
Mathematical Review
The purpose of this review is to summarize basic facts on

linear algebra and calculus that we are going to use in this
course. Theorems that are not proved in this review can be
found in most standard textbooks.

Matrices

An m × n matrix A = (aij) is a rectangular array of (real)
numbers, which has m rows and n columns, that is

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 .

The transpose of A is the n×m matrix
a11 a21 · · · am1

a12 a22 · · · am2

...
...

. . .
...

a1n a2n · · · amn


which is denoted by AT . If A = AT , then A is called symmetric.
Clearly, a symmetric matrix must be a square matrix, that is,
m = n. We denote by I the identity matrix

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .
If α is a number, then

αA = (αaij).

If B = (bij) is an m× n matrix, then

A±B = (aij ± bij).

If B = (bij) is an n× p matrix, then AB is an m× p matrix
(cij), where, for each i and j,

cij = ai1b1j + ai2b2j + · · ·+ ainbnj .

Theorem 1. Matrix product satisfies
(1) (AB)C = A(BC);
(2) (AB)T = BTAT .

Proof. Let A = (aij)m×n, B = (bij)n×p, and C = (cij)p×q.
Then AB = (

∑n
α=1 aiαbαj)m×p and

(AB)C =

 p∑
β=1

(

n∑
α=1

aiαbαβ)cβj


m×q

.

Similarly, BC = (
∑p
β=1 biβcβj)n×q and

A(BC) =

 n∑
α=1

aiα(

p∑
β=1

bαβcβj)


m×q

.

Since

p∑
β=1

(

n∑
α=1

aiαbαβ)cβj =

p∑
β=1

n∑
α=1

aiαbαβcβj

=

n∑
α=1

p∑
β=1

aiαbαβcβj =

n∑
α=1

aiα(

p∑
β=1

bαβcβj),

thus (1) is proved. The proof of (2) is even easier. Let a′ij = aji
abd b′ij = bji. Then AT = (a′ij) and BT = (b′ij). Notice that

the ij-th entry of (AB)T is

n∑
α=1

ajαbαi =

n∑
α=1

bαiajα =

n∑
α=1

b′iαa
′
αj ,

which is exactly the ij-th entry of BTAT .

Linear and quadratic functions

In the following, we express linear and quadratic functions
in vector form. First it is clear that the linear function

f(x1, x2, ..., xn) = c0 + c1x1 + c2x2 + · · ·+ cnxn

can always be expressed as

f(x) = c0 + cx,

where c = [c1, c2, ..., cn] and x = [x1, x2, ..., xn]T .

For a general (homogeneous) quadratic function:

f(x1, x2, ..., xn) =

n∑
i=1

aiix
2
i +

∑
1≤j<k≤n

2aijxixj ,

let A = (aij), where, for all n ≥ i > j ≥ 1, we define aij = aji.
It is easy to see that A is symmetric and

f(x) = xTAx.

Derivatives

Let f : Rn → R. We define

lim
x→a

f(x) = α

if for any given ε > 0, there exists δ > 0, such that |f(x)−α| < ε,
for all x with ||x− a|| < δ.

Let f : Rn → R be differentiable. Then we define

∇f ,

[
∂f

∂x1
,
∂f

∂x2
, ...,

∂f

∂xn

]
.

For example, if f(x) = ax, where a is a row vector, then∇f = a.

Theorem. Chain Rule. Suppose f : Rn → R is a function
on n variables x1, x2, ..., xn and each xi : R → R is a function
of t. Then,

df

dt
=

∂f

∂x1

dx1
dt

+
∂f

∂x2

dx2
dt

+ ...+
∂f

∂xn

dxn
dt

= (∇f) · (∇x).
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Let f : Rn → R and let d ∈ Rn. The directional derivative of f
in the direction d is

∂f

∂d
(x) , lim

α→0

f(x+ αd)− f(x)

α
.

By Chain Rule, it is easy to prove the following.

Theorem.
∂f

∂d
= (∇f) · d.

Corollary. The gradient ∇f is the direction in which f
increases the fastest.

In general, if f(x) = [f1(x), f2(x), . . . , fm(x)]T : Rn → Rm is
differentiable, we define

∇f ,


∇f1
∇f2

...
∇fm

 =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn

 .
For example, let f(x) = Ax, where A is an m×n matrix, and let
a1, a2, . . . , am be the m rows of A. Then f = [f1, f2, . . . , fm]T

with fi(x) = aix, for all i. Therefore,

∇f =


∇f1
∇f2

...
∇fm

 =


a1
a2
...
am

 = A.

In particular, by taking A = I, the identity matrix, we deduce
that, if f(x) = x, then ∇f = I.
Suppose f : Rn → R is twice differentiable, then we define Hf
to be

∇(∇f)T =


∂2f
∂2x1

∂2f
∂x2∂x1

· · · ∂2f
∂xn∂x1

∂2f
∂x1∂x2

∂2f
∂2x2

· · · ∂2f
∂xn∂x2

...
...

. . .
...

∂2f
∂x1∂xn

∂2f
∂x2∂xn

· · · ∂2f
∂2xn

 ,

which is aslo called the Hessian of f .

Theorem. Product Rule. Let f : Rn → R and g : Rn → R
are both differentiable. Then

∇(fT g) = gT (∇f) + fT (∇g).

As an example, we consider h(x) = xTAx. Let f(x) = x and
g(x) = Ax. Then ∇f = I and ∇g = A. From the product rule
we deduce that

∇h = xTAT I + xtA = xT (A+AT )

and thus

Hh = ∇(∇h)T = ∇[(A+AT )x] = A+AT .

If A is symmetric, then we have

∇(xTAx) = 2xTA and H(xTAx) = 2A.

In particular,

∇(xTx) = 2xT and H(xTx) = 2I.

Determinant

Next, we define the determinant of an n×nmatrix A = (aij),

which is denoted by det(A) or |A|. If n = 1, then |A| , a11.
When n > 1, for each i, let Ai be the (n− 1)× (n− 1) matrix
obtained from A by deleting the first row and the i-th column.
Then

|A| , a11|A1| − a12|A2|+ a13|A3|+ · · ·+ (−1)n−1|An|.

In particular,∣∣∣∣a b
c d

∣∣∣∣ = ad− bc,∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = aei+ bfg + cdh− gec− hfa− idb.

In general, the following is true.

Theorem 2. (Laplace’s Expansion Theorem.)

|A| =
∑
π

sign(π)a1π(1)a2π(2) · · · anπ(n),

where the sum is taken over all permutations π of {1, 2, ..., n},
and sign(π) = ±1.

Matrix A = (aij) is lower triangular if aij = 0, for all i > j.

Proposition 3. If A = (aij)n×n is lower triangular, then |A| =
a11a22 · · · ann.

Proof. We prove the result by induction on n. If n = 1, the
result holds trivially. Next, we assume that n > 1. Let A1 be
the matrix obtained from A by deleting the first row and the
first column. Then it is clear that A1 is an (n − 1) × (n − 1)
lower triangular matrix, with a22, a33, ..., ann be its diagonal
entries. By induction, |A1| = a22a33...ann. Then, from the
above definition, as A is lower triangular, we deduce that |A| =
a11|A1| = a11a22...ann.

Theorem 4. |A| = |AT |.

A matrix A is called triangular if either A or AT is lower tri-
angular. The last two results imply the following immediately.

Proposition 5. If A = (aij)n×n is triangular, then |A| =
a11a22 · · · ann.

Theorem 6. (Binet-Cauchy) If both A and B are n × n
matrices, then |AB| = |A||B|.

Theorem 7. If |A| 6=0, then there exists B with AB = BA = I.

Matrix B in the last theorem is called the inverse of A and
is denoted by A−1. The following result is very useful.

Proposition 8.

[
a b
c d

]−1
=

1

ad− bc

[
d −b
−c a

]
.

For any two vectors x, y, since x · y = ||x||||y|| cos θ, where
θ is the angle between the two vectors, it is natural to say that
x, y are orthogonal if x · y = 0. A square matrix D is orthogonal
if DTD = I. Equivalently, D is orthogonal if every column of
D is a unit vector (a vector whose Euclidean norm is equal to
one), and any two distinct columns of D are orthogonal.
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Proposition 9. If D is orthogonal, then |D| = ±1.

Proof. By Theorem 4, Theorem 6, and Proposition 5, we have
|D|2 = |DT ||D| = |I| = 1 and thus the result follows.

Proposition 10. If D is orthogonal, then so is DT . That is,
DDT = I.

Proof. By Proposition 9, the inverse D−1 of D exists. Thus,
by Theorem 1, DT = DTDD−1 = D−1. Therefore, we have
DDT = DD−1 = I.

Symmetric matrices

Proposition 11. Let A be an n × n matrix. Then p(λ) =
|λI −A| is a polynomial on λ of degree n.

Proof. Let A = (aij) and B = (bij) = λI − A. Then we have
bii = λ−aii, for all i, and bij = −aij , for all i 6= j. By Laplace’s
Expansion Theorem,

p(λ) =
∑
π

sign(π)b1π(1)b2π(2) · · · bnπ(n). (1)

Since each bij is a polynomial of λ, every term in (1) is a poly-
nomial of λ, and thus so is p(λ). Notice that each bij has degree
either 0 or 1, and each term in (1) is the product of exactly n
bij ’s, so the degree of p(λ) is at most n. To prove the degree of
p(λ) is n, it remains to show that, in (1), the coefficient of λn

is not zero. Observe that the only term in (1) that has degree
n is

b11b22 · · · bnn = (λ− a11)(λ− a22) · · · (λ− an),

which has a non-zero coefficient. Therefore, the proof of the
proposition is complete.

We call p(λ) the characteristic polynomial of A, and we call
its n roots the eigenvalues of A.

Theorem 12. If A is a symmetric matrix, then there exists an
orthogonal matrix D such that

DADT = diag(λ1, λ2, ..., λn),

where

diag(λ1, λ2, ..., λn) =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 ,
and λ1, λ2, ..., λn are the n eigenvalues of A.

Let A be a symmetric matrix. It is called positive definite if
xTAx > 0 for all x 6= 0. It is positive semidefinite if xTAx ≥ 0
for all x. We write A > 0 and A ≥ 0 for these two cases.

Proposition 13. Let A and B be n× n matrices and let A be
symmetric. If A > 0 and |B| 6= 0, then BTAB > 0.

Proof. We need to show that xTBTABx > 0, for all x 6= 0.
Let y = Bx. Since x 6= 0, we must y 6= 0, because y = 0 would
imply, by Theorem 7, x = B−1y = 0, which is not the case.
Therefore, by Theorem 1, xTBTABx = yTAy > 0.

Theorem 14. A symmetric matrix A is positive definite (or
semidefinite) if and only if all its eigenvalues are positive (or
nonnegative).

Proof. We only consider the case for positive definite. The
other case can be proved similarly.

We first prove the “if” part by assuming that all eigen-
values of A are positive. We need to show A > 0. Let D
and Λ = diag(λ1, λ2, ..., λn) be determined as in Theorem 12.
Clearly, Λ > 0, as λi > 0, for all i. By Theorem 1(1), DTΛD =
DTDADTD = A. Therefore, by Proposition 9 and Proposition
13, A > 0.

Next, we prove the “only if” part by assume that xTAx > 0,
for all x 6= 0. We need to show that each eigenvalue λi of A are
positive. Let D and Λ be as before. Let x be the i-th column of
DT . By Proposition 10, DT is orthogonal, so x is a unit vector
and thus x 6= 0. Again, as DT is orthogonal, DDT = I, which
implies Dx = ei, where ei is the i-th column of I. Now

λi = eTi Λei = xTDTΛDx = xTAx > 0,

and the theorem is proved.

Theorem 15. Sylvester’s Criterion. A symmetric matrix A
is positive definite if and only if its leading principal minors are
positive, that is, |Ai| > 0, for all i, where

Ai =


a11 a12 · · · a1i
a21 a22 · · · a2i

...
...

. . .
...

ai1 ai2 · · · aii

 .
Proof. We first prove “only if” by assuming that A is posi-
tive definite. We need to show that |Ai| > 0, for every i. By
Theorem 12, there exists an orthogonal matrix D such that
DAiD

T = diag(λ1, λ2, ..., λi), where λ1, λ2, ..., λi are the eigen-
values of Ai. By Theorem 6,

|DAiDT | = |D||Ai||DT | = |DTD||Ai| = |Ai|,

which implies, by Proposition 3, that |Ai| = λ1λ2...λi. There-
fore, by Theorem 14, we only need to show that Ai is positive
definite. To prove this, take any x 6= 0 that belongs to Ri. Let

y =

[
x
0

]
∈ Rn.

It is clear that y 6= 0. Since A > 0, we deduce that xTAix =
yTAy > 0, and thus Ai > 0, as we wanted.

Next, we prove the “if” part by assuming that |Ai| > 0, for
all i. We need to show that A > 0. We prove this by induction
on n. The result is clear if n = 1, so we assume that n > 1. We
express A as [

An−1 a
aT ann

]
.

Since |An−1| > 0, by Theorem 7, the inverse A−1n−1 of An−1
exists. From

An−1(A−1n−1)T = ATn−1(A−1n−1)T = (A−1n−1An−1)T = I

we deduce that (A−1n−1)T = A−1n−1. Let b = A−1n−1a and α =

ann − aTA−1n−1a. Then it is straightforward to verify that

A =

[
In−1 0
bT 1

] [
An−1 0

0 α

] [
In−1 b

0 1

]
. (2)
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It is clear from Proposition 13 and Proposition 5 that we only

need to show that B =

[
An−1 0

0 α

]
> 0.

By taking determinants on both sides of (2), we deduce from
Theorem 6 that

|A| = α|An−1|,

which implies α > 0. Let us express any vector x 6= 0 as

[
y
z

]
,

where y ∈ Rn−1 and z ∈ R. Then we have xTBx = yTAn−1y+
αz2. By induction, An−1 > 0. Therefore, xTBx > 0, as we
wanted.

It is much harder to use determinants to test if a symmetric
matrix An×n is positive semidefinite. Let i1, i2, ..., ik be distinct
members of {1, 2, ..., n}. Let B be the matrix obtained from
A by deleting rows indexed by i1, i2, ..., ik and also columns
indexed by i1, i2, ..., ik. Then det(B) is called a principal minor
of A. Notice that A has only n leading principal minors, but it
has 2n − 1 principal minors.

Theorem 16. A symmetric matrix is positive (negative)
semidefinate if and only if all its principal minors are nonneg-
ative (nonpositive).

Theorem 17. Rayleigh Inequality. If A is an n × n sym-
metric matrix and x ∈ Rn, then,

λmin||x||2 ≤ xTAx ≤ λmax||x||2,

where λmin and λmax, respectively, are the smallest and largest
eigenvalues of A.

Proof. Let D and Λ = diag(λ1, λ2, ..., λn) be determined as in
Theorem 12. Then A = DTΛD. Let y = [y1, y2, ..., yn]T = Dx.
Then

λmin||x||2 = λminx
Tx = λminx

TDTDx = λminy
T y

= λmin(y21 + y22 + ...+ y2n)

≤ λ1y21 + λ2y
2
2 + ...+ λny

2
n

= yTΛy = xTDTΛDx = xTAx.

The other inequality can be proved similarly.
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