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Abstract5

Archdeacon proved that projective-planar graphs are characterized by 35 excluded minors.6

Using this result we show that internally 4-connected projective-planar graphs are characterized7

by 23 internally 4-connected excluded minors.8

1 Introduction9

A classical result of Archdeacon [1, 2] states that projective-planar graphs are characterized by10

a set A of 35 excluded minors. This set consists of three disconnected graphs, three graphs of11

connectivity one, six graphs of connectivity two (0-, 1-, 2-sums of K5 and K3,3), and 23 graphs of12

connectivity at least three. In many applications graphs in consideration are well-connected. For13

this reason, it is desirable to refine Archdeacon’s result for better-connected graphs.14

The following is a simple fact observed by many. If a connected graph contains a 0-sum of15

two graphs in {K5,K3,3} as a minor, then it contains the 1-sum of the same pair as a minor.16

Consequently, a connected graph is projective-planar if and only if it does not contain any connected17

member of A as a minor. More interestingly, it is confirmed by Robertson, Seymour, and Thomas18

(unpublished) that, for each k ∈ {2, 3}, a k-connected graph is projective-planar if and only if it19

does not contain any k-connected member of A as a minor.20

There have been several attempts to establish similar results for internally 4-connected graphs.21

Maharry and Slilaty proved a result (unpublished) saying that internally 4-connected projective-22

planar graphs can be characterized by excluding a subset of A (some of which are not internally23

4-connected). Thomas observed that in addition to the eleven internally 4-connected members of24

A, there are at least two other minor-minimal internally 4-connected non-projective-planar graphs.25

Note that the property of being internally 4-connected is not a minor-closed property, so when26

referring to minor-minimal internally 4-connected non-projective-planar graphs, we mean those27

graphs for which no proper minor is both internally 4-connected and non-projective-planar. Since28

3-connected projective-planar graphs are characterized by excluding the 23 3-connected members29

of A, the general consensus is that internally 4-connected projective-planar graphs should be char-30

acterized by fewer internally 4-connected excluded minors. In this paper, however, we show that31

the total number of excluded minors is exactly 23.32
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Theorem 1.1. An internally 4-connected graph is projective-planar if and only if it does not contain33

any of the 23 internally 4-connected graphs shown in the Appendix as a minor.34

This theorem has an interesting corollary. Let v be a cubic vertex adjacent to v1, v2, and v3 in a35

graph G. Then a Y∆-transformation of G is a graph obtained by deleting v and the edges incident36

to v, and adding edges v1v2, v1v3, and v2v3. We say that H is a Y∆-minor of G if H is obtained37

from G by a series of edge deletions, edge contractions, vertex deletions, and Y∆-transformations. It38

is easy to verify that the class of projective-planar graphs is Y∆-minor closed. Under this relation,39

the number of forbidden graphs is reduced to just eight.40

Corollary 1.2. An internally 4-connected graph is projective-planar if and only if it does not41

contain any of A2, D17, E18, E22, B
′
1, B

′′′
1 , D′

3, or F ′
1 as a Y∆-minor.42

Let A′ consist of the twelve 3-connected members of A that are not internally 4-connected.43

These graphs are depicted in Figure 3.1. To prove Theorem 1.1, we show that if an internally44

4-connected graph G contains a member of A′ as a minor, then G contains one of the graphs in the45

Appendix as a minor. In the next section we explain how our approach works. Since our method is46

about how to fix a small separation in a general graph, its applications are not limited to problems in47

this paper. To illustrate our main idea, we give short proofs of the results of Robertson, Seymour,48

and Thomas in the 2- and 3-connected cases. In Section 3, we apply the approach outlined in49

Section 2 to the twelve graphs of A′. Finally, in Section 4, we complete the proof of Theorem 1.150

and Corollary 1.2. To handle the large amount of case analysis occurred in Section 3, we use a51

computer to perform the routine work. Every result in this section is verified by two independent52

programs, so we believe that potential programming errors are eliminated. At the end of the paper,53

we argue that using a computer is a reasonable or even better choice for this problem. Finally, we54

remark that we have found 37 minor-minimal 4-connected non-projective-planar graphs and there55

could be even more.56

2 Improving connectivity57

Suppose G is non-projective-planar and it satisfies our desired connectivity. According to Archdea-58

con’s theorem, G contains some A ∈ A as a minor. Graph A certifies the non-projectivity of G59

but its connectivity could be very low. Our problem is to find, based on A, a non-projective-planar60

minor of G that is better connected than A. In this section we illustrate how to do this. In fact,61

our result is independent of A and thus can be used to fix connectivity in a general situation.62

Let k ≥ 0 be an integer. A k-separation of a graph G = (V,E) is a pair (G1, G2) of subgraphs63

Gi = (Vi, Ei) such that (E1, E2) is a partition of E, V1∪V2 = V , and |V1∩V2| = k < min{|V1|, |V2|}.64

Readers familiar with matroid theory will notice this is essentially a vertical k-separation. Graph65

G is called k-connected if |V | > k and there is no k′-separation for any k′ < k. In addition, G is66

called internally (k + 1)-connected if G is k-connected and for every k-separation (G1, G2) of G it67

holds that min{|E1|, |E2|} = k.68

Let G be a minor of H and let (G1, G2) be a k-separation of G. If H has a k-separation69

(H1,H2) such that E(Gi) ⊆ E(Hi) then we say that (G1, G2) extends to (H1,H2). If (G1, G2) does70
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not extend to any k-separation of H, then there is a minimal graph G′ such that G is a minor71

of G′, G′ is a minor of H, and (G1, G2) does not extend to any k-separation of G′. Clearly, we72

can think of G′ as a result of fixing the separation (G1, G2) of G. According the Graph-Minor73

Theorem of Robertson and Seymour, there are only finitely many such graphs G′ for any given G74

and (G1, G2). Therefore, we can say that every separation can be fixed in finitely many ways. In75

fact, using alternating walks (see Section 3.3 of [3] for its definition) one can actually construct all76

these graphs G′.77

However, fixing k-separations may require a very long alternating walk that can add many78

additional edges. A drastic increase in the number of edges may make the alternating walk approach79

non-practical. In the following we explain how to fix a separation (G1, G2) of G without increasing80

the number of edges too much by not keeping the entire G as a minor. Instead, we will only keep81

G1 and G2. This weakened fix turns out to be the right combination: we do get a better connected82

graph yet we do not destroy the current graph by too much.83

First, we introduce a more generalized idea of separation that will allow us to deal with multiple84

separations at the same time. A k-division of a graph G = (V,E) is a triple (G1, G2,M), such that85

Gi = (Vi, Ei) are subgraphs of G and M is a matching from a subset of V1−V2 to a subset of V2−V1,86

(E1, E2,M) is a partition of E, V1 ∪ V2 = V , and |V1 ∩ V2|+ |M | = k < min{|V1|, |V2|}. Note that87

(G1 ∪M1, G2 ∪M2) is a k-separation for every partition (M1,M2) of M , so a k-division is in fact a88

collection of k-separations. On the other hand, since we allow M to be empty, every k-separation89

(G1, G2) can be considered as a special k-division (G1, G2, ∅). We will not make distinction between90

these two in our discussions. If G is a minor of H, then we say that a k-division (G1, G2,M) of91

G extends to a k-separation (H1, H2) of H if E(Gi) ⊆ E(Hi). This is equivalent to saying that92

(G1 ∪M1, G2 ∪M2) extends to (H1,H2) for at least one partition (M1,M2) of M .93

Let v be a vertex of G. The operation of splitting v results in a graph obtained from G− v by94

adding two new adjacent vertices v′, v′′ and making each neighbor of v in G adjacent to exactly95

one of v′, v′′ such that not all such neighbors are adjacent to only one of v′, v′′. Note that this96

definition does allow v′ or v′′ to have degree two. A rooted graph (G,R) is a graph G together97

with a specified set R of vertices that we call roots. Let (G1, G2,M) be a k-division of G and let98

Vi = V (Gi), V
′
i = Vi ∩ V (M), and X = V1 ∩ V2. For each i ∈ {1, 2}, let Gi consist of all rooted99

graphs of the following two types:100

(i) (Gi, R), where R = X ∪ V ′
i ∪ {v} with v ∈ Vi − (X ∪ V ′

i );101

(ii) (G′
i, R), where G′

i is obtained from Gi by splitting a vertex v ∈ X ∪ V ′
i and R consists of102

vertices in X ∪ V ′
i − {v} and the two new vertices.103

We point out that |R| = k + 1 in both cases. To avoid potential confusion in the following104

discussion, we assume that members of Gi are isomorphic copies of the above-mentioned rooted105

graphs. Therefore, we can say that graphs in G1 and G2 are vertex-disjoint. To make a connection106

with the original graphs, we assume that each root vertex x has a label ℓ(x) such that ℓ(x) is the107

vertex in G that corresponds to x. In case the root vertex x corresponds to a vertex obtained by108

splitting v then ℓ(x) = v (instead of v′ or v′′).109

Example 1. LetG be the 1-sum ofK3,3 andK5, and let (G1, G2) be the corresponding 1-separation.110

Rooted graphs in G1 and G2 are illustrated below (when two rooted graphs are isomorphic only one111

is shown), where square vertices are the roots and the labels are not shown.112
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Figure 2.1: From (G1, G2) to rooted graphs in G1 and G2

Example 2. In the last example M is empty. Figure 2.2 below shows a 3-division of an Archdeacon113

graph with M ̸= ∅. The only two non-isomorphic rooted graphs in Gi (i = 1, 2) are also included.114

Figure 2.2: A 3-division and rooted graphs K1
2,3, K

2
2,3

Let G be the set of all graphs constructed as follows: Let (J1, R1) ∈ G1 and (J2, R2) ∈ G2. Let L115

be a perfect matching between R1 and R2 and let J be the union of J1, J2, and L. Note that L does116

not necessary match vertices with the same labels under ℓ. Let L0 be the set of edges x1x2 in L such117

that ℓ(x1) = ℓ(x2). Note that this condition implies ℓ(x1) ∈ X. Then J/L0 is a graph in G. In case118

L0 has two edges x1x2, y1y2 such that x1, y1 ∈ R1, x2, y2 ∈ R2, and ℓ(x1) = ℓ(x2) = ℓ(y1) = ℓ(y2),119

then x1 and y1 are obtained from splitting a vertex v, and x2, y2 are obtained from splitting the120

same vertex v. In this special case, we put J/L0\e1 (instead of J/L0) in G since contracting L0121

would make the two edges e1 = x1y1, e2 = x2y2 in parallel. Members of G are called twists of the122

k-division (G1, G2,M).123

Theorem 2.1. If G is a minor of H and (G1, G2,M) is a k-division of G that does not extend to124

a k-separation of H, then H has a twist of (G1, G2,M) as a minor.125

This is the result that we are going to use repeatedly to fix the connectivity of a minor. We126

first prove it and then show how to use it. Before we start we make a few remarks. Suppose G′ is127

a twist of a k-division (G1, G2,M) of G. Then G′ contains both G1 and G2 as minors. Moreover,128

G′ has no k-separations that separate the two minors, which means that the given division is129

fixed. Furthermore, G′ is only slightly bigger than G since G′ may have at most k + 2 − |M |130

extra edges. In general, however, G is no longer a minor of G′. This is the price we must pay for131

fixing a division with a small number of extra edges. In our applications, twists may destroy the132

non-projective-planar minor we started with. Fortunately, we can choose our divisions so that non-133

projective-planarity is maintained. This nice property makes the twist operation a very powerful134

tool in our proof. Note that in general a twist of a k-division of a non-projective-planar graph135

need not be non-projective-planar. Finally, we should clarify that although a twist can fix any136

given division, it may at the same time create new unwanted divisions. This could be a problem137

in certain applications, but it does not cause any trouble in this paper.138

We will need two lemmas for proving Theorem 2.1. Let G be a graph and let A, B be subsets139

of V (G). A path P of G is called an A-B path if all ends of P are in A ∪ B and |V (P ) ∩ A| =140
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|V (P )∩B| = 1. A set Q of vertex-disjoint A-B paths exceeds another set P of vertex-disjoint A-B141

paths if |Q| = |P|+ 1 and the set of ends of paths in Q is a superset of the set of ends of paths in142

P. The following well-known result can be found in [3, p.63].143

Lemma 2.2. Let G be a graph, A,B be subsets of V (G) with min{|A|, |B|} > k, and P be a set of144

k vertex-disjoint A-B-paths of G. Then G has either a set of vertex-disjoint A-B-paths exceeding145

P or a k-separation (G1, G2) with A ⊆ V (G1) and B ⊆ V (G2).146

Let G be a graph and let A,B be subsets of V (G). A subgraph G′ of G is called A-B mixed147

if V (G′) ∩ A ̸= ∅ ≠ V (G′) ∩ B. If this condition is not satisfied, then G′ is called A-B monotone.148

We emphasize that a tree or a subtree must have at least one vertex. This assumption will be used149

implicitly several times in this section.150

Lemma 2.3. Let T be a tree and let A,B ⊆ V (T ). Then either there exists a vertex t such that151

all components of T − t are A-B monotone or there is an edge e such that both components of T\e152

are A-B mixed.153

Proof. Let us assume that, for every edge e, at least one component of T\e is A-B monotone, for154

otherwise we are done. We prove the existence of vertex t for which every component of T − v155

is A-B monotone. For any edge e = t1t2 of T , let T1, T2 be the two components of T\e with156

V (Ti) ∋ ti. We may assume that exactly one of T1, T2 is A-B monotone because otherwise both157

t1, t2 could be our t. Let us direct edge e from ti to tj if Ti is A-B monotone. Since T is a tree, the158

resulting directed graph is acyclic, which implies the existence of a vertex t such that every edge159

incident with it is directed to it. Clearly, t is the vertex we are looking for.160

Let G be a graph and let ∅ ̸= X ⊆ V (G). We denote by G[X] the subgraph of G induced by X.161

Proof of Theorem 2.1. Since G is obtained from H by deleting vertices, deleting edges, and162

contracting edges, we may assume that there exist vertex-disjoint subtrees Tv (v ∈ V (G)) of H163

such that, if e ∈ E(G) is incident with u, v ∈ V (G), then, as an edge of H, e is between Tu and164

Tv. For each i ∈ {1, 2}, let Gi = (Vi, Ei). Let X = V1 ∩ V2 = {x1, x2, . . . , xk0}. Let Ai be the set165

of vertices of Txi that are incident with edges of G1 and let Bi be the set of vertices of Txi that166

are incident with edges of G2. Suppose there is an edge e in some Txi so that both components of167

Txi\e are Ai-Bi mixed. Then contract all edges of each Tv except e, delete all other edges not in G168

except e, and delete remaining vertices not in G (other than the ends of e) to get a minor G′. Note169

that G′ can be obtained from G by splitting vertex xi. Moreover, G′ is also the twist obtained by170

splitting xi in both G1 and G2, which give rise to rooted graphs G′
1, G

′
2 of type (ii), and then by171

identifying roots of G′
1 to roots of G′

2 with the same label and by adding the edges of M .172

Thus by Lemma 2.3, we may assume there is a vertex ui in Txi so that all components of Txi−ui173

are Ai-Bi monotone for each i ∈ {1, 2, . . . , k0}. It follows that Txi has two edge-disjoint subtrees TAi174

and TBi that contain the entire Ai and Bi, respectively. In case Ai or Bi is empty, it is clear that175

TAi or TBi , respectively, can be any single vertex subtree of Txi . Let us choose these two subtrees176

such that they are minimal and let Pi be the unique minimal path between these two subtrees in177

Txi . Now let Y = V1 ∩V (M) = {yk0+1, yk0+2, . . . , yk} and Z = V2 ∩V (M) = {zk0+1, zk0+2, . . . , zk}.178

For each i ∈ {k0 +1, k0 +2, ..., k}, let Ai be the set of vertices in Tyi incident with edges of G1 and179

Bi be the set of vertices in Tzi incident with edges of G2. Then Tyi and Tzi have minimal subtrees180
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TAi and TBi containing the entire Ai and Bi, respectively. Again, if Ai or Bi is empty, TAi or181

TBi is a single vertex subtree of Tyi or Tzi . Let Pi be the unique minimal path between these two182

subtrees in Tyi ∪ Tzi + ei, where ei is the edge in H corresponding to the matching edge yizi. For183

each i ∈ {1, 2, . . . , k}, let the ends of the path Pi be ui1 in TAi and ui2 in TBi .184

Let P be the set of all Pi (1 ≤ i ≤ k). Let A =
(∪k

i=1 V (TAi)
)
∪
(∪

v∈V1−(X∪Y ) V (Tv)
)
and let185

B =
(∪k

i=1 V (TBi)
)
∪
(∪

v∈V2−(X∪Z) V (Tv)
)
. Then A,B ⊆ V (H) and P is a set of k vertex-disjoint186

A-B paths of H. By the definition of k-division, V1 − (X ∪ Y ) ̸= ∅ ̸= V2 − (X ∪ Z), which implies187

min{|A|, |B|} > k. Hence, by Lemma 2.2, H has either a set of vertex-disjoint A-B paths exceeding188

P or a k-separation (H1,H2) with A ⊆ V (H1) and B ⊆ V (H2). Note that the second alternative189

does not happen because otherwise E1 ⊆ E(H[A]) ⊆ E(H1) and E2 ⊆ E(H[B]) ⊆ E(H2), and190

(G1, G2,M) extends to (H1, H2).191

Now we may assume that H has a set of vertex-disjoint A-B paths P ′ = {P ′
1, P

′
2, . . . , P

′
k+1}192

exceeding P. Let ua ∈ A and ub ∈ B be the two ends of paths of P ′ that are not ends of any path193

of P. We prove that H has a minor that is a twist of (G1, G2,M). To do so, we prove that H[A]194

and H[B] can be reduced to rooted graphs in G1 and G2, respectively, and paths in P ′ provide a195

matching L between the two rooted graphs.196

Since A and B are symmetric, it is enough for us to consider H[A]. Let us contract each Tv197

(v ∈ V1 − (X ∪ Y )) and TAi , except for TAi that contains ua (this TAi does not exist if ua belongs198

to Tv for some v ∈ V1 − (X ∪ Y )). In the exception case, let Q be the path in TAi from ua to ui1.199

Clearly, Q has at least one edge e since ua is not an end of Pi. Let us contract all edges of TAi200

except for e. Then by deleting edges we can reduce H[A] to a rooted minor (G′
1, R1) ∈ G1, where201

R1 = {ua, u11, u21, ..., uk1}. This is clear if ua belongs to Tv for some v ∈ V1 − (X ∪ Y ) since we202

obtain a rooted graph of type (i). If ua belongs to some TAi , from the minimality of TAi we deduce203

that both components of TAi\e contain vertices of Ai, and so we obtain a rooted graph of type (ii).204

Note that paths of P ′ are between R1 and R2. For each path of P ′ with at least one edge we205

contract it to a single edge. We also contract the last edge if the path is between roots of the same206

label, meaning that the path is between TAi and TBi for some i ≤ k0. If a path of P ′ consists of a207

single vertex, that is, one of the xi, then we consider the path as a result of contracting an auxiliary208

edge (of the matching L) between xi ∈ R1 and xi ∈ R2. Thus we have produced a minor of H that209

is a twist of (G1, G2,M) using (G′
1, R1) and (G′

2, R2), which proves the theorem. �210

Theorem 2.1 can be applied directly to determine both the 2- and 3-connected minor-minimal211

non-projective-planar graphs already previously determined by Robertson, Seymour and Thomas.212

Let Ai be the i-connected members of A. We use Archdeacon’s notation for the 35 graphs in A.213

Theorem 2.4. A 2-connected graph is projective-planar if and only if it does not contain any214

member of A2 as a minor.215

Figure 2.3: The six graphs in A of connectivity two: B3, C2, D1, D4, E6, and F6
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Proof. Clearly, we only need to prove that every 2-connected non-projective-planar graph G con-216

tains a graph in A2 as a minor. According to our observation in the introduction we may assume217

that G has a minor A ∈ A that is a 1-sum of two graphs in {K3,3,K5}. By Theorem 2.1, G contains218

a twist J of the unique 1-separation of A as a minor. Suppose J is constructed from rooted graphs219

(J1, R1) and (J2, R2). Then (Ji, Ri) is one of the six graphs illustrated in Figure 2.1, which we220

denote by K1
3,3, K

2
3,3, K

3
3,3, K

1
5 , K

2
5 , K

3
5 , respectively. Note that K3

3,3 can be contracted to K1
3,3,221

K3
5 can be contracted to K1

5 , and K2
5 can be reduced to K1

3,3 by deleting edges. Thus we may222

assume each Ji to be K1
3,3,K

2
3,3, or K

2
5 , which implies that there are six choices for the pair J1, J2.223

Let L be the matching that is used to construct J from J1, J2. Then contracting L (instead of224

L0 ⊆ L) results in a minor J ′ of J and thus of G. Clearly, for the six choices of J1, J2, minor225

J ′ corresponds exactly to the six graphs in A of connectivity two, which are illustrated in Figure226

2.3.227

This theorem is easy to prove because of two main reasons. First, both parts of the 1-separation228

are highly symmetric, which reduces the number of cases. The better connected our graphs get,229

the less symmetric they are. Second, the entire matching L can be contracted in a twist, which230

also reduces the number of cases significantly. This is no longer true for higher connectivity.231

Theorem 2.5. A 3-connected graph is projective-planar if and only if it does not contain any232

member of A3 as minor.233

Proof. We need only prove that every 3-connected non-projective-planar graph contains a graph in234

A3 as a minor. By Theorem 2.4, we may assume that G has a graph A ∈ A2 as a minor, where A is235

one of the six graphs in A2 of connectivity two, which are listed in Figure 2.3. Notice that each of236

these graphs is a 2-sum of two graphs among {K3,3,K5}. By Theorem 2.1, G contains a twist J of237

the 2-separation of A as a minor where J is constructed from rooted graphs (J1, R2) and (J2, R2)238

that are among the graphs shown in Figure 2.4, which we call KN1
3,3 , K

N2
3,3 , K

N3
3,3 , K

E1
3,3 , K

E2
3,3 , K

1
5 ,239

and K2
5 , respectively. Let L be the matching used to construct J from J1 and J2. We prove that240

J contains a graph in Figure 3.1 as minor.241

Figure 2.4: Seven possibilities for (Ji, Ri): K
N1
3,3 , K

N2
3,3 , K

N3
3,3 , K

E1
3,3 , K

E2
3,3 , K

1
5 , and K2

5

First assume (J1, R1) is one of KN1
3,3 , K

N2
3,3 , and KN3

3,3 , and contract the entire matching L to242

obtain J ′. Since KN3
3,3 can be contracted to KN2

3,3 , K
E2
3,3 can be contracted to KE1

3,3 , and K2
5 can be243

contracted to K1
5 , we assume that (J1, R1) is K

N1
3,3 or KN2

3,3 and (J2, R2) is one of KN1
3,3 , K

N2
3,3 , K

E1
3,3 ,244

and K1
5 . Notice that K2,3 rooted at the three mutually non-adjacent vertices can be obtained from245

KN2
3,3 , K

E1
3,3 , and K1

5 by contracting and deleting edges. Thus if (J1, R1) or (J2, R2) is KN1
3,3 , then246

J ′ contains K3,5 = E3 ∈ A3 as a minor. Now we may assume that (J1, R1) is K
N2
3,3 and (J2, R2) is247

KN2
3,3 , K

E1
3,3 , or K

1
5 . If (J2, R2) is K

N2
3,3 , delete an edge from it to obtain KE1

3,3 ; if (J2, R2) is K
E1
3,3 , J

′
248
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has (after deleting the edge with both ends in R2) either E5 ∈ A3 or F1 ∈ A3 as a subgraph; and249

if (J2, R2) is K
1
5 , J

′ has D3 ∈ A3 as a subgraph.250

Now (Ji, Ri) must be among KE1
3,3 , K

E2
3,3 , K

1
5 , and K2

5 for each i ∈ {1, 2}. Suppose (J1, R1) is251

KE2
3,3 or K2

5 . We contract the entire matching L to obtain J ′. If (J2, R2) is K
E2
3,3 or K2

5 , contract it252

to KE1
3,3 or K1

5 , respectively. In case (J1, R1) is K
E2
3,3 , if (J2, R2) is K

E1
3,3 , J

′ has F1 as a minor, and253

if (J2, R2) is K1
5 , J

′ has D3 as a minor. So (J1, R1) is K2
5 . If (J2, R2) is K1

5 , J
′ has C7 ∈ A3 as a254

subgraph (by deleting edges with both ends in R2). So (J2, R2) is K
E1
3,3 . If the degree-two root of255

R1 is contracted to the degree-three root of R2, then J ′ has F1 as a minor. Else, J ′ has D3 as a256

minor (by contracting K2
5 to K1

5 ).257

So (Ji, Ri) is either K
E1
3,3 or K1

5 for each i ∈ {1, 2}. In this case, we may no longer contract the258

entire matching L since this may result in a projective-planar graph. Let {v1, v2} be the 2-cut of A259

and let x, y be the third vertex of R1, R2, respectively. Suppose both (J1, R1) and (J2, R2) are K1
5 .260

If xy ̸∈ L, then J/L is isomorphic to B1 (after deleting a parallel edge); if xy ∈ L, then contracting261

the other two edges of L leads to a C7 minor. Thus we assume that (J2, R2) is K
E1
3,3 . By contracting262

the two edges of L that are not incident with x, and reducing (J2, R2) to K2,3 rooted at the three263

mutually non-adjacent vertices, it is clear that either D3 or F1 is a minor.264

It may be of use to notice that in the previous theorem we actually show that a 3-connected265

graph with a minor in A2 −A3 must have a minor in {B1, C7, D3, E3, E5, F1} ⊆ A3. We also point266

out that none of these six graphs is internally 4-connected.267

3 Twists of graphs in A3268

In this section we apply Theorem 2.1 to the twelve graphs in A3 that are not internally 4-connected.269

These twelve are B1, C7, D3, D9, D12, E3, E5, E11, E19, E27, F1, and G1 shown in Figure 3.1.270

B1 C7 D3 D9 D12 E3

E5 E11 E19 E27 F1 G1

Figure 3.1: Graphs in A3 that are not internally 4-connected

From the proof of Theorem 2.4 and Theorem 2.5 we have seen how the twist operation works.271

Proof in this section will go through exactly the same process. However, the amount of case checking272

increases significantly. For each of the twelve graphs, there are hundreds of possible twists, which273
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makes a proof by hand very tedious. Therefore, we choose to use a computer to perform the274

routine work. Our proof is verified by two independent computer programs to decrease the chance275

of programming errors. We use the computer program in two ways. First, to generate a list of276

all possible twists of a given 3-division. Second, to verify that each twist has a desired minor. In277

the following proof, we will only present a summary of the computation. The edge lists of the278

intermediate graphs are available as online material, which could help the reader to verify the279

details.280

The following twelve lemmas deal with the twelve graphs in Figure 3.1, and the lemmas are listed281

according to the order that the twelve graphs are listed. Throughout this section we will indicate282

a 3-division (G1, G2,M) as a figure with a dashed line through the vertices of V (G1) ∩ V (G2) and283

edges of M , where edges of G1 are left of the dashed line, and edges of G2 are right of the dashed284

line. Note that some output graphs in these lemmas are not internally 4-connected, which means285

that there are dependencies among the non-internally 4-connected members of A3. We will handle286

these dependencies in Section 4.287

Lemma 3.1. Any internally 4-connected graph with B1 as a minor has a minor among: B′
1, B

′′
1 ,288

B′′′
1 , and D3.289

Proof. Consider the 3-separation of B1 shown in Figure 3.2. There are 146 twists of this separation,290

and 11 of these have none of the other 146 as a minor. Among these 11, one is Ba
1 , the second291

graph shown in Figure 3.2, and each of the other graphs has B′
1, B

′′
1 , B

′′′
1 , or D3 as a minor. The292

3-separation of Ba
1 shown has 329 twists, and 21 of these have none of the other 329 as a minor.293

Each of those 21 graphs has B′
1, B

′′
1 , B

′′′
1 , or D3 as a minor.294

Figure 3.2: A 3-separation of B1 and Ba
1

Lemma 3.2. Any internally 4-connected graph with C7 as a minor has a minor among: D3, D12,295

D17, and F1.296

Proof. There are 206 twists of the 3-division of C7 shown in Figure 3.3, and 14 of these have none297

of the other 206 as a minor. Each of those 14 graphs has D3, D12, D17, or F1 as a minor.298

Figure 3.3: A 3-division of C7

Lemma 3.3. Any internally 4-connected graph with D3 as a minor has a minor among: D′
3, D

′′
3 ,299

E20, and F1.300
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Proof. D3 has a natural 3-division in which M consists of the center horizontal edge. If we start301

with this 3-division, we will have to perform the twist operation at least five times. However, the302

following alternative allows us to complete the proof by performing the twist operation only four303

times. There are 116 twists of the 3-separation of D3 shown in Figure 3.4. Only 10 of these have304

none of the other 116 as a minor. Among these 10, two are Da
3 and Db

3, and each of the other has305

D′
3, D

′′
3 , E20, or F1 as a minor. There are 409 twists of the 3-separation of Da

3 shown in the figure.306

Only 25 of these have none of the other 409 as a minor. Among these 25, one is Daa
3 and each of307

the other has D′
3, D

′′
3 , or F1 as a minor. There are 480 twists of the 3-separation of Daa

3 shown in308

the figure. 79 of these have none of the other 480 as a minor. Each of these 79 has D′
3, D

′′
3 , or F1309

as a minor. There are 269 twists of the 3-separation of Db
3 shown in the figure. Only 13 of these310

have none of the other 269 as a minor. Each of these 13 has D′
3, D

′′
3 , or F1 as a minor.311

Figure 3.4: A 3-separation of D3, D
a
3 , D

b
3, and Daa

3

Lemma 3.4. Any internally 4-connected graph with D9 as a minor has a minor among: E11, E22,312

and E27.313

Proof. D9 has two equivalent 3-separations. There are 232 graphs that are twists of either of those314

separations, and only 16 of these have none of the other 232 as a minor. Each of those 16 graphs315

has E11, E22, or E27 as a minor.316

Lemma 3.5. Any internally 4-connected graph with D12 as a minor has a minor among: D17,317

E20, E22, and F ′
1.318

Proof. D12 has only one 3-separation. There are 226 graphs that are twists of that separation, and319

only 14 of these have none of the other 226 as a minor. Each of those 14 graphs has D17, E20, E22,320

or F ′
1 as a minor.321

Lemma 3.6. Any internally 4-connected graph with E3 as a minor has a minor among: D′
3, D

′′
3 ,322

E′
3, E

′′
3 , E5, E18, and F1.323

Proof. There are 43 twists of the 3-separation of E3 shown in Figure 3.5. Only 4 of these have324

none of the other 43 as a minor. Two of these 4 are Ea
3 and Eb

3, and the other two have E5 or F1325

as a minor. There are 45 twists of the 3-separation of Ea
3 shown. Only 4 of these have none of the326

other 45 as a minor. One of these 4 is Eaa
3 and the other three have Eb

3, E5, or F1 as a minor.327

There are 90 twists of the 3-separation of Eaa
3 shown. Only 8 of these have none of the other 90 as328

a minor. Each of these 8 has D′
3, E

′
3, E18, or F1 as a minor. There are 57 twists of the 3-division329

of Eb
3 shown. Only 4 of these have none of the other 57 as a minor. Two of these 4 are Eba

3 and330

Ebb
3 , and the other two have E5 or F1 as a minor. There are 303 twists of the 3-separation of Eba

3331

shown. Only 17 of these have none of the other 303 as a minor. Each of these 17 has D′
3, D

′′
3 , E

′′
3 ,332
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E5, E18, or F1 as a minor. There are 251 twists of the 3-separation of Ebb
3 shown. Only 12 of these333

have none of the other 251 as a minor. Each of these 12 has D′′
3 , E5, E18, or F1 as a minor.334

Figure 3.5: A 3-division of E3, E
a
3 , E

aa
3 , Eb

3, E
ba
3 , and Ebb

3

Lemma 3.7. Any internally 4-connected graph with E5 as a minor has a minor among: D3, E
′′
3 ,335

E′
5, E

′′
5 , E18, and F1.336

Figure 3.6: A 3-division of E5, E
a
5 , and Eb

5

Proof. There are 143 twists of the 3-division of E5 shown in Figure 3.6. Only 10 of these have none337

of the other 143 as a minor. Among these 10, two are Ea
5 and Eb

5 and each of the others has E′
5,338

E′′
5 , or F1 as a minor. There are 198 twists of the 3-separation of Ea

5 shown in the figure. Only 14339

of these have none of the other 198 as a minor. Each of these 14 has D3, E
′
5, E18, or F1 as a minor.340

Note that Eb
5 is isomorphic to Eba

3 shown in Figure 3.5. We saw in Lemma 3.6 that the twists of341

the 3-separation shown each have D3, E
′′
3 , E

′
5, E18, or F1 as a minor.342

Lemma 3.8. Any internally 4-connected graph with E11 as a minor has a minor among: E20, E22,343

F ′
1, and F4.344

Proof. E11 has only one 3-separation. There are 265 twists of that separation, and only 16 of these345

have none of the other 265 as a minor. Each of those 16 has E20, E22, F
′
1, or F4 as a minor.346

Lemma 3.9. Any internally 4-connected graph with E19 as a minor has a minor among: E20, E27,347

and F1.348

Proof. There are 55 twists of the 3-division of E19 shown in Figure 3.7, and 7 of these have none349

of the other 55 as a minor. Each of those 7 graphs has E20, E27, or F1 as a minor.350

Lemma 3.10. Any internally 4-connected graph with E27 as a minor has a minor among: E20,351

E22, F
′
1, and F4.352

Proof. E27 has only one 3-separation. There are 216 twists of that separation, and only 15 of these353

have none of the other 216 as a minor. Each of those 15 has E20, E22, F
′
1, or F4 as a minor.354
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Figure 3.7: A 3-division of E19

Lemma 3.11. Any internally 4-connected graph with F1 as a minor has a minor among: E27, F
′
1,355

F ′′
1 , F4, and G1.356

Proof. There are 127 twists of the 3-division of F1 shown in Figure 3.8, and 8 of these have none357

of the other 127 as a minor. Four of these 8 are F a
1 , F

b
1 , F

c
1 , and F d

1 , and the other four have E27,358

F ′
1, F

′′
1 , or F4 as a minor. There are 163 twists of the 3-division of F a

1 shown, and 8 of these have359

none of the other 163 as a minor. Each of those 8 has F ′
1 or F4 as a minor. There are 175 twists360

of the 3-separation of F b
1 shown, and 9 of these have none of the other 175 as a minor. Each of361

those 9 has F ′
1 or F4 as a minor. There are 110 twists of the 3-division of F c

1 shown, and 8 of these362

have none of the other 110 as a minor. Each of those 8 has F ′
1, F

′′
1 , or F4 as a minor. There are 98363

twists of the 3-division of F d
1 shown, and 11 of these have none of the other 98 as a minor. Each of364

those 11 has E27, F4, or G1 as a minor.365

Figure 3.8: A 3-division of F1, F
a
1 , F

b
1 , F

c
1 , and F d

1

Lemma 3.12. Any internally 4-connected graph with G1 as a minor has a minor among: F4 and366

G′
1.367

Proof. There are 7 twists of the 3-division of G1 shown in Figure 2.2, and only 2 of these have none368

of the other 7 as a minor. Those two are isomorphic to F4 and G′
1, respectively.369

It is worth mentioning that the proof of Lemma 3.12 can also be easily completed without using370

a computer, which we explain here. Let J be a twist of the 3-division of G1 shown in Figure 2.2,371

and let J be constructed from matching L and two rooted graphs, which are K1
2,3 or K

2
2,3 illustrated372

in Figure 2.2. By contracting K2
2,3 to K1

2,3 we may assume that both rooted graphs are K1
2,3. Up373

to symmetry, there are exactly two ways to put K1
2,3, K

1
2,3, and L together, and the two resulting374

graphs are isomorphic to F4 and G′
1, respectively.375

This proof raises a natural question: can proofs in this section be simplified into computer-free376

proofs? In the above proof, K2
2,3 is always contracted to K1

2,3, which simplifies the proof. The same377

idea was also used in the proof of Theorem 2.5, where we contracted KE2
3,3 and K2

5 to KE1
3,3 and K1

5 ,378
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respectively, several times. However, we also saw in that proof that there are cases when such a379

contraction is not allowed. What this means is that the rooted graphs could be simplified in some380

cases, but they cannot be simplified in general. We also point out that, as illustrated in the proof of381

Theorem 2.5, matching L can be contracted in many cases, but it cannot be contracted in general.382

Therefore, the twist operation cannot be further simplified in general.383

There is certainly a chance that a proof with fewer cases could be extracted from the current384

proof since certain cases could be combined together. However, a price we have to pay is to end up385

with a complicated proof, because we have to make fine distinctions between the cases in order to386

put similar cases together. In other words, we have to lose the simplicity of our current proof. On387

the other hand, in terms of computing time on a computer, the improvement would be negligible388

since both proofs will be considered short.389

In proving the twelve lemmas of this section, we performed the twist operation 26 times and390

generated 4759 twists, among which 360 are minor-minimal. Then we verified that these minimal391

twists converge to 87 desired minors (some minors appeared multiple times). If we still follow the392

same main steps, a simplified proof would still be a list of verifications of hundreds of cases, since393

very likely most of the minimal twists would still be there. Such a proof might be checkable by394

hand, but, since it consists of mainly routine work, the proof would be boring and going through395

the proof would be a torture to a reader. Furthermore, checking hundreds of cases by hand is396

potentially less reliable than doing it with a computer. From this point of view, using a computer397

is not only a reasonable choice, but a better choice for our problem.398

4 Proof of main results399

Let A′
4 denote the set of 23 graphs in the Appendix.400

Proof of Theorem 1.1. Each graph in A′
4 is non-projective-planar since it contains a graph in A3 as401

a minor. Now, let G be an internally 4-connected non-projective-planar graph. By Theorem 2.5, G402

contains a graph in A3 as a minor. We order the twelve members of A3−A′
4 as follows: B1, C7, E3,403

E5, D3, D9, D12, E11, E19, F1, E27, G1. Let us denote this sequence by Z1, Z2, ..., Z12. Then the404

twelve lemmas of the last section can be expressed uniformly as: for i = 1, 2, ..., 12, any internally405

4-connected graph with Zi as a minor contains either some Zj (j > i) or some graph in A′
4 as a406

minor. Consequently, G must contain a member of A′
4 as a minor, which proves the theorem. �407

Proof of Corollary 1.2. Let G be an internally 4-connected graph. If G contains one of the eight408

Y∆-minors, then G is non-projective-planar since the eight graphs are non-projective-planar and409

the class of projective graphs is closed under Y∆-minors. Conversely, if G is non-projective-planar410

then by Theorem 1.1, G contains a graph in A′
4 as a minor. Let us write A → B if B is a Y∆-411

transformation of A. In the Appendix, if a graph has a cubic vertex represented by an open circle,412

it is easy to see that performing a Y∆-transformation at that vertex results in another graph in413

A′
4, which leads to the following Y∆ relationships: E2 → D2 → C3 → B7 → A2, C4 → B7, G

′
1 →414

E20 → D17, F4 → E20, E
′′
5 → E′

5 → D′
3, D

′′
3 → D′

3, E
′′
3 → E′

3 → B′
1, B

′′
1 → B′

1, and F ′′
1 → F ′

1.415

Therefore, G has one of the eight graphs as a Y∆-minor. �416
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Appendix. The 23 minor-minimal internally 4-connected non-projective-planar417

graphs418

The first eleven graphs are internally 4-connected members of A, where we keep Archdeacon’s419

original notation. The last twelve graphs are new, where notation Z ′, Z ′′, and Z ′′′ indicate that420

these graphs contain Z ∈ A3 as a minor. We point out that, in all cases, Z is the only graph in A3421

that is a minor of any of Z ′, Z ′′, and Z ′′′. Furthermore, Z ′, Z ′′, and Z ′′′ have the same number of422

edges for a given Z, and thus no graph in this list contains another graph in this list as a minor. If423

a vertex is represented by an open circle, it means that a Y∆-transformation at that vertex results424

in another graph on this list.425

A2 B7 C3 C4 D2 D17

E2 E18 E20 E22 F4

B′
1 B′′

1 B′′′
1 D′

3 D′′
3 E′

3

E′′
3 E′

5 E′′
5 F ′

1 F ′′
1 G′

1
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