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Abstract4

Projective planar graphs can be characterized by a set A of 35 excluded minors. However,5

these 35 are not equally important. A set E of 3-connected members of A is excludable if there6

are only finitely many 3-connected non-projective planar graphs that do not contain any graph7

in E as a minor. In this paper we show that there are precisely two minimal excludable sets,8

which have sizes 19 and 20, respectively.9

1 Introduction10

Archdeacon [1] proved that projective planar graphs can be characterized by a set A of 35 excluded11

minors. This set consists of three graphs of connectivity zero, three graphs of connectivity one, six12

graphs of connectivity two (0-, 1-, 2-sums of graphs in {K5,K3,3}), and 23 graphs of connectivity13

at least three. Even though every graph in A is necessary for characterizing projective planarity,14

these 35 graphs are not equally important. For instance, it is easy to see that if a connected graph15

contains a 0-sum of two graphs in {K5,K3,3} as a minor, then it contains the 1-sum of the same16

pair as a minor. Therefore, a connected graph is projective planar if and only if it does not contain17

any connected member of A as a minor. Robertson, Seymour, and Thomas proved (unpublished)18

similar results for 2- and 3-connected graphs. The 3-connected version of this theorem is stated19

below, where A3 is the set of all 23 3-connected members of A. For the convenience of the reader,20

we include a drawing of these 23 graphs in Appendix A. We refer the reader to [2] for a short proof21

of this result.22

Theorem 1.1. A 3-connected graph is projective planar if and only if it does not contain any23

member of A3 as minor.24

The goal of this paper is to further refine Theorem 1.1. For any graph H, a graph G is called25

H-free if no minor of G is isomorphic to H. For any set H of graphs, G is H-free if G is H-free26

for all H ∈ H. Recall Hall’s refinement [4] of Kuratowski theorem, which says that a 3-connected27

graph G is planar if and only if G is K3,3-free, except for G = K5. We will prove a theorem of the28
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same type. Let us call E ⊆ A3 excludable if there are only finitely many 3-connected E-free graphs29

that are not projective planar. In other words, with finitely many exceptions, a 3-connected graph30

is projective planar if and only if it is E-free. If E is excludable, we call A3 − E a splitting set since31

its members behave like splitters, and we call the set of finitely many 3-connected non-projective32

planar E-free graphs the corresponding exception set.33

We will make use of Archdeacon’s notation for the 23 graphs in A3, calling them A2, B1, B7,34

C3, C4, C7, D2, D3, D9, D12, D17, E2, E3, E5, E11, E18, E19, E20, E22, E27, F1, F4, and G1 (see35

Appendix A). The main result of this paper is:36

Theorem 1.2. There are precisely two maximal splitting sets, {A2, C4, C7, D17} and {B7, C7, D17}.37

Equivalently, A3−{A2, C4, C7, D17} and A3−{B7, C7, D17} are the only two minimal excludable38

sets, which means that there are exactly two “unimprovable” Hall-type theorems for projective39

planar graphs. We can also explicitly determine all the exception graphs.40

Proposition 1.3. For A3 − {A2, C4, C7, D17}, the exception set has exactly 20 graphs: A2, C4,41

C7, C+
7 (pictured in Figure 3.4), and the sixteen subgraphs of the five graphs in Figure 3.5 that42

have D17 as a subgraph. For A3 − {B7, C7, D17}, the exception set has exactly 19 graphs: B7, B
+
743

(pictured in Figure 3.3), C7, C
+
7 , and the fifteen subgraphs of the first four graphs in Figure 3.544

that have D17 as a subgraph.45

This proposition indicates that every exception graph has at most 8 vertices and at most46

20 edges. Therefore, the assertion in Theorem 1.2 that {A2, C4, C7, D17} and {B7, C7, D17} are47

splitting sets can be rephrased as: the following are equivalent for any 3-connected graph G with at48

least 9 vertices or at least 21 edges:49

(i) G is projective planar;50

(ii) G is E-free for E = A3 − {A2, C4, C7, D17};51

(iii) G is E-free for E = A3 − {B7, C7, D17}.52

In Section 2 we discuss several graph operations and related results that are needed for the proof53

of Theorem 1.2. In Section 3, we first demonstrate that any graph A ∈ A3−{A2, B7, C4, C7, D17} is54

in no splitting set by providing an infinite family of 3-connected non-projective planar (A3−{A})-55

free graphs, and we then prove several Lemmas that require careful analysis of A2, B7, C4, C7, and56

D17. In Section 4, we use these results to complete the proof of Theorem 1.2.57

2 Graph operations58

All graphs considered in this paper are simple. We say a graph G is an uncontraction of a graph59

H if G/e = H, where both ends of e have degree at least three in G. Equivalently, G is obtained60

from H by deleting a vertex v of degree at least four, then adding two adjacent vertices v1 and61

v2, and finally making every neighbor of v adjacent to precisely one of v1, v2 such that, for i =62

1, 2, at least two of these neighbors are adjacent to vi. We will denote such an uncontraction63

by v → ({u1, u2, . . . , up}, {w1, w2, . . . , wq}), where u1, u2, . . . , up, w1, w2, . . . , wq are all the vertices64
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adjacent to v in H and u1, u2, . . . , up are adjacent to v1 and w1, w2, . . . , wq are adjacent to v2 in65

G. Throughout the paper, if the vertices of H are labeled, we will give v1 the label of v and v2 the66

label |V (H)|+ 1 in such an uncontraction. A graph G is an undeletion of H if G is obtained from67

H by adding an edge between two non-adjacent vertices. It is easy to see that both uncontraction68

and undeletion preserve the 3-connectivity of a graph. The following is a corollary of Seymour’s69

well-known splitter theorem for matroids [6], proved independently by Negami in [5]. We will make70

use of this theorem several times throughout the paper.71

Theorem 2.1. Let H be a 3-connected minor of a 3-connected graph G such that H is not a wheel.72

Then a graph isomorphic to G can be obtained from H by repeatedly applying the operations of73

uncontraction and undeletion.74

A graph G is an edge-split of a graph H if G is obtained from H by deleting an edge uv and75

adding a new vertex adjacent to u,v, and w, where w is different from u and v. We denote such an76

edge-splitting by w → uv. We call G a triad-addition of H if G is obtained from H by adding a77

vertex u incident to exactly three distinct vertices v1, v2, v3 of H. We denote such a triad-addition78

by v1v2v3. It is easy to see that both edge-splitting and triad-addition preserve the 3-connectivity79

of a graph. The following is a modification of Theorem 2.1 that will make the analysis in Section80

3 much simpler than using Theorem 2.1 alone.81

Lemma 2.2. Suppose a 3-connected graph G has a 3-connected minor H with |V (G)| > |V (H)|.82

Let F be a set of edges e in the complement of H such that H + e is not a minor of G. Then G83

contains one of the following as a minor:84

• An uncontraction of H.85

• An edge-split u → v1v2 of H where, for i = 1, 2, either uvi ∈ E(H) with dH(vi) = 3 or86

uvi 6∈ E(H) ∪ F .87

• A triad-addition v1v2v3 of H where v1v2, v1v3, v2v3 6∈ E(H) ∪ F .88

Proof. Suppose no uncontraction of H is a minor of G. Then G has a subdivision H ′ of H as a89

subgraph. We first prove that G contains either an edge-split or a triad-addition of H as a minor.90

Suppose in H ′ an edge e = v1v2 of H is replaced by a path Pe on at least three vertices. Since G91

is 3-connected, G\{v1, v2} has a path P between V (Pe) − {v1, v2} and x ∈ V (H ′) − V (Pe). Then92

H ′ ∪ P can be contracted to an edge-split u → v1v2 of H, where x is contracted to u. So we may93

assume H ′ = H. Since |V (G)| > |V (H)|, G has a vertex x not in H. By the 3-connectedness of94

G, there are three paths P1, P2, P3 from x to V (H) that are vertex-disjoint except for at x. Then95

H ∪ P1 ∪ P2 ∪ P3 can be contracted to a triad-addition of H.96

If G has an edge-split u → v1v2 with new vertex w as a minor where uv1 ∈ F , then contract97

wv1 to find H + uv1 as a minor of G, a contradiction. If uv1 ∈ E(H) and dH(v1) ≥ 4, then delete98

uv1 from the edge-split to find an uncontraction of H as a minor of G, again a contradiction. So99

the edge-split satisfies the requirements. If G has a triad-addition v1v2v3 with new vertex u as a100

minor with v1v2 ∈ E(H), then delete v1v2 to get an edge-split of H, which reduces to the last case.101

If v1v2 ∈ S, then delete uv3 and contract uv1 to find H + v1v2 as a minor of G, a contradiction. So102

the triad-addition satisfies the requirement.103
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A k-separation of a graph G is a pair of subgraphs Gi = (Vi, Ei) (i = 1, 2) of G such that104

E1 ∪ E2 = E(G), E1 ∩ E2 = ∅, V1 ∪ V2 = V (G), V1 − V2 6= ∅ 6= V2 − V1, and |V1 ∩ V2| = k. If105

k = 3, we define G∆
i (i = 1, 2) to be the graph obtained from Gi by adding all missing edges among106

vertices of V1 ∩ V2, and we define GY
i (i = 1, 2) to be the graph obtained from Gi by adding an107

extra vertex with an edge to each vertex of V1 ∩ V2. If G has a vertex v of degree three then there108

is a unique 3-separation (G1, G2) with G1 = G − v. We will use the notation (G − v)∆ without109

referencing the 3-separation. Note that this is the simplification of a Y∆-transformation.110

Lemma 2.3. Let H be a 3-connected minor of a 3-connected graph G with 3-separation (G1, G2).111

Let U = V (G1) ∩ V (G2). Then either H is a minor of G∆
1 , H is a minor of G∆

2 , or H has a112

3-separation (H1, H2) with V (H1) ∩ V (H2) = U and Hi is a minor of Gi (i = 1, 2).113

Proof. We may assume the minor is produced by only contracting and deleting edges (without114

deleting vertices) since G is connected. So V (G) has a partition (Xv : v ∈ V (H)) such that each115

Gv = G[Xv] is connected and H is obtained from G by contracting every E(Gv) and then deleting116

edges. If there exists i ∈ {1, 2} such that no Xv is a subset of V (Gi) − U then every Xv that117

meets V (Gi) also meets U , which implies that H is a minor of G∆
j (j 6= i). So for i = 1, 2, there118

exists Xvi ⊆ V (Gi)− U . Since H is 3-connected, it has three internally vertex-disjoint v1v2-paths,119

which forces the three vertices in U to be contained in three distinct sets in (Xv : v ∈ V (H)).120

For i = 1, 2, let Hi be obtained from Gi by deleting and contracting edges that were deleted and121

contracted when producing H. Then (H1, H2) is a 3-separation of H with V (H1)∩ V (H2) = U , as122

required.123

Lemma 2.4. Let G be a 3-connected graph with a 3-separation (G1, G2) where GY
2 is planar. Then124

G is projective planar if and only if GY
1 is projective planar.125

Proof. Let U = V (G1)∩V (G2) = {u1, u2, u3} and let vi (i = 1, 2) be the unique vertex in V (GY
i )−126

V (Gi). If G is projective planar, then since G is 3-connected, GY
1 is a minor of G and thus GY

1127

is projective planar. Conversely, if GY
1 is projective planar, it has an embedding in the projective128

plane with edges u1v1, u2v1, u3v1 embedded in a disc D1 such that D1 is disjoint from the rest129

of the embedding. Also since GY
2 is planar, GY

2 has an embedding in the sphere with edges u1v2,130

u2v2, u3v2 embedded in a disc D2 such that D2 is disjoint from the rest of the embedding. Let131

disc D′

2 be the complement of D2 in the sphere. Then replacing D1 with D′

2 and identifying the132

corresponding vertices in U results in a projective embedding of G.133

Let C be a set of graphs. We call a graph G ∈ C a splitter in C if there are only finitely many134

(C−{G})-free 3-connected graphs with G as a minor. Note that this is a generalization of Seymour’s135

definition [6] of a splitter, which requires G to be the only (C − {G})-free 3-connected graph with136

G as a minor. Now we can prove a result that helps us to show nearly all graphs in A3 are not137

splitters in A3.138

Lemma 2.5. Let G be a 3-connected graph with a vertex v of degree three. If both G and (G− v)∆139

are C-free, where C ⊆ A3, then for any minor J of G, J is not a splitter in C ∪ {J}.140
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Proof. Let H1 = G− v and let U ⊆ V (H1) be the set of the three neighbors of v. Let F be the set141

of 3-connected graphs F = H1 ∪H such that (H1, H) is a 3-separation of F , V (H1) ∩ V (H) = U ,142

and HY is planar. Clearly, every graph in F contains HY
1

∼= G, and thus J , as a minor. We prove143

that all graphs in F are C-free, which shows that J is not a splitter in C ∪ {J}.144

Suppose some H1 ∪H ∈ F contains some A ∈ C as a minor. Then by Lemma 2.3 either A is145

a minor of H∆
1 , A is a minor of H∆, or A has a 3-separation (A1, A2) with V (A1) ∩ V (A2) = U ,146

where A1 is a minor of H1 and A2 is a minor of H. It is not possible for A to be a minor of H∆
1147

since A ∈ C and H∆
1 is C-free. If A is a minor of H∆, we deduce from the planarity of HY the148

planarity of H∆ and thus also of A, which is not possible since A ∈ C ⊆ A3. Therefore, A has149

a 3-separation (A1, A2) with AY
2 planar. Since A is non-projective planar, by Lemma 2.4, AY

1 is150

non-projective planar. But AY
1 is a minor of A and all proper minors of A are projective planar,151

so A = AY
1 . It follows that A is a minor of HY

1 = G, which is not possible since A ∈ C and G is152

C-free. This contradiction completes the proof of the lemma.153

3 Case analysis154

We begin this section with a Lemma showing that nearly all graphs in A3 are not splitters in A3.155

Lemma 3.1. Any graph A ∈ A3 − {A2, B7, C4, C7, D17} is not a splitter in A3. Also, B7 is not a156

splitter in A3 − {A2} and C4 is not a splitter in A3 − {B7}.157

Proof. Each graph A ∈ A3 − {A2, B1, B7, C4, C7, D17} is obviously (A3 − {A})-free, and for every158

such A, there is a vertex v of degree 3 shown as the square vertex in Appendix A such that (A−v)∆159

is projective planar and thus (A3 − {A})-free. Projective embeddings for each of these graphs can160

be found in Appendix B. So each such A cannot be a splitter in A3 by Lemma 2.5.161

2

1
3

4

5

6

7

8

Figure 3.1: An uncontraction B+
1 of B1

To see that B1 is not a splitter in A3, we consider the uncontraction B+
1 of B1 shown in Figure162

3.1. By Lemma 2.5 we only need to show that B+
1 and (B+

1 − 8)∆ are (A3 − {B1})-free. First,163

(B+
1 − 8)∆ has seven vertices and the only graph in (A3 − {B1}) with seven or fewer vertices is164

A2, which has seven vertices yet a bigger minimum degree. It follows that (B+
1 − 8)∆ does not165

contain A2 and so (B+
1 − 8)∆ is (A3 − {B1})-free. Similarly, notice that B+

1 has eight vertices166

and eighteen edges, and the only graphs in (A3 − {B1}) with eight or fewer vertices are A2(7, 18),167

B7(8, 18), C7(8, 17), D3(8, 16), D17(8, 16), E3(8, 15), E18(8, 15), where the two numbers indicate168
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the number of vertices and edges of the graph. Clearly B+
1 does not contain A2 as a minor since169

they have the same number of edges yet different number of vertices. The remaining graphs have170

the same number of vertices as B+
1 and would have to be spanning subgraphs. By checking their171

degree sequences it is easy to see B+
1 is not isomorphic to B7, and thus does not contain B7 as a172

minor since they have the same number of edges. Neither C7 nor D17 can be a spanning subgraph173

of B+
1 since they have no vertices of degree three, but B+

1 does. D3 has three vertices of degree174

five, and two other adjacent vertices that are adjacent to each of the vertices of degree five, but175

B+
1 has only three vertices of degree at least five, and no two of the remaining vertices are adjacent176

to each other and also adjacent to these three vertices, so D3 cannot be a spanning subgraph of177

B+
1 . There are four edge-disjoint triangles in B+

1 : 125, 234, 357, and 467, which implies that any178

bipartite subgraph of B+
1 can have at most 18− 4 = 14 edges. Since E3 and E18 are bipartite with179

15 edges, none of them is a subgraph of B+
1 . Thus B+

1 is (A3 − {B1})-free, which completes the180

proof that B1 is not a splitter in A3.181

Since (B7 − v)∆ is isomorphic to A2, where v is the unique cubic vertex of B7, both B7 and182

(B7 − v)∆ are (A3 − {A2, B7})-free and thus B7 is not a splitter in A3 − {A2}. Similarly, since183

(C4 − v)∆ is isomorphic to B7, where v is any cubic vertex of C4, both C4 and (C4 − v)∆ are184

(A3 − {B7, C4})-free, so C4 is not a splitter in A3 − {B7}.185

The remainder of this section will consist of five Lemmas classifying the finitely many graphs186

with A2, B7, C4, C7, or D17 as a minor that do not have minors among most of A3. This will allow187

us to classify all graphs in splitting sets and the corresponding exception sets.188

Lemma 3.2. The only 3-connected (A3 − {A2})-free graph with A2 as a minor is A2.189

1

2

4

5

6

7

3

Figure 3.2: A labeling of A2

Proof. By Theorem 2.1 we only need to verify that every undeletion and every uncontraction of A2190

contains a member of A3 − {A2} as a minor. We will use a labeling of the vertices of A2 shown in191

Figure 3.2. Observe that192

(*) the complement of A2 consists of three non-incident edges and an isolated vertex.193

Using (*) we see that, up to isomorphism, there is only one undeletion of A2, obtained by adding194

edge {1, 7} which contains B1 as a minor by deleting edges {2, 3} and {5, 6}. It is also not difficult195

to see from (*) that there are seven uncontractions of A2 up to isomorphism. They are listed below196

along with their minors:197
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A2 Uncontractions

Uncontraction Delete Contract Minor

1 → ({4, 5, 6}, {2, 3}) {{2, 3}} − B7

1 → ({3, 5, 6}, {2, 4}) {{1, 6}, {2, 4}, {2, 7}} − D3

1 → ({3, 4, 5}, {2, 6}) {{1, 3}, {4, 5}, {5, 7}} − D3

4 → ({3, 5, 6, 7}, {1, 2}) {{1, 2}, {1, 6}, {2, 7}} − D3

4 → ({2, 3, 5, 6}, {1, 7}) {{2, 3}, {2, 5}, {3, 6}, {5, 6}} − E3

4 → ({5, 6, 7}, {1, 2, 3}) {{1, 5}, {3, 7}} − C7

4 → ({3, 5, 7}, {1, 2, 6}) {{1, 2}, {1, 6}, {3, 7}, {5, 7}} − E18

198

So all undeletions and uncontractions of A2 have a member of (A3 − {A2}) as a minor and A2 is199

the only 3-connected (A3 − {A2})-free graph.200

Our proofs for the next four lemmas are similar to that of the last one. We first generate all201

expansions of a graph according to Theorem 2.1 or Lemma 2.2, and then we check if the generated202

graphs contain any required minors. For some graphs we have to iterate this process several times.203

In proving the next four lemmas, we generate about 90 non-isomorphic graphs, and we find required204

minors for each of them. This task is straightforward but very tedious. To save space, we choose205

not to include the lengthy cases analysis here. In particular, details like the chart in the proof of206

Lemma 3.2 are omitted. These details are included in a supplement [3] we prepared for those who207

wish to get into it. It is worth mentioning that proofs in this section concerning graph expansion208

and minor checking are also verified by a computer. In fact, the two authors wrote two independent209

programs and they derived the same conclusions.210

Lemma 3.3. The only 3-connected (A3 − {A2, C4})-free graph with C4 as a minor is C4.211

Proof. There are eight uncontractions of C4 up to isomorphism. Each uncontraction has C3, C7,212

D3 or F1 as a minor. There are five undeletions of C4 up to isomorphism. Each undeletion has B1,213

B7, or E22 as a minor. So by Theorem 2.1, C4 is the only 3-connected (A3 − {A2, C4})-free graph214

with C4 as a minor.215

Lemma 3.4. The only 3-connected (A3−{B7})-free graphs with B7 as a minor are among B7 and216

B+
7 as shown in Figure 3.3.217

6

4
1 2 87

5

3

6

4
1 2 87

5

3

B7 B+
7

Figure 3.3: B7 and an undeletion of B7
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Proof. Let G be a 3-connected (A3 − {B7})-free graph with B7 as a minor. Up to isomorphism,218

B7 has four undeletions. One of these four is B+
7 (which can be obtained only by adding the edge219

{3, 5}, as shown by its degree sequence), and the others have A2 or B1 as a minor. So clearly, if220

|V (G)| ≤ |V (B7)| then G is isomorphic to B7 or B+
7 . Now assume |V (G)| > |V (B7)|, and note that221

adding any edge other than {3, 5} to B7 gives a minor among A2 or B1, so by Lemma 2.2 with222

F = E(B7) − {{3, 5}}, G must have a minor among the uncontractions, certain edge-splits, and223

certain triad-additions of B7. There are fifteen uncontractions of B7 up to isomorphism, each of224

which has C3, C4, C7, D3, E18, E22, or F1 as a minor. No edge-splits of B7 as required by Lemma225

2.2 exist, since there is only one vertex of degree three in B7 and it is incident to {3, 5}, the only226

edge not in E(B7) ∪ F . Finally, no triad-addition of B7 as required by Lemma 2.2 exists, since227

{3, 5} is the only edge not in E(B7) ∪ F , and no G with |V (G)| > |V (B7)| exists. Thus the only228

possible A3 − {B7}-free graphs with B7 as a minor are B7 and B+
7 .229

Lemma 3.5. The only 3-connected (A3 − {A2, B7, C4, C7})-free graphs with C7 as a minor are230

among C7 and C+
7 as shown in Figure 3.4.231

1

2

63

7

8

4

5

1

2

63

7

8

4

5

C7 C+
7

Figure 3.4: C7 and an undeletion of C7

Proof. Let G be a 3-connected (A3 − {A2, B7, C4, C7})-free graph with C7 as a minor. There232

are four undeletions of C7 up to isomorphism, one of which is C+
7 (which can be obtained only233

by adding one of: {1, 6}, {2, 6}, {3, 7}, and {3, 8}), and the others have B1, D3 or D17 as a234

minor. Now assume |V (G)| > |V (C7)|, and note that adding any edge other than {1, 6}, {2, 6},235

{3, 7}, or {3, 8} to C7 gives a minor among B1, D3 or D17, so by Lemma 2.2 with F = E(C7) −236

{{1, 6}, {2, 6}, {3, 7}, {3, 8}}, G must have a minor among the uncontractions, certain edge-splits,237

and certain triad-additions of C7. There are ten uncontractions of C7 up to isomorphism, each of238

which has D3, D12, D17, E19, or F1 as a minor. There are no vertices of degree three in C7, so the239

only possible edge-splits of C7 as required by Lemma 2.2 are 3 → {7, 8} and 6 → {1, 2}. These240

are isomorphic and have F1 as a minor. Finally, no triad-additions of C7 as required by Lemma241

2.2 exist, since the only edges not in E(C7) ∪ F are {1, 7}, {1, 8}, {2, 7}, and {2, 8}, and there is242

no triangle among them. So we must have |V (G)| ≤ |V (B7)|. Now there are two possible ways to243

add two edges from among {1, 6}, {2, 6}, {3, 7}, and {3, 8} to C7 up to isomorphism. They have244

either D3 or D17 as a minor. Thus the only possible (A3 − {A2, B7, C4, C7})-free graphs with C7245

as a minor are C7 and C+
7 .246

Lemma 3.6. The only 3-connected (A3−{B7, C7, D17})-free graphs containing D17 as a minor are247

among the fifteen subgraphs of the first four graphs in Figure 3.5 that also have D17 as a subgraph.248
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The only 3-connected (A3 − {A2, C4, C7, D17})-free graphs with D17 as a minor are among those249

fifteen graphs together with the fifth graph in Figure 3.5.250

Figure 3.5: Five undeletions of D17

Proof. Let G be a 3-connected (A3 − {A2, B7, C4, C7, D17})-free graph with D17 as a minor. Now251

assume |V (G)| > |V (D17)|, and by Lemma 2.2 with F = ∅, G must have a minor among the252

uncontractions, certain edge-splits, and certain triad-additions of D17. There is one uncontraction253

of D17 up to isomorphism and it has E20 as a minor. Furthermore, D17 has no vertices of degree254

three, so any edge-split of D17 as required by Lemma 2.2 must be of the form u → v1v2 where255

uv1, uv2 ∈ E(D17) and v1v2 ∈ E(D17). There is only one such edge-split up to isomorphism, and256

it has D12 as a minor. Finally, no triad-additions of D17 as required by Lemma 2.2 exist, since257

this would require there to be a triangle among the edges of D17, and largest independent set of258

vertices in D17 has size two. So G does not contain any such required triad-addition as a minor,259

and we have |V (G)| ≤ |V (D17)|.260

Now all eighteen graphs consisting of D17 with five extra edges have either B1 or D3 as a minor.261

All twelve graphs consisting of D17 with four extra edges that are not one of the first four graphs262

in Figure 3.5 have minors among B1, D3, and E18. There are only four graphs consisting of D17263

together with three extra edges that are not subgraphs of one of the first four graphs in Figure 3.5.264

One of these is the fifth graph in Figure 3.5, and the other three have minors among B1, D3, and265

E18. All graphs consisting of D17 together with one or two extra edges are subgraphs of one of the266

first four graphs in Figure 3.5. So the only possible 3-connected (A3 − {A2, B7, C4, C7, D17})-free267

graphs with D17 as a minor are subgraphs of the first four graphs of Figure 3.5 with D17 as a268

subgraph or the fifth graph in that Figure. The fifth graph in that Figure has A2 as a minor, so269

the Lemma follows immediately.270

4 Final proofs271

Now we are ready to prove Theorem 1.2 and Proposition 1.3. By Lemma 3.1, the only graphs272

in any splitting set are A2, B7, C4, C7, and D17, and the pairs {A2, B7} and {B7, C4} are in no273

splitting set. Thus the maximal possible splitting sets are {A2, C4, C7, D17} and {B7, C7, D17}. We274

claim both are splitting sets.275

By Lemma 3.6, the only possible (A3 − {A2, C4, C7, D17})-free graphs with D17 as a minor276

are subgraphs of the five graphs in Figure 3.5, so the only remaining (A3 − {A2, C4, C7, D17})-277
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free graphs are also D17-free, and are thus (A3 − {A2, C4, C7})-free. By Lemma 3.5, the only278

possible (A3 − {A2, C4, C7})-free graphs with C7 as a minor are C7 and C+
7 , so the only remaining279

(A3−{A2, C4, C7})-free graphs are (A3−{A2, C4})-free. By Lemma 3.3, the only (A3−{A2, C4})-280

free graph with C4 as a minor is C4, and we only need to consider (A3 − {A2})-free graphs. But281

by Lemma 3.2, the only (A3 − {A2})-free graph with A2 as a minor is A2. So {A2, C4, C7, D17} is282

a splitting set whose corresponding exception set is a subset of {A2, C4, C7, C
+
7 } together with the283

sixteen subgraphs of the five graphs in Figure 3.5 with D17 as a subgraph.284

Similarly, Lemma 3.6, Lemma 3.5, and Lemma 3.4 tell us that {B7, C7, D17} is a splitting285

set whose corresponding exception set is a subset of {B7, B
+
7 , C7, C

+
7 } together with the fifteen286

subgraphs of the first four graphs in Figure 3.5 with D17 as a subgraph. Therefore, the proof of287

Theorem 1.2 is complete.288

To prove Proposition 1.3, we need to show that B+
7 is (A3−{B7})-free, C

+
7 is (A3−{C7})-free,289

the first four graphs in Figure 3.5 are (A3 − {C7, D17})-free, and the fifth graph in Figure 3.5 is290

(A3 − {A2, C7, D17})-free. These can be proved with a tedious analysis similar to the proof in291

Lemma 3.1 for B+
1 . To save space, we choose not to include the proofs here and, instead, we put292

them in the supplement [3]. We point out that these minor testing problems can be very easily293

verified by a computer. In conclusion, the exception sets are exactly those given, which proves294

Proposition 1.3.295
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A The 23 graphs in A3296

A2 B1 B7 C3 C4

C7 D2 D3 D9 D12

D17 E2 E3 E5 E11

E18 E19 E20 E22 E27

F1 F4 G1
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B Projective Embeddings297

For each graph of A ∈ A, let v be the square vertex shown in Appendix A. Below are several298

drawings of (A − v)∆ needed for the proof of Lemma 3.1. Each drawing can be interpreted as a299

projective embedding by adding a crosscap at the crossing.300

(C3 − v)∆ (D2 − v)∆ (D3 − v)∆ (D9 − v)∆ (D12 − v)∆

(E2 − v)∆ (E3 − v)∆ (E5 − v)∆ (E11 − v)∆ (E18 − v)∆

(E19 − v)∆ (E20 − v)∆ (E22 − v)∆ (E27 − v)∆ (F1 − v)∆

(F4 − v)∆ (G1 − v)∆
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