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Abstract5

Let C = {C2
n : n ≥ 5} and let L = {G : G is the line graph of an internally 4-connected cubic graph}.6

A classical result of Martinov states that every 4-connected graph G can be constructed from graphs in7

C ∪L by repeatedly splitting vertices. In this paper we prove that, in fact, G can be constructed from C2
58

or C2
6 in the same way, unless G belongs to C ∪L. Moreover, if G is nonplanar then G can be constructed9

from C2
5 .10

1 Introduction11

The purpose of this paper is to improve a classical chain theorem of Martinov [7] for 4-connected graphs.12

We begin by formally stating this result.13

All graphs considered in this paper are simple. In particular, G/e denotes the graph obtained from G by14

contracting an edge e and then deleting parallel edges. For each integer n ≥ 5, let C2
n be the graph obtained15

from an n-cycle Cn by joining vertices of distance two in the cycle. Notice that C2
5 is K5 and C2

6 is the16

octahedron. In general, C2
n is 4-connected, and it is planar if and only if n is even. Let C = {C2

n : n ≥ 5}.17

A cubic graph with at least six vertices is called internally 4-connected if its line graph is 4-connected.18

We remark that all such cubic graphs can be constructed from K3,3 and the cube by repeatedly applying an19

operation known as “adding a handle” [2, 3, 8]. Let L = {G : G is the line graph of an internally 4-connected20

cubic graph}. The following is the chain theorem of Martinov [7].21

Theorem 1.1. For every 4-connected graph G there exists a sequence of 4-connected graphs G0, G1, ..., Gn22

such that G0 = G, Gn ∈ C ∪ L, and every Gi (i < n) has an edge ei for which Gi/ei = Gi+1.23

This result provides a very useful tool for analyzing 4-connected graphs. Under the current setting, it24

says that every 4-connected graph G can be reduced, within the class of 4-connected graphs, to a graph25

Gn ∈ C ∪ L by repeatedly contracting edges. If we reverse this process then the theorem tells us that26

every desired (usually unknown) 4-connected graph G can be constructed from a graph Gn ∈ C ∪ L by27
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repeated “uncontractions”. This approach is used successfully in characterizing 4-connected graphs that do28

not contains a minor isomorphic to the cube [5], to the octahedron [6], or to the octahedron plus an edge29

[4]. However, this theorem has two major defects which limit its further applications.30

First, for a general 4-connected graph G, the starting graph Gn in the construction sequence could be31

any graph in C ∪ L. What this means is that, in order to obtain G we have to consider infinitely many32

possible choices for Gn, and this increases the complexity of our analysis. It would be nice if we can narrow33

down the choices for Gn. The second defect of the theorem, which causes an even bigger problem, is that Gn34

could be planar even if G is nonplanar. As a consequence, in order to construct G, we have to exam many35

planar graphs, which often are useless for constructing G. The following is the main result of this paper,36

which corrects both defects. Let us call a sequence as described in Theorem 1.1 a (G,Gn)-chain.37

Theorem 1.2. Let G be a 4-connected graph not in C ∪L. If G is planar then there exists a (G,C2
6 )-chain;38

if G is nonplanar then there exists a (G,K5)-chain.39

As an application, we prove the following main result of [4]. Let Oct+ denote the unique graph obtained40

from the octahedron by adding an edge.41

Theorem 1.3. If a 4-connected nonplanar graph G has no Oct+-minor then G = C2
2n+1 for some n ≥ 2.42

Proof. Suppose the result is false. By Theorem 1.2, either there exists a (G,K5)-chain or G = L(H)43

for a nonplanar cubic graph H. The second case is impossible since L(H) contains L(K3,3), which contains44

Oct+. The first case is impossible either because G has to contain one of the the three uncontractions of45

K5, which are K6, K6\e, Oct+, yet all of them contain Oct+.46

We close this section be introducing a few definitions. For any graph G, let V (G) and E(G) denote the47

vertex set and edge set of G, respectively. If X ⊆ V (G), let NG(X) = {y ∈ V (G) − X : yx ∈ E(G) for48

some x ∈ X}. Members of NG(X) are neighbors of X and the set NG(X) is the neighborhood of X. For49

any x ∈ V (G), we will write NG(x) for NG({x}). As usual, |NG(x)| is the degree of x, which is denoted by50

dG(x). Let EG(x) stands for the set of edges of G that are incident with x. We will drop the subscript G if51

there is no need to emphasize G.52

Let G be a k-connected graph. An edge e of G is said to be k-contractible if G/e is again k-connected.53

We may simply call e contractible if k is clear from the context. The new vertex of G/e will be denoted by54

e. A subset T of V (G) is called a separating set of G if G−T has at least two components. A separating set55

with k vertices is called a k-separator of G. Observe that an edge xy of G is not k-contractible if and only56

if G has a k-separator containing both x and y.57

Let T be a k-separator of a k-connected graph G. A T -fragment of G is the vertex set of a union of at58

least one but not all components of G−T . We often leave out the prefix T when we do not need to emphasize59

it. If A is a fragment of G then it is clear that N(A) is a k-separator. Let us define Ā = V (G)−A−N(A).60

Then Ā is also a fragment of G with N(A) = N(Ā). Notice that, for any x ∈ A, x has no neighbors in Ā.61

The organization of this paper is as follows. In Section 2, we establish a few lemmas on contractible62

edges. Then, in Section 3, we prove our key lemma. Finally, we prove Theorem 1.2 in Section 4.63
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2 Contractible edges64

In this section we present a few lemmas on contractible edges. We first establish that every 4-connected65

graph not in C ∪ L can be reduced to K5 or the octahedron. Our proof is divided into two steps.66

Lemma 2.1. Suppose a k-connected (k ≥ 2) graph G has a contractible edge e = xy such that dG/e(e) = k67

and the neighborhood of e does not contain K2,k−2 as a subgraph. Then G has an edge e′ such that G/e′ is68

isomorphic to a graph obtained from G/e by adding at least one extra edge.69

Proof. Let NG/e(e) = {z1, z2, ..., zk} = Z. Then NG(x) ⊆ Z ∪ {y} and NG(y) ⊆ Z ∪ {x}. Since70

dG(x) ≥ k and dG(y) ≥ k, we may assume, by adjusting the indices if necessary, that NG(x) ⊇ Z − {z1}71

and NG(y) ⊇ Z − {z2}. Notice that G/xz2 is isomorphic to the graph obtained from G/e by adding edges72

z2z3, z2z4, ..., z2zk (and also possibly z2z1). If e′ = xz2 does not satisfy the lemma, then z2z3, z2z4, ..., z2zk73

are all edges of G/e. This implies that z1z3, z1z4, ..., z1zk are not all edges of G/e and thus e′ = yz1 satisfies74

the lemma.75

Corollary 2.2. Suppose e is an edge of a 4-connected graph G such that G/e ∈ C ∪ L. Then, unless76

G/e = C2
5 or C2

6 , G has an edge e′ such that G/e′ is isomorphic to a graph obtained from G/e by adding at77

least one extra edge.78

Proof. If G/e = L(H), where H is an internally 4-connected cubic graph, then the neighborhood of e79

induces a matching since H is triangle free. Thus the result holds by Lemma 2.1. If G/e = C2
n for some80

n ≥ 7, then the neighborhood of e induces a path and, again, the result holds by Lemma 2.1.81

We also need the next three lemmas.82

Lemma 2.3. [1] If x is a vertex of a 4-connected graph G with d(x) ≥ 5, then G has a contractible edge83

contained in E(y) for some y ∈ N(x).84

Lemma 2.4. Let xy and xz be two edges of a k-connected graph G with N(x) ⊆ N(y) ∪ {y, z}. If xy is85

k-contractible then so is xz.86

Proof. Suppose xz is non-contractible. Then G has a k-separator T containing both x and z. Notice that87

y 6∈ T since xy is contractible. Let A be a T -fragment that contains y. Now, since N(x) ⊆ N(y)∪ {y, z}, we88

find that x has no neighbor in Ā, contradicting the k-connectivity of G.89

Lemma 2.5. Let e = xy be a k-contractible edge of a k-connected graph G. Let e′ be an edge that belongs90

to both G and G/e. If e′ is k-contractible in G/e but not in G, then some z ∈ {x, y} has degree k and such91

that NG(z) contains both ends of e′.92

Proof. Let x′, y′ be the two ends of e′ in G. Since e′ is not contractible in G, G has a k-separator T93

that contains both x′ and y′. Clearly, {x, y} − T 6= ∅ since e is contractible. Let A be a T -fragment with94

A∩{x, y} 6= ∅. By symmetry, we may assume x ∈ A. If y ∈ A then T is a k-separator of G/e with T ⊇ {x′, y′},95

contradicting the contractibility of e′. So we must have y ∈ T . If |A| ≥ 2 then T ′ = (T − {y}) ∪ {e} is a96

k-separator of G/e and T ′ contains both ends of e′ in G/e. This is again a contradiction. It follows that97

A = {x} and thus the Lemma holds with z = x.98
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3 A key lemma99

Let x, y, z be three distinct vertices of a cycle C. Then C has two paths with ends x and y. We denote the100

vertex set of the path that contains z by C[x, z, y], and we denote the vertex set of the other path by C[x, z̄, y].101

We also define C(x, z, y) = C[x, z, y]− {x, y}, C(x, z, y] = C[x, z, y]− {x}, and C[x, z, y) = C[x, z, y]− {y}.102

In addition, C(x, z̄, y), C(x, z̄, y], and C[x, z̄, y) are defined analogously. The purpose of this section is to103

prove the following.104

Lemma 3.1. If a 4-connected nonplanar graph G does not belong to C ∪ L, then G has an edge e such that105

G/e remains 4-connected and nonplanar.106

Proof. It is hard to separate our proof into independent lemmas, so this proof will last till the end of this107

section. To make the proof easier to follow, we divide it into a sequence of claims.108

By Theorem 1.1, G has at least one contractible edge. Let e = xy be such an edge. Let us further assume109

that G/e is planar because otherwise we are done. This implies that |V (G)| ≥ 7 because otherwise G/e110

would be a 4-connected planar graph on at most five vertices, which is impossible.111

Let us consider the unique planar embedding of G/e. This embedding induces an embedding of (G/e)−e.112

Notice that this embedding of (G/e)− e has a face F such that, in the planar embedding of G/e, all edges113

of EG/e(e) are embedded in F . Since G/e is 4-connected, (G/e) − e is 3-connected. It follows that F is114

bounded by a cycle C of (G/e)− e, and this cycle contains all neighbors of e. Moreover, the 3-connectivity115

of (G/e)− e also implies the following immediately.116

Claim 1. C is an induced cycle of G, and B = G− (V (C) ∪ {x, y}) is connected.117

Let x1, x2, · · · , xs be the neighbors of x (other than y), which are listed in the order they appear on C. Let118

NG(y) = {x, y1, y2, · · · , yt}. For the purpose of simplifying our notation, we do not require y1, y2, ..., yt to be119

listed in a specific order. This setting creates a non-symmetry between x and y. As a result, in the following120

discussions, some of our statements are only made for one of x, y. We point out that these statements are121

still valid if we swap x and y, since x and y are indeed symmetric.122

A quadruple (xi, yj , xk, yl) is said to be crossing if the four vertices are distinct and yj , yl are contained123

in different components of C − {xi, xk}.124

Claim 2. There exists a crossing quadruple.125

Proof. Suppose {x1, x2, ..., xs} = {y1, y2, ..., yt}. Since G/e is 4-connected, we must have s ≥ 4 and thus126

the claim follows. Next, we assume by symmetry that y1 6∈ {x1, x2, ..., xs}. Choose i such that C(xi, y1, xi+1)127

contains no neighbors of x (in this section the indices are always taken modulo s). Since G is nonplanar,128

C(xi, ȳ1, xi+1) must contain a neighbor of y and thus the claim is proved. �129

When we say “yj is contained in a crossing quadruple” we mean that there exists a crossing quadruple130

of the form (xi, yj , xk, yl). We need to make this clear since in general yj could equal to some xi.131

Claim 3. Every yj is contained in a crossing quadruple, unless yj = xr for some r and NG(y)− {x} ⊆132

C[xr−1, xr, xr+1]. Moreover, there is at most one yj that is not contained in any crossing quadruple.133

Proof. By Claim 1, G has crossing quadruple (xm, ya, xn, yb). If yj 6∈ {xm, xn} then either (xm, ya, xn, yj)134

or (xm, yj , xn, yb) is crossing. So we may assume that yj = xm. If C(xm−1, x̄m, xm+1) contains a neighbor yl135
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of y, then (xm−1, yj , xm+1, yl) is a crossing quadruple. Else r = m satisfies the lemma. Finally, if in addition136

to yj , vertex yj′ is not contained in any crossing quadruple either, then the first part of the lemma implies137

that yj′ = xr−1 or xr+1, which in turns implies that NG(y) − {x} ⊆ C[xr−1, x̄r+1, xr] or C[xr, x̄r−1, xr+1],138

contradicting the non-planarity of G. �139

Claim 4. If (xi, yj , xk, yl) is a crossing quadruple then G/yyj is nonplanar.140

Proof. Assume G/yyj is planar. Since G/yyj is 3-connected, it has a unique planar embedding. On the141

other hand, since G/xy is 4-connected and planar, G/xy/yxyj is 3-connected planar, and thus G/xy/yxyj142

also has a unique planar embedding. It follows that the unique embedding of G/yyj is obtained from the143

unique embedding of G/xy/yxyj by splitting the vertex z = yxyj in a planar way. Clearly, {zxi, zxk, zyl} ⊆144

E(G/xy/yxyj).145

Without loss of generality, let us assume that, in the embedding of G/xy, xy is embedded in the interior146

of C. It follows that, in the embedding of G/xy/yxyj , edges zxi, zxk, zyl are also embedded in the interior147

of C. This in turn implies that, in the embedding of G/yyj , edges xxi, xxk, and yyjyl are embedded in the148

interior of C. However, this is impossible since (xi, yj , xk, yl) is crossing. So G/yyj is nonplanar. �149

Claim 5. Suppose T is 4-separator of G that contains both y and some yj. Then either T = N(x) or150

T = {y, yj , z, z′} for some z ∈ V (C)− {yj} and z′ ∈ V (B).151

Proof. It is clear that x 6∈ T since xy is contractible in G. Let A be a T -fragment of G with x ∈ A. If152

N(x) = T then we are done. So let x have a neighbor x∗ ∈ A. Since y ∈ T , y must have a neighbor y∗ ∈ Ā.153

Therefore, T separates x∗ from y∗, which implies that some z ∈ V (C)− {yj} belongs to T .154

It remains to show that T ∩V (B) 6= ∅. Suppose otherwise. Then |T ∩V (C)| = 3, and thus we may assume155

T ∩V (C) = {t1, t2, t3}. Without loss of generality, let y∗ ∈ C(t2, t̄3, t1) and x∗ ∈ C(t3, t̄1, t2). It follows that156

C(t1, y
∗, t2) ⊆ Ā and C(t2, x

∗, t3) ⊆ A. Let t∗3 ∈ Ā be a neighbor of t3. Since C has no chords (by Claim157

1), we must have t∗3 6∈ C(t1, y
∗, t2) and thus Ā − C(t1, y

∗, t2) 6= ∅. Similarly, since T ′ = {xy, t1, t2, t3} is a158

4-separator of G/xy and A− {x} is a T ′-fragment, we deduce that A− {x} − C(t2, x
∗, t3) 6= ∅.159

Since B is connected (by Claim 1), V (B) is entirely contained in A or Ā. It follows that either A or Ā is160

disjoint from V (B). We only discuss the case A∩V (B) = ∅ while the other case can be handled analogously.161

From A− {x} − C(t2, x
∗, t3) 6= ∅ we deduce that C(t1, t̄2, t3) 6= ∅ and A− {x} = C(t2, x

∗, t3) ∪ C(t3, t̄2, t1).162

Since G/xy is 4-connected and planar, and T ′ is a 4-separator of G/xy, A − {x} must induce a connected163

graph, which implies that there is an edge between C(t2, x
∗, t3) and C(t1, t̄2, t3). This is a contradiction (to164

Claim 1) since such an edge is a chord of C. Thus the claim is proved. �165

Claim 6. Suppose T is 4-separator of G such that T = {y, yj , z, z′} for some z ∈ V (C) − {yj} and166

z′ ∈ V (B). Then for any distinct xi, xk ∈ V (C)− {yj}, C(xi, yj , xk) contains at least two neighbors of y.167

Proof. Let A be a T -fragment of G with x ∈ A. Let P1, P2 be the two paths of C with ends yj and z.168

Since T ∩ V (C) = {yj , z}, for i = 1, 2, Vi = V (Pi) − {yj , z} is entirely contained in A or Ā. Notice that169

x has a neighbor in A since d(x) ≥ 4 and xz′ 6∈ E(G). It follows that V (C) ∩ A 6= ∅. On the other hand,170

V (C) ∩ A 6= ∅ since y has a neighbor yl in Ā. Hence, we may assume V1 ⊆ A and V2 ⊆ Ā. Observe that171

N(x) − {y} ⊆ V (P1), it follows that C(xi, yj , xk) contains yj and yl for xi, xk ∈ V (C) − {yj}. Hence, the172

claim holds. �173

Claim 7. |N({x, y})| ≥ 5.174

Proof. Suppose |N({x, y})| ≤ 4. Then |N({x, y})| = 4 since G is 4-connected with |V (G)| ≥ 7. Choose175
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z ∈ N({x, y}) such that, if possible, z is adjacent to only one of x, y. Without loss of generality, we assume176

that z is adjacent to y and thus z = yj for some j. From Claim 3 and the way we choose z we deduce that yj177

is in a crossing quadruple, which implies, by Claim 4, that G/yyj is nonplanar. On the other hand, we have178

|N(y) −N(x) − {x}| ≤ 1 since |N({x, y})| = 4. Now by the choice of z, we have N(y) ⊆ N(x) ∪ {x, z}. It179

follows, by Lemma 2.4, that yyj is contractible. Therefore, e = yyj satisfies Lemma 3.1 and thus the claim180

is proved. �181

Claim 8. Both d(x) ≥ 5 and d(y) ≥ 5 hold.182

Proof. By Claim 2, G has a crossing quadruple (xi, yj , xk, yl). Suppose the claim is false. Then we183

may assume by the symmetry between x and y that either d(x) > d(y) = 4 holds or d(x) = d(y) = 4 with184

|{yj , yl} − N(x)| ≥ |{xi, xk} − N(y)| holds. Since d(y) = 4 and thus |N(y) ∩ V (C)| = 3, we may further185

assume that yj is the only neighbor of y contained in C(xi, yj , xk).186

By Claim 4, G has a 4-separator T containing both y and yj . Note that T 6= N(x) because otherwise187

yj ∈ N(x), implying 1 ≥ |{yj , yl} − N(x)| ≥ |{xi, xk} − N(y)|, and thus {xi, xk} ∩ N(y) 6= ∅. From these188

observation and d(x) = |T | = 4 = d(y) we deduce that N({x, y}) = {xi, yj , xk, yl}, which contradicts Claim189

7. Therefore, by Claim 5, we must have T = {y, yj , z, z′} for some z ∈ V (C) − {yj} and z′ ∈ V (B).190

Consequently, by Claim 6, y has at least two neighbors in C(xi, yj , xk), contradicting the choice of yj , which191

proves the claim. �192

Claim 9. Every yj is contained in a crossing quadruple.193

Proof. Suppose there exists yj that is not contained in any crossing quadruple. By Claim 2, there exists194

r such that yj = xr and N(y)− {x} ⊆ C[xr−1, xr, xr+1]. Note that xr+2 6∈ C[xr−1, xr, xr+1] since d(x) ≥ 5.195

Choose ym, yn such that N(y)− {x} ⊆ C[ym, x̄r+2, yn]. Since G is nonplanar, each of C[xr−1, x̄r+2, xr) and196

C(xr, x̄r+2, xr+1] contains one of ym and yn. As a result, (xr, ym, xr+2, yn) is crossing.197

By Claim 4, xxr is not contractible. It follows that there is a 4-separator T containing both x and xr.198

Since d(y) ≥ 5, Claim 5 implies that T = {x, xr, z, z
′} for some z ∈ V (C)−{xr} and z′ ∈ V (B). Notice that199

xr is the only neighbor of x in C(ym, xr, yn). This contradicts Claim 6 and thus the claim is proved. �200

Claim 10. No edge of C is contractible.201

Proof. Suppose to the contrary that f ∈ E(C) is a contractible edge of G. By Claim 2, G has a crossing202

quadruple (xi, yj , xk, yl). Let H be the subgraph of G formed by edges in E(C) ∪ {xy, xxi, xxk, yyj , yyl}.203

Then H is a subdivision of K3,3. Note that G/f is planar because otherwise f is an edge satisfying the204

lemma, and thus we are done. It follows that H/f is no longer a subdivision of K3,3. By symmetry, we may205

assume f = xiyj .206

If C(xi, ȳj , yl) contains a neighbor xm of x, then (H + xxm)/f would still contain a subdivision of K3,3,207

which is impossible. Hence N(x) − {y} ⊆ C[xi, yj , yl]. This implies that C(yj , xi, yl) contains exactly one208

neighbor of x. However, by Claim 4, G has a 4-separator T that contains {x, xi} since (xi, yj , xk, yl) is209

crossing. By Claim 5, T = {x, xi, z, z
′} for some z ∈ V (C) − {xi} and z′ ∈ V (B) since d(y) ≥ 5. Now, by210

Claim 6, C(yj , xi, yl) contains at least two neighbors of x. This contradiction proves the claim. �211

Now we are ready to complete the proof of Lemma 3.1. We apply Lemma 2.3 to G′ = G/xy. By Claim212

7, dG′(xy) ≥ 5. Thus EG′(v) contains a contractible edge e′ of G′ for some v ∈ NG′(xy). By Lemma 2.5 and213

Claim 8, e′ is contractible in G. However, by Claim 10, Claim 9, and Claim 4, no edge of E(C) ∪E({x, y})214

is contractible in G. Hence, e′ 6∈ E(C) ∪ EG′(xy). What this means is that E(C) ∪ {xy, xxi, xxk, yyj , yyl},215
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for any crossing quadruple (xi, yj , xk, yl), remains a subdivision of K3,3 when e′ is contracted from G. Thus216

G/e′ is 4-connected and nonplanar. The lemma is proved.217

4 A proof of the main theorem218

In this section we prove Theorem 1.2. Recall that a (G,H)-chain is a sequence G0, G1, ..., Gn of 4-connected219

graphs such that G0 = G, Gn = H, and every Gi (i < n) has an edge ei such that Gi/ei = Gi+1.220

Proof of Theorem 1.2. Let G be a 4-connected graph not in C ∪ L. By Theorem 1.1, there exists a221

(G,Gn)-chain G0, G1, ..., Gn such that Gn ∈ C ∪ L. We choose such a chain as follows:222

(1) if G is planar, we choose the chain with as many terms as possible;223

(2) if G is not planar, we choose the chain with as many nonplanar terms as possible.224

If G is planar, we need to show that Gn = C2
6 . Suppose otherwise. By applying Corollary 2.2 to Gn−1225

and en−1 we obtain an edge e′n−1 of Gn−1 such that G′n = Gn−1/e
′
n−1 is 4-connected but G′n does not belong226

to C ∪ L. Now, by Theorem 1.1 again, there exists a (G′n, G
′
m)-chain G′n, G

′
n+1, ..., G

′
m with G′m ∈ C ∪ L. It227

follows that G0, G1, ..., Gn−1, G
′
n, G

′
n+1, ..., G

′
m is a chain contradicting the choice of (1), which proves the228

first part of the theorem.229

If G is nonplanar, let G0, G1, ..., Gk be all the nonplanar terms. We need to show that k = n and Gn = K5.230

If k < n then Gk 6∈ C ∪L since no graph in C ∪L has a contractible edge while Gk has a contractible edge ek.231

By Lemma 3.1, Gk has a contractible edge e′k such that G′k+1 = Gk/e
′
k is nonplanar. Like in the planar case,232

we can extend G0, G1, ..., Gk, G
′
k+1 to a chain that contradicts the choice of (2), which proves that k = n. If233

Gn 6= K5, by applying Corollary 2.2 to Gn−1 and en−1 we obtain a contractible edge e′n−1 of Gn−1 such that234

G′n = Gn−1/e
′
n−1 is nonplanar and not in C ∪L. Consequently, by Lemma 3.1, G′n has an edge e′n such that235

G′n+1 = G′n/e
′
n is 4-connected and nonplanar. Now, once again, G0, G1, ..., Gn−1, G

′
n, G

′
n+1 can be extended236

into a chain. This contradicts the choice of (2), which completes our proof of the theorem.237
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[2] Max Fontet, Connectivité des graphes et automorphismes des cartes: propriétés et algorithmes, Thése,242
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