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Laguerre Polynomials

■ Rodrigues Formula

Lα
n(x) =

exx−α

n!

dn

dxn
(e−xxn+α)
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Laguerre Polynomials

■ Rodrigues Formula

Lα
n(x) =

exx−α

n!

dn

dxn
(e−xxn+α)

■ Generating Function

(1 − w)−α−1 exp

(

xw

w − 1

)

=

∞
∑

n=0

Lα
n(x)wn,

where |w| < 1, α > −1
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Laguerre Polynomials

■ Rodrigues Formula

Lα
n(x) =

exx−α

n!

dn

dxn
(e−xxn+α)

■ Generating Function

(1 − w)−α−1 exp

(

xw

w − 1

)

=

∞
∑

n=0

Lα
n(x)wn,

where |w| < 1, α > −1

■ Expansion Formula

Lα
n(x) =

1

n!

n
∑

k=0

Γ(n+ α+ 1)

Γ(k + α+ 1)

(

n

k

)

(−x)k

=
Γ(n+ α+ 1)

Γ(n+ 1)
1F1(−n, α+ 1;x)
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■ Lα
0 (x) = 1

■ Lα
1 (x) = −x+ α+ 1

■ Lα
2 (x) = 1

2 (x2 − 2(α+ 2)x+ (α+ 1)(α+ 2))

The family of Laguerre polynomials is orthogonal as
functions on R

+ with respect to the inner product

(f |g) =

∫ ∞

0

f(x)g(x)xαe−xdx.
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Differential Recursion Relations

The following are well known recursion relations.

■ (tD2 + (α− t+ 1)D)Lα
n(t) = −nLα

n(t), (Laguerre’s equation)
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Differential Recursion Relations

The following are well known recursion relations.

■ (tD2 + (α− t+ 1)D)Lα
n(t) = −nLα

n(t), (Laguerre’s equation)

■ tDLα
n(t) = nLα

n(t) − (n+ α)Lα
n−1(t),
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Differential Recursion Relations

The following are well known recursion relations.

■ (tD2 + (α− t+ 1)D)Lα
n(t) = −nLα

n(t), (Laguerre’s equation)

■ tDLα
n(t) = nLα

n(t) − (n+ α)Lα
n−1(t),

■ tDLα
n(t) = (n+ 1)Lα

n+1(t) − (n+ α+ 1 − t)Lα
n(t).
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Differential Recursion Relations

The following are well known recursion relations.

■ (tD2 + (α− t+ 1)D)Lα
n(t) = −nLα

n(t), (Laguerre’s equation)

■ tDLα
n(t) = nLα

n(t) − (n+ α)Lα
n−1(t),

■ tDLα
n(t) = (n+ 1)Lα

n+1(t) − (n+ α+ 1 − t)Lα
n(t).

■ These kinds of equations are reminiscent of creation and
annihilation operators that arise in physics and are codified
in representation theory.
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Differential Recursion Relations

The following are well known recursion relations.

■ (tD2 + (α− t+ 1)D)Lα
n(t) = −nLα

n(t), (Laguerre’s equation)

■ tDLα
n(t) = nLα

n(t) − (n+ α)Lα
n−1(t),

■ tDLα
n(t) = (n+ 1)Lα

n+1(t) − (n+ α+ 1 − t)Lα
n(t).

■ These kinds of equations are reminiscent of creation and
annihilation operators that arise in physics and are codified
in representation theory.

■ In fact, such formulas are seen in a familiar family of
representations of SU(1, 1) and SL(2,R) called highest
weight representation .
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The group SL(2, R)

G = SL(2,R) and GC = SL(2,C)

T (R+) = R + iR+ = {z ∈ C | Im(z) > 0}

Let g =

(

a b

c d

)

∈ G and z ∈ T (R+). Let

g · z =
az + b

cz + d

This defines a transitive action of G on the upper half plane
T (R+). If K is the fixed point group for i:

K = {g ∈ G : g · i = i} then K =

{(

cos θ sin θ

− sin θ cos θ

)

: θ ∈ R

}

and G/K ⋍ T (R+).
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Highest Weight Representations of SL(2,R)

Let Hα be the set of holomorphic functions of T (R+) such
that

(F | G) =
2α

2πΓ(α)

∫

H

F (z)G(z) yα−1dxdy <∞.

This is a nonzero Hilbert space if α > 0
For F ∈ Hα we define

πα(g)F (z) = (a− bz)−α−1F (g−1 · z)

where g =

(

a b

c d

)

∈ SL(2,R).

The formula πα defines a unitary representation of G. It is a
highest weight representation.
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Some Properties of Hα

The space Hα is a reproducing space: If

K(z, w) =
Γ(α+ 1)

−i(z − w)α+1

then the function
Kw(·) = K(·, w)

is in Hα and
(F |Kw) = F (w),

for all w ∈ T (R+) and F ∈ Hα.
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The Lie algebra

sl(2,C) = all 2 × 2 trace zero complex matrices.

1. e◦ =

(

0 −i
i 0

)

.

2. e+ = 1
2

(

−i 1

1 i

)

3. e− = 1
2

(

i 1

1 −i

)

Each of these are in sl(2,C) and form a basis. Furthermore,
we have
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The Lie Algebra action

1. πα(e0) · F (z) = i((α+ 1)zF (z) + (1 + z2)F ′(z)).

2. πα(e+) · F (z) = (α+ 1)( z+i
2 )F (z) + (z+i)2

2 F ′(z),

3. πα(e−) · F (z) = (α+ 1)( z−i
2 )F (z) + (z−i)2

2 F ′(z),
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The K-finite vectors

A K-finite vector is a vector v ∈ Hα for which the linear span
of all translates πα(k)v, k ∈ K, is finite dimensional.
Define

γn,α(z) = cn,α

(

z − i

z + i

)n

(z + i)−(α+1)

where cn,α = iα+1 Γ(n+α+1)
Γ(n+1) . Each of these functions are in

Hα(T (R+)) and the collection forms an orthogonal basis of
K-finite vectors.

(There is an equivalent realization of all this on the space of
holomorphic functions on the unit disk, which is equivalent to
the upper half plane by the Cayley transform. In this
realization the K-finite vectors are of the form zn,
n = 0, 1, . . .. The Cayley transform of these functions gives
γn,α.)
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Moreover,
1. πα(e◦) · γn,α = −(2n+ α+ 1)γn,α.

2. πα(e+) · γn,α = −i(n+ α)γn−1,α,

3. πα(e−) · γn,α = −i(n+ 1)γn+1,α,
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The Restriction Principle

■ For a function F defined on the upper half plane let

RF (t) = F (it),

where t > 0. The map R is known as the restriction map.
Since the functions in Hα are holomorphic if follows that R
is injective. Let ka = Kia ∈ Hα.
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The Restriction Principle

■ For a function F defined on the upper half plane let

RF (t) = F (it),

where t > 0. The map R is known as the restriction map.
Since the functions in Hα are holomorphic if follows that R
is injective. Let ka = Kia ∈ Hα.

■ Lemma
(1) The linear span of {ka : a > 0} is dense in Hα(T (R+)).
(2) Rka ∈ L2(R+, dµα), where dµα = tα dt.
(3) The set {Rka : a > 0} is dense in L2(R+, dµα).
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The Restriction Principle

■ For a function F defined on the upper half plane let

RF (t) = F (it),

where t > 0. The map R is known as the restriction map.
Since the functions in Hα are holomorphic if follows that R
is injective. Let ka = Kia ∈ Hα.

■ Lemma
(1) The linear span of {ka : a > 0} is dense in Hα(T (R+)).
(2) Rka ∈ L2(R+, dµα), where dµα = tα dt.
(3) The set {Rka : a > 0} is dense in L2(R+, dµα).

■ It follows that
R : Hα → L2(R+, dµα)

is densely defined and has dense range. It is easily seen
to be closed. We can thus polarize RR∗:
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Polarization of R

Let f be in the domain of R∗. Then

RR∗f(y) = R∗f(iy)

= (R∗f | K(·, iy))Hα

= (f | K(·, iy))L2

= Γ(α+ 1)

∫ ∞

0

f(x)
xα

(x+ y)α+1
dx

=

∫ ∞

0

f(x)L(tαe−ty)(x)xαdx

=

∫ ∞

0

tαe−tyL(xαf(x))(t) dt (symmetry of L)

= L(tαL(xαf(x)))(y)
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The Laplace Transform

Define Pf(y) = L(xαf(x))(y). Then P > 0 and

P 2 = RR∗.

Therefore P =
√
RR∗. There is a unitary operator

U : L2(R+, xαdx) → Hα

so that R∗ = UP : For f ∈ L2(R+, xαdx) and z = iy we have

Uf(z) = Uf(iy) = RUf(y) = Pf(y)

=

∫ ∞

0

e−ytf(t)tα dt

=

∫ ∞

0

eiztf(t)tα dt.
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Since Uf is holomorphic we obtain

Theorem The unitary map U : L2(R+, dµα) → Hα(T (R+)) is
given by

Uf(z) =

∫ ∞

0

eiztf(t) dµα(t).
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Transferring the Representation πα

The unitary operator U allows us to transfer the
representation, πα on Hα to an equivalent representation,
λα, on L2(R+, xαdx):

πα(g)Uf = Uλα(g)f.

Theorem Suppose f ∈ L2(R+, dµα) is twice differentiable.
Then
1. λα(e+)f(t) = −i

2 (tD2 + (2t+ (α+ 1))D + (t+ α+ 1))f(t)

2. λα(e−)f(t) = −i
2 (tD2 − (2t− (α+ 1))D + (t− (α+ 1))f(t)

3. λα(e◦)f(t) = (tD2 + (α+ 1)D − t)f(t)
We define ℓαn(t) = L−1(γn,α)
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Representation implied Recursion Relations

Theorem With notation as above we have

ℓαn = e−tLα
n(2t).

Furthermore,
1. λα(e◦) · ℓαn(t) = −(2n+ α+ 1)ℓαn(t).

2. λα(e+) · ℓαn(t) = −i(n+ α)ℓαn−1(t),

3. λα(e−) · ℓαn(t) = −i(n+ 1)ℓαn+1(t),
which we can write
1. (tD2 + (α+ 1)D + (2n+ α+ −t)ℓαn = 0,

2. (tD2 + (2t+ (α+ 1))D + (t+ α+ 1))ℓαn = 2(n+ α)ℓαn+1,

3. (tD2 − (2t− (α+ 1))D + (t− (α+ 1)))ℓαn = 2(n+ 1)ℓαn−1.
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These formulas, in turn, imply the following recursion
relations for the Laguerre polynomials Lα

n.
1. (tD2 + (α− t+ 1)D + n)Lα

n(t) = 0,
2. tDLα

n(t) = nLα
n(t) − (n+ α)Lα

n−1(t),

3. tDLα
n(t) = (n+ 1)Lα

n+1(t) − (n+ α+ 1 − t)Lα
n(t).
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Summary

■ Thus the representation theory of Sl(2,R) encodes the
classical differential recursion relations for the Laguerre
polynomials.
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Summary

■ Thus the representation theory of Sl(2,R) encodes the
classical differential recursion relations for the Laguerre
polynomials.

■ The formula for the generating function falls right out of the
representation theory here presented.
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Summary

■ Thus the representation theory of Sl(2,R) encodes the
classical differential recursion relations for the Laguerre
polynomials.

■ The formula for the generating function falls right out of the
representation theory here presented.

■ Further analysis (of a less representation nature) gives the
recursion relations in the α parameter.
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Faraut-Koranyi Generalized Laguerre
Polynomials on Jordan Algebras
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Jordan Algebras

■ GENERAL SETUP
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Jordan Algebras

■ GENERAL SETUP
■ Let J be a simple finite

dimensional Euclidean
Jordan Algebra with unit e.
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Jordan Algebras

■ GENERAL SETUP
■ Let J be a simple finite

dimensional Euclidean
Jordan Algebra with unit e.

■ Ω =
{

x2 : x ∈ J
}

◦
: a

symmetric cone.
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Jordan Algebras

■ GENERAL SETUP
■ Let J be a simple finite

dimensional Euclidean
Jordan Algebra with unit e.

■ Ω =
{

x2 : x ∈ J
}

◦
: a

symmetric cone.
■ Let H be connected

component of the
subgroup of GL(J) that
leaves Ω invariant.
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■ GENERAL SETUP
■ Let J be a simple finite

dimensional Euclidean
Jordan Algebra with unit e.

■ Ω =
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}

◦
: a
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■ Let H be connected

component of the
subgroup of GL(J) that
leaves Ω invariant.

■ Let L be the fixed point
subgroup of e.
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Jordan Algebras

■ GENERAL SETUP
■ Let J be a simple finite

dimensional Euclidean
Jordan Algebra with unit e.

■ Ω =
{

x2 : x ∈ J
}

◦
: a

symmetric cone.
■ Let H be connected

component of the
subgroup of GL(J) that
leaves Ω invariant.

■ Let L be the fixed point
subgroup of e.

■ The H acts transitively on
Ω and Ω = H/L.
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symmetric cone.
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component of the
subgroup of GL(J) that
leaves Ω invariant.

■ Let L be the fixed point
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Ω and Ω = H/L.

■ EXAMPLE
■ J = Herm(n) with product
A ◦B = 1

2 (AB +BA) and
e = I
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■ Ω = Herm+(n)



Fauraut-Koranyi
Jordan Algebras
Generalized Power
Functions
The Gamma
Function
Generalized
Binomial
Coefficient
Generalized
Laguerre
Polynomials
Orthogonality

Laguerre Functions and Differential Recursion Relations - p. 22/42

Jordan Algebras

■ GENERAL SETUP
■ Let J be a simple finite

dimensional Euclidean
Jordan Algebra with unit e.

■ Ω =
{

x2 : x ∈ J
}

◦
: a

symmetric cone.
■ Let H be connected

component of the
subgroup of GL(J) that
leaves Ω invariant.

■ Let L be the fixed point
subgroup of e.

■ The H acts transitively on
Ω and Ω = H/L.

■ EXAMPLE
■ J = Herm(n) with product
A ◦B = 1

2 (AB +BA) and
e = I

■ Ω = Herm+(n)

■ H = GL(n,C) acting on Ω
by g · x = gxg∗
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Jordan Algebras

■ GENERAL SETUP
■ Let J be a simple finite

dimensional Euclidean
Jordan Algebra with unit e.

■ Ω =
{

x2 : x ∈ J
}

◦
: a

symmetric cone.
■ Let H be connected

component of the
subgroup of GL(J) that
leaves Ω invariant.

■ Let L be the fixed point
subgroup of e.

■ The H acts transitively on
Ω and Ω = H/L.

■ EXAMPLE
■ J = Herm(n) with product
A ◦B = 1

2 (AB +BA) and
e = I

■ Ω = Herm+(n)

■ H = GL(n,C) acting on Ω
by g · x = gxg∗

■ L = U(n)

■ Herm+(n) ≃
GL(n,C)/U(n)



Fauraut-Koranyi
Jordan Algebras
Generalized Power
Functions
The Gamma
Function
Generalized
Binomial
Coefficient
Generalized
Laguerre
Polynomials
Orthogonality

Laguerre Functions and Differential Recursion Relations - p. 23/42

Generalized Power Functions

The expansion formula for the Laguerre polynomials involve
Gamma functions, a binomial coefficient, and powers of x.
Each of these objects have analogues on Jordan algebras.
Let J be a Euclidean Jordan algebra of dimension d. If J has
rank r then there are r principle minors,

∆1,∆2, . . . ,∆r.

Let m = (m1, . . . ,mn) be a multi-index of positive integer
such that m1 ≥ m2 ≥ · · · ≥ mn ≥ 0. Define

∆m = ∆m1−m2

1 · · ·∆mr
r .

Let

ψm(x) =

∫

L

∆m(lx) dl.

ψm is a nonzero L-invariant polynomials on J of degree
|m| = m1 +m2 + · · · +mr and are referred to as generalized
power functions.
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The Gamma Function

The function ∆r is the determinant function on J and usually
denoted by ∆. Furthermore, if d = dim(J) then ∆

−d
r dx is the

H-invariant measure of Ω.

The classical Gamma function is given by

Γ(s) =
∫∞

0
e−tts 1

t
dt.
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The Gamma Function

The function ∆r is the determinant function on J and usually
denoted by ∆. Furthermore, if d = dim(J) then ∆

−d
r dx is the

H-invariant measure of Ω.

The classical Gamma function is given by

Γ(s) =
∫∞

0
e−tts 1

t
dt.

For the cone Ω we have

ΓΩ(s) =
∫

Ω
e− tr t∆s(t) ∆(t)−

d
r dt,

where tr is the trace operator on J and s is a multi-index.
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Generalized Binomial Coefficient

The usual binomial coefficient can be defined by the rule

(1 + x)n =

n
∑

k=0

(

n

k

)

xk.

Since (1 + x)n is a polynomial of degree n it is a linear
combination of {1, x, . . . , xn}. The coefficient of xk thus
uniquely define the binomial coefficients.

The L-invariant function ψm is a polynomial of degree |m|
and the collection {ψm : |m| ≤ α} spans the set of all
L-invariant polynomials of degree ≤ α. The L-invariant
polynomial ψm(e+ x) has degree |m| and is thus a linear
combination of terms of the form ψn, where |n| ≤ |m|. The
generalize binomial coefficients , are thus defined such that

ψm(e+ x) =
∑

|n|≤|m|

(

m

n

)

ψn(x).
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Generalized Laguerre Polynomials

Recall the classical Laguerre polynomial:

Lα
n(x) =

n
∑

k=0

Γ(n+α+1)
Γ(k+α+1)

(

n

k

)

(−x)k
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Generalized Laguerre Polynomials

Recall the classical Laguerre polynomial:

Lα
n(x) =

n
∑

k=0

Γ(n+α+1)
Γ(k+α+1)

(

n

k

)

(−x)k

Faraut and Koranyi define the generalized Laguerre
polynomial by the formula:

Lν
m(x) =

∑

|n|≤|m|

ΓΩ(ν+m)
ΓΩ(ν+n)

(

m

n

)

ψn(−x).
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Orthogonality

■ Let L2(Ω, dµν) be the space of square integrable functions
on Ω with respect to the measure dµν = ∆ν− d

r (x)dx.
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Orthogonality

■ Let L2(Ω, dµν) be the space of square integrable functions
on Ω with respect to the measure dµν = ∆ν− d

r (x)dx.

■ Let ℓνm(x) = e− tr(x)Lν
m(2x). These are the generalized

Laguerre Functions .
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Orthogonality

■ Let L2(Ω, dµν) be the space of square integrable functions
on Ω with respect to the measure dµν = ∆ν− d

r (x)dx.

■ Let ℓνm(x) = e− tr(x)Lν
m(2x). These are the generalized

Laguerre Functions .
■ THEOREM The set

{ℓνm(x) : m ≥ 0}

is an orthogonal basis of

L2(Ω, dµν)L.
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Tube-type Domains, Hermitian
Symmetric Groups, and Highest Weight

Representations
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Tube-type domains and Hermitian groups

Let T (Ω) = iΩ + J ⊂ JC. Let Aut(T (Ω)) be the group of
biholomorphic automorphisms of T (Ω) and G = Aut(T (Ω))◦.
If K is the fixed point group for the point ie ∈ T (Ω) then K is
a maximal compact subgroup of G and

T (Ω) = G/K.

The groups H and L that are associated with Ω are
subgroups of G.

The groups G that can arise have been classified. Some of
the groups that arise in this way are:

■ Sl(2,R)

■ SU(n, n)

■ Sp(n,R)

■ SO∗(4m)
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Highest Weight Representations

In a manner analogous to the usual upper half plane we may
define a Hilbert space Hν of holomorphic functions on T (Ω):

Hν =

{

F : T (Ω) → C : dν

∫

T (Ω)

|F (z)|2 ∆(z)ν− 2d
r dz <∞

}

.

Hν is nonzero if and only if ν > 1 + a(r − 1), where a is a
constant that depends on the Jordan algebra J .

There is a unitary highest weight representation, πν , of G on
Hν given by

π(g)F (z) = J(g−1, z)
νr
2dF (g−1z),

where J(g, z) is the complex Jacobian of the action g · z. This
representation is a highest weight representation.
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Some K-finite vectors

■ The generalized power functions, ψm, extend to JC and
their Cayley transform:

qm,ν(z) = ∆(z + e)−νψm

(

z − e

z + e

)

,

are in HL
ν . These functions play a role analogous to

γn,α(x) for SL(2,R).
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Some K-finite vectors

■ The generalized power functions, ψm, extend to JC and
their Cayley transform:

qm,ν(z) = ∆(z + e)−νψm

(

z − e

z + e

)

,

are in HL
ν . These functions play a role analogous to

γn,α(x) for SL(2,R).

■ THEOREM The set
{qm,ν : m ≥ 0}

is an orthogonal basis of HL
ν .
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The Restriction Principle

For F a holomorphic function on T (Ω) we define the
restriction map

RF (x) = F (ix).

Then R is a densely defined, closed, and has dense image.
Polarization of R∗ gives

THEOREM The map,

Lν(f)(z) =

∫

Ω

e−(iz,x)f(x) dµν ,

defines a unitary isomorphism of L2(Ω, dµν) onto Hν .

Let λν be the representation of G equivalent to πν via Lν .
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Technical difficulties

The representation theoretic interpretation of the differential
recursion relations in the SL(2,R) case relied on having
explicit formulas for the action of πν(x) and how they act on
γn,α. Recall
1. πα(e0) · F (z) = i((α+ 1)zF (z) + (1 + z2)F ′(z)).

2. πα(e+) · F (z) = (α+ 1)( z+i
2 )F (z) + (z+i)2

2 F ′(z),

3. πα(e−) · F (z) = (α+ 1)( z−i
2 )F (z) + (z−i)2

2 F ′(z),
and
1. πα(e◦) · γn,α = −(2n+ α+ 1)γn,α.

2. πα(e+) · γn,α = −i(n+ α)γn−1,α,

3. πα(e−) · γn,α = −i(n+ 1)γn+1,α.
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The subalgebra gL
C

In general we can compute formulas for the operators πν(x),
x ∈ gC, but we do not have explicit formulas for their action
on qm,ν . Part of the problem arises from the fact that πν(x)

does not leave HL
ν invariant for all x ∈ gC.

However, the subalgebra

gL
C = {x ∈ gC : Ad(l)x = x, for all l ∈ L}

does leave HL
ν invariant and is, furthermore, a three

dimensional subalgebra isomorphic to SL(2,C).
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A basis of gL
C

Since L ⊂ K the center of K, k, is a subset of gL
C. As G is a

Hermitian group the center of k is spanned by a single vector,
X◦. The operator adX◦ on gC has only the eigenvalues 0, 1,
−1.
■ The 0-eigenspace is kC

■ The +1-eigenspace is denoted p+

■ The −1 eigenspace is denoted p−.
The intersection of gL

C and h, the Lie algebra of H, is one
dimensional and spanned by a single vector Z◦. It turns out
that Z◦ = X+ +X−, where X+ ∈ p+ and X− ∈ p−.

LEMMA The Lie algebra gL
C is spanned by X◦, X+ and X−

and gL
C ∩ g is spanned by iX◦, Z◦ = X+ +X−, and

i(X+ −X−).
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The action on HL
ν

THEOREM We have

πν(X◦)qm,ν = (rν + |m|)qm,ν

and

πν(Z◦)qm,ν =

r
∑

j=1

(

m

m − ej

)

qm−ej,ν

−
r
∑

j=1

(ν +mj −
a

2
(j − 1))cm(j)qm+ej,ν .

Observe that the action of Z◦ and qm,ν involves both a shift
upward and a shift downward in the multi-indices. But it is
known that this is precisely the role of p− and p+; their
actions are the so-called raising and lowering operators (or
creation and annihilation operators).
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Since Z◦ = X+ +X− we have the following corollary.

COROLLARY

πν(X+)qm,ν =

r
∑

j=1

(

m

m − ej

)

qm−ej,ν

and

πν(X−)qm,ν = −
r
∑

j=1

(ν +mj −
a

2
(j − 1))cm(j)qm+ej,ν .
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Transferring the action to L2(Ω, dµν)

THEOREM

Lν(ℓνm) = ΓΩ(ν)qm,ν .

THEOREM

λν(Z◦)f(x) = (νr +E)f(x),

where E is the Euler operator:
Ef(x) = d

dt
f(tx)|t=1 = d

dt
f(exp(tZ◦))|t=1.

THEOREM
■ λν(X◦)ℓνm = (rν + 2 |m|)ℓνm

■ λν(X+)ℓνm =
∑r

j=1

(

m

m − ej

)

(mj − 1 + v− a
2 (j− 1))ℓνm−ej

■ λν(X−)ℓνm =
∑r

j=1 cm(j)ℓνm+ej
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Differential Recursion Relations for SU(n, n)

For SU(n, n) we have determine explicitly the formulas for
the algebraic action. When applied to X◦, X+ and X− and to
the Laguerre functions we obtain the following differential
recursion relations.

■ tr(s∇∇ + ν∇− s)ℓνm = −(rν + 2|m|)ℓνm.
■ 1

2 tr(s∇∇ + (νI + 2s)∇ + (νI + s))ℓνm(s) =

−∑r

j=1

(

m

m − γj

)

(mj − 1 + ν − (j − 1))ℓνm−γj

■ 1
2 tr(s∇∇+(νI − 2s)∇+(s− νI))ℓνm = −∑r

j=1 cm(j)ℓνm+γj
.

Notice the similarity to the classical case:
■ (tD2 + (α+ 1)D − t)ℓαn = −(2n+ α+ 1)ℓαn,
■ (tD2 + (2t+ (α+ 1))D + (t+ α+ 1))ℓαn = −2(n+ α)ℓαn−1,

■ (tD2 − (2t− (α+ 1))D + (t− (α+ 1)))ℓαn = −2(n+ 1)ℓαn+1.
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Results in Other Settings

■ With the unit disk playing the role of the upper half plane
and the interval (0, 1) playing the role of the cone R+ we
get a similar theory involving the Meixner-Pollacyk
polynomials.
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Results in Other Settings

■ With the unit disk playing the role of the upper half plane
and the interval (0, 1) playing the role of the cone R+ we
get a similar theory involving the Meixner-Pollacyk
polynomials.

■ Since G/K has a realization as a bounded symmetric
domain the result extend.

■ The Spherical-Fourier transform transfers these results to
a space on Weyl-group invariant functions on an r
dimensional space a∗

C
. The recursion relations take the

form of difference equations.
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■ Related analysis suggests that such generalizations
should extend to generalizations of other special functions
like the Hermite and Legendre polynomials.
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■ We have only dealt with the so-called scalar highest weight
representations. Is there an analogue with extensions to
vector valued Laguerre functions?
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Directions

■ Related analysis suggests that such generalizations
should extend to generalizations of other special functions
like the Hermite and Legendre polynomials.

■ We have only dealt with the so-called scalar highest weight
representations. Is there an analogue with extensions to
vector valued Laguerre functions?

■ The Laguerre functions defined by Faraut and Koranyi are
L-invariant. How does the theory change when one
considers functions that transform according to a character
of L?
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