Mathematical Review
The purpose of this review is to summarize basic facts on
linear algebra and calculus that we are going to use in this
course. Theorems that are not proved in this review can be
found in most standard textbooks.

Matrices

An m x n matriz A = (a;;) is a rectangular array of (real)
numbers, which has m rows and n columns, that is

a1l ai2 A1n

a21 a2 A2
A= . )

Am1 Am?2 Amn

The transpose of A is the n x m matrix

air  a21 am1
ai2 a2 am?2
A1np  A2n Amn

which is denoted by AT. If A = AT, then A is called symmetric.
Clearly, a symmetric matrix must be a square matrix, that is,
m = n. We denote by I the identity matrix

10 --- 0

01 --- 0

00 --- 1
If « is a number, then

al = (aaij).

If B = (b;;) is an m X n matrix, then

A+ B= (aij + b”)

If B = (bi;) is an n x p matrix, then AB is an m x p matrix
(cij), where, for each i and j,
Cij = aitbij + aiobzj + - + Qinbp;.

Theorem 1. Matrix product satisfies
(1) (AB)C = A(BC);
(2) (AB)T = BT AT,

PrROOF. Let A = (aij)mxn, B = (bij)nxp, and C =
Then AB = (Za 1 @iabaj)mxp and

P n
Z(Z aiabap)cs;
B=1 a=1

mxq

(Cij)pxq~

Similarly, BC' = (3_0_; bigcp;)nxq and

Z Gia Z bapcp;)
a=1

mxq

Since

n

Z aiabap)cpj = Z Z GiabapCp;

= B=1a=1

p

Z bapcpj = Zam Zb 5C85)>
B=1 a=1

thus (1) is proved. The proof of (2) is even easier. Let a;;
abd bj; = bj;. Then AT = (a};
the ij-th entry of (AB)T

n
E ajabon g bazaja*E b?oz ajr
a=1

which is exactly the ij-th entry of BT AT, O

%
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= a‘ji

) and BT = (b/;). Notice that

Linear and quadratic functions

In the following, we express linear and quadratic functions
in vector form. First it is clear that the linear function

flx1, 22, ..., Tp) = co+ 121 + CoZa + -+ + Cry

can always be expressed as

f(z) =co+cx,

T

where ¢ = [c1, ¢a, ..., ¢,] and © = [z1, 22, ..., z,]" .

For a general (homogeneous) quadratic function:

E a”a: + E 2a;%;7 5,

1<j<k<n

f(‘rl; T2y .0y T
let A = (a;;), where, for all n > i > j > 1, we define a;; = a;;.
It is easy to see that A is symmetric and

f(z) = 2T Ax.

Derivatives
Let f: R” — R. We define

lim f(z) =

r—a

if for any given e > 0, there exists § > 0, such that | f(z)—al < e,
for all x with ||z —al| < 4.

Let f:R™ — R be differentiable. Then we define
of of of

A e s
VI= 0x1’ Oxs’ 7 Oxy,

For example, if f(z) = ax, where a is a row vector, then V f = a.

Theorem. Chain Rule.
on n variables x1,x9, ...,

Suppose f : R™ — R is a function
Ty and each x; : R = R is a function

of t. Then,
G _Of dui | Of dus | OF doa _
dt Ox1 dt Oxq dt ox, dt = (Vf) (Vx)



Let f: R™ — R and let d € R™. The directional derivative of f
in the direction d is

Of  \ sy fletad) - f(r)
%(x)fhm .

a—0 (6%

By Chain Rule, it is easy to prove the following.

of
Th === - d.
eorem. — (Vf)
Corollary. The gradient Vf

increases the fastest.

is the direction in which f

In general, if f(x) = [fi(2), f2(2),..., fm(2)]T : R® — R™ is

differentiable, we define

of af of
Vfi o5 Oms e
D gﬁ g.ﬁ gfz
Vf é . — 9'61 x2 Tn
Ofm  Ofm O fm
me 6:61 612 an

For example, let f(z) = Az, where A is an m x n matrix, and let
ai,as,...,an, be the m rows of A. Then f = [f1, f2,.- ., fm]T
with f;(x) = a;z, for all i. Therefore,

Vi ax
V fa a

vi=| =7 =4
vfm Am

In particular, by taking A = I, the identity matrix, we deduce
that, if f(z) =z, then Vf = I.

Suppose f : R" — R is twice differentiable, then we define H f
to be

2*f *f *f
02x1 Oxo0x1 0x,0x1
i i &y
T 61131’2 6212 6:En6x2
V(V)' = . . ;
_of  _&f 0% f
O0x10x, Ox20x,, 02z,

which is aslo called the Hessian of f.

Theorem. Product Rule. Let f : R - R and g : R* - R
are both differentiable. Then

V(fTg)=g" (V) + 1 (Vg).

As an example, we consider h(x) = 27 Az. Let f(x) = = and
g(z) = Az. Then Vf =1 and Vg = A. From the product rule
we deduce that

Vh=aTATT + 2'A = 2T (A + AT)
and thus
Hh=V(Vh)T =V[(A+ AT)z] = A+ AT.
If A is symmetric, then we have

V(zTAz) =22TA and  H(zT Az) = 2A.

In particular,
V(zTz) =227 and H(2"x) =21

Determinant

Next, we define the determinant of an nxn matrix A = (a;;),
which is denoted by det(A) or |A]. If n = 1, then |A| £ aj;.
When n > 1, for each i, let A; be the (n — 1) x (n — 1) matrix
obtained from A by deleting the first row and the i-th column.
Then

|A] £ a11|Ar] — ara|Ag| + as]As| + - 4+ (=1)" 1A,

In particular
a]d b' = ad — be,

c d
a b ¢
d e f|=uaei+bfg+cdh— gec— hfa—idb.
g h 1

In general, the following is true.

Theorem 2. (Laplace’s Expansion Theorem.)
|Al = ZSign(W)a17r(1)a2w(2) “ Opr(n)

where the sum is taken over all permutations © of {1,2,...,n},
and sign(m) = 1.

Matrix A = (a;5) is lower triangular if a;; = 0, for all 4 > j.

Proposition 3. If A = (aij)nxn is lower triangular, then |A| =
11022 Gpnp -

PROOF. We prove the result by induction on n. If n = 1, the
result holds trivially. Next, we assume that n > 1. Let A; be
the matrix obtained from A by deleting the first row and the
first column. Then it is clear that Ay is an (n — 1) x (n — 1)
lower triangular matrix, with ass, ass, ..., a,, be its diagonal
entries. By induction, |A;| = a22a33...Gny,. Then, from the
above definition, as A is lower triangular, we deduce that |A| =
an\A1| = A11022...App - ]

Theorem 4. |A| = |AT].

A matrix A is called triangular if either A or AT is lower tri-
angular. The last two results imply the following immediately.

Proposition 5. If A = (a;j)nxn is triangular, then |A| =
11022 - dnp.-

Theorem 6. (Binet-Cauchy) If both A and B are n X n
matrices, then |AB| = |A||B].

Theorem 7. If|A|#0, then there exists B with AB = BA=1.

Matrix B in the last theorem is called the inverse of A and
is denoted by A~!. The following result is very useful.

-1
. a b 1 d =b
Proposition 8. L d} = d—be {—c a ]
For any two vectors z,y, since x - y = ||z||||y|| cos 6, where

0 is the angle between the two vectors, it is natural to say that
x,y are orthogonal if x -y = 0. A square matrix D is orthogonal
if DTD = I. Equivalently, D is orthogonal if every column of
D is a unit vector (a vector whose Euclidean norm is equal to
one), and any two distinct columns of D are orthogonal.



Proposition 9. If D is orthogonal, then |D| = +1.

Proor. By Theorem 4, Theorem 6, and Proposition 5, we have
|D|? = |DT||D| = |I| = 1 and thus the result follows. O

Proposition 10. If D is orthogonal, then so is DT. That is,
DDT =1.

PRrROOF. By Proposition 9, the inverse D! of D exists. Thus,
by Theorem 1, DT = DTDD~!' = D~!. Therefore, we have
DDT =DD ' =1. O

Symmetric matrices

Proposition 11. Let A be an n X n matriz. Then p(\) =

A — A| is a polynomial on X\ of degree n.

PRrROOF. Let A = (a;;) and B = (b;;) = Al — A. Then we have
bii = A—ay;, for all 4, and b;; = —ay;, for all < # j. By Laplace’s
Expansion Theorem,

p(A) = Z sign(m)b1r(1)b27(2) -+ * Opre(n)- (1)

T

Since each b;; is a polynomial of A, every term in (1) is a poly-
nomial of A, and thus so is p()). Notice that each b;; has degree
either 0 or 1, and each term in (1) is the product of exactly n
bi;’s, so the degree of p(\) is at most n. To prove the degree of
p(A) is n, it remains to show that, in (1), the coefficient of A"
is not zero. Observe that the only term in (1) that has degree
n is
biibaz - bpp = (A — a11)(A — azz) -+ (A = an),

which has a non-zero coefficient. Therefore, the proof of the
proposition is complete. O

We call p(A) the characteristic polynomial of A, and we call
its n roots the eigenvalues of A.

Theorem 12. If A is a symmetric matriz, then there exists an
orthogonal matriz D such that

DADT = diag(A, \a, ..., An),
where
M0 0
0 Ao 0

diag()\l,)\g,...,)\n) = . . . . 5

and A1, Ag, ..., Ap are the n eigenvalues of A.

Let A be a symmetric matrix. It is called positive definite if
xT Az > 0 for all © # 0. It is positive semidefinite if 27 Ax > 0
for all z. We write A > 0 and A > 0 for these two cases.

Proposition 13. Let A and B be n X n matrices and let A be
symmetric. If A >0 and |B| # 0, then BTAB > 0.

PRrROOF. We need to show that 27 BT ABx > 0, for all 2 # 0.
Let y = Bx. Since x # 0, we must y # 0, because y = 0 would
imply, by Theorem 7, + = B~'y = 0, which is not the case.
Therefore, by Theorem 1, 7 BT ABx = yT Ay > 0. O

Theorem 14. A symmetric matriz A is positive definite (or
semidefinite) if and only if all its eigenvalues are positive (or
nonnegative).

PROOF. We only consider the case for positive definite. The
other case can be proved similarly.

We first prove the “if” part by assuming that all eigen-
values of A are positive. We need to show A > 0. Let D
and A = diag(A1, A2, ..., \,) be determined as in Theorem 12.
Clearly, A > 0, as \; > 0, for all i. By Theorem 1(1), DTAD =
DTDADTD = A. Therefore, by Proposition 9 and Proposition
13, A > 0.

Next, we prove the “only if’ part by assume that 7 Az > 0,
for all x # 0. We need to show that each eigenvalue \; of A are
positive. Let D and A be as before. Let z be the i-th column of
DT . By Proposition 10, D7 is orthogonal, so z is a unit vector
and thus z # 0. Again, as DT is orthogonal, DD = I, which
implies Dx = e;, where e; is the i-th column of I. Now

A = egpAei =2T"DTADz = 27 Az > 0,
and the theorem is proved. O

Theorem 15. Sylvester’s Criterion. A symmetric matriz A
18 positive definite if and only if its leading principal minors are
positive, that is, |A;| > 0, for all i, where

a1l a2 ay;

a1 a22 az;
A= | . )

Qi1 G52 Qg

Proor. We first prove “only if” by assuming that A is posi-
tive definite. We need to show that |A;| > 0, for every i. By
Theorem 12, there exists an orthogonal matrix D such that
DA;DT = diag(\1, Mg, ..., \i), where Aj, Aa, ..., \; are the eigen-
values of A;. By Theorem 6,

|DA;DT| = |D||Ai||D"| = [DTDJ|A;] = |Ail,

which implies, by Proposition 3, that |A4;] = A\ As...\;. There-
fore, by Theorem 14, we only need to show that A; is positive
definite. To prove this, take any = # 0 that belongs to R’. Let

z mn
y—{O]ER.

It is clear that y # 0. Since A > 0, we deduce that 27 A,z =
yT Ay > 0, and thus A; > 0, as we wanted.

Next, we prove the “if” part by assuming that |4;| > 0, for
all 7. We need to show that A > 0. We prove this by induction
on n. The result is clear if n = 1, so we assume that n > 1. We

express A as
An—l a
al apn |’

Since |A,—1| > 0, by Theorem 7, the inverse A;il of A,,_1
exists. From

Anfl(A;L)T = qu(Aﬁil)T = (A;ilAnfl)T =1
we deduce that (A '

AT =AY Letb = A a and a =
ann —aT A1 a. Then it is straightforward to verify that

e e L B



It is clear from Proposition 13 and Proposition 5 that we only
A1 0
0
By taking determinants on both sides of (2), we deduce from
Theorem 6 that

need to show that B = > 0.

|Al = A1,

which implies a > 0. Let us express any vector « # 0 as [ﬂ’

where y € R*! and z € R. Then we have 7 Bx = yTA,,_1y+
az?. By induction, A,_; > 0. Therefore, 7Bz > 0, as we

wanted. O

It is much harder to use determinants to test if a symmetric
matrix A, «, is positive semidefinite. Let i1, 12, ...,4; be distinct
members of {1,2,...,n}. Let B be the matrix obtained from
A by deleting rows indexed by 41,149, ...,9; and also columns
indexed by 1,12, ..., ix. Then det(B) is called a principal minor
of A. Notice that A has only n leading principal minors, but it
has 2" — 1 principal minors.

Theorem 16. A symmetric matriz is positive (negative)
semidefinate if and only if all its principal minors are nonneg-
ative (nonpositive).

Theorem 17. Rayleigh Inequality. If A is an n x n sym-
metric matriz and x € R™, then,

Aminl2]|? < 2T Az < Aaal[2]I2,

where Apmin and Apaz, Tespectively, are the smallest and largest
eigenvalues of A.

PRrROOF. Let D and A = diag(A1, Aa, ..., An) be determined as in
Theorem 12. Then A = DTAD. Let y = [y1, Y2, ...,yn]T = Dzx.

Then
Am,anI'HZ = )\min‘rTx = )\minxTDTDx = Am.inyTy

= Amin(y + 43 + - + Y1)
S MYE+ Aays 4 o+ Al
=yTAy = 2T DTADz = 2T Az.

The other inequality can be proved similarly. O



