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Abstract
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1 Introduction

Let G = (V,A) be a digraph with a nonnegative integral weight w(e) on each arc e. A subset F of
arcs is called a feedback arc set (FAS) of G if G\F contains no cycles (directed). The FAS problem
is to find an FAS of G with minimum total weight, which can be naturally formulated as an
integer program. One approach to this NP -hard problem is to consider its linear programming
(LP) relaxation and explore integrality properties satisfied by its constraints. Let M be the
cycle-arc incidence matrix of G, let π(G) denote the linear system Mx ≥ 1, x ≥ 0, and let P
denote the polyhedron defined by π(G). We call P integral if it is the convex hull of all integral
vectors contained in P . As is well known, P is integral iff the minimum in the LP-duality
equation

min{wTx : Mx ≥ 1, x ≥ 0} = max{yT1 : yTM ≤ wT, y ≥ 0}

has an integral optimal solution, for every nonnegative integral vector w for which the optimum
is finite. If, instead, the maximum in the equation satisfies this property, then the system π(G) is
called totally dual integral (TDI). We say that G is cycle ideal (CI) if P is an integral polyhedron,
and that G is cycle Mengerian (CM) if π(G) is a TDI system. As shown by Edmonds and Giles
[19], total dual integrality implies primal integrality, so every CM digraph is CI and hence being
CM can be more intuitively stated in terms of a minimax relation. A collection C of cycles (with
repetition allowed) is called a cycle packing of G if each arc e is used at most w(e) times by
the members of C. Let νw(G) be the maximum size of a cycle packing, and let τw(G) be the
minimum total weight of an FAS. Then G is CM iff νw(G) = τw(G) for all nonnegative integral
weight functions w defined on A. Note that a characterization of CI and CM digraphs can yield
not only beautiful mathematical theorems but also a polynomial-time algorithm for the FAS
problem on such digraphs, by a general theorem of Grötschel, Lovász, and Schrijver [21], so the
study of these digraphs has both great theoretical interest and practical value. Initiated in the
early 1960s [43], it has inspired many minimax theorems in combinatorial optimization, such as
Lucchesi and Younger [31], Seymour [38, 39], Geelen and Guenin [22], Guenin [23, 24], Guenin
and Thomas [25], Cai, Deng, and Zang [9], and Ding, Xu, and Zang [17, 18]. Despite tremendous
research efforts, only some special classes of CI and CM digraphs [4, 5, 9, 11, 12, 23, 25, 31, 39]
have been identified to date, and a complete characterization seems extremely hard to obtain.

A digraph G is called a tournament if there is precisely one arc between any two vertices
in G. The FAS problem remains NP -hard even when the input digraph G is a tournament;
see Alon [3] and Charbit, Thomassé, and Yeo [14]. As this special version also arises in a rich
variety of applications, it has been studied extensively from the combinatorial, statistical, and
algorithmic points of view, and thus has produced a vast body of literature. In [32], Mathieu
and Schudy devised a polynomial time approximation scheme (PTAS) for the FAS problem on
tournaments. Ailon, Charikar, and Newman [2] developed approximation algorithms with small
constant approximation factors for the FAS problem on tournaments. Bessy et al. [7] showed
that the problem of determining if a tournament has a cycle packing and a feedback arc set of
the same size is NP-complete, and the problem of packing arc-disjoint cycles in tournaments
is fixed-parameter tractable. Applegate, Cook, and McCormick [4] and Barahona, Fonlupt,
and Mahjoub [5] independently proved that every tournament with five vertices is CM, thereby
confirming a conjecture posed by both Barahona and Mahjoub [6] and Jünger [27]. We call
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a tournament Möbius-free if it contains none of K3,3, K
′
3,3, M5, and M∗5 depicted in Figure

1 as a subgraph; these four Möbius ladders are actually the only obstructions to CI and CM
tournaments.

Figure 1. Forbidden Structures

Theorem 1.1. (Chen et al. [11, 12]) For a tournament T , the following statements are equiv-
alent:

(i) T is Möbius-free;

(ii) T is cycle ideal; and

(iii) T is cycle Mengerian.

Minimax relations in combinatorial optimization often appear in pairs. Given a minimax
relation, a common practice in this field is to establish its blocker version. For example, a
graph is perfect iff its complement is perfect, as shown by Lovász [29]. The blocker version
of the famous max-flow min-cut theorem is a Fulkerson theorem (see [37]), which asserts that
the maximum size of s-t-cut packing equals to the minimum length of an s-t-path. The blocker
version of Edmonds’ disjoint arborescence theorem is Fulkerson’s optimum arborescence theorem
(see [37]). At this point a natural question to ask is: When does the minimax relation on packing
and covering FAS’s in tournaments hold?

Let G = (V,A) and w be as given at the beginning of this section. We use N to denote
the FAS-arc incidence matrix of G. A collection F of FAS’s (with repetition allowed) is called
an FAS packing of G if each arc e is used at most w(e) times by the members of F . Let
λw(G) be the maximum size of an FAS packing, and let µw(G) be the minimum total weight
of a cycle (directed). Clearly, λw(G) ≤ µw(G); this inequality, however, need not hold with
equality in general. We say that G is FAS ideal (FASI) if Nx ≥ 1, x ≥ 0 defines an integral
polyhedron, and that G is FAS Mengerian (FASM) if Nx ≥ 1, x ≥ 0 is a TDI system. Again,
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by the aforementioned Edmonds-Giles theorem [19], G is FASM iff λw(G) = µw(G) for every
nonnegative integral weight function w defined on A. Since feedback arc sets are a type of
combinatorial objects involving global structural properties, they are not so easily visualized as
cycles and hence are more difficult to manipulate. Thus it is no surprise that packing FAS’s in
a digraph is harder than packing cycles.

The origin of FASM digraphs can be traced back to 1976, when Lucchesi and Younger [31]
proved their min-max theorem on packing dicuts. For an algorithmic proof of this theorem, see
Frank [26]. We introduce some notions before proceeding. For each U ⊆ V , let δ(U) denote the
set of all arcs between U and V \U , and let δ+(U) (resp. δ−(U)) denote the set of arcs from U
to V \U (resp. from V \U to U) in G. A dicut is a set of arcs of the form δ+(U) for some subset
U of V with ∅ 6= U 6= V and with δ−(U) = ∅, which is also denoted by (U, V \U). A dijoin is a
set of arcs that intersects every dicut. We can then define both dicut packing and dijoin packing
in a similar way to cycle packing. The Lucchesi-Younger theorem [31] states that the maximum
size of dicut packing is equal to the minimum total weight of a dijoin for all weight functions w.
Edmonds and Giles [19] conjectured that the assertion remains true if we swap the terms dicut
and dijoin; that is, the maximum size of dijoin packing is also equal to the minimum total weight
of a dicut for all weight functions w. This conjecture has been confirmed for several classes of
digraphs such as source-sink connected digraphs [20, 35] and series-parallel digraphs [28]. The
assertion of the general conjecture, however, was refuted by Schrijver [34]; more counterexamples
have been found by Cornuéjols and Guenin [15] and Williams and Guenin [41]. Despite this,
Woodall [42] strongly believed that the unweighted version of the Edmonds-Giles conjecture
holds true. Motivated by this conjecture, Chudnovsky et al. [16], Mészáros [33], and Abdi,
Cornuéjols, and Zlatin [1] have obtained several results on disjoint dijoins.

When restricted to a plane digraph, dicut and dijoin are dualized to cycle and feedback arc
set, respectively. Thus the above Edmonds-Giles conjecture can be rephrased as saying that
every planar digraph is FASM (a counterexample is the dual of Schrijver’s digraph [34]), and
Woodall’s conjecture amounts to saying that the maximum number of disjoint feedback arc sets
is equal to the length of a shortest cycle.

The purpose of this paper is to establish the blocker version of Theorem 1.1.

Theorem 1.2. For a tournament T , the following statements are equivalent:

(i) T is Möbius-free;

(ii) T is FAS ideal; and

(iii) T is FAS Mengerian.

Corollary 1.3. A tournament is cycle Mengerian iff it is FAS Mengerian iff it is Möbius-free.

The reader is referred to [10] (resp. [13]) for a structural characterization of all undirected
graphs (resp. tournaments) with the min-max relation on packing and covering feedback vertex
sets and the corresponding blocker version [18, 17] (resp. [9]).

The remainder of this paper is organized as follows: In Section 2, we present a global
structural description of Möbius-free strong tournaments. In Section 3, we establish the minimax
relation on packing and covering FAS’s in Möbius-free strong tournaments other than F1 and
G1 (to be shown in Figures 4 and 5). In Section 4, we give a computer-assisted proof of the
minimax relation on G1, thereby completing the whole proof.
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2 Global Structure

Our proof of Theorem 1.1 [11, 12] relies heavily on a structural description of Möbius-free strong
tournaments, which continues to play an important role in the characterization of FAS Mengerian
tournaments.

Let us recall some terminology and notation introduced in [11]. Let G = (V,A) be a digraph
with a nonnegative integral weight w(e) on each arc e. We use |G| to denote the total number
of vertices in G. For each v ∈ V , we use G\v to denote the digraph arising from G by deleting
vertex v, and use d+G(v) and d−G(v) to denote the out-degree and in-degree of v, respectively. We
call v a near-sink of G if its out-degree is one, and call v a near-source if its in-degree is one. For
simplicity, an arc e = (u, v) of G is also denoted by uv. Arc e is called special if u is a near-sink
or v is a near-source of G. For each U ⊆ V , we use G[U ] to denote the subgraph of G induced
by U . Recall that G is called weakly connected if its underlying undirected graph is connected,
and is called strongly connected or strong if each vertex is reachable from every other vertex.
Clearly, a weakly connected digraph G is strong iff G has no dicut. A dicut (X,Y ) is called
trivial if |X| = 1 or |Y | = 1. Furthermore, a weakly connected digraph G is called internally
strong if every dicut of G is trivial, and is called internally 2-strong (i2s) if G is strong and G\v
is internally strong for every vertex v.

Let Ti = (Vi, Ai) be a tournament, with |Vi| ≥ 3 for i = 1, 2. We say that T1 is smaller than
T2 if |V1| < |V2|. Suppose that (a1, b1) is a special arc of T1 with d+T1(a1) = 1 and (b2, a2) is

a special arc of T2 with d−T2(a2) = 1. The 1-sum of T1 and T2 over (a1, b1) and (b2, a2) is the
tournament arising from the disjoint union of T1\a1 and T2\a2 by identifying b1 with b2 (the
resulting vertex is denoted by b) and adding all arcs from T1\{a1, b1} to T2\{a2, b2}. We call b
the hub of the 1-sum. See Figure 2 for an illustration. Note that if Ti is strong and |Vi| = 3 for
i = 1 or 2, then Ti is a triangle (a directed cycle of length three), and thus T = T3−i.

Figure 2. 1-sum of T1 and T2.

In our original definition of 1-sum [11, 12], we assume that Ti = (Vi, Ai) is strong for i = 1, 2;
this assumption is removed here just for more convenience. The lemma below asserts that these
two definitions are equivalent when restricted to a strong tournament T .

Lemma 2.1. Suppose a strong tournament T is a 1-sum of two tournaments T1 and T2. Then
the following statements hold:

(i) Both T1 and T2 are strong; and

(ii) Both T1 and T2 are sub-tournaments of T .
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As the proof is completely straightforward, we omit it here. Let (X1, X2) be the dicut of
T\b as shown in Figure 2. Observe that any out-neighbor of b in X1 can be taken as a2 and
any in-neighbor of b in X2 can be taken as a1 in the 1-sum (such neighbors are available as T
is strong). Furthermore, Ti is the subtournament of T induced by Xi ∪ {b, ai} for i = 1, 2. The
following lemma (see Lemma 2.2 in [11]) states that being Möbius-free is closed under taking
1-sums.

Lemma 2.2. Suppose a strong tournament T is a 1-sum of two tournaments T1 and T2. Then
T is Möbius-free iff both T1 and T2 are Möbius-free.

Let C3 (resp. F0) denote the strong tournament with three (resp. four) vertices (see Figure
3), let F1, F2, F3, F4, F5 be the five tournaments depicted in Figure 4, and let G1, G2, G3 be the
three tournaments shown in Figure 5. We reserve the symbols

T0 = {C3, F0, F1, F2, F3, F4, G1, G2, G3}

and
T1 = {C3, F0, F2, F3, F4, G2, G3} = T0\{F1, G1}.

Figure 3. Strong tournaments with three or four vertices.

Figure 4. v1v2, v5v1 ∈ F1; v2v1, v1v5 ∈ F2; v2v1, v5v1 ∈ F3; v6v2 ∈ F4; v2v6 ∈ F5.

In [11] we have obtained the following structural descriptions of Möbius-free tournaments.

Theorem 2.3. (Chen et al. [11]) Let T = (V,A) be an i2s tournament with |V | ≥ 3. Then T
is Möbius-free iff T ∈ T0.
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Figure 5. v6v4 ∈ G2 and v4v6 ∈ G3.

Figure 6. A minimal tournament involved in Lemma 2.5

Theorem 2.4. (Chen et al. [11]) Let T = (V,A) be a Möbius-free strong tournament with
|V | ≥ 3. Then either T ∈ {F1, G1} or T can be obtained by repeatedly taking 1-sums starting
from the tournaments in T1.

Let F6 be the tournament depicted in Figure 6 and let

T2 = {F0, F2, F3, F4, F6, G2, G3}.

Then T2 = (T1\{C3})∪ {F6}. Lemma 2.4 in [12] states that if a Möbius-free strong tournament
T is a 1-sum of two smaller strong tournaments T1 and T2 such that T2 is minimal (with respect
to vertex set inclusion), then T2 ∈ T2. From Lemma 2.1, we see that the “strong” condition
imposed on T1 and T2 can be removed.

Lemma 2.5. Let T = (V,A) be a Möbius-free strong tournament. Suppose T is a 1-sum of two
smaller tournaments T1 and T2 such that T2 is minimal (with respect to vertex set inclusion).
Then T2 ∈ T2.

Notice that every tournament in T0 has a near-sink or a near-source, except F1 and G1. So
the above three results imply the following.

Corollary 2.6. Let T = (V,A) be a Möbius-free strong tournament, with T /∈ {C3, F1, G1}.
Then T can be constructed from a tournament in {F0, F2, F3, F4, G2, G3} by repeatedly taking
1-sums with tournaments in T2.
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So far we have exhibited some local structural properties satisfied by Möbius-free strong
tournaments. Due to the global nature of feedback arc sets, we need a description of global
structures of Möbius-free strong tournaments in order to establish the desired minimax relation.
Let Q consist of all tournaments G whose vertex set can be partitioned into U0, U1, . . . , Uk for
some integer k ≥ 0, such that |U0| = 1, G[Ui] is either a singleton or a triangle for 1 ≤ i ≤ k,
and the arcs between Ui and Uj are all directed to Uj for 1 ≤ i < j ≤ k. Let v be the vertex
in U0. We call v the center of G, call Hi = G[Ui ∪ {v}] a building block of G centered at v for
1 ≤ i ≤ k, and call H1 (resp. Hk) the leftmost (resp. rightmost) building block of G.

Theorem 2.7. Let T = (V,A) be a strong tournament other than F1 and G1. Then T is
Möbius-free iff it satisfies the following description:

Figure 7. Global structure

where m ≥ 1 (undirected/dotted edges in the following can be directed arbitrarily), and all other
arcs (that are not drawn) are directed from “left” to “right”. Furthermore, v1 has an out-neighbor
in the leftmost building block of A1, and vm has an in-neighbor in the rightmost building block
of Am.

Note that in Figure 7 by from “left” to “right” we mean from vertices on the left to those
on the right. Besides, each Ai contains vi and each Bi contains both vi and vi+1.

Let P denote the class of all strong tournaments T described in the above theorem. We
call A1, A2, . . . , Am vertical blocks of T , call B1, B2, . . . , Bm−1 horizontal blocks of T , and call
v1, v2, . . . , vm the join vertices of T . Clearly, each vertical block Ai of T belongs to Q. We
reserve the symbols Ai,1, Ai,2, . . . , Ai,ni for the building blocks of Ai centered at vi from left to
right, where ni ≥ 0.

Let us prove four technical lemmas before presenting a proof of Theorem 2.7.

Lemma 2.8. Every tournament in {C3} ∪ T2 belongs to P.

Proof. The statement holds trivially for C3. As shown in Figure 8 (where the missing arcs
are all directed from left to right), F0 can be expressed in two ways, with m = 2 and m = 1,
respectively; F3 and F4 can be expressed with m = 2, while F2, F6, G2 and G3 can be expressed
with m = 1.
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Figure 8. Tournaments in T2

Lemma 2.9. Let G be a strong tournament on five vertices with a near-sink or a near-source.
Then G is F2 or F3 or a 1-sum of two copies of F0.

Proof. Since G is a tournament on five vertices, it is Möbius-free. If G is i2s, then G ∈
{F1, F2, F3} by Theorem 2.3 and hence G is F2 or F3, because F1 contains no near-sink nor
near-source. So we assume that G is not i2s. By definition, G\v has a dicut (X,Y ) with
|X| = |Y | = 2 for some vertex v. Since G is strong, there exist a vertex a1 in Y and a vertex
a2 in X, such that both (a1, v) and (v, a2) are arcs of G. Let T1 be the sub-tournament of G
induced by the vertex subset X ∪{a1, v} and let T2 be the sub-tournament of G induced by the
vertex subset Y ∪ {a2, v}. Then T1 and T2 are two copies of F0 and G is the 1-sum of T1 and
T2 over arcs (a1, v) and (v, a2). Let b1 (resp. b2) be the vertex in Y − {a1} (resp. X − {a2}).
Depending on the directions of arcs between v and {b1, b2}, we have four cases to consider, each
of which is straightforward and yields a 1-sum that contains a near-sink or a near-source.

In what follows, R5 is the set of all strong tournaments on five vertices with a near-sink or
a near-source, and F ∗6 arises from F6 by reversing the direction of each arc.

Lemma 2.10. Let G = (V,A) be a strong tournament in Q with at least three vertices. Then
either G ∈ {C3, F0} or G can be obtained by repeatedly taking 1-sums starting from tournaments
in {F0, F6, F

∗
6 , G2, G3} ∪ R5, such that the hubs of these sums are always the center of G.

Proof. Let v be the center of G and let H1, H2, . . . ,Hk be the building blocks of G centered
at v, where the arcs between Hi\v and Hj\v are all directed to Hj for 1 ≤ i < j ≤ k. We
proceed by induction on k. If k = 1, then G = F0 and hence the statement holds trivially. So
we assume that k ≥ 2 and set Xi := V (Hi) for 1 ≤ i ≤ k.

We first assume that |X1| = 4. Let a1 be an in-neighbor of v in G\X1 and a2 be an
out-neighbor of v in H1 (such a1 and a2 exist, as G is strong). Let T1 and T2 be the strong
sub-tournaments of G induced by X1 ∪ {a1} and (V \X1) ∪ {v, a2}, respectively. Then G is the
1-sum of T1 and T2 over arcs (a1, v) and (v, a2). Note that T1 ∈ R5 and T2 ∈ Q. By induction
hypothesis, either T2 ∈ {C3, F0} or T2 can be obtained by repeatedly taking 1-sums starting
from tournaments in {F0, F6, F

∗
6 , G2, G3} ∪ R5, such that the hubs of these sums are always

v. Clearly, G = T1 when T2 = C3. Therefore G can be obtained by repeatedly taking 1-sums
starting from tournaments in {F0, F6, F

∗
6 , G2, G3} ∪ R5, such that the hubs of these sums are

always the center of G.
Next, we assume that |X1| = 2. If k = 2, then G is either a C3 or a strong tournament on

five vertices with a near-source, so the desired statement holds trivially. Thus we may further
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assume that k ≥ 3. Let a1 be an in-neighbor of v in G\(X1∪X2) and a2 be an out-neighbor of v
in H1 ∪H2 (such a1 and a2 exist, as G is strong). Let T1 and T2 be the strong sub-tournaments
of G induced by X1 ∪X2 ∪ {a1} and (V \(X1 ∪X2)) ∪ {v, a2}, respectively. From Figure 8 we
see that T1 ∈ {F0, F6, F

∗
6 , G2, G3}. (Note that T1 = F ∗6 if |X2| = 4 and v is a source of H2.)

Furthermore, T2 ∈ Q and G is the 1-sum of T1 and T2 over arcs (a1, v) and (v, a2). By the
induction hypothesis, either T2 ∈ {C3, F0} or T2 can be obtained by repeatedly taking 1-sums
starting from tournaments in {F0, F6, F

∗
6 , G2, G3} ∪ R5, such that the hubs of these sums are

always v. Clearly, G = T1 when T2 = C3. Therefore G can be obtained by repeatedly taking
1-sums starting from tournaments in {F0, F6, F

∗
6 , G2, G3}∪R5, such that the hubs of these sums

are always the center of G.

Lemma 2.11. Every tournament in Q is Möbius-free.

Proof. Let G be a tournament in Q. To prove that G is Möbius-free, it suffices to consider
the case when G is strong, because Möbius ladders exhibited in Figure 1 are all strong. Thus,
by Lemma 2.10, either G ∈ {C3, F0} or G can be obtained by repeatedly taking 1-sums starting
from tournaments in {F0, F6, F

∗
6 , G2, G3} ∪R5, such that the hubs of these sums are always the

center of G.
By Theorem 2.3, C3, F0, F2, G2 and G3 are all Möbius-free. Since F6 is a 1-sum of F2 and F0

(with hub v6; see Figure 6), it is also Möbius-free by Lemma 2.2 and hence so is F ∗6 . Therefore
each tournament in {F0, F6, F

∗
6 , G2, G3} ∪R5 is Möbius-free. It follows from Lemma 2.2 that G

is Möbius-free.

Now we are ready to establish the main result of this section.
Proof of Theorem 2.7. Let us first show the “if” part. Let T = (V,A) be a strong

tournament in P as described in Figure 7, with vertical blocks A1, A2, . . . , Am, horizontal blocks
B1, B2, . . . , Bm−1, and join vertices v1, v2, . . . , vm; subject to this, we assume that m is minimum
(the choices of Ai and Bi may not be unique). This assumption implies that

(1) |A1| ≥ 2. Furthermore, |A1| ≥ 3 if |B1| ≤ 3, for otherwise, let A′2 be the sub-tournament
of T induced by all vertices in A1∪A2∪B1. Then T can be depicted as in Figure 7, with vertical
blocks A′2, A3, . . . , Am and horizontal blocks B2, B3, . . . , Bm−1, contradicting the minimality
assumption on m.

Similarly, |Am| ≥ 2. Since Ai ∈ Q, by Lemma 2.11 we have
(2) Ai is Möbius-free for 1 ≤ i ≤ m.
We propose to show, by induction on m+n, that T is Möbius-free, where n = |V |. If m = 1,

then T = A1, so the statement is true by (2). If n ≤ 5, trivially the statement holds. Thus we
may assume that m ≥ 2 and n ≥ 6.

Consider the case when |A1| = 2. Now |B1| = 4 by (1). Besides, we may assume that there
are at least two vertices outside A1 ∪B1, for otherwise, T = F4 (see Figure 8), which is Möbius-
free by Theorem 2.3. Let a1 be an in-neighbor of v2 outside A1∪B1 and let a2 be an out-neighbor
of v2 in B1. Let T1 be the sub-tournament of T induced by all vertices in V (A1∪B1)∪{a1} and
let T2 be the sub-tournament of T induced by all vertices outside V (A1 ∪B1)\{v2, a2}. Then T1
is F4 (see Figure 8), T2 is a tournament in P with m− 1 vertical blocks, and T is the 1-sum of
T1 and T2 over arcs (a1, v2) and (v2, a2). By induction hypothesis, T2 is Möbius-free and hence
so is T by Lemma 2.2.
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It remains to consider the case when |A1| ≥ 3. Let a1 be an in-neighbor of v1 outside A1

and let a2 be an out-neighbor of v1 in A1 (such a1 and a2 exist, as T is strong). Let T1 be the
sub-tournament of T induced by all vertices in V (A1) ∪ {a1} and let T2 be the sub-tournament
of T induced by all vertices outside A1\{a2, v1}. Note that Ti ∈ P, 4 ≤ |Ti| < n for i = 1, 2,
and T is the 1-sum of T1 and T2 over arcs (a1, v1) and (v1, a2). By induction hypothesis, Ti is
Möbius-free for i = 1, 2 and hence so is T by Lemma 2.2. This establishes the “if” part.

Let us now proceed to the “only if” part. Let T = (V,A) be a strong Möbius-free tournament
other than F1 and G1. We aim to show, by induction on n = |V |, that T ∈ P. If T is i2s, then
T ∈ {C3} ∪ T2 by Theorem 2.3 and hence T ∈ P by Lemma 2.8. So we assume that T is not
i2s. Then T a 1-sum of two smaller tournaments T1 and T2 over two special arcs (a1, b1) and
(b2, a2), such that T2 ∈ T2 by Lemma 2.5. Keep in mind that ai and bi are two vertices of Ti for
i = 1, 2.

By induction hypothesis, T1 is as described in Figure 7, with vertical blocks A1, A2, . . . , Am,
horizontal blocks B1, B2, . . . , Bm−1, and join vertices v1, v2, . . . , vm; subject to this, we assume
that m is minimum. This assumption implies that

(3) |A1| ≥ 2 and |Am| ≥ 2 (see (1) for an argument).
If m = 1, then T1 = A1 ∈ Q. Since a2 is a near-source of T2, (b2, a2) is the leftmost arc of

the corresponding tournament shown in Figure 8. Thus the 1-sum of T1 and a tournament in
{F0, F2, F6, G2, G3} belongs to Q, and the 1-sum of T1 and a tournament in {F3, F4} belongs
to P with two vertical blocks. Hence T ∈ P, as desired. So we assume that m ≥ 2. Since
a1 is a near-sink of T1, it belongs to Bm−1 ∪ Am. If a1 ∈ V (Bm−1\vm), then |Bm−1| = 2
or 3 and V (Am) = {vm}, contradicting (3). If a1 = vm, then Bm−1 consists of only one arc
(vm, vm−1) = (a1, b1) and vm is a sink of Am. Thus we can combine Am−1, Bm−1 and Am to
form a new A′m−1 and depict T1 as in Figure 7, with vertical blocks A1, A2, . . . , Am−2, A

′
m−1

and horizontal blocks B1, B2, . . . , Bm−2, contradicting the minimality assumption on m. So
a1 ∈ V (Am\vm). Let Am,1, Am,2, . . . , Am,nm be the building blocks of Am centered at vm.
Again, since a1 is a near-sink of T1, we obtain

(4) a1 is contained in (Am,nm−1 ∪Am,nm)\vm.
For simplicity, in the remainder of this proof, we frequently define Bm, Am+1, etc. in terms

of vertex sets only. For example, by Bm = {b1, vm} we mean that Bm is the tournament with
vertex set {b1, vm}. By (4), a1 is either contained in Am,nm−1 or Am,nm . Depending on the
location of a1, we consider two cases.

Case 1. a1 is contained in Am,nm−1. Then Am,nm−1 consists of only one arc (vm, a1) and
Am,nm consists of only one arc (b1, vm) (as T1 is strong by Lemma 2.1). If T2 6= F4 (possibly
T2 = F3; see Figure 8), then T ∈ P with the join vertices v1, . . . , vm, vm+1 := b1 and with
new blocks Am := Am\{a1, b1}, Bm = {b1, vm}, and Am+1 = T2\a2; if T2 = F4 (see Figure
8), then T is in P with join vertices v1, . . . , vm, vm+1 := b1, vm+2 := z3 and with new blocks
Am := Am\{a1, b1}, Bm = {b1, vm}, Am+1 = {b1}, Bm+1 = {b1, z1, z3, z4}, and Am+2 = {z2, z3}.

Case 2. a1 is contained in Am,nm . Depending on |Am,nm |, we distinguish between two
subcases.

Subcase 2.1. |Am,nm | = 2. Now Am,nm consists of arc (a1, vm) only and b1 = vm. If
T2 ∈ {F0, F2, F6, G2, G3}, where F0 corresponds to m = 1 in Figure 8, then T ∈ P with join
vertices v1, v2, . . . , vm and with new block Am equal to the sub-tournament of T induced by all
vertices in (Am\a1) ∪ (T2\{a2, b2}). If T2 = F0 corresponds to m = 2 in Figure 8, then T ∈ P
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with join vertices v1, . . . , vm, vm+1 := z4 and with new blocks Bm = {z4, z1}, Am := Am\a1, and
Am+1 = {z3, z4}. If T2 = F3, then T ∈ P with join vertices v1, . . . , vm, vm+1 := z3 and with new
blocks Bm = {z3, z4, z5}, Am := Am\a1, and Am+1 = {z1, z3}. If T2 = F4, then T ∈ P with join
vertices v1, . . . , vm, vm+1 := z3 and with new blocks Bm = {z1, z3, z4, z5}, Am := Am\a1, and
Am+1 = {z2, z3}.

Subcase 2.2. |Am,nm | = 4. Now Am,nm\vm is a triangle a1b1c1a1. Since a1 is a near-sink,
(vm, a1) is an arc of T1. Since T1 is strong, at least one of the two arcs between vm and {b1, c1}
is directed to vm.

Suppose (b1, vm) and (c1, vm) are two arcs of T1. If T2 6= F4 (possibly T2 = F3; see Figure 8),
then T ∈ P with join vertices v1, . . . , vm, vm+1 := b1 and with new blocks Am := Am\{a1, b1, c1},
Bm = {b1, c1, vm}, and Am+1 = T2\a2. If T2 = F4 (see Figure 8), then T ∈ P with join
vertices v1, . . . , vm, vm+1 := b1, vm+2 := z3 and with new blocks Am := Am\{a1, b1, c1}, Bm =
{b1, c1, vm}, Am+1 = {b1}, Bm+1 = {b1, z1, z3, z4}, and Am+2 = {z2, z3}.

So we assume that exactly one of the two arcs between vm and {b1, c1} is directed to vm.
When (b1, vm) and (vm, c1) are two arcs of T1, we see that if T2 6= F4 (possibly T2 =

F3; see Figure 8), then T ∈ P with join vertices v1, . . . , vm, vm+1 := b1 and with new blocks
Am := Am\{a1, b1, c1}, Bm = {b1, vm}, and Am+1 equal to the sub-tournament of T induced by
{c1} ∪ V (T2\a2); if T2 = F4 (see Figure 8), then T ∈ P with join vertices v1, . . . , vm, vm+1 :=
b1, vm+2 := z3 and with new blocks Am := Am\{a1, b1, c1}, Bm = {b1, vm}, Am+1 = {b1, c1},
Bm+1 = {b1, z1, z3, z4}, and Am+2 = {z2, z3}.

When (vm, b1) and (c1, vm) are two arcs of T1, we see that if T2 6= F4 (possibly T2 = F3; see
Figure 8), then T ∈ P with join vertices v1, . . . , vm, vm+1 := c1, vm+2 := b1 and with new blocks
Am := Am\{a1, b1, c1}, Bm = {c1, vm}, Am+1 = {c1}, Bm+1 = {b1, c1}, and Am+2 = T2\a2; if
T2 = F4 (see Figure 8), then T ∈ P with join vertices v1, . . . , vm, vm+1 := c1, vm+2 := b1, vm+3 :=
z3 and with new blocks Am := Am\{a1, b1, c1}, Bm = {c1, vm}, Am+1 = {c1}, Bm+1 = {b1, c1},
Am+2 = {b1}, Bm+2 = {b1, z1, z3, z4}, and Am+3 = {z2, z3}.

From the induction hypothesis and the above construction, we can also see that the leftmost
join vertex v1 has an out-neighbor in the leftmost building block of A1, and the rightmost join
vertex vk, with k = m, m + 1 or m + 2, has an in-neighbor in the rightmost building block of
Ak. Therefore T ∈ P. This establishes the “only if” part.

3 Minimax Relation

In this section we show that every Möbius-free strong tournament other than F1 and G1 satisfies
the minimax relation on packing and covering feedback arc sets.

Theorem 3.1. Let T = (V,A) be a Möbius-free strong tournament with |V | ≥ 3 and T /∈
{F1, G1}. Then T is FAS Mengerian.

As usual, we use Z+ to denote the set of all nonnegative integers and use ZA+ to denote
the set of vectors x = (x(a) : a ∈ A) whose coordinates belong to Z+. Let w ∈ ZA+. Recall
that µw(T ) is the minimum total weight of a cycle (directed) in T . A cycle C in T is called a
minimum cycle of (T,w) if w(C) = µw(T ). Let u and v be two vertices of T . A u-v path is a
path from u to v. A u-v path is called minimum with respect to w (or simply w-minimum) if it
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has the minimum total weight among all u-v paths. An FAS packing of T with respect to w is
also called a w-FAS packing.

By Theorem 2.7, every Möbius-free strong tournament T other than F1 and G1 can be
depicted as in Figure 7. We shall prove Theorem 3.1 by induction on the number of vertical
blocks in T ; the lemma below clearly yields the base statement.

Lemma 3.2. Every tournament in Q (see the paragraph succeeding Theorem 2.7) is FAS Men-
gerian.

Proof. Let G = (V,A) be a tournament in Q, let v be the center of G, and let H1, H2, . . . ,Hk

be the building blocks of G centered at v. We use Ω to denote the set of all subscripts i with
|Hi| = 4 and use 4i to denote the triangle Hi\v for each i ∈ Ω. Note that these triangles are
pairwise vertex disjoint.

If v is a source or a sink of G, then the triangles 4i are the only cycles in G. Thus G is
trivially FAS Mengerian. So we assume hereafter that v is neither a source nor a sink of G.

Let w ∈ ZA+. Our objective is to find a w-FAS packing in G of size r := µw(G). For this
purpose, let X (resp. Y ) be the out-neighborhood (resp. in-neighborhood) of v in G, and let D
be the digraph obtained from G by splitting v into a source s and a sink t, such that
• for each vertex x ∈ X, there is an arc sx in D with length w(sx) = w(vx);
• for each vertex y ∈ Y , there is an arc yt in D with length w(yt) = w(yv); and
• for each arc ab of G with v /∈ {a, b}, there is an arc ab in D with length w(ab).
Let C be the collection of all cycles (directed) passing through v in G, and let r′ be the

minimum weight of a cycle in C. Clearly, r′ ≥ r. We call a subset of arcs in G a C-transversal if
it intersects each cycle in C. We also view 4i for i ∈ Ω as a triangle in D and view each arc of
D as an arc of G.

From the construction of D, we see that
(1) there is a 1-1 correspondence between cycles in C and s-t paths in D, and the shortest

distance from s to t in D with respect to w is equal to r′.
For i = 1, 2, . . . , r, let Ui be the set of vertices at distance less than i from s in D with

respect to w, and let Ci := δ+(Ui). (Possibly there are arcs entering Ui in D, yet Ci consists of
arcs leaving Ui only. So Ci is an s-t cut in D.) Observe that

(2) no Ci contains two or more arcs in 4j for any j ∈ Ω and
(3) each Ci corresponds to a C-transversal in G by (1). Furthermore, each arc a of D is

contained in at most w(a) of C1, C2, . . . , Cr.
Let us construct F1, F2, . . . , Fr from C1, C2, . . . , Cr by using the following algorithm.
Initially, set Fi := Ci for 1 ≤ i ≤ r. While Ω 6= ∅, do: take j ∈ Ω, and add precisely one of

the arcs ej,1, ej,2, ej,3 of 4j to each Fi (if it contains no arc of 4j) to form a new Fi so that each
ej,p for 1 ≤ p ≤ 3 is contained in at most w(ej,p) of the resulting F1, F2, . . . , Fr. Set Ω = Ω−{j}.

Since 4j is a triangle, w(ej,1) +w(ej,2) +w(ej,3) ≥ r. Thus the correctness of our algorithm
is guaranteed by (2) and (3). Note that every cycle of G outside C is a 4i for some i. From (3),
we further deduce that each Fi is an FAS of G and that each arc a of G is contained in at most
w(a) members of F := {F1, F2, . . . , Fr}. Therefore F is a w-FAS packing of G having size r.

For convenience, we say that the w-FAS packing F of size r output above is obtained by first
performing breadth-first search for r steps in G from v and then eliminating triangles in G\v,
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and say that Fi is the depth-i set in F from v for 1 ≤ i ≤ r. Keep in mind that breadth-first
search employed in this paper always starts from a source (that is why we split v into a source
and a sink as there are arcs entering and leaving it). The reader is referred to Schrijver [37] (see
page 88) for more information about breadth-first search.

Let T = (V,A) be as described in Theorem 2.7, and let T ∗ = (V,E∗) be the subgraph of T
arising from the vertical block A1 by adding all arcs ab of T with w(ab) > 0, a ∈ V (A1), and
b /∈ V (A1). Note that T ∗ = T = A1 if m = 1 and that T ∗ contains no arc in B1 except possibly
v1v2 when |B1| = 4. For any collection F of subsets of A, we use F ∩E∗ to denote the collection
consisting of all nonempty F ∩ E∗ for F ∈ F .

To prove Theorem 3.1, we shall show the existence of a w-FAS packing in T of size µw(T ) for
all w ∈ ZA+ by induction on the number of vertical blocks. For this purpose, reducing arc weights
while preserving the minimum total weight of a cycle whenever possible, it suffices to consider
the weight functions w such that each arc e with w(e) > 0 is contained in a minimum cycle of
(T,w). To make the induction work, what we establish is the following stronger statement.

Theorem 3.3. Let T = (V,A) be a Möbius-free strong tournament with |V | ≥ 3 and T /∈
{F1, G1}, and let w ∈ ZA+ such that each arc e with w(e) > 0 is contained in a minimum cycle of
(T,w). Then T has a w-FAS packing F of size µw(T ), such that F ∩E∗ can be obtained by first
performing breadth-first search for |F ∩ E∗| steps in T ∗ from v1 and then eliminating triangles
in A1\v1.

Remark. Let D be the digraph obtained from T ∗ by splitting v1 into a source s and a sink t. We
view each arc e of D as an arc of T and associate it with a length w(e). By breadth-first search
in T ∗ from v1 we mean that in D from s, which proceeds as follows. For i = 1, 2, . . . , r := µw(T ),
let Ui be the set of vertices at distance less than i from s in D with respect to w, and let Ci :=
δ+(Ui). Then we can construct a w-FAS packing {F1, F2, . . . , Fr} in T ∗ from {C1, C2, . . . , Cr}
by eliminating triangles in A1\v1, as done in the proof of Lemma 3.2. This algorithm carries
over naturally to T ∗1 and T ∗2 involved in our proof (see (9) and (10)).

To carry out the induction step, it is natural to consider the subtournaments T1 and T2 of
T (see the paragraph above (5)). Yet, there is no guarantee that a w-FAS packing of T1 can be
combined with a w-FAS packing of T2 to yield a w-FAS packing of T with size r. That explains
why we impose some constraint on the weight function w, refine w as w1 and w2 when restricted
to T1 and T2, respectively, and introduce digraphs T ∗1 and T ∗2 in our proof.

Proof. By Theorem 2.7, T can be depicted as in Figure 7, with vertical blocksA1, A2, . . . , Am,
horizontal blocks B1, B2, . . . , Bm−1, and join vertices v1, v2, . . . , vm; subject to this, we assume
that m is minimum. Then the minimum of m allows us to assume that |A1| ≥ 2 and |Am| ≥ 2
(refer to the proof of Theorem 2.7). For each vertical block Ai, let Ai,1, Ai,2, . . . , Ai,ni be the
building blocks of Ai, for 1 ≤ i ≤ m.

We apply induction on m. Since each Ai ∈ Q, the induction base m = 1 follows instantly
from Lemma 3.2. So we proceed to the induction step and assume that m ≥ 2 and that the
statement holds for m− 1.

Let us first make some simple observations about the weight function w.
(1) For any arc uv and any path P from u to v in T , we have w(uv) ≤ w(P ).
Assume that contrary: w(uv) > w(P ). By hypothesis, uv is contained in a minimum cycle C

of (T,w). Let D be the multiset union of P and C[v, u] (that is, if an arc is contained in both P
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and C[v, u], then it appears twice in D). Clearly, D is an Eulerian digraph with w(D) < w(C).
Let C ′ be a directed cycle contained in D. Then w(C ′) ≤ w(D) < w(C), contradicting the
minimality assumption on C.

From (1) it is clear that
(2) for any minimum cycle C of (T,w) and any chord uv of C, the cycle arising from C by

replacing C[u, v] with uv is also minimum. So w(uv) = w(C[u, v]).
By Theorem 2.7, v1 has an out-neighbor in the leftmost building block of A1. Hence
(3) there is a path in A1 from v1 to each vertex in A1\v1.
(4) Let ab be an arc in T with w(ab) > 0, a ∈ V (A1\v1), and b /∈ V (A1 ∪B1\v2), and let P

be a minimum v1 − a path in A1 (see (3)). If v1b is an arc of T , then w(P ) + w(ab) = w(v1b).
(Possibly b = v2 when |B1| = 4.)

To justify this, let C be a minimum cycle of (T,w) containing ab. From the structural
description of T , we see that C passes through v1 and that C[v1, a] is fully contained in A1.
By the minimality assumptions on P and C, we obtain w(P ) = w(C[v1, a]). In view of (2),
w(C[v1, b]) = w(v1b). Hence w(P ) + w(ab) = w(C[v1, a]) + w(ab) = w(C[v1, b]) = w(v1b), as
desired.

Let T1 = (V1, E1) be the subtournament of T induced by all vertices in A1 ∪ B1, let T2 =
(V2, E2) be the subtournament of T induced by all vertices outside A1\v1, and let A′2 be the
subtournament of T induced by all vertices in A2 ∪B1. Then

(5) T1 ∈ Q and T2 can be depicted as in Figure 7, with vertical blocks A′2, A3, . . . , Am. For
i = 1, 2, Ti is strongly connected, with |Vi| ≥ 3 and Ti /∈ {F1, G1}. So Ti is Möbius-free by
Theorem 2.7.

We only check that Ti /∈ {F1, G1} for i = 1, 2, as the remaining statements hold trivially. For
this purpose, observe that if |B1| = 2, then v2 is a near-sink in T1; if |A1| = 2, then the vertex in
A1\v1 is a near-source in T1; if |A1| ≥ 3 and |B1| ≥ 3, then (A1\v1, B1\v1) is a nontrivial dicut
in T1\v1. Moreover, if |B1| = 2, then v1 is a near-source in T2; if |B1| ≥ 3, then the source of
B1\{v1, v2} is a near-source in T2. Since both F1 and G1 are i2s and neither of them contains
a near-sink or a near-source, we obtain Ti /∈ {F1, G1} for i = 1, 2, as desired.

In the remainder of our proof, we reserve u1 for the vertex in B1\{v1, v2} if |B1| = 3, and
reserve u1 and u2 for the two vertices in B1\{v1, v2} if |B1| = 4, with u1u2 ∈ A. Moreover, we
reserve R1 for a minimum v2 − v1 path in B1 with respect to w, having the fewest arcs. By (1),
we obtain R1 = v2v1 if |B1| ≤ 3 and R1 = v2u1v1 or v2u2v1 if |B1| = 4. Write r := µw(T ). The
statement below follows instantly from (2).

(6) Each arc e in B1 with w(e) > 0 is contained in a cycle of Ti with weight r for i = 1 or 2
(but not necessarily both). Each arc e in Ti but outside B1 with w(e) > 0 is contained in a cycle
of Ti with weight r for i = 1, 2. Furthermore, if |B1| = 4, then the arc uiv1 with w(uiv1) > 0
is contained in a cycle of T1 with weight r, and the arc v2ui with w(v2ui) > 0 is contained in a
cycle of T2 with weight r for i = 1, 2.

To justify this, let e be an arbitrary arc of Ti with w(e) > 0 for i = 1 or 2, and let C be a
cycle containing e in T with weight r. If C is fully contained in Ti, we have nothing to prove.
So we assume that the opposite case occurs. From the structural description of T in Theorem
2.7, we see that C passes through both v1 and v2 and also contains an arc ab, with a ∈ A1\v1
and b /∈ A1 ∪B1.

Since both av2 and v1b are chords of C, by (2) at least one of the two cycles C[v2, a]av2 and
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v1bC[b, v2] is a cycle of weight r in Ti containing e. In particular, if e is in B1, then C[v2, a]av2
is a cycle of weight r in T1 containing e and v1bC[b, v2] is a cycle of weight r in T2 containing e.
This establishes the first two statements in (6).

Finally, consider the case when |B1| = 4 and e = uiv1 for i = 1 or 2. If C is not fully contained
in T1, then C[v2, v1] is fully contained in B1 and hence C[v2, v1]v1v2 is a cycle containing uiv1
in T1 with weight r by (2). Similarly, we can prove the statement on v2ui. Hence (6) holds.

(7) For each vertex a in A1\v1 with w(av2) > 0, the path av2R1 is contained in a cycle of
T1 with weight r. For each vertex b outside A1 ∪ B1\v2 with w(v1b) > 0, the path R1v1b is
contained in a cycle of T2 with weight r.

We only establish the second half here, as the proof of the first half goes along the same line.
By (6), arc v1b is contained in a cycle C of T2 with weight r. Since δ(B1\v2) forms a dicut in
T2\v2, cycle C must pass through v2. It follows that C[v2, v1] is fully contained in B1. Let C ′

be obtained from C by replacing C[v2, v1] with R1. Then C ′ is a cycle of T2 with weight r and
contains the path R1v1b. So (7) is justified.

(8) If R1 is not contained in any cycle of T1 with weight r, then w(ab) = 0 for any a ∈ V (A1)
if |B1| = 4 and a ∈ V (A1\v1) if |B1| ≤ 3 and b /∈ V (A1 ∪ B1\v2). If R1 is not contained in any
cycle of T2 with weight r, then w(ab) = 0 for any a ∈ V (A1) and b /∈ V (A1 ∪B1\v2) if |B1| = 4
and b /∈ V (A1 ∪B1) if |B1| ≤ 3.

Suppose on the contrary that w(ab) > 0 for some a ∈ V (A1) if |B1| = 4 or a ∈ V (A1\v1)
if |B1| = 3 and b /∈ V (A1 ∪ B1\v2). Let C be a minimum cycle of (T,w) containing ab. From
Theorem 2.7 we see that C passes through v1 and v2 and that C[v2, v1] is fully contained in B1. If
a ∈ V (A1\v1), then av2 is ab or a chord of C. By (2), we have w(av2) = w(C[a, v2]) ≥ w(ab) > 0.
It follows from (7) that R1 is contained in a cycle of T1 with weight r, a contradiction. So we
assume that a = v1 and |B1| = 4. By (2), the cycle arising from C[v2, v1] by adding v1v2 is a
minimum cycle of (T,w). Therefore v2R1v1v2 is also a cycle of T1 with weight r, a contradiction
again. The second half of the statement can be established similarly.

For i = 1, 2, define wi ∈ ZEi
+ to be the weight function obtained from w|Ei by reducing the

weights of arcs in B1, if necessary, so that µwi(Ti) = r and that each arc e in Ti with wi(e) > 0
is contained in a minimum cycle of (Ti, wi) (see (6)). We point out that w1(v1v2) = w2(v1v2) =
w(v1v2) when |B1| = 4; we postpone giving its proof till this case is discussed (see (23)), as this
observation has nothing to do with the case when |B1| ≤ 3.

Let T ∗1 = (V,E∗1) be the subgraph of T obtained from T1 = (V1, E1) by adding all arcs ab
with w(ab) > 0, a ∈ V (A1), and b /∈ V (A1 ∪ B1), and define w1(ab) = w(ab) for each such arc
ab. Let T ∗2 = (V2, E

∗
2) be the subgraph of T2 = (V2, E2) arising from block A′2 by adding all arcs

ab with w(ab) > 0, a ∈ V (A′2), and b /∈ V (A′2). For ease of description, we color each arc v1b,
with w(v1b) > 0 and b /∈ V (A1 ∪ B1\v2), by blue. (Possibly b = v2 when |B1| = 4). From (4)
and the proof of Lemma 3.2 (recall the remark succeeding Theorem 3.3), we see that

(9) T ∗1 has a w1-FAS packing F1 of size r, obtained by first performing breadth-first search
(with respect to the weight function w1) for r steps from v1 in T ∗1 and then eliminating triangles
in A1\v1, such that each blue arc e is contained in precisely w(e) members of F1.

Using (5) and the induction hypothesis, we deduce that
(10) T2 has a w2-FAS packing F2 of size r, such that F2 ∩ E∗2 can be obtained by first

performing breadth-first search (with respect to the weight function w2) for |F2 ∩ E∗2 | steps in
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T ∗2 from v2 and then eliminating triangles in A′2\v2.
We shall produce a w-FAS packing F of T having size r by gluing members of F1 together

with those of F2, possibly with slight modification. For i = 1, 2, let Fi = {Fi,1, Fi,2, . . . , Fi,r},
where F1,j is the depth-j set in F1 from v1, and F2,j ∩ E∗2 is the depth-j set in F2 ∩ E∗2 from
v2. We color each Fi,j containing a blue arc also by blue. Observe that no arc, except blue ones
and those in B1, is shared by members of F1 and members of F2. So, naturally, in our proof
blue members of F1 will be glued together with blue members of F2. Once the members of F
containing blue arcs are determined, the members containing arcs ab with a ∈ V (A1\v1) and
b /∈ V (A1 ∪B1\v2) will be determined accordingly by (4).

Depending on the size of B1, we distinguish between two cases.
Case 1. |B1| ≤ 3.
We may assume that |B1| = 3, because this situation properly contains the one when |B1| =

2. Let q := w(v2v1), s := w(u1v1), and t := w(v2u1). In view of (1), we have q ≤ s+ t.
(11) If s > 0 and u1v1 is not contained in a cycle of T1 having weight r with respect to the

weight function w, then q = s + t. Furthermore, v2v1 is not contained in a cycle of T1 having
weight r with respect to w either.

By (6), u1v1 is contained in a cycle C of T2 having weight r with respect to w. Clearly, C
passes through v2u1. It follows instantly from (2) that q = s+ t. Assume on the contrary that
v2v1 is contained in a cycle Q of T1 having weight r with respect to w. Let Q′ be the cycle
obtained from Q by replacing v2v1 with the path v2u1v1. Then Q′ has weight r and contains
u1v1, a contradiction. So (11) is justified.

Similarly, the following statement holds.
(12) If t > 0 and v2u1 is not contained in a cycle of T2 having weight r with respect to the

weight function w, then q = s + t. Furthermore, v2v1 is not contained in a cycle of T2 having
weight r with respect to w either.

Let E′1 be the arc set obtained from E∗1 by deleting arcs in B1, let E′2 be the arc set obtained
from E2 by deleting arcs in B1, and let Ki,j be the restriction of Fi,j to E′i for i = 1, 2 and
1 ≤ j ≤ r.

(13) Let us modify Ki,j ’s as follows:
• add arc v2v1 to K1,j for r − q + 1 ≤ j ≤ r;
• add arc u1v1 to K1,j for r − s+ 1 ≤ j ≤ r;
• add arc v2u1 to K1,j for r − q + 1 ≤ j ≤ r − s;
• add arc v2v1 to K2,j for 1 ≤ j ≤ q;
• add arc v2u1 to K2,j for 1 ≤ j ≤ t; and
• add arc u1v1 to K2,j for t+ 1 ≤ j ≤ q.

We use F ′i,j to denote the resulting Ki,j .
(14) F ′1 := {F ′1,1, F ′1,2, . . . , F ′1,r} is a w-FAS packing of T ∗1 , and F ′2 := {F ′2,1, F ′2,2, . . . , F ′2,r} is

a w-FAS packing of T2.
To justify this, recall that each arc e ∈ F1,j satisfies w1(e) > 0 and that each arc e of T1

with w1(e) > 0 is contained in a cycle of T1 with weight r. From (9) and breadth-first search
we deduce that
• F1,j contains v2v1 iff r − w1(v2v1) + 1 ≤ j ≤ r;
• F1,j contains u1v1 iff r − w1(u1v1) + 1 ≤ j ≤ r; and
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• F1,j contains v2u1 iff r − w1(v2v1) + 1 ≤ j ≤ r − w1(u1v1).
Since q ≥ w1(v2v1), s ≥ w1(u1v1), and t ≥ w1(v2u1), we deduce that if F1,j contains v2v1, then
so does F ′1,j , and if F1,j contains u1v1, then so does F ′1,j . Moreover, if F1,j contains v2u1, then
F ′1,j contains v2u1 or u1v1. Note that each cycle of T1 containing v2u1 must pass through u1v1.
Since each F1,j is an FAS of T ∗1 , so is F ′1,j . From (13) it is clear that F ′1 is a w-FAS packing of
T ∗1 . Similarly, we can prove that F ′2 is a w-FAS packing of T2.

(15) If F ′2,j 6= F2,j for some j with 1 ≤ j ≤ r, then w(ab) = 0 for any a ∈ V (A1) and
b /∈ V (A1 ∪B1). In particular, there is no blue arc in T .

To justify this, note from (1), (10) and breadth-first search that F2,j contains v2v1 iff 1 ≤ j ≤
w2(v2v1), F2,j contains v2u1 iff 1 ≤ j ≤ w2(v2u1), and F2,j contains u1v1 iff w2(v2u1) + 1 ≤ j ≤
w2(v2v1). Since F ′2,j 6= F2,j for some j with 1 ≤ j ≤ r, we deduce from (13) that w2(v2v1) < q
or w2(v2u1) < t. From (12) we further conclude that the inequality w2(v2v1) < q must hold.
Thus (15) follows instantly from (8).

From (9), (10), (13) and (15) we see that
(16) F ′1,j contains a blue arc iff F ′2,j+q contains it.
Define

(17) Fj :=

®
F ′1,j ∪ F ′2,j+q if 1 ≤ j ≤ r − q;
F ′1,j ∪ F ′2,j+q−r if r − q + 1 ≤ j ≤ r.

(18) For Fj ’s defined in (17), the following statements hold:
• Fj contains v2v1 iff r − q + 1 ≤ j ≤ r;
• Fj contains u1v1 iff r − s+ 1 ≤ j ≤ r; and
• Fj contains v2u1 iff r − q + 1 ≤ j ≤ min{r, r − q + t} or 1 ≤ j ≤ max{0, t− q}.
To justify this, note from (17) that F ′1,j is a subset of Fj for 1 ≤ j ≤ r and from (13) that
(18.1) F ′1,j contains v2v1 iff r − q + 1 ≤ j ≤ r, and F ′2,k contains v2v1 iff 1 ≤ k ≤ q;
(18.2) F ′1,j contains u1v1 iff r − s+ 1 ≤ j ≤ r, and F ′2,k contains u1v1 iff t+ 1 ≤ k ≤ q;
(18.3) F ′1,j contains v2u1 iff r − q + 1 ≤ j ≤ r − s, and F ′2,k contains v2u1 iff 1 ≤ k ≤ t.
First, let k be a subscript with v2v1 ∈ F ′2,k. Then 1 ≤ k ≤ q by (18.1). Let j be the subscript

with k = j+q−r. Then j = r−q+k. Thus r−q+1 ≤ j ≤ r and hence F ′2,k is a subset of Fj by
(17). Combining this with (18.1) (as F ′1,j ⊆ Fj), we see that Fj contains v2v1 iff r−q+1 ≤ j ≤ r.

Second, let k be a subscript with u1v1 ∈ F ′2,k. Then t + 1 ≤ k ≤ q by (18.2). Let j be the
subscript with k = j + q − r. Then j = r − q + k. Thus r − q + t + 1 ≤ j ≤ r. It follows from
(17) that F ′2,k is a subset of Fj . By (1), s + t ≥ q. So r − q + t + 1 ≥ r − s + 1 and hence
r − s + 1 ≤ j ≤ r. Combining this with (18.2) (as F ′1,j ⊆ Fj), we see that Fj contains u1v1 iff
r − s+ 1 ≤ j ≤ r.

Finally, let k be a subscript with v2u1 ∈ F ′2,k. Then 1 ≤ k ≤ t by (18.3). When 1 ≤ k ≤
min{q, t}, let j be the subscript with k = j + q − r. Then j = r − q + k. So r − q + 1 ≤
j ≤ min{r, r − q + t} and thus F ′2,k is a subset of Fj by (17). When min{q, t} + 1 ≤ k ≤ t
(equivalently q + 1 ≤ k < t), let j be the subscript with k = j + q. Then j = k − q. Thus
1 ≤ j ≤ t− q and hence F ′2,k is a subset of Fj by (17). Therefore, there exists a subscript k with
v2u1 ∈ F ′2,k ⊆ Fj iff r − q + 1 ≤ j ≤ min{r, r − q + t} or 1 ≤ j ≤ max{0, t− q}. Combining this
with (18.3) (as F ′1,j ⊆ Fj), we see that Fj contains v2u1 iff r − q + 1 ≤ j ≤ min{r, r − q + t} or
1 ≤ j ≤ max{0, t − q}, because r − s ≤ min{r, r − q + t} (recall that s + t ≥ q by (1)). This
establishes (18).
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In view of (16)-(18), we obtain
(19) each arc e of T is contained in at most w(e) members of F := {F1, F2, . . . , Fr}.
Let us show that
(20) each Fj , with 1 ≤ j ≤ r, is an FAS of T .
For this purpose, let C be an arbitrary cycle in T . Clearly, Fj intersects C if C is a cycle of

T1 or a cycle of T2 by (14). So we assume that C is not fully contained in Ti for i = 1, 2.
Consider the subcase when u1 is outside C. Now C contains an arc ab with a ∈ V (A1\v1)

and b /∈ V (A1∪B1). From Theorem 2.7 we deduce that C passes through v1 and C[v1, a] is fully
contained in A1. Let C ′ be the cycle arising from C by replacing C[v1, b] with v1b, and let F ′2,k
be the member of F2 contained in Fj . Then C ′ is fully contained in T2 and intersects F ′2,k. If F ′2,k
intersects C ′[b, v1] = C[b, v1], then Fj intersects C. So we assume that F ′2,k contains v1b and hence
w(v1b) > 0, indicating that v1b is a blue arc. By (8), w2(v2v1) = w(v2v1) = q. Thus, by (16) and
(17), k = j+ q and F ′1,j contains v1b as well. In view of (1), w1(C[v1, b]) = w(C[v1, b]) ≥ w(v1b).
From the construction of F1 using depth-first search, we see that F ′1,j intersects C[v1, b]. So Fj
intersects C.

It remains to consider the subcase when C contains u1. Assume first that v2u1v1 is a segment
of C. Let C ′ be obtained from C by replacing v2u1v1 with v2v1. As observed in the preceding
paragraph, Fj intersects C ′. If v2v1 /∈ Fj , then Fj intersects C ′[v1, v2] and hence C; otherwise,
v2v1 ∈ Fj , so r− q+ 1 ≤ j ≤ r by (18). Since s+ t ≥ q by (1), we have r− q+ t ≥ r− s. Hence
r− q+ 1 ≤ j ≤ min{r, r− q+ t} or r− s+ 1 ≤ j ≤ r. It follows from (18) that Fj contains v2u1
or u1v1. Therefore Fj intersects C.

Next, we assume that C has a segment au1b, where a ∈ V (A1\v1) and b /∈ V (A1∪B1). Note
that v2v1 is contained in C and C[v1, a] is fully contained in A1. Let C ′ be obtained from C by
replacing C[v2, u1] with v2u1. Then C ′ is fully contained in T2. So Fj intersects C ′. If v2u1 /∈ Fj ,
then Fj intersects C ′[u1, v2] and hence C; otherwise, v2u1 ∈ Fj , so r−q+1 ≤ j ≤ min{r, r−q+t}
or 1 ≤ j ≤ max{0, t− q} by (18). If t ≤ q, then r− q + 1 ≤ j ≤ r− q + t ≤ r. Thus Fj contains
v2v1 by (18) and hence intersects C. Suppose t > q. Since (r − s) + q ≥ t by (11) or (1) (when
s > 0 and u1v1 is contained in a cycle Q of T1 having weight r, consider the path v2v1Q[v1, u1],
which has weight (r− s) + q), we obtain r− s ≥ t− q. Hence r− q+ 1 ≤ j ≤ r or 1 ≤ j ≤ r− s.
It follows from (18) that either Fj contains v2v1 or F ′1,j (and hence Fj) intersects C[v1, u1] by
(9). This establishes (20).

Combining (19) with (20), we conclude that F is a w-FAS packing of T having size r. From
(9) and (15)-(17), it is clear that F ∩E∗ is obtained by first performing breadth-first search for
|F ∩ E∗| steps in T ∗ from v1 and then eliminating triangles in A1\v1.

Case 2. |B1| = 4.
Observe that
(21) arc v1v2 is contained in only three cycles, v1v2u1v1, v1v2u2v1, and v1v2u1u2v1, of T , and

w(v1v2uiv1) ≤ w(v1v2u1u2v1) for i = 1, 2 by (1).
(22) w(av2) ≤ w(v1v2) for any vertex a in A1\v1, and w(v1b) ≤ w(v1v2) for any vertex b

outside A1 ∪B1\v2.
We only prove the first half of this statement, as the proof of the second half does along the

same line. If w(av2) = 0, then trivially w(av2) ≤ w(v1v2). So we assume that w(av2) > 0. By
(7), the path av2R1 is contained in a cycle C of T1 having weight r with respect to the weight
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function w. By (1), we have w(C[v1, v2]) = w(v1v2). It follows that w(av2) ≤ w(v1v2). This
establishes (22).

Let p := w(u1u2), q := w(v1v2), si := w(uiv1), and ti := w(v2ui) for i = 1, 2.
(23) q = w1(v1v2) = w2(v1v2), si = w1(uiv1), and ti = w2(v2ui) for i = 1, 2. Furthermore, if

p > 0, then either p+ s2 = s1 or t1 + p = t2. If q > 0, then v1v2R1v1 is a cycle having weight r
with respect to the weight function w.

From (21) and (6) it follows immediately that q = w1(v1v2) = w2(v1v2), si = w1(uiv1), and
ti = w2(v2ui) for i = 1, 2. To show the statements concerning p, let C be a cycle in Ti containing
u1u2 and having weight r with respect to the weight function w for i = 1 or 2; such C exists by
(6). Since u2v1 is the only arc leaving u2 in T1, and v2u1 is the only arc entering u1 in T2, cycle
C contains u2v1 or v2u1. Thus p+ s2 = s1 or t1 + p = t2 by (2). If q > 0, then v1v2 is contained
in a cycle having weight r with respect to the weight function w. From (21) we deduce that
v1v2R1v1 has weight r with respect to w. So (23) is established.

We proceed by considering two subcases.
Subcase 2.1. si + ti + q = r for i = 1 or 2.
From (4) and (7)-(10) we see that
(24) F1,j contains a blue arc v1b iff so does F2,j+r−q. (Hence F1,j is colored blue iff so is

F2,j+r−q.) Furthermore, F1,j contains a blue arc iff 1 ≤ j ≤ q by (22) and (23).
Define

(25) Fj :=

ß
F1,j ∪ F2,j+r−q if 1 ≤ j ≤ q;
F1,j ∪ F2,j−q if q + 1 ≤ j ≤ r.

Thus each blue set in F1 is glued together with the corresponding blue set in F2 (see (24)), if
any.

(26) For Fj ’s defined in (25), the following statements hold:
• Fj contains v1v2 iff 1 ≤ j ≤ q;
• Fj contains uiv1 iff r − si + 1 ≤ j ≤ r for i = 1, 2;
• Fj contains v2ui iff q+ 1 ≤ j ≤ min{r, q+ ti} or 1 ≤ j ≤ max{0, ti− r+ q} for i = 1, 2; and
• Fj contains u1u2 iff t1 + q + 1 ≤ j ≤ min{r, t2 + q} or 1 ≤ j ≤ max{0, t2 − r + q} when

s1 + t1 + q = r and iff r − s1 + 1 ≤ j ≤ r − s2 when s2 + t2 + q = r.
To justify this, note from (6), (9), (10) and (23) that
(26.1) F1,j contains v1v2 iff 1 ≤ j ≤ q, and F2,k contains v1v2 iff r − q + 1 ≤ k ≤ r;
(26.2) F1,j contains uiv1 iff r − si + 1 ≤ j ≤ r, and F2,k contains uiv1 iff ti + 1 ≤ k ≤ r − q

for i = 1, 2;
(26.3) F1,j contains v2ui iff q + 1 ≤ j ≤ r − si, and F2,k contains v2ui iff 1 ≤ k ≤ ti for

i = 1, 2;
(26.4) F1,j contains u1u2 iff r−s1 +1 ≤ j ≤ r−s2, and F2,k contains u1u2 iff t1 +1 ≤ k ≤ t2.
First, let k be a subscript with v1v2 ∈ F2,k. Then r − q + 1 ≤ k ≤ r by (26.1). Let j be the

subscript with k = j+r−q. Then j = k−r+q. Thus 1 ≤ j ≤ q and hence F2,k is a subset of Fj
by (25). Combining this with (26.1) (as F1,j ⊆ Fj), we see that Fj contains v1v2 iff 1 ≤ j ≤ q.

Second, let k be a subscript with uiv1 ∈ F2,k. Then ti + 1 ≤ k ≤ r − q by (26.2). Let j be
the subscript with k = j − q. Then j = k + q. Thus ti + q + 1 ≤ j ≤ r. Since si + ti + q ≥ r,
we have ti + q + 1 ≥ r − si + 1 and hence r − si + 1 ≤ j ≤ r. Combining this with (26.2) (as
F1,j ⊆ Fj), we see that Fj contains uiv1 iff r − si + 1 ≤ j ≤ r.
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Third, let k be a subscript with v2ui ∈ F2,k. Then 1 ≤ k ≤ ti by (26.3). When 1 ≤ k ≤
min{r−q, ti}, let j be the subscript with k = j−q. Then j = q+k. So q+1 ≤ j ≤ min{r, q+ti}.
Hence F2,k is a subset of Fj by (25). When min{r−q, ti}+1 ≤ k ≤ ti (equivalently r−q+1 ≤ k ≤
ti), let j be the subscript with k = j+r−q. Then j = k−r+q. Thus 1 ≤ j ≤ ti−r+q ≤ q and
hence F2,k is a subset of Fj by (25). Therefore, there exists a subscript k with v2ui ∈ F2,k ⊆ Fj
iff q + 1 ≤ j ≤ min{r, q + ti} or 1 ≤ j ≤ max{0, ti − r + q}. Combining this with (26.3) (as
F1,j ⊆ Fj), we see that Fj contains v2ui iff q+1 ≤ j ≤ min{r, q+ti} or 1 ≤ j ≤ max{0, ti−r+q},
because si + ti + q ≥ r, which implies r − si ≤ q + ti.

Finally, let k be a subscript with u1u2 ∈ F2,k. Then t1 + 1 ≤ k ≤ t2 by (26.4). When
t1 + 1 ≤ k ≤ min{r − q, t2}, let j be the subscript with k = j − q. Then j = k + q. Thus
t1 + q+ 1 ≤ j ≤ min{r, t2 + q}. Hence F2,k is a subset of Fj by (25). When min{r− q, t2}+ 1 ≤
k ≤ t2 (equivalently r − q + 1 ≤ k ≤ t2), let j be the subscript with k = j + r − q. Then
j = k − r + q. Thus 1 ≤ j ≤ t2 − r + q ≤ q and hence F2,k is a subset of Fj by (25). Therefore,

(26.5) there exists a subscript k with u1u2 ∈ F2,k ⊆ Fj iff t1 + q + 1 ≤ j ≤ min{r, t2 + q} or
1 ≤ j ≤ max{0, t2 − r + q}.

By the hypothesis of the present subcase, si+ ti+q = r for i = 1 or 2. If s1 + t1 +q = r, then
r − s1 + 1 = t1 + q + 1. Clearly, r − s2 ≤ min{r, t2 + q}. Combining (26.4) (as F1,j ⊆ Fj) with
(26.5), we see that Fj contains u1u2 iff t1+q+1 ≤ j ≤ min{r, t2+q} or 1 ≤ j ≤ max{0, t2−r+q}.
If s2 + t2 + q = r, then r − s2 = t2 + q. Clearly, r − s1 + 1 ≤ t1 + q + 1. It follows from (26.4)
and (26.5) that Fj contains u1u2 iff r − s1 + 1 ≤ j ≤ r − s2. Thus (26) holds.

By (1), we have p ≥ max{s1 − s2, t2 − t1}. In view of (24)-(26), we obtain
(27) each arc e of T is contained in at most w(e) members of F := {F1, F2, . . . , Fr}.
Let us show that
(28) each Fj , with 1 ≤ j ≤ r, is an FAS of T .
For this purpose, let C be an arbitrary cycle in T . Clearly, Fj intersects C if C is a cycle of

T1 or a cycle of T2. So we assume that C is not fully contained in Ti for i = 1, 2.
Suppose C contains an arc ab with a ∈ V (A1\v1) and b /∈ V (A1 ∪B1). From the structural

description, we see that C passes through v1 and C[v1, a] is fully contained in A1. Let C ′ be the
cycle arising from C by replacing C[v1, b] with v1b, and let F2,k be the member of F2 contained
in Fj . Then C ′ is fully contained in T2 and intersects F2,k. If F2,k intersects C ′[b, v1] = C[b, v1],
then Fj intersects C. So we assume that F2,k contains v1b and hence w(v1b) > 0. It follows
from (22) that q ≥ w(v1b) > 0. By (24) and (25), we get k = j + r − q and F1,j contains the
blue arc v1b as well. By (1), we obtain w(C[v1, b]) ≥ w(v1b). From the construction of F1 using
breadth-first search, we see that F1,j intersects C[v1, b]. Thus Fj intersects C.

So we assume that C contains no arc ab with a ∈ V (A1\v1) and b /∈ V (A1 ∪ B1). Consider
the situation when C contains both v2u1v1 and au2b as segments, where a ∈ V (A1\v1) and
b /∈ V (A1 ∪ B1). Note that C[v1, a] is fully contained in A1. Let C ′ be obtained from C by
replacing C[v2, u2] with v2u2. Then C ′ is fully contained in T2. So Fj intersects C ′. If v2u2 /∈ Fj ,
then Fj intersects C ′[u2, v2] and hence C; otherwise, v2u2 ∈ Fj , so q + 1 ≤ j ≤ min{r, q + t2}
or 1 ≤ j ≤ max{0, t2 − r + q} by (26). If q + 1 ≤ j ≤ r then, by (26), Fj contains v2u1 or
u1v1, because q + t1 ≥ r − s1. So Fj intersects C. If 1 ≤ j ≤ t2 − r + q then q + t2 > r and
hence s1 + t1 + q = r by the hypothesis of Subcase 2.1. By (1), we have t1 + s1 + (r − s2) ≥ t2
(when s2 > 0, arc u2v1 is contained in a cycle Q of T1 having weight r with respect to w by
(6). Consider the path v2u1v1Q[v1, u2], which has weight t1 + s1 + (r − s2)). It follows that
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t2 − r + q ≤ r − s2. Thus 1 ≤ j ≤ r − s2. So F1,j intersects C[v1, u2] by (9) and hence Fj
intersects C by (25).

Notice that u1u2 plays no role in the above proof. So the same argument (simply interchang-
ing the subscripts 1 and 2, whenever appropriate) implies that Fj also intersects C if C contains
both v2u2v1 and au1b as segments, where a ∈ V (A1\v1) and b /∈ V (A1 ∪B1). This proves (28).

Combining (27) with (28), we conclude that F is a w-FAS packing of T having size r. From
(9) and (25), it is clear that F ∩ E∗ is obtained by first performing breadth-first search for
|F ∩ E∗| steps in T ∗ from v1 and then eliminating triangles in A1\v1.

Subcase 2.2. si + ti + q > r for i = 1, 2.
Recall that each arc e with w(e) > 0 is contained in a minimum cycle of (T,w). By (21), we

obtain
(29) q = 0. So si + ti > r for i = 1, 2 and hence s1, s2, t1 and t2 are all positive.
In view of (21) and (29), R1 is contained in no cycle of Ti having weight r with respect to w

for i = 1, 2. It follows from (8) that
(30) w(ab) = 0 for any a ∈ V (A1) and b /∈ V (A1 ∪B1\v2).
For i = 1, 2, let T ′i = (V ′i , E

′
i) be obtained from Ti by deleting the vertex v3−i, and let

F ′i = {F ′i,1, F ′i,2, . . . , F ′i,r}, where F ′i,j is the restriction of Fi,j to E′i for 1 ≤ j ≤ r. Observe that
no arc is shared by a member of F ′1 and that of F ′2, except u1u2. We shall produce a w-FAS
packing F of T having size r by gluing members of F ′1 together with those of F ′2, along u1u2
whenever possible. For this purpose, observe from (6), (9), (10), and (29) that

(31) F ′1,j contains u1u2 iff r− s1 + 1 ≤ j ≤ r− s2, and F ′2,k contains u1u2 iff t1 + 1 ≤ k ≤ t2;
(32) F ′1,j contains uiv1 iff r − si + 1 ≤ j ≤ r, and no F ′2,k contains uiv1 for i = 1, 2; and
(33) no F ′1,j contains v2ui, and F ′2,k contains v2ui iff 1 ≤ k ≤ ti for i = 1, 2.
Let {g, h} be a permutation of {1, 2} with sg+tg ≤ sh+th. We first arrange F ′1,1, F

′
1,2, . . . , F

′
1,r

on a circle O in clockwise order, and then arrange F ′2,1, F
′
2,2, . . . , F

′
2,r on O in the same order,

such that members of F ′1 alternate with those of F ′2 in the following way:
• F ′2,tg+1 follows F ′1,r−sg+1 immediately;
• F ′2,tg+2 follows F ′1,r−sg+2 immediately;

· · · · · ·
• F ′2,tg follows F ′1,r−sg immediately,

where the subscripts are taken modulo r. In particular, F ′i,0 = F ′i,r for i = 1, 2.
For 1 ≤ j ≤ r, let π(j) denote the subscript such that F ′2,π(j) follows F ′1,j immediately on O,

and define Fj = F ′1,j ∪ F ′2,π(j). Observe that

(34) π(j) =

ß
(sg + tg − r) + j if 1 ≤ j ≤ 2r − (sg + tg),
(sg + tg − 2r) + j if 2r − (sg + tg) + 1 ≤ j ≤ r, which implies π(r − sg) =

tg if sg < r and π(r − sh) ≤ th if sh < r (the first line of π(j) applies now).
(35) Each Fj for 1 ≤ j ≤ r intersects each of the three paths v2u1v1, v2u2v1, and v2u1u2v1.
To justify this, imagine that circle O has r positions, 1, 2, . . . , r, in clockwise order, such that

each position i is occupied by both F ′1,i and F ′2,π(i). By (29), we have sg + tg > r. From the
arrangements of Fi,j ’s on O, it follows immediately that

(35.1) circle O is covered by F ′1,r−sg+1, F
′
1,r−sg+2, . . . , F

′
1,r, F

′
2,1, F

′
2,2, . . . , F

′
2,tg ; that is, each

position of O is occupied by at least one of these sets.
(35.2) Circle O is also covered by F ′1,r−sh+1, F

′
1,r−sh+2, . . . , F

′
1,r, F

′
2,1, F

′
2,2, . . . , F

′
2,th

.
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The statement holds trivially if sh = r. So we assume that sh < r. From (34) and (29) we
deduce that π(1) = (sg+tg−r)+1 ≥ 2 and π(r−sh) ≤ th. Hence {F ′2,π(1), F

′
2,π(2), . . . , F

′
2,π(r−sh)}

⊆ {F ′2,1, F ′2,2, . . . , F ′2,th}, this proves (35.2).
Similarly, we can check that {F ′2,π(1), F

′
2,π(2), . . . , F

′
2,π(r−s2)} ⊆ {F

′
2,1, F

′
2,2, . . . , F

′
2,t1

, F ′2,t1+1,

F ′2,t1+2, . . . , F
′
2,t2
}, where F ′2,t1+1, F

′
2,t1+2, . . . , F

′
2,t2

appear only when t1 < t2. Thus
(35.3) circleO is moreover covered by F ′1,r−s2+1, F

′
1,r−s2+2, . . . , F

′
1,r, F

′
2,1, F

′
2,2, . . . , F

′
2,t1

, F ′2,t1+1,
F ′2,t1+2, . . . , F

′
2,t2

.
Combining (31)-(33) and (35.1)-(35.3), we conclude that each Fj for 1 ≤ j ≤ r intersects

each of the three paths v2u1v1, v2u2v1, and v2u1u2v1.
(36) u1u2 is contained in at most w(u1u2) members of the family F := {F1, F2, . . . , Fr}.
Since F ′i (i = 1, 2) is obtained by restricting the wi-packing Fi to E′i, the construction

of F and (31) allow us to assume that s2 + 1 ≤ s1 and t1 + 1 ≤ t2. By (1) with respect
to w1 and w2 respectively, we obtain s1 − s2 ≤ w1(u1u2) and t2 − t1 ≤ w2(u1u2). Hence
max{s1−s2, t2− t1} ≤ max{w1(u1u2), w2(u1u2)} ≤ w(u1u2). When g = 1, it is instant from the
construction of F that exactly max{s1 − s2, t2 − t1} members of F contain u1u2. When g = 2,
since r−s1 +1 ≥ 1 and t1 ≤ t2−1, it follows from (34) (the first line) that π(r−s1 +1) ≤ t1 +1.
Thus π(r − s1 + 1) ≤ t2 = π(r − s2), which implies that exactly s1 − s2 members of F contain
u1u2. Therefore (36) holds in either case.

(37) Each Fj , with 1 ≤ j ≤ r, is an FAS of T .
To see this, let C be an arbitrary cycle in T . Clearly, Fj intersects C if C is a cycle of T ′1 or

a cycle of T ′2. So we assume that C is not fully contained in T ′i for i = 1, 2. From the structural
description of T , we deduce that C contains one of the three paths v2u1v1, v2u2v1, and v2u1u2v1
as a segment. Therefore Fj intersects C by (35), as desired.

Since no arc is shared by a member of F ′1 and that of F ′2, except u1u2, the family F =
{F1, F2, . . . , Fr} is a w-FAS packing of T having size r by (36) and (37). From (9) and (30), it
is clear that F ∩E∗ is obtained by first performing breadth-first search for |F ∩E∗| steps in T ∗

from v1 and then eliminating triangles in A1\v1. This completes the proof of Theorem 3.3.

4 Computer-assisted Proof

In the preceding section we have established the desired minimax relation for all Möbius-free
strong tournaments other than F1 and G1, thereby finishing the main body of the proof of
Theorem 1.2. In this section we present a computer-assisted proof for G1.

Lemma 4.1. Tournament G1 is FAS Mengerian.

In Schrijver [36] there is a characterization (Corollary 22.13d) of TDI system of the form
Ax ≤ b, x ≥ 0, where A is a nonnegative integral matrix. The same argument yields the following
result.

Lemma 4.2. Let A be a nonnegative integral matrix with no zero row, and let b be a rational
vector. Then the system Ax ≥ b, x ≥ 0 is TDI iff for each {0, 1}-vector y, there exists an
integral vector z ≥ 0 with zTA ≤ dyTA/2e and 2zT b ≥ yT b.
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To prove Lemma 4.1, let A be the minimal FAS-arc incidence matrix of G1. Clearly, G1 is
FAS Mengerian iff Ax ≥ 1, x ≥ 0 is a TDI system. We shall demonstrate that the dimension of
A is 41 × 15. Since it is beyond the capacity of our computer to exhaust all possible 241 cases
addressed in Lemma 4.2, we have to derive a refinement of this lemma to fulfill our need.

Suppose the dimension of A in Lemma 4.2 is m× n. Let ≺ denote the lexicographical order
defined over the set of all m-dimensional {0, 1}-vectors; that is, u ≺ v if there exists a subscript
j, with 1 ≤ j ≤ m, such that ui = vi for all 1 ≤ i < j and uj < vj .

Lemma 4.3. Let A be a nonnegative integral matrix with no zero row. Let V and W be two sets
of {0, 1}-vectors such that for each v ∈ V , there exists w ∈ W satisfying v ≺ w, vT1 = wT1,
and wTA ≤ vTA. Let U consist of all {0, 1}-vectors u such that uT1 is odd and u 6≥ v for each
v ∈ V . Then the system Ax ≥ 1, x ≥ 0 is TDI iff for each y ∈ U , there exists an integral vector
z ≥ 0 with zTA ≤ dyTA/2e and 2zT1 ≥ yT1.

Proof. The “only if” part follows instantly from Lemma 4.2.
To establish the “if” part, it suffices to find a desired z for every {0, 1}-vector y as described

in Lemma 4.2. Suppose on the contrary that such z does not exist for some y. We choose such
a counterexample y with the property that

(1) yT1 is as small as possible, and
(2) subject to (1), the lexicographical order of y is as high as possible.

Note that y 6∈ U , and thus either yT1 is even or y ≥ v for some v ∈ V .
We first assume that yT1 is even. Now y 6= 0, for otherwise z = 0 would satisfy the

requirements. Thus there exists a unit {0, 1}-vector e ≤ y. Since (y− e)T1 = yT1−1, condition
(1) guarantees the existence of an integral vector z ≥ 0 satisfying zTA ≤ d(y − e)TA/2e and
2zT1 ≥ (y − e)T1, which clearly imply zTA ≤ dyTA/2e and 2zT1 ≥ yT1, a contradiction.

Next, we assume that y ≥ v for some v ∈ V . By hypothesis, there exists w ∈ W such that
v ≺ w, vT1 = wT1, and wTA ≤ vTA. Observe that y − v + w can be expressed as α + 2β for
some {0, 1}-vectors α and β. We proceed by considering two subcases.

Suppose β 6= 0. Then αT1 = yT1− vT1 +wT1− 2βT1 = yT1− 2βT1 < yT1. By (1), there
exists an integral vector γ ≥ 0 satisfying γTA ≤ dαTA/2e and 2γT1 ≥ αT1. Set z = γ + β.
Then zTA = γTA+βTA ≤ dαTA/2e+βTA = d(α+2β)TA/2e = d(y−v+w)TA/2e ≤ dyTA/2e.
Similarly, 2zT1 = 2γT1 + 2βT1 ≥ αT1 + 2βT1 = (y − v + w)T1 = yT1, which is impossible as
y is a counterexample.

Suppose β = 0. Then αT1 = (y−v+w)T1 = yT1. Since v ≺ w, we have y ≺ α, which implies,
from (2), the existence of an integral vector z ≥ 0 such that zTA ≤ dαTA/2e and 2zT1 ≥ αT1.
Consequently, zTA ≤ d(y − v +w)TA/2e ≤ dyTA/2e and 2zT1 ≥ (y − v +w)T1 = yT1, again a
contradiction.

As we shall see, Lemma 4.3 can help eliminate many cases involved in our analysis.

Proof of Lemma 4.1. Tournament G1 is as shown in Figure 5. For simplicity, we relabel
each vertex vi as i for 1 ≤ i ≤ 6. Thus the vertex set of G1 is V1 = {1, 2, 3, 4, 5, 6} and arc
set is E1 = {12, 23, 34, 45, 51, 13, 35, 52, 24, 41, 16, 26, 63, 64, 65} whose members are denoted by
a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, respectively (so a = 12, b = 23, c = 34 and so on).

Claim 1. Let F be the family of all minimal feedback arc sets of G1. Then |F| = 41 and
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F = {ehj, afhk, dgjo, acehk, acehn, acghk, bdejl, beijl, bfikl, cehin, cgikl, cgino, degjl, dgjkl,
abdfkl, acdgkl, acdgko, acdgno, acghno, adfgkl, adfgko, adghjk, aefhmn, afhmno, bceikl, bceiln,
bdejmo, bdfjkl, bdfjmo, bfimno, cegijl, cegiln, cehikl, abdfkmo, abdfmno, adfgmno, adfhjmo,
bceimno, befhimn, befilmn, beijmno}, where, for instance, ehj stands for the minimal FAS
consisting of arcs e, h and j.

To justify this, we first list all subsets of E1 in nondecreasing order of cardinality. For each
term F on the list, from the first to the last, we check if G1\F is acyclic and if F contains a
feedback arc set we have already found. If F is a feedback arc set and it does not contain any
earlier ones, then F is a minimal feedback arc set and we put it in F . When the process is
finished, we end up with 41 minimal feedback arc sets as shown above. This step was carried
out by using computer (see [40] for the source code).

Let A be the minimal FAS-arc incidence matrix of G1, such that the ith row of A corresponds
to the ith member of F displayed in Claim 1. We shall use Lemma 4.3 to verify that the system
Ax ≥ 1, x ≥ 0 is TDI. To this end, let SV and SW be two families of 2-subsets of {1, 2, . . . , 41}
as defined below (the subset {i, j} is written as i-j):

SV = {2-7, 2-8, 2-13, 2-27, 2-31, 2-41, 3-4, 3-5, 3-10, 3-23, 3-33, 3-39, 4-8, 4-9, 4-13, 4-14, 4-20,
4-21, 4-22, 4-23, 4-24, 4-28, 4-29, 4-30, 4-31, 4-36, 4-37, 4-39, 4-40, 4-41, 5-8, 5-9, 5-14, 5-21,
5-22, 5-28, 5-29, 5-31, 5-37, 5-41, 6-7, 6-8, 6-9, 6-13, 6-15, 6-20, 6-21, 6-23, 6-25, 6-26, 6-27, 6-28,
6-29, 6-30, 6-31, 6-32, 6-33, 6-34, 6-35, 6-36, 6-37, 6-38, 6-39, 6-40, 6-41, 7-10, 7-12, 7-19, 7-21,
7-22, 7-24, 7-33, 7-37, 7-39, 8-10, 8-15, 8-16, 8-17, 8-18, 8-19, 8-21, 8-22, 8-23, 8-24, 8-28, 8-33,
8-35, 8-36, 8-37, 8-39, 9-19, 9-22, 9-23, 9-24, 9-31, 9-37, 9-41, 10-13, 10-14, 10-15, 10-16, 10-17,
10-18, 10-19, 10-20, 10-21, 10-22, 10-27, 10-28, 10-29, 10-31, 10-34, 10-35, 10-37, 10-41, 11-15,
11-22, 11-23, 11-24, 11-27, 11-29, 11-34, 11-35, 11-37, 11-39, 11-41, 12-13, 12-14, 12-15, 12-16,
12-22, 12-27, 12-28, 12-29, 12-33, 12-37, 12-39, 13-17, 13-19, 13-21, 13-22, 13-24, 13-25, 13-27,
13-29, 13-30, 13-33, 13-34, 13-37, 13-38, 13-39, 13-41, 14-17, 14-18, 14-19, 14-21, 14-23, 14-24,
14-25, 14-26, 14-27, 14-30, 14-31, 14-32, 14-33, 14-34, 14-35, 14-36, 14-37, 14-38, 14-39, 14-41,
15-19, 15-22, 15-24, 15-30, 15-31, 15-33, 15-37, 15-39, 15-41, 16-19, 16-22, 16-24, 16-28, 16-29,
16-30, 16-31, 16-33, 16-37, 16-39, 16-40, 16-41, 17-19, 17-22, 17-23, 17-24, 17-28, 17-29, 17-30,
17-31, 17-32, 17-33, 17-37, 17-39, 17-40, 17-41, 18-22, 18-28, 18-29, 18-30, 18-31, 18-33, 18-37,
18-39, 18-41, 19-20, 19-21, 19-22, 19-25, 19-26, 19-27, 19-28, 19-29, 19-31, 19-32, 19-33, 19-34,
19-35, 19-36, 19-37, 19-38, 19-39, 19-40, 19-41, 20-22, 20-24, 20-25, 20-26, 20-27, 20-28, 20-29,
20-30, 20-31, 20-33, 20-37, 20-38, 20-39, 20-41, 21-22, 21-23, 21-24, 21-25, 21-26, 21-27, 21-28,
21-29, 21-31, 21-33, 21-37, 21-38, 21-39, 21-40, 21-41, 22-23, 22-24, 22-25, 22-26, 22-27, 22-28,
22-29, 22-30, 22-31, 22-32, 22-33, 22-34, 22-35, 22-36, 22-37, 22-38, 22-39, 22-40, 22-41, 23-25,
23-27, 23-28, 23-29, 23-31, 23-33, 23-34, 23-37, 23-38, 23-41, 24-25, 24-26, 24-27, 24-28, 24-31,
24-33, 24-34, 24-38, 24-39, 24-40, 24-41, 25-28, 25-31, 25-35, 25-36, 25-37, 25-39, 25-41, 26-28,
26-29, 26-31, 26-33, 26-34, 26-36, 26-37, 26-39, 26-41, 27-31, 27-32, 27-33, 27-36, 27-37, 27-39,
27-40, 28-31, 28-32, 28-33, 28-34, 28-35, 28-36, 28-37, 28-38, 28-39, 28-40, 28-41, 29-31, 29-32,
29-33, 29-36, 29-38, 29-39, 29-40, 29-41, 30-31, 30-33, 30-37, 31-33, 31-34, 31-35, 31-36, 31-37,
31-38, 31-39, 31-40, 31-41, 32-33, 32-34, 32-35, 32-37, 32-39, 32-41, 33-34, 33-35, 33-36, 33-37,
33-38, 33-39, 33-40, 33-41, 34-37, 34-39, 34-40, 34-41, 35-37, 35-39, 35-41, 36-37, 36-38, 36-39,
36-41, 37-38, 37-39, 37-40, 37-41, 38-39, 39-41, 40-41} and
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SW = {1-2, 1-3, 1-6, 1-9, 1-11, 1-12, 1-14, 1-15, 1-16, 1-17, 1-18, 1-20, 1-24, 1-25, 1-26, 1-29,
1-30, 1-32, 1-34, 1-35, 1-36, 1-38, 1-40, 2-3, 2-5, 2-10, 2-11, 2-12, 2-14, 2-16, 2-17, 2-18, 2-25,
2-26, 2-29, 2-30, 2-32, 2-35, 2-36, 2-38, 2-40, 3-6, 3-7, 3-8, 3-9, 3-11, 3-15, 3-16, 3-20, 3-24, 3-25,
3-26, 3-30, 3-32, 3-34, 3-35, 3-38, 3-40, 4-11, 4-12, 5-11, 5-12, 5-30, 6-14, 6-18, 7-9, 7-11, 7-30,
8-11, 8-12, 8-30, 8-32, 8-38, 9-10, 9-16, 9-17, 9-18, 9-35, 9-36, 10-11, 10-25, 10-30, 10-40, 11-13,
11-18, 12-34, 12-35, 14-15, 15-29, 15-32, 15-38, 18-24, 18-40, 23-30, 24-29, 27-30}.

Notice that |SV | = 390 and |SW | = 96; these SV and SW will yield V and W as described
in Lemma 4.3. The choices for SV and SW are not unique. We obtained our SV and SW by
trial and error (see [40] for the source code). In the search process we restricted our attention
to 2-subsets. It is possible to choose larger sets SV and SW , which would cause Γ (to be defined
in Claim 3) to contain fewer stable sets.

Claim 2. Let V and W be the sets of characteristic vectors (with length 41) of members of SV
and SW , respectively. Then V and W satisfy the conditions described in Lemma 4.3.

To justify this, for each of the 390 vectors v ∈ V and each of the 96 vectors w ∈W , we test
if v ≺ w and wTA ≤ vTA hold simultaneously (note that vT1 = wT1 is always true). Using a
computer we have confirmed that, for every v ∈ V indeed there exists w ∈ W such that v ≺ w
and wTA ≤ vTA are both true.

Claim 3. Let Γ be the graph with vertex set {1, 2, . . . , 41} such that i, j ∈ {1, 2, . . . , 41} are
adjacent iff i-j is a member of SV . Then Γ has exactly 41022 odd stable sets.

Mathematica has a function FindClique, which can be used to generate all 219 maximal
stable sets of Γ. We also independently implemented the Bron-Kerbosch algorithm (see [8])
and obtained the same result. These maximal stable sets give rise to all 82044 stable sets, and
exactly half of which are odd (see [40] for the source code).

Claim 4. System Ax ≥ 1, x ≥ 0 is TDI.
To justify this, let us choose V and W as in Claim 2. It is then clear that U (defined

in Lemma 4.3) consists of exactly characteristic vectors of odd stable sets of Γ. By Claim 3,
|U | = 41022. For each y ∈ U , we define c = dyTA/2e and solve max{zT1: zTA ≤ cT , z ≥ 0
and integral} using LinearProgramming of Mathematica (see [40] for the source code). For each
optimal solution z obtained, we verify that 2zT1 ≥ yT1. We also verify that z is an integral
vector satisfying zTA ≤ cT . Our computational results indicate that indeed that is the case.
After completing this process for all 41022 vectors in U , we conclude from Lemma 4.3 that
Claim 4 is true.

We can finally establish the equivalence of three statements described in Theorem 1.2, thereby
obtaining a complete characterization of all FAS ideal and Mengerian touranments.

Proof of Theorem 1.2. Implication (iii) ⇒ (ii) holds, because total-dual integrality
implies primal integrality (see Edmonds-Giles theorem [19] stated in Section 1). It was proved
by Lehman [29] that a clutter is ideal iff its blocker is ideal, which implies that a tournament
is cycle ideal iff it is FAS ideal. Therefore the equivalence of (i) and (ii) in Theorem 1.1 yields
implication (ii)⇒ (i). It remains to prove implication (i)⇒ (iii). Clearly, we may assume that
T is strong. Since F1 arises from G1 by deleting vertex v6 (see the labeling in Figure 5), from
Lemma 4.1 we deduce that F1 is also FAS Mengerian. So we may assume that T /∈ {F1, G1}.
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From Theorem 3.1 we thus conclude that T is FAS Mengerian.
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