Packing Feedback Arc Sets in Tournaments Exactly

Xujin Chen ${ }^{a *}$ Guoli Ding ${ }^{b}$ Wenan Zang ${ }^{c \dagger}$ Qiulan Zhao ${ }^{d \ddagger}$
a Academy of Mathematics and Systems Science, Chinese Academy of Sciences Beijing 100190, China
${ }^{b}$ Mathematics Department, Louisiana State University
Baton Rouge, LA 70803, USA
c Department of Mathematics, The University of Hong Kong
Hong Kong, China
${ }^{d}$ Department of Mathematics, Nanjing University
Nanjing 210093, China

Abstract

Let $T=(V, A)$ be a tournament with a nonnegative integral weight $w(e)$ on each arc e. A subset F of arcs is called a feedback arc set (FAS) if $T \backslash F$ contains no cycles (directed). A collection \mathcal{F} of FAS's (with repetition allowed) is called an FAS packing if each arc e is used at most $w(e)$ times by the members of \mathcal{F}. The purpose of this paper is to give a characterization of all tournaments with the property that, for every nonnegative integral weight function w defined on A, the minimum total weight of a cycle is equal to the maximum size of an FAS packing.

MSC 2000 subject classification. Primary: 90C10, 90C27, 90C57.
OR/MS subject classification. Primary: Programming/graphs.
Key words. Tournament, feedback arc set, cycle, minimax relation, breadth-first search.

[^0]
1 Introduction

Let $G=(V, A)$ be a digraph with a nonnegative integral weight $w(e)$ on each arc e. A subset F of arcs is called a feedback arc set (FAS) of G if $G \backslash F$ contains no cycles (directed). The FAS problem is to find an FAS of G with minimum total weight, which can be naturally formulated as an integer program. One approach to this $N P$-hard problem is to consider its linear programming (LP) relaxation and explore integrality properties satisfied by its constraints. Let M be the cycle-arc incidence matrix of G, let $\pi(G)$ denote the linear system $M x \geq \mathbf{1}, x \geq \mathbf{0}$, and let P denote the polyhedron defined by $\pi(G)$. We call P integral if it is the convex hull of all integral vectors contained in P. As is well known, P is integral iff the minimum in the LP-duality equation

$$
\min \left\{w^{T} x: M x \geq \mathbf{1}, x \geq \mathbf{0}\right\}=\max \left\{y^{T} \mathbf{1}: y^{T} M \leq w^{T}, y \geq \mathbf{0}\right\}
$$

has an integral optimal solution, for every nonnegative integral vector w for which the optimum is finite. If, instead, the maximum in the equation satisfies this property, then the system $\pi(G)$ is called totally dual integral (TDI). We say that G is cycle ideal (CI) if P is an integral polyhedron, and that G is cycle Mengerian (CM) if $\pi(G)$ is a TDI system. As shown by Edmonds and Giles [19], total dual integrality implies primal integrality, so every CM digraph is CI and hence being CM can be more intuitively stated in terms of a minimax relation. A collection \mathcal{C} of cycles (with repetition allowed) is called a cycle packing of G if each arc e is used at most $w(e)$ times by the members of \mathcal{C}. Let $\nu_{w}(G)$ be the maximum size of a cycle packing, and let $\tau_{w}(G)$ be the minimum total weight of an FAS. Then G is CM iff $\nu_{w}(G)=\tau_{w}(G)$ for all nonnegative integral weight functions w defined on A. Note that a characterization of CI and CM digraphs can yield not only beautiful mathematical theorems but also a polynomial-time algorithm for the FAS problem on such digraphs, by a general theorem of Grötschel, Lovász, and Schrijver [21], so the study of these digraphs has both great theoretical interest and practical value. Initiated in the early 1960s [43], it has inspired many minimax theorems in combinatorial optimization, such as Lucchesi and Younger [31], Seymour [38, 39], Geelen and Guenin [22], Guenin [23, 24], Guenin and Thomas [25], Cai, Deng, and Zang [9], and Ding, Xu, and Zang [17, 18]. Despite tremendous research efforts, only some special classes of CI and CM digraphs [4, 5, 9, 11, 12, 23, 25, 31, 39] have been identified to date, and a complete characterization seems extremely hard to obtain.

A digraph G is called a tournament if there is precisely one arc between any two vertices in G. The FAS problem remains $N P$-hard even when the input digraph G is a tournament; see Alon [3] and Charbit, Thomassé, and Yeo [14]. As this special version also arises in a rich variety of applications, it has been studied extensively from the combinatorial, statistical, and algorithmic points of view, and thus has produced a vast body of literature. In [32], Mathieu and Schudy devised a polynomial time approximation scheme (PTAS) for the FAS problem on tournaments. Ailon, Charikar, and Newman [2] developed approximation algorithms with small constant approximation factors for the FAS problem on tournaments. Bessy et al. [7] showed that the problem of determining if a tournament has a cycle packing and a feedback arc set of the same size is NP-complete, and the problem of packing arc-disjoint cycles in tournaments is fixed-parameter tractable. Applegate, Cook, and McCormick [4] and Barahona, Fonlupt, and Mahjoub [5] independently proved that every tournament with five vertices is CM, thereby confirming a conjecture posed by both Barahona and Mahjoub [6] and Jünger [27]. We call
a tournament Möbius-free if it contains none of $K_{3,3}, K_{3,3}^{\prime}, M_{5}$, and M_{5}^{*} depicted in Figure 1 as a subgraph; these four Möbius ladders are actually the only obstructions to CI and CM tournaments.

Figure 1. Forbidden Structures

Theorem 1.1. (Chen et al. [11, 12]) For a tournament T, the following statements are equivalent:
(i) T is Möbius-free;
(ii) T is cycle ideal; and
(iii) T is cycle Mengerian.

Minimax relations in combinatorial optimization often appear in pairs. Given a minimax relation, a common practice in this field is to establish its blocker version. For example, a graph is perfect iff its complement is perfect, as shown by Lovász [29]. The blocker version of the famous max-flow min-cut theorem is a Fulkerson theorem (see [37]), which asserts that the maximum size of s - t-cut packing equals to the minimum length of an s - t-path. The blocker version of Edmonds' disjoint arborescence theorem is Fulkerson's optimum arborescence theorem (see [37]). At this point a natural question to ask is: When does the minimax relation on packing and covering FAS's in tournaments hold?

Let $G=(V, A)$ and w be as given at the beginning of this section. We use N to denote the FAS-arc incidence matrix of G. A collection \mathcal{F} of FAS's (with repetition allowed) is called an FAS packing of G if each arc e is used at most $w(e)$ times by the members of \mathcal{F}. Let $\lambda_{w}(G)$ be the maximum size of an FAS packing, and let $\mu_{w}(G)$ be the minimum total weight of a cycle (directed). Clearly, $\lambda_{w}(G) \leq \mu_{w}(G)$; this inequality, however, need not hold with equality in general. We say that G is $F A S$ ideal (FASI) if $N x \geq \mathbf{1}, x \geq \mathbf{0}$ defines an integral polyhedron, and that G is $F A S$ Mengerian (FASM) if $N x \geq \mathbf{1}, x \geq \mathbf{0}$ is a TDI system. Again,
by the aforementioned Edmonds-Giles theorem [19], G is FASM iff $\lambda_{w}(G)=\mu_{w}(G)$ for every nonnegative integral weight function w defined on A. Since feedback arc sets are a type of combinatorial objects involving global structural properties, they are not so easily visualized as cycles and hence are more difficult to manipulate. Thus it is no surprise that packing FAS's in a digraph is harder than packing cycles.

The origin of FASM digraphs can be traced back to 1976, when Lucchesi and Younger [31] proved their min-max theorem on packing dicuts. For an algorithmic proof of this theorem, see Frank [26]. We introduce some notions before proceeding. For each $U \subseteq V$, let $\delta(U)$ denote the set of all arcs between U and $V \backslash U$, and let $\delta^{+}(U)$ (resp. $\delta^{-}(U)$) denote the set of arcs from U to $V \backslash U$ (resp. from $V \backslash U$ to U) in G. A dicut is a set of arcs of the form $\delta^{+}(U)$ for some subset U of V with $\emptyset \neq U \neq V$ and with $\delta^{-}(U)=\emptyset$, which is also denoted by $(U, V \backslash U)$. A dijoin is a set of arcs that intersects every dicut. We can then define both dicut packing and dijoin packing in a similar way to cycle packing. The Lucchesi-Younger theorem [31] states that the maximum size of dicut packing is equal to the minimum total weight of a dijoin for all weight functions w. Edmonds and Giles [19] conjectured that the assertion remains true if we swap the terms dicut and dijoin; that is, the maximum size of dijoin packing is also equal to the minimum total weight of a dicut for all weight functions w. This conjecture has been confirmed for several classes of digraphs such as source-sink connected digraphs [20,35] and series-parallel digraphs [28]. The assertion of the general conjecture, however, was refuted by Schrijver [34]; more counterexamples have been found by Cornuéjols and Guenin [15] and Williams and Guenin [41]. Despite this, Woodall [42] strongly believed that the unweighted version of the Edmonds-Giles conjecture holds true. Motivated by this conjecture, Chudnovsky et al. [16], Mészáros [33], and Abdi, Cornuéjols, and Zlatin [1] have obtained several results on disjoint dijoins.

When restricted to a plane digraph, dicut and dijoin are dualized to cycle and feedback arc set, respectively. Thus the above Edmonds-Giles conjecture can be rephrased as saying that every planar digraph is FASM (a counterexample is the dual of Schrijver's digraph [34]), and Woodall's conjecture amounts to saying that the maximum number of disjoint feedback arc sets is equal to the length of a shortest cycle.

The purpose of this paper is to establish the blocker version of Theorem 1.1.
Theorem 1.2. For a tournament T, the following statements are equivalent:
(i) T is Möbius-free;
(ii) T is FAS ideal; and
(iii) T is FAS Mengerian.

Corollary 1.3. A tournament is cycle Mengerian iff it is FAS Mengerian iff it is Möbius-free.
The reader is referred to [10] (resp. [13]) for a structural characterization of all undirected graphs (resp. tournaments) with the min-max relation on packing and covering feedback vertex sets and the corresponding blocker version [18, 17] (resp. [9]).

The remainder of this paper is organized as follows: In Section 2, we present a global structural description of Möbius-free strong tournaments. In Section 3, we establish the minimax relation on packing and covering FAS's in Möbius-free strong tournaments other than F_{1} and G_{1} (to be shown in Figures 4 and 5). In Section 4, we give a computer-assisted proof of the minimax relation on G_{1}, thereby completing the whole proof.

2 Global Structure

Our proof of Theorem $1.1[11,12]$ relies heavily on a structural description of Möbius-free strong tournaments, which continues to play an important role in the characterization of FAS Mengerian tournaments.

Let us recall some terminology and notation introduced in [11]. Let $G=(V, A)$ be a digraph with a nonnegative integral weight $w(e)$ on each arc e. We use $|G|$ to denote the total number of vertices in G. For each $v \in V$, we use $G \backslash v$ to denote the digraph arising from G by deleting vertex v, and use $d_{G}^{+}(v)$ and $d_{G}^{-}(v)$ to denote the out-degree and in-degree of v, respectively. We call v a near-sink of G if its out-degree is one, and call v a near-source if its in-degree is one. For simplicity, an arc $e=(u, v)$ of G is also denoted by $u v$. Arc e is called special if u is a near-sink or v is a near-source of G. For each $U \subseteq V$, we use $G[U]$ to denote the subgraph of G induced by U. Recall that G is called weakly connected if its underlying undirected graph is connected, and is called strongly connected or strong if each vertex is reachable from every other vertex. Clearly, a weakly connected digraph G is strong iff G has no dicut. A dicut (X, Y) is called trivial if $|X|=1$ or $|Y|=1$. Furthermore, a weakly connected digraph G is called internally strong if every dicut of G is trivial, and is called internally 2-strong (i2s) if G is strong and $G \backslash v$ is internally strong for every vertex v.

Let $T_{i}=\left(V_{i}, A_{i}\right)$ be a tournament, with $\left|V_{i}\right| \geq 3$ for $i=1,2$. We say that T_{1} is smaller than T_{2} if $\left|V_{1}\right|<\left|V_{2}\right|$. Suppose that $\left(a_{1}, b_{1}\right)$ is a special arc of T_{1} with $d_{T_{1}}^{+}\left(a_{1}\right)=1$ and $\left(b_{2}, a_{2}\right)$ is a special arc of T_{2} with $d_{T_{2}}^{-}\left(a_{2}\right)=1$. The 1 -sum of T_{1} and T_{2} over $\left(a_{1}, b_{1}\right)$ and $\left(b_{2}, a_{2}\right)$ is the tournament arising from the disjoint union of $T_{1} \backslash a_{1}$ and $T_{2} \backslash a_{2}$ by identifying b_{1} with b_{2} (the resulting vertex is denoted by b) and adding all arcs from $T_{1} \backslash\left\{a_{1}, b_{1}\right\}$ to $T_{2} \backslash\left\{a_{2}, b_{2}\right\}$. We call b the hub of the 1 -sum. See Figure 2 for an illustration. Note that if T_{i} is strong and $\left|V_{i}\right|=3$ for $i=1$ or 2 , then T_{i} is a triangle (a directed cycle of length three), and thus $T=T_{3-i}$.

Figure 2. 1-sum of T_{1} and T_{2}.
In our original definition of 1 -sum $[11,12]$, we assume that $T_{i}=\left(V_{i}, A_{i}\right)$ is strong for $i=1,2$; this assumption is removed here just for more convenience. The lemma below asserts that these two definitions are equivalent when restricted to a strong tournament T.

Lemma 2.1. Suppose a strong tournament T is a 1 -sum of two tournaments T_{1} and T_{2}. Then the following statements hold:
(i) Both T_{1} and T_{2} are strong; and
(ii) Both T_{1} and T_{2} are sub-tournaments of T.

As the proof is completely straightforward, we omit it here. Let $\left(X_{1}, X_{2}\right)$ be the dicut of $T \backslash b$ as shown in Figure 2. Observe that any out-neighbor of b in X_{1} can be taken as a_{2} and any in-neighbor of b in X_{2} can be taken as a_{1} in the 1-sum (such neighbors are available as T is strong). Furthermore, T_{i} is the subtournament of T induced by $X_{i} \cup\left\{b, a_{i}\right\}$ for $i=1,2$. The following lemma (see Lemma 2.2 in [11]) states that being Möbius-free is closed under taking 1-sums.

Lemma 2.2. Suppose a strong tournament T is a 1 -sum of two tournaments T_{1} and T_{2}. Then T is Möbius-free iff both T_{1} and T_{2} are Möbius-free.

Let C_{3} (resp. F_{0}) denote the strong tournament with three (resp. four) vertices (see Figure 3), let $F_{1}, F_{2}, F_{3}, F_{4}, F_{5}$ be the five tournaments depicted in Figure 4, and let G_{1}, G_{2}, G_{3} be the three tournaments shown in Figure 5. We reserve the symbols

$$
\mathcal{T}_{0}=\left\{C_{3}, F_{0}, F_{1}, F_{2}, F_{3}, F_{4}, G_{1}, G_{2}, G_{3}\right\}
$$

and

$$
\mathcal{T}_{1}=\left\{C_{3}, F_{0}, F_{2}, F_{3}, F_{4}, G_{2}, G_{3}\right\}=\mathcal{T}_{0} \backslash\left\{F_{1}, G_{1}\right\} .
$$

C_{3}

F_{0}

Figure 3. Strong tournaments with three or four vertices.

F_{1}, F_{2}, F_{3}

F_{4}, F_{5}

Figure 4. $v_{1} v_{2}, v_{5} v_{1} \in F_{1} ; v_{2} v_{1}, v_{1} v_{5} \in F_{2} ; v_{2} v_{1}, v_{5} v_{1} \in F_{3} ; v_{6} v_{2} \in F_{4} ; v_{2} v_{6} \in F_{5}$.
In [11] we have obtained the following structural descriptions of Möbius-free tournaments.
Theorem 2.3. (Chen et al. [11]) Let $T=(V, A)$ be an i2s tournament with $|V| \geq 3$. Then T is Möbius-free iff $T \in \mathcal{T}_{0}$.

Figure 5. $v_{6} v_{4} \in G_{2}$ and $v_{4} v_{6} \in G_{3}$.

Figure 6. A minimal tournament involved in Lemma 2.5

Theorem 2.4. (Chen et al. [11]) Let $T=(V, A)$ be a Möbius-free strong tournament with $|V| \geq 3$. Then either $T \in\left\{F_{1}, G_{1}\right\}$ or T can be obtained by repeatedly taking 1 -sums starting from the tournaments in \mathcal{T}_{1}.

Let F_{6} be the tournament depicted in Figure 6 and let

$$
\mathcal{T}_{2}=\left\{F_{0}, F_{2}, F_{3}, F_{4}, F_{6}, G_{2}, G_{3}\right\} .
$$

Then $\mathcal{T}_{2}=\left(\mathcal{T}_{1} \backslash\left\{C_{3}\right\}\right) \cup\left\{F_{6}\right\}$. Lemma 2.4 in [12] states that if a Möbius-free strong tournament T is a 1-sum of two smaller strong tournaments T_{1} and T_{2} such that T_{2} is minimal (with respect to vertex set inclusion), then $T_{2} \in \mathcal{T}_{2}$. From Lemma 2.1, we see that the "strong" condition imposed on T_{1} and T_{2} can be removed.

Lemma 2.5. Let $T=(V, A)$ be a Möbius-free strong tournament. Suppose T is a 1-sum of two smaller tournaments T_{1} and T_{2} such that T_{2} is minimal (with respect to vertex set inclusion). Then $T_{2} \in \mathcal{T}_{2}$.

Notice that every tournament in \mathcal{T}_{0} has a near-sink or a near-source, except F_{1} and G_{1}. So the above three results imply the following.

Corollary 2.6. Let $T=(V, A)$ be a Möbius-free strong tournament, with $T \notin\left\{C_{3}, F_{1}, G_{1}\right\}$. Then T can be constructed from a tournament in $\left\{F_{0}, F_{2}, F_{3}, F_{4}, G_{2}, G_{3}\right\}$ by repeatedly taking 1 -sums with tournaments in \mathcal{T}_{2}.

So far we have exhibited some local structural properties satisfied by Möbius-free strong tournaments. Due to the global nature of feedback arc sets, we need a description of global structures of Möbius-free strong tournaments in order to establish the desired minimax relation. Let \mathcal{Q} consist of all tournaments G whose vertex set can be partitioned into $U_{0}, U_{1}, \ldots, U_{k}$ for some integer $k \geq 0$, such that $\left|U_{0}\right|=1, G\left[U_{i}\right]$ is either a singleton or a triangle for $1 \leq i \leq k$, and the arcs between U_{i} and U_{j} are all directed to U_{j} for $1 \leq i<j \leq k$. Let v be the vertex in U_{0}. We call v the center of G, call $H_{i}=G\left[U_{i} \cup\{v\}\right]$ a building block of G centered at v for $1 \leq i \leq k$, and call H_{1} (resp. H_{k}) the leftmost (resp. rightmost) building block of G.

Theorem 2.7. Let $T=(V, A)$ be a strong tournament other than F_{1} and G_{1}. Then T is Möbius-free iff it satisfies the following description:

Figure 7. Global structure
where $m \geq 1$ (undirected/dotted edges in the following can be directed arbitrarily), and all other arcs (that are not drawn) are directed from"left" to"right". Furthermore, v_{1} has an out-neighbor in the leftmost building block of A_{1}, and v_{m} has an in-neighbor in the rightmost building block of A_{m}.

Note that in Figure 7 by from "left" to "right" we mean from vertices on the left to those on the right. Besides, each A_{i} contains v_{i} and each B_{i} contains both v_{i} and v_{i+1}.

Let \mathcal{P} denote the class of all strong tournaments T described in the above theorem. We call $A_{1}, A_{2}, \ldots, A_{m}$ vertical blocks of T, call $B_{1}, B_{2}, \ldots, B_{m-1}$ horizontal blocks of T, and call $v_{1}, v_{2}, \ldots, v_{m}$ the join vertices of T. Clearly, each vertical block A_{i} of T belongs to \mathcal{Q}. We reserve the symbols $A_{i, 1}, A_{i, 2}, \ldots, A_{i, n_{i}}$ for the building blocks of A_{i} centered at v_{i} from left to right, where $n_{i} \geq 0$.

Let us prove four technical lemmas before presenting a proof of Theorem 2.7.
Lemma 2.8. Every tournament in $\left\{C_{3}\right\} \cup \mathcal{T}_{2}$ belongs to \mathcal{P}.
Proof. The statement holds trivially for C_{3}. As shown in Figure 8 (where the missing arcs are all directed from left to right), F_{0} can be expressed in two ways, with $m=2$ and $m=1$, respectively; F_{3} and F_{4} can be expressed with $m=2$, while F_{2}, F_{6}, G_{2} and G_{3} can be expressed with $m=1$.

Figure 8. Tournaments in \mathcal{T}_{2}

Lemma 2.9. Let G be a strong tournament on five vertices with a near-sink or a near-source. Then G is F_{2} or F_{3} or a 1-sum of two copies of F_{0}.

Proof. Since G is a tournament on five vertices, it is Möbius-free. If G is $i 2 s$, then $G \in$ $\left\{F_{1}, F_{2}, F_{3}\right\}$ by Theorem 2.3 and hence G is F_{2} or F_{3}, because F_{1} contains no near-sink nor near-source. So we assume that G is not $i 2 s$. By definition, $G \backslash v$ has a dicut (X, Y) with $|X|=|Y|=2$ for some vertex v. Since G is strong, there exist a vertex a_{1} in Y and a vertex a_{2} in X, such that both $\left(a_{1}, v\right)$ and $\left(v, a_{2}\right)$ are arcs of G. Let T_{1} be the sub-tournament of G induced by the vertex subset $X \cup\left\{a_{1}, v\right\}$ and let T_{2} be the sub-tournament of G induced by the vertex subset $Y \cup\left\{a_{2}, v\right\}$. Then T_{1} and T_{2} are two copies of F_{0} and G is the 1-sum of T_{1} and T_{2} over $\operatorname{arcs}\left(a_{1}, v\right)$ and $\left(v, a_{2}\right)$. Let b_{1} (resp. b_{2}) be the vertex in $Y-\left\{a_{1}\right\}$ (resp. $X-\left\{a_{2}\right\}$). Depending on the directions of arcs between v and $\left\{b_{1}, b_{2}\right\}$, we have four cases to consider, each of which is straightforward and yields a 1 -sum that contains a near-sink or a near-source.

In what follows, \mathcal{R}_{5} is the set of all strong tournaments on five vertices with a near-sink or a near-source, and F_{6}^{*} arises from F_{6} by reversing the direction of each arc.

Lemma 2.10. Let $G=(V, A)$ be a strong tournament in \mathcal{Q} with at least three vertices. Then either $G \in\left\{C_{3}, F_{0}\right\}$ or G can be obtained by repeatedly taking 1-sums starting from tournaments in $\left\{F_{0}, F_{6}, F_{6}^{*}, G_{2}, G_{3}\right\} \cup \mathcal{R}_{5}$, such that the hubs of these sums are always the center of G.

Proof. Let v be the center of G and let $H_{1}, H_{2}, \ldots, H_{k}$ be the building blocks of G centered at v, where the arcs between $H_{i} \backslash v$ and $H_{j} \backslash v$ are all directed to H_{j} for $1 \leq i<j \leq k$. We proceed by induction on k. If $k=1$, then $G=F_{0}$ and hence the statement holds trivially. So we assume that $k \geq 2$ and set $X_{i}:=V\left(H_{i}\right)$ for $1 \leq i \leq k$.

We first assume that $\left|X_{1}\right|=4$. Let a_{1} be an in-neighbor of v in $G \backslash X_{1}$ and a_{2} be an out-neighbor of v in H_{1} (such a_{1} and a_{2} exist, as G is strong). Let T_{1} and T_{2} be the strong sub-tournaments of G induced by $X_{1} \cup\left\{a_{1}\right\}$ and $\left(V \backslash X_{1}\right) \cup\left\{v, a_{2}\right\}$, respectively. Then G is the 1 -sum of T_{1} and T_{2} over $\operatorname{arcs}\left(a_{1}, v\right)$ and $\left(v, a_{2}\right)$. Note that $T_{1} \in \mathcal{R}_{5}$ and $T_{2} \in \mathcal{Q}$. By induction hypothesis, either $T_{2} \in\left\{C_{3}, F_{0}\right\}$ or T_{2} can be obtained by repeatedly taking 1-sums starting from tournaments in $\left\{F_{0}, F_{6}, F_{6}^{*}, G_{2}, G_{3}\right\} \cup \mathcal{R}_{5}$, such that the hubs of these sums are always v. Clearly, $G=T_{1}$ when $T_{2}=C_{3}$. Therefore G can be obtained by repeatedly taking 1-sums starting from tournaments in $\left\{F_{0}, F_{6}, F_{6}^{*}, G_{2}, G_{3}\right\} \cup \mathcal{R}_{5}$, such that the hubs of these sums are always the center of G.

Next, we assume that $\left|X_{1}\right|=2$. If $k=2$, then G is either a C_{3} or a strong tournament on five vertices with a near-source, so the desired statement holds trivially. Thus we may further
assume that $k \geq 3$. Let a_{1} be an in-neighbor of v in $G \backslash\left(X_{1} \cup X_{2}\right)$ and a_{2} be an out-neighbor of v in $H_{1} \cup H_{2}$ (such a_{1} and a_{2} exist, as G is strong). Let T_{1} and T_{2} be the strong sub-tournaments of G induced by $X_{1} \cup X_{2} \cup\left\{a_{1}\right\}$ and $\left(V \backslash\left(X_{1} \cup X_{2}\right)\right) \cup\left\{v, a_{2}\right\}$, respectively. From Figure 8 we see that $T_{1} \in\left\{F_{0}, F_{6}, F_{6}^{*}, G_{2}, G_{3}\right\}$. (Note that $T_{1}=F_{6}^{*}$ if $\left|X_{2}\right|=4$ and v is a source of H_{2}.) Furthermore, $T_{2} \in \mathcal{Q}$ and G is the 1 -sum of T_{1} and T_{2} over $\operatorname{arcs}\left(a_{1}, v\right)$ and $\left(v, a_{2}\right)$. By the induction hypothesis, either $T_{2} \in\left\{C_{3}, F_{0}\right\}$ or T_{2} can be obtained by repeatedly taking 1 -sums starting from tournaments in $\left\{F_{0}, F_{6}, F_{6}^{*}, G_{2}, G_{3}\right\} \cup \mathcal{R}_{5}$, such that the hubs of these sums are always v. Clearly, $G=T_{1}$ when $T_{2}=C_{3}$. Therefore G can be obtained by repeatedly taking 1-sums starting from tournaments in $\left\{F_{0}, F_{6}, F_{6}^{*}, G_{2}, G_{3}\right\} \cup \mathcal{R}_{5}$, such that the hubs of these sums are always the center of G.

Lemma 2.11. Every tournament in \mathcal{Q} is Möbius-free.
Proof. Let G be a tournament in \mathcal{Q}. To prove that G is Möbius-free, it suffices to consider the case when G is strong, because Möbius ladders exhibited in Figure 1 are all strong. Thus, by Lemma 2.10, either $G \in\left\{C_{3}, F_{0}\right\}$ or G can be obtained by repeatedly taking 1-sums starting from tournaments in $\left\{F_{0}, F_{6}, F_{6}^{*}, G_{2}, G_{3}\right\} \cup \mathcal{R}_{5}$, such that the hubs of these sums are always the center of G.

By Theorem 2.3, $C_{3}, F_{0}, F_{2}, G_{2}$ and G_{3} are all Möbius-free. Since F_{6} is a 1 -sum of F_{2} and F_{0} (with hub v_{6}; see Figure 6), it is also Möbius-free by Lemma 2.2 and hence so is F_{6}^{*}. Therefore each tournament in $\left\{F_{0}, F_{6}, F_{6}^{*}, G_{2}, G_{3}\right\} \cup \mathcal{R}_{5}$ is Möbius-free. It follows from Lemma 2.2 that G is Möbius-free.

Now we are ready to establish the main result of this section.
Proof of Theorem 2.7. Let us first show the "if" part. Let $T=(V, A)$ be a strong tournament in \mathcal{P} as described in Figure 7 , with vertical blocks $A_{1}, A_{2}, \ldots, A_{m}$, horizontal blocks $B_{1}, B_{2}, \ldots, B_{m-1}$, and join vertices $v_{1}, v_{2}, \ldots, v_{m}$; subject to this, we assume that m is minimum (the choices of A_{i} and B_{i} may not be unique). This assumption implies that
(1) $\left|A_{1}\right| \geq 2$. Furthermore, $\left|A_{1}\right| \geq 3$ if $\left|B_{1}\right| \leq 3$, for otherwise, let A_{2}^{\prime} be the sub-tournament of T induced by all vertices in $A_{1} \cup A_{2} \cup B_{1}$. Then T can be depicted as in Figure 7, with vertical blocks $A_{2}^{\prime}, A_{3}, \ldots, A_{m}$ and horizontal blocks $B_{2}, B_{3}, \ldots, B_{m-1}$, contradicting the minimality assumption on m.

Similarly, $\left|A_{m}\right| \geq 2$. Since $A_{i} \in \mathcal{Q}$, by Lemma 2.11 we have
(2) A_{i} is Möbius-free for $1 \leq i \leq m$.

We propose to show, by induction on $m+n$, that T is Möbius-free, where $n=|V|$. If $m=1$, then $T=A_{1}$, so the statement is true by (2). If $n \leq 5$, trivially the statement holds. Thus we may assume that $m \geq 2$ and $n \geq 6$.

Consider the case when $\left|A_{1}\right|=2$. Now $\left|B_{1}\right|=4$ by (1). Besides, we may assume that there are at least two vertices outside $A_{1} \cup B_{1}$, for otherwise, $T=F_{4}$ (see Figure 8), which is Möbiusfree by Theorem 2.3. Let a_{1} be an in-neighbor of v_{2} outside $A_{1} \cup B_{1}$ and let a_{2} be an out-neighbor of v_{2} in B_{1}. Let T_{1} be the sub-tournament of T induced by all vertices in $V\left(A_{1} \cup B_{1}\right) \cup\left\{a_{1}\right\}$ and let T_{2} be the sub-tournament of T induced by all vertices outside $V\left(A_{1} \cup B_{1}\right) \backslash\left\{v_{2}, a_{2}\right\}$. Then T_{1} is F_{4} (see Figure 8), T_{2} is a tournament in \mathcal{P} with $m-1$ vertical blocks, and T is the 1 -sum of T_{1} and T_{2} over arcs $\left(a_{1}, v_{2}\right)$ and $\left(v_{2}, a_{2}\right)$. By induction hypothesis, T_{2} is Möbius-free and hence so is T by Lemma 2.2.

It remains to consider the case when $\left|A_{1}\right| \geq 3$. Let a_{1} be an in-neighbor of v_{1} outside A_{1} and let a_{2} be an out-neighbor of v_{1} in A_{1} (such a_{1} and a_{2} exist, as T is strong). Let T_{1} be the sub-tournament of T induced by all vertices in $V\left(A_{1}\right) \cup\left\{a_{1}\right\}$ and let T_{2} be the sub-tournament of T induced by all vertices outside $A_{1} \backslash\left\{a_{2}, v_{1}\right\}$. Note that $T_{i} \in \mathcal{P}, 4 \leq\left|T_{i}\right|<n$ for $i=1,2$, and T is the 1 -sum of T_{1} and T_{2} over arcs $\left(a_{1}, v_{1}\right)$ and (v_{1}, a_{2}). By induction hypothesis, T_{i} is Möbius-free for $i=1,2$ and hence so is T by Lemma 2.2. This establishes the "if" part.

Let us now proceed to the "only if" part. Let $T=(V, A)$ be a strong Möbius-free tournament other than F_{1} and G_{1}. We aim to show, by induction on $n=|V|$, that $T \in \mathcal{P}$. If T is $i 2 s$, then $T \in\left\{C_{3}\right\} \cup \mathcal{T}_{2}$ by Theorem 2.3 and hence $T \in \mathcal{P}$ by Lemma 2.8. So we assume that T is not $i 2 s$. Then T a 1 -sum of two smaller tournaments T_{1} and T_{2} over two special arcs $\left(a_{1}, b_{1}\right)$ and $\left(b_{2}, a_{2}\right)$, such that $T_{2} \in \mathcal{T}_{2}$ by Lemma 2.5. Keep in mind that a_{i} and b_{i} are two vertices of T_{i} for $i=1,2$.

By induction hypothesis, T_{1} is as described in Figure 7 , with vertical blocks $A_{1}, A_{2}, \ldots, A_{m}$, horizontal blocks $B_{1}, B_{2}, \ldots, B_{m-1}$, and join vertices $v_{1}, v_{2}, \ldots, v_{m}$; subject to this, we assume that m is minimum. This assumption implies that
(3) $\left|A_{1}\right| \geq 2$ and $\left|A_{m}\right| \geq 2$ (see (1) for an argument).

If $m=1$, then $T_{1}=A_{1} \in \mathcal{Q}$. Since a_{2} is a near-source of $T_{2},\left(b_{2}, a_{2}\right)$ is the leftmost arc of the corresponding tournament shown in Figure 8. Thus the 1-sum of T_{1} and a tournament in $\left\{F_{0}, F_{2}, F_{6}, G_{2}, G_{3}\right\}$ belongs to \mathcal{Q}, and the 1 -sum of T_{1} and a tournament in $\left\{F_{3}, F_{4}\right\}$ belongs to \mathcal{P} with two vertical blocks. Hence $T \in \mathcal{P}$, as desired. So we assume that $m \geq 2$. Since a_{1} is a near-sink of T_{1}, it belongs to $B_{m-1} \cup A_{m}$. If $a_{1} \in V\left(B_{m-1} \backslash v_{m}\right)$, then $\left|B_{m-1}\right|=2$ or 3 and $V\left(A_{m}\right)=\left\{v_{m}\right\}$, contradicting (3). If $a_{1}=v_{m}$, then B_{m-1} consists of only one arc $\left(v_{m}, v_{m-1}\right)=\left(a_{1}, b_{1}\right)$ and v_{m} is a sink of A_{m}. Thus we can combine A_{m-1}, B_{m-1} and A_{m} to form a new A_{m-1}^{\prime} and depict T_{1} as in Figure 7, with vertical blocks $A_{1}, A_{2}, \ldots, A_{m-2}, A_{m-1}^{\prime}$ and horizontal blocks $B_{1}, B_{2}, \ldots, B_{m-2}$, contradicting the minimality assumption on m. So $a_{1} \in V\left(A_{m} \backslash v_{m}\right)$. Let $A_{m, 1}, A_{m, 2}, \ldots, A_{m, n_{m}}$ be the building blocks of A_{m} centered at v_{m}. Again, since a_{1} is a near-sink of T_{1}, we obtain
(4) a_{1} is contained in $\left(A_{m, n_{m}-1} \cup A_{m, n_{m}}\right) \backslash v_{m}$.

For simplicity, in the remainder of this proof, we frequently define B_{m}, A_{m+1}, etc. in terms of vertex sets only. For example, by $B_{m}=\left\{b_{1}, v_{m}\right\}$ we mean that B_{m} is the tournament with vertex set $\left\{b_{1}, v_{m}\right\}$. By (4), a_{1} is either contained in $A_{m, n_{m}-1}$ or $A_{m, n_{m}}$. Depending on the location of a_{1}, we consider two cases.

Case 1. a_{1} is contained in $A_{m, n_{m}-1}$. Then $A_{m, n_{m}-1}$ consists of only one arc (v_{m}, a_{1}) and $A_{m, n_{m}}$ consists of only one arc $\left(b_{1}, v_{m}\right)$ (as T_{1} is strong by Lemma 2.1). If $T_{2} \neq F_{4}$ (possibly $T_{2}=F_{3}$; see Figure 8), then $T \in \mathcal{P}$ with the join vertices $v_{1}, \ldots, v_{m}, v_{m+1}:=b_{1}$ and with new blocks $A_{m}:=A_{m} \backslash\left\{a_{1}, b_{1}\right\}, B_{m}=\left\{b_{1}, v_{m}\right\}$, and $A_{m+1}=T_{2} \backslash a_{2}$; if $T_{2}=F_{4}$ (see Figure 8), then T is in \mathcal{P} with join vertices $v_{1}, \ldots, v_{m}, v_{m+1}:=b_{1}, v_{m+2}:=z_{3}$ and with new blocks $A_{m}:=A_{m} \backslash\left\{a_{1}, b_{1}\right\}, B_{m}=\left\{b_{1}, v_{m}\right\}, A_{m+1}=\left\{b_{1}\right\}, B_{m+1}=\left\{b_{1}, z_{1}, z_{3}, z_{4}\right\}$, and $A_{m+2}=\left\{z_{2}, z_{3}\right\}$.

Case 2. a_{1} is contained in $A_{m, n_{m}}$. Depending on $\left|A_{m, n_{m}}\right|$, we distinguish between two subcases.

Subcase 2.1. $\left|A_{m, n_{m}}\right|=2$. Now $A_{m, n_{m}}$ consists of arc $\left(a_{1}, v_{m}\right)$ only and $b_{1}=v_{m}$. If $T_{2} \in\left\{F_{0}, F_{2}, F_{6}, G_{2}, G_{3}\right\}$, where F_{0} corresponds to $m=1$ in Figure 8 , then $T \in \mathcal{P}$ with join vertices $v_{1}, v_{2}, \ldots, v_{m}$ and with new block A_{m} equal to the sub-tournament of T induced by all vertices in $\left(A_{m} \backslash a_{1}\right) \cup\left(T_{2} \backslash\left\{a_{2}, b_{2}\right\}\right)$. If $T_{2}=F_{0}$ corresponds to $m=2$ in Figure 8 , then $T \in \mathcal{P}$
with join vertices $v_{1}, \ldots, v_{m}, v_{m+1}:=z_{4}$ and with new blocks $B_{m}=\left\{z_{4}, z_{1}\right\}, A_{m}:=A_{m} \backslash a_{1}$, and $A_{m+1}=\left\{z_{3}, z_{4}\right\}$. If $T_{2}=F_{3}$, then $T \in \mathcal{P}$ with join vertices $v_{1}, \ldots, v_{m}, v_{m+1}:=z_{3}$ and with new blocks $B_{m}=\left\{z_{3}, z_{4}, z_{5}\right\}, A_{m}:=A_{m} \backslash a_{1}$, and $A_{m+1}=\left\{z_{1}, z_{3}\right\}$. If $T_{2}=F_{4}$, then $T \in \mathcal{P}$ with join vertices $v_{1}, \ldots, v_{m}, v_{m+1}:=z_{3}$ and with new blocks $B_{m}=\left\{z_{1}, z_{3}, z_{4}, z_{5}\right\}, A_{m}:=A_{m} \backslash a_{1}$, and $A_{m+1}=\left\{z_{2}, z_{3}\right\}$.

Subcase 2.2. $\left|A_{m, n_{m}}\right|=4$. Now $A_{m, n_{m}} \backslash v_{m}$ is a triangle $a_{1} b_{1} c_{1} a_{1}$. Since a_{1} is a near-sink, $\left(v_{m}, a_{1}\right)$ is an arc of T_{1}. Since T_{1} is strong, at least one of the two arcs between v_{m} and $\left\{b_{1}, c_{1}\right\}$ is directed to v_{m}.

Suppose $\left(b_{1}, v_{m}\right)$ and $\left(c_{1}, v_{m}\right)$ are two arcs of T_{1}. If $T_{2} \neq F_{4}$ (possibly $T_{2}=F_{3}$; see Figure 8), then $T \in \mathcal{P}$ with join vertices $v_{1}, \ldots, v_{m}, v_{m+1}:=b_{1}$ and with new blocks $A_{m}:=A_{m} \backslash\left\{a_{1}, b_{1}, c_{1}\right\}$, $B_{m}=\left\{b_{1}, c_{1}, v_{m}\right\}$, and $A_{m+1}=T_{2} \backslash a_{2}$. If $T_{2}=F_{4}$ (see Figure 8), then $T \in \mathcal{P}$ with join vertices $v_{1}, \ldots, v_{m}, v_{m+1}:=b_{1}, v_{m+2}:=z_{3}$ and with new blocks $A_{m}:=A_{m} \backslash\left\{a_{1}, b_{1}, c_{1}\right\}, B_{m}=$ $\left\{b_{1}, c_{1}, v_{m}\right\}, A_{m+1}=\left\{b_{1}\right\}, B_{m+1}=\left\{b_{1}, z_{1}, z_{3}, z_{4}\right\}$, and $A_{m+2}=\left\{z_{2}, z_{3}\right\}$.

So we assume that exactly one of the two arcs between v_{m} and $\left\{b_{1}, c_{1}\right\}$ is directed to v_{m}.
When $\left(b_{1}, v_{m}\right)$ and $\left(v_{m}, c_{1}\right)$ are two arcs of T_{1}, we see that if $T_{2} \neq F_{4}$ (possibly $T_{2}=$ F_{3}; see Figure 8), then $T \in \mathcal{P}$ with join vertices $v_{1}, \ldots, v_{m}, v_{m+1}:=b_{1}$ and with new blocks $A_{m}:=A_{m} \backslash\left\{a_{1}, b_{1}, c_{1}\right\}, B_{m}=\left\{b_{1}, v_{m}\right\}$, and A_{m+1} equal to the sub-tournament of T induced by $\left\{c_{1}\right\} \cup V\left(T_{2} \backslash a_{2}\right)$; if $T_{2}=F_{4}$ (see Figure 8), then $T \in \mathcal{P}$ with join vertices $v_{1}, \ldots, v_{m}, v_{m+1}:=$ $b_{1}, v_{m+2}:=z_{3}$ and with new blocks $A_{m}:=A_{m} \backslash\left\{a_{1}, b_{1}, c_{1}\right\}, B_{m}=\left\{b_{1}, v_{m}\right\}, A_{m+1}=\left\{b_{1}, c_{1}\right\}$, $B_{m+1}=\left\{b_{1}, z_{1}, z_{3}, z_{4}\right\}$, and $A_{m+2}=\left\{z_{2}, z_{3}\right\}$.

When $\left(v_{m}, b_{1}\right)$ and $\left(c_{1}, v_{m}\right)$ are two arcs of T_{1}, we see that if $T_{2} \neq F_{4}$ (possibly $T_{2}=F_{3}$; see Figure 8), then $T \in \mathcal{P}$ with join vertices $v_{1}, \ldots, v_{m}, v_{m+1}:=c_{1}, v_{m+2}:=b_{1}$ and with new blocks $A_{m}:=A_{m} \backslash\left\{a_{1}, b_{1}, c_{1}\right\}, B_{m}=\left\{c_{1}, v_{m}\right\}, A_{m+1}=\left\{c_{1}\right\}, B_{m+1}=\left\{b_{1}, c_{1}\right\}$, and $A_{m+2}=T_{2} \backslash a_{2}$; if $T_{2}=F_{4}$ (see Figure 8), then $T \in \mathcal{P}$ with join vertices $v_{1}, \ldots, v_{m}, v_{m+1}:=c_{1}, v_{m+2}:=b_{1}, v_{m+3}:=$ z_{3} and with new blocks $A_{m}:=A_{m} \backslash\left\{a_{1}, b_{1}, c_{1}\right\}, B_{m}=\left\{c_{1}, v_{m}\right\}, A_{m+1}=\left\{c_{1}\right\}, B_{m+1}=\left\{b_{1}, c_{1}\right\}$, $A_{m+2}=\left\{b_{1}\right\}, B_{m+2}=\left\{b_{1}, z_{1}, z_{3}, z_{4}\right\}$, and $A_{m+3}=\left\{z_{2}, z_{3}\right\}$.

From the induction hypothesis and the above construction, we can also see that the leftmost join vertex v_{1} has an out-neighbor in the leftmost building block of A_{1}, and the rightmost join vertex v_{k}, with $k=m, m+1$ or $m+2$, has an in-neighbor in the rightmost building block of A_{k}. Therefore $T \in \mathcal{P}$. This establishes the "only if" part.

3 Minimax Relation

In this section we show that every Möbius-free strong tournament other than F_{1} and G_{1} satisfies the minimax relation on packing and covering feedback arc sets.

Theorem 3.1. Let $T=(V, A)$ be a Möbius-free strong tournament with $|V| \geq 3$ and $T \notin$ $\left\{F_{1}, G_{1}\right\}$. Then T is $F A S$ Mengerian.

As usual, we use \mathbb{Z}_{+}to denote the set of all nonnegative integers and use \mathbb{Z}_{+}^{A} to denote the set of vectors $x=(x(a): a \in A)$ whose coordinates belong to \mathbb{Z}_{+}. Let $w \in \mathbb{Z}_{+}^{A}$. Recall that $\mu_{w}(T)$ is the minimum total weight of a cycle (directed) in T. A cycle C in T is called a minimum cycle of (T, w) if $w(C)=\mu_{w}(T)$. Let u and v be two vertices of T. A $u-v$ path is a path from u to v. A $u-v$ path is called minimum with respect to w (or simply w-minimum) if it
has the minimum total weight among all $u-v$ paths. An FAS packing of T with respect to w is also called a w-FAS packing.

By Theorem 2.7, every Möbius-free strong tournament T other than F_{1} and G_{1} can be depicted as in Figure 7. We shall prove Theorem 3.1 by induction on the number of vertical blocks in T; the lemma below clearly yields the base statement.

Lemma 3.2. Every tournament in \mathcal{Q} (see the paragraph succeeding Theorem 2.7) is FAS Mengerian.

Proof. Let $G=(V, A)$ be a tournament in \mathcal{Q}, let v be the center of G, and let $H_{1}, H_{2}, \ldots, H_{k}$ be the building blocks of G centered at v. We use Ω to denote the set of all subscripts i with $\left|H_{i}\right|=4$ and use \triangle_{i} to denote the triangle $H_{i} \backslash v$ for each $i \in \Omega$. Note that these triangles are pairwise vertex disjoint.

If v is a source or a sink of G, then the triangles \triangle_{i} are the only cycles in G. Thus G is trivially FAS Mengerian. So we assume hereafter that v is neither a source nor a sink of G.

Let $w \in \mathbb{Z}_{+}^{A}$. Our objective is to find a w-FAS packing in G of size $r:=\mu_{w}(G)$. For this purpose, let X (resp. Y) be the out-neighborhood (resp. in-neighborhood) of v in G, and let D be the digraph obtained from G by splitting v into a source s and a $\operatorname{sink} t$, such that

- for each vertex $x \in X$, there is an arc $s x$ in D with length $w(s x)=w(v x)$;
- for each vertex $y \in Y$, there is an arc $y t$ in D with length $w(y t)=w(y v)$; and
- for each arc $a b$ of G with $v \notin\{a, b\}$, there is an arc $a b$ in D with length $w(a b)$.

Let \mathcal{C} be the collection of all cycles (directed) passing through v in G, and let r^{\prime} be the minimum weight of a cycle in \mathcal{C}. Clearly, $r^{\prime} \geq r$. We call a subset of arcs in G a \mathcal{C}-transversal if it intersects each cycle in \mathcal{C}. We also view \triangle_{i} for $i \in \Omega$ as a triangle in D and view each arc of D as an arc of G.

From the construction of D, we see that
(1) there is a 1-1 correspondence between cycles in \mathcal{C} and $s-t$ paths in D, and the shortest distance from s to t in D with respect to w is equal to r^{\prime}.

For $i=1,2, \ldots, r$, let U_{i} be the set of vertices at distance less than i from s in D with respect to w, and let $C_{i}:=\delta^{+}\left(U_{i}\right)$. (Possibly there are arcs entering U_{i} in D, yet C_{i} consists of arcs leaving U_{i} only. So C_{i} is an $s-t$ cut in D.) Observe that
(2) no C_{i} contains two or more arcs in \triangle_{j} for any $j \in \Omega$ and
(3) each C_{i} corresponds to a \mathcal{C}-transversal in G by (1). Furthermore, each arc a of D is contained in at most $w(a)$ of $C_{1}, C_{2}, \ldots, C_{r}$.

Let us construct $F_{1}, F_{2}, \ldots, F_{r}$ from $C_{1}, C_{2}, \ldots, C_{r}$ by using the following algorithm.
Initially, set $F_{i}:=C_{i}$ for $1 \leq i \leq r$. While $\Omega \neq \emptyset$, do: take $j \in \Omega$, and add precisely one of the $\operatorname{arcs} e_{j, 1}, e_{j, 2}, e_{j, 3}$ of \triangle_{j} to each F_{i} (if it contains no arc of \triangle_{j}) to form a new F_{i} so that each $e_{j, p}$ for $1 \leq p \leq 3$ is contained in at most $w\left(e_{j, p}\right)$ of the resulting $F_{1}, F_{2}, \ldots, F_{r}$. Set $\Omega=\Omega-\{j\}$.

Since \triangle_{j} is a triangle, $w\left(e_{j, 1}\right)+w\left(e_{j, 2}\right)+w\left(e_{j, 3}\right) \geq r$. Thus the correctness of our algorithm is guaranteed by (2) and (3). Note that every cycle of G outside \mathcal{C} is a \triangle_{i} for some i. From (3), we further deduce that each F_{i} is an FAS of G and that each arc a of G is contained in at most $w(a)$ members of $\mathcal{F}:=\left\{F_{1}, F_{2}, \ldots, F_{r}\right\}$. Therefore \mathcal{F} is a w-FAS packing of G having size r.

For convenience, we say that the w-FAS packing \mathcal{F} of size r output above is obtained by first performing breadth-first search for r steps in G from v and then eliminating triangles in $G \backslash v$,
and say that F_{i} is the depth-i set in \mathcal{F} from v for $1 \leq i \leq r$. Keep in mind that breadth-first search employed in this paper always starts from a source (that is why we split v into a source and a sink as there are arcs entering and leaving it). The reader is referred to Schrijver [37] (see page 88) for more information about breadth-first search.

Let $T=(V, A)$ be as described in Theorem 2.7, and let $T^{*}=\left(V, E^{*}\right)$ be the subgraph of T arising from the vertical block A_{1} by adding all arcs $a b$ of T with $w(a b)>0, a \in V\left(A_{1}\right)$, and $b \notin V\left(A_{1}\right)$. Note that $T^{*}=T=A_{1}$ if $m=1$ and that T^{*} contains no arc in B_{1} except possibly $v_{1} v_{2}$ when $\left|B_{1}\right|=4$. For any collection \mathcal{F} of subsets of A, we use $\mathcal{F} \cap E^{*}$ to denote the collection consisting of all nonempty $F \cap E^{*}$ for $F \in \mathcal{F}$.

To prove Theorem 3.1, we shall show the existence of a w-FAS packing in T of size $\mu_{w}(T)$ for all $w \in \mathbb{Z}_{+}^{A}$ by induction on the number of vertical blocks. For this purpose, reducing arc weights while preserving the minimum total weight of a cycle whenever possible, it suffices to consider the weight functions w such that each arc e with $w(e)>0$ is contained in a minimum cycle of (T, w). To make the induction work, what we establish is the following stronger statement.
Theorem 3.3. Let $T=(V, A)$ be a Möbius-free strong tournament with $|V| \geq 3$ and $T \notin$ $\left\{F_{1}, G_{1}\right\}$, and let $w \in \mathbb{Z}_{+}^{A}$ such that each arc e with $w(e)>0$ is contained in a minimum cycle of (T, w). Then T has a w-FAS packing \mathcal{F} of size $\mu_{w}(T)$, such that $\mathcal{F} \cap E^{*}$ can be obtained by first performing breadth-first search for $\left|\mathcal{F} \cap E^{*}\right|$ steps in T^{*} from v_{1} and then eliminating triangles in $A_{1} \backslash v_{1}$.
Remark. Let D be the digraph obtained from T^{*} by splitting v_{1} into a source s and a $\operatorname{sink} t$. We view each $\operatorname{arc} e$ of D as an arc of T and associate it with a length $w(e)$. By breadth-first search in T^{*} from v_{1} we mean that in D from s, which proceeds as follows. For $i=1,2, \ldots, r:=\mu_{w}(T)$, let U_{i} be the set of vertices at distance less than i from s in D with respect to w, and let $C_{i}:=$ $\delta^{+}\left(U_{i}\right)$. Then we can construct a w-FAS packing $\left\{F_{1}, F_{2}, \ldots, F_{r}\right\}$ in T^{*} from $\left\{C_{1}, C_{2}, \ldots, C_{r}\right\}$ by eliminating triangles in $A_{1} \backslash v_{1}$, as done in the proof of Lemma 3.2. This algorithm carries over naturally to T_{1}^{*} and T_{2}^{*} involved in our proof (see (9) and (10)).

To carry out the induction step, it is natural to consider the subtournaments T_{1} and T_{2} of T (see the paragraph above (5)). Yet, there is no guarantee that a w-FAS packing of T_{1} can be combined with a w-FAS packing of T_{2} to yield a w-FAS packing of T with size r. That explains why we impose some constraint on the weight function w, refine w as w_{1} and w_{2} when restricted to T_{1} and T_{2}, respectively, and introduce digraphs T_{1}^{*} and T_{2}^{*} in our proof.

Proof. By Theorem 2.7, T can be depicted as in Figure 7, with vertical blocks $A_{1}, A_{2}, \ldots, A_{m}$, horizontal blocks $B_{1}, B_{2}, \ldots, B_{m-1}$, and join vertices $v_{1}, v_{2}, \ldots, v_{m}$; subject to this, we assume that m is minimum. Then the minimum of m allows us to assume that $\left|A_{1}\right| \geq 2$ and $\left|A_{m}\right| \geq 2$ (refer to the proof of Theorem 2.7). For each vertical block A_{i}, let $A_{i, 1}, A_{i, 2}, \ldots, A_{i, n_{i}}$ be the building blocks of A_{i}, for $1 \leq i \leq m$.

We apply induction on m. Since each $A_{i} \in \mathcal{Q}$, the induction base $m=1$ follows instantly from Lemma 3.2. So we proceed to the induction step and assume that $m \geq 2$ and that the statement holds for $m-1$.

Let us first make some simple observations about the weight function w.
(1) For any arc $u v$ and any path P from u to v in T, we have $w(u v) \leq w(P)$.

Assume that contrary: $w(u v)>w(P)$. By hypothesis, $u v$ is contained in a minimum cycle C of (T, w). Let D be the multiset union of P and $C[v, u]$ (that is, if an arc is contained in both P
and $C[v, u]$, then it appears twice in $D)$. Clearly, D is an Eulerian digraph with $w(D)<w(C)$. Let C^{\prime} be a directed cycle contained in D. Then $w\left(C^{\prime}\right) \leq w(D)<w(C)$, contradicting the minimality assumption on C.

From (1) it is clear that
(2) for any minimum cycle C of (T, w) and any chord $u v$ of C, the cycle arising from C by replacing $C[u, v]$ with $u v$ is also minimum. So $w(u v)=w(C[u, v])$.

By Theorem 2.7, v_{1} has an out-neighbor in the leftmost building block of A_{1}. Hence
(3) there is a path in A_{1} from v_{1} to each vertex in $A_{1} \backslash v_{1}$.
(4) Let $a b$ be an arc in T with $w(a b)>0, a \in V\left(A_{1} \backslash v_{1}\right)$, and $b \notin V\left(A_{1} \cup B_{1} \backslash v_{2}\right)$, and let P be a minimum $v_{1}-a$ path in A_{1} (see (3)). If $v_{1} b$ is an arc of T, then $w(P)+w(a b)=w\left(v_{1} b\right)$. (Possibly $b=v_{2}$ when $\left|B_{1}\right|=4$.)

To justify this, let C be a minimum cycle of (T, w) containing $a b$. From the structural description of T, we see that C passes through v_{1} and that $C\left[v_{1}, a\right]$ is fully contained in A_{1}. By the minimality assumptions on P and C, we obtain $w(P)=w\left(C\left[v_{1}, a\right]\right)$. In view of (2), $w\left(C\left[v_{1}, b\right]\right)=w\left(v_{1} b\right)$. Hence $w(P)+w(a b)=w\left(C\left[v_{1}, a\right]\right)+w(a b)=w\left(C\left[v_{1}, b\right]\right)=w\left(v_{1} b\right)$, as desired.

Let $T_{1}=\left(V_{1}, E_{1}\right)$ be the subtournament of T induced by all vertices in $A_{1} \cup B_{1}$, let $T_{2}=$ (V_{2}, E_{2}) be the subtournament of T induced by all vertices outside $A_{1} \backslash v_{1}$, and let A_{2}^{\prime} be the subtournament of T induced by all vertices in $A_{2} \cup B_{1}$. Then
(5) $T_{1} \in \mathcal{Q}$ and T_{2} can be depicted as in Figure 7, with vertical blocks $A_{2}^{\prime}, A_{3}, \ldots, A_{m}$. For $i=1,2, T_{i}$ is strongly connected, with $\left|V_{i}\right| \geq 3$ and $T_{i} \notin\left\{F_{1}, G_{1}\right\}$. So T_{i} is Möbius-free by Theorem 2.7.

We only check that $T_{i} \notin\left\{F_{1}, G_{1}\right\}$ for $i=1,2$, as the remaining statements hold trivially. For this purpose, observe that if $\left|B_{1}\right|=2$, then v_{2} is a near-sink in T_{1}; if $\left|A_{1}\right|=2$, then the vertex in $A_{1} \backslash v_{1}$ is a near-source in T_{1}; if $\left|A_{1}\right| \geq 3$ and $\left|B_{1}\right| \geq 3$, then $\left(A_{1} \backslash v_{1}, B_{1} \backslash v_{1}\right)$ is a nontrivial dicut in $T_{1} \backslash v_{1}$. Moreover, if $\left|B_{1}\right|=2$, then v_{1} is a near-source in T_{2}; if $\left|B_{1}\right| \geq 3$, then the source of $B_{1} \backslash\left\{v_{1}, v_{2}\right\}$ is a near-source in T_{2}. Since both F_{1} and G_{1} are $i 2 s$ and neither of them contains a near-sink or a near-source, we obtain $T_{i} \notin\left\{F_{1}, G_{1}\right\}$ for $i=1,2$, as desired.

In the remainder of our proof, we reserve u_{1} for the vertex in $B_{1} \backslash\left\{v_{1}, v_{2}\right\}$ if $\left|B_{1}\right|=3$, and reserve u_{1} and u_{2} for the two vertices in $B_{1} \backslash\left\{v_{1}, v_{2}\right\}$ if $\left|B_{1}\right|=4$, with $u_{1} u_{2} \in A$. Moreover, we reserve R_{1} for a minimum $v_{2}-v_{1}$ path in B_{1} with respect to w, having the fewest arcs. By (1), we obtain $R_{1}=v_{2} v_{1}$ if $\left|B_{1}\right| \leq 3$ and $R_{1}=v_{2} u_{1} v_{1}$ or $v_{2} u_{2} v_{1}$ if $\left|B_{1}\right|=4$. Write $r:=\mu_{w}(T)$. The statement below follows instantly from (2).
(6) Each arc e in B_{1} with $w(e)>0$ is contained in a cycle of T_{i} with weight r for $i=1$ or 2 (but not necessarily both). Each arc e in T_{i} but outside B_{1} with $w(e)>0$ is contained in a cycle of T_{i} with weight r for $i=1,2$. Furthermore, if $\left|B_{1}\right|=4$, then the arc $u_{i} v_{1}$ with $w\left(u_{i} v_{1}\right)>0$ is contained in a cycle of T_{1} with weight r, and the arc $v_{2} u_{i}$ with $w\left(v_{2} u_{i}\right)>0$ is contained in a cycle of T_{2} with weight r for $i=1,2$.

To justify this, let e be an arbitrary arc of T_{i} with $w(e)>0$ for $i=1$ or 2 , and let C be a cycle containing e in T with weight r. If C is fully contained in T_{i}, we have nothing to prove. So we assume that the opposite case occurs. From the structural description of T in Theorem 2.7, we see that C passes through both v_{1} and v_{2} and also contains an arc $a b$, with $a \in A_{1} \backslash v_{1}$ and $b \notin A_{1} \cup B_{1}$.

Since both $a v_{2}$ and $v_{1} b$ are chords of C, by (2) at least one of the two cycles $C\left[v_{2}, a\right] a v_{2}$ and
$v_{1} b C\left[b, v_{2}\right]$ is a cycle of weight r in T_{i} containing e. In particular, if e is in B_{1}, then $C\left[v_{2}, a\right] a v_{2}$ is a cycle of weight r in T_{1} containing e and $v_{1} b C\left[b, v_{2}\right]$ is a cycle of weight r in T_{2} containing e. This establishes the first two statements in (6).

Finally, consider the case when $\left|B_{1}\right|=4$ and $e=u_{i} v_{1}$ for $i=1$ or 2 . If C is not fully contained in T_{1}, then $C\left[v_{2}, v_{1}\right]$ is fully contained in B_{1} and hence $C\left[v_{2}, v_{1}\right] v_{1} v_{2}$ is a cycle containing $u_{i} v_{1}$ in T_{1} with weight r by (2). Similarly, we can prove the statement on $v_{2} u_{i}$. Hence (6) holds.
(7) For each vertex a in $A_{1} \backslash v_{1}$ with $w\left(a v_{2}\right)>0$, the path $a v_{2} R_{1}$ is contained in a cycle of T_{1} with weight r. For each vertex b outside $A_{1} \cup B_{1} \backslash v_{2}$ with $w\left(v_{1} b\right)>0$, the path $R_{1} v_{1} b$ is contained in a cycle of T_{2} with weight r.

We only establish the second half here, as the proof of the first half goes along the same line. By (6), arc $v_{1} b$ is contained in a cycle C of T_{2} with weight r. Since $\delta\left(B_{1} \backslash v_{2}\right)$ forms a dicut in $T_{2} \backslash v_{2}$, cycle C must pass through v_{2}. It follows that $C\left[v_{2}, v_{1}\right]$ is fully contained in B_{1}. Let C^{\prime} be obtained from C by replacing $C\left[v_{2}, v_{1}\right]$ with R_{1}. Then C^{\prime} is a cycle of T_{2} with weight r and contains the path $R_{1} v_{1} b$. So (7) is justified.
(8) If R_{1} is not contained in any cycle of T_{1} with weight r, then $w(a b)=0$ for any $a \in V\left(A_{1}\right)$ if $\left|B_{1}\right|=4$ and $a \in V\left(A_{1} \backslash v_{1}\right)$ if $\left|B_{1}\right| \leq 3$ and $b \notin V\left(A_{1} \cup B_{1} \backslash v_{2}\right)$. If R_{1} is not contained in any cycle of T_{2} with weight r, then $w(a b)=0$ for any $a \in V\left(A_{1}\right)$ and $b \notin V\left(A_{1} \cup B_{1} \backslash v_{2}\right)$ if $\left|B_{1}\right|=4$ and $b \notin V\left(A_{1} \cup B_{1}\right)$ if $\left|B_{1}\right| \leq 3$.

Suppose on the contrary that $w(a b)>0$ for some $a \in V\left(A_{1}\right)$ if $\left|B_{1}\right|=4$ or $a \in V\left(A_{1} \backslash v_{1}\right)$ if $\left|B_{1}\right|=3$ and $b \notin V\left(A_{1} \cup B_{1} \backslash v_{2}\right)$. Let C be a minimum cycle of (T, w) containing $a b$. From Theorem 2.7 we see that C passes through v_{1} and v_{2} and that $C\left[v_{2}, v_{1}\right]$ is fully contained in B_{1}. If $a \in V\left(A_{1} \backslash v_{1}\right)$, then $a v_{2}$ is $a b$ or a chord of C. By (2), we have $w\left(a v_{2}\right)=w\left(C\left[a, v_{2}\right]\right) \geq w(a b)>0$. It follows from (7) that R_{1} is contained in a cycle of T_{1} with weight r, a contradiction. So we assume that $a=v_{1}$ and $\left|B_{1}\right|=4$. By (2), the cycle arising from $C\left[v_{2}, v_{1}\right]$ by adding $v_{1} v_{2}$ is a minimum cycle of (T, w). Therefore $v_{2} R_{1} v_{1} v_{2}$ is also a cycle of T_{1} with weight r, a contradiction again. The second half of the statement can be established similarly.

For $i=1,2$, define $w_{i} \in \mathbb{Z}_{+}^{E_{i}}$ to be the weight function obtained from $\left.w\right|_{E_{i}}$ by reducing the weights of arcs in B_{1}, if necessary, so that $\mu_{w_{i}}\left(T_{i}\right)=r$ and that each arc e in T_{i} with $w_{i}(e)>0$ is contained in a minimum cycle of $\left(T_{i}, w_{i}\right)$ (see (6)). We point out that $w_{1}\left(v_{1} v_{2}\right)=w_{2}\left(v_{1} v_{2}\right)=$ $w\left(v_{1} v_{2}\right)$ when $\left|B_{1}\right|=4$; we postpone giving its proof till this case is discussed (see (23)), as this observation has nothing to do with the case when $\left|B_{1}\right| \leq 3$.

Let $T_{1}^{*}=\left(V, E_{1}^{*}\right)$ be the subgraph of T obtained from $T_{1}=\left(V_{1}, E_{1}\right)$ by adding all arcs $a b$ with $w(a b)>0, a \in V\left(A_{1}\right)$, and $b \notin V\left(A_{1} \cup B_{1}\right)$, and define $w_{1}(a b)=w(a b)$ for each such arc $a b$. Let $T_{2}^{*}=\left(V_{2}, E_{2}^{*}\right)$ be the subgraph of $T_{2}=\left(V_{2}, E_{2}\right)$ arising from block A_{2}^{\prime} by adding all arcs $a b$ with $w(a b)>0, a \in V\left(A_{2}^{\prime}\right)$, and $b \notin V\left(A_{2}^{\prime}\right)$. For ease of description, we color each arc $v_{1} b$, with $w\left(v_{1} b\right)>0$ and $b \notin V\left(A_{1} \cup B_{1} \backslash v_{2}\right)$, by blue. (Possibly $b=v_{2}$ when $\left|B_{1}\right|=4$). From (4) and the proof of Lemma 3.2 (recall the remark succeeding Theorem 3.3), we see that
(9) T_{1}^{*} has a w_{1}-FAS packing \mathcal{F}_{1} of size r, obtained by first performing breadth-first search (with respect to the weight function w_{1}) for r steps from v_{1} in T_{1}^{*} and then eliminating triangles in $A_{1} \backslash v_{1}$, such that each blue arc e is contained in precisely $w(e)$ members of \mathcal{F}_{1}.

Using (5) and the induction hypothesis, we deduce that
(10) T_{2} has a w_{2}-FAS packing \mathcal{F}_{2} of size r, such that $\mathcal{F}_{2} \cap E_{2}^{*}$ can be obtained by first performing breadth-first search (with respect to the weight function w_{2}) for $\left|\mathcal{F}_{2} \cap E_{2}^{*}\right|$ steps in
T_{2}^{*} from v_{2} and then eliminating triangles in $A_{2}^{\prime} \backslash v_{2}$.
We shall produce a w-FAS packing \mathcal{F} of T having size r by gluing members of \mathcal{F}_{1} together with those of \mathcal{F}_{2}, possibly with slight modification. For $i=1,2$, let $\mathcal{F}_{i}=\left\{F_{i, 1}, F_{i, 2}, \ldots, F_{i, r}\right\}$, where $F_{1, j}$ is the depth- j set in \mathcal{F}_{1} from v_{1}, and $F_{2, j} \cap E_{2}^{*}$ is the depth- j set in $\mathcal{F}_{2} \cap E_{2}^{*}$ from v_{2}. We color each $F_{i, j}$ containing a blue arc also by blue. Observe that no arc, except blue ones and those in B_{1}, is shared by members of \mathcal{F}_{1} and members of \mathcal{F}_{2}. So, naturally, in our proof blue members of \mathcal{F}_{1} will be glued together with blue members of \mathcal{F}_{2}. Once the members of \mathcal{F} containing blue arcs are determined, the members containing arcs $a b$ with $a \in V\left(A_{1} \backslash v_{1}\right)$ and $b \notin V\left(A_{1} \cup B_{1} \backslash v_{2}\right)$ will be determined accordingly by (4).

Depending on the size of B_{1}, we distinguish between two cases.
Case 1. $\left|B_{1}\right| \leq 3$.
We may assume that $\left|B_{1}\right|=3$, because this situation properly contains the one when $\left|B_{1}\right|=$ 2. Let $q:=w\left(v_{2} v_{1}\right), s:=w\left(u_{1} v_{1}\right)$, and $t:=w\left(v_{2} u_{1}\right)$. In view of (1), we have $q \leq s+t$.
(11) If $s>0$ and $u_{1} v_{1}$ is not contained in a cycle of T_{1} having weight r with respect to the weight function w, then $q=s+t$. Furthermore, $v_{2} v_{1}$ is not contained in a cycle of T_{1} having weight r with respect to w either.

By (6), $u_{1} v_{1}$ is contained in a cycle C of T_{2} having weight r with respect to w. Clearly, C passes through $v_{2} u_{1}$. It follows instantly from (2) that $q=s+t$. Assume on the contrary that $v_{2} v_{1}$ is contained in a cycle Q of T_{1} having weight r with respect to w. Let Q^{\prime} be the cycle obtained from Q by replacing $v_{2} v_{1}$ with the path $v_{2} u_{1} v_{1}$. Then Q^{\prime} has weight r and contains $u_{1} v_{1}$, a contradiction. So (11) is justified.

Similarly, the following statement holds.
(12) If $t>0$ and $v_{2} u_{1}$ is not contained in a cycle of T_{2} having weight r with respect to the weight function w, then $q=s+t$. Furthermore, $v_{2} v_{1}$ is not contained in a cycle of T_{2} having weight r with respect to w either.

Let E_{1}^{\prime} be the arc set obtained from E_{1}^{*} by deleting arcs in B_{1}, let E_{2}^{\prime} be the arc set obtained from E_{2} by deleting arcs in B_{1}, and let $K_{i, j}$ be the restriction of $F_{i, j}$ to E_{i}^{\prime} for $i=1,2$ and $1 \leq j \leq r$.
(13) Let us modify $K_{i, j}$'s as follows:

- add arc $v_{2} v_{1}$ to $K_{1, j}$ for $r-q+1 \leq j \leq r$;
- add arc $u_{1} v_{1}$ to $K_{1, j}$ for $r-s+1 \leq j \leq r$;
- add arc $v_{2} u_{1}$ to $K_{1, j}$ for $r-q+1 \leq j \leq r-s$;
- add arc $v_{2} v_{1}$ to $K_{2, j}$ for $1 \leq j \leq q$;
- add arc $v_{2} u_{1}$ to $K_{2, j}$ for $1 \leq j \leq t$; and
- add arc $u_{1} v_{1}$ to $K_{2, j}$ for $t+1 \leq j \leq q$.

We use $F_{i, j}^{\prime}$ to denote the resulting $K_{i, j}$.
(14) $\mathcal{F}_{1}^{\prime}:=\left\{F_{1,1}^{\prime}, F_{1,2}^{\prime}, \ldots, F_{1, r}^{\prime}\right\}$ is a w-FAS packing of T_{1}^{*}, and $\mathcal{F}_{2}^{\prime}:=\left\{F_{2,1}^{\prime}, F_{2,2}^{\prime}, \ldots, F_{2, r}^{\prime}\right\}$ is a w-FAS packing of T_{2}.

To justify this, recall that each arc $e \in F_{1, j}$ satisfies $w_{1}(e)>0$ and that each arc e of T_{1} with $w_{1}(e)>0$ is contained in a cycle of T_{1} with weight r. From (9) and breadth-first search we deduce that

- $F_{1, j}$ contains $v_{2} v_{1}$ iff $r-w_{1}\left(v_{2} v_{1}\right)+1 \leq j \leq r$;
- $F_{1, j}$ contains $u_{1} v_{1}$ iff $r-w_{1}\left(u_{1} v_{1}\right)+1 \leq j \leq r$; and
- $F_{1, j}$ contains $v_{2} u_{1}$ iff $r-w_{1}\left(v_{2} v_{1}\right)+1 \leq j \leq r-w_{1}\left(u_{1} v_{1}\right)$.

Since $q \geq w_{1}\left(v_{2} v_{1}\right), s \geq w_{1}\left(u_{1} v_{1}\right)$, and $t \geq w_{1}\left(v_{2} u_{1}\right)$, we deduce that if $F_{1, j}$ contains $v_{2} v_{1}$, then so does $F_{1, j}^{\prime}$, and if $F_{1, j}$ contains $u_{1} v_{1}$, then so does $F_{1, j}^{\prime}$. Moreover, if $F_{1, j}$ contains $v_{2} u_{1}$, then $F_{1, j}^{\prime}$ contains $v_{2} u_{1}$ or $u_{1} v_{1}$. Note that each cycle of T_{1} containing $v_{2} u_{1}$ must pass through $u_{1} v_{1}$. Since each $F_{1, j}$ is an FAS of T_{1}^{*}, so is $F_{1, j}^{\prime}$. From (13) it is clear that \mathcal{F}_{1}^{\prime} is a w-FAS packing of T_{1}^{*}. Similarly, we can prove that \mathcal{F}_{2}^{\prime} is a w-FAS packing of T_{2}.
(15) If $F_{2, j}^{\prime} \neq F_{2, j}$ for some j with $1 \leq j \leq r$, then $w(a b)=0$ for any $a \in V\left(A_{1}\right)$ and $b \notin V\left(A_{1} \cup B_{1}\right)$. In particular, there is no blue arc in T.

To justify this, note from (1), (10) and breadth-first search that $F_{2, j}$ contains $v_{2} v_{1}$ iff $1 \leq j \leq$ $w_{2}\left(v_{2} v_{1}\right), F_{2, j}$ contains $v_{2} u_{1}$ iff $1 \leq j \leq w_{2}\left(v_{2} u_{1}\right)$, and $F_{2, j}$ contains $u_{1} v_{1}$ iff $w_{2}\left(v_{2} u_{1}\right)+1 \leq j \leq$ $w_{2}\left(v_{2} v_{1}\right)$. Since $F_{2, j}^{\prime} \neq F_{2, j}$ for some j with $1 \leq j \leq r$, we deduce from (13) that $w_{2}\left(v_{2} v_{1}\right)<q$ or $w_{2}\left(v_{2} u_{1}\right)<t$. From (12) we further conclude that the inequality $w_{2}\left(v_{2} v_{1}\right)<q$ must hold. Thus (15) follows instantly from (8).

From (9), (10), (13) and (15) we see that
(16) $F_{1, j}^{\prime}$ contains a blue arc iff $F_{2, j+q}^{\prime}$ contains it.

Define
(17) $F_{j}:= \begin{cases}F_{1, j}^{\prime} \cup F_{2, j+q}^{\prime} & \text { if } 1 \leq j \leq r-q ; \\ F_{1, j}^{\prime} \cup F_{2, j+q-r}^{\prime} & \text { if } r-q+1 \leq j \leq r .\end{cases}$
(18) For F_{j} 's defined in (17), the following statements hold:

- F_{j} contains $v_{2} v_{1}$ iff $r-q+1 \leq j \leq r$;
- F_{j} contains $u_{1} v_{1}$ iff $r-s+1 \leq j \leq r$; and
- F_{j} contains $v_{2} u_{1}$ iff $r-q+1 \leq j \leq \min \{r, r-q+t\}$ or $1 \leq j \leq \max \{0, t-q\}$.

To justify this, note from (17) that $F_{1, j}^{\prime}$ is a subset of F_{j} for $1 \leq j \leq r$ and from (13) that
(18.1) $F_{1, j}^{\prime}$ contains $v_{2} v_{1}$ iff $r-q+1 \leq j \leq r$, and $F_{2, k}^{\prime}$ contains $v_{2} v_{1}$ iff $1 \leq k \leq q$;
(18.2) $F_{1, j}^{\prime}$ contains $u_{1} v_{1}$ iff $r-s+1 \leq j \leq r$, and $F_{2, k}^{\prime}$ contains $u_{1} v_{1}$ iff $t+1 \leq k \leq q$;
(18.3) $F_{1, j}^{\prime}$ contains $v_{2} u_{1}$ iff $r-q+1 \leq j \leq r-s$, and $F_{2, k}^{\prime}$ contains $v_{2} u_{1}$ iff $1 \leq k \leq t$.

First, let k be a subscript with $v_{2} v_{1} \in F_{2, k}^{\prime}$. Then $1 \leq k \leq q$ by (18.1). Let j be the subscript with $k=j+q-r$. Then $j=r-q+k$. Thus $r-q+1 \leq j \leq r$ and hence $F_{2, k}^{\prime}$ is a subset of F_{j} by (17). Combining this with (18.1) (as $F_{1, j}^{\prime} \subseteq F_{j}$), we see that F_{j} contains $v_{2} v_{1}$ iff $r-q+1 \leq j \leq r$.

Second, let k be a subscript with $u_{1} v_{1} \in F_{2, k}^{\prime}$. Then $t+1 \leq k \leq q$ by (18.2). Let j be the subscript with $k=j+q-r$. Then $j=r-q+k$. Thus $r-q+t+1 \leq j \leq r$. It follows from (17) that $F_{2, k}^{\prime}$ is a subset of F_{j}. By (1), $s+t \geq q$. So $r-q+t+1 \geq r-s+1$ and hence $r-s+1 \leq j \leq r$. Combining this with (18.2) (as $F_{1, j}^{\prime} \subseteq F_{j}$), we see that F_{j} contains $u_{1} v_{1}$ iff $r-s+1 \leq j \leq r$.

Finally, let k be a subscript with $v_{2} u_{1} \in F_{2, k}^{\prime}$. Then $1 \leq k \leq t$ by (18.3). When $1 \leq k \leq$ $\min \{q, t\}$, let j be the subscript with $k=j+q-r$. Then $j=r-q+k$. So $r-q+1 \leq$ $j \leq \min \{r, r-q+t\}$ and thus $F_{2, k}^{\prime}$ is a subset of F_{j} by (17). When $\min \{q, t\}+1 \leq k \leq t$ (equivalently $q+1 \leq k<t$), let j be the subscript with $k=j+q$. Then $j=k-q$. Thus $1 \leq j \leq t-q$ and hence $F_{2, k}^{\prime}$ is a subset of F_{j} by (17). Therefore, there exists a subscript k with $v_{2} u_{1} \in F_{2, k}^{\prime} \subseteq F_{j}$ iff $r-q+1 \leq j \leq \min \{r, r-q+t\}$ or $1 \leq j \leq \max \{0, t-q\}$. Combining this with (18.3) (as $F_{1, j}^{\prime} \subseteq F_{j}$), we see that F_{j} contains $v_{2} u_{1}$ iff $r-q+1 \leq j \leq \min \{r, r-q+t\}$ or $1 \leq j \leq \max \{0, t-q\}$, because $r-s \leq \min \{r, r-q+t\}$ (recall that $s+t \geq q$ by (1)). This establishes (18).

In view of (16)-(18), we obtain
(19) each arc e of T is contained in at most $w(e)$ members of $\mathcal{F}:=\left\{F_{1}, F_{2}, \ldots, F_{r}\right\}$.

Let us show that
(20) each F_{j}, with $1 \leq j \leq r$, is an FAS of T.

For this purpose, let C be an arbitrary cycle in T. Clearly, F_{j} intersects C if C is a cycle of T_{1} or a cycle of T_{2} by (14). So we assume that C is not fully contained in T_{i} for $i=1,2$.

Consider the subcase when u_{1} is outside C. Now C contains an arc $a b$ with $a \in V\left(A_{1} \backslash v_{1}\right)$ and $b \notin V\left(A_{1} \cup B_{1}\right)$. From Theorem 2.7 we deduce that C passes through v_{1} and $C\left[v_{1}, a\right]$ is fully contained in A_{1}. Let C^{\prime} be the cycle arising from C by replacing $C\left[v_{1}, b\right]$ with $v_{1} b$, and let $F_{2, k}^{\prime}$ be the member of \mathcal{F}_{2} contained in F_{j}. Then C^{\prime} is fully contained in T_{2} and intersects $F_{2, k}^{\prime}$. If $F_{2, k}^{\prime}$ intersects $C^{\prime}\left[b, v_{1}\right]=C\left[b, v_{1}\right]$, then F_{j} intersects C. So we assume that $F_{2, k}^{\prime}$ contains $v_{1} b$ and hence $w\left(v_{1} b\right)>0$, indicating that $v_{1} b$ is a blue arc. By (8), $w_{2}\left(v_{2} v_{1}\right)=w\left(v_{2} v_{1}\right)=q$. Thus, by (16) and (17), $k=j+q$ and $F_{1, j}^{\prime}$ contains $v_{1} b$ as well. In view of (1), $w_{1}\left(C\left[v_{1}, b\right]\right)=w\left(C\left[v_{1}, b\right]\right) \geq w\left(v_{1} b\right)$. From the construction of \mathcal{F}_{1} using depth-first search, we see that $F_{1, j}^{\prime}$ intersects $C\left[v_{1}, b\right]$. So F_{j} intersects C.

It remains to consider the subcase when C contains u_{1}. Assume first that $v_{2} u_{1} v_{1}$ is a segment of C. Let C^{\prime} be obtained from C by replacing $v_{2} u_{1} v_{1}$ with $v_{2} v_{1}$. As observed in the preceding paragraph, F_{j} intersects C^{\prime}. If $v_{2} v_{1} \notin F_{j}$, then F_{j} intersects $C^{\prime}\left[v_{1}, v_{2}\right]$ and hence C; otherwise, $v_{2} v_{1} \in F_{j}$, so $r-q+1 \leq j \leq r$ by (18). Since $s+t \geq q$ by (1), we have $r-q+t \geq r-s$. Hence $r-q+1 \leq j \leq \min \{r, r-q+t\}$ or $r-s+1 \leq j \leq r$. It follows from (18) that F_{j} contains $v_{2} u_{1}$ or $u_{1} v_{1}$. Therefore F_{j} intersects C.

Next, we assume that C has a segment $a u_{1} b$, where $a \in V\left(A_{1} \backslash v_{1}\right)$ and $b \notin V\left(A_{1} \cup B_{1}\right)$. Note that $v_{2} v_{1}$ is contained in C and $C\left[v_{1}, a\right]$ is fully contained in A_{1}. Let C^{\prime} be obtained from C by replacing $C\left[v_{2}, u_{1}\right]$ with $v_{2} u_{1}$. Then C^{\prime} is fully contained in T_{2}. So F_{j} intersects C^{\prime}. If $v_{2} u_{1} \notin F_{j}$, then F_{j} intersects $C^{\prime}\left[u_{1}, v_{2}\right]$ and hence C; otherwise, $v_{2} u_{1} \in F_{j}$, so $r-q+1 \leq j \leq \min \{r, r-q+t\}$ or $1 \leq j \leq \max \{0, t-q\}$ by (18). If $t \leq q$, then $r-q+1 \leq j \leq r-q+t \leq r$. Thus F_{j} contains $v_{2} v_{1}$ by (18) and hence intersects C. Suppose $t>q$. Since $(r-s)+q \geq t$ by (11) or (1) (when $s>0$ and $u_{1} v_{1}$ is contained in a cycle Q of T_{1} having weight r, consider the path $v_{2} v_{1} Q\left[v_{1}, u_{1}\right]$, which has weight $(r-s)+q$), we obtain $r-s \geq t-q$. Hence $r-q+1 \leq j \leq r$ or $1 \leq j \leq r-s$. It follows from (18) that either F_{j} contains $v_{2} v_{1}$ or $F_{1, j}^{\prime}$ (and hence F_{j}) intersects $C\left[v_{1}, u_{1}\right]$ by (9). This establishes (20).

Combining (19) with (20), we conclude that \mathcal{F} is a w-FAS packing of T having size r. From (9) and (15)-(17), it is clear that $\mathcal{F} \cap E^{*}$ is obtained by first performing breadth-first search for $\left|\mathcal{F} \cap E^{*}\right|$ steps in T^{*} from v_{1} and then eliminating triangles in $A_{1} \backslash v_{1}$.

Case 2. $\left|B_{1}\right|=4$.
Observe that
(21) arc $v_{1} v_{2}$ is contained in only three cycles, $v_{1} v_{2} u_{1} v_{1}, v_{1} v_{2} u_{2} v_{1}$, and $v_{1} v_{2} u_{1} u_{2} v_{1}$, of T, and $w\left(v_{1} v_{2} u_{i} v_{1}\right) \leq w\left(v_{1} v_{2} u_{1} u_{2} v_{1}\right)$ for $i=1,2$ by (1).
(22) $w\left(a v_{2}\right) \leq w\left(v_{1} v_{2}\right)$ for any vertex a in $A_{1} \backslash v_{1}$, and $w\left(v_{1} b\right) \leq w\left(v_{1} v_{2}\right)$ for any vertex b outside $A_{1} \cup B_{1} \backslash v_{2}$.

We only prove the first half of this statement, as the proof of the second half does along the same line. If $w\left(a v_{2}\right)=0$, then trivially $w\left(a v_{2}\right) \leq w\left(v_{1} v_{2}\right)$. So we assume that $w\left(a v_{2}\right)>0$. By (7), the path $a v_{2} R_{1}$ is contained in a cycle C of T_{1} having weight r with respect to the weight
function w. By (1), we have $w\left(C\left[v_{1}, v_{2}\right]\right)=w\left(v_{1} v_{2}\right)$. It follows that $w\left(a v_{2}\right) \leq w\left(v_{1} v_{2}\right)$. This establishes (22).

Let $p:=w\left(u_{1} u_{2}\right), q:=w\left(v_{1} v_{2}\right), s_{i}:=w\left(u_{i} v_{1}\right)$, and $t_{i}:=w\left(v_{2} u_{i}\right)$ for $i=1,2$.
(23) $q=w_{1}\left(v_{1} v_{2}\right)=w_{2}\left(v_{1} v_{2}\right), s_{i}=w_{1}\left(u_{i} v_{1}\right)$, and $t_{i}=w_{2}\left(v_{2} u_{i}\right)$ for $i=1,2$. Furthermore, if $p>0$, then either $p+s_{2}=s_{1}$ or $t_{1}+p=t_{2}$. If $q>0$, then $v_{1} v_{2} R_{1} v_{1}$ is a cycle having weight r with respect to the weight function w.

From (21) and (6) it follows immediately that $q=w_{1}\left(v_{1} v_{2}\right)=w_{2}\left(v_{1} v_{2}\right), s_{i}=w_{1}\left(u_{i} v_{1}\right)$, and $t_{i}=w_{2}\left(v_{2} u_{i}\right)$ for $i=1,2$. To show the statements concerning p, let C be a cycle in T_{i} containing $u_{1} u_{2}$ and having weight r with respect to the weight function w for $i=1$ or 2 ; such C exists by (6). Since $u_{2} v_{1}$ is the only arc leaving u_{2} in T_{1}, and $v_{2} u_{1}$ is the only arc entering u_{1} in T_{2}, cycle C contains $u_{2} v_{1}$ or $v_{2} u_{1}$. Thus $p+s_{2}=s_{1}$ or $t_{1}+p=t_{2}$ by (2). If $q>0$, then $v_{1} v_{2}$ is contained in a cycle having weight r with respect to the weight function w. From (21) we deduce that $v_{1} v_{2} R_{1} v_{1}$ has weight r with respect to w. So (23) is established.

We proceed by considering two subcases.
Subcase 2.1. $s_{i}+t_{i}+q=r$ for $i=1$ or 2 .
From (4) and (7)-(10) we see that
(24) $F_{1, j}$ contains a blue arc $v_{1} b$ iff so does $F_{2, j+r-q}$. (Hence $F_{1, j}$ is colored blue iff so is $F_{2, j+r-q}$.) Furthermore, $F_{1, j}$ contains a blue arc iff $1 \leq j \leq q$ by (22) and (23).

Define
(25) $F_{j}:= \begin{cases}F_{1, j} \cup F_{2, j+r-q} & \text { if } 1 \leq j \leq q ; \\ F_{1, j} \cup F_{2, j-q} & \text { if } q+1 \leq j \leq r .\end{cases}$

Thus each blue set in \mathcal{F}_{1} is glued together with the corresponding blue set in \mathcal{F}_{2} (see (24)), if any.
(26) For F_{j} 's defined in (25), the following statements hold:

- F_{j} contains $v_{1} v_{2}$ iff $1 \leq j \leq q$;
- F_{j} contains $u_{i} v_{1}$ iff $r-s_{i}+1 \leq j \leq r$ for $i=1,2$;
- F_{j} contains $v_{2} u_{i}$ iff $q+1 \leq j \leq \min \left\{r, q+t_{i}\right\}$ or $1 \leq j \leq \max \left\{0, t_{i}-r+q\right\}$ for $i=1,2$; and
- F_{j} contains $u_{1} u_{2}$ iff $t_{1}+q+1 \leq j \leq \min \left\{r, t_{2}+q\right\}$ or $1 \leq j \leq \max \left\{0, t_{2}-r+q\right\}$ when $s_{1}+t_{1}+q=r$ and iff $r-s_{1}+1 \leq j \leq r-s_{2}$ when $s_{2}+t_{2}+q=r$.

To justify this, note from (6), (9), (10) and (23) that
(26.1) $F_{1, j}$ contains $v_{1} v_{2}$ iff $1 \leq j \leq q$, and $F_{2, k}$ contains $v_{1} v_{2}$ iff $r-q+1 \leq k \leq r$;
(26.2) $F_{1, j}$ contains $u_{i} v_{1}$ iff $r-s_{i}+1 \leq j \leq r$, and $F_{2, k}$ contains $u_{i} v_{1}$ iff $t_{i}+1 \leq k \leq r-q$ for $i=1,2$;
(26.3) $F_{1, j}$ contains $v_{2} u_{i}$ iff $q+1 \leq j \leq r-s_{i}$, and $F_{2, k}$ contains $v_{2} u_{i}$ iff $1 \leq k \leq t_{i}$ for $i=1,2$;
(26.4) $F_{1, j}$ contains $u_{1} u_{2}$ iff $r-s_{1}+1 \leq j \leq r-s_{2}$, and $F_{2, k}$ contains $u_{1} u_{2}$ iff $t_{1}+1 \leq k \leq t_{2}$.

First, let k be a subscript with $v_{1} v_{2} \in F_{2, k}$. Then $r-q+1 \leq k \leq r$ by (26.1). Let j be the subscript with $k=j+r-q$. Then $j=k-r+q$. Thus $1 \leq j \leq q$ and hence $F_{2, k}$ is a subset of F_{j} by (25). Combining this with (26.1) (as $F_{1, j} \subseteq F_{j}$), we see that F_{j} contains $v_{1} v_{2}$ iff $1 \leq j \leq q$.

Second, let k be a subscript with $u_{i} v_{1} \in F_{2, k}$. Then $t_{i}+1 \leq k \leq r-q$ by (26.2). Let j be the subscript with $k=j-q$. Then $j=k+q$. Thus $t_{i}+q+1 \leq j \leq r$. Since $s_{i}+t_{i}+q \geq r$, we have $t_{i}+q+1 \geq r-s_{i}+1$ and hence $r-s_{i}+1 \leq j \leq r$. Combining this with (26.2) (as $F_{1, j} \subseteq F_{j}$), we see that F_{j} contains $u_{i} v_{1}$ iff $r-s_{i}+1 \leq j \leq r$.

Third, let k be a subscript with $v_{2} u_{i} \in F_{2, k}$. Then $1 \leq k \leq t_{i}$ by (26.3). When $1 \leq k \leq$ $\min \left\{r-q, t_{i}\right\}$, let j be the subscript with $k=j-q$. Then $j=q+k$. So $q+1 \leq j \leq \min \left\{r, q+t_{i}\right\}$. Hence $F_{2, k}$ is a subset of F_{j} by (25). When $\min \left\{r-q, t_{i}\right\}+1 \leq k \leq t_{i}$ (equivalently $r-q+1 \leq k \leq$ t_{i}), let j be the subscript with $k=j+r-q$. Then $j=k-r+q$. Thus $1 \leq j \leq t_{i}-r+q \leq q$ and hence $F_{2, k}$ is a subset of F_{j} by (25). Therefore, there exists a subscript k with $v_{2} u_{i} \in F_{2, k} \subseteq F_{j}$ iff $q+1 \leq j \leq \min \left\{r, q+t_{i}\right\}$ or $1 \leq j \leq \max \left\{0, t_{i}-r+q\right\}$. Combining this with (26.3) (as $F_{1, j} \subseteq F_{j}$), we see that F_{j} contains $v_{2} u_{i}$ iff $q+1 \leq j \leq \min \left\{r, q+t_{i}\right\}$ or $1 \leq j \leq \max \left\{0, t_{i}-r+q\right\}$, because $s_{i}+t_{i}+q \geq r$, which implies $r-s_{i} \leq q+t_{i}$.

Finally, let k be a subscript with $u_{1} u_{2} \in F_{2, k}$. Then $t_{1}+1 \leq k \leq t_{2}$ by (26.4). When $t_{1}+1 \leq k \leq \min \left\{r-q, t_{2}\right\}$, let j be the subscript with $k=j-q$. Then $j=k+q$. Thus $t_{1}+q+1 \leq j \leq \min \left\{r, t_{2}+q\right\}$. Hence $F_{2, k}$ is a subset of F_{j} by (25). When $\min \left\{r-q, t_{2}\right\}+1 \leq$ $k \leq t_{2}$ (equivalently $r-q+1 \leq k \leq t_{2}$), let j be the subscript with $k=j+r-q$. Then $j=k-r+q$. Thus $1 \leq j \leq t_{2}-r+q \leq q$ and hence $F_{2, k}$ is a subset of F_{j} by (25). Therefore,
(26.5) there exists a subscript k with $u_{1} u_{2} \in F_{2, k} \subseteq F_{j}$ iff $t_{1}+q+1 \leq j \leq \min \left\{r, t_{2}+q\right\}$ or $1 \leq j \leq \max \left\{0, t_{2}-r+q\right\}$.

By the hypothesis of the present subcase, $s_{i}+t_{i}+q=r$ for $i=1$ or 2 . If $s_{1}+t_{1}+q=r$, then $r-s_{1}+1=t_{1}+q+1$. Clearly, $r-s_{2} \leq \min \left\{r, t_{2}+q\right\}$. Combining (26.4) (as $F_{1, j} \subseteq F_{j}$) with (26.5), we see that F_{j} contains $u_{1} u_{2}$ iff $t_{1}+q+1 \leq j \leq \min \left\{r, t_{2}+q\right\}$ or $1 \leq j \leq \max \left\{0, t_{2}-r+q\right\}$. If $s_{2}+t_{2}+q=r$, then $r-s_{2}=t_{2}+q$. Clearly, $r-s_{1}+1 \leq t_{1}+q+1$. It follows from (26.4) and (26.5) that F_{j} contains $u_{1} u_{2}$ iff $r-s_{1}+1 \leq j \leq r-s_{2}$. Thus (26) holds.

By (1), we have $p \geq \max \left\{s_{1}-s_{2}, t_{2}-t_{1}\right\}$. In view of (24)-(26), we obtain
(27) each arc e of T is contained in at most $w(e)$ members of $\mathcal{F}:=\left\{F_{1}, F_{2}, \ldots, F_{r}\right\}$.

Let us show that
(28) each F_{j}, with $1 \leq j \leq r$, is an FAS of T.

For this purpose, let C be an arbitrary cycle in T. Clearly, F_{j} intersects C if C is a cycle of T_{1} or a cycle of T_{2}. So we assume that C is not fully contained in T_{i} for $i=1,2$.

Suppose C contains an arc $a b$ with $a \in V\left(A_{1} \backslash v_{1}\right)$ and $b \notin V\left(A_{1} \cup B_{1}\right)$. From the structural description, we see that C passes through v_{1} and $C\left[v_{1}, a\right]$ is fully contained in A_{1}. Let C^{\prime} be the cycle arising from C by replacing $C\left[v_{1}, b\right]$ with $v_{1} b$, and let $F_{2, k}$ be the member of \mathcal{F}_{2} contained in F_{j}. Then C^{\prime} is fully contained in T_{2} and intersects $F_{2, k}$. If $F_{2, k}$ intersects $C^{\prime}\left[b, v_{1}\right]=C\left[b, v_{1}\right]$, then F_{j} intersects C. So we assume that $F_{2, k}$ contains $v_{1} b$ and hence $w\left(v_{1} b\right)>0$. It follows from (22) that $q \geq w\left(v_{1} b\right)>0$. By (24) and (25), we get $k=j+r-q$ and $F_{1, j}$ contains the blue arc $v_{1} b$ as well. By (1), we obtain $w\left(C\left[v_{1}, b\right]\right) \geq w\left(v_{1} b\right)$. From the construction of \mathcal{F}_{1} using breadth-first search, we see that $F_{1, j}$ intersects $C\left[v_{1}, b\right]$. Thus F_{j} intersects C.

So we assume that C contains no arc $a b$ with $a \in V\left(A_{1} \backslash v_{1}\right)$ and $b \notin V\left(A_{1} \cup B_{1}\right)$. Consider the situation when C contains both $v_{2} u_{1} v_{1}$ and $a u_{2} b$ as segments, where $a \in V\left(A_{1} \backslash v_{1}\right)$ and $b \notin V\left(A_{1} \cup B_{1}\right)$. Note that $C\left[v_{1}, a\right]$ is fully contained in A_{1}. Let C^{\prime} be obtained from C by replacing $C\left[v_{2}, u_{2}\right]$ with $v_{2} u_{2}$. Then C^{\prime} is fully contained in T_{2}. So F_{j} intersects C^{\prime}. If $v_{2} u_{2} \notin F_{j}$, then F_{j} intersects $C^{\prime}\left[u_{2}, v_{2}\right]$ and hence C; otherwise, $v_{2} u_{2} \in F_{j}$, so $q+1 \leq j \leq \min \left\{r, q+t_{2}\right\}$ or $1 \leq j \leq \max \left\{0, t_{2}-r+q\right\}$ by (26). If $q+1 \leq j \leq r$ then, by (26), F_{j} contains $v_{2} u_{1}$ or $u_{1} v_{1}$, because $q+t_{1} \geq r-s_{1}$. So F_{j} intersects C. If $1 \leq j \leq t_{2}-r+q$ then $q+t_{2}>r$ and hence $s_{1}+t_{1}+q=r$ by the hypothesis of Subcase 2.1. By (1), we have $t_{1}+s_{1}+\left(r-s_{2}\right) \geq t_{2}$ (when $s_{2}>0$, arc $u_{2} v_{1}$ is contained in a cycle Q of T_{1} having weight r with respect to w by (6). Consider the path $v_{2} u_{1} v_{1} Q\left[v_{1}, u_{2}\right]$, which has weight $\left.t_{1}+s_{1}+\left(r-s_{2}\right)\right)$. It follows that
$t_{2}-r+q \leq r-s_{2}$. Thus $1 \leq j \leq r-s_{2}$. So $F_{1, j}$ intersects $C\left[v_{1}, u_{2}\right]$ by (9) and hence F_{j} intersects C by (25).

Notice that $u_{1} u_{2}$ plays no role in the above proof. So the same argument (simply interchanging the subscripts 1 and 2 , whenever appropriate) implies that F_{j} also intersects C if C contains both $v_{2} u_{2} v_{1}$ and $a u_{1} b$ as segments, where $a \in V\left(A_{1} \backslash v_{1}\right)$ and $b \notin V\left(A_{1} \cup B_{1}\right)$. This proves (28).

Combining (27) with (28), we conclude that \mathcal{F} is a w-FAS packing of T having size r. From (9) and (25), it is clear that $\mathcal{F} \cap E^{*}$ is obtained by first performing breadth-first search for $\left|\mathcal{F} \cap E^{*}\right|$ steps in T^{*} from v_{1} and then eliminating triangles in $A_{1} \backslash v_{1}$.

Subcase 2.2. $s_{i}+t_{i}+q>r$ for $i=1,2$.
Recall that each arc e with $w(e)>0$ is contained in a minimum cycle of (T, w). By (21), we obtain
(29) $q=0$. So $s_{i}+t_{i}>r$ for $i=1,2$ and hence s_{1}, s_{2}, t_{1} and t_{2} are all positive.

In view of (21) and (29), R_{1} is contained in no cycle of T_{i} having weight r with respect to w for $i=1,2$. It follows from (8) that
(30) $w(a b)=0$ for any $a \in V\left(A_{1}\right)$ and $b \notin V\left(A_{1} \cup B_{1} \backslash v_{2}\right)$.

For $i=1,2$, let $T_{i}^{\prime}=\left(V_{i}^{\prime}, E_{i}^{\prime}\right)$ be obtained from T_{i} by deleting the vertex v_{3-i}, and let $\mathcal{F}_{i}^{\prime}=\left\{F_{i, 1}^{\prime}, F_{i, 2}^{\prime}, \ldots, F_{i, r}^{\prime}\right\}$, where $F_{i, j}^{\prime}$ is the restriction of $F_{i, j}$ to E_{i}^{\prime} for $1 \leq j \leq r$. Observe that no arc is shared by a member of \mathcal{F}_{1}^{\prime} and that of \mathcal{F}_{2}^{\prime}, except $u_{1} u_{2}$. We shall produce a w-FAS packing \mathcal{F} of T having size r by gluing members of \mathcal{F}_{1}^{\prime} together with those of \mathcal{F}_{2}^{\prime}, along $u_{1} u_{2}$ whenever possible. For this purpose, observe from (6), (9), (10), and (29) that
(31) $F_{1, j}^{\prime}$ contains $u_{1} u_{2}$ iff $r-s_{1}+1 \leq j \leq r-s_{2}$, and $F_{2, k}^{\prime}$ contains $u_{1} u_{2}$ iff $t_{1}+1 \leq k \leq t_{2}$;
(32) $F_{1, j}^{\prime}$ contains $u_{i} v_{1}$ iff $r-s_{i}+1 \leq j \leq r$, and no $F_{2, k}^{\prime}$ contains $u_{i} v_{1}$ for $i=1,2$; and
(33) no $F_{1, j}^{\prime}$ contains $v_{2} u_{i}$, and $F_{2, k}^{\prime}$ contains $v_{2} u_{i}$ iff $1 \leq k \leq t_{i}$ for $i=1,2$.

Let $\{g, h\}$ be a permutation of $\{1,2\}$ with $s_{g}+t_{g} \leq s_{h}+t_{h}$. We first arrange $F_{1,1}^{\prime}, F_{1,2}^{\prime}, \ldots, F_{1, r}^{\prime}$ on a circle O in clockwise order, and then arrange $F_{2,1}^{\prime}, F_{2,2}^{\prime}, \ldots, F_{2, r}^{\prime}$ on O in the same order, such that members of \mathcal{F}_{1}^{\prime} alternate with those of \mathcal{F}_{2}^{\prime} in the following way:

- $F_{2, t_{g}+1}^{\prime}$ follows $F_{1, r-s_{g}+1}^{\prime}$ immediately;
- $F_{2, t_{g}+2}^{\prime}$ follows $F_{1, r-s_{g}+2}^{\prime}$ immediately;
- $F_{2, t_{g}}^{\prime}$ follows $F_{1, r-s_{g}}^{\prime}$ immediately,
where the subscripts are taken modulo r. In particular, $F_{i, 0}^{\prime}=F_{i, r}^{\prime}$ for $i=1,2$.
For $1 \leq j \leq r$, let $\pi(j)$ denote the subscript such that $F_{2, \pi(j)}^{\prime}$ follows $F_{1, j}^{\prime}$ immediately on O, and define $F_{j}=F_{1, j}^{\prime} \cup F_{2, \pi(j)}^{\prime}$. Observe that
(34) $\pi(j)=\left\{\begin{array}{ll}\left(s_{g}+t_{g}-r\right)+j & \text { if } 1 \leq j \leq 2 r-\left(s_{g}+t_{g}\right), \\ \left(s_{g}+t_{g}-2 r\right)+j & \text { if } 2 r-\left(s_{g}+t_{g}\right)+1 \leq j \leq r,\end{array} \quad\right.$ which implies $\pi\left(r-s_{g}\right)=$ t_{g} if $s_{g}<r$ and $\pi\left(r-s_{h}\right) \leq t_{h}$ if $s_{h}<r$ (the first line of $\pi(j)$ applies now).
(35) Each F_{j} for $1 \leq j \leq r$ intersects each of the three paths $v_{2} u_{1} v_{1}, v_{2} u_{2} v_{1}$, and $v_{2} u_{1} u_{2} v_{1}$.

To justify this, imagine that circle O has r positions, $1,2, \ldots, r$, in clockwise order, such that each position i is occupied by both $F_{1, i}^{\prime}$ and $F_{2, \pi(i)}^{\prime}$. By (29), we have $s_{g}+t_{g}>r$. From the arrangements of $F_{i, j}$'s on O, it follows immediately that
(35.1) circle O is covered by $F_{1, r-s_{g}+1}^{\prime}, F_{1, r-s_{g}+2}^{\prime}, \ldots, F_{1, r}^{\prime}, F_{2,1}^{\prime}, F_{2,2}^{\prime}, \ldots, F_{2, t_{g}}^{\prime}$; that is, each position of O is occupied by at least one of these sets.
(35.2) Circle O is also covered by $F_{1, r-s_{h}+1}^{\prime}, F_{1, r-s_{h}+2}^{\prime}, \ldots, F_{1, r}^{\prime}, F_{2,1}^{\prime}, F_{2,2}^{\prime}, \ldots, F_{2, t_{h}}^{\prime}$.

The statement holds trivially if $s_{h}=r$. So we assume that $s_{h}<r$. From (34) and (29) we deduce that $\pi(1)=\left(s_{g}+t_{g}-r\right)+1 \geq 2$ and $\pi\left(r-s_{h}\right) \leq t_{h}$. Hence $\left\{F_{2, \pi(1)}^{\prime}, F_{2, \pi(2)}^{\prime}, \ldots, F_{2, \pi\left(r-s_{h}\right)}^{\prime}\right\}$ $\subseteq\left\{F_{2,1}^{\prime}, F_{2,2}^{\prime}, \ldots, F_{2, t_{h}}^{\prime}\right\}$, this proves (35.2).

Similarly, we can check that $\left\{F_{2, \pi(1)}^{\prime}, F_{2, \pi(2)}^{\prime}, \ldots, F_{2, \pi\left(r-s_{2}\right)}^{\prime}\right\} \subseteq\left\{F_{2,1}^{\prime}, F_{2,2}^{\prime}, \ldots, F_{2, t_{1}}^{\prime}, F_{2, t_{1}+1}^{\prime}\right.$, $\left.F_{2, t_{1}+2}^{\prime}, \ldots, F_{2, t_{2}}^{\prime}\right\}$, where $F_{2, t_{1}+1}^{\prime}, F_{2, t_{1}+2}^{\prime}, \ldots, F_{2, t_{2}}^{\prime}$ appear only when $t_{1}<t_{2}$. Thus
(35.3) circle O is moreover covered by $F_{1, r-s_{2}+1}^{\prime}, F_{1, r-s_{2}+2}^{\prime}, \ldots, F_{1, r}^{\prime}, F_{2,1}^{\prime}, F_{2,2}^{\prime}, \ldots, F_{2, t_{1}}^{\prime}, F_{2, t_{1}+1}^{\prime}$, $F_{2, t_{1}+2}^{\prime}, \ldots, F_{2, t_{2}}^{\prime}$.

Combining (31)-(33) and (35.1)-(35.3), we conclude that each F_{j} for $1 \leq j \leq r$ intersects each of the three paths $v_{2} u_{1} v_{1}, v_{2} u_{2} v_{1}$, and $v_{2} u_{1} u_{2} v_{1}$.
(36) $u_{1} u_{2}$ is contained in at most $w\left(u_{1} u_{2}\right)$ members of the family $\mathcal{F}:=\left\{F_{1}, F_{2}, \ldots, F_{r}\right\}$.

Since $\mathcal{F}_{i}^{\prime}(i=1,2)$ is obtained by restricting the w_{i}-packing \mathcal{F}_{i} to E_{i}^{\prime}, the construction of \mathcal{F} and (31) allow us to assume that $s_{2}+1 \leq s_{1}$ and $t_{1}+1 \leq t_{2}$. By (1) with respect to w_{1} and w_{2} respectively, we obtain $s_{1}-s_{2} \leq w_{1}\left(u_{1} u_{2}\right)$ and $t_{2}-t_{1} \leq w_{2}\left(u_{1} u_{2}\right)$. Hence $\max \left\{s_{1}-s_{2}, t_{2}-t_{1}\right\} \leq \max \left\{w_{1}\left(u_{1} u_{2}\right), w_{2}\left(u_{1} u_{2}\right)\right\} \leq w\left(u_{1} u_{2}\right)$. When $g=1$, it is instant from the construction of \mathcal{F} that exactly $\max \left\{s_{1}-s_{2}, t_{2}-t_{1}\right\}$ members of \mathcal{F} contain $u_{1} u_{2}$. When $g=2$, since $r-s_{1}+1 \geq 1$ and $t_{1} \leq t_{2}-1$, it follows from (34) (the first line) that $\pi\left(r-s_{1}+1\right) \leq t_{1}+1$. Thus $\pi\left(r-s_{1}+1\right) \leq t_{2}=\pi\left(r-s_{2}\right)$, which implies that exactly $s_{1}-s_{2}$ members of \mathcal{F} contain $u_{1} u_{2}$. Therefore (36) holds in either case.
(37) Each F_{j}, with $1 \leq j \leq r$, is an FAS of T.

To see this, let C be an arbitrary cycle in T. Clearly, F_{j} intersects C if C is a cycle of T_{1}^{\prime} or a cycle of T_{2}^{\prime}. So we assume that C is not fully contained in T_{i}^{\prime} for $i=1,2$. From the structural description of T, we deduce that C contains one of the three paths $v_{2} u_{1} v_{1}, v_{2} u_{2} v_{1}$, and $v_{2} u_{1} u_{2} v_{1}$ as a segment. Therefore F_{j} intersects C by (35), as desired.

Since no arc is shared by a member of \mathcal{F}_{1}^{\prime} and that of \mathcal{F}_{2}^{\prime}, except $u_{1} u_{2}$, the family $\mathcal{F}=$ $\left\{F_{1}, F_{2}, \ldots, F_{r}\right\}$ is a w-FAS packing of T having size r by (36) and (37). From (9) and (30), it is clear that $\mathcal{F} \cap E^{*}$ is obtained by first performing breadth-first search for $\left|\mathcal{F} \cap E^{*}\right|$ steps in T^{*} from v_{1} and then eliminating triangles in $A_{1} \backslash v_{1}$. This completes the proof of Theorem 3.3.

4 Computer-assisted Proof

In the preceding section we have established the desired minimax relation for all Möbius-free strong tournaments other than F_{1} and G_{1}, thereby finishing the main body of the proof of Theorem 1.2. In this section we present a computer-assisted proof for G_{1}.

Lemma 4.1. Tournament G_{1} is $F A S$ Mengerian.
In Schrijver [36] there is a characterization (Corollary 22.13d) of TDI system of the form $A x \leq b, x \geq \mathbf{0}$, where A is a nonnegative integral matrix. The same argument yields the following result.

Lemma 4.2. Let A be a nonnegative integral matrix with no zero row, and let b be a rational vector. Then the system $A x \geq b, x \geq \mathbf{0}$ is TDI iff for each $\{0,1\}$-vector y, there exists an integral vector $z \geq \mathbf{0}$ with $z^{T} A \leq\left\lceil y^{T} A / 2\right\rceil$ and $2 z^{T} b \geq y^{T} b$.

To prove Lemma 4.1, let A be the minimal FAS-arc incidence matrix of G_{1}. Clearly, G_{1} is FAS Mengerian iff $A x \geq \mathbf{1}, x \geq \mathbf{0}$ is a TDI system. We shall demonstrate that the dimension of A is 41×15. Since it is beyond the capacity of our computer to exhaust all possible 2^{41} cases addressed in Lemma 4.2, we have to derive a refinement of this lemma to fulfill our need.

Suppose the dimension of A in Lemma 4.2 is $m \times n$. Let \prec denote the lexicographical order defined over the set of all m-dimensional $\{0,1\}$-vectors; that is, $u \prec v$ if there exists a subscript j, with $1 \leq j \leq m$, such that $u_{i}=v_{i}$ for all $1 \leq i<j$ and $u_{j}<v_{j}$.

Lemma 4.3. Let A be a nonnegative integral matrix with no zero row. Let V and W be two sets of $\{0,1\}$-vectors such that for each $v \in V$, there exists $w \in W$ satisfying $v \prec w, v^{T} \mathbf{1}=w^{T} \mathbf{1}$, and $w^{T} A \leq v^{T} A$. Let U consist of all $\{0,1\}$-vectors u such that $u^{T} \mathbf{1}$ is odd and $u \nsupseteq v$ for each $v \in V$. Then the system $A x \geq \mathbf{1}, x \geq \mathbf{0}$ is TDI iff for each $y \in U$, there exists an integral vector $z \geq \mathbf{0}$ with $z^{T} A \leq\left\lceil y^{T} A / 2\right\rceil$ and $2 z^{T} \mathbf{1} \geq y^{T} \mathbf{1}$.

Proof. The "only if" part follows instantly from Lemma 4.2.
To establish the "if" part, it suffices to find a desired z for every $\{0,1\}$-vector y as described in Lemma 4.2. Suppose on the contrary that such z does not exist for some y. We choose such a counterexample y with the property that
(1) $y^{T} \mathbf{1}$ is as small as possible, and
(2) subject to (1), the lexicographical order of y is as high as possible.

Note that $y \notin U$, and thus either $y^{T} \mathbf{1}$ is even or $y \geq v$ for some $v \in V$.
We first assume that $y^{T} \mathbf{1}$ is even. Now $y \neq \mathbf{0}$, for otherwise $z=\mathbf{0}$ would satisfy the requirements. Thus there exists a unit $\{0,1\}$-vector $e \leq y$. Since $(y-e)^{T} \mathbf{1}=y^{T} \mathbf{1}-1$, condition (1) guarantees the existence of an integral vector $z \geq \mathbf{0}$ satisfying $z^{T} A \leq\left\lceil(y-e)^{T} A / 2\right\rceil$ and $2 z^{T} \mathbf{1} \geq(y-e)^{T} \mathbf{1}$, which clearly imply $z^{T} A \leq\left\lceil y^{T} A / 2\right\rceil$ and $2 z^{T} \mathbf{1} \geq y^{T} \mathbf{1}$, a contradiction.

Next, we assume that $y \geq v$ for some $v \in V$. By hypothesis, there exists $w \in W$ such that $v \prec w, v^{T} \mathbf{1}=w^{T} \mathbf{1}$, and $w^{T} A \leq v^{T} A$. Observe that $y-v+w$ can be expressed as $\alpha+2 \beta$ for some $\{0,1\}$-vectors α and β. We proceed by considering two subcases.

Suppose $\beta \neq \mathbf{0}$. Then $\alpha^{T} \mathbf{1}=y^{T} \mathbf{1}-v^{T} \mathbf{1}+w^{T} \mathbf{1}-2 \beta^{T} \mathbf{1}=y^{T} \mathbf{1}-2 \beta^{T} \mathbf{1}<y^{T} \mathbf{1}$. By (1), there exists an integral vector $\gamma \geq \mathbf{0}$ satisfying $\gamma^{T} A \leq\left\lceil\alpha^{T} A / 2\right\rceil$ and $2 \gamma^{T} \mathbf{1} \geq \alpha^{T} \mathbf{1}$. Set $z=\gamma+\beta$. Then $z^{T} A=\gamma^{T} A+\beta^{T} A \leq\left\lceil\alpha^{T} A / 2\right\rceil+\beta^{T} A=\left\lceil(\alpha+2 \beta)^{T} A / 2\right\rceil=\left\lceil(y-v+w)^{T} A / 2\right\rceil \leq\left\lceil y^{T} A / 2\right\rceil$. Similarly, $2 z^{T} \mathbf{1}=2 \gamma^{T} \mathbf{1}+2 \beta^{T} \mathbf{1} \geq \alpha^{T} \mathbf{1}+2 \beta^{T} \mathbf{1}=(y-v+w)^{T} \mathbf{1}=y^{T} \mathbf{1}$, which is impossible as y is a counterexample.

Suppose $\beta=\mathbf{0}$. Then $\alpha^{T} \mathbf{1}=(y-v+w)^{T} \mathbf{1}=y^{T} \mathbf{1}$. Since $v \prec w$, we have $y \prec \alpha$, which implies, from (2), the existence of an integral vector $z \geq \mathbf{0}$ such that $z^{T} A \leq\left\lceil\alpha^{T} A / 2\right\rceil$ and $2 z^{T} \mathbf{1} \geq \alpha^{T} \mathbf{1}$. Consequently, $z^{T} A \leq\left\lceil(y-v+w)^{T} A / 2\right\rceil \leq\left\lceil y^{T} A / 2\right\rceil$ and $2 z^{T} \mathbf{1} \geq(y-v+w)^{T} \mathbf{1}=y^{T} \mathbf{1}$, again a contradiction.

As we shall see, Lemma 4.3 can help eliminate many cases involved in our analysis.
Proof of Lemma 4.1. Tournament G_{1} is as shown in Figure 5. For simplicity, we relabel each vertex v_{i} as i for $1 \leq i \leq 6$. Thus the vertex set of G_{1} is $V_{1}=\{1,2,3,4,5,6\}$ and arc set is $E_{1}=\{12,23,34,45,51,13,35,52,24,41,16,26,63,64,65\}$ whose members are denoted by $a, b, c, d, e, f, g, h, i, j, k, l, m, n, o$, respectively (so $a=12, b=23, c=34$ and so on).
Claim 1. Let \mathcal{F} be the family of all minimal feedback arc sets of G_{1}. Then $|\mathcal{F}|=41$ and
$\mathcal{F}=\{e h j, a f h k, d g j o, a c e h k, a c e h n, a c g h k, b d e j l, b e i j l, b f i k l$, cehin, cgikl, cgino, degjl, dgjkl, abdfkl, acdgkl, acdgko, acdgno, acghno, adfgkl, adf gko, adghjk, aefhmn, afhmno, bceikl, bceiln, bdejmo, bdfjkl, bdfjmo, bfimno, cegijl, cegiln, cehikl, abdfkmo, abdfmno, adfgmno, adfhjmo, bceimno, befhimn, befilmn, beijmno\}, where, for instance, ehj stands for the minimal FAS consisting of arcs e, h and j.

To justify this, we first list all subsets of E_{1} in nondecreasing order of cardinality. For each term F on the list, from the first to the last, we check if $G_{1} \backslash F$ is acyclic and if F contains a feedback arc set we have already found. If F is a feedback arc set and it does not contain any earlier ones, then F is a minimal feedback arc set and we put it in \mathcal{F}. When the process is finished, we end up with 41 minimal feedback arc sets as shown above. This step was carried out by using computer (see [40] for the source code).

Let A be the minimal FAS-arc incidence matrix of G_{1}, such that the i th row of A corresponds to the i th member of \mathcal{F} displayed in Claim 1. We shall use Lemma 4.3 to verify that the system $A x \geq \mathbf{1}, x \geq \mathbf{0}$ is TDI. To this end, let S_{V} and S_{W} be two families of 2 -subsets of $\{1,2, \ldots, 41\}$ as defined below (the subset $\{i, j\}$ is written as $i-j$):
$S_{V}=\{2-7,2-8,2-13,2-27,2-31,2-41,3-4,3-5,3-10,3-23,3-33,3-39,4-8,4-9,4-13,4-14,4-20$, $4-21,4-22,4-23,4-24,4-28,4-29,4-30,4-31,4-36,4-37,4-39,4-40,4-41,5-8,5-9,5-14,5-21$, $5-22,5-28,5-29,5-31,5-37,5-41,6-7,6-8,6-9,6-13,6-15,6-20,6-21,6-23,6-25,6-26,6-27,6-28$, $6-29,6-30,6-31,6-32,6-33,6-34,6-35,6-36,6-37,6-38,6-39,6-40,6-41,7-10,7-12,7-19,7-21$, $7-22,7-24,7-33,7-37,7-39,8-10,8-15,8-16,8-17,8-18,8-19,8-21,8-22,8-23,8-24,8-28,8-33$, $8-35,8-36,8-37,8-39,9-19,9-22,9-23,9-24,9-31,9-37,9-41,10-13,10-14,10-15,10-16,10-17$, $10-18,10-19,10-20,10-21,10-22,10-27,10-28,10-29,10-31,10-34,10-35,10-37,10-41,11-15$, $11-22,11-23,11-24,11-27,11-29,11-34,11-35,11-37,11-39,11-41,12-13,12-14,12-15,12-16$, $12-22,12-27,12-28,12-29,12-33,12-37,12-39,13-17,13-19,13-21,13-22,13-24,13-25,13-27$, $13-29,13-30,13-33,13-34,13-37,13-38,13-39,13-41,14-17,14-18,14-19,14-21,14-23,14-24$, $14-25,14-26,14-27,14-30,14-31,14-32,14-33,14-34,14-35,14-36,14-37,14-38,14-39,14-41$, $15-19,15-22,15-24,15-30,15-31,15-33,15-37,15-39,15-41,16-19,16-22,16-24,16-28,16-29$, $16-30,16-31,16-33,16-37,16-39,16-40,16-41,17-19,17-22,17-23,17-24,17-28,17-29,17-30$, $17-31,17-32,17-33,17-37,17-39,17-40,17-41,18-22,18-28,18-29,18-30,18-31,18-33,18-37$, 18-39, 18-41, 19-20, 19-21, 19-22, 19-25, 19-26, 19-27, 19-28, 19-29, 19-31, 19-32, 19-33, 19-34, 19-35, 19-36, 19-37, 19-38, 19-39, 19-40, 19-41, 20-22, 20-24, 20-25, 20-26, 20-27, 20-28, 20-29, 20-30, 20-31, 20-33, 20-37, 20-38, 20-39, 20-41, 21-22, 21-23, 21-24, 21-25, 21-26, 21-27, 21-28, 21-29, 21-31, 21-33, 21-37, 21-38, 21-39, 21-40, 21-41, 22-23, 22-24, 22-25, 22-26, 22-27, 22-28, $22-29,22-30,22-31,22-32,22-33,22-34,22-35,22-36,22-37,22-38,22-39,22-40,22-41,23-25$, 23-27, 23-28, 23-29, 23-31, 23-33, 23-34, 23-37, 23-38, 23-41, 24-25, 24-26, 24-27, 24-28, 24-31, $24-33,24-34,24-38,24-39,24-40,24-41,25-28,25-31,25-35,25-36,25-37,25-39,25-41,26-28$, $26-29,26-31,26-33,26-34,26-36,26-37,26-39,26-41,27-31,27-32,27-33,27-36,27-37,27-39$, 27-40, 28-31, 28-32, 28-33, 28-34, 28-35, 28-36, 28-37, 28-38, 28-39, 28-40, 28-41, 29-31, 29-32, 29-33, 29-36, 29-38, 29-39, 29-40, 29-41, 30-31, 30-33, 30-37, 31-33, 31-34, 31-35, 31-36, 31-37, $31-38,31-39,31-40,31-41,32-33,32-34,32-35,32-37,32-39,32-41,33-34,33-35,33-36,33-37$, $33-38,33-39,33-40,33-41,34-37,34-39,34-40,34-41,35-37,35-39,35-41,36-37,36-38,36-39$, $36-41,37-38,37-39,37-40,37-41,38-39,39-41,40-41\}$ and
$S_{W}=\{1-2,1-3,1-6,1-9,1-11,1-12,1-14,1-15,1-16,1-17,1-18,1-20,1-24,1-25,1-26,1-29$, $1-30,1-32,1-34,1-35,1-36,1-38,1-40,2-3,2-5,2-10,2-11,2-12,2-14,2-16,2-17,2-18,2-25$, $2-26,2-29,2-30,2-32,2-35,2-36,2-38,2-40,3-6,3-7,3-8,3-9,3-11,3-15,3-16,3-20,3-24,3-25$, $3-26,3-30,3-32,3-34,3-35,3-38,3-40,4-11,4-12,5-11,5-12,5-30,6-14,6-18,7-9,7-11,7-30$, $8-11,8-12,8-30,8-32,8-38,9-10,9-16,9-17,9-18,9-35,9-36,10-11,10-25,10-30,10-40,11-13$, $11-18,12-34,12-35,14-15,15-29,15-32,15-38,18-24,18-40,23-30,24-29,27-30\}$.

Notice that $\left|S_{V}\right|=390$ and $\left|S_{W}\right|=96$; these S_{V} and S_{W} will yield V and W as described in Lemma 4.3. The choices for S_{V} and S_{W} are not unique. We obtained our S_{V} and S_{W} by trial and error (see [40] for the source code). In the search process we restricted our attention to 2 -subsets. It is possible to choose larger sets S_{V} and S_{W}, which would cause Γ (to be defined in Claim 3) to contain fewer stable sets.

Claim 2. Let V and W be the sets of characteristic vectors (with length 41) of members of S_{V} and S_{W}, respectively. Then V and W satisfy the conditions described in Lemma 4.3.

To justify this, for each of the 390 vectors $v \in V$ and each of the 96 vectors $w \in W$, we test if $v \prec w$ and $w^{T} A \leq v^{T} A$ hold simultaneously (note that $v^{T} \mathbf{1}=w^{T} \mathbf{1}$ is always true). Using a computer we have confirmed that, for every $v \in V$ indeed there exists $w \in W$ such that $v \prec w$ and $w^{T} A \leq v^{T} A$ are both true.

Claim 3. Let Γ be the graph with vertex set $\{1,2, \ldots, 41\}$ such that $i, j \in\{1,2, \ldots, 41\}$ are adjacent iff $i-j$ is a member of S_{V}. Then Γ has exactly 41022 odd stable sets.

Mathematica has a function FindClique, which can be used to generate all 219 maximal stable sets of Γ. We also independently implemented the Bron-Kerbosch algorithm (see [8]) and obtained the same result. These maximal stable sets give rise to all 82044 stable sets, and exactly half of which are odd (see [40] for the source code).
Claim 4. System $A x \geq 1, x \geq 0$ is TDI.
To justify this, let us choose V and W as in Claim 2. It is then clear that U (defined in Lemma 4.3) consists of exactly characteristic vectors of odd stable sets of Γ. By Claim 3, $|U|=41022$. For each $y \in U$, we define $c=\left\lceil y^{T} A / 2\right\rceil$ and solve $\max \left\{z^{T} \mathbf{1}: z^{T} A \leq c^{T}, z \geq \mathbf{0}\right.$ and integral\} using LinearProgramming of Mathematica (see [40] for the source code). For each optimal solution z obtained, we verify that $2 z^{T} \mathbf{1} \geq y^{T} \mathbf{1}$. We also verify that z is an integral vector satisfying $z^{T} A \leq c^{T}$. Our computational results indicate that indeed that is the case. After completing this process for all 41022 vectors in U, we conclude from Lemma 4.3 that Claim 4 is true.

We can finally establish the equivalence of three statements described in Theorem 1.2, thereby obtaining a complete characterization of all FAS ideal and Mengerian touranments.

Proof of Theorem 1.2. Implication (iii) \Rightarrow (ii) holds, because total-dual integrality implies primal integrality (see Edmonds-Giles theorem [19] stated in Section 1). It was proved by Lehman [29] that a clutter is ideal iff its blocker is ideal, which implies that a tournament is cycle ideal iff it is FAS ideal. Therefore the equivalence of (i) and (ii) in Theorem 1.1 yields implication $(i i) \Rightarrow(i)$. It remains to prove implication $(i) \Rightarrow(i i i)$. Clearly, we may assume that T is strong. Since F_{1} arises from G_{1} by deleting vertex v_{6} (see the labeling in Figure 5), from Lemma 4.1 we deduce that F_{1} is also FAS Mengerian. So we may assume that $T \notin\left\{F_{1}, G_{1}\right\}$.

From Theorem 3.1 we thus conclude that T is FAS Mengerian.

References

[1] A. Abdi, G. Cornuéjols, and M. Zlatin, On packing dijoins in digraphs and weighted digraphs, arXiv:2022.00392v3 [math.CO] 30 Mar 2022.
[2] N. Ailon, M. Charikar, A. Newman, Aggregating inconsistent information: ranking and clustering, J. ACM 55 (2008), Art. 23, 27 pp.
[3] N. Alon, Ranking tournaments, SIAM J. Discrete Math. 20 (2006), 137-142.
[4] D. Applegate, W. Cook, and S. McCormick, Integral infeasibility and testing total dual integrality, Oper. Res. Lett. 10 (1991), 37-41.
[5] F. Barahona, J. Fonlupt, and A. Mahjoub, Compositions of graphs and polyhedra IV: Acyclic spanning subgraphs, SIAM J. Discrete Math. 7 (1994), 390-402.
[6] F. Barahona and A. Mahjoub, Composition in the acyclic subdigraph polytope, Report No. 85371-OR, Institut für Ökonometrie und Operations Research, Universität Bonn, 1985.
[7] S. Bessy, M. Bougeret, R. Krithika, A. Sahu, S. Saurabh, J. Thiebaut, and M. Zehavi, Packing arc-disjoint cycles in tournaments, Algorithmica 83 (2021), 1393-1420.
[8] Bron-Kerbosch algorithm, see website Https://en.wikipedia.org/wiki/Bron-Kerbosch_algorithm.
[9] M. Cai, X. Deng, and W. Zang, An approximation algorithm for feedback vertex sets in tournaments, SIAM J. Comput. 30 (2001), 1993-2007.
[10] X. Chen, G. Ding, X. Hu, and W. Zang, A min-max relation on packing feedback vertex sets, Math. Oper. Res. 31 (2006), 777-788.
[11] X. Chen, G. Ding, W. Zang, and Q. Zhao, Ranking tournaments with no errors I: Structural description, J. Combin. Theory Ser. B 141 (2020), 264-294.
[12] X. Chen, G. Ding, W. Zang, and Q. Zhao, Ranking tournaments with no errors II: Minimax relation, J. Combin. Theory Ser. B 142 (2020), 244-275.
[13] X. Chen, X. Hu, and W. Zang, A min-max theorem on tournaments, SIAM J. Comput. 37 (2007), 923-937.
[14] P. Charbit, P. Thomassé, and A. Yeo, The minimum feedback arc set problem is $N P$-hard for tournaments, Combin. Probab. Comput. 16 (2007), 1-4.
[15] G. Cornuéjols and B. Guenin, On dijoins, Discrete Math. 243 (2002), 213-216.
[16] M. Chudnovsky, K. Edwards, R. Kim, A. Scott, and P. Seymour, Disjoint dijoins, J. Combin. Theory Ser. B 120 (2016), 18-35.
[17] G. Ding, Z. Xu, and W. Zang, Packing cycles in graphs, II, J. Combin. Theory Ser. B 87 (2003), 244-253.
[18] G. Ding and W. Zang, Packing cycles in graphs, J. Combin. Theory Ser. B 86 (2002), 381-407.
[19] J. Edmonds and R. Giles, A min-max relation for submodular functions on graphs, in: Ann. Discrete Math. 1, North-Holland, Amsterdam, 1977, pp. 185-204.
[20] P. Feofiloff and D. Younger, Directed cut transversal packing for source-sink connected graphs, Combinatorica 7 (1987), 255-263.
[21] M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1 (1981), 169-197.
[22] J. Geelen and B. Guenin, Packing odd circuits in Eulerian graphs, J. Combin. Theory Ser. B 86 (2002), 280-295.
[23] B. Guenin, Circuit Mengerian directed graphs, in: Integer Programming and Combinatorial Optimization (Utrecht, 2001), Lecture Notes in Comput. Sci. 2081, pp. 185-195.
[24] B. Guenin, A short proof of Seymour's characterization of the matroids with the max-flow min-cut property, J. Combin. Theory Ser. B 86 (2002), 273-279.
[25] B. Guenin and R. Thomas, Packing directed circuits exactly, Combinatorica 31 (2011), 397-421.
[26] A. Frank, How to make a digraph strongly connected, Combinatorica 1 (1981), 145-153.
[27] M. Jünger, Polyhedral Combinatorics and the Acyclic Subdigraph Problem, Heldermann Verlag, Berlin, 1985.
[28] O. Lee and Y. Wakabayashi, Note on a min-max conjecture of Woodall, J. Graph Theory 38 (2001), 36-41.
[29] A. Lehman, On the length-width inequality, Math. Programming 17 (1979), 403-417.
[30] L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2 (1972), 253-267.
[31] C. Lucchesi and D. Younger, A minimax theorem for directed graphs, J. London Math. Soc. 17 (1978), 369-374.
[32] C. Mathieu and W. Schudy, How to rank with few errors: A PTAS for weighted feedback arc set on tournaments, in: Proc. 39th Annual ACM Symposium on Theory of Comput. (STOC'07), pp. 95-103, ACM, New York, 2007.
[33] A. Mészáros, A note on disjoint dijoins, Combinatorica 38 (2018), 1485-1488.
[34] A. Schrijver, A counterexample to a conjecture of Edmonds and Giles, Discrete Math. 32 (1980), 213-214.
[35] A. Schrijver, Min-max relations for directed graphs, Ann. Discrete Math. 16 (1982), 261280.
[36] A. Schrijver, Theory of Linear and Integer Programming, John Wiley \& Sons, New York, 1986.
[37] A. Schrijver, Combinatorial Optimization - Polyhedra and Efficiency, Springer-Verlag, Berlin, 2003.
[38] P. Seymour, The matroids with the max-flow min-cut property, J. Combin. Theory Ser. B 23 (1977), 189-222.
[39] P. Seymour, Packing circuits in eulerian digraphs, Combinatorica 16 (1996), 223-231.
[40] Source codes, see website http://www.math.lsu.edu/~ding.
[41] A. Williams and B. Guenin, Advances in packing directed joins, Electron. Notes Discrete Math. 19 (2005), 249-255.
[42] D.R. Woodall, Menger and Kőnig systems, Lecture Notes in Math. 642 (1978), 620-635.
[43] D. Younger, Minimum feedback arc sets for a directed graph, IEEE Trans. Circuit Theory 10 (1963), 238-245.

[^0]: *Supported in part by MOST of China under Grant 2018AAA0101002 and by Chinese Academy of Sciences under Grants XDA27000000 and ZDBS-LY-7008.
 ${ }^{\dagger}$ Supported in part by the Research Grants Council of Hong Kong.
 ${ }^{\ddagger}$ Corresponding author. E-mail: qiulanzhao@nju.edu.cn. Supported in part by NSF of China under Grant 11801266 and 11971228, and by the Fundamental Research Funds for the Central Universities under Grant 020314380035.

