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Overview

■ Special Functions and Representation Theory
■ (Classical) Generating Functions: some Examples
■ Reproducing Kernel Hilbert Spaces: H(S, V )

■ Bounded operators Θ : L2(X, dµ) → H(S, V )

■ Kernels and Generating Functions
■ Restriction Principle
■ Highest Weight Representations
■ Generating Functions (revisited)
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Generating Functions

Suppose an(x) is a sequence of real valued functions. The
generating function associated to {ak : k = 1, 2, . . .} is an
analytic function, a(z, x), such that

a(z, x) =
∞
∑

k=0

ak(x)zk.
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Laguerre

Laguerre Polynomials

Lα
n(x) =

1

n!
exx−α dn

dxn
(e−xxn+α).
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Laguerre

Laguerre Polynomials

Lα
n(x) =

1

n!
exx−α dn

dxn
(e−xxn+α).

Generating Function:

(1 − z)−α−1e
xz

z−1 =
∞
∑

k=0

Lα
n(x)zn |z| < 1.
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Hermite

Hermite Polynomials

Hn(x) = (−1)nex2 dn

dxn
(e−x2

).
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Hermite

Hermite Polynomials

Hn(x) = (−1)nex2 dn

dxn
(e−x2

).

Generating Function:

e(−z2+2zx) =
∞
∑

k=0

Hk(x)
zk

k!
z ∈ C.
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Generalizations
Each of these formulae are classical and easy to prove in that
it is possible to compute the Maclaurin series for the generat-
ing function to produce the corresponding series.

In some generalizations one finds that the powers zn that
appear in the series

∑

n

an(x)zn

are replaced by a more general class of functions.
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Generalizations
Each of these formulae are classical and easy to prove in that
it is possible to compute the Maclaurin series for the generat-
ing function to produce the corresponding series.

In some generalizations one finds that the powers zn that
appear in the series

∑

n

an(x)zn

are replaced by a more general class of functions.

Generalize Laguerre functions: ℓµ
n

are certain distin-
guished function defined of symmetric cones and are paired
with generalized power functions Ψm that lie in a reproducing
kernel Hilbert Space. The generating function takes the form

∆(e−z)−ν

∫

K

e−(kx|(1+z)(1−z)−1) dk =
∑

m≥0

dm

1

(n
r )m

ℓν
m

(x)Φm(z).
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Goals

Goals:
1. Place these formulas in a more general context. Specifically,

we show that a bounded operator Θ defined on an L2 space
with values in a reproducing kernel Hilbert space is
necessarily given by a kernel from which is derived a
generating function for an appropriately chosen system of
functions in L2.

2. When the L2 space and the reproducing kernel Hilbert
space are equivalent realizations of a highest weight
representation we obtain new characterizations of the
generating functions and relationships amongst the given
systems in terms of operations involving the representation.
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Reproducing Kernel Hilbert Spaces

Suppose

■ S- locally compact Hausdorff space
■ V - complex Hilbert space with inner product (· | ·)V

Let H(S, V ) be a Hilbert space of continuous V -valued func-
tions on S.

We say H(S, V ) is a reproducing kernel Hilbert Space if
for each z ∈ S the linear map Ez : H(S, V ) → V given by
Ez(f) = f(z) is continuous and has dense range. This as-
sumption implies that the adjoint

Q(·, z) := E∗
z

is continuous, injective, and has the reproducing property:

(f(z) | v)V = (f |Q(·, z)v) ,

for each f ∈ H(S, V ) and v ∈ V .
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RKHS-valued operators on an L
2 space
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Vector-valued L
2 spaces

Let W be a finite dimensional complex Hilbert Space and
Herm+(W ) the convex cone of nonnegative definite opera-
tors on W ; i.e. each E ∈ Herm+(W ) is a bounded operator
and satisfies

(Ew |w)W ≥ 0,

for each w ∈ W .

Let X be a measure space with positive measure µ and ν
a Herm+(W )-valued measurable on X . We write dµν(x) =
ν(x)dµ.

Let L2(X, W, dµν) denote the space of measurable W -valued
functions f such that

‖f‖2 =

∫

X

(ν(x)f(x) | f(x)) dµ(x) < ∞.
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Linear Operators

A linear map Θ on L2(X, W, dµν) with values in H(S, V ) is
said to be an integral transform given by a kernel K = KΘ if
Θ can be written in the form

Θ(f)(z) =

∫

X

K(z, x)ν(x)f(x) dµ(x),

for all z ∈ S. Pointwise, the kernel K(z, x) is a map from W
to V .
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Proposition

Proposition: Suppose Θ : L2(X, W, dµν) → H(S, V ) is a
bounded linear map. Then Θ is an integral transform given by
a kernel K. For each z ∈ S and v ∈ V the map x 7→ K(z, x)∗v
is in L2(X, W, dµν).
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proof

Let z ∈ S and v ∈ V . Then

(Θf(z) | v) = (Θf |Q(·, z)v)

= (f |Θ∗(Q(·, z)v)) .

Let kz,v = Θ∗(Q(·, z)v). Then kz,v ∈ L2(X, W, dµν), for all
z ∈ S and v ∈ V .

For each x ∈ X the map

v 7→ kz,v(x) : V → W

is a linear and hence continuous.

Let B(V, W ) be the space of W -valued linear maps on V and
let sz(x) ∈ B(V, W ) be given by sz(x)v = kz,v(x).

Let K(z, x) ∈ B(W, V ) be the adjoint of sz(x).



Bounded
Operators

Vector-valued L
2

spaces
Linear Operators

Proposition
proof

Generating
Function

proof

Generating Functions and Highest Weight Representations - p. 17/36

We then have

(Θf(z) | v) = (f | kz,v)

=

∫

X

(ν(x)f(x) | sz(x)v) dµ(x)

=

∫

X

(K(z, x)ν(x)f(x) | v) dµ(x)

and hence

Θf(z) =

∫

X

K(z, x)ν(x)f(x) dµ(x),

for all f ∈ L2(X, W, dµν) and z ∈ S.

Since K(z, ·)∗v = kz,v for all z ∈ S and v ∈ V we have
K(z, ·)∗v ∈ L2(X, W, dµν)
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Generating Function

Theorem [Davidson 2004]: Suppose H ⊂ L2(X, W, dµν)
is a separable Hilbert subspace and Θ : H → H(S, V ) is a
bounded linear map into a reproducing kernel Hilbert space
with kernel KΘ. Suppose {ei : i ∈ I} is a basis of H that has
a dual basis {ěi : i ∈ I}. Set Ei = Θěi ∈ H(S, V ). Then

KΘ(z, ·)∗v =
∑

i∈I

(v|Ei(z)) ei,

where convergence is with respect to the L2-norm.
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proof

Let v ∈ V . For each z ∈ S we have KΘ(z, ·)∗v ∈ H and

KΘ(z, ·)∗v =
∑

i∈I

(KΘ(z, ·)∗v|ěi) ei

=
∑

i∈I

(v|Θěi(z)) ei

=
∑

i∈I

(v|Ei(z)) ei.
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proof

Let v ∈ V . For each z ∈ S we have KΘ(z, ·)∗v ∈ H and

KΘ(z, ·)∗v =
∑

i∈I

(KΘ(z, ·)∗v|ěi) ei

=
∑

i∈I

(v|Θěi(z)) ei

=
∑

i∈I

(v|Ei(z)) ei.

We will call KΘ(z, ·)∗v the generating function for
{ei : i ∈ N}.
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Olafsson-Orsted Restriction Principle

■ M - complex manifold
■ H - Reproducing Kernel Hilbert Space of holomorphic

functions on M

■ X - totally real submanifold of M

■ R : H → L2(X, dµ) defined by RF (x) = D(x)F (x), where
D(x) is some positive multiplier.

■ Suppose R is densely defined, injective, dense range. Then
we can polarize R∗:

R∗ = U
√

RR∗,

to get a unitary map U : L2(X, dµ) → H.
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Bargmann-Segal Transform: an Example

■ M = C, H= Fock space of C.
■ X = R,

■ R : H → L2(R, dx) given by RF (x) = e
−x

2

2 F (x).

■ Polarization: R∗ = U
√

RR∗ where U : L2(R, dx) → H is
given by

Uf(z) = c

∫

R

e−x2+2xz−z2/2f(x) dx,

the Bargmann-Segal transform.

Define hk(x) = e−x2

Hk(
√

2x). Then ȟk(x) = 1
2kk!

hk(x) and

U(ȟk)(z) =
c

k!

(

z√
2

)k

.
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Applying the theorem, a change of variable, and conjugation
gives the classical generating function:

e−z2+2zx =
∞
∑

k=0

Hk(x)
zk

k!
.
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The Laplace Transform: an Example

■ M = {z ∈ C : RE(z) > 0}, Hα(M) is the Hilbert space of
holomorphic functions F on M such that

‖F‖2 =

∫

M

|F (z)|2 xα−1 dxdy.

■ X = R+,
■ R : H → L2(R+, xαdx) given by RF (x) = F (x).

■ Polarization: R∗ = U
√

RR∗ where
U = L : L2(R+, xαdx) → Hα is given by

Lf(z) =

∫ ∞

0

e−ztf(t) tαdt,

the Laplace transform.
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Cayley Transform

Cayley Transform: Let D be the unit disk. The Cayley
Transform c : D → M is defined by c(z) = 1+z

1−z . It induces a
unitary operator C : Hα(M) → Hα(D), defined by

CF (z) = (1 − z)−(α+1)F

(

1 + z

1 − z

)

,

where Hα(D) is the space of holomorphic functions F on D
such that

‖F‖2 =

∫

D

|F (z)|2 (1 − |z|2)α−2dz.
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Cayley Transform

Cayley Transform: Let D be the unit disk. The Cayley
Transform c : D → M is defined by c(z) = 1+z

1−z . It induces a
unitary operator C : Hα(M) → Hα(D), defined by

CF (z) = (1 − z)−(α+1)F

(

1 + z

1 − z

)

,

where Hα(D) is the space of holomorphic functions F on D
such that

‖F‖2 =

∫

D

|F (z)|2 (1 − |z|2)α−2dz.

Cayley-Laplace Transform The map

Θ = C ◦ L : L2(R+, xαdx) → Hα(D)

defines a unitary operator given by

Θf(z) = (1 − z)−(α+1)

∫

R+

e−
1+w

1−w
tf(t) tαdt
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Laguerre functions

Laguerre functions: ℓα
n(x) = e−xLα

n(2x) ∈ L2(R+, xαdx) and
forms an orthogonal system.

A calculation the gives that Θ(ℓ̌α
n)(z) = zn.

Applying the theorem and conjugation gives:

(1 − z)−(α+1)e−
1+w

1−w
t =

∞
∑

n=0

ℓα
n(t)zn.
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Laguerre functions

Laguerre functions: ℓα
n(x) = e−xLα

n(2x) ∈ L2(R+, xαdx) and
forms an orthogonal system.

A calculation the gives that Θ(ℓ̌α
n)(z) = zn.

Applying the theorem and conjugation gives:

(1 − z)−(α+1)e−
1+w

1−w
t =

∞
∑

n=0

ℓα
n(t)zn.

This is equivalent to

(1 − z)−α−1e
xz

z−1 =
∞
∑

k=0

Lα
n(x)zn |z| < 1.
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Highest Weight Representations
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Introduction

■ Laguerre functions ∼ Highest Weight representation theory
of SL(2, R) ⋍ SU(1, 1).

■ Hermite functions ∼ Highest Weight representation theory of
the metaplectic group.
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Preliminaries

■ G - Hermitian Symmetric Group
■ K - maximal compact subgroup
■ D = G/K - Complex manifold and G acts of D by

biholomorphic diffeomorphisms.
■ Let g◦ and k◦ be the Lie algebra of G and K, resp.
■ Let g and k be the complexification of the g and k.

■ Our assumptions imply

g = p+ ⊕ k ⊕ p−.

■ p± = p∓

■ D ⊂ p+
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Highest Weight Representations

■ Suppose π is an irreducible representation of G on H.
◆ π extends to g◦; the derived representation.
◆ π extends to g by complex linearity.

■ Suppose there is a nonzero vector v ∈ H such that π(x)v = 0
for all x ∈ p+. (Say v is annihilated by p+.) Then π is called a
highest weight representation.

Let V be the set of all vectors in H annihilated by p+. Then K
acts on V irreducibly by λ(k) = π(k)|V .

The association
π → λ

is a correspondence:

irred h.w.reps of G ↔ irred rep of K

irred unitary h.w.reps of G ↔ Λ ⊂ irred rep of K [EHW,J]
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Geometric Realization

For each λ ∈ Λ we can associate a RKHS, H(D, Vλ) on which
G acts by a multiplier representation T = Tλ:

T (g)F (z) = J(g−1, z)−1F (g−1z).

(T,H(D, Vλ)) is call the Geometric Realization of T = Tλ.
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Intertwining Operators

Now suppose π = πλ is any irreducible unitary highest weight
representation on H = Hλ. Then there is a unitary operator

Θ : H → H(D, V )

which intertwines the representations. The operator has the
following characterization:
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Intertwining Operators

Now suppose π = πλ is any irreducible unitary highest weight
representation on H = Hλ. Then there is a unitary operator

Θ : H → H(D, V )

which intertwines the representations. The operator has the
following characterization:

Theorem [Fabec,Davidson 1995 ]: Let z ∈ p+. Let v ∈ V
and formally define

qzv =
∞
∑

n=0

π(z̄)n

n!
v.

Then qz : V → H converges in H if and only if z ∈ D. Further-
more,

ΘF (z) = q∗zF.

In other words,

(ΘF (z) | v) = (F | qzv) ,

for all z ∈ D, v ∈ V , and F ∈ H.
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Generating Functions: revisited
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Generating Functions

Theorem [Davidson 2004]: Suppose

Θ : L2(X, W, dµ) → H(D, V )

is a unitary operator between equivalent highest weight rep-
resentations. Then the kernel K = KΘ associated with Θ
satisfies

K(z, ·)∗v = qzv = qzv =

∞
∑

n=0

π(z̄)n

n!
v.
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Laguerre Functions

The group SL(2, R) acts on L2(R+, xαdx) by a unitary highest
weight representation and is equivalent to the geometric
realization Hα(D) with intertwining operator
Θ = C ◦ L : L2(R+, xαdx) → Hα(D) given by by

Θf(z) = (1 − z)−(α+1)

∫

R+

e−
1+z

1−z
tf(t) tαdt.

■ p+ = CE+ and for f ∈ L2(R+, xαdx) we have

π(E+)f(t) = (−tD2 + (2t − α − 1)D + (α − 1 − t))f(t).

■

π(E+)ℓα
n(t) = (n + 1)ℓα

n+1(t).

■ Inductively,
π(E+)n

n!
ℓα
0 (t) = ℓα

n(t).
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■

π(zE+)n

n!
ℓα
0 (t) = ℓα

n(t)zn.

■

K(z, ·)∗ℓα
0 = qzℓ

α
0 =

∞
∑

n=0

π(zE+)n

n!
ℓα
0 (t) =

∞
∑

n=0

ℓα
n(t)zn.

■ Complex conjugation connects this back to the classical
formula:

(1 − z)−(α+1)e−
1+w

1−w
t =

∞
∑

n=0

ℓα
n(t)zn.
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