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Abstract

It is proved that a graph does not contain an octahedron minor if and only if it is constructed from

{K1,K2,K3,K4}∪{C2

2n−1 : n ≥ 3} and five other internally 4-connected graphs by 0-, 1-, 2-, and 3-sums.

1 Introduction

All graphs considered in this paper are simple. For any two graphs G and H, G is called H-free if no minor

of G is isomorphic to H. In graph theory, many important problems are about H-free graphs. For instance,

Hadwiger’s Conjecture [3], made in 1943, states that every Kn-free graph is n−1 colorable. This conjecture is

still open for n ≥ 7 and the main difficulty for attacking the conjecture is that we don’t have enough structural

information on Kn-free graphs. A closely related problem is a conjecture of Jorgensen [6], which says that

every 6-connected K6-free graph is obtained from a planar graph by adding a new vertex and arbitrary edges

between this vertex and the planar graph. This conjecture does provide structural information on K6-free

graphs and it immediately implies Hadwiger’s Conjecture for the case n = 6. However, this conjecture is

also open. Recently, Kawarabayashi et. al. [7] proved Jorgensen’s conjecture for sufficiently large graphs.

Since Jorgensen’s conjecture is already hard, to completely characterize K6-free graphs is an even harder

problem.

There are only a handful of graphs H for which H-free graphs have been completely characterized. At

this point, for each 3-connected graph H with at most eleven edges, H-free graphs are characterized [2].

These characterizations include classical results on K4-, K3,3-, Prism-, and K5-free graphs. For 3-connected

graphs with twelve or more edges, there are only two results: Robertson characterized V8-free graphs (see

Lemma 3.2) and Maharry characterized cube-free graphs [8]. In this paper, we consider the octahedron, a

graph also known as K2,2,2, which is shown in Figure 1.1. The octahedron has twelve edges, like V8 and the

cube, and it is only three edges away from K6. Results in this paper will be used in a subsequent paper

to characterize graphs without K1,1,2,2 (octahedron plus an edge) as a minor, which will be the first result

on excluding a thirteen-edge graph. Our hope is to go one step further by charactering K6\e-free graphs,

which could eventually lead to a characterization of K6-free graphs.

According to a classical result of Halin and Jung [4], no 4-connected planar graph is octahedron-free (or

oct-free for short). Maharry [9] sharpened this fact by showing that a 4-connected graph is oct-free if and

only if the graph is isomorphic to C2
2n−1 for some integer n ≥ 3, where C2

2n−1 is obtained from an odd cycle
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Figure 1.1: The Octahedron

C2n−1 by joining every pair of vertices of distance two in the cycle. Note that C2
5 = K5. In this paper we

strengthen Maharry’s result by completely characterizing all oct-free graphs.

For k = 0, 1, 2, 3, we define k-sum as follows. Let G1, G2 be disjoint graphs with more than k vertices.

The 0-sum of G1, G2 is their disjoint union; a 1-sum of G1, G2 is obtained by identifying one vertex of G1

with one vertex of G2; a 2-sum of G1, G2 is obtained by identifying an edge of G1 with an edge of G2, where

the common edge might be deleted after the identification; a 3-sum of G1, G2 is obtained by identifying

a triangle of G1 with a triangle of G2, where some of the three common edges might be deleted after the

identification. In this paper we denote the Petersen graph by P10.

Theorem 1.1 A graph is oct-free if and only if it is constructed by 0-, 1-, 2-, and 3-sums starting from

graphs in {K1,K2,K3,K4} ∪ {C2
2n−1 : n ≥ 3} ∪ {L′

4, L5, L
′
5, L

′′
5 , P10}.

L4 P10
L5 L5 L5

’ ’ ’’

Figure 1.2: Five basic oct-free graphs

Since 4-connected graphs are not k-sums (k ≤ 3) of any two graphs, Maharry’s result follows from

Theorem 1.1 immediately. We remark that our proof does not assume Maharry’s result.

Let k ≥ 0 be an integer. A k-separation of a graph G is a pair (G1, G2) of induced subgraphs of G

such that E(G1) ∪ E(G2) = E(G), V (G1) ∪ V (G2) = V (G), V (G1)− V (G2) 6= ∅, V (G2)− V (G1) 6= ∅, and

|V (G1) ∩ V (G2)| = k. If G is 3-connected with five or more vertices, then we call G internally 4-connected

if for every 3-separation (G1, G2) of G, at least one of G1, G2 is isomorphic to K1,3. As pointed out by

a referee, a byproduct of our proof is Theorem 1.2, an unpublished result of Thomas, which characterizes

internally 4-connected oct-free graphs.

For any integer n ≥ 3, let V2n be the cubic graph that consists of a cycle v1v2...v2nv1 and a matching

v1vn+1, v2vn+2, ..., vnv2n, which are called rungs of V2n. Note that V6 = K3,3. Let S30 = (X,Y,E) be the

unique bipartite graph with |X| = 5 and |Y | = 10 such that every y ∈ Y has degree three and no two vertices

in Y have the same set of neighbors. Let Γ denote the graph in Figure 1.3.

Theorem 1.2 An internally 4-connected graph G is oct-free if and only if either G = V2n or C2
2n−1, for

some n ≥ 3, or G is a minor of P10, L
′′
5 , Γ, or S30.
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Figure 1.3: Graph Γ

As we will see in the next section that, if G is a k-sum (k = 0, 1, 2, 3) of two oct-free graphs, then G is

also oct-free. Therefore, to prove Theorem 1.1, we only need to determine all oct-free graphs that are not

k-sums (k = 0, 1, 2, 3) of any two oct-free graphs. Graphs with this property will be called prime graphs.

Using this language, Theorem 1.1 can be restated as: all prime graphs belong to the set {K1, K2, K3, K4} ∪

{C2
2n−1: n ≥ 3} ∪ {L′

4, L5, L
′
5, L

′′
5 , P10}. In fact, it is not difficult to verify that these are precisely all prime

graphs. In other words, this set is the unique minimal set for which Theorem 1.1 holds.

To prove Theorem 1.1, we first establish in Section 2 that all prime graphs are internally 4-connected,

except for K1, K2, K3, K4. Thus, from that point on, we will only need to consider internally 4-connected

graphs. It should be pointed out that not all internally 4-connected oct-free graphs are prime graphs. For

instance, V8 is internally 4-connected and oct-free, but it is a 3-sum of K5 and three copies of K4.

The remainder of the proof of Theorem 1.1 is divided into three main parts. In Section 3 we prove that

Kn (n = 1, 2, 3, 4, 5), C2
7 , and L5 are the only V8-free prime graphs; in Section 5 we prove that graphs C2

2n−1

(n ≥ 6) are the only prime graphs having a V10 minor; in Section 6 and Section 7 we prove that C2
9 , L

′
4, L

′
5,

L′′
5 , and P10 are the only V10-free prime graphs having a V8 minor. The main tool we use in dealing with

the last two parts is a splitter theorem of Johnson and Thomas [5], which is stated in Section 4. Using this

result, we are able to generate all internally 4-connected oct-free graphs. Due to the intensity of the case

analysis, some cases in the last part are handled by a computer (a detailed explanation of the computation

can be found in [1]). Finally, we prove Theorem 1.1 and Theorem 1.2 in section 8.

In this paper, unless otherwise specified, “G contains H” means that G contains a minor isomorphic to

H. We will also say that “G is H” if G is isomorphic to H. For any S ⊆ V (G), we denote by G[S] the

subgraph of G induced on S. A non-edge of G is an edge of the complement of G. If e1, ..., ek are non-edges

of G, then G+ e1 + ...+ ek is the graph obtained from G by adding edges e1, ..., ek.

2 k-sums

The goal of this section is to show that oct-free graphs are precisely 0-, 1-, 2-, 3-sums of K1, K2, K3, K4, and

internally 4-connected oct-free graphs. This result will allow us to focus on internally 4-connected graphs.

Recall that a graph is 4-connected if it has more than four vertices and has no k-separations for any k ≤ 3.

In fact, as shown in the next theorem, the result we are aiming for holds not only for the octahedron, but

also for a general 4-connected graph.

Theorem 2.1 Let H be a 4-connected graph. Then H-free graphs are precisely 0-, 1-, 2-, 3-sums of graphs

in H = {K1, K2, K3, K4} ∪ {internally 4-connected H-free graphs}.
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The essence of this result is not new, but the author was not able to find a reference that contains this

result explicitly. For the completeness of this paper, we include a proof, which is divided into two lemmas.

Let (G1, G2) be a k-separation (k ≤ 3) of a graph G. For i = 1, 2, let G+

i be obtained from Gi by adding

all edges between any two non-adjacent vertices in V (G1) ∩ V (G2). Let G′
1, G

′
2 be disjoint graphs that are

isomorphic to G+
1 , G

+
2 , respectively. Then it is straightforward to verify that G is (isomorphic to) a k-sum

of G′
1 and G′

2. To simplify our notation, we will simply say that G is a k-sum of G+
1 and G+

2 .

Lemma 2.2 Let (G1, G2) be a k-separation (k ≤ 3) of G. Then the following hold.

(i) G is a k-sum of G+
1 and G+

2 ;

(ii) if k ≤ 2 and G is k-connected, then both G+
1 and G+

2 are minors of G;

(iii) if G is 3-connected and neither G1 nor G2 is K1,3, then both G+
1 and G+

2 are minors of G.

Proof. Conclusion (i) follows from the above discussion. Conclusion (ii) is clear if k = 0 or 1. In fact, in

these two cases, G+
1 = G1 and G+

2 = G2, and they are induced subgraphs of G. To settle the case for k = 2,

choose vi ∈ V (Gi)\V (Gj) ({i, j} = {1, 2}). Since G is 2-connected, it has a cycle C containing both v1, v2.

Let Pi (i = 1, 2) be the path obtained by restricting C to Gi. Then G1∪P2 and G2∪P1 contain G+
1 and G+

2 ,

respectively. Finally, we prove (iii). By symmetry, we only need to consider G+
1 . Since G is 3-connected,

G2 must be connected. Moreover, if G2 is a tree, then all its leaves are in V (G1) ∩ V (G2) and all vertices

in V (G2)\V (G1) have degree three or more. But these imply G2 = K1,3, which is impossible, so G2 must

have a cycle C. Let v ∈ V (G1)\V (G2) and let P1, P2, P3 be three vertex-disjoint (except at v) paths of G

from v to C. Then it is easy to see that C can be contracted (along paths P1 ∩ G2, P2 ∩ G2, P3 ∩ G2) to

V (G1) ∩ V (G2) and thus G+
1 is a minor of G.

Lemma 2.3 Let 0 ≤ k ≤ 3 and let H be a graph with no k′-separations for any k′ ≤ k. If G is a k-sum of

two H-free graphs, then G is also H-free.

Proof. Since a k-sum always leads to a k-separation in the resulting graph, we may assume that G has

a k-separation (G1, G2) such that both G+
1 and G+

2 are H-free. Suppose that, for a contradiction, H is a

minor of G. Since vertices of H are obtained from contracting connected subgraphs of G, there must exist a

set {Wv : v ∈ V (H)} of pairwise disjoint subsets of V (G) and a set {fe : e ∈ E(H)} of edges of G such that

(i) G[Wv] is connected, for every v ∈ V (H), and

(ii) if e = uv ∈ E(H), then fe is between Wu and Wv.

That is, H is modeled by {Wv} and {fe}. Let V0 = V (G1) ∩ V (G2) and let Z be the set of vertices v of

H with Wv ∩ V0 6= ∅. Then |Z| ≤ |V0| = k. We first observe that there do not exist vertices v1, v2 ∈ V (H)

with Wv1
⊆ V (G1)\V0 and Wv2

⊆ V (G2)\V0. Suppose otherwise. Since V0 separates Wv1
and Wv2

in G,

Z separates v1 and v2 in H, which implies that H has a k′-separation with k′ = |Z| ≤ k, contradicting our

assumption on H. Therefore, by symmetry, we may assume that Wv ⊆ V (G1), for all v ∈ V (H)\Z. For

each v ∈ V (H), let W ′
v = Wv ∩ V (G+

1 ). Since G+
1 [V0] is a clique, each G+

1 [W
′
v] remains to be connected.

Then it is straightforward to verify that an H-minor can be obtained from G+
1 by contracting each G+

1 [W
′
v],

which is a contradiction and thus G has to be H-free.

Remark 2.4 In the above proof we did not use the assumption k ≤ 3. What we used was that a k-sum of

two graphs is obtained by identifying a clique of one graph with a clique of the other and then deleting some

common edges. Since this definition of k-sum (which is indeed the one used in the literature) is valid for all

k, the above proof in fact shows that Lemma 2.3 holds for all k ≥ 0.
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Proof of Theorem 2.1. Let G be H-free. If G is not in H, then G has a k-separation (G1, G2) for which

either k < 3 or k = 3 and such that neither G1 nor G2 is K1,3. By choosing the smallest such k we deduced

that G is k-connected. Then, by Lemma 2.2, G is a k-sum of G+
1 , G

+
2 , which are minors of G. It follows

that G is a k-sum of H-free graphs. Clearly, repeating this argument shows that all H-free graph is are 0-,

1-, 2-, 3-sums of graphs in H. Conversely, Lemma 2.3 immediately implies that 0-, 1-, 2-, 3-sums of graphs

in H are H-free. Thus the theorem is prove.

The following similar result can be proved similarly using the last two lemmas. The proof is omitted.

Theorem 2.5 If H is k-connected (k = 1, 2, 3), then H-free graphs are precisely 0-, ..., (k − 1)-sums of

K1, ...,Kk and k-connected H-free graphs.

3 V8-free graphs

In proving Theorem 1.1, as explained in the introduction, oct-free graphs are divided into three classes,

depending on if they contain V8 or V10. We first consider V8-free graphs. The goal of this section is to

establish the following.

Lemma 3.1 All V8-free prime graphs belong to {K1,K2,K3,K4,K5, C
2
7 , L5}.

Our proof is based on an unpublished result of Robertson (see 1.4 of [5]) that characterizes V8-free graphs.

A double-wheel is obtained from a cycle by adding two adjacent vertices and making both of them adjacent

to all vertices on the cycle. An alternating double-wheel is obtained from a cycle v1v2...v2nv1 by adding two

adjacent vertices u1, u2 and adding edges uivj for all i, j of the same parity.

Lemma 3.2 Every internally 4-connected V8-free graph belongs to one of the following five families: planar

graphs, graphs on seven or fewer vertices, double-wheels and alternating double-wheels, graphs with four

vertices meeting all edges, and the line graph of K3,3.

We will need three results for analyzing graphs listed in Lemma 3.2. The first is Theorem 9 of [10].

Lemma 3.3 Let G be a 3-connected oct-free planar graph such that for any 3-separation (G1, G2) of G, at

least one of G1, G2 has only four vertices. Then either G = L5 or G is a subgraph of Q.

6 7

3

4

5
2

1

8 6 7

543

1 2

Figure 3.1: Graphs Q and K∇
3,3

The next is a characterization of K∇
3,3-free graphs [2].
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Lemma 3.4 Every 3-connected K∇
3,3-free graph belongs to one of the following three families: planar graphs,

graphs with six or fewer vertices, graphs with three vertices meeting all edges.

The following is a simple observation that follows immediately from the definition of internally 4-connected

graphs. It is listed here because we will use it several times.

Lemma 3.5 If v is a cubic vertex of an internally 4-connected graph, then v is not in a triangle.

Now we begin to analyze graphs listed in Lemma 3.2. Let L4 denote the cube.

Lemma 3.6 If G is an internally 4-connected oct-free planar graph, then G is L4 or L5.

Proof. Note that G satisfies all assumptions in Lemma 3.3. Thus G = L5 or G is a subgraph of Q. Clearly,

we only need to consider the second case. Since G has at least five vertices and Q has only four non-cubic

vertices, G must contain a cubic vertex of Q. By symmetry, let 8 be a vertex of G. Then 1, 2, 3 are also

vertices of G. From Lemma 3.5 we deduce that 12, 13, and 23 are not edges of G. Since vertex 1 has degree

at least three in G, at least one of 6 and 7 is in G, which implies that 14 is not an edge of G. It follows that

1 is a cubic vertex of G and both 6 and 7 are in G. Now it is easy to see that G consists of the heavy edges,

which means G = L4.

Lemma 3.7 (i) The only internally 4-connected graph on five vertices is K5;

(ii) The only internally 4-connected oct-free graph on six vertices is K3,3;

(iii) The only internally 4-connected oct-free graph on seven vertices is C2
7 .

Proof. Conclusion (i) follows from Lemma 3.5 immediately. Next, let G be an internally 4-connected

oct-free graph on six vertices. If the minimum degree of G is at least four, then the complement of G is a

matching, which implies that G contains the octahedron since the complement of the octahedron is a perfect

matching. Thus G has a cubic vertex v. By Lemma 3.5, the three neighbors of v are pairwise non-adjacent,

which implies that they are also cubic and not in any triangle. Consequently, G is K3,3 and so (ii) is proved.

It remains to consider the case that G has seven vertices. By Lemma 3.6 we may assume that G is

nonplanar. Then we deduce from Lemma 3.4 that K∇
3,3 is a spanning subgraph of G. Since G is internally

4-connected, {3, 4, 5} does not separate {1, 2} from {6, 7} in G, so G must have an edge from {1, 2} to {6, 7}.

By symmetry, we assume that H = K∇
3,3 + 16 is a subgraph of G. By Lemma 3.5, vertex 2 is not cubic in

G, so 2 is adjacent to 3, 6, or 7. Similarly, 3 is adjacent to 2, 4, or 5. Note that H + 23, H + 26 + 34,

H +26+ 35, and H +27+ 34 contain the octahedron (by contracting 57, 57, 47, and 56 respectively). Thus

H +27+ 35 = C2
7 is a subgraph of G. Now there is only one way (up to isomorphism) to add an edge to C2

7

and the new graph contains H + 23 and thus also the octahedron. Thus G = C2
7 , as required.

For t = 4, 5, let K−
4,t be obtained from K4,t by deleting a matching of size t−1. Note that K−

4,4 is exactly

the alternating double wheel on eight vertices.

Lemma 3.8 Let G be internally 4-connected, V8-free, and oct-free. Then G belongs to {K5, K3,3, C
2
7 , L4,

L5, K
−
4,4, K

−
4,5}.

Proof. By Lemma 3.2 we need to consider five cases. If G is planar or G has at most seven vertices, then

the result follows from Lemma 3.6 and Lemma 3.7. If G is a double-wheel or an alternating double-wheel
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with |V (G)| ≥ 8, then either G = K−
4,4 or G contains the octahedron. Note that the line graph of K3,3

contains the octahedron. Thus we only need to consider the case when G has a set X of four vertices that

meet all edges of G. Let Y = V (G)−X and let Y3, Y4 consist of vertices of Y of degree 3 and 4, respectively.

Since G is internally 4-connected, no two vertices in Y3 have the same neighbors. Observe that deleting two

non-incident edges from K4,4 results in a graph that contains the octahedron. Thus we deduce from |Y | ≥ 4

that |Y4| ≤ 1. Now, by Lemma 3.5, G = L4 if |Y4| = 0, and G = K−
4,4 or K−

4,5 if |Y4| = 1.

Proof of Lemma 3.1. Let G be a V8-free prime graph. If G is not internally 4-connected, by Theorem 2.1,

G is K1, K2, K3, or K4. Assume G is internally 4-connected. Then G is one of the graphs listed in Lemma

3.8. Note that K3,3 is a 3-sum of three copies of K4, L4 is a 3-sum of five copies of K4 (see Q in Figure 3.1),

and K−
4,t (t = 4, 5) is a 3-sum of K5 and t− 1 copies of K4. Thus G ∈ {K5, C

2
7 , L5}, as required.

4 Splitter theorems

Before we start analyzing graphs that contain V8, we present two splitter theorems, which are the main tools

that we will use. The first is a result of Seymour [11] (see 1.2 of [5]). A graph H is a proper minor of a graph

G if H is a minor of G and |E(H)| < |E(G)|.

Lemma 4.1 Let H be a simple 3-connected proper minor of a 3-connected simple graph G, where H is not

a wheel. Then G has a simple 3-connected minor J such that H = J\e or J/e, for some edge e of J .

The following is our first application of this theorem in this paper. As always, the reverse of a contraction

is called a split of a vertex. If a vertex v of H is split, note that the two new vertices do not have a common

neighbor and they both have degree at least three, which imply that v has degree at least four in H.

Lemma 4.2 Let G be a 3-connected oct-free graph. If n ≥ 4 is an integer such that C2
2n−1 is a minor of G

while V2n is not, then G = C2
2n−1.

Proof. Suppose G 6= C2
2n−1. By Lemma 4.1, G has a minor J which is obtained from C2

2n−1 by adding an

edge or splitting a vertex. If J = C2
2n−1 + e, then J contains C2

7 + e, which contains the octahedron (by

Lemma 3.7(iii)), contradicting our assumption. Thus J is obtained from C2
2n−1 by splitting a vertex. Since

all vertices of C2
2n−1 are symmetric, we may focus on any one particular vertex v. As illustrated in Figure

4.1, there are three possible splits at v. Note that the first two contain V2n (illustrated with heavy edges)

and the last one contain the octahedron (by contracting the heavy paths labeled 1, 2, 3, and 5, respectively).

Again, both cases contradict the assumptions of the lemma and thus we must have G = C2
2n−1.

3

4

5

6

1

1

12

2

2

v 3 5

Figure 4.1: Three splits of v in C2
11

7



We need some definitions for the next splitter theorem. Let H = (V,E) be a graph. If v ∈ V has degree

three and two of its neighbors are joined by an edge e ∈ E, then we call e a violating edge and (v, e) a

violating pair of H. Notice that if H is internally 4-connected yet H + e is not, then (v, e) is a violating pair

for some cubic vertex v of H. For any v ∈ V and e ∈ E, graph H + (v, e) is obtained by first subdividing

e with a new vertex u and then adding an edge uv. If v1, ..., vk ∈ V , then H + (v1, ..., vk) is obtained by

adding a new vertex u and making it adjacent to all vi.

Suppose H is internally 4-connected. An addition extension of H is either H + e, where e is a non-edge

and H + e is internally 4-connected, or H + e1 + e2, where e1, e2 are non-edges, H + e1 has one or two

violating pairs, and e2 is adjacent to every v for which (v, e1) is a violating pair of H + e1. Note that e1 and

e2 are not symmetric under our definition, which means that we need to consider all ordered pairs (e1, e2)

when generating all addition extensions.

If v1v2v3v4v1 is a cycle in H, where v1, v2, v3, v4 all have degree three, then H + (v1, v2, v3, v4) is a

quadrangular extension of H. If v1v2v3v4v5v1 is a cycle of H such that v2 and v5 have degree three and

that v1 is adjacent to neither v3 nor v4, then H + (v1, v3v4) is a pentagonal extension of H. If v1, v2, v3
are distinct vertices of H such that no vertex of H of degree three has neighbors v1, v2, v3, yet every pair

from {v1, v2, v3} has a common neighbor of degree three, then H +(v1, v2, v3) is a hexagonal extension of H.

These three operations are illustrated in the figure below (dashed lines indicate non-edges).

d=3

d=3d=3

d=3

d=3d=3

d=3

d=3

d=3

Figure 4.2: quadrangular, pentagonal, and hexagonal extensions

Lemma 4.3 If G is a quadrangular extension of an internally 4-connected graph H then G contains the

octahedron.

Proof. Let C be the 4-cycle over which the extension takes place. Since H is internally 4-connected and all

vertices on C are cubic, H − V (C) must be connected. Clearly, G/E(H − V (C)) is the octahedron.

We will need the main result (2.2) from [5]. The original theorem is very long, which covers many cases

that do not concern us. In the following we state a restricted version of the theorem for graphs containing

V8 but not containing the octahedron. We also point out that our definition of addition extension is less
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restrictive than that of [5]. In fact, every addition extension in the sense of [5] contains one of our addition

extensions as a spanning subgraph. Thus our modification does not affect the validity of the theorem.

Lemma 4.4 Let H and G be internally 4-connected oct-free graphs, such that V8 is a minor of H, H is a

proper minor of G, and G is not V2n for any n. Moreover, if H = V2n for some n, then C2
2n+1 is not a

minor of G. Then G has a minor J such that

(i) J is an addition extension of H,

(ii) J is a pentagonal or hexagonal extension of H, or

(iii) J is a split of H.

5 Extensions of large V2n

In this section we consider oct-free graphs that contain V10. Our main result is the following.

Lemma 5.1 If G is a prime graph containing V10, then G ∈ {C2
2n−1 : n ≥ 6}.

We divide the proof into a few lemmas. Let the vertices of V2n be v1, v2, ..., v2n, ordered as in the definition

of V2n given in the introduction.

Lemma 5.2 All the following graphs contain the octahedron.

(i) V10 + v1v4;

(ii) V10 + v1v5 + v6v10;

(iii) V8 + v1v3 + v2v5;

(iv) V8 + v1v3 + v2v4;

(v) V8 + v1v3 + v5v7.

Proof. An octahedron minor can be obtained by contracting {v2v3, v5v10, v6v7, v8v9}, {v1v2, v3v4, v7v8,

v9v10}, {v4v8, v6v7}, {v5v6, v7v8}, and {v2v6, v4v8}, respectively.

Lemma 5.3 Let G be an internally 4-connected oct-free graph that contains V2n for some n ≥ 5. If G does

not contain C2
2n+1, then either G = V2n or n = 5 with G containing V +

10.

x

x x

x x

Figure 5.1: V +
10 – the unique hexagonal extension of V10

Proof. Suppose G 6= V2n. Then G has a minor J as described in Lemma 4.4. We need to show that n = 5

and J = V +
10 . We first prove that J is not an addition extension. Suppose J is obtained from V2n by adding
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one edge e1 or two edges e1, e2. Symmetry allows us to assume that e1 is incident with v1. By Lemma

5.2(i), we may also assume that the other end of e1 is v3 or vn. If e1 = v1v3, then (v2, e1) is the unique

violating pair of H + e1 and so a second edge e2 must be added at v2. However, by Lemma 5.2(iii-iv), this is

impossible and thus e1 = v1vn. Since (vn+1, e1) and (v2n, e1) are the only two violating pairs of H + e1, we

must have e2 = vn+1v2n, which, by Lemma 5.2(ii), is again impossible. So J is not an addition extension.

Since V2n has no vertices of degree four or more, J is not a split of V2n. Since V2n has no 5-cycles, J is

not a pentagonal extension either. As a result, J has to be a hexagonal extension. There are two types of

6-cycles in V2n: those that are formed by three consecutive rungs vivi+1vi+2vn+i+2vn+i+1vn+i and those of

the form vivi+1vi+2vi+3vi+4vi+5, which only occurs when n = 5. In a 6-cycle of the first type, say i = 1, both

triples {v1, v3, vn+2} and {v2, vn+3, vn+1} fail to satisfy the the requirements in the definition of hexagonal

extension (v2 has neighbors {v1, v3, vn+2} and vn+2 has neighbors {v2, vn+3, vn+1}), so J is not a hexagonal

extension over such a cycle. Over a 6-cycle of the second type, there is only one possible extension (up to

isomorphism), which is V +
10 . Therefore, n = 5 and G contains V +

10 , as required.

Recall that S30 = (X,Y,E) is the unique bipartite graph with |X| = 5 and |Y | = 10 such that every

y ∈ Y has degree three and no two vertices in Y have the same set of neighbors. Note that V +
10 is an induced

subgraph of S30, where X consists of the five vertices that are labeled with x in Figure 5.1. Let S be the

set of (exactly seven) induced subgraphs of S30 that contain V +
10 as an induced subgraph. Observe that each

member of S is obtained from V10 by repeatedly adding cubic vertices such that their neighbors are different

from that of any other cubic vertices. Consequently, all graphs in S are internally 4-connected.

Lemma 5.4 If G an internally 4-connected oct-free graph that contains V +
10 then G belongs to S.

Proof. For the convenience of doing induction we prove the following modified statement:

(*) if G contains H ∈ S then G ∈ S.

The lemma follows from (*) immediately with H = V +
10 . Suppose (*) does not hold. We choose the largest

H ∈ S such that (*) is false. Then G has a minor J as described in Lemma 4.4. We prove that J ∈ S, which

contradicts the maximality of H and thus (*) will be proved.

Since H is bipartite, it has no 5-cycles and thus J is not a pentagonal extension.

Let X,Z be the two color classes of H, and let Z1 ⊆ Z2 ⊆ Z be such that the subgraphs H1 and H2 of

H induced on X ∪ Z1 and X ∪ Z2 are V10 and V +
10 , respectively. Moreover, let X = {x1, x2, x3, x4, x5} and

Z1 = {z1, z2, z3, z4, z5} such that x1z1x2z2...x5z5x1 is the special cycle of V10. Observe that

(†) the neighborhood of each z ∈ Z − Z1 is one of the five consecutive sets {x1, x2, x3}, {x2, x3, x4},

{x3, x4, x5}, {x4, x5, x1}, {x5, x1, x2}.

Let us consider edge additions. We first claim that no addition extension of H can use an edge incident

with a vertex in Z1. Notice that the bipartite complement of V10 is a 10-cycle. Thus all non-edges of H1

between X and Z1 are symmetric. Therefore, by Lemma 5.2(i), adding any edge between Z1 and X∪(Z−Z1)

will create an octahedron minor. Now we consider adding z1z2 or z1z3, which are the only two remaining

cases (up to isomorphism). Suppose z1z2 is added. If x2 is adjacent to a vertex in Z−Z1, then an octahedron

minor can be obtained by Lemma 5.2(iii-iv). If x2 is not adjacent to any vertex in Z−Z1, then, by (†), x4 and

x5 have a common neighbor in Z − Z1, which, by Lemma 5.2(v), also leads to an octahedron minor. Next,

suppose z1z3 is added. From (†) we can see that at least one of the three pairs {x1, x2}, {x1, x4}, {x3, x4}

is a subset of the neighborhood of a vertex in Z − Z1, which implies, by Lemma 5.2(ii-iii), an octahedron

minor, and thus the claim is proved.

10



Observe that there is only one way (up to isomorphism) to add a degree-four vertex to V10 that results

in a bipartite graph (see Figure 5.2). Moreover, this graph contains the octahedron (by contracting the

heavy edges). In other words, adding any edge between X and Z − Z1 creates an octahedron minor. This

observation and the last claim imply that no addition extension can use any edge incident with any vertex

in Z. Since all vertices in Z are cubic and any two vertices in X have a common neighbor in Z, it follows

that every addition extension of H has to use an edge incident with a vertex in Z. Therefore, J is not an

addition extension.

v

Figure 5.2: Adding a degree-four vertex v to V10

Suppose J is obtained by splitting a vertex v. Since all vertices in Z are cubic, v must belong to X.

Let v1, v2 be the two new vertices. Since v has three neighbors in Z1, we may assume that v1 has two or

more neighbors in Z1. If v1 has exactly two neighbors in Z1, let y
′ be the third neighbor of v in Z1 and let

y′′ ∈ Z −Z1 be a neighbor of v2. Then contracting v2y
′ and v2y

′′ leads to the graph in Lemma 5.2(i), which

is impossible. So v1 has three neighbors in Z1. In this case, contracting all edges incident with v2, except

for v1v2, will lead to the graph in Figure 5.2, which is again impossible. So J is not a split of H.

Finally, suppose J is obtained by a hexagonal extension. Notice that X has only two cubic vertices in

H2, so X has at most two cubic vertices in H. It follows that every 6-cycle contains a vertex in X of degree

at least four. Thus every hexagonal extension is a graph in S, as required.

Now we summarize the last two lemmas.

Lemma 5.5 If an internally 4-connected oct-free graph G contains V10, then G ∈ S or G is V2n or C2
2n+1

for some n ≥ 5.

Proof. Let us choose the largest n such that V2n is a minor of G. Since G contains V10, the required n

does exist and n ≥ 5. If G contains C2
2n+1, by the choice of n we deduce from Lemma 4.2 that G = C2

2n+1.

Assume G does not contain C2
2n+1. It follows from Lemma 5.3 and Lemma 5.4 that G = V2n or G ∈ S.

Proof of Lemma 5.1. Observe that every graph in S is a 3-sum of K5 and copies of K4. Moreover, V2n

(n ≥ 5) is a 3-sum of C2
1+2⌊n/2⌋ and copies of K4. Thus the result follows from Lemma 5.5.

6 Extensions of L′
4

The main tool we use is Lemma 4.4, which is very powerful in general. However, as pointed out in [5],

its weakness is that it may produce a graph that is not internally 4-connected. If that occurs, the new

graph does not satisfy the requirements of the lemma and thus the lemma cannot be applied anymore. This

unfortunate situation indeed happens to graph L′
4 (illustrated in Figure 1.2), so a separate treatment is

necessary. There is a different result in [5] that is applicable in this situation. Since the proof of that result
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has not been published yet, and since we do not need the whole strength of the result, we prove a much

simpler lemma to deal with L′
4. In a very weak sense, this lemma can be considered as a simplified version

of the aforementioned result.

Let (v, e) be a violating pair. Let e = v1v2, e1 = vv1, and e2 = vv2. A (v, e)-split is a split at vi (i = 1

or 2) such that e and ei no longer share an endpoint (and thus (v, e) is no longer a violating pair).

Lemma 6.1 Let v be a cubic vertex of a graph H = (V,E) and let v1, v2, v3 be the three neighbors of v.

Suppose |V | ≥ 6, e = v1v2 ∈ E, and v3 is cubic. If H is a minor of an internally 4-connected graph G, then G

has a minor J such that either J is a (v, e)-split, or J = H+uv or H+(u, e) for some u ∈ V −{v, v1, v2, v3}.

Proof. Since H is a minor of G, there exist vertex-disjoint trees Tu (u ∈ V ) of G and internally vertex-

disjoint paths Pf (f ∈ E) of G such that if f = u1u2 then the ends of Pf are in Tu1
and Tu2

, respectively.

Each path Pf will be called an edge-path. We choose trees Tu so that they have as few vertices as possible

(by possibly making edge-paths longer). As a result, the following clearly holds:

(*) every leaf of each Tu is an end of at least two edge-paths.

Moreover, |V (Tv)| = |V (Tv3
)| = 1 since v and v3 are cubic. If Pe and some Pvvi

(i = 1, 2) are vertex-disjoint,

then, by (*), G contains a (v, e)-split at vi. Else the three paths Pe, Pvv1
, Pvv2

form a cycle since |V (Tv)| = 1.

For i = 1, 2, 3, let xi be the end of Pvvi
in V (Tvi

). Note that V (Tv3
) = {x3}. Let Q be the union of paths

Pe, Pvv1
, Pvv2

, and Pvv3
. Observe that G has at least two vertices not in Q since |V | ≥ 6. Therefore, the

internal 4-connectivity of G implies that G− {x1, x2, x3} has a path R from Q− {x1, x2, x3} to H ′ − V (Q),

where H ′ is the union of Tu and Pf , over all u ∈ V and all f ∈ E.

Let z be the end of R in H ′ − V (Q). We first consider the case z ∈ V (Tv1
∪ Tv2

). By symmetry, let

z ∈ V (Tv1
)− {x1}. If x1 is a leaf of Tv1

and Pe, Pvv1
are the only two edge-paths ended at x1, then R can

used to reduce the size of Tv1
(while keeping the size of all other Tu), which is impossible. So either x1 is

not a leaf of Tv1
or at least three edge-paths are ended at x1. In both cases, R can be used to produce a

(v, e)-split at v1. Therefore, we may assume that z 6∈ V (Tv1
∪ Tv2

), and thus z can be contracted to Tu for

some u ∈ V − {v, v1, v2, v3}. Now it is easy to see that G contains either H + vu (if V (R) ∩ V (Pe) = ∅) or

H + (u, e) (if V (R) ∩ V (Pe) 6= ∅).

We remark that the assumption “v3 is cubic” in the last lemma can be removed by introducing two more

output graphs. We choose to prove this simple version since it is enough for our application. It should be

pointed out that graphs generated from this lemma do not have to be internally 4-connected. However, since

the input graph H is not required to be internally 4-connected, this lemma is more applicable than Lemma

4.4, which makes it more useful in certain circumstances. In particular, even though the next result does

not follow from Lemma 4.4, it can be proved by repeatedly using Lemma 6.1.

Lemma 6.2 If an internally 4-connected oct-free graph G properly contains L′
4 then G contains either L′

5

or G1015a (illustrated in Figure 1.2 and Figure 7.2, respectively).

Proof. Let L′
4 be labeled as in Figure 6.1 (the second graph). We first observe that there are three ways

(up to isomorphism) of adding an edge to it: L′
4 + 16, L′

4 + 17, and L′
4 + 68. All these additions contain

the octahedron, shown by contracting {37, 58}, {48, 56}, and {15, 37}, respectively. By Lemma 4.1, G has a

minor H obtained from L′
4 by splitting a vertex. Clearly, there are only two ways (up to isomorphism) to

make the split, which are the first and third graphs in Figure 6.1.
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Figure 6.1: How L′
4 is expanded

Let H be the first graph in Figure 6.1. Note that H has a unique violating pair (9, 23). By Lemma 6.1,

G has a minor J obtained from H by one of three types of extensions. If J is obtained by adding an edge

u9, then u ∈ {4, 5} since J contains L′
4 + e for other choices of u. For these two choices of u, J also contains

the octahedron, shown by contracting {15, 26, 78} and {14, 26, 78}, respectively. If J = H + (u, 23), then

u = 4 since J contains L′
4 + e for other choices of u. It follows that J\{24, 34} = G1015a. Finally, we assume

that J is a (9, 23)-split. At vertex 2, there are two ways to make the split: {3, 4}-{6, 9} or {3, 6}-{4, 9}

(representing the corresponding partition of neighbors of vertex 2). In the first case J\34 = G1015a; in the

second case J/{15, 78, 2′6, 2′′9} contains the octahedron, where 2′, 2′′ are the two new vertices obtained by

splitting 2. At vertex 3, there are also two ways to make the split: {2, 4}-{7, 9} or {2, 7}-{4, 9}. In the first

case J\24 = G1015a and in the second case J = L′
5.

Next, let H be the third graph in Figure 6.1. Our proof is almost identical to that of the last case,

except for an extra outcome H1, which is the fourth graph in Figure 6.1. Again, H has only one violating

pair (9, 24) and G has a minor J obtained from H by one of three types of extensions. If J = H + u9, then

u ∈ {3, 5} and J contains the octahedron, shown by contracting {15, 26, 78} and {13, 26, 78}, respectively.

If J = H + (u, 24), then u = 3 and J\23 is H1. At vertex 2, there are two (9, 24)-splits: {3, 4}-{6, 9} or

{3, 9}-{4, 6}. In the first case J is H1 and in the second case J contains the octahedron, shown by contracting

{15, 78, 2′6, 2′′9}. At vertex 4, there are two (9, 24)-splits: {2, 3}-{8, 9} or {2, 8}-{3, 9}. In the first case J is

(isomorphic to) H1 and in the second case J contains the octahedron, shown by contracting {15, 67, 4′8, 4′′9}.

Finally, we repeat the same argument on H1, which has a unique violating pair (0, 34). Let J be obtained

from H1 by one of three types of extensions. If J = H1+u0, then u ∈ {1, 6, 9} and J contains the octahedron,

shown by contracting {15, 26, 49, 78}, {19, 29, 37, 58}, and {15, 26, 37, 58}, respectively. If J = H1 + (u, 34),

then u ∈ {1, 9}. In the first case J/19\{13, 49} is G1015a; in the second case J/{04, 15, 26, 78, 9v} contains

the octahedron, where v is the vertex subdividing 34. At vertex 3, there are two (0, 34)-splits: {0, 7}-{1, 4}

or {0, 1}-{4, 7}. In the first case J/19\49 is G1015a; in the second case J/{19, 26, 3′0, 3′′7, 58} contains the

octahedron. At vertex 4, there are also two (0, 34)-splits: {0, 8}-{3, 9} or {0, 9}-{3, 8}. In the first case

J/15\13 is G1015a and in the second case J/15 is L′
5. Now the proof is complete.

7 Extensions of V8

This is the last and the most difficult part of our proof. Our main result in this section is the following.

Lemma 7.1 If G is a V10-free prime that contains V8, then G ∈ {C2
9 , L

′
4, L

′
5, L

′′
5 , P10}.

Through out this section, let G be an internally 4-connected oct-free and V10-free graph. We will not

repeatedly state this assumption when we state our lemmas in this section. In the following, we will generate
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many small graphs. We choose to name these graphs with four digits that correspond to the number of

vertices and edges of the graph. For instance, G1222 (see Figure 7.4) has 12 vertices and 22 edges. We will

also use a suffix a, b, c, etc. to distinguish different graphs of the same size. As before, we prove Lemma 7.1

by proving a sequence of lemmas.

Lemma 7.2 If G is C2
9 -free and G properly contains V8, then G must contain L′

4, G0914a, or G0914b.
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Figure 7.1: G0914a and G0914b

Proof. After verifying the requirements of Lemma 4.4 with H = V8, we see that G contains a minor J as

described in Lemma 4.4. Since V8 is cubic, J is not a split of V8. By Lemma 5.2(iii-iv), the only addition

extension of V8 is L′
4. As discussed in the proof of Lemma 5.3, the only 6-cycles of V8 are formed by three

consecutive rungs, which do not satisfy the requirements for a hexagonal extension and thus J is not a

hexagonal extension. Finally, V8 has only one type of 5-cycles and over which G0914a and G0914b are the

only two possible pentagonal extensions. The lemma is proved.

Lemma 7.3 If G properly contains H, one of the three output graphs in Lemma 7.2, then G contains P10,

L′
5, or one of the following graphs.

Figure 7.2: G1015a, G1015b, G1016a, G1016b, G1016c, and G1017

Proof. If H = L′
4, then the result follows from Lemma 6.2. Suppose H = G0914a and J is the graph

determined in Lemma 4.4. By Lemma 5.2(iii-iv) and symmetry, it is not difficult to see that H+u2 contains

the octahedron for every non-neighbor u of 2. Therefore, by symmetry again, H+uv contains the octahedron

for all non-edges uv with v ∈ B := {2, 5, 8, 9}. On the other hand, for every non-edge uv with neither end in

B, u and v have a common neighbor in B, which is a set of cubic vertices. It follows that, for any addition

extension of H, either the first or the second edge is incident with a vertex in B, which implies that J is not

an addition extension.

If J is obtained by splitting a vertex, then the vertex is 1, which can be split in two ways (up to

isomorphism) resulting graphs P10 and G1015b.

There are two types of 6-cycles, represented by 126548 and 345679. The first does not satisfy the

requirements for a hexagonal extension and the second leads to H + 03 + 05 + 07, which contains the

octahedron, shown by contracting {05, 26, 39, 48}. Thus J is not a hexagonal extension
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For w = 1, 2, 3, it is routine to check that if uv is an edge and there is a 5-cycle of the form wxuvyw

if and only if (w, uv) is one of the following: (1, 34), (1, 67), (2, 45), (2, 79), (3, 15), (3, 18), (3, 56), (3, 78),

(3, 67). By symmetry, there are five (up to isomorphism) pentagonal extensions. Now it is straightforward

to verify that H+(1, 34) = G1016c, H+(3, 67) = G1016b, and H+(2, 45), H+(3, 15), H+(3, 56) contain the

octahedron, by contracting {04, 39, 56, 78}, {05, 26, 48, 79}, {05, 26, 48, 79}, respectively. The case analysis

for H = G0914a is complete.

Let H = G0914b and let J be an extension of H as described in Lemma 4.4. The way we determine J is

similar to that in the last case, so we only state the conclusions (also see Remark below). First, all addition

extensions contain the octahedron, so J is not an addition extension. If J is obtained by splitting vertices,

then J is G1015a or G1015b. Up to isomorphism, there are eight pentagonal extensions, four of which contain

the octahedron and the other four are L′
5, G1016a, G1016b, and G1016c. Finally, among all three hexagonal

extensions, two contain the octahedron and the last is G1017.

Remark. The rest of the proof is pretty much the same as our analysis of G0914a. As we have seen, there are

basically two steps: generating all the extensions according to Lemma 4.4 (or Lemma 4.1 in a few cases) and

deciding if an extension is oct-free. Both steps are straightforward, yet the amount of work is tremendous.

The author wrote a simple program in Mathematica that is used to perform the case checking. The program

does three things: generating all extensions, testing for isomorphisms, which eliminates duplications, and

checking for octahedron minors. Since the detail is lengthy and dull, only final outcomes are reported in

the following proofs. For the completeness of the proof, a supplement [1] is prepared, which contains more

details on our program and our computation.

It turns out that, among all operations listed in Lemma 4.4, addition extension is the one that creates the

most graphs. To cut down the number of cases, we make the following observation. Suppose H + e1 + e2 is

an addition extension of H. If H + e1 or H + e2 contains the octahedron, then there is no need to determine

H + e1 + e2. This observation motivates the following definition. Let F be the set of non-edges of H. Let

F1 consist of members e of F such that either H + e is internally 4-connected (that is, H + e is an addition

extension of H) or H + e contains the octahedron. Let F2 = F\F1. Then a partial addition of H is either

a graph H + e with e ∈ F1 or an addition extension H + e1 + e2 of H with e1, e2 ∈ F2. Clearly, to prove

that all addition extensions of H contain the octahedron, it is enough to prove that all partial additions of

H contain the octahedron, which is exactly what we will do in the following proofs.

Lemma 7.4 If G properly contains H, one of the eight output graphs in Lemma 7.3, then G contains L′′
5

or one of the following graphs.

Figure 7.3: G1117, G1118a, G1118b, G1119a, and G1119b

Proof. In this and the next two proofs, extensions are counted up to isomorphism. Suppose H = P10.

There is only one way to add an edge to H, which results in an octahedron minor. On the other hand, H is

cubic so none of its vertices can be split. By Lemma 4.1, G does not properly contain H.

Suppose H = L′
5. There are sixteen ways of adding an edge to H and all of them contain the octahedron.

By Lemma 4.1, some split of H is a minor of G. There are three ways of splitting vertices of H, two of which
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contain the octahedron and the third is L′′
5 .

For the remaining six graphs, we will use Lemma 4.4. Our proofs will consist of summaries on different

extensions of H. Let H = G1015a. Then H admits no splits since H is cubic. There are thirteen partial

additions and two hexagonal extensions, all of which contain the octahedron. There are six pentagonal

extensions, five contain the octahedron and the last is G1117.

Let H = G1015b. Then H admits no splits since H is cubic. There are six partial additions and two

hexagonal extensions, all of which contain the octahedron. There are six pentagonal extensions, four contain

the octahedron and the other two are L′′
5 and G1117.

Let H = G1016a. There are eleven partial additions and they all contain the octahedron. There are

three splits, two contain the octahedron and the other is G1117. Among the six pentagonal extensions, four

contain the octahedron, one is V +
10 , which contains V10, and the last is G1118a. There is only one hexagonal

extension, which is G1119a.

Let H = G1016b. There are twelve partial additions and they all contain the octahedron. There are

five splits, three contain the octahedron and the other two are L′′
5 and G1117. Among the six pentagonal

extensions, four contain the octahedron, one is V +
10 , which contains V10, and the last is G1118a. There are

three hexagonal extensions, one contains the octahedron and the other two are G1119a and G1119b.

Let H = G1016c. There are seven partial additions, all of which contain the octahedron. There are four

splits, three contain the octahedron and the last is G1117. Among the five pentagonal extensions, three

contain the octahedron and the other two are G1118a and G1118b. There are two hexagonal extensions, one

contains the octahedron and the other is G1119a.

Let H = G1017. There are six partial additions and two splits, all of which contain the octahedron. There

is no hexagonal extension and the only pentagonal extension is G1119a.

Lemma 7.5 If G properly contains H, one of the six output graphs in Lemma 7.4, then G contains Γ (see

Figure 1.3), G1221, or G1222.

Figure 7.4: G1221 and G1222

Proof. Suppose H = L′′
5 . There are twenty-one ways of adding an edge and two ways of splitting a vertex.

All these graphs contain the octahedron, and thus, by Lemma 4.1, G does not properly contain H.

Let H = G1117. There twenty partial additions, two splits, and nine pentagonal extensions, all of which

contain the octahedron. There are six hexagonal extensions, five contain the octahedron and the other is Γ.

Let H = G1118a. There is no pentagonal extension since H is bipartite. There are sixteen partial

additions and eight splits, all of which contain the octahedron. There are four hexagonal extensions, two

contain V10, one contains the octahedron, and the last is G1221.
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Let H = G1118b. There is no pentagonal extension since H is bipartite. There are three partial additions

and four splits, all of which contain the octahedron. There are two hexagonal extensions, one contains the

octahedron and the other is G1221.

Let H = G1119a. There are seventeen partial additions and they all contain the octahedron. There are

eleven splits, ten of which contain the octahedron and the last one is Γ. There are four pentagonal extensions,

two contain the octahedron, one contains V10, and the other is G1221. Finally, there is a unique hexagonal

extension, which is G1222.

Let H = G1119b. There are five partial additions and four splits, all of which contain the octahedron.

The only pentagonal extension contains V10 and the only hexagonal extension is G1222.

Lemma 7.6 If G contains H, one of the three output graphs in Lemma 7.5, then G = H.

Proof. Suppose H = Γ. There are nine partial additions, two splits, one pentagonal extension, and one

hexagonal extension. All these graphs contain the octahedron. Thus Lemma 4.4 implies G = H.

Let H = G1221. There is no pentagonal extension since H is bipartite. There are eleven partial additions

and nine splits, all of which contain the octahedron. There is a unique hexagonal extension, which contains

V10. Therefore, G does not contain H properly and so G = H.

Let H = G1222. There is no hexagonal extension since no 6-cycle satisfies the requirement for a hexagonal

extension. There are seven partial additions and five splits, all of which contain the octahedron. There is a

unique pentagonal extension, which contains V10. Again, G does not contain H properly and so G = H.

Remark. The unique hexagonal extension of G1221 and the unique pentagonal extension of G1222 are the

same graph, which is an induced subgraph of S30.

Now we summarize results proved so far in this section. Let us write G1 ≤ G2 is G1 is a minor of G2.

Lemma 7.7 Let G be an internally 4-connected, oct-free, and V10-free graph that contains V8. Then

(i) G is one of V8, C
2
9 , L

′
4, P10, L

′
5, L

′′
5 , Γ, and graphs in figures 7.1-7.4;

(ii) V8 ≤ G0914a ≤ G1016c ≤ G1118b ≤ G1221, G0914b ≤ G1017 ≤ G1119a ≤ G1222, L′
4 ≤ G1015a ≤ G1117,

G1016a ≤ G1118a ≤ G1221 ≤ S30, G1016b ≤ G1119b ≤ G1222 ≤ S30, G1015b ≤ G1117 ≤ Γ, L′
5 ≤ L′′

5 .

Proof. (i). If G contains C2
9 , by Lemma 4.2, G is C2

9 . Suppose G does not contain C2
9 . Then the result

follows from lemmas 6.2 and 7.2-7.6.

(ii). The result follows from the analysis of these graphs.

Proof of Lemma 7.1. Since S30 is a 3-sum of K5 and copies of K4, all its minors must be 3-sums of graphs

with at most five vertices. It follows that graphs in Lemma 7.7(ii) that are minors of S30 are not primes.

Observe that Γ is a 3-sum of L′
4 and four copies of K4, where each of the square vertex belongs to a K4

(see Figure 1.3), so Γ is not a prime. This decomposition of Γ is also inherited by its minors G1117, G1015a,

and G1015b, so they are not prime either. Thus, by Lemma 7.7, all primes are in {C2
9 , L

′
4, L

′
5, L

′′
5 , P10}, as

required.
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8 Proof of main theorems

In this section we prove results stated in the Section 1. Our proofs are basically summaries of what we have

shown.

Proof of Theorem 1.1. By Theorem 2.1, we only need to determine all prime graphs. Then the result

follows from Lemmas 3.1, 5.1, and 7.1.

Proof of Theorem 1.2. Let us assume that G is not V2n or C2
2n−1, for any n ≥ 3. If G contains V10, by

Lemma 5.5, G is a minor of S30. Suppose G is V10-free. If G contains V8, by Lemma 7.7, G is a minor of

S30, L
′′
5 , P10 or Γ. Finally, assume G is V8-free. Since L4 ≤ L5 ≤ L′′

5 and K−
4,4 ≤ K−

4,5 ≤ S30, the result

follows from Lemma 3.8.
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