Test I

Name: KEY
1 (8pts). Find $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+2 y^{2}}$ if it exists, or show that the limit does not exist.
Since $f(0, y)=0$, so $f(x, y) \rightarrow 0$ as $(x, y) \rightarrow(0,0)$ along the y-axis.
However, $f(x, x)=1 / 3$, so $f(x, y) \rightarrow 1 / 3$ as $(x, y) \rightarrow(0,0)$ along the line $y=x$.
Since we have obtained different limits along different paths, the given limit does not exist.

2 (8 pts). Find an equation of the tangent plane to surface $z=1+x \ln (x y-5)$ at point $(3,2)$.
$f_{x}=0+1 \cdot \ln (x y-5)+x \cdot \frac{y}{x y-5} \Longrightarrow f_{x}(3,2)=0+0+6=6$
$f_{y}=0+x \cdot \frac{x}{x y-5} \Longrightarrow f_{x}(3,2)=0+9=9$
$f(3,2)=1+0=0$. So the equation is $z-1=6(x-3)+9(y-2)$ or $z=6 x+9 y-35$

3 (9pts). Let $w=x e^{y / z}, x=s-2 t, y=s t, z=t^{s}$. Find $\frac{\partial w}{\partial t}$ when $s=2, t=2$.

We apply $\frac{\partial w}{\partial t}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial t}$. First we have
$\frac{\partial w}{\partial x}=e^{y / z}, \quad \frac{\partial w}{\partial y}=x e^{y / z}(1 / z), \quad \frac{\partial w}{\partial z}=x e^{y / z}\left(-y / z^{2}\right) ; \quad \frac{\partial x}{\partial t}=-2, \quad \frac{\partial y}{\partial t}=s, \quad \frac{\partial z}{\partial t}=s \cdot t^{s-1}$.
When $s=t=2, \quad x=2-4=-2, \quad y=2 \cdot 2=4, \quad z=2^{2}=4 . \quad$ So
$\frac{\partial w}{\partial t}=e(-2)+(-1 / 2) e(2)+(1 / 2) e(4)=-e$

4 (9pts). Find the directional derivative of $f(x, y, z)=x e^{y}+y e^{z}+z e^{x}$ at point $P(0,0,1)$ in the direction $\langle 1,1,-2\rangle$.
$\nabla f=\left\langle f_{x}, f_{y}, f_{y}\right\rangle=\left\langle e^{y}+z e^{x}, x e^{y}+e^{z}, \quad y e^{z}+e^{x}\right\rangle=\langle 2, e, 1\rangle$
$\mathbf{u}=\langle 1,1,-2\rangle / \sqrt{1^{2}+1^{2}+(-2)^{2}}=\langle 1,1,-2\rangle / \sqrt{6}$
So $D_{u} f=\nabla f \cdot \mathbf{u}=(2+e-2) / \sqrt{6}=e / \sqrt{6}$.

5 (9pts). Find all critical points of $f(x, y)=x+4 y-\ln \left(x y^{2}\right)$.
Then determine if they are local maxima, local minima, or saddle points.
$f_{x}=1+0-\frac{y^{2}}{x y^{2}}=1-\frac{1}{x}=0 \quad \Longrightarrow \quad x=1$
$f_{y}=0+4-\frac{2 x y}{x y^{2}}=4-\frac{2}{y}=0 \quad \Longrightarrow \quad y=\frac{1}{2} . \quad$ So the only critical point is $\left(1, \frac{1}{2}\right)$
$f_{x x}=1 / x^{2}=1, \quad f_{x y}=0, \quad f_{y y}=2 / y^{2}=8$.
$D=f_{x x} f_{y y}-f_{x y}^{2}=8>0, \quad f_{x x}=1>0, \quad$ so $f\left(1, \frac{1}{2}\right)=3+2 \ln 2$ has a local minimum.

6 (9pts). Calculate the iterated integral $\int_{0}^{2} \int_{0}^{1} y e^{2 x} d y d x$.
$\int_{0}^{2} \int_{0}^{1} y e^{2 x} d y d x=\left.\int_{0}^{2} \frac{1}{2} y^{2} e^{2 x}\right|_{0} ^{1} d x=\int_{0}^{2} \frac{1}{2} e^{2 x} d x=\left.\frac{1}{4} e^{2 x}\right|_{0} ^{2}=\frac{1}{4}\left(e^{4}-1\right)$

7 (9pts). Evaluate the double integral $\iint_{D} y d A$, where D is enclosed by curves $x=y$ and $x=y^{2}-y$.
Intersection: $y=y^{2}-y \Longrightarrow y^{2}-2 y=0 \Longrightarrow y(y-2)=0 \Longrightarrow y=0,2$
$\iint_{D} y d A=\int_{0}^{2} \int_{y^{2}-y}^{y} y d x d y=\left.\int_{0}^{2} y x\right|_{y^{2}-y} ^{y} d y=\int_{0}^{2} 2 y^{2}-y^{3} d y=\frac{2}{3} y^{3}-\left.\frac{1}{4} y^{4}\right|_{0} ^{2}=\frac{16}{3}-4=\frac{4}{3}$

8 (9pts). Evaluate $\iint_{D} e^{-x^{2}-y^{2}} d A$, where D is enclosed by the semicircle $x=\sqrt{4-y^{2}}$ and the y-axis.
Using polar coordinates, we can describe D as $\quad 0 \leq r \leq 2, \quad-\pi / 2 \leq \theta \leq \pi / 2$ Using $x^{2}+y^{2}=r^{2}$ we have

$$
\iint_{D} e^{-x^{2}-y^{2}} d A=\int_{-\pi / 2}^{\pi / 2} \int_{0}^{2} e^{-r^{2}} r d r d \theta=\pi \int_{0}^{2} e^{-r^{2}} r d r=\left.\pi \frac{-1}{2} e^{-r^{2}}\right|_{0} ^{2}=\frac{\pi}{2}\left(1-e^{-4}\right)
$$

(here we use $\int_{-\pi / 2}^{\pi / 2} d \theta=\pi$, and $\int e^{-r^{2}} r d r=\frac{-1}{2} e^{-r^{2}}$, which can be obtained by using substitution $u=-r^{2}$)

