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Abstract4

A 3-connected graph is 3+-connected if it has no 3-separation that separates a “large” fan or K3,n5

from the rest of the graph. It is proved in this paper that, except for K4, every 3+-connected graph has6

a 3+-connected proper minor that is at most two edges away from the original graph. This result is used7

to characterize Q-minor-free graphs, where Q is obtained from the Cube by contracting an edge.8

1 Introduction9

A chain theorem for a class G of graphs is a result asserting the existence of a number t such that, if G ∈ G10

is not a minor minimal member of G, then G has a proper minor H ∈ G with |E(G)| − |E(H)| ≤ t. The best11

known chain theorem is the following result of Tutte [2], which says that t = 2 if G is the class of 3-connected12

simple graphs.13

Theorem 1.1 (Tutte). If a 3-connected simple graph G is not a wheel then G has an edge e such that either14

G\e or G/e is simple and 3-connected.15

Since a chain theorem provides a very useful induction tool, a lot of efforts have been made by different16

researchers on other connectivities, most of which are different variations of 4-connectivity, see [8, 9, 5, 4, 3, 1].17

In this paper we prove a chain theorem for a slightly better 3-connectivity.18

Throughout this paper, by a graph we always mean a loopless graph. A separation of a graph G = (V,E)19

is a pair of subgraphs (G1, G2), where Gi = (Vi, Ei) (i = 1, 2), such that (E1, E2) is a partition of E,20

V1 ∪ V2 = V , and V1 − V2 6= ∅ 6= V2 − V1. We will refer V1 ∩ V2 as the cut set induced by the separation, and21

V1 − V2, V2 − V1 as the interior vertices of the two parts. If |V1 ∩ V2| = k, then the separation is also called22

a k-separation. For an integer k ≥ 0, G is called k-connected if |V | > k and G has no k′-separations for any23

k′ < k. A 3-connected simple graph is 3+-connected if it has no 3-separation as illustrated in Figure 1.1. If24

a graph does have such a separation, then the part on the right will be referred to as the special part. In25

case the special part is a fan (the second graph in Figure 1.1), the vertex in the cut set that is adjacent to26

all three internal vertices of the special part will be called its center vertex.27
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Figure 1.1: Forbidden 3-separations

It is not difficult to see that a 3-connected simple graph is 3+-connected if and only if none of its 3-28

separations separates either K3,n (n ≥ 3) or a fan (with ≥ 3 spokes) from the rest of the graph. This29

connectivity is stronger than 3-connectivity, but it is quite far away from 4-connectivity. This connectivity30

is very useful in dealing with graph properties that are unaffected when a large K3,n or fan is replaced by a31

smaller one. For instance, if Q is obtained by contracting an edge of the Cube, then being Q-free is such a32

property (as we shall see in Section 4). The following is our chain theorem.33

Theorem 1.2 Every 3+-connected graph G has a 3+-connected proper minor H with |E(G)| − |E(H)| ≤ 2,34

unless G = K4.35

In fact, what we can prove is stronger. We say that an induced cycle x1x2...x3kx1 of G spans a ring if36

k ≥ 2 and there is a circular sequence y1y2...yky1 of (not necessarily distinct) vertices such that37

(i) d(x3i−2) = 4 and d(x3i−1) = d(x3i) = 3, for i = 1, 2, ..., k;38

(ii) yi 6= yi+1, for i = 1, 2, ..., k − 1, and yk 6= y1;39

(iii) yix3i+j ∈ E, for i = 1, 2, ..., k and j = −2,−1, 0, 1, where x3k+1 = x1.40

The subgraph formed by all edges incident with x1, x2, ..., x3k will be called a ring. Figure 1.2 shows a ring41

where all yi’s are distinct.42
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Figure 1.2: A ring with k = 5.

Let e be an edge of a ring. Since e is in a triangle, G/e is not simple. On the other hand, if e is incident43

with a cubic vertex, then G\e is not 3-connected; if e is not such an edge, then G\e contains a forbidden44

3-separation. Therefore, no edge of a ring can be deleted or contracted to maintain 3+-connectivity. The45

following is our main result, where Wk is the wheel with k spokes.46

Theorem 1.3 Suppose G is 3+-connected and neither G\e nor G/e is 3+-connected, for every e ∈ E(G).47

Then either G ∈ {W3,W4,W5} or G has a ring.48

We will see in Section 3 that if a 3+-connected graph G has a ring (as labeled above), then G\x1y1/x1x249

is 3+-connected. Thus Theorem 1.2 follows from Theorem 1.3 immediately.50
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It is natural to ask if, in Theorem 1.3, “G has a ring” can be replaced with “every edge belongs to a51

ring”. Unfortunately, this is not true, as shown by the following examples, where e cannot be deleted or52

contracted yet they do not belong to any ring.53

e

e e

Figure 1.3: Graphs R2 and R3

On the positive side, our proof does imply that in Theorem 1.3, “G has a ring” can be replaced with “every54

edge incident with a cubic vertex belongs to a ring”. Although this result does not completely characterize55

all “critical” graphs, it is good enough for many applications. We prove the theorems in the next two sections56

and we use them in the last section to characterized Q-minor-free graphs, where Q = Cube/e.57

2 Deletion and contraction58

In this section we present a few lemmas on deletion and contraction. We remark that a 3-connected graph59

may have parallel edges but not any loops. Our first lemma is a result of Seymour [10].60

Lemma 2.1 (Seymour). Let e be an edge of a 3-connected simple graph G on five or more vertices. Then61

either G/e is 3-connected (which may not be simple) or G\e is a subdivision of a 3-connected simple graph.62

The next is a characterization of “deletable” edges.63

Lemma 2.2 Let e = xy be an edge of a 3-connected graph such that G\e has three internally vertex-disjoint64

xy-paths. Then G\e is 3-connected.65

Proof. If G\e is not 3-connected, then G\e has a 2-separation (G1, G2). Since G is 3-connected, (G1, G2)66

cannot be extended into a 2-separation of G, it follows that x is an internal vertex of some Gi and y is67

an internal vertex of Gj with j 6= i. But this is impossible since G\e has three internally vertex-disjoint68

xy-paths. Thus G\e is 3-connected.69

The next lemma is about “contractible” edges. In particular, part (i) is due to Halin [2].70

Lemma 2.3 Let x be a cubic vertex of a 3-connected graph G and let x1, x2, x3 be its three neighbors. Then71

(i) G/xxi is 3-connected for at least one i;72

(ii) G/xx1 is 3-connected if G− {x, x1} has a cycle containing both x2 and x3;73

(iii) G/xx1 is 3-connected if x2x3 is an edge of G.74

Proof. We only prove (ii) and (iii). Suppose G/xx1 is not 3-connected. Then G/xx1 has two vertices75

whose deletion disconnects the graph. Since G is 3-connected, one of these two vertices must be the vertex76

obtained by contracting xx1. Let y be the other vertex. Thus G has a 3-separation (G1, G2) with {x, x1, y}77

being the corresponding cut set. Since x is cubic and G− {x1, y} is connected, neither G1 nor G2 contains78
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both x2 and x3. That is, x2 and x3 are contained in different components of G−{x, x1, y}, which contradicts79

the assumptions in both (ii) and (iii), and thus the lemma is proved.80

Our last lemma is about forbidden 3-separations.81

Lemma 2.4 Let xy be an edge of a 3+-connected graph G. Suppose G/xy is simple and has a forbidden82

3-separation (G1, G2), where G2 is the special part. Then83

(i) the new vertex is in the cut set;84

(ii) each of x and y is adjacent (in G) to at least one interior vertex of G2;85

(iii) the new vertex is adjacent to all three interior vertices of G2.86

Proof. Let z be the new vertex obtained by contracting xy. Since G is 3-connected and G/xy is simple,87

z must have degree at least four, which implies that z is not an interior vertex of G2. On the other hand,88

if z is an interior vertex of G1, then uncontracting z would result in a forbidden 3-separation of G, which89

is impossible, so (i) is proved. If one of x and y is not adjacent (in G) to any interior vertex of G2, then90

(E(G1) ∪ {xy}, E(G2)) defines a forbidden 3-separation of G, which is impossible, and thus (ii) is proved.91

Finally, since z is adjacent to either one or three interior vertices of G2, (iii) follows from (ii) immediately.92

3 Proving the main theorems93

Proof of Theorem 1.2 (using Theorem 1.3). If G = Wk (k = 4, 5), then H = Wk−1 satisfies the94

requirement. By Theorem 1.3, we may assume that G has a ring whose vertices are labeled as in the95

definition in Section 1. We prove that H = G\x1y1/x1x2 satisfies the requirement. Since G/x1y1 is not96

3-connected, by Lemma 2.1, G\x1y1 is simple and 3-connected. Similarly, since G\x1y1\x1x2 is not a97

subdivision of a simple graph, H is simple and 3-connected.98

Suppose H is not 3+-connected. Then H has a forbidden 3-separation (H1, H2), where H2 is the special99

part. Using the same argument as the one used in proving Lemma 2.4(i) we conclude that the new vertex100

x0 belongs to the cut set. Since x0 has only two cubic neighbors x2 and x3k, it follows that H2 has to be101

a fan and x0 must start a path on five vertices with all three internal vertices being cubic. However, since102

neither y1 nor yk is cubic in H, no such path exists, which proves that H is 3+-connected.103

In the rest of this section we prove Theorem 1.3. We divide the whole proof into a sequence of lemmas.104

Lemma 3.1 If G is 3+-connected and has minimum degree ≥ 4, then G has an edge e such that either G\e105

or G/e is 3+-connected.106

Proof. The degree condition implies that G is not a wheel. By Theorem 1.1, G has an edge e such that107

a member H of {G\e,G/e} is simple and 3-connected. It follows that H has at most two cubic vertices and108

thus H is 3+-connected.109

Let x be a cubic vertex of G. We call x a type-I vertex if at most one pair of neighbors of x are adjacent;110

we call x a type-II vertex if at least two pairs of neighbors of x are adjacent.111

Lemma 3.2 If G is 3+-connected and has a type-I vertex x, then G has an edge e such that either G\e or112

G/e is 3+-connected.113

Proof. By (i) and (iii) of Lemma 2.3, x has a neighbor x′ such that G/xx′ is simple and 3-connected.114

Thus we may assume that G/xx′ has a forbidden 3-separation (H1, H2), where H2 is the special part. By115
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Lemma 2.4(i), the new vertex x∗ must belong to V (H1) ∩ V (H2). Let V (H1) ∩ V (H2) = {x∗, y, z} and let116

V (H2)− V (H1) = {u, v, w}. Naturally, the pair (E(H1) ∪ {xx′}, E(H2)) induces a 4-separation (G1, G2) of117

G such that V (G1) ∩ V (G2) = {x, x′, y, z} and V (G2)− V (G1) = {u, v, w}. By Lemma 2.4(ii), it is routine118

to verify that G is one of the four graphs in Figure 3.1. We distinguish among three cases.119

x

x’ u

v

w

y

z

x

x’

u

v

w

y

z

x

x’ u

v

w

y

z

t

x

x’

u

v

w

y

z

t

Figure 3.1: Uncontracting xx′.

Case 1. H2 is K3,3, and so G is one of the first two graphs in Figure 3.1.120

Claim 1. If G/ux is simple, then G/ux is 3+-connected.121

By Lemma 2.3(ii), G/ux is 3-connected since u is cubic and G − {u, x} has a cycle yvzw. If G/ux is122

not 3+-connected, it has a forbidden 3-separation (G′
1, G

′
2) such that G′

2 is the special part. By Lemma 2.4,123

the new vertex belongs to both G′
1 and G′

2, and it is adjacent to all three interior vertices of G′
2. Therefore,124

at least three of the four neighbors of {x, u} are cubic, which implies that at least one of y, z is cubic,125

contradicting the 3-connectivity of G.126

By Claim 1 we may assume that G is the second graph in Figure 3.1 and t is y or z, say y.127

Claim 2. If yz ∈ E(G) then G\yz is 3+-connected.128

By Lemma 2.2, G\yz is simple and 3-connected. Suppose G\yz has a forbidden 3-separation (G′
1, G

′
2),129

where G′
2 is the special part. Then at least one of y, z must be an interior vertex of G′

2, for otherwise130

(G′
1+ yz,G′

2) would be a forbidden 3-separation of G. However, this is impossible since every interior vertex131

of G′
2 has degree 3 yet dG(y), dG(z) ≥ 5.132

By Claim 2 we may further assume that yz 6∈ E(G). To complete Case 1 we prove that G/vy is133

3+-connected. By Lemma 2.3 (ii), G/vy is 3-connected since G − {v, y} has a cycle zwx′xu. Notice that134

x′y 6∈ E(G) since t = y and G/xx′ is simple. Thus G/vy is simple. If G/vy has a forbidden 3-separation,135

by Lemma 2.4(ii), at least one of the interior (cubic) vertices of the special part is adjacent to v. However,136

it is easy to see from the second graph in Figure 3.1 that all three neighbors of v have degree at least four,137

which proves that G/vy is 3+-connected and thus Case 1 is settled.138

Since Case 1 is settled, we may assume in the following that if edge e has a cubic end and G/e is simple139

and 3-connected, then in every forbidden 3-separation of G/e the special part is a fan.140

Case 2. G is the third graph in Figure 3.1.141

By symmetry we assume xu ∈ E(G). We prove that G/uy is 3+-connected. Since y is adjacent to neither142

x nor v, it follows that G/uy is simple. On the other hand, G/uy is 3-connected by Lemma 2.3 (ii) since u143

is cubic and G − {u, y} has a cycle on {v, w, x, x′}. Suppose G/uy has a forbidden 3-separation. Then the144

special part is a fan and, by Lemma 2.4(iii), the new vertex is the center. Let P be the path formed by the145

interior vertices of the special part. Since w is adjacent to neither u nor y, w is not on P . Since P contains146

at least one neighbor of u and at least one neighbor of y, P must contain x′. It follows that dG(x
′) = 3 and147

yx′ ∈ E(G), which implies that G− {y, z} is disconnected, a contradiction.148

Case 3. G is the last graph in Figure 3.1.149
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By symmetry we assume wx′ ∈ E(G). Since u, v do not have common neighbors, G/uv is simple. Since150

G/xx′ is 3-connected, it has a tz-path P avoiding x∗ and y. Clearly, P is also a tz-path of G avoiding x, x′, y.151

Hence, by Lemma 2.3 (ii), G/uv is 3-connected since v is cubic and G− {u, v} has a cycle zP txx′w. Since152

both u, v are cubic, any forbidden 3-separation of G/uv induces a 4-separation of G as illustrated by the153

third graph in Figure 3.1. Therefore, we deduce from the Case 2 that G/e is 3+-connected for some edge e,154

which completes our proof of the lemma.155

In the following we analyze cubic vertices of type-II. A triple (x; y, z) consists of three vertices of G such156

that x is of type-II, xyz is a triangle, and d(y) + d(z) ≥ d(y′) + d(z′) for every triangle xy′z′.157

Lemma 3.3 Let G be a 3+-connected graph other than W3,W4,W5. If (x; y, z) is a triple of G, then G\yz158

is 3-connected.159

Proof. Suppose G\yz is not 3-connected. Since G/yz is not 3-connected, by Lemma 2.1, one of y, z, say160

z, is cubic. Let u be the third neighbor of x. Then u and z are not adjacent, for otherwise G − {u, y} is161

disconnected. Since x is of type-II, uy must be an edge of G. From d(y)+d(z) ≥ d(y)+d(u) we deduce that162

u is also cubic. Let z′, u′ be the other neighbor of z, u, respectively. Since G 6= W4, we must have z′ 6= u′,163

for otherwise G is not 3-connected. Similarly, since G 6= W5, G has more than six vertices. Thus the cut set164

{y, z′, u′} defines a forbidden 3-separation, a contradiction.165

The next is our key lemma on type-II vertices.166

Lemma 3.4 Let G 6∈ {W3,W4,W5} be 3+-connected. Suppose G has no type-I vertices and suppose, for167

every e ∈ E(G), neither G\e nor G/e is 3+-connected. Let (x; y, z) be a triple. Then G has triangles zpq,168

zqx, vys, vst, vtw, such that (cf. Figure 3.3) d(q) = d(s) = d(t) = 3, d(y) = 4, and d(v), d(z) ≥ 5, where169

all vertices are distinct, except that p could be v or w.170

Proof. By Lemma 3.3, G\yz has a forbidden 3-separation (H1, H2), where H2 is the special part. Let171

{u, v, w} be the cut set induced by the separation and let r, s, t be the interior vertices of H2. Clearly,172

{y, z} ∩ {r, s, t} 6= ∅, so we assume y ∈ {r, s, t} and thus x ∈ V (H2).173

If H2 is K3,3, then none of u, v, w is cubic in G\yz (since G\yz is 3-connected and H1 has at least one174

interior vertex), which leaves no room for x, a contradiction. Thus H2 is a fan. Let us assume that urstw175

is a path and v is adjacent to r, s, t, as shown in Figure 3.2 below.176

u

v

w

s

t

r

Figure 3.2: Graph G\yz.

Claim 1. z 6∈ {r, s, t}.177

Suppose otherwise. Then {y, z} = {r, t} and x = s. Since (x; y, z) is a triple, dG(r) + dG(t) ≥ dG(r) +178

dG(v), which implies dG(v) = 4. Thus uv 6∈ E(G) and so G/ur is simple. By Lemma 2.1, G/ur is also179

3-connected since {v, w} is a cut set of G\ur. Therefore, G/ur has a forbidden 3-separation (H ′
1, H

′
2), where180

H ′
2 is the special part. By Lemma 2.4(i-ii), all interior vertices of H ′

2 are also vertices of G, and r is adjacent181

to at least one of them. Since these interior vertices are cubic and r has only one cubic neighbor s (other182
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than u), s has to be an interior vertex of H ′
2. Note that s has no cubic neighbors in G/ur, so H ′

2 = K3,3 and183

the cut set defined by (H ′
1, H

′
2) must consist of the three neighbors of s. It follows that t, one of these three184

neighbors, is adjacent to all three interior vertices of H ′
2, which means that t has three cubic neighbors in185

G/ur and in G. This is impossible and thus Claim 1 is proved.186

Claim 2. y 6= s.187

Suppose y = s. Since xy ∈ E(G) and x is cubic, x must belong to {r, t}, say x = r, and then z = u.188

Since t is cubic of type-II, we must have vw ∈ E(G), which implies that dG(v) ≥ 5. Moreover, dG(u) ≥ 4189

since G\us is 3-connected. By Lemma 2.1, G\vs is 3-connected. It follows that G\vs has a forbidden190

3-separation (H ′
1, H

′
2), where H ′

2 is the special part. Since s is cubic in G\vs yet v is not, and since at least191

one of v, s is an interior vertex of H ′
2, we deduce that s is an interior vertex of H ′

2. Notice that s has cubic192

neighbors in G\vs, it follows that H ′
2 is a fan. Since rsu is the only triangle in G\vs that contains s and193

dG\vs(r) = 3 < dG\vs(u), r is an interior vertex of H ′
2 and u is the center of the fan H ′

2. It follows that the194

third interior vertex of H ′
2 is adjacent to both r and u, which is impossible since the only potential vertex is195

v, which is not cubic in G\vs. Thus Claim 2 is proved.196

By Claim 2 we assume that y = r. Then, by Claim 1, t is a cubic vertex of type-II, which implies that197

vw ∈ E(G) and thus dG(v) ≥ 5.198

Claim 3. z 6= w.199

Suppose z = w. Since xyz is a triangle and x is cubic, we must have x = u and uw ∈ E(G). It follows200

that dG(w) ≥ 5. By Lemma 2.2, G\vw is 3-connected, which implies that G\vw is 3+-connected since201

dG(v) ≥ 5 and dG(w) ≥ 5. This contradiction proves Claim 3.202

By Claim 3, z is an interior vertex of H1. Thus x has to be u. Let q be the third neighbor of x, in203

addition to y and z.204

Claim 4. q is an interior cubic vertex of H1 and qz ∈ E(G).205

By Lemma 2.1, G\rv is 3-connected. Thus G\rv has a forbidden 3-separation (H ′
1, H

′
2), where H ′

2 is the206

special part. Since dG(v) ≥ 5, r must be an interior vertex of H ′
2. Since r has cubic neighbors in G\rv, H ′

2207

must be a fan. Note that ruz is the only triangle of G\rv that contains r, one of u, z is an interior vertex208

of H ′
2 and the other is the center. Since u is cubic and the center is not cubic, z has to be the center and209

u is the interior vertex. It follows that the third interior vertex is a cubic vertex adjacent to both u and z,210

which implies that this vertex is q. Since q is cubic in G\rv, q cannot be v or w, so q is an interior vertex of211

H ′
1, which proves Claim 4.212

Let the third neighbor of q be p, in addition to u and z (see Figure 3.3). Since q is of type-II, pz ∈ E(G).213

Since {p, r} is not a cut set of G, we must have dG(z) ≥ 5. Thus the lemma is proved.214

r=y
s

t

u=x

v

w

z q

p

Figure 3.3: Every triple (x; y, z) can be extended into part of a ring.

Finally, we prove the following result, which is slightly stronger than Theorem 1.3.215

Theorem 3.5 Suppose G is 3+-connected and neither G\e nor G/e is 3+-connected, for every e ∈ E(G).216
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Then G has cubic vertices and, either G ∈ {W3,W4,W5} or every edge incident with a cubic vertex belongs217

to a ring.218

Proof. By Lemma 3.1 and Lemma 3.2, G has cubic vertices and all of which are of type-II. Suppose219

G 6∈ {W3,W4,W5}. Then Lemma 3.4 implies that every cubic vertex x is contain in a subgraph as illustrated220

in Figure 3.3. If we apply the lemma again to triple (q; p, z), where we are using the same notation used221

in Figure 3.3, then we conclude that d(p) = 4 (so p 6= v) and p is the end of another fan. By repeatedly222

applying this lemma we generate a sequence of fans. When the process terminate, the end of the last fan223

must be w, which creates a ring that contains all edges incident with x. Thus the theorem is proved.224

4 Excluding Cube/e225

Let Q denote the graph obtained from the Cube by contracting an edge, which is illustrated in Figure 4.1.226

In this section we characterize Q-free graphs.227

Figure 4.1: Graph Q

In the literature there are many result on excluding a single graph. The best known are the result of Hall228

on K3,3-free graphs and the result of Wagner on K5-free graphs [11]. On the other hand, the problems of229

characterizing K6-free graphs and Petersen-free graphs are still open. Note that both K6 and the Petersen230

graph have fifteen edges. In fact, no complete characterization is known for excluding any single graph with231

thirteen or more edges. Therefore, it is desirable to understand G-free graphs for all “small” graphs G, since232

these results could lead to a better understanding of K6-free and Petersen-free graphs. In a separate paper,233

the authors of this paper studied this problem systematically. They characterized G-free graphs for every234

3-connected G, except for Q, with eleven or fewer edges that have not yet been studied in the literature.235

Graph Q is different from all other small graphs in the way that none of the known splitter theorems is good236

enough to produce a complete characterization. Part of the reason is that Q has a nontrival 3-separation.237

It turns out that 3+-connectivity is the right connectivity for Q.238

It should be pointed out that Maharry [7] has characterized Cube-free graphs. Since the Cube is internally239

4-connected, Maharry’s result requires the operation of 3-sum, which introduces a major obstacle in its240

application to Q-free graphs, as being Q-free is not preserved under 3-sums.241

The rest of this section is arranged as follows. We first explain how a Q-free graph can be constructed242

from 3+-connected Q-free graphs. Then we use Theorem 1.3 to determine all these building blocks. For this243

part, some of the case are proved using computer.244

4.1 Reductions245

In the remainder of this paper we only consider simple graphs. Let G1, G2 be two graphs. Then their 0-sum246

is their disjoint union, their 1-sum is obtained by identifying one vertex of G1 with one vertex of G2, and247

their 2-sum is obtained by identifying one edge of G1 with one edge of G2, where the identified edge may248
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or may not be deleted after the identification. The following result says that if G is 3-connected, then to249

characterize G-free graphs one only needs to characterize 3-connected G-free graphs. Since the result is250

well-known we omit its proof.251

Lemma 4.1 Let G be 3-connected. Then G-free graphs are precisely those that are constructed by 0-, 1-,252

2-sums starting from K1, K2, K3, and 3-connected G-free graphs.253

An augmentation of a graph G is obtained by replacing a smaller K3,n or a fan with a larger one. To be254

precise, let (G1, G2) be a 3-separation of G such that V (G1) ∩ V (G2) = {u, v, w}, V (G2)− V (G1) = {x, y},255

and E(G2) = {xu, xv, xw, yu, yv, yw} or {xy, xu, xv, yv, yw}. Then an augmentation of G (with respect to256

this 3-separation) is the graph obtained by adding a new vertex z and, either adding edges zu, zv, zw in the257

first case or replacing xy with zx, zy, zv in the second case.258

Lemma 4.2 Suppose H is an augmentation of G. Then259

(i) G is 3-connected if and only if H is 3-connected;260

(ii) G is Q-free if and only if H is Q-free.261

Proof. In this proof we follow the notation used in the definition of augmentation. Note that H is262

obtained by either adding a new vertex z and three edges from z to G, or adding a parallel edge xv and263

then splitting vertex x. Since these operations preserve 3-connectivity, so if G is 3-connected, then H is also264

3-connected. Conversely, suppose H is 3-connected. If G2 is a fan, then G is 3-connected by Lemma 2.3(iii);265

if G2 is K2,3, then G is 3-connected by Lemma 2.3(i) and Lemma 2.2. Thus (i) is proved.266

The “if” part of (ii) is clear since G is a minor of H. To prove the “only if” part we assume that H has267

a Q-minor and we prove that G has a Q-minor as well. Since we may assume that G,H are connected, we268

may further assume Q = H\F1/F2, where F1, F2 are disjoint subsets of E(H). Let E0 denote the set of269

edges of H that are incident with at least one vertex in {x, y, z}. We consider the two cases separately.270

Suppose G2 is a fan. Let e1, e2, e3 be the three edges in E0 that are incident with v. If ei ∈ F1 for some271

i, then G has a Q-minor since H\ei is a subdivision of G. So we assume ei 6∈ F1 for all i. Since every ei is in272

a triangle with another ej , it follows that ei 6∈ F2 for all i. Therefore, zx, zy 6∈ F1 ∪ F2, which implies that273

Q has a two triangles with a common edges, a contradiction.274

Next, suppose G2 is K2,3. Observe that at least two vertices in {x, y, z} are incident with edges in F2275

because otherwise, since the minimum degree of Q is three, at least two of {x, y, z} are not incident with any276

edge in F1 ∪F2, which implies that Q has two cubic vertices with the same set of neighbors, a contradiction.277

We may assume that no two edges of F2 ∩E0 are incident with a common vertex in {u, v, w} because if the278

opposite happens, say uy, uz are two such edges, then G/uy can be obtained from H/{uy, uz} by deleting279

parallel edges, which implies that G/uy has a Q-minor. If all three vertices in {x, y, z} are incident with edges280

of F2, then we may assume xu, yv, zw ∈ F2. It follows that G/{xu, yv} can be obtained from H/{xu, yv, zw}281

by deleting parallel edges, and thus G/{xu, yv} has a Q-minor. Therefore, exactly two vertices in {x, y, z},282

say y, z, are incident with edges in F2, and so x is not adjacent with any edge in F1 ∪F2. Let ey, ez ∈ F2 be283

incident with y, z, respectively. Since for every cubic vertex of Q, its three neighbors do not form a triangle,284

H/{ey, ez} can be simulated by G/yt, for some t ∈ {u, v, w}, and thus G has a Q-minor.285

The last Lemma immediately implies the following.286

Lemma 4.3 Every 3-connected Q-free graphs is obtained from a 3+-connected Q-free graph by a sequence287

of augmentations.288
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Now it is clear that Q-free graphs are completely characterized by Lemma 4.1, Lemma 4.3, and the289

following theorem, whose proof will occupy the rest of the paper.290

Theorem 4.4 A 3+-connected graph is Q-free if and only if it is a 3+-connected minor of K6, R2, or Γi291

(i = 1, 2, ..., 6) shown in Figure 4.2.292

Figure 4.2: Maximal 3+-connected Q-free graphs

4.2 Proof Outline293

Let G be a 3+-connected graph. By Theorem 1.3, there is a sequence G1, G2, ...., Gm of 3+-connected294

graphs such that G1 ∈ {W3,W4,W5}, Gm = G, and Gi−1 ∈ {Gi\e,Gi/e,Gi\e/f} for some e, f ∈ E(Gi)295

(i = 2, 3, ...,m). Moreover, if Gi−1 = Gi\e/f , then Gi has a ring that contains both e and f . In this situation,296

we call the operation Gi−1 → Gi a ring-completion. Using this language, Theorem 1.3 is equivalent to: every297

3+-connected graph can be constructed from W3,W4,W5 by a sequence of undeletions, uncontractions, and298

ring-completions, such that all the intermediate graphs are also 3+-connected. We will follow this procedure299

to generate all 3+-connected Q-free graphs.300

Since a ring-completion requires the presence of almost an entire ring, it is understandable that this301

operation is not used very often. In fact, the following lemma says that this operation can be avoided for302

small Q-free graphs. Let R2, R3 be the two graphs in Figre 1.3.303

Lemma 4.5 Every 3+-connected Q-free graph G with 27 or fewer edges can be generated from W3, W4, W5,304

R2 by undeletions and uncontractions.305

Proof. Let G1, G2, ..., Gm be as define above. Suppose Gi−1 = Gi\e/f and Gi has a k-ring. Then k ≤ 3306

because otherwise Gi would have ≥ 28 edges. In case k = 3, we claim that G has an R3-minor. This is307

clear if Gi has no vertices other than those in the 3-ring since we need at least two extra edges to make Gi308

3-connected. If Gi does have another vertex x, then Gi has three paths from x to the 3-ring such that they309

are vertex-disjoint, except at x. Thus an R3-minor can be obtained from the union of these paths and the310

3-ring, which proves the claim. However, it is not difficult to find a Q-minor in R3, so k can only be two.311

Now notice that Gi has no vertices other than those in the 2-ring since Gi is 3-connected. It follows that312

Gi = R2 and thus G is obtained from R2 by only undeletions and uncontractions.313
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Because of this Lemma, when generating 3+-connected Q-free graphs, we don’t need to worry about314

ring-completions before the graphs reach 26 edges. However, as we will see, the process terminates when the315

graphs reach 24 edges, so we never need to consider ring-completions.316

In summary, to prove Theorem 4.4, the only thing we need to do is to repeatedly construct, starting from317

W3, W4, W5, R2, all 3
+-connected Q-free undeletions and uncontractions.318

4.3 Using computer319

Since the expansion process is routine and laborsome, we use computer to handle this tedious work. For a320

set G of 3+-connected Q-free graphs, let Φ(G) be the set of 3+-connected Q-free graphs that are obtained321

from graphs in G by a single undeletion or a single uncontraction, and let Ψ(G) be the set of graphs in G322

that are not a proper minor of any graph in Φ(G).323

Clearly, Ψ(G) will capture the maximal graphs that we are looking for. Notice that, after Φ(G) is324

computed, Ψ(G) can be easily obtained by |G| · |Φ(G)| minor-testings. As for Φ(G), we compute it as follows:325

(i) obtain all undeletions of members of G and only keep those that are Q-free;326

(ii) obtain all uncontractions of members of G and only keep those that are 3+-connected and Q-free.327

For example, Φ({W3}) = ∅ since no undeletion or uncontraction applies to W3. It then follows clearly that328

Ψ({W3}) = {W3}. On the other hand, Φ({W4}) consists of K5\e, obtained by undeletion, and K3,3 and the329

Prism, obtained by uncontrations. In this case Ψ({W4}) = ∅, meaning that every graph in {W4} extends330

to some graph in Φ({W4}). In the following we report |Φ(G)| and Ψ(G) of each iteration. A detailed list of331

Φ(G) can be found in [6]. We generate graphs according to their number of edges.332

G06 = {W3} → |Φ(G06)| = 0 and Ψ(G06) = {W3}

G08 = {W4} → |Φ(G08)| = 3 and Ψ(G08) = ∅

G09 = Φ(G08) → |Φ(G09)| = 3 and Ψ(G09) = ∅

G10 = Φ(G09) ∪ {W5} → |Φ(G10)| = 5 and Ψ(G10) = ∅

G11 = Φ(G10) → |Φ(G11)| = 12 and Ψ(G11) = ∅

G12 = Φ(G11) → |Φ(G12)| = 17 and Ψ(G12) = ∅

G13 = Φ(G12) → |Φ(G13)| = 24 and Ψ(G13) = ∅

G14 = Φ(G13) → |Φ(G14)| = 32 and Ψ(G14) = ∅

G15 = Φ(G14) ∪ {R2} → |Φ(G15)| = 33 and Ψ(G15) = {K6, R2,Γ1}

G16 = Φ(G15) → |Φ(G16)| = 30 and Ψ(G16) = ∅

G17 = Φ(G16) → |Φ(G17)| = 26 and Ψ(G17) = {Γ2}

G18 = Φ(G17) → |Φ(G18)| = 16 and Ψ(G18) = ∅

G19 = Φ(G18) → |Φ(G19)| = 11 and Ψ(G19) = {Γ3}

G20 = Φ(G19) → |Φ(G20)| = 9 and Ψ(G20) = ∅

G21 = Φ(G20) → |Φ(G21)| = 4 and Ψ(G21) = {Γ4}

G22 = Φ(G21) → |Φ(G22)| = 2 and Ψ(G22) = ∅

G23 = Φ(G22) → |Φ(G23)| = 1 and Ψ(G23) = {Γ5}

G24 = Φ(G23) → |Φ(G24)| = 0 and Ψ(G24) = {Γ6}

333

4.4 Proof of Theorem 4.4334

By Lemma 4.5 and the computation of the last subsection, we conclude that every 3+-connected Q-free335

graph with ≤ 27 edges is a minor of K6, R2, or Γi (i = 1, 2, ..., 6). Since the largest among all such graphs336

has only 24 edges, we deduce from Theorem 1.2 that there are no other 3+-connected Q-free graphs, which337
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proves the Theorem.338
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