(n,L) ≥ ex(n,L∗) + 1.
Let Tn be the family of the trees on n vertices, that is, the family of all spanning trees of Kn, and
let T dn be the family of the trees on n vertices of diameter at most d. Bialostocki and Voxman
proved that if n ≥ 3 then AR(n, Tn) =

(
n−2

2

)
+ 1 = ex(n, T ∗n ) + 1. Bialostocki conjectured that

AR(n, Tn) = AR(n, T 4
n ). In other words, if the number of colors is greater than

(
n−2

2

)
+1 then there

is a TMC spanning tree of diameter at most 4.
We shall show that even more is true: AR(n, Tn) = AR(n, T 3

n ). That is, if the number of colors is
greater than

(
n−2

2

)
+ 1 then there is a TMC spanning tree with an edge dominating the whole tree.

We shall call such a tree a double star.
For the case of diameter 2, it is easy to see that if n ≥ 4 then AR(n, T 2

n ) > AR(n, Tn) since
ex(n, T 2

n
∗) =

(
n
2

)
− n > ex(n, Tn∗). It is more interesting that, as we shall see, for n ≥ 6 we

have AR(n, T 2
n )− ex(n, T 2

n
∗) > 1. This means that for the spanning star the extremal anti-Ramsey

coloring uses at least two colors more than once. In fact, AR(n, T 2
n ) =

(
n
2

)
− d 2n

3 e.
However, AR(n,L) = AR(n, Tn) holds even for a family L much smaller than T 3

n . Let DS4
n, DS3

n

be the families of the double stars with n vertices whose maximal degree is at least n − 4, n − 3,
respectively. We shall show that AR(n, Tn) = AR(n,DS4

n) < AR(n,DS3
n).

Room E113

Vertex-Disjoint Quadrilaterals in Graphs

Hong Wang, The University of Idaho

Let k be a positive integer and G a graph of order n. In [Bert Randerath, Ingo Schiermeyer, H. Wang,
On quadrilaterals in a graph, Discrete Mathematics, 203(1999), 229–237], we proved that if n = 4k
and δ(G) ≥ 2k then G contains k − 1 vertex-disjoint quadrilaterals. In this paper, we investigate
vertex-disjoint quadrilaterals in G with n 6≡ 0(mod 4), and we have found the best minimum degree
condition δ(G) ≥ d 1

2ne such that G contains b 1
4nc vertex-disjoint quadrilaterals. As a result of our

method, we have improved our previous result as follows: If n = 4k and δ(G) ≥ 2k − 1 then G
contains k − 1 vertex-disjoint quadrilaterals.
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Room 48A–B

A Grid Design Related to DNA Library Screening

Yukiyasu Mutoh*, Keio University, Japan
Toshio Morihara, Keio University, Japan
Masakazu Jimbo, Keio University, Japan

Fu, Hwang, Jimbo, Mutoh and Shiue (2000) introduced the concept of a grid design, which is defined
as follows: For a v-set V , let G be a collection of r × c arrays with elements in V . A pair (V,G) is
called a r × c grid design if every distinct two points i and j in V occurs exactly once in the same
row or in the same column. This is design originated from the use of DNA library screening. They
gave some general constructions and proved the existence of 2×3 grid designs and 3×3 grid designs.
In this talk we give some constructions and show the existence of 3 × 3 grid designs which are
included in Fu et.al (2000). Moreover, we show the existence of 2× 4 grid designs.

Room 50

On the Genus of Semiλ-Partialplanes

Clifton E. Ealy Jr.*, Western Michigan University

Informally, a semi λ-partialplane is a connected incidence structure such that any two distinct
points are on 0 or λ blocks, every point is on t + λ blocks, and every block is on s + λ points with
s+ λ, t+ λ ≥ 3. In this paper, we bound the genus of some classes of semi λ-partialplanes.
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Wednesday, 12:00–12:15

Room 148

Anti-Ramsey Numbers for Small Bipartite Graphs

Maria Axenovich*, Iowa State University
Tao Jiang, Michigan Technological University

Given two graphs G and H ⊆ G, we consider edge-colorings of G in which every copy of H has at
least two edges of the same color. Let f(G,H) be the maximum number of colors used in such a
coloring of E(G). Erdős, Simonovits and Sós determined the asymptotic behavior of f when G = Kn

and H contains no edge e with χ(H − e) ≤ 2. We study the function f(G,H) when G = Kn or
Km,n, and H is K2,t.

Room E113

Packing Caterpillars into Complete Graphs

John J. Watkins*, Colorado College
Jesse Gilbert, Lawrence University

The Tree Packing Conjecture asserts that any family of trees havings orders 2 through n can be
packed into the complete graph on n vertices. This conjecture has been verified for a number of
special cases, for example if each tree is either a path or a star. We will extend these results by
showing that packings can also beconstructed for certain families of trees based upon caterpillars.
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Room 48A–B

The Metamorphosis of λ-Fold Block Designs with Block Size Four into λ-Fold
(K4 \ e)-Systems, λ ≥ 2

Selda Küçükçifçi∗, Auburn University
C.C. Lindner, Auburn University

A λ-fold K4 \ e -design of order n is a pair (X,K), where K is a collection of edge disjoint copies
of K4 \ e which partitions the edge set of λKn with vertex set X. Let (X,B) be a λ-fold block
design with block size 4. If we remove one edge from each block in B, we obtain a partial λ-fold
K4 \ e -design. If the deleted edges can be arranged into copies of K4 \ e the result is a λ-fold K4 \ e
-design, called a metamorphosis of the λ-fold block design (X,B). Quite recently, C. C. Lindner and
A. Rosa determined the spectrum for λ-fold block designs with block size 4 having a metaporphosis
into λ-fold K4 \ e -designs when λ = 1. We give a complete solution of the spectrum problem for
λ-fold block designs with block size 4 having a metamorphosis into a λ-fold K4 \ e -design for all
λ ≥ 2.

Room 50

Density Conditions Implying Trangles in k-Partite Graphs

Adrian Bondy, Université Claude Bernard Lyon 1, France
Jian Shen*, Southwest Texas State University

Stéphan Thomassé, Université Claude Bernard Lyon 1, France
Carsten Thomassen, Institute of Mathematics, Denmark

We consider the problem of finding a large or dense trangle-free (or C3-free) subgraph in a given
graph G. In response to a question of P. Erdös, we prove that, if the minimum degree of G is at
least (19−

√
117)|V (G)|/10 + 1(≈ 0.818|V (G)|+ 1), the largest triangle-free subgraphs are precisely

the largest bipartite subgraphs in G. We investigate in particular the case where G is a complete
k-partite graph. For k = 3, we prove that a finite 3-partite graph with edge density between each
pair of partite sets greater than the golden ratio, (

√
5− 1)/2(≈ 0.618), has a triangle. Also we show

that this golden ratio bound is best possible.
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Wednesday, 2:40–2:55

Room 148

M.C. Escher Inspires a Coloring Problem of a Different Colour: Art, Mathematics,
and Computer Science Collide

Ellen Gethner*, University of British Columbia
David G. Kirkpatrick, University of British Columbia
Nicholas Pippenger, University of British Columbia

Dutch artist M.C. Escher is a familiar friend to Artists, Computer Scientists, and Mathematicians.
Recently, Doris Schattschneider called attention to a combinatorial technique used by Escher to cre-
ate periodic patterns in the plane. Ultimately, a square tile is decorated by a finite set of overlapping
polygonal regions that intersect the boundary of the tile symmetrically and aesthetically. The plane
is then tiled by standard horizontal and vertical translations, yielding a doubly periodic wallpaper
pattern. That the original tile is made up of overlapping regions lends an air of mystery to the final
outcome. Escher deepened the mystery by adding color to the mix, and in doing so aroused the
curiosity of Rick Mabry, Stan Wagon, and Doris Schattschneider. Their question: is there a rectan-
gular prototile (concatenated copies of the square tile), which can be colored so that colors on the
sides and top and bottom match appropriately? Can this be done so that overlapping components
in the resulting plane pattern always receive different colors? The answer : “yes,” such a prototile
always exists. The proof is a constructive algorithm that draws from geometry, graph theory, and
number theory. The output of the algorithm: the dimensions of the prototile together with coloring
instructions. Moreover, a classification of all prototiles for a given square tile is underway, and uses
tools from computational and classical number theory, graph theory, and graph algorithms.

Room E113

On the Hierarchy of Tolerance, Probe, and Interval Graphs

Martin Charles Golumbic*, Bar-Ilan University and Haifa University, Israel
Marina Lipshteyn, Bar-Ilan University, Israel

Tolerance graphs and interval probe graphs are two generalizations of the well known class of interval
graphs. All three families are defined in terms of being able to assign an interval on the line to each
vertex of the graph such that there is an edge between two vertices if and only if the intersection
of their intervals is non-empty and satisfies an “extra” condition. For interval graphs, there is no
extra condition. For probe graphs, the vertices are partitioned into two sets P (probes) and N
(non-probes), and the extra condition is that at least one of the two vertices of an edge must be in
P. For tolerance graphs, the vertices are assigned positive real numbers (tolerances), and the extra
condition is the requirement that the size of the intersection of the two intervals must be greater
than or equal to the minimum of the two tolerances in order to produce an edge. It is known, and
easy to show, that every interval graph is a probe graph (by choosing N to be empty), and that
every probe graph is a tolerance graph (by assigning infinite tolerance to each member of N and a
small ε to each member of P.) Moreover, for all three models, we can place additional restrictions of
requiring that all intervals be of unit length or that no interval properly contains another. Clearly,
a unit interval representation is also a proper representation. Conversely, however, it is well known
that unit tolerance graphs do not equal proper tolerance graphs, but unit interval graphs do equal
proper interval graphs. In this talk, we present the complete hierarchy of all nine subclasses taken
from <unit, proper, general> × <interval, probe, tolerance> together with examples separating
different classes. Thus, we survey these which are known and prove those which are new. Finally,
we also present the new result that the graph sandwich problem for probe graphs is NP-complete.
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Room 48A–B

The Inverse Domination Number of a Graph

Gayla S. Domke*, Georgia State University
Jean E. Dunbar, Converse College
Lisa R. Markus, De Anza College

Let G be a graph with n vertices, and let D be a minimum dominating set of G. If V −D contains a
dominating set, D′, of G, then D′ is called an inverse dominating set with respect to D. The inverse
domination number, γ′(G), is the order of a smallest inverse dominating set of G. In this paper,
we characterize all graphs where γ(G) + γ′(G) = n. We also give a lower bound for the inverse
domination number of a tree.

Room 50

Some Sequences Related to the Catalan Numbers

Charles A. Anderson, University of Colorado at Denver

We show that a natural extension of a problem considered by Grimaldi and Moser at a previous
Southeastern Conference leads to a natural extension of the sequence of Catalan numbers. These
“new” sequences have clear combinatorial interpretations and simple, elegant formulas. We consider
some properties of these sequences and describe them using generating trees.
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Wednesday, 3:00–3:15

Room 148

A Class of Graphs with χ∗ Close to χ− 1

Peter C. B. Lam*, Hong Kong Baptist University
W. C. Shiu, Hong Kong Baptist University

The star chromatic number χ∗(G) of a graph G, a natural generalization of the chromatic number
χ(G) of G, was introduced by Vince in 1988. It has been shown that χ(G) − 1 < χ∗(G) ≤ χ(G).
In this, we give a class of graphs G with χ∗(G) determined. Moreover, this class of graphs may be
arbitrarily close to χ(G)− 1.

Room E113

New Vertex Partitions Properties of Graphs and Digraphs

Anthony Bonato*, Wilfrid Laurier University, Canada
Peter Cameron, Queen Mary and Westfield College, United Kingdom

Dejan Delić, Vanderbilt University
Stéphan Thomassé, Université Claude-Bernard Lyon I, France

A graph G has the pigeonhole property, written (P), if whenever the vertex set is partitioned into
two parts, then the subgraph induced by one of the parts is isomorphic to G. In 1996, Peter
Cameron proved the surprising result that the only countable graphs with (P) are the trivial graph,
the countably infinite complete graph and its complement, and the countably infinite random graph.
Last summer, at a conference in honour of Roland Fräıssé, Cameron posed the following problem:
which countable graphs G have the property that whenever the vertex set is partitioned into three
parts, the subgraph induced by the union of some two of the parts is isomorphic to G? This new
vertex partition property is called P(3, 2).
In this talk, we answer Cameron’s problem and present a classification of the countable graphs with
P(3, 2). A classification of the countable digraphs with P(3, 2) will also be presented.
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Room 48A–B

Size and Domination in Graphs

Peter Dankelmann, University of Natal, South Africa

Vizing determined the maximum number of edges in a graph of given order and domination number.
In our talk we present analogous results for the total domination number and the independent
domination number. We also determine the maximum number of edges in a bipartite graph of given
order and domination (total domination, independent domination) number. This is joint work with
Gayla Domke, Wayne Goddard, Paul Grobler, Johan Hattingh and Henda Swart.

Room 50

Diagonal Lattice Paths

Wen-jin Woan, Howard University

We consider those lattice paths in the Cartesian plane running from (0, 0) that use the steps from
S = {(k, k) or (k,−k) : k positive integer} and never go below the x-axis. Let D(n) be the set
of paths that end at (n, 0) and d(n) = |D(n)| be the number of such paths. Then the first few
terms are d(0) = 1, 1, 5, 29, 185, 1257, 8925, ... and the generating function g(x) =

∑∞
n=0 d(n)xn =

1+3x−
√

9x2−10x+1
8x .
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Wednesday, 3:20–3:35

Room 148

Distribution of In-Degree in Random Digraphs

Chao Gui*, University of Central Florida
Ronald D. Dutton, University of Central Florida

Random digraphs are an extension of random graph model introduced by Erdös. For any node of a
random digraph, the number of out-links is treated as a random variable X. Properties of random
digraphs are of interest, especially for those with fairly large number of nodes. In the traditional
random graph model, the degree of any given node has Poisson distribution. This paper provides
proof that the same is true for the in-degree of nodes in random digraphs. The number of in-links
to any given node is treated as another random variable Y. We show that, as n → ∞, Y follows
the Poisson distribution Po(λ), where λ is equal to the expected value of X. Further, we show the
distribution of X does not affect that of Y when n is sufficiently large.

Room E113

Pan-Central Graphs

D. Aulicino*, Byram Hills High School, New York
M. Lewinter, Purchase College SUNY

Abstract: A graph G is called pan-unicentral if given any vertex v in V (G), there exists a spanning
tree T of G such that C(T ) = {v}. A graph is called pan-bicentral if given any pair of adjacent
vertices u, v in V (G), there exists a spanning tree T of G such that C(T ) = {u, v}. A graph which is
pan-unicentral and pan-bicentral is called pancentral. Two dimensional meshes, with the exception
of ladders are pancentral. Various theorems and infinite classes will be presented.
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Room 48A–B

Location with Dominating Sets

John Gimbel*, University of Alaska
Mihaela Nicolescu, Salk School of Science

Cherie Umstead, High School of Legal Studies
Nicole Vaiana, Curtis High School

Brian D. Van Gorden, Port Allegany High School

We consider dominating sets of minimum cardinality which have the property that distinct vertices
are dominated by distinct subsets of the dominating set. We characterize graphs which have such a
set and develop bounds on the minimum cardinality.

Room 50

A ’dot’ Product and Lattice Paths

Seyoum Getu, Howard University

Let S be a tridiagonal Stieljes matrix and L be a lower triangular matrix associated with it. It
is shown algebraically and combinatorially that the ‘dot’ product of row n and row m of L, with
appropriate weights, is equal to the first entry of row (n + m) of L. Using this fact it follows that
the diterminant of an n by n Hankel matrix, formed from the first column of L, is the successive
products of the entrees of one of the diagonals of S.
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Wednesday, 4:00–4:15

Room 148

Three- and Four-Coloring Nearly Triangulated Surfaces

Joan P. Hutchinson, Macalester College

We consider generalizations of the so-called Heawood’s theorem that a planar triangulation can be
3-colored if and only if every vertex has even degree. We give a short proof that a plane graph with
no two nontriangular faces incident is 3-chromatic if and only if a local neighborhood of each face
is 3-colorable. And if a graph embeds on an orientable surface of genus g > 0, there is a constant
c(g) so that if all noncontractible cycles have length at least c(g), if no two nontriangular faces
are incident, and if each face has a 3-colorable local neighborhood, then the graph is 4-colorable.
These results generalize the 4-color theorem for locally planar Eulerian triangulations in “Colouring
Eulerian triangulations,” obtained with B. Richter and P. Seymour.

Room E113

The Weighted-Edge Case of Strength and Fractional Arboricity in Graphs

Arthur M. Hobbs*, Texas A&M University
Louis Petingi, College of Staten Island

In the study of packings and coverings of graphs by trees, the functions η = minS⊆E(G)
|S|

ω(G−S)−ω(G)

(strength) and γ = maxH⊆G
|E(H)|

|V (H)|−ω(H) (fractional arboricity) were shown by Tutte and Nash-
Williams to be very important. In many published papers, these functions were studied with weights
on the edges, and in others they were studied without weights, apparently leaving the weighted case
open to further examination. In this paper we develop simple formulas for the weighted-edge case
of these functions in terms of their unweighted values. Using these formulas, we demonstrate how
known unweighted-edge results can be easily translated into weighted-edge results.
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Room 48A–B

The Total Domination Number of Graphs of Maximum Degree 3

David C. Fisher, University of Colorado at Denver
Suzanne M. Seager*, Mount Saint Vincent University, Canada

The total domination number γt(G) of a graph G is the minimum size of a set D ⊆ V (G) such that
every node of G is adjacent to a node in D. We show that if G has maximum degree at most 3 and
no K1 or K2 components, then γt(G) ≤ n− 1

3e, where G has n nodes and e edges. It follows that if
G is a cubic graph, then γt(G) ≤ 1

2n.

Room 50

Competition Between Geometric Random Variables I: One-Dimensional Results

D. Elizabeth “Betsy” Sinclair*, University of Redlands
Julia Eaton, University of Rochester

Each player has a p-coin and flips until he or she flips heads. If two players have the same number of
flips, the round is declared a tie, so that we seek a strict ordering of the contestants. Once a player
flips heads, only that player ceases to flip, the other players must continue to flip until they too have
flipped heads. The player with the greatest number of flips is declared the winner. We consider
results that compute and/or bound the probability of a tie; and the total number of rounds. We also
study the distribution of X, defined as

∑
i<j Ii,j , where Ii,j equals one or zero according as the ith

and jth players flip heads on the same toss; clearly we have a strict ordering if X = 0. The second
part of this research, to be presented by Julia Eaton, will examine the fine structure of multiple ties
between contestants, and explore the connections with graph theory.
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Wednesday, 4:20–4:35

Room 148

b-Colorings of Graphs

Jan Kratochv́ıl, Charles University, Czech Republic
Zsolt Tuza, Hungarian Academy of Sciences

Margit Voigt*, Technical University, Germany

A b-coloring of a graph G by k colors is a proper coloring of the vertices of G such that in each color
class exists a dominating vertex that is a vertex having neighbors in all other k − 1 color classes.
The b-chromatic number b(G) of a graph G is the maximum k for which G has a b-coloring by k
colors.
The concept of b-colorings was introduced in 1999 by Irving and Manlove. The talk presents this
new graph coloring concept and gives results on bipartite graphs, algorithmic problems and the
asymptotic behavior of the b-chromatic number.

Room E113

Partitioning the Edges of 2Kc,d into Copies of Ka,b

Dean Hoffman, Auburn University
Mark Liatti*, Auburn University

We investigate partitioning the edges of the 2-fold complete bipartite graph 2Kc,d into copies of
Ka,b.
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Room 48A–B

Colored Domination in Graphs

Teresa Haynes, East Tennessee State University
Debra Knisley*, East Tennessee State University

A vertex set S is a dominating set if it’s closed neighborhood is the entire vertex set. The minimum
cardinality among all dominating sets is the domination number of a graph and is denoted by γ(G).
The minimum cardinality among all independent dominating sets is the independent domination
number of a graph and is denoted by i(G). These two parameters are well known and have been
highly studied. Of course, γ(G) ≤ i(G). Recent attention has been given to the question; what
domination parameters are between γ(G) and i(G)? We define the colored domination number,
denoted by cdk(G) as the minimum cardinality among all k − colorable dominating sets. Thus we
obtain i(G) when k = 1 and γ(G) for sufficiently large k. We give an upper bound for cdk(G) in
terms of γ(G), we show |cdk(G)− cdj(G)| can be arbitrarily large for i 6= j and we give a sufficient
condition for cdk(G) = γ(G).

Room 50

On the Profile of the Tensor Product of Paths with Complete Bipartite Graphs

Yung-Ling Lai, National Chiayi University, Taiwan, ROC

It is known that determination of the profile for arbitrary graphs is NP-complete. The tensor
product of graphs G1 and G2, denoted G1(Tp)G2, is the graph with vertex set V (G1) × V (G2) in
which (u1, v1) is adjacent to (u2, v2) if (u1, u2) ∈ E(G1) and (v1, v2) ∈ E(G2). In this paper, we
provide linear time algorithms to achieve the profile of the tensor product of paths with complete
bipartite graphs.
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Wednesday, 4:40–4:55

Room 148

Critically Edge Colourable Planar Graphs

Andrea Hackmann, Technische Universität Braunschweig, Germany

The chromatic index χ′(G) of any graph G = (V,E) with maximum degree ∆ either equals ∆ or
∆ + 1 (Vizing’s theorem). G is called critical with respect to edge colouring, if χ′(G) = ∆ + 1 and
χ′(G − e) = ∆ for every edge e ∈ E. Since every graph with chromatic index ∆ + 1 contains a
critical subgraph of the same maximum degree, results about graphs with chromatic index ∆ + 1
are often obtained by considering critical subgraphs.
The talk is about the structur of planar critical graphs and a method to construct all planar critical
graphs of order |V | ≤ 12.

Room E113

On Well-Covered 5-Connected Triagulations

Art Finbow*, Saint Mary’s University, Canada
Bert Hartnell, Saint Mary’s University, Canada

Richard Nowakowski, Dalhousie University, H Canada
Michael D. Plummer, Vanderbilt University

A graph is said to be well-covered if every maximal independent set of vertices has the same car-
dinality. A planar (simple) graph in which each face is a triangle is called a triangulation. In this
talk, we determine which 5-connected triangulations are well-covered.
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Room 48A–B

Paired-Domination in Grid Graphs

Kenneth Proffitt*, East Tennessee State University
Teresa W. Haynes, East Tennessee State University
Peter J. Slater, University of Alabama in Huntsville

For a graph G = (V,E), a set S ⊂ V (G) is a dominating set if every vertex v ∈ V (G) \S is adjacent
to at least one vertex in S. A paired-dominating set is a dominating set whose induced subgraph
has a perfect matching. We present results on paired-domination in grid graphs.

Room 50

The Bandwidth of a Random Graph

Dorea Claassen, University of Nebraska–Lincoln

Label a graph on n vertices with the integers 1 through n. Call this labeling f . Now take the absolute
difference between the endpoints of every edge in the graph. The maximum such edge difference
is the f-bandwidth, denoted Bf (G). The minimum f -bandwidth over all possible labelings is the
bandwidth B(G) of graph G. While the problem of computing the bandwidth of a graph is NP-
complete, surprising results can be found for the random graph G(n, p) on n vertices where each
edge is placed with probability p. We will present new results that bound B(G(n, p)).
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Wednesday, 5:00–5:15

Room 148

Comparing the Hall Ratio and the Chromatic Number

Mathew Cropper*, Eastern Kentucky University
Andras Gyarfas, Hungarian Academy of Sciences

Jeno Lehel and Mike Jacobson, University of Louisville

The chromatic number of a graph G is certainly at least its number of vertices (n(G)) divided by
its independence number (α(G)). Moreover, for any subgraph H of G, the chromatic number of G
is at least n(H)

α(H) . The Hall Ratio of G is ρ(G) = max
{
n(H)
α(H)

}
where the maximum is taken over

all subgraphs. We show that there are families of graphs with bounded Hall ratio and unbounded
chromatic number. We also explore this parameter for other families of graphs and offer problems.

Room E113

On Generalizations of the Oberwolfach Problem

Saad I. El-Zanati, Illinois State University

We report on some recent results on 2-factorizations of complete graphs generalizing the Oberwolfach
problem. Included are some results on the Hamilton-Waterloo problem, an investigation of all
possible 2-factorizations of Kn (or Kn minus a 1-factor), n ≤ 12, as well as an investigation of
factorizations of K2n into combinations of uniform 2-factors.
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Room 48A–B

Signed Domination Number of a Graph and Its Complement

Ruth Haas*, Smith College
Thomas Wexler, Cornell University

Let G be a graph on vertex set V and define a function f : V → {−1, 1}. The function f is a signed
dominating function if for every vertex x ∈ V , the closed neighborhood of x contains more vertices
with function value 1 than with −1. The weight of f , denoted w(f), is the sum of the function value
of all vertices in G. The signed domination number of G γs(G) is the minimum weight of a signed
dominating function on G. We give some results on the sum of the signed domination number of
a graph and its complement. In particular, we characterize the graphs for which both the signed
domination number of the graph and its complement are maximum.

Room 50

Sampling the Web Graph With Random Walks

Narsingh Deo, University of Central Florida
Pankaj Gupta*, University of Central Florida

The World Wide Web can be modeled as a directed graph in which a node represents a Web page and
a directed edge represents a hyperlink. This gigantic Web graph is currently estimated to have over
three billion nodes and is growing by more than seven million nodes a day—without any centralized
control. Recent studies suggest that despite its chaotic appearance, the Web is a highly structured
digraph, in a statistical sense. The study of this graph is important in the design of Web algorithms
for crawling, searching, and ranking Web resources. The graph-theoretic structure of the Web can
also be exploited for attaining efficiency and comprehensiveness in Web navigation.
A random walk on a regular, connected, undirected graph generates a close to uniformly distributed
sample of nodes (Bar-Yossef et al., VLDB conference, 2000). An accurate sampling of the Web
pages (obtained with random walks) is valuable in determining the domain-name distribution of
Web pages, coverage of search engines, and other important properties such as average number of
links per page and average size of a Web page. In this paper, we present the empirical study of
sampling a synthetically- generated Web graph through random walks.

Wednesday, 5:30–6:00

Room 148

Graphs and Their Games

Frank Harary, New Mexico State University

Many concepts from graph theory can be converted into two-person games in which one of the two
players, A (the first player) or B is the winner. Space does not permit to list all of these games. Only
one of the games will be indicated; the others have corresponding rules of play. Given a connected
graph G, the game of Pathfinder has A removing the edges of a path from G. Then B removes (the
edges of) a path from the resulting subgraph. The two players continue to alternate their moves
until no edges remain. In the achievement game, the last player to move is the winner. In the
avoidance game, he is the loser. Other catchy game names are Trailblazer, Blockbuster, Do and
Don’t connect-it, Kingmaker for tournaments, Color my points, Make a BIBD, etc. At the talk,
these games will be played as time permits.
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Thursday

9:00–10:00
148 Alexander Schrijver, Permanents and Edge-Colouring

10:00–10:20
Coffee break

10:20–10:35
148 Ralph P. Grimaldi, Compositions without the Summand 1

E113 Paul Balister, Béla Bollobás, Jonathan Cutler*, Luke Pebody, The Interlace Polynomial
of Graphs at −1

48A-B Yoshihiro Kaneko*, Stephen Locke, Minimum Degree Approach for Paul Seymour’s
Conjecture

50 Galen E. Turner III, Subdivisions of Wheels

10:40–10:55
148 Alain Plagne*, Laurent Habsieger, Improved Bounds for B2[2] Sets

E113 Rao Li, Hamiltonicity of 3-Connected Quasi-Claw-Free Graphs
48A-B Darren A. Narayan, Powers of Directed Hamiltonian Paths as Feedback Arc Sets

50 Larry Cummings, Connected Components of Comma-Free Codes

11:00–11:15
148 Ingo Schiermeyer, New Ramsey Numbers for Cycles

E113 Mahmoud El-hashash, On the Hamiltonicity of Two Subgraphs of the Hypercube
48A-B M.A. Fiol, J. Gimbert*, On Almost Moore Bipartite Digraphs with Odd Diameter

50 Narsingh Deo, Paulius Micikevicius*, Comparison of Prüfer-like Codes for Labeled
Trees

11:20–11:35
148 Konrad Piwakowski, Stanis law P. Radziszowski*, Towards the Exact Value of the Ram-

sey Number R(3, 3, 4)
E113 Anant Godbole*, Debra Knisley, Rick Norwood, Alphabet-Overlap Graphs are Hamil-

tonian
48A-B Cora Neal, 2-Primitive Tournament Digraphs

50 Suk Jai Seo*, Ashok T. Amin, On Extremal Oriented Trees

11:40–11:55
148 Ermelinda DeLaVina, Connected Triangle-Free Ramseyan Properties of Graphs

E113 Bill Linderman, Minimum Graphs with Complete Closure
48A-B Michelle Foster*, Peter Johnson, An Existence Theorem in Information Theory

50 Jens-P. Bode, Triangular Polyomino Set Achievement

12:05–12:35
148 Presentation of the 2000 Medals of the Institute of Combinatorics and its Applications

12:35–1:30
Lunch

1:30–2:30
148 Alexander Schrijver, Graph embedding and Eigenvalues
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2:40–2:55
148 Van Vu, Set Systems with Even Multi-Intersections

E113 Chris Rodger*, Darryn Bryant, Y. Chang, R. Wei, Two Dimensional Balanced Sam-
pling Plans Excluding Contiguous Units

48A-B Krystyna T. Balińska, Michael L. Gargano, Louis V. Quintas*, An Edge Partition
Problem Concerning Hamilton Paths

50 Yolando B. Beronque, On the Structure of a Distance-Regular Graph from a Maximal-
Distance Subgraph

3:00–3:15
148 Yuejian Peng*, Vojtech Rödl, Jozef Skokan, Small Cliques in 3-Uniform Hypergraphs

E113 K.T. Arasu, Yu Qing Chen, Alexander Pott*, New Results on Non-abelian Relative
Difference Sets

48A-B Jay Bagga, John Emert*, J. Michael McGrew, Visibility Graphs on the Sphere
50 R.D. Baker, G.L. Ebert*, T. Penttila, Hyperbolic Fibrations and Flocks of a Quadratic

Cones

3:20–3:35
148 Yulia Dementieva*, Penny Haxell, Brendan Nagle, Vojtěch Rödl, On Characterizing

Hypergraph Regularity
E113 Ben Wehrung, Maximum Packings of Kn with Eulerian Graphs

48A-B Marek Kubale, The Smallest Hard-to-Color Graph for Sequential Coloring Algorithms
50 Keith Mellinger, Constructing Mixed Partitions of PG(3, q2)

3:35–4:00
Coffee break

4:00–4:15
148 Roger B. Eggleton*, James A. MacDougall, Minimally Star-Saturated Graphs

E113 Isidoro Gitler, Coloring the Angles of Embedded Graphs
48A-B Thomas Boehme*, Bojan Mohar, Domination, Packing and Excluded Minors

50 Gilles Caporossi*, Pierre Hansen, Variable Neighborhood Search for Extremal Graphs,
1 to 7: a Short Survey

4:20–4:35
148 József Balogh*, Béla Bollobás, Miklós Simonovits, Estimates for the Number of L-Free

Graphs
E113 Terry McKee, Recognizing Dual-Chordal Graphs

48A-B B.L. Hartnell*, P.D. Vestergaard, Dominating Sets with At Most k Components
50 Pierre Hansen*, Mustapha Aouchiche, Gilles Caporossi, Variable Neighborhood Search

for Extremal Graphs, 8: Variations on Graffiti 105

4:40–4:55
148 John Goldwasser, Erdos-Ko-Rado with a Bound on the Maximum Degree

E113 Guoli Ding, Jinko Kanno*, Splitter Theorems for Cubic Graphs
48A-B Bert L. Hartnell, Douglas F. Rall*, Dominating the Cartesian Square of a Tree

50 Dan Pritikin, The Upper Bound for Pancake Sorting

5:00–5:15
148 Sergei L. Bezrukov, Thomas J. Pfaff, Victor P. Piotrowski*, A New Approach to

Macaulay Posets
E113 Nair Maria Maia de Abreu*, Patricia Erthal de Moraes, Samuel Jurkeiwicz, Graphs

with Homogeneous Density in (a, b)-Linear Classes
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48A-B John Villalpando*, Renu Laskar, Degree Weighted Domination
50 Dionysios Kountanis, Sathya Priya Durairaju*, Optimal Connection of Networks with

a Backbone Interconnection Network

5:20–5:35
148 Matt Walsh*, Peter Johnson, Another Network Vulnerability Parameter

E113 Jay S. Bagga*, Lowell W. Beineke, Badri N. Varma, Line Completion Numbers of
Graphs

48A-B David Erwin, Daryl Findley, John McKenzie*, Ben Phillips*, Results on a Lower Bound
on the Domination Number: I

50 N. Sankaranarayanan, Francis Suraweera*, Narsingh Deo, Two Protocols for Multicast
Communication

5:40–5:55
148 Salar Y. Alsardary, An Upper Bound on the Basis Number of the Powers of the Com-

plete Graphs
E113 Geir Agnarsson, On Powers of Some Geometrically Represented Graphs

48A-B David Erwin, Daryl Findley*, John McKenzie, Ben Phillips, Results on a Lower Bound
on the Domination Number: II

50 Anton Colijn, The Master Timetabling Problem: Comparison of Two Approaches

8:00–9:30
Survivor’s Dessert Party
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Invited Instructional Lectures

Thursday 9:00–10:00, Room 148

Permanents and Edge-Colouring

Alexander Schrijver, CWI and University of Amsterdam

The permanent of an n× n matrix A = (ai,j) is defined by

per(A) :=
∑
π

n∏
i=1

ai,π(i),

where π ranges over all permutations of 1, 2, . . . , n.
Van der Waerden (1926) asked if the permanent of any doubly stochastic n × n matrix is at least
n!/nn, which was proved in 1981 by Falikman.
Related is the question of Erdős and Rényi (1968) for the maximum value αk such that per(A) ≥ αnk
for each nonnegative integer n× n matrix A with each row and column sum equal to k. So αnk is a
lower bound on the number of 1-factors in a k-regular bipartite graph on 2n vertices.
Voorhoeve found in 1978 that α3 = 4

3 . Recently we found the exact value of αk for general k. It
implies the currently best lower bound 0.44007584 for Kasteleyn’s dimer problem in 3 dimensions.
The methods also imply an O(km) time algorithm to find a perfect matching in a k-regular bipartite
graph. This gives an (m∆) time algorithm for colouring the edges of a bipartite graph, sharpened
by Cole, Ost, and Schirra to O(m log ∆) (m = number of edges, ∆ = maximum degree).
In the lecture we give an introduction to the results and methods.

Wednesday 1:30–2:30, Room 148

Graph Embedding and Eigenvalues

Alexander Schrijver, CWI and University of Amsterdam

In 1990, Colin de Verdiére characterized planar graphs by means of a graph parameter µ(G) based
on the largest multiplicity of the second eigenvalue of matrices associated with a graph G: µ(G) ≤ 3
if and only if G is planar. The parameter is motivated by estimating the multiplicity of the second
eigenvalue of of Schrödinger operators on dRiemann surfaces.
With L. Lovász we proved in 1998 that µ(G) ≤ 4 if and only if G is linklessly embeddable. The
proof is based on a Borsuk theorem for antipodal links, that might be of independent interest.
Recent results of Lovász suggest a close connection between the matrices associated with a graph,
and its representation as the skeleton of a convex polytope.
In the lecture, we give an introduction to the above, and we explain the methods.
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Thursday, 10:20–10:35

Room 148

Compositions Without the Summand 1

Ralph P. Grimaldi, Rose-Hulman Institute of Technology

Given a positive integer n, the number of compositions of n is counted by Fn−1 (the (n − 1)-st
Fibonacci number). For a given n > 0 we consider all of these compositions and determine, among
other things, (i) the total number of times a given summand appears; (ii) the total number of
summands; and (iii) the total number of plus signs. Continuing with these ideas we then focus on
those compositions (without the summand 1) that are palindromes.

Room E113

The Interlace Polynomial of Graphs at −1

Paul Balister, University of Memphis
Béla Bollobás, University of Memphis

Jonathan Cutler*, University of Memphis
Luke Pebody, University of Memphis

In this paper we give an explicit formula for the interlace polynomial at x = −1 for any graph, and
as a result prove a conjecture of Arratia, Bollobás and Sorkin that states that it is always of the
form ±2s. We also give a description of the graphs for which s is maximal.
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Room 48A–B

Minimum Degree Approach for Paul Seymour’s Conjecture

Yoshihiro Kaneko*, Gifu University, Japan
Stephen Locke, Florida Atlantic University

Paul Seymour’s conjecture is as follows. Let D be a simple oriented graph. Then D contains a vertex
v such that d++(v) = 2d+ (v), where d++ (v) is the number of vertices with out-distance 1 or 2 from
v, while d+ (v) is the number with out-distance 1 from v. In this talk, we approach the problem
by considering the minimum degree, δ. We prove the conjecture is true if δ is 7 or less. Then we
generalize this proof to give some sufficient conditions.

Room 50

Subdivisions of Wheels

Galen E. Turner III, Stephen F. Austin State University

Dirac proved that a simple graph with chromatic number at least four contains a subgraph that
is a subdivision of K4. This paper extends his result by proving that if G is a simple graph with
chromatic number n ≥ 4, then G contains a subgraph that is a subdivision of the n-vertex-wheel.
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Thursday, 10:40–10:55

Room 148

Improved Bounds for B2[2] Sets

Alain Plagne*, Ecole polytechnique, France
Laurent Habsieger, Universite Bordeaux 1, France

A set of integers A such that for any n, the equation n = a + b, a, b ∈ A has at most 2 solutions is
called a B2[2] set. Let F2(N, 2) be the maximum cardinality of a B2[2] set included in {1, 2, . . . , N}.
We improve the known bounds on this quantity by showing that 4/

√
7 . F2(N, 2)/

√
N < 2,3218 . . .

Room E113

Hamiltonicity of 3-Connected Quasi-Claw-Free Graphs

Rao Li, Georgia Southwestern State University

A graph G is quasi-claw-free if it satisfies the property: d(x, y) = 2 ⇒ there exists a vertex u ∈
N(x) ∩N(y) such that N [u] ⊆ N [x] ∪N [y]. Let G be a 3-connected quasi-claw-free graph of order
n ≥ 30. If the minimum degree of G is at least (n+ 5)/5, then G is hamiltonian.
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Room 48A–B

Powers of Directed Hamiltonian Paths as Feedback Arc Sets

Darren A. Narayan, Rochester Institute of Technology

A minimum feedback arc set of a digraph is a smallest sized set of arcs that when reversed makes
the resulting digraph acyclic. Given an acyclic digraph D, we seek a smallest sized tournament
T that has D as a minimum feedback arc set. The reversing number of a digraph is defined to
be r(D) = |V (T )| − |V (D)|. We use methods from integer programming to investigate reversing
numbers where D is a power of a directed Hamiltonian path. It was shown by Isaak in 1995 that
r(Tn) = 2n − 2 − blog2 nc when n = 2k − 2t. We will show the reversing number for T2k actually
suffices for all digraphs on n vertices containing P 2k−1

2k .

Room 50

Connected Components of Comma-Free Codes

Larry Cummings, University of Waterloo, Canada

The vertices of the de Bruijn graph are all strings of length n − 1, (n > 1), over a fixed finite
alphabet. The edges are all strings of length n over the same alphabet. A directed edge a1 · · · an of
the de Bruijn graph joins vertex a1 · · · an−1 to vertex a2 · · · an. A block code is comma-free if it does
not contain any overlap of codewords. Representing the codewords of comma-free codes as directed
edges of the de Bruijn graph for n > 2 we characterize the connected components of subgraphs of
the de Bruijn graph determined by comma-free codes using the Fine-Wilf theorem.
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Thursday, 11:00–11:15

Room 148

New Ramsey Numbers for Cycles

Ingo Schiermeyer, Technische Universität Bergakademie Freiberg, Germany

Conjecture 1 (Bondy and Erdös, 1971)
For all odd natural numbers k ≥ 5,

r(Ck, Ck, Ck) = 4k − 3.

Together with R. Faudree and A. Schelten we have proved this conjecture for k = 7, i.e. r(C7, C7, C7) =
25.

Conjecture 2 (Erdös, Faudree, Rousseau and Schelp, 1978)
For all natural numbers m ≥ n ≥ 3 (except r(C3,K3) = 6),

r(Cm,Kn) = (m− 1)(n− 1) + 1.

This conjecture holds for 3 ≤ n ≤ 5. We will present a proof for n = 6 and for all n ≥ 7 with
m ≥ n2 − 2n.

Room E113

On the Hamiltonicity of Two Subgraphs of the Hypercube

Mahmoud El-hashash, Bridgewater State College

A Hamiltonian cycle in a graph G is a cycle that contains each vertex of G exactly once, except for
the starting and ending vertex that appears twice. The n-dimensional hypercube Qn is a graph that
has N = 2n vertices and n2{n−1} edges. The vertices may be represented as the binary strings of
length n. Two strings are considered adjacent if they differ in exactly one position. Alternatively,
each binary string may be identified with a subset of {1, 2, . . . , n}, with the string (x1, x2, . . . , xn)
corresponding to the subset {i/xi = 1}. Then two subsets are adjacent when their symmetric
difference has exactly one element. The weight of a string is the number of 1’s in it. Weight of
a subset is its cardinality. In this paper, Hamiltonian cycles of two induced subgraphs of the n-
dimensional hypercube Qn are studied. For n = 2k + 1, we define these subgraphs as follows: Rn
is the subgraph of Qn induced by all the vertices of Qn except two, the first of weight zero and the
second of weight n. Hn is the subgraph of Qn induced by all the vertices of weights k and k+ 1. We
prove by induction that for n = 2k + 1, Rn is Hamiltonian. We introduce some new results, which
are relevant to the structure of Hn. We also study Hamiltonian cycles of Hn and find that H5 has
exactly 48 oriented Hamiltonian cycles and H7 has at least 2112 oriented Hamiltonian cycles. We
implement a program to find a Hamiltonian cycle of Hn for smal n and we use those results to set
up a heuristic technique to reduce the time requirement to make the program work for larger n (9,
11, and 13).
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Room 48A–B

On Almost Moore Bipartite Digraphs with Odd Diameter

M.A. Fiol, Universitat Politecnica de Catalunya, Spain
J. Gimbert*, Universitat de Lleida, Spain

In the context of the degree/diameter problem for directed graphs, it is known that the number
of vertices of a strongly connected bipartite digraph satisfies a Moore-like bound in terms of its
diameter k and the maximum out-degrees (d1, d2) of its partite sets of vertices. It has been proved
that, when d1d2 > 1, the digraphs attaining such a bound, called Moore bipartite digraphs, do only
exist when 2 ≤ k ≤ 4. This suggests to study the problem of the existence of bipartite digraphs,
with diameter k ≥ 5, which miss the (unattainable) Moore-like bound by just one vertex on each
partite set. In this paper we derive some necessary conditions for the existence of such digraphs,
called almost Moore bipartite digraphs, in the case of odd diameter. As a consequence, we prove that
any almost Moore bipartite digraph of diameter k = 5 and out-degrees (d1, d2) is the second-order
line digraph of a Moore bipartite digraph of diameter three, apart from the particular case d1d2 = 2
for which there are two other digraphs.

Room 50

Room 148

Comparison of Prüfer-like Codes for Labeled Trees

Narsingh Deo, University of Central Florida
Paulius Micikevicius*, University of Central Florida

In 1918 Prüfer showed a one-to-one correspondence between n-node labeled trees and (n - 2)-tuples
of node labels. The proof employed a tree code, computed by iteratively deleting the leaf with
the smallest label and recording its neighbor. Since then new tree codes were proposed, based on
different node deletion sequences. These codes have different properties, interesting in graph theory
and computer science. In this paper we survey Prüfer-like tree codes, compare their properties and
algorithms for encoding/decoding.
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Thursday, 11:20–11:35

Room 148

Towards the Exact Value of the Ramsey Number R(3, 3, 4)

Konrad Piwakowski, Technical University of Gdańsk, Poland
Stanis law P. Radziszowski*, Rochester Institute of Technology

The classical Ramsey number R(r1, . . . , rk) is the least n > 0 such that there is no k-coloring of
the edges of Kn, which does not contain monochromatic complete subgraph Kri in color i, for all
1 ≤ i ≤ k. In the multicolor case (k > 2), the only known nontrivial value is R(3, 3, 3) = 17. The
only other case whose evaluation does not look hopeless is R(3, 3, 4), which currently is known to be
equal to 30 or 31 by an earlier work of the authors. We report on progress towards deciding which
of these two is the correct value. Using computer algorithms we show that any critical coloring of
K30 proving R(3, 3, 4) = 31 must satisfy several additional properties, beyond those implied directly
by the definitions, further pruning the search space. This progress, though substantial, is not yet
sufficient to launch the final attack on the exact value of R(3, 3, 4).

Room E113

Alphabet-Overlap Graphs are Hamiltonian

Anant Godbole*, Tennessee State University
Debra Knisley, Tennessee State University

Rick Norwood, East Tennessee State University

Consider a graph with vertices consisting of all k-letter words over an alphabet of size d, with an
edge between vertices i, j iff the last (resp. first) m < k letters of j coincide with the first (resp.
last) m letters of i. We prove that such alphabet-overlap graphs are hamiltonian. Connections to
DNA sequencing are given.
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Room 48A–B

2-Primitive Tournament Digraphs

Cora Neal, Utah State University

The notion of primitive matrices has been extended to a pair of matrices. This can be translated to
graph terminology, thinking of positive entries from the first matrix as red directed arcs in a digraph
and positive entries from the second matrix as blue directed arcs in the same digraph. It will be
shown that if you start with a primitive tournament and randomly color the arcs red or blue, the
resulting 2-colored digraph corresponds to a matrix pair which is almost always primitive.

Room 50

On Extremal Oriented Trees

Suk Jai Seo*, University of Alabama
Ashok T. Amin, University of Alabama

Let Tn denote a tree on n vertices. Consider the problem of orienting the edges of Tn so as to
maximize the number of directed paths of length at least two. Such an orientation is referred to as
an optimal orientation, and the number of directed paths of length two or more is denoted by η∗(Tn).
A known algorithm is presented for determining an optimal orientation for a tree Tn. Clearly for
all trees Tn, l(n) ≤ η∗(Tn) ≤ h(n). We determine l(n), h(n), and extremal trees for which equalities
are obtained.
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Thursday, 11:40–11:55

Room 148

Connected Triangle-Free Ramseyan Properties of Graphs

Ermelinda DeLaVina, University of Houston - Downtown

Given a graph G, with property T of connected and triangle-free, color an edge e of the complement
of G red if G+ e does not have property T , and blue otherwise. Let T (r, b) be the smallest n such
that every connected triangle-free graph on at least n vertices contains either an r element red clique
or b element blue clique. An upper bound is obtained for T (r, b) and for the special case r = 4 upper
and lower bounds are obtained. Further, a summary of similar results for other properties of graphs
will be presented.

Room E113

Minimum Graphs with Complete Closure

Bill Linderman, King College,

Ryjacek has described a neighborhood closure for claw-free graphs which affects neither the claw-
freeness nor the length of the longest cycle of the graph. Thus, a claw-free graph with a complete
closure of this type is hamiltonian. We determine minimum graphs with a complete closure of this
type.
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Room 48A–B

An Existence Theorem in Information Theory

Michelle Foster*, Wingate University
Peter Johnson, Auburn University

A probabilistic finite state source automaton (pfssa) with alphabet S = {s1, . . . , sm} is a finite
directed graph whose arcs are labeled with probabilities and with members of S, satisfying the
condition that the sum of the probabilities on the arcs leaving any node is one. The automaton is
thought to generate source text, emitting the letter on the arc traveled along as the “source gremlin”
travels among the nodes, with each “next” arc chosen probabilistically.
If the underlying digraph is strongly connected, the relative frequencies f(i1, . . . , ik) of the different
blocks si1 . . . sik of k consecutive letters (k-grams) in the source text are well defined, for each k =
1, 2, . . .. Here we give elementary necessary and sufficient conditions on a function f : {1, . . .m}k →
[0, 1] for the existence of a strongly connected pfssa with an m-letter alphabet such that f gives the
relative k-gram frequencies for the text emitted by that source.

Room 50

Triangular Polyomino Set Achievement

Jens-P. Bode, Technische Universität Braunschweig, Germany

In a set achievement game two players alternately color the cells of a game board. The first player
wins the game if he achieves one of the polyominoes of a given set with his moves. If the first player
can always win the game regardless of the moves made by the other player, then the set is called a
winning set. Otherwise it is called a losing set. It is the question whether a given set of polyominoes
is a winning or losing set. First results for triangular polyominoes are presented.
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Thursday, 2:40–2:55

Room 148

Set Systems with Even Multi-Intersections

Van Vu

Sometime in the 60s, Erdos asked the following question: How many subsets of a ground set of n
elements can one choose so that the intersection of every pair has even cardinality. This problem
has become well-known as the “even town” problem and the answer was provided by Berlekamp and
Graver, independently.
In this talk, we answer a more general question: How many subsets of a ground set of n elements
can one choose so that the intersection of every k of them has even cardinality.

Room E113

Two Dimensional Balanced Sampling Plans Excluding Contiguous Units

Chris Rodger*, Auburn University
Darryn Bryant, University of Quensland, Australia

Y. Chang, Northern Jiaotong University, China
R. Wei, Lakehead University, Canada

A balanced sampling plan excluding contiguous units (or BSEC for short) was first introduced by
Hedayat, Rao and Stufken in 1988. These designs can be used for survey sampling when the units
are arranged in one-dimensional ordering and the contiguous units in this ordering provide similar
information. In this paper, we generalize the concept of a BSEC to the two dimensional situation and
give constructions of two dimensional BSECs with block size 3. The existence problem is completely
solved in the case where λ = 1.
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Room 48A–B

An Edge Partition Problem Concerning Hamilton Paths

Krystyna T. Balińska, The Technical University of Poznań, POLAND
Michael L. Gargano, Pace University
Louis V. Quintas*, Pace University

We consider a problem concerning edges contained in a Hamilton path.
Let G be a connected graph. An edge e in G is called path-hamiltonian, if there exists a Hamilton
path in G that contains e. Since every edge in G is either path-hamiltonian or not, the edge set
E(G) of G is partitioned into two sets Y (G) and N(G), where Y (G) is the set of path-hamiltonian
edges of G. The two extreme cases are when every edge of G is path-hamiltonian, Y (G) = E(G)
and when G does not contain a Hamilton path, N(G) = E(G).
We first determine sufficient conditions for a graph G to satisfy Y (G) = E(G) and note that a
characterization of such graphs is not known. Constructions of graphs are given for which Y (G) =
E(G) and of graphs having various proportions of path-hamiltonian edges. Since the Hamilton path
problem is NP-complete, the determination of Y (G) for an arbitrary graph is also NP-complete.
However, it is still of interest to ask about algorithms which determine Y (G) efficiently for special
cases.

Room 50

On the Structure of a Distance-Regular Graph from a Maximal-Distance Subgraph

Yolando B. Beronque, De La Salle University, Philippines

Let Γ be a distance-regular graph with diameter d and let Γd(α) be the set of points at distance d
from a vertex α. By a maximal-distance subgraph we mean Γd(α) for some α in Γ. We will determine
the structure of Γ from the structure of Γd(α) where Γd(α) is isomorphic to a small strongly regular
graph of order at most 27.
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Thursday, 3:00–3:15

Room 148

Small Cliques in 3-Uniform Hypergraphs

Yuejian Peng*, Emory University
Vojtech Rödl, Emory University

Jozef Skokan, University of Illinois at Urbana-Champaign

Many applications of Szemerédi’s Regularity Lemma are based on the following technical fact: If G is
an s-partite graph with V (G) =

⋃s
i=1 Vi, |Vi| = m for all i ∈ [s], and all pairs (Vi, Vj), 1 ≤ i < j ≤ s,

are δ-regular of density d, then G contains d(s2)ms(1 + f(δ)) cliques K(2)
s , where f(δ) tends to 0 as

δ tends to 0.
B. Nagle and V. Rödl established an analogous statement for 3-hypergraphs. In this talk, we discuss
an alternative and somewhat simpler proof of the same result.

Room E113

New Results on Non-abelian Relative Difference Sets

K.T. Arasu, Wright State University
Yu Qing Chen, RMIT Melbourne, Australia

Alexander Pott*, University of Magdeburg, Germany

A relative (m,n, k, λ) difference set D relative to a normal subgroup N < G is a subset of a group
G of order mn. The order of N is n, and the list of differences d − d′ with d, d′ ∈ D covers every
g ∈ G \N exactly λ times. No nonzero element in N is covered by a difference.
Examples of (n+ 1, 2, n, (n− 1)/2) relative difference sets exist whenever n is a prime power. They
can be constructed via projections from so called affine difference sets. Not a single example of a
difference set where n is not a prime power has been known.
In this talk, I will report about a new construction of nonabelian (n + 1, 2, n, (n − 1)/2) difference
sets where n is not a prime power.
Theorem. Relative difference sets with parameters (n+1, 2, n, (n−1)/2) exist whenever n is a prime
power or (n− 1)/2 is a prime power congruent 3 modulo 4. The latter examples are nonabelian. In
some of these cases it can be shown that no abelian examples can exist.
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Room 48A–B

Visibility Graphs on the Sphere

Jay Bagga, John Emert*, Ball State University
J. Michael McGrew, Ball State University

The edges of an endpoint visibility graph include a disjoint, planar collection of geodesic segments
(the obstacles), together with additional geodesic segments (the visibility edges). Visibility graphs
in the Euclidean Plane have been well-studied. We report here our current efforts to extend these
concepts to two-dimensional Elliptical Geometry, the geometry of the sphere. We establish certain
parameters for these visibility graphs, such as the presence and frequency of long (greater than a
half-circumference) obstacle and/or visibility segments. For each of several cases, we establish or
conjecture minimal and maximal graphs with a fixed number of obstacles. These results differ from
those for the Euclidean Plane.

Room 50

Hyperbolic Fibrations and Flocks of a Quadratic Cone

R.D. Baker, West Virginai State College
G.L. Ebert*, University of Delaware

T. Penttila, University of Western Australia

A hyperbolic fibration is a partition of the points of PG(3, q) into two lines and q − 1 hyperbolic
quadrics. A flock of a quadratic cone is a partition of the nonvertex points of the cone into q conics.
The latter have been extensively studied, and numerous examples have been constructed, including
several infinite families. We show there is a bijection between regular hyperbolic fibrations with
constant back half and flocks of a quadratic cone with a specified conic. This yields a plethora of
two-dimensional translation planes of both even and odd order by a “spawning process” from the
resulting hyperbolic fibrations.
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Thursday, 3:20–3:35

Room 148

On Characterizing Hypergraph Regularity

Yulia Dementieva*, Emory University
Penny Haxell, University of Waterloo, Canada

Brendan Nagle, Georgia Institute of Technology
Vojtěch Rödl, Emory University

Szemerédi’s Regularity Lemma is well-known and powerful tool in modern graph theory. An im-
portant development regarding Szemerédi’s Lemma is the discovery that ε-regularity property of a
bipartite graph G is implied by an easily verifiable property concerning the neighborhoods of its
vertices. This result has led to several interesting applications, including an algorithmic version
of Szemerédi’s lemma. The object of our paper is to study a similar argument for the Regularity
Lemma for 3-uniform hypergraphs first introduced by Frankl and Rödl. In the paper we investigate
conditions that can be equivalent to the regularity of a 3-partite 3-uniform hypergraph.

Room E113

Maximum Packings of Kn with Eulerian Graphs

Ben Wehrung, University of Texas at Tyler

A graph g is called eulerian if it contains an Euler tour, a closed walk that traverses each edge of g
exactly once. There are three such simple graphs containing exactly seven edges; a 7-cycle, a fish,
and a crown.
Let g be a simple eulerian graph with exactly 7 edges. A maximum packing of Kn with copies of g
is an ordered triple (S,G,L), where G is a largest collection of edge-disjoint copies of g that can be
found in the complete undirected graph Kn with vertex set S and L is the collection of edges in Kn

that do not belong to any of the copies of g belonging to G. The collection of unused edges is called
the leave.
Examples and constructions are presented to demonstrate the best possible leaves.
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Room 48A–B

The Smallest Hard-to-Color Graph for Sequential Coloring Algorithms

Marek Kubale, Technical University of Gdansk, Poland

Let A(G) be the number of colors used by algorithm A to color the vertices of graph G. A graph G
is said to be hard-to-color (HC) (resp. slightly HC) if for every (resp. some) implementation of the
algorithm A we have A(G) > ch(G), where ch(G) is the chromatic number of G. For a collection of
such algorithms graph G is called a benchmark, if it is HC for every algorithm in the collection. The
study of HC graphs makes it possible to design improved algorithms trying to avoid hard instances
as far as possible. Hard-to-color graphs are also good benchmarks for the evaluation of existing
and future algorithms and provide an alternative way of assessing their quality. In this talk we
demonstrate the smallest benchmark for six sequential algorithms, namely: LF, SL, DSATUR and
their three counterparts with bichromatic interchange procedure.

Room 50

Constructing Mixed Partitions of PG(3, q2)

Keith Mellinger, University of Delaware

Let Π = PG(3, q2) denote the 3-dimensional projective space over the finite field GF (q2). We
define a mixed partition of Π to be a partition of Π into two different types of objects, lines and
Baer subspaces. A Baer subspace in this setting is a subspace of Π isomorphic to PG(3, q). Such
mixed partitions can be used to construct translation planes of order q4. In this talk we look at some
methods of constructing different types of mixed partitions using various group theoretic techniques.
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Thursday, 4:00–4:15

Room 148

Minimally Star-Saturated Graphs

Roger B. Eggleton*, Illinois State University
James A. MacDougall, University of Newcastle, Australia

A graph G is minimally Sm-saturated if every edge added to G creates a new m-star (a star of order
m, not necessarily induced), but each edge deleted from G leaves a graph which no longer has that
property. We characterize such graphs for m ≥ 3. Any incomplete graph is minimally Sm-saturated
for at most one m ≥ 3. We give a simple recognition algorithm to identify such graphs and to
determine the corresponding value of m. The kernel of such a graph is the subgraph induced by
vertices of degree m−2; it turns out to be the most characteristic part of the graph. We characterize
all graphs which are kernels of maximally star-free graphs, and give sufficient conditions for a given
graph to be the kernel of some minimally star-saturated graph that is not star-free.

Room E113

Coloring the Angles of Embedded Graphs

Isidoro Gitler, Department of Mathematics, Cinvestav-IPN, Mexico

Given a cellular embedding of a graph in a surface we specify a simple rule to color it angles. We
are interested in those graphs for which the angle coloring has the property that all the angles
incident to a vertex have different color and all the angles incident to a face have different color
(the angles incident to any edge have two colors). These graphs can be seen as circuits of a certain
matroid, as partial intercalate matrices or as schemes of simplicial complexes. The coloring rule
and some modifications of it are closely related to certain cycle double covers of graphs, important
decompositions of the medial graph and evaluations of known transition polinomials. In particular
we are interested in classifying graphs that can be angle colored with these properties. We show that
the medial graph of any cubic simple planar graph without bridges always has this property and
that the coloring is invariant under Delta-Wye transformations. In particular the Delta-Wye family
of graphs related to the Petersen graph embedded on the Projective plane also has this property.
We briefly discuss some applications to knots.
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Room 48A–B

Domination, Packing and Excluded Minors

Thomas Boehme*, Ilmenau Technical University, Germany
Bojan Mohar, University Ljubljana, Slovenia

Let γ(G) be the domination number of a graph G, and let αk(G) be the maximum number of vertices
in G, no two of which are at distance ≤ k in G. It is easy to see that γ(G) ≥ α2(G). In this note it
is proved that γ(G) is bounded from above by a linear function in α2(G) if G has no large complete
bipartite graph minors. Extensions to other parameters αk(G) are also derived.

Room 50

Variable Neighborhood Search for Extremal Graphs, 1 to 7: a Short Survey

Gilles Caporossi*, École Polytechnique de Montréal, Canada
Pierre Hansen, GERAD and École des Hautes Études Commerciales de Montréal, Canada

The AutoGraphiX system for computer-aided and automated conjecture-finding in graph theory has
been recently developped, applied to a series of problems from graph theory, with applications to
chemistry and presented in a series of papers, summarized here. It relies upon parametric optimi-
sation of graphs (with the recent Variable Neighborhood Search metaheuristic), then interactive or
automated study of their characteristics, which leads to analytic and structural conjectures. Using
this system, several conjectures of Graffiti have been refuted, many strenghtened, and over fifty new
conjectures obtained. More than a dozen of them have been proved by various authors.
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Thursday, 4:20–4:35

Room 148

Estimates for the Number of L-Free Graphs

József Balogh*
Béla Bollobás

Miklós Simonovits

Given a family L of graphs, let p = p(L) be the maximal integer such that each graph in L has
chromatic number at least p+ 1, and for n ≥ 1 let P (n,L) be the set of graphs with vertex set [n]
containing no member of L as a subgraph. Extending a result of Erdős, Frankl, and Rödl (1983),
we prove that |P (n,L)| ≤ 2(1−1/p)n2/2+O(n2−γ) for some constant γ = γ(L) > 0. Our proof of this
inequality is based on Szemerédi’s Regurality Lemma, the stability theorem of Simonovits and the
hypergraph theorem of Erdős. This result is essentially best possible since for all p ≥ 1 and t ≥ 1
there is a constant |P (n,Kp+1(t, . . . , t))| ≥ 2(1−1/p)n2/2+ct,pn

2−2/t − 1.

Room E113

Recognizing Dual-Chordal Graphs

Terry McKee, Wright State University

A dual-chordal graph is a 2-connected, 3-edge-connected graph G such that, for every cutset D
that consists of at least 4 edges, removing D from G creates a bridge (cut-edge) e (and so D is the
symmetric difference of two smaller cutsets, each consisting of e and edges from D). Dual-chordal
graphs can be defended as being the correct cycle/cutset duals of chordal graphs (whether planar
or not). Dual-chordal graphs have several characterizations, only some of which are analogous to
characterizations of chordal graphs. A recognition algorithm involves repeatedly contracting three
special kinds of subgraphs, ending with a trivial graph. Counting how many of each of these three
kinds of subgraph gets contracted determines three parameters for dual-chordal graphs, and these
parameters are associated with structural features of the graphs (including the crossing number and
Crapo’s beta invariant).
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Room 48A–B

Dominating Sets with At Most k Components

B.L. Hartnell*, St. Mary’s University, Canada
P.D. Vestergaard, Aalborg University, Denmark

Recall that a connected dominating set S of a graph G has the property that not only does S
dominate the graph but the subgraph induced by the vertices of S is connected.
We wish to generalize this by allowing for the possibility of several components. In particular, we
define a k-component domninating set of a graph G as a set S of vertices that dominates V (G)− S
and has the additional property that the subgraph induced by S has at most k components. Besides
the natural question of bounds and extremal situations one might also ask what one can say if the
components are isomorphic.
This talk will outline some preliminary investigations and a number of problems.

Room 50

Variable Neighborhood Search for Extremal Graphs, 8: Variations on Graffiti 105

Pierre Hansen*, GERAD and École des Hautes Études Commerciales de Montréal, Canada
Mustapha Aouchiche, École des Hautes Études Commerciales de Montréal, Canada

Gilles Caporossi, École Polytechnique de Montréal, Canada

The conjecture 105 obtained by the automated system Graffiti of Siemion Fajtlowicz is the following:
for all trees, the range of degrees of vertices does not exceed the range of transmission of distances
(where the transmission of a vertex is the sum of distances from that vertex to all others). A
short proof of this conjecture is given. Then several further conjectures, obtained with the system
AutoGraphiX, are presented and some of them proved. They use the same parameters as above as
well as maximum degree. It is also shown that for general graphs, the range of degrees can exceed
the range of transmission of distances by an arbitrarily large amount.
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Thursday, 4:40–4:55

Room 148

Erdos-Ko-Rado with a Bound on the Maximum Degree

John Goldwasser, West Virginia University

A set system F of distinct k-element subsets of the n-element set X is called intersecting if no pair of
sets in F are disjoint. The renowned Erdős-Ko-Rado Theorem says that if n > 2k then the maximum
size of an intersecting set system is the binomial coefficient C(n−1, k−1) (with equality iff F is the
set of all k-sets through a fixed element, as shown by others). The maximum degree d(F ) of F is
the maximum number of sets in F containing the same element of X. We consider the problem of
finding the maximum size of an intersecting set system of k-sets such that d(F ) < m− s+ 1 where
m is the size of F and s is a fixed positive integer. The Hilton-Milner Theorem solves the problem
in the case s = 1. We give a complete solution for all s equal to at most C(n− 3, k− 2), sharpening
results of Anderson, Hilton, and Frankl. We also consider the problem of finding the maximum size
of an intersecting set system F such that d(F ) is at most cm, where m is the size of F and c is a
fixed real number in (0, 1). There are a number of asymptotic results (fixed k, large n) for various
values of c (Erdos, Rothschild, Szemeredi, Frankl, Furedi). We have some preliminary exact results.

Room E113

Splitter Theorems for Cubic Graphs

Guoli Ding, Louisiana State University
Jinko Kanno*, Louisiana State University

Let Γk,g be the class of k-connected cubic graphs of girth at least g. For several choices of k and
g, we determine a set Ok,g of graph operations, for which, if G and H are graphs in Γk,g, G 6= H,
and G contains H topologically, then some operation in Ok,g can be applied to G to result a smaller
graph G′ in Γk,g such that, on one hand, G′ is contained in G topologically, and on the other hand,
G′ contains H topologically.
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Room 48A–B

Dominating the Cartesian Square of a Tree

Bert L. Hartnell, Saint Mary’s University, Canada
Douglas F. Rall*, Furman University

A dominating set D for a graph G is a subset of the vertex set such that each vertex of G belongs
to D or is adjacent to a vertex that is in D. The domination number of G (denoted γ(G)) is the
minimum cardinality of a dominating set of G. The Cartesian product of graphs G and H, denoted
G�H, has the Cartesian product of their vertex sets as its set of vertices and two vertices are
adjacent in the Cartesian product if they are equal in one coordinate and adjacent in the other. In
1963 V.G. Vizing conjectured that the domination number of G�H for any two graphs G and H is
at least γ(G)γ(H). The conjecture is known to be true whenever one of the two graphs is a tree. In
fact, although there are pairs of trees for which the conjectured lower bound is attained, in general
the Cartesian product of two trees will have a domination number somewhat larger than this bound.
We prove an improved lower bound for γ(T�T ) for any tree T .

Room 50

The Upper Bound for Pancake Sorting

Dan Pritikin, Miami University

A properly sorted stack of pancakes is a stack in which no pancake is larger than any pancake below
it. In sorting an improperly ordered stack, allow in one step that the substack above any pancake
be flipped and placed back on that pancake. In 1979, Gates and Papadimitriou proved that any
stack of n pancakes can be sorted in at most (5n+ 5)/3 steps. We consider ongoing research toward
improving this bound. Or, with some luck, perhaps we will be treated to an improvement.
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Thursday, 5:00–5:15

Room 148

A New Approach to Macaulay Posets

Sergei L. Bezrukov, University of Wisconsin – Superior
Thomas J. Pfaff, University of Wisconsin – Superior

Victor P. Piotrowski*, University of Wisconsin – Superior

We develop a new approach for establishing the Macaulayness of posets representable as cartesian
powers of other posets. This approach is based on a problem of constructing an ideal of maximum
rank in a poset. Using the relations between the maximum rank ideal problem and the edge-
isoperimetric problem on graphs we demonstrate an application of our approach to specification of
all posets with a special Macaulay order. We also present a new general construction for additive
Macaulay posets and introduce several new families of Macaulay posets.

Room E113

Graphs with Homogeneous Density in (a, b)-Linear Classes

Nair Maria Maia de Abreu*, Universidade Federal do Rio de Janeiro, Brasil
Patricia Erthal de Moraes, Universidade Federal do Rio de Janeiro, Brasil

Samuel Jurkeiwicz, Universidade Federal do Rio de Janeiro, Brasil

We introduce families of graphs, whose number of edges is given by a linear function of the cardinality
of vertices deriving from pairs of positive rational numbers. For graphs of these families, we prove
certain properties related to the number of vertices and degrees limited to a given number. These
properties generalize well-known results of maximal outerplanar graphs, (mops), maximal planar
graphs and k-trees. For these classes, we define graphs with homogeneous density, for which we
prove spectral properties similar to the ones of regular graphs.
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Room 48A–B

Degree Weighted Domination

John Villalpando*, Clemson University
Renu Laskar, Clemson University

A weighted graph (G,w) is a graph G = (V,E) togehter with a positive weight function w on its
vertices. The weight of a set of vertices D is the sum of the weights of the vertices of D. The
weighted domination number, γw(G) is the minimum weight w(D) over all dominating sets D of G.
We define similarly weighted domination parameters such as weighted irredundance and weighted
independence. It is shown that the string of inequalities for domination parameters also holds for
wieghted domination parameters. We also investigate, in particular, these parameters where the
weight of a vertex is the degree of the vertex.

Room 50

Optimal Connection of Networks with a Backbone Interconnection Network

Dionysios Kountanis, Western Michigan University
Sathya Priya Durairaju*, Western Michigan University

Given a set of N networks with corresponding routing strategies R1, R2, . . . , RN . Connect the
N networks with a Backbone network so that the composite network has a routing strategy R
formed with R1, R2, . . . , RN as its components and also has minimum cost. Backbone connections
considered are pairwise, star and ring connections.
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Thursday, 5:20–5:40

Room 148

Another Network Vulnerability Parameter

Matt Walsh*, Auburn University
Peter Johnson, Auburn University

A weighted network is a pair (G, g), in which G is a finite simple graph, and g a function assigning
non-negative weights to the vertices of G. We will say that (the removal of) a set S ⊆ V (G)
dismantles (G, g) iff the sum over any connected component of G−S of the values of g is less than 1.
The Shields–Harary family of parameters have to do with situations in which an enemy of the
network suffers a cost for removing a vertex, the cost being a (non-increasing) function of the weight
at that vertex. These parameters come out of weighting the network so as to maximise the cost of
dismantling it.
Here is a different situation that seems more realistic, in warfare and economics: the enemy suffers
no cost in removing a vertex but, on the other hand, the enemy has no knowledge of the network’s
structure and only a vague idea of its location. The enemy will knock out any vertex that it detects;
the probability of detection is a non-decreasing function of the weight at the vertex. The aim is to
minimise the probability of dismantling (or in other words, to maximise the chance that the network
survives) by clever weighting of the vertices. We give a

Room E113

Line Completion Numbers of Graphs

Jay S. Bagga*, Ball State University
Lowell W. Beineke, Indiana Purdue Fort Wayne

Badri N. Varma, University of Wisconsin-Fox Valley

For a graph G, the line completion number of G is the least integer r for which the super line graph
Lr(G) is complete. In our earlier work on this topic, we determined this parameter for various
families of graphs. In this paper we consider some other classes of graphs including that of complete
bipartite graphs. This last family is especially interesting as it involves the combinatorial problem
of maximizing, for given integers m and n, the minimum of m1n1 and m2n2 where m1 + m2 = m
and n1 + n2 = n.
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Room 48A–B

Results on a Lower Bound on the Domination Number: I

David Erwin, Western Michigan University
Daryl Findley, Western Michigan University

John McKenzie*, Western Michigan University
Ben Phillips*, Western Michigan University

For a graph G of order n and maximum degree ∆, it is well-known that the domination number
γ(G) ≥ dn/(∆ + 1)e. This lower bound for γ(G) is explored for several classes of graphs.

Room 50

Two Protocols for Multicast Communication

N. Sankaranarayanan, Griffith University, Australia
Francis Suraweera*, University of Central Florida

Narsingh Deo, University of Central Florida

Multicasting is a fundamental communication paradigm in which the communication takes place
over a network between a single sending node and multiple receivers. It is used in applications such
as video-conferencing, distance learning, transmission of corporate data, and stock market trends.
In just less than 10 years, the MBone (Multicast Backbone of the Internet) has grown from a small
network used by a few select people into a gigantic network that spans the globe. Multicasting is
an active area of research.
This paper proposes two protocols for multicast communication, both based on queueing theory. The
first one is a static, sender-based protocol which ensures that all receivers view a multicast packet
at the same time. The sender calculates the maximum time taken by a packet to reach the farthest
node, and all receivers are forced to wait for that amount of time before viewing the packet. This
can be used in applications like transmission of stock market trends, where it is essential that all the
clients view the data at the same time. The second protocol employs retransmission buffers to ensure
reliability of communication. In this protocol every node in the multicast set will store packets in
the retransmission buffer. The duration for which a packet is stored in the buffer depends on the
node’s distance from the sender and the number of retransmission requests received by it. Thus, the
buffering time varies from node to node and will be adapted to accommodate the reliability! of the
connection.
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Thursday, 5:40–5:55

Room 148

An Upper Bound on the Basis Number of the Powers of the Complete Graphs

Salar Y. Alsardary, University of the Sciences in Philadelphia

The basis number of a graph G is defined by Schmeichel to be the least integer h such that G has
an h-fold basis for its cycle space. MacLane showed that a graph is planar if and only if its basis
number is ≤ 2. Schmeichel proved that the basis number of the complete graph Kn is at most 3.
We generalize the result of Schmeichel by showing that the basis number of the d-th power of Kn is
at most 2d+ 1.

Room E113

On Powers of Some Geometrically Represented Graphs

Geir Agnarsson, Armstrong Atlantic State University

We first present a short and a constructive proof of the known fact that any odd power of a chordal
graph is again chordal. We then define a composition (G,G′) 7→ G ∗ ∗G′ of chordal graphs which
will yield an O(n log k) algorithm to calculate the representation of Gk if k is an odd positive integer
and G is a chordal graph on n vertices with a given representation.
We finally consider m-trapezoid graphs and circular m-trapezoid graphs and give new constructive
proofs that both these classes are closed under taking powers.
Some open problems will be presented.
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Room 48A–B

Results on a Lower Bound on the Domination Number: II

David Erwin, Western Michigan University
Daryl Findley*, Western Michigan University
John McKenzie, Western Michigan University

Ben Phillips, Western Michigan University

The inequality γ(G) ≥ dn/(∆ + 1)e is further investigated for regular graphs.

Room 50

The Master Timetabling Problem: Comparison of Two Approaches

Anton Colijn, University of Calgary, Canada

The master timetabling problem continues to be highly problematic: known to be very complex,
a number of different approaches have been tried. A particularly complicated situation – that of
scheduling lectures and laboratories for Chemistry and Biology courses at the University of Calgary
– is examined by two approaches: a “traditional” approach using “hand-crafted” heuristics and a
genetic algorithm approach. The results are compared on a number of criteria, such as quality of
final results, running times of the programs, and ease/difficulty of implementation.
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Friday

9:00–10:00
148 William Cook, Optimization via Branch Decomposition

10:00–10:20
Coffee break

10:20–10:35
148 Christopher Carl Heckman, On the Tightness of the 5/14 Independence Ratio

E113 Fred Buckley, The Eccentric Digraph of a Graph
48A-B Marc J. Lipman *, Eddie Cheng, Connectivity Properties of Unidirectional Star Graphs

50 Jilyana Cazaran, A Modification of the Welch-Berlekamp Algorithm for Decoding Reed-
Solomon Codes

10:40–10:55
148 Wendy Myrvold*, Sean Debroni, B. de La Vaissière, P.W. Fowler, M. Deza, Finding a

Maximum Independent Set in the 120-Cell
E113 Gcina Dlamini, Distances in K2,l-Free Graphs

48A-B Eddie Cheng*, Sven De Vries, Separation Problems of Antiweb-Wheel Inequalities of
the Stable Set Polytopes

50 Cem Guneri, Two Weight 2-D Cyclic Codes Using Rational Curves

11:00–11:15
148 Gerd H. Fricke*, Teresa W. Haynes, Sandra M. Hedetniemi and Stephen T. Hedetniemi,

Renu C. Laskar, Excellent Trees
E113 D.V. Chopra*, M. Bsharat, Contributions to Some Combinatorial Arrays

48A-B Nageswara S.V. Rao*, Nachimuthu Manickam, On General Quickest Path Problem and
Path-Tables

50 Feliu Sagols*, Laura P. Riccio, Charles J. Colbourn, Dominated Error Correcting Codes
with Distance Two

11:30–12:30
148 William Cook, The Traveling Salesman Problem

12:30–1:30
Lunch

1:30–1:45
148 Serge Lawrencenko, Niek Sanders*, Bipyramids of Arbitrary Genus

E113 Ernest J. Cockayne, Michael A. Henning*, Christina M. Mynhardt, Vertices Contained
in Every Minimum Total Dominating Set of a Tree

48A-B Jerzy Wojciechowski, Minimal Equitability of Hairy Cycles
50 Soumen Maity, Bimal Roy, Amiya Nayak*, Identification of Optimal Link Redundancy

for which a Given Fault Pattern is Catastrophic

1:50–2:05
148 Dietmar Cieslik, The Steiner Ratio

E113 Sin-Min Lee*, Siu-Ming Tong, On Super Edge-Magic Deficiencies of Join of Graphs
48A-B John Holliday* and Peter Johnson, More on the Shields-Harary Numbers of Two In-

tersecting Cliques
50 Nachimuthu Manickam*, Nageswara S. Rao, Cooperative Terrain Model Acquisition by

Robot Teams
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2:10–2:25
148 Edgar Reyes*, Carl Steidley, Remarks on the Combinatorial Optimization Problem

Associated to Global Wiring of Integrated Circuits
E113 J. Malerba, M. Gargano, M. Lewinter* Paintable Graphs

48A-B Sul-young Choi, Puhua Guan*, On an Erdös’ Question Concerning the Existence of a
Large Proper Subgraph with Vertices of Degree At Least 3

50 Dionysios Kountanis*, Changchun Yang, Improvement of Multiprocessor Scheduling
Through Scheduling Graphs

2:30–2:45
148 Rajneesh Hegde*, Robin Thomas, Finding 3-Shredders Efficiently

E113 Hovhannes Harutyunyan, On Optimal Broadcasting in Digraphs
48A-B David R. Guichard, Redundance of Grid Graphs
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Invited Instructional Lectures

Friday 9:00–10:00, Room 148

Optimization via Branch Decomposition

William Cook, Rice University

Robertson and Seymour introduced branch-width as a new connectivity invariant of graphs in their
proof of the Wagner conjecture. Decompositions based on this invariant provide a natural framework
for implementing dynamic programming algorithms to solve graph optimization problems. In earlier
work on the traveling salesman problem we used this framework in a heuristic algorithm to obtain
near-optimal solutions to large-scale instances. In this talk we will discuss the computational issues
involved in using branch-width as as a general tool in discrete optimization. We will present applica-
tions to euclidean steiner tree problems, graph bipartition, maximum cut problems, and maximum
stable set problems.

Friday 11:30–12:30, Room 148

The Traveling Salesman Problem

William Cook, Rice University

The traveling salesman problem, or TSP for short, is easy to state: given a number of “cities” along
with the cost of travel between each pair of them, find the cheapest way of visiting all the cities and
returning to your starting point. We will present a survey of recent progress in algorithms for very
large TSP instances, including the solution of a million city instance to within 0.09% of optimality.
We will discuss extensions of TSP techniques to other path-routing problems, and present some open
combinatorial questions whose solution would lead to improved methods for the TSP.
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Friday, 10:20–10:35

Room 148

On the Tightness of the 5/14 Independence Ratio

Christopher Carl Heckman, Arizona State University

In 1979, Staton proved that every triangle-free graph G with maximum degree at most three has
an independent set with size at least 5/14 of the number of vertices of G. Fraughnaugh (1990) and
Heckman and Thomas (1999) provide shorter proofs of the same result. An analysis of the cases of
equality for the main results in the latter two papers is presented.

Room E113

The Eccentric Digraph of a Graph

Fred Buckley, Baruch College (CUNY)

The distance d(u, v) between vertices u and v in graph G is the length of a shortest path joining u
and v. The eccentricity e(v) of v is the distance to a farthest vertex from v. Vertex u is an eccentric
vertex of v if d(u, v) = e(v), that is, u is a farthest vertex from v. The eccentric digraph ED(G)
of graph G is the digraph that has the same vertex set as G such that there is an arc from v to u
provided that u is an eccentric vertex of v. In this paper, we examine eccentric digraphs of graphs.
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Room 48A–B

Connectivity Properties of Unidirectional Star Graphs

Marc J. Lipman *, Oakland University
Eddie Cheng, Oakland University

Useful distributed processor architectures offer the advantage of improved connectivity and reliabil-
ity. An important component of such a distributed system is the system topology, which defines the
inter-processor communication architecture. The star graph is a popular graph topology. Among
its many properties, it is maximally connected. Day and Tripathi studied the unidirectional star
graph. In this talk, we show that this unidirectional star graph is also maximally connected, and
present related results.

Room 50

A Modification of the Welch-Berlekamp Algorithm for Decoding Reed-Solomon Codes

Jilyana Cazaran, Louisiana State University

The Welch-Berlekamp algorithm for decoding Reed-Solomon codes was described in 1983. A modified
version of this algorithm was given by T. Liu in 1984 for a specific generator polynomial g(x). This
modified version for an arbitrary g(x) was developed in the unpublished thesis [Cazaran91] and is
summarized in this lecture. A key equation is given relating the error location polynomial and error
evaluation polynomial using a polynomial operator. A series of theorems are given which result in
the main decoding algorithm. A numerical example is given for decoding the (255, 223, 33) NASA
standard Reed-Solomon code over GF (28) using its corresponding reversible generator polynomial.
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Friday, 10:40–10:55

Room 148

Finding a Maximum Independent Set in the 120-Cell

Wendy Myrvold*, University of Victoria, Canada
Sean Debroni, University of Victoria, Canada

B. de La Vaissière, University of Exeter, United Kingdom
P.W. Fowler, University of Exeter, United Kingdom M. Deza, Ecole Normale Supérieure, France

The 120-cell is a very special 4-regular graph on 600 vertices. It is vertex transitive and has girth five.
A picture of this graph was on the cover of the January 2001 AMS notices. We have determined
that a maximum independent set in this graph has order 220. Some interesting techniques were
applied to get this result. A fast algorithm for maximum independent set in graphs of maximum
degree four, consideration of the antipodal collapse, and an operation for increasing the order of an
independent set were used to find examples of independent sets of order 220. Linear programming,
fractional colouring, and structural analysis were used to get the upper bound.

Room E113

Distances in K2,l-Free Graphs

Gcina Dlamini, University of Natal, South Africa

Let G be a connected graph of order n. The average distance of G is defined as

µ(G) =
(
n

2

)−1 ∑
x,y∈V (G)

dG(x, y),

where V (G) is the vertex set of G and dG(x, y) is the distance between the vertices x and y, i.e., the
length of a shortest path from x to y.
Erdős, Pach, Pollack and Tuza gave bounds on the diameter and radius of a C4-free graph of given
order and minimum degree, while Dankelmann and Entringer gave analogous bounds on the average
distance. In our talk, we generalise these results to K2,l-free graphs. This is joint work with Peter
Dankelmann and Henda Swart.
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Room 48A–B

Separation Problems of Antiweb-Wheel Inequalities of the Stable Set Polytopes

Eddie Cheng*, Oakland University
Sven De Vries, TU München, Germany

A stable set in a graph G is a set of pairwise nonadjacent vertices. The problem of finding a
maximum weight stable set is one of the most basic NP-hard problems. An important approach to
this problem is to formulate it as the problem of optimizing a linear function over the convex hull
STAB(G) of incidence vectors of stable sets. Since it is impossible (unless NP=coNP) to obtain a
“concise” characterization of STAB(G) as the solution set of a system of linear inequalities, it is a
more realistic goal to find large classes of valid inequalities with the property that the corresponding
separation problem (given a point x∗, find, if possible, an inequality in the class that x∗ violates) is
efficiently solvable.
Some known large classes of separable inequalities are the trivial, edge, clique, cycle, antiweb and
wheel inequalities. The (t)-antiweb-wheel inequalities generalize the latter four. In our talk, we
discuss its separation problem.

Room 50

Two Weight 2-D Cyclic Codes Using Rational Curves

Cem Guneri, Louisiana State University

Let Fq = Fpm be a finite field, where p is prime and m > 1. We study two-dimensional cyclic codes
over Fp of area (q − 1) × (q − 1) and dimension 2m with two basic nonzeros. We represent these
codes as traces of other two-dimensional cyclic codes over Fq and relate the weights of codewords
to rational curves over Fq via Hilbert’s Theorem 90. We show that such codes actually have two
nonzero weights and we give formulas to find these weights.
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Friday, 11:00–11:15

Room 148

Excellent Trees

Gerd H. Fricke*, Morehead State University
Teresa W. Haynes, East Tennessee State University

Sandra M. Hedetniemi, Clemson University
Stephen T. Hedetniemi, Clemson University

Renu C. Laskar, Clemson University

For a graph G = (V,E), let P denote a property of sets S ⊆ V of vertices. We call a set S with
property P having {minimum,maximum} cardinality µ(G) a µ(G)-set. A vertex is called µ-good
if it is contained in some µ(G)-set and µ-bad otherwise. A graph G is called µ-excellent if every
vertex in V is µ-good. We investigate µ-excellent trees where µ(G) is a domination, irredundance,
or independence invariant.

Room E113

Contributions to Some Combinatorial Arrays

D.V. Chopra*, Wichita State University
M. Bsharat, Wichita State University

An array T with m constraints, N runs (treatment-combinations), and with two levels is merely a
matrix with m rows, N columns, and with two symbols (say, 0 and 1). We consider arrays in this
paper with the following combinatorial structure: T is called a balanced array (B-array) of strength
t(t ≤ m) if in every t-rowed submatrix T ∗ of T , every t-vector of weight i(0 ≤ i ≤t; the weight
of the vector is defined to be the number of 1’s in it) appears with the same frequency (say) µi.
The vector µ

′
= (µ0, µ1, · · · , µt) is called the index set of the array. It is quite clear that orthogonal

arrays are special cases of B-arrays. B-arrays are quite useful in statistical design of experiments and
combinatorics. We will discuss briefly the importance of these arrays in design and combinatorial
theory, and present some conditions necessary for the existence of these B-arrays for some specified
values of t.
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Room 48A–B

On General Quickest Path Problem and Path-Tables

Nageswara S.V. Rao*, Oak Ridge National Laboratory
Nachimuthu Manickam, DePauw Universit

We consider the transmission of a message of size r from a source to a destination with guarantees
on the end-to-end delay over a computer network with n nodes and m links. There are three sources
of delays: (a) propagation delays along the links, (b) delays due to bandwidth availability on the
links, and (c) queuing delays at the intermediate nodes. The delays on various links and nodes
are given as functions of the message size. If the delay in (b) is a non-increasing function of the
bandwidth, we propose O(m2 + mn log n) time algorithm to compute the quickest path with the
minimum end-to-end delay for any given message size r. For the general case, we show the size of
the path-table, that specifies quickest path for every r, to be infinity. Under the condition that the
delay curves are continuous and intersect with each other in no more than τ connected regions, we
show that the path-table is of size O(ατ (p∗)), where p∗ ≤ 2n is the number of dominant paths and
α(.) is the Ackerman’s inverse function. We also discuss special cases where the path-table is of
significantly smaller size.

Room 50

Dominated Error Correcting Codes with Distance Two

Feliu Sagols*, CINVESTAV, Mexico
Laura P. Riccio, University of California at Berkeley

Charles J. Colbourn, University of Vermont

We study the hamiltonicity of certain graphs obtained from the hypercube as a means to producing
a binary code of distance two and length n, whose codewords are ordered so that for each two
consecutive codewords, one dominates the other. One vector dominates the other if and only if in
all the positions where one of them has a zero the other has a zero too. These dominated codes have
applications in group testing for consecutive defectives. We also determine when the vectors can
be ordered so that every two consecutive vectors have the domination property, and are at distance
two; this is a natural generalization of Gray codes.
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Friday, 1:30–1:45

Room 148

Bipyramids of Arbitrary Genus

Serge Lawrencenko, Rochester Institute of Technology
Niek Sanders*, Rochester Institute of Technology

We construct a series of new and extraordinary polyhedra with triangular faces. These are general-
ized bipyramids of arbitrary genus. By a generalized bipyramid of genus g, we mean a polyhedron
in E3 whose carrier is homeomorphic to the closed surface of genus g, having the property that all
but two of the vertices lie on one plane, the equatorial plane. The remaining two vertices are located
above and below the equatorial plane and are called the north and south pole, respectively. Further-
more, both poles are adjacent to each vertex on the equatorial plane. We describe our construction
and give a method to make computer and paper models of torus and double torus bipyramids.
Finally, we will also present computer generated models of arbitrary genus.

Room E113

Vertices Contained in Every Minimum Total Dominating Set of a Tree

Ernest J. Cockayne, University of Victoria, Canada
Michael A. Henning*, University of Natal, South Africa

Christina M. Mynhardt, University of South Africa, South Africa

A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to
some vertex in S. We characterize the set of vertices of a tree that are contained in all, or in no,
respectively, minimum total dominating sets of the tree.
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Room 48A–B

Minimal Equitability of Hairy Cycles

Jerzy Wojciechowski, West Virginia University

Every labelling of the vertices of a graph with distinct natural numbers induces a natural labelling
of its edges: the label of an edge (x, y) is the absolute value of the difference of the labels of x and y.
By analogy with graceful labellings, we say that a labelling of the vertices of a graph of order n is
minimally k-equitable if the vertices are labelled with 1, 2, . . . , n and in the induced labelling of its
edges every label either occurs exactly k times or does not occur at all. For m ≥ 2, let C ′m (denoted
also in the literature by CmOK1 as a corona graphs) be a graph with 2m vertices such that there is
a partition of them into sets U and V of cardinality m, with the property that U spans a cycle, V
is independent and the edges joining U to V form a matching. Let P be the set of all pairs (m, k)
of positive integers such that m ≥ 3, k is a proper divisor of 2m (different from 2m and 1) and k is
odd if m is odd. We show that C ′m is minimally k-equitable if and only if (k,m) ∈ P .

Room 50

Identification of Optimal Link Redundancy for which a Given Fault Pattern is
Catastrophic

Soumen Maity, Indian Statistical Institute, India
Bimal Roy, Indian Statistical Institute, India
Amiya Nayak*, Carleton University, Canada

Consider a link-redundant linear array A of processing elements (PEs) in which each PE has a set
G of bypass links of different lengths, mainly used to bypass faulty PEs. A fault pattern F (a set
of PE faults) is catastrophic for A if and only if the removal of F along with their incident links
disconnects the structure. For a given link configuration G, there exist many fault patterns which
are catastrophic for the link redundant system. Similarly, a given fault pattern can be catatsrophic
for different link configurations.
In this paper, we consider the problem of finding the optimal link configuration for which a given
fault pattern is catastrophic. We consider optimality with respect to two parameters: the length
of the longest bypass link in G and the number of bypass links in G, that is, the cardinality of
G. In the former case, optimality is achieved when the length of the longest bypass link in G, for
which the given fault pattern is catastrophic, is maximized. We prove that given a fault pattern of
m faults grouped into n ≤ m blocks of consecutive faulty processors the problem can be solved in
O(mn) times. In the later case, optimality is achieved when the number of bypass links in G, for
which the given fault pattern is catastrophic, is maximized. We prove that given a fault pattern of
m faults grouped into n ≤ m blocks of consecutive faulty processors the problem is equivalent to the
following graph problem. Given a graph G = (V,E), |V | ≤ n, with two specified vertices s, t ∈ V ,
called the “source” and “terminus” respectively and having each edge (i, j) labeled by Lij , a subset
of the set {1, 2, . . . ,m}, the problem is to find a partition of V into V1 and V2 such that s ∈ V1,
t ∈ V2 and it minimizes |L| where

L =
⋃

(i,j)∈E:i∈V1,j∈V2

Lij ,

which looks some what similar to the min-cut problem.
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Friday, 1:50–2:05

Room 148

The Steiner Ratio

Dietmar Cieslik, University of Greifswald

Steiner’s Problem is the ”Problem of shortest connectivity”, that means, given a finite set of points
in a metric space (X, ρ), search for a network interconnecting these points with minimal length.
This shortest network must be a tree and is called a Steiner Minimal Tree (SMT). It may contain
vertices different from the points which are to be connected. Such points are called Steiner points.
If we do not allow Steiner points, that means, we only connect certain pairs of the given points, we
get a tree which is called a Minimum Spanning Tree (MST).

Observation I. In general, methods to solve Steiner’s Problem, that means to find an SMT, are
still unknown or hard in the sense of computational complexity. In any case, we need a subtle
description of the geometry of the space.

On the other hand,

Observation II. It is easy to find an MST by an algorithm which is simple to realize and fast to
run in all metric spaces. The algorithm needs only the mutual distances between the points.

A natural question, derived from these observations, is to ask, what is the performance ratio of an
approximation of an SMT by an MST? Consequently, we are interested in the greatest lower bound
for the ratio between the lengths of these both trees:

m(X, ρ) := inf
{
L(SMT for N)
L(MST for N)

: N ⊆ X is a finite set
}
,

which is called the Steiner ratio (of the metric space (X, ρ).
We will discuss this quantity for specific metric spaces. Particularly, we will consider the class of all

• two-dimensional Banach spaces;

• finite-dimensional Lp-spaces;

• Riemannian surfaces;

• graphs; and

• sequence spaces.

Room E113

On Super Edge-Magic Deficiencies of Join of Graphs

Sin-Min Lee*,San Jose State University
Siu-Ming Tong, San Jose State University

A (p, q)-graph G is total edge-magic if there exists a bijection f : V ∪E → {1, 2, ..., p+ q} such that
for any e = (u, v) we have f(u) + f(e) + f(v) is a constant. A total edge-magic graph is call super
edge-magic if f(V (G)) = {1, 2, ..., p}. For any graph G, the smallest number of isolated vertices
need to add to G to turn it a super edge-magic graph is called the super edge-magic deficiency of
G. Super edge-magic deficiecies of some graphs which are joined of graphs are considered.
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Room 48A–B

More on the Shields-Harary Numbers of Two Intersecting Cliques

John Holliday*, Auburn University
Peter Johnson, Auburn University

A weighted network is a simple graph together with a function which assigns non-negative weights
to the nodes of the graph. An enemy of the network seeks to dismantle it by removing nodes until
the total weight on any component remaining is less than one. The enemy suffers a cost for each
removal; this cost is some non-increasing function of the weight at the node removed. The enemy
always dismantles the network at the minimum cost. The Shields-Harary number, relative to a
given cost function and fixed graph, is the maximum amount the enemy can be made to pay for
dismantling the network. It is also of interest to discover the critical weightings that force that
maximum cost. Here we prove an elementary result about such critical weightings when the network
consists of two intersecting cliques, and use it to find the Shields-Harary numbers, for arbitrary
continuous cost functions, when the network consists of two cliques joined at a cut-vertex.

Room 50

Cooperative Terrain Model Acquisition by Robot Teams

Nachimuthu Manickam*, DePauw University
Nageswara S. Rao, Oak Ridge National Lab

We address the model acquisition problem for an unknown planar terrain by a team of robots.
The terrain is cluttered by a finite number of polygonal obstacles whose shapes and positions are
unknown. The robots are point-sized and equipped with visual sensors which acquire all visible
parts of terrain by scan operations executed from their locations. The robots communicate with
each other via wireless connection. The performance is measured by the number of sensor operations
which are assumed to be the most time-consuming of all robot operations. We employ the visibility
graph methods in hierarchical setup. For terrains with convex obstacles the sensing time can be
shown to be 1/n of that of a single robot case for n = 2, 3 and 4.
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Friday, 2:10–2:25

Room 148

Remarks on the Combinatorial Optimization Problem Associated to Global Wiring of
Integrated Circuits

Edgar Reyes*, Southeastern Louisiana University
Carl Steidley, Texas A&M University - Corpus Christi

This is a continuation of our study of global wiring of integrated circuits. We assume the wires are
to be laid out on an n-by-n lattice G. We can think of G as a wafer, shaped as a square, with n2

points, n columns, n rows, and each column and row has exactly n points. Any pair of two points in
G will be connected by a wire exactly when the points do not lie on the same row or same column.
Moreover, the shape of the wire must be L-shaped. Let mv be the number of wires passing through
the vth link (a link is the horizontal or vertical segment which connects two adjacent points in the
same row or same column, respectively). A wiring configuration is deemed ‘best’ if it is an optimal
solution to the combinatorial optimization problem that minimizes

C =
L∑
v=1

m2
v (1)

A solution to (1) is a sequence of 1’s and/or −1’s. When n = 3, an optimal solution to (1) is
obtained. But for n = 4, we present preliminary results. We have employed search techniques of
simulated annealing algorithms and genetic algorithms to obtain near-optimal solutions to (1).

Room E113

Paintable Graphs

J. Malerba, Pace University
M. Gargano, Pace University

M. Lewinter*, Purchase College

A graph G of order n is called paintable if its vertex set can be labeled with the natural numbers
{1, 2, ..., n} such that for each i = 1, 2, . . . , n− 1, it is the case that (i)(i+ 1) is not an edge of G.
We show that G is paintable if and only if the cograph of G is traceable. A paintable graph is called
homogeneous paintable if every vertex can serve as the initial vertex. Infinite classes are constructed
and various theorems are presented.
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Room 48A–B

On an Erdös’ Question Concerning the Existence of a Large Proper Subgraph with
Vertices of Degree At Least 3

Sul-young Choi, Le Moyne College
Puhua Guan*, University of Puerto Rico

Erdös raised the following question: Is there a positive constant c such that, for each n, if a graph G
has n vertices, 2n−1 edges, and all the vertices of G are of degree at least 3, then G has a subgraph
with at least cn vertices whose degrees are at least 3? In this paper we show that there exists no
such number c by constructing a family of graphs whose subgraphs with vertices of degree at least
3 contains at most dne vertices where n is the number of vertices in a graph satisfying the above
conditions.

Room 50

Improvement of Multiprocessor Scheduling Through Scheduling Graphs

Dionysios Kountanis*, Western Michigan University
Changchun Yang, Western Michigan University

Given is a multiprocessor system and a program to run on the system with minimum time. A
dependency graph can be algorithmically obtained from the given program. The dependency graph
is mapped to a scheduling graph. The new graph is used to obtain a sheduling of the program
components to the multiprocessor system with the objective to minimize the running time (execution
plus communication time). Upper and lower bounds are obtained for the scheduling process. The
scheduling graph also contains a potential of parallelism. The question of what multiprocessor
system better utilizes the parallelism potential of the program is also investigated.
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Friday, 2:30–2:45

Room 148

Finding 3-Shredders Efficiently

Rajneesh Hegde*, Georgia Institute of Technology
Robin Thomas, Georgia Institute of Technology

A shredder in an undirected graph is said to be a set of vertices whose removal results in at least
three components. A 3-shredder is a shredder of size three. We present an algorithm that, given a
3-connected graph, finds its 3-shredders in time proportional to the number of vertices and edges.

Room E113

On Optimal Broadcasting in Digraphs

Hovhannes Harutyunyan, Brandon University, Canada

Broadcasting is an information dissemination process in which a message is to be sent from single
originator to all members of a network by placing calls over the communication lines of the network.
This communication pattern finds its main applications in the field of interconnection networks for
parallel and distributed architecture. Numerous papers have investigated ways to construct sparse
graphs or digraphs (networks) in which this process can be completed in theoretically minimum
possible time from any originator. Here we consider the broadcasting problem in directed graphs.
We will describe some techniques to construct new (sparser) digraphs in which broadcasting can be
completed in minimum possible time from any vertex of the constructed digraph.
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Room 48A–B

Redundance of Grid Graphs

David R. Guichard, Whitman College

The redundance of a graph G is the minimum, over dominating sets S ⊆ V (G), of
∑
v∈S(1 + d(v)).

The grid graph Gm,n is the product Pm × Pn. We determine the redundance of Gm,n for m ≤ 19
and all n, give an upper bound for the redundance for all m and n, and conjecture that this upper
bound is the correct value for the redundance.
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Complete Program

Monday

8:45–9:00
Opening

9:00–10:00
148 Herbert Wilf, Search Engines, Eigenvectors, and Chromatic Numbers

10:00–10:20
Coffee break

10:20–10:35
148 Jay Adamsson, The Crossing Number of Cm × Cn

E113 Michael O. Albertson*, Debra Boutin, The Isometry Dimension of a Finite Group
48A-B A.J.W. Hilton*, M. Mays, C.St.J.A. Nash-Williams, C.A. Rodger, On the Existence of

Pairs of Mutually Orthogonal Symmetric Hamiltonian Double Latin Squares
50 Li Sheng, A Characterization for a Tree to be a Unit Probe Interval Graph

10:40–10:55
148 Michelangelo Grigni, Papa A. Sissokho*, Apex Planar Graphs Have Bounded Detour

Gap Number
E113 Nisheeth Vishnoi, Note: An Algebraic Proof of Alon’s Combinatorial Nullstellensatz

48A-B Tristan Denley, On a Conjecture of Haggkvist on Filling Partial Latin Squares
50 S. H. Holliday*, P. D. Johnson, The Shields-Harary Number of a Tree

11:00–11:15
148 Robert Cimikowski, Crossing Number Bounds for the Twisted Cube

E113 Omer Egecioglu*, C. Ryavec, Polynomial Families Satisfying a Riemann Hypothesis
48A-B J.A. Bate*, G.H.J. van Rees, Minimal and Near-Minimal Critical Sets in Back-Circulant

Latin Squares
50 Dean Hoffman*, Matt Walsh, Even Spanning Trees in Bipartite Graphs

11:20–11:35
148 Reneta Barneva, Valentin Brimkov, Bruno Codenotti, Valentino Crespi*, Mauro Leoncini,

On the Lovász Number of Very Sparse Circulant Graphs
E113 John C. Wierman, Site Percolation Critical Probability Bounds for Two Archimedean

Lattices
48A-B Ian Wanless, Generalized Transversals of Latin Squares

50 A. Meir, J.W. Moon*, M.A. Steel, A Limiting Theorem on 2-Coloured Trivalent Trees

11:40–11:55
148 Dale Daniel, Stephen E. Shauger*, More Results on the Erdős-Gyárfás Conjecture in

Claw-Free Graphs
E113 Luke Pebody, Combinatorial Reconstruction

48A-B Reinhard Laue*, Anton Betten, Evi Haberberger, A Simple 6-Design on 14 Points and
5-Designs without Automorphisms from A4

50 Frank Van Bussel, 0-Centred and 0-Ubiquitously Graceful Trees

12:00–12:15
148 Onyeje Bose, Serge Lawrencenko*, A Note on g-Outer Graphs

E113 Michael Q. Rieck, On the Intersection Numbers of Association Schemes Based on
Isotropic Subspaces

48A-B James B. Phillips*, Peter J. Slater, Colored Distance in Grid Graphs
50 Nam-Po Chiang, The Maximum Total Relative Displacement of Permutations of a Path

12:15–1:30
Lunch

136



1:30–2:30
148 Herbert Wilf, The Lean, Mean, Bijection Machine

2:40–2:55
148 Hunter Snevily, A Sharp Bound for the Number of Sets that Pairwise Intersect at k

Positive Values
E113 Nathaniel Dean, Rectilinear Crossing Minimization

48A-B Phyllis Chinn*, Ralph Grimaldi, Silvia Heubach, The Frequency of Summands of a
Particular Size in Palindromic Compositions

50 Spencer P. Hurd*, Dinesh G. Sarvate, Minimal Standard Enclosings of Triple Systems

3:00–3:15
148 Heiko Harborth, Smallest Limited Edge-to-Edge Snakes in Euclidean Tessellations

E113 Christian Thürmann, Minimum Number of Edges with At Most s Crossings in Recti-
linear Drawings of the Complete Graph

48A-B Silvia Heubach*, Phyllis Chinn, Ralph Grimaldi, Rises, Levels, Falls and “+” Signs in
Compositions and Palindromes

50 Spencer P. Hurd, Dinesh G. Sarvate*, On Point Enclosings of Triple Systems

3:20–3:35
148 Horst Martini, On Geometric Graphs

E113 Wai Chee Shiu*, Peter Che Bor Lam, On the `-Distance Face Coloring of 6-Regular
Plane Graphs

48A-B Ke Qiu, Adjacency Matrix and Eigenvalues of the Hypercube
50 Robert Hochberg*, Michael Reid, Tiling with Notched Cubes

3:35–4:00
Coffee break

4:00–4:15
148 Robin Blankenship*, Bogdan Oporowski, Book Embeddings of Graphs and Minor-

Closed Classes
E113 Thomas Boehme, Frank Goering, Herwig Unger*, Random Models for the Propagation

of Information in the World Wide Web
48A-B Edward Dobson, On Solvable Groups and Cayley Graphs

50 Sridar Kuttan Pootheri, Counting Classes of Labeled 2-Connected Graphs

4:20–4:35
148 Matthew Skala*, Wendy Myrvold, Fast Generation of Graphs Embedded on the Torus

E113 Louis Petingi*, Jose Rodriguez, Reliability of Networks with Delay Constraints
48A-B Tristan Denley, Haidong Wu*, Long Cycles Through Many Specified Edges

50 Kimberly S. Kirkpatrick, Doyen-Wilson Theorem for K3 with Two Pendant Edges

4:40–4:55
148 Alex Brodsky, Stephane Durocher*, Ellen Gethner, Toward the Rectilinear Crossing

Number of Kn: New Drawings, Upper Bounds, and Asymptotics
E113 Daniel Ramras*, Sam Greenberg, Cliques and Independent Neighbor Sets in Random

Graphs
48A-B Felix Lazebnik and Raymond Viglione*, A New Infinite Series of Edge- but not Vertex-

Transitive Graphs
50 Clyde P. Kruskal, The Chromatic Number of the Plane: the Bounded Case

5:00–5:15
148 Ghidewon Abay-Asmerom, On Imbeddings of Rejection and Exclusion of Graphs

E113 Gary Gordon, Expected Value for Trees and Rooted Graphs
48A-B Frank Harary, Robert W. Robinson*, Identity Digraphs of Minimum Size

50 Linda Valdés, Edge-Magic Kp

5:20–5:35
148 Michele Conforti, Gérard Cornuéjols, Kristina Vušković*, Square-Free Perfect Graphs
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E113 S.M. Hedetniemi, S.T. Hedetniemi*, D.P. Jacobs, P.K. Srimani, Self-Stabilizing Algo-
rithms for Minimal Dominating and Maximal Independent Sets

48A-B Steven C. Cater*, Frank Harary, Robert W. Robinson, One-Color Triangle Avoidance
Games

50 Lou Shapiro*, Frank Schmidt, The Fibonacci Numbers, Matching Polynomials, and
Normality

5:40–5:55
148 Dionysios Kountanis, Sha Tang*, Query Optimization for Multilist Files Using Internal

Graphs
E113 J.R.S. Blair, S.M. Hedetniemi, S.T. Hedetniemi, D.P. Jacobs*, Self-Stabilizing Maxi-

mum Matchings
48A-B Joanna A. Ellis-Monaghan, Relations for Skein-Type Graph Polynomials

50 Michael L. Gargano*, William Edelson, Optimal Sequenced Matroid Bases Solved by
Genetic Algorithms

6:00–8:30
Wine and Cheese Reception

Tuesday

9:00–10:00
148 Paul Seymour, The Structure of Berge Graphs

10:00–10:20
Coffee break

10:20–10:35
148 Matt DeVos*, Paul Seymour, Packing T -Joins

E113 P.D. Johnson Jr.*, E.B. Wantland, More Problems Involving Hall’s Condition
48A-B Dalibor Froncek, Scheduling the Czech National Basketball League

50 L. Goddyn*, P. Hliněný, W. Hochstättler, Circular Chromatic Number of an Orientable
Matroid

10:40–10:55
148 E.J. Cockayne*, A.P. Burger, C.M. Mynhardt, The n-Queens Problem on the Torus

E113 Gary S. Bloom*, Samer Salame, Constructing More Graceful Trees
48A-B Robert C. Brigham, Gary Chartrand, Ronald D. Dutton, Ping Zhang*, Full Domina-

tion in Graphs
50 Manoel Lemos, Matroids with Many Common Bases

11:00–11:15
148 A.P. Burger, C.M. Mynhardt*, The Queens Domination Problem on the Torus

E113 Kengo Shirakata, Etsuro Moriya*, Parallelization in Extended µH Systems and its
Universality

48A-B Varaporn Saenpholphat*, Ping Zhang, Connected Resolvability of Graphs
50 Talal Al-Hawary, Jenny McNulty*, On Closure Matroids

11:20–11:35
148 Peter Adams, Darryn Bryant, Heather Gavlas*, Decompositions of the Complete Graph

into Small 2-Regular Graphs
E113 Dorothy Bollman*, Edusmildo Orozco, A Faster Algorithm for the Solution of the n-

Queens Problem
48A-B Gary Chartrand, Raluca Muntean*, Varaporn Saenpholphat, Ping Zhang, Graphs and

Divisibility of Positive Integers
50 Allan D. Mills, Perfect Binary Matroids
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11:40–11:55
148 Andre Kezdy*, Hunter Snevily, Distinct Sums Modulo n and Tree Embeddings

E113 Patric R.J. Österg̊ard, Alfred Wassermann*, A New Lower Bound for the Football Pool
Problem for 6 Matches

48A-B Gary Chartrand, Alice Chichisan*, Ping Zhang, Curtiss E. Wall, On Convexity in
Graphs

50 Nancy Ann Neudauer*, Brett Stevens, Enumeration of the Bases of the Bicircular
Matroid on a Complete Bipartite Graph

12:00–12:15
148 Miklós Bartha*, Miklós Krész, Open Graphs with Perfect Internal Matchings

E113 L. Eugene Chipman*, Clyde P. Kruskal, The Complexity of Some Common Strategy
Games

48A-B David Brown, J. Richard Lundgren*, Cary Miller, On Probe-Clone Interval Graphs
50 David Neel, Modular Contractibility in Binary Matroids

Wednesday

9:00–10:00
148 Noga Alon, Polynomials in Discrete Mathematics I: Geometric and Number Theoretic

Applications

10:00–10:20
Coffee break

10:20–10:35
148 Dirk Vertigan*, Matt DeVos, Luis Goddyn, Bojan Mohar, Xuding Zhu, Near Duality

of Circular Coloring and Circular Flow in Orientable Surfaces
E113 David Cariolaro*, Anthony J.W. Hilton, Regular Graphs of Even Order and High De-

gree are 1-Factorizable
48A-B Peter Horák, David Pike, Michael Raines*, Hamilton Cycles in Block-Intersection

Graphs of Triple Systems
50 Arundhati Raychaudhuri, Distance-2 Labeling for Strongly Chordal Graphs and 2−K2

Free Graphs

10:40–10:55
148 Bruce Reed, Benny Sudakov*, Asymptotically the List Colouring Constants are 1

E113 Robert Molina*, Ken Smith, Pn-Randomly Decomposable Graphs
48A-B M.N. Ferencak*, A.J.W. Hilton, Outline and Amalgamated Triple Systems

50 D. Pillone, R. Laskar*, Extremal Results in Rankings

11:00–11:15
148 Arnfried Kemnitz*, Massimiliano Marangio, Colorings and List Colorings of Integer

Distance Graphs
E113 Ronald J. Gould, Emily A. Hynds*, Forbidden Subgraphs and 2-Factors

48A-B Jeff Bonn, Ordering Steiner Triple Systems and the Codes of Their Points
50 David R. Berman, Sandra C. McLaurin, Douglas D. Smith*, Fair Team Tournaments

11:20–11:35
148 Jeannette Janssen, Partial List Colourings of Graphs with Bounded Degree

E113 Sam Greenberg, Multiple Matchings
48A-B Tomoko Adachi*, Masakazu Jimbo, Sanpei Kageyama, Combinatorial Structure of

GDDs without Nontrivial α-Resolution Classes in Each Group
50 Richard Anstee, Ron Ferguson*, J.R. Griggs, Circular Permutations with Low Discrep-

ancy Consecutive k-Sums
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11:40–11:55
148 Balázs Montágh, Anti-Ramsey Theorems on Spanning Trees

E113 Hong Wang, Vertex-Disjoint Quadrilaterals in Graphs
48A-B Yukiyasu Mutoh*, Toshio Morihara, Masakazu Jimbo, A Grid Design Related to DNA

Library Screening
50 Clifton E. Ealy Jr.*, On the Genus of Semiλ-Partialplanes

12:00–12:15
148 Maria Axenovich*, Tao Jiang, Anti-Ramsey Numbers for Small Bipartite Graphs

E113 John J. Watkins*, Jesse Gilbert, Packing Caterpillars into Complete Graphs
48A-B Selda Küçükçifçi∗, C.C. Lindner, The Metamorphosis of λ-Fold Block Designs with

Block Size Four into λ-Fold (K4 \ e)-Systems, λ ≥ 2
50 Adrian Bondy, Jian Shen*, Stéphan Thomassé, Carsten Thomassen, Density Condi-

tions Implying Trangles in k-Partite Graphs

12:15–1:30
Lunch

1:30–2:30
148 Noga Alon, Polynomials in Discrete Mathematics I: Graph Theoretic Applications

2:40–2:55
148 Ellen Gethner*, David G. Kirkpatrick, Nicholas Pippenger, M.C. Escher Inspires a

Coloring Problem of a Different Colour: Art, Mathematics, and Computer Science
Collide

E113 Martin Charles Golumbic*, Marina Lipshteyn, On the Hierarchy of Tolerance, Probe,
and Interval Graphs

48A-B Gayla S. Domke*, Jean E. Dunbar, Lisa R. Markus, The Inverse Domination Number
of a Graph

50 Charles A. Anderson, Some Sequences Related to the Catalan Numbers

3:00–3:15
148 Peter C. B. Lam* and W. C. Shiu, A Class of Graphs with χ∗ Close to χ− 1

E113 Anthony Bonato*, Peter Cameron, Dejan Delić, Stéphan Thomassé, New Vertex Par-
titions Properties of Graphs and Digraphs

48A-B Peter Dankelmann, Size and Domination in Graphs
50 Wen-jin Woan, Diagonal Lattice Paths

3:20–3:35
148 Chao Gui*, Ronald D. Dutton, Distribution of In-Degree in Random Digraphs

E113 D. Aulicino*, M. Lewinter, Pan-Central Graphs
48A-B John Gimbel*, Mihaela Nicolescu, Cherie Umstead, Nicole Vaiana, Brian D. Van Gor-

den, Location with Dominating Sets
50 Seyoum Getu, A ‘dot’ Product and Lattice Paths

3:35–4:00
Coffee break

4:00–4:15
148 Joan P. Hutchinson, Three- and Four-Coloring Nearly Triangulated Surfaces

E113 Arthur M. Hobbs*, Louis Petingi, The Weighted-Edge Case of Strength and Fractional
Arboricity in Graphs

48A-B David C. Fisher, Suzanne M. Seager*, The Total Domination Number of Graphs of
Maximum Degree 3

50 D. Elizabeth “Betsy” Sinclair*, Julia Eaton, Competition Between Geometric Random
Variables I: One-Dimensional Results

4:20–4:35
148 Jan Kratochv́ıl, Zsolt Tuza, Margit Voigt*, b-Colorings of Graphs

E113 Dean Hoffman, Mark Liatti*, Partitioning the Edges of 2Kc,d into Copies of Ka,b

48A-B Teresa Haynes, Debra Knisley*, Colored Domination in Graphs
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50 Yung-Ling Lai, On the Profile of the Tensor Product of Paths with Complete Bipartite
Graphs

4:40–4:55
148 Andrea Hackmann, Critically Edge Colourable Planar Graphs

E113 Art Finbow*, Bert Hartnell, Richard Nowakowski, Michael D. Plummer, On Well-
Covered 5-Connected Triagulations

48A-B Kenneth Proffitt*, Teresa W. Haynes, Peter J. Slater, Paired-Domination in Grid
Graphs

50 Dorea Claassen, The Bandwidth of a Random Graph

5:00–5:15
148 Mathew Cropper*, Andras Gyarfas, Jeno Lehel, Mike Jacobson, Comparing the Hall

Ratio and the Chromatic Number
E113 Saad I. El-Zanati, On Generalizations of the Oberwolfach Problem

48A-B Ruth Haas*, Thomas Wexler, Signed Domination Number of a Graph and Its Comple-
ment

50 Narsingh Deo, Pankaj Gupta*, Sampling the Web Graph With Random Walks

5:30–6:00
148 Frank Harary, Graphs and Their Games

7:00–10:00
Banquet

Thursday

9:00–10:00
148 Alexander Schrijver, Permanents and Edge-Colouring

10:00–10:20
Coffee break

10:20–10:35
148 Ralph P. Grimaldi, Compositions without the Summand 1

E113 Paul Balister, Béla Bollobás, Jonathan Cutler*, Luke Pebody, The Interlace Polynomial
of Graphs at −1

48A-B Yoshihiro Kaneko*, Stephen Locke, Minimum Degree Approach for Paul Seymour’s
Conjecture

50 Galen E. Turner III, Subdivisions of Wheels

10:40–10:55
148 Alain Plagne*, Laurent Habsieger, Improved Bounds for B2[2] Sets

E113 Rao Li, Hamiltonicity of 3-Connected Quasi-Claw-Free Graphs
48A-B Darren A. Narayan, Powers of Directed Hamiltonian Paths as Feedback Arc Sets

50 Larry Cummings, Connected Components of Comma-Free Codes

11:00–11:15
148 Ingo Schiermeyer, New Ramsey Numbers for Cycles

E113 Mahmoud El-hashash, On the Hamiltonicity of Two Subgraphs of the Hypercube
48A-B M.A. Fiol, J. Gimbert*, On Almost Moore Bipartite Digraphs with Odd Diameter

50 Narsingh Deo, Paulius Micikevicius*, Comparison of Prüfer-like Codes for Labeled
Trees

11:20–11:35
148 Konrad Piwakowski, Stanis law P. Radziszowski*, Towards the Exact Value of the Ram-

sey Number R(3, 3, 4)
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E113 Anant Godbole*, Debra Knisley, Rick Norwood, Alphabet-Overlap Graphs are Hamil-
tonian

48A-B Cora Neal, 2-Primitive Tournament Digraphs
50 Suk Jai Seo*, Ashok T. Amin, On Extremal Oriented Trees

11:40–11:55
148 Ermelinda DeLaVina, Connected Triangle-Free Ramseyan Properties of Graphs

E113 Bill Linderman, Minimum Graphs with Complete Closure
48A-B Michelle Foster*, Peter Johnson, An Existence Theorem in Information Theory

50 Jens-P. Bode, Triangular Polyomino Set Achievement

12:05–12:35
148 Presentation of the 2000 Medals of the Institute of Combinatorics and its Applications

12:35–1:30
Lunch

1:30–2:30
148 Alexander Schrijver, Graph embedding and Eigenvalues

2:40–2:55
148 Van Vu, Set Systems with Even Multi-Intersections

E113 Chris Rodger*, Darryn Bryant, Y. Chang, R. Wei, Two Dimensional Balanced Sam-
pling Plans Excluding Contiguous Units

48A-B Krystyna T. Balińska, Michael L. Gargano, Louis V. Quintas*, An Edge Partition
Problem Concerning Hamilton Paths

50 Yolando B. Beronque, On the Structure of a Distance-Regular Graph from a Maximal-
Distance Subgraph

3:00–3:15
148 Yuejian Peng*, Vojtech Rödl, Jozef Skokan, Small Cliques in 3-Uniform Hypergraphs

E113 K.T. Arasu, Yu Qing Chen, Alexander Pott*, New Results on Non-abelian Relative
Difference Sets

48A-B Jay Bagga, John Emert*, J. Michael McGrew, Visibility Graphs on the Sphere
50 R.D. Baker, G.L. Ebert*, T. Penttila, Hyperbolic Fibrations and Flocks of a Quadratic

Cones

3:20–3:35
148 Yulia Dementieva*, Penny Haxell, Brendan Nagle, Vojtěch Rödl, On Characterizing

Hypergraph Regularity
E113 Ben Wehrung, Maximum Packings of Kn with Eulerian Graphs

48A-B Marek Kubale, The Smallest Hard-to-Color Graph for Sequential Coloring Algorithms
50 Keith Mellinger, Constructing Mixed Partitions of PG(3, q2)

3:35–4:00
Coffee break

4:00–4:15
148 Roger B. Eggleton*, James A. MacDougall, Minimally Star-Saturated Graphs

E113 Isidoro Gitler, Coloring the Angles of Embedded Graphs
48A-B Thomas Boehme*, Bojan Mohar, Domination, Packing and Excluded Minors

50 Gilles Caporossi*, Pierre Hansen, Variable Neighborhood Search for Extremal Graphs,
1 to 7: a Short Survey

4:20–4:35
148 József Balogh*, Béla Bollobás, Miklós Simonovits, Estimates for the Number of L-Free

Graphs
E113 Terry McKee, Recognizing Dual-Chordal Graphs

48A-B B.L. Hartnell*, P.D. Vestergaard, Dominating Sets with At Most k Components
50 Pierre Hansen*, Mustapha Aouchiche, Gilles Caporossi, Variable Neighborhood Search

for Extremal Graphs, 8: Variations on Graffiti 105
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4:40–4:55
148 John Goldwasser, Erdos-Ko-Rado with a Bound on the Maximum Degree

E113 Guoli Ding, Jinko Kanno*, Splitter Theorems for Cubic Graphs
48A-B Bert L. Hartnell, Douglas F. Rall*, Dominating the Cartesian Square of a Tree

50 Dan Pritikin, The Upper Bound for Pancake Sorting

5:00–5:15
148 Sergei L. Bezrukov, Thomas J. Pfaff, Victor P. Piotrowski*, A New Approach to

Macaulay Posets
E113 Nair Maria Maia de Abreu*, Patricia Erthal de Moraes, Samuel Jurkeiwicz, Graphs

with Homogeneous Density in (a, b)-Linear Classes
48A-B John Villalpando*, Renu Laskar, Degree Weighted Domination

50 Dionysios Kountanis, Sathya Priya Durairaju*, Optimal Connection of Networks with
a Backbone Interconnection Network

5:20–5:35
148 Matt Walsh*, Peter Johnson, Another Network Vulnerability Parameter

E113 Jay S. Bagga*, Lowell W. Beineke, Badri N. Varma, Line Completion Numbers of
Graphs

48A-B David Erwin, Daryl Findley, John McKenzie*, Ben Phillips*, Results on a Lower Bound
on the Domination Number: I

50 N. Sankaranarayanan, Francis Suraweera*, Narsingh Deo, Two Protocols for Multicast
Communication

5:40–5:55
148 Salar Y. Alsardary, An Upper Bound on the Basis Number of the Powers of the Com-

plete Graphs
E113 Geir Agnarsson, On Powers of Some Geometrically Represented Graphs

48A-B David Erwin, Daryl Findley*, John McKenzie, Ben Phillips, Results on a Lower Bound
on the Domination Number: II

50 Anton Colijn, The Master Timetabling Problem: Comparison of Two Approaches

8:00–9:30
Survivor’s Dessert Party

Friday

9:00–10:00
148 William Cook, Optimization via Branch Decomposition

10:00–10:20
Coffee break

10:20–10:35
148 Christopher Carl Heckman, On the Tightness of the 5/14 Independence Ratio

E113 Fred Buckley, The Eccentric Digraph of a Graph
48A-B Marc J. Lipman *, Eddie Cheng, Connectivity Properties of Unidirectional Star Graphs

50 Jilyana Cazaran, A Modification of the Welch-Berlekamp Algorithm for Decoding Reed-
Solomon Codes

10:40–10:55
148 Wendy Myrvold*, Sean Debroni, B. de La Vaissière, P.W. Fowler, M. Deza, Finding a

Maximum Independent Set in the 120-Cell
E113 Gcina Dlamini, Distances in K2,l-Free Graphs

48A-B Eddie Cheng*, Sven De Vries, Separation Problems of Antiweb-Wheel Inequalities of
the Stable Set Polytopes

50 Cem Guneri, Two Weight 2-D Cyclic Codes Using Rational Curves

143



11:00–11:15
148 Gerd H. Fricke*, Teresa W. Haynes, Sandra M. Hedetniemi and Stephen T. Hedetniemi,

Renu C. Laskar, Excellent Trees
E113 D.V. Chopra*, M. Bsharat, Contributions to Some Combinatorial Arrays

48A-B Nageswara S.V. Rao*, Nachimuthu Manickam, On General Quickest Path Problem and
Path-Tables

50 Feliu Sagols*, Laura P. Riccio, Charles J. Colbourn, Dominated Error Correcting Codes
with Distance Two

11:30–12:30
148 William Cook, The Traveling Salesman Problem

12:30–1:30
Lunch

1:30–1:45
148 Serge Lawrencenko, Niek Sanders*, Bipyramids of Arbitrary Genus

E113 Ernest J. Cockayne, Michael A. Henning*, Christina M. Mynhardt, Vertices Contained
in Every Minimum Total Dominating Set of a Tree

48A-B Jerzy Wojciechowski, Minimal Equitability of Hairy Cycles
50 Soumen Maity, Bimal Roy, Amiya Nayak*, Identification of Optimal Link Redundancy

for which a Given Fault Pattern is Catastrophic

1:50–2:05
148 Dietmar Cieslik, The Steiner Ratio

E113 Sin-Min Lee*, Siu-Ming Tong, On Super Edge-Magic Deficiencies of Join of Graphs
48A-B John Holliday* and Peter Johnson, More on the Shields-Harary Numbers of Two In-

tersecting Cliques
50 Nachimuthu Manickam*, Nageswara S. Rao, Cooperative Terrain Model Acquisition by

Robot Teams

2:10–2:25
148 Edgar Reyes*, Carl Steidley, Remarks on the Combinatorial Optimization Problem

Associated to Global Wiring of Integrated Circuits
E113 J. Malerba, M. Gargano, M. Lewinter* Paintable Graphs

48A-B Sul-young Choi, Puhua Guan*, On an Erdös’ Question Concerning the Existence of a
Large Proper Subgraph with Vertices of Degree At Least 3

50 Dionysios Kountanis*, Changchun Yang, Improvement of Multiprocessor Scheduling
Through Scheduling Graphs

2:30–2:45
148 Rajneesh Hegde*, Robin Thomas, Finding 3-Shredders Efficiently

E113 Hovhannes Harutyunyan, On Optimal Broadcasting in Digraphs
48A-B David R. Guichard, Redundance of Grid Graphs
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