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2

Abstract3

In this paper, we give a complete characterization of binary matroids4

with no P9-minor. A 3-connected binary matroid M has no P9-minor5

if and only if M is one of the internally 4-connected non-regular minors6

of a special 16-element matroid Y16, a 3-connected regular matroid, a7

binary spike with rank at least four, or a matroid obtained by 3-summing8

copies of the Fano matroid to a 3-connected cographic matroid M∗(K3,n),9

M∗(K ′3,n), M∗(K ′′3,n), or M∗(K ′′′3,n) (n ≥ 2). Here the simple graphs10

K ′3,n,K
′′
3,n, and K ′′′3,n are obtained from K3,n by adding one, two, or11

three edges in the color class of size three, respectively.12

1 Introduction13

It is well known that the class of binary matroids consists of all matroids14

without any U2,4-minor, and the class of regular matroids consists of matroids15

without any U2,4, F7 or F ∗7 -minor. Kuratowski’s Theorem states that a graph16

is planar if and only if it has no minor that is isomorphic to K3,3 or K5. These17

examples show that characterizing a class of graphs and matroids without18

certain minors is often of fundamental importance. We say that a matroid is19

N -free if it does not contain a minor that is isomorphic to N . A 3-connected20

matroid M is said to be internally 4-connected if for any 3-separation of M ,21

one side of the separation is either a triangle or a triad.22

There is much interest in characterizing binary matroids without small23

3-connected minors. Since non-3-connected matroids can be constructed by24

3-connected matroids using 1-, 2-sum operations, one needs only determine25

the 3-connected members of a minor closed class. There is exactly one 3-26

connected binary matroid with 6-elements, namely, W3 where Wn denotes27

both the wheel graph with n-spokes and the cycle matroid of Wn. There are28

exactly two 7-element binary 3-connected matroids, F7 and F ∗7 . There are29
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Figure 1: A geometric representation of P9

three 8-element binary 3-connected matroids, W4, S8 and AG(3, 2), and there30

are eight 9-element 3-connected binary matroids: M(K3,3), M∗(K3,3), Prism,31

M(K5\e), P9, P
∗
9 , binary spike Z4 and its dual Z∗4 .32

|E(M)| Binary 3-connected matroids
6 W3

7 F7, F
∗
7

8 W4, S8, AG(3, 2)
9 M(K3,3),M∗(K3,3),M(K5\e), P rism, P9, P

∗
9 , Z4, Z

∗
4

33

For each matroid N in the above list with less than nine elements, with34

the exception of AG(3, 2), the problem of characterizing 3-connected binary35

matroids with no N -minor has been solved. Since every 3-connected binary36

matroid having at least four elements has a W3-minor, the class of 3-connected37

binary matroids excluding W3 contains only the trivial 3-connected matroids38

with at most three elements. Seymour in [11] determined all 3-connected39

binary matroids with no F7-minor (F ∗7 -minor). Any such matroid is either40

regular or is isomorphic to F ∗7 (F7). In [8], Oxley characterized all 3-connected41

binary W4-free matroids. These are exactly M(K4), F7, F
∗
7 , binary spikes Zr,42

Z∗r , Zr\t, or Zr\yr (r ≥ 4) plus the trivial 3-connected matroids with at43

most three elements. It is well known that F7, F
∗
7 , and AG(3, 2) are the only44

3-connected binary non-regular matroids without any S8-minor.45

In the book [3], Mayhew, Royle and Whittle characterized all internally46

4-connected binary M(K3,3)-free matroids. Mayhew and Royle [5], and in-47

dependently Kingan and Lemos [7], determined all internally 4-connected bi-48
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nary Prism-free (therefore M(K5\e)-free) matroids. For each matroid N in49

the above list with exactly nine elements, the problem of characterizing 3-50

connected binary matroids with no N -minor is still unsolved yet. The problem51

of characterizing internally 4-connected binary AG(3, 2)-free matroids is also52

open. Since Z4 has an AG(3, 2)-minor, characterizing internally 4-connected53

binary Z4-free matroids is an even harder problem. Oxley [8] determined all54

3-connected binary matroids with no P9- or P ∗9 -minor:55

Theorem 1.1. Let M be a binary matroid. Then M is 3-connected having56

no minor isomorphic to P9 or P ∗9 if and only if57

(i) M is regular and 3-connected;58

(ii) M is a binary spike Zr, Z
∗
r , Zr\yr or Zr\t for some r ≥ 4; or59

(iii) M ∼= F7 or F ∗7 .60

P9 is a very important matroid and it appears frequently in the structural61

matroid theory (see, for example, [4, 8, 13]). In this paper, we give a complete62

characterization of the 3-connected binary matroids with no P9-minor. Before63

we state our main result, we describe a class of non-regular matroids. First64

let K be the class 3-connected cographic matroids N = M∗(K3,n), M∗(K ′3,n),65

M∗(K ′′3,n), or M∗(K ′′′3,n) (n ≥ 2). Here the simple graphs K ′3,n,K
′′
3,n, and K ′′′3,n66

are obtained from K3,n by adding one, two, or three edges in the color class of67

size three, respectively. Note that when n = 2, N ∼= W4, or the cycle matroid68

of the prism graph. From now on, we will use Prism to denote the prism69

graph as well as its cycle matroid. Take any t disjoint triangles T1, T2, . . . , Tt70

(1 ≤ t ≤ n) of N and t copies of F7. Perform 3-sum operations consecutively71

starting from N and F7 along the triangles Ti (1 ≤ i ≤ t). Any resulting72

matroid in this infinite class of matroids is called a (multi-legged) starfish.73

Note that each starfish is not regular since at least one Fano was used (and74

therefore the resulting matroid has an F7-minor) in the construction. The75

class of starfishes and the class of spikes have empty intersection as spikes are76

W4-free, while each starfish has a W4-minor.77

Our next result, the main result of this paper, generalizes Oxley’s Theo-78

rem 1.1 and completely determines the 3-connected P9-free binary matroids.79

The matroid Y16, a single-element extension of PG(3, 2)∗, in standard repre-80

sentation without the identity matrix is given in Figure 2.81

Theorem 1.2. Let M be a binary matroid. Then M is 3-connected having no82

minor isomorphic to P9 if and only if one of the following is true:83

(i) M is one of the 16 internally 4-connected non-regular minors of Y16; or84

(ii) M is regular and 3-connected; or85
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(iii) M is a binary spike Zr, Z
∗
r , Zr\yr or Zr\t for some r ≥ 4; or86

(iv) M is a starfish.87



1 1 1 0 0
1 1 0 1 0
1 0 1 1 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 1 1
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1


Figure 2: A binary standard representation for Y16

The next result, which follows easily from the last theorem, characterizes88

all binary P9-free matroids.89

Theorem 1.3. Let M be a binary matroid. Then M has no minor isomor-90

phic to P9 if and only if M can be constructed from internally 4-connected91

non-regular minors of Y16, 3-connected regular matroids, binary spikes, and92

starfishes using the operations of direct sum and 2-sum.93

Proof. Since every matroid can be constructed from 3-connected proper minors94

of itself by the operations of direct sum and 2-sum, by Theorem 1.2, the95

forward direction is true. Conversely, suppose that M = M1 ⊕M2, or M =96

M1 ⊕2 M2, where M1 and M2 are both P9-free. As P9 is 3-connected, by [9,97

Proposition 8.3.5], M is also P9-free. Thus if M is constructed from internally98

4-connected non-regular minors of Y16, 3-connected regular matroids, binary99

spikes, and starfishes using the operations of direct sum and 2-sum, then M100

is also P9-free.101

Our proof does not use Theorem 1.1 except we use the fact that all spikes102

are P9-free which can be proved by an easy induction argument. In Section103

2, we determine all internally 4-connected binary P9-free matroids. These104

are exactly the 16 internally 4-connected non-regular minors of Y16. These105

matroids are determined using the Sage matroid package and the computation106

is confirmed by the matroid software Macek. Most of the work is in Section107

3, which is to determine how the internally 4-connected pieces can be put108

together to avoid a P9-minor.109
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For terminology we follow [9]. Let M be a matroid. The connectivity110

function λM of M is defined as follows. For X ⊆ E let111

λM (X) = rM (X) + rM (E −X)− r(M). (1)

Let k ∈ Z+. Then both X and E −X are said to be k-separating if λM (X) =112

λM (E−X) < k. If X and E−X are k-separating and min{|X|, |E−X|} ≥ k,113

then (X,E − X) is said to be a k-separation of M . Let τ(M) = min{ j :114

M has a j-separation} if M has a k-separation for some k; otherwise let115

τ(M) =∞. M is k-connected if τ(M) ≥ k. Let (X,E−X) be a k-separation of116

M . This separation is said to be a minimal k-separation if min{|X|, |E−X|} =117

k. The matroid M is called internally 4-connected if and only if M is 3-118

connected and the only 3-separations of M are minimal (in other words, either119

X or Y is a triangle or a triad).120

2 Characterizing internally 4-connected binary P9-121

free matroids122

In this section, we determine all internally 4-connected binary P9-free ma-123

troids.124

Theorem 2.1. A binary matroid M is internally 4-connected and P9-free if125

and only if126

(i) M is internally 4-connected graphic or cographic; or127

(ii) M is one of the 16 internally 4-connected non-regular minors of Y16;128

or129

(iii) M is isomorphic to R10.130

Sandra Kingan recently informed us that she also obtained the internally131

4-connected binary P9-free matroids as a consequence of a decomposition result132

for 3-connected binary P9-free matroids.133

The following two well-known theorems of Seymour [11] will be used in134

our proof.135

Theorem 2.2. (Seymour’s Splitter Theorem) Let N be a 3-connected proper136

minor of a 3-connected matroid M such that |E(N)| ≥ 4 and if N is a wheel,137

it is the largest wheel minor of M ; while if N is a whirl, it is the largest whirl138

minor of M . Then M has a 3-connected minor M ′ which is isomorphic to a139

single-element extension or coextension of N .140

Theorem 2.3. If M is an internally 4-connected regular matroid, then M is141

graphic, cographic, or is isomorphic to R10.142
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The following result is due to Zhou [13, Corollary 1.2].143

Theorem 2.4. A non-regular internally 4-connected binary matroid other144

than F7 and F ∗7 contains one of the following matroids as a minor: N10,145

K̃5, K̃5
∗
, T12\e, and T12/e.146

The matrix representations of these matroids can be found in [13]. We use147

X10 to denote the matroid K̃5
∗
. It is straightforward to verify that among the148

five matroids in Theorem 2.4, only X10 has no P9-minor. We use L to denote149

the set of matroids consisting of the following matroids in reduced standard150

representation, in addition to F7, F
∗
7 and Y16. From the matrix representations151

of these matroids, it is straightforward to check that each matroid in L is a152

minor of Y16, and each has an X10-minor. Indeed, It is clear that (i) each153

Xi is a single-element co-extension of Xi−1 for 11 ≤ i ≤ 15; (ii) each Yi is154

a single-element extension of Xi−1 for 11 ≤ i ≤ 16; (iii) each Yi is a single-155

element co-extension of Yi−1 for 11 ≤ i ≤ 16, and it is easy to check that (iv)156

in the list X10, X
′
11, X

′
12, X13, each matroid is a single-element coextension of157

its immediate predecessor. Therefore, X10 is a minor of all matroids in L, and158

each is a minor of Y16. From these matrices, it is also routine to check that159

the only matroid of L having a triangle is F7 (this can also be easily verified160

by using the Sage matroid package).161

X10 :



1 1 1 0
1 1 0 1
1 0 1 1
0 0 1 1
0 1 0 1
1 0 0 1

X11 :



1 1 1 0
1 1 0 1
1 0 1 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1


X ′11 :



1 1 1 0
1 1 0 1
1 0 1 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1


Y11 :



1 1 1 0 0
1 1 0 1 0
1 0 1 1 0
0 0 1 1 1
0 1 0 1 1
1 0 0 1 1



X12 :



1 1 1 0
1 1 0 1
1 0 1 1
0 0 1 1
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 1


X ′12 :



1 1 1 0
1 1 0 1
1 0 1 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 1 1 1


Y12 :



1 1 1 0 0
1 1 0 1 0
1 0 1 1 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 1


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X13 :



1 1 1 0
1 1 0 1
1 0 1 1
0 0 1 1
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 1
1 0 1 0


Y13 :



1 1 1 0 0
1 1 0 1 0
1 0 1 1 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 1 1


X14 :



1 1 1 0
1 1 0 1
1 0 1 1
0 0 1 1
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0


Y14 :



1 1 1 0 0
1 1 0 1 0
1 0 1 1 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 1 1
1 0 1 0 1



X15
∼= PG(3, 2)∗ :



1 1 1 0
1 1 0 1
1 0 1 1
0 0 1 1
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1



Y15 :



1 1 1 0 0
1 1 0 1 0
1 0 1 1 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 1 1
1 0 1 0 1
1 1 0 0 1


(2)

Proof of Theorem 2.1: If M is one of the matroids listed in (i) to (iii), then162

M is internally 4-connected. All matroids in (i) or (iii) are regular, thus are163

P9-free. Using the Sage matroid package, it is easy to verify that Y16 is P9-free,164

hence all matroids in (ii) are also P9-free. Let M be an internally 4-connected165

binary matroid with no P9-minor. If M is regular, then by Theorem 2.3, M is166

either graphic, cographic, or isomorphic to R10, which is regular. Therefore,167

we need only show that an internally 4-connected matroid M is non-regular168

and P9-free if and only if M is a non-regular minor of Y16. Suppose that M is169

an internally 4-connected non-regular and P9-free matroid. If M has exactly170

seven elements, then M ∼= F7 or M ∼= F ∗7 . Suppose that M has at least eight171

elements. By Theorem 2.4, M has an N10, X10, X∗10, T12\e, or T12/e-minor.172

Since all but X10 has a P9-minor among these matroids, M must have an X10-173

minor. We use the Sage matroid package (by writing simple Python scripts)174

and the matroid software Macek independently to do our computation and175

have obtained the same result. Excluding P9, we extend and coextend X10176

seven times and found only thirteen 3-connected binary matroids. These ma-177

troids are X11, X ′11, Y11, X12, X
′
12, Y12, X13, Y13, X14, Y14, X15

∼= PG(3, 2)∗, Y15,178
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and Y16; each having at most 16 elements; each being a minor of Y16; and each179

being internally 4-connected. As X10 is neither a wheel nor a whirl, by the180

Splitter Theorem (Theorem 2.2), M is one of the matroids in L, each of which181

is a non-regular internally 4-connected minor of Y16. Note that all non-regular182

internally 4-connected minors of Y16 are P9-free, hence L consists of all inter-183

nally 4-connected non-regular minors of Y16.184

3 Characterizing 3-connected binary P9-free matroids185

In this section, we will prove our main result. We begin with several lemmas.186

Let G be a graph with a specified triangle T = {e1, e2, e3}. By a rooted K ′′4 -187

minor using T we mean a loopless minor H of G such that si(H) ∼= K4;188

{e1, e2, e3} remains a triangle of H; and H\{ei, ej} is isomorphic to K4, for189

some distinct i, j ∈ {1, 2, 3}. By a rooted K ′4-minor using T we mean a loopless190

minor H of G such that si(H) ∼= K4; {e1, e2, e3} remains a triangle of H; and191

H\ei is isomorphic to K4, for some i ∈ {1, 2, 3}. Let T be a specified triangle192

of a matroid M . We can define a rooted M(K ′4)-minor using T and a rooted193

M(K ′′4 )-minor using T similarly. Moreover, in the following proof, any K ′4194

is obtained from K4 by adding a parallel edge to an element in the common195

triangle T used in the 3-sum specified in the context.196

Lemma 3.1. ([12]) Let T be a triangle of 3-connected binary matroid M with197

at least four elements. Then T is contained in a M(K4)-minor of M .198

Lemma 3.2. ([1]) Let T be a triangle of a binary non-graphic matroid M .199

Then the following are true:200

(i) If M is non-regular, then T is contained in a F7-minor;201

(ii) If M is regular but not graphic, then T is contained in a M∗(K3,3)-202

minor.203

Let M1 and M2 be matroids with ground sets E1 and E2 such that E1 ∩204

E2 = T and M1|T = M2|T = N . The following result of Brylawski [2] about205

the generalized parallel connection can be found in [9, Propsition 11.4.14].206

Lemma 3.3. The generalized parallel connection PN (M1,M2) has the follow-207

ing properties:208

(i) PN (M1,M2)|E1 = M1 and PN (M1,M2)|E2 = M2.209

(ii) If e ∈ E1 − T , then PN (M1,M2)\e = PN (M1\e,M2).210

(iii) If e ∈ E1 − cl1(T ), then PN (M1,M2)/e = PN (M1/e,M2).211

(iv) If e ∈ E2 − T , then PN (M1,M2)\e = PN (M1,M2\e).212
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(v) If e ∈ E2 − cl2(T ), then PN (M1,M2)/e = PN (M1,M2/e).213

(vi) If e ∈ T , then PN (M1,M2)/e = PN/e(M1/e,M2/e).214

(vii) PN (M1,M2)/T = (M1/T )⊕ (M2/T ).215

In the rest of this paper, we consider the case when the generalized parallel216

connection is defined across a triangle T , where T is the common triangle of217

the binary matroids M1 and M2. Then PN (M1,M2) = PN (M2,M1) (see [9,218

Propsition 11.4.14]). Moreover, N = M1|T = M2|T ∼= U2,3. We will use T to219

denote both the triangle and the submatroid M1|T . Thus we use PT (M1,M2)220

instead of PN (M1,M2) for the rest of the paper.221

Lemma 3.4. Let M = PT (M1, PS(M2,M3)) where Mi is a binary matroid222

(1 ≤ i ≤ 3); S is the common triangle of M2 and M3; T is the common223

triangle of M1 and M2. Then the following are true:224

(i) if E(M1) ∩ (E(M3)\E(M2)) = ∅, then M = PS(PT (M1,M2),M3);225

(ii) if E(M1)∩E(M3) = ∅, then M1⊕3 (M2⊕3M3) = (M1⊕3M2)⊕3M3.226

Proof. (i) As E(M1) ∩ (E(M3)\E(M2)) = ∅, T = E(M1) ∩ E(PS(M2,M3)),227

and T is the common triangle of M1 and PS(M2,M3). Moreover, S = E(M3)∩228

E(PT (M1,M2)), and S is the common triangle of M3 and PT (M1,M2). By [9,229

Proposition 11.4.13], a set F of M is a flat if and only if F ∩E(M1) is a flat of230

M1 and F ∩E(PS(M2,M3)) is a flat of PS(M2,M3). The latter is true if and231

only if [F ∩ (E(M2)∪E(M3))]∩E(Mi) = F ∩E(Mi) is a flat of Mi for i = 2, 3.232

Therefore, F is a flat of M if and only if F ∩E(Mi) is a flat of Mi for 1 ≤ i ≤ 3.233

The same holds for PS(PT (M1,M2),M3). Thus M = PS(PT (M1,M2),M3).234

(ii) As E(M1)∩E(M3) = ∅, we deduce that S∩T = ∅, and the conclusion
of (i) holds. Therefore,

PT (M1, PS(M2,M3))\(S ∪ T ) = PS(PT (M1,M2),M3)\(S ∪ T ).

By Lemma 3.3, we conclude that

PT (M1, PS(M2,M3)\S)\T = PS(PT (M1,M2)\T,M3)\S.

That is, M1 ⊕3 (M2 ⊕3 M3) = (M1 ⊕3 M2)⊕3 M3.235

Lemma 3.5. Let M = PT (M1,M2) where Mi is a binary matroid (1 ≤ i ≤ 2)236

and T is the common triangle of M1 and M2. Then C∗ is a cocircuit of M if237

and only if one of the following is true:238

(i) C∗ is a cocircuit of M1 or M2 avoiding T ;239

(ii) C∗ = C∗1 ∪C∗2 where C∗i is a cocircuit of Mi such that C∗1 ∩T = C∗2 ∩T ,240

which has exactly two elements.241
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Proof. By [9, Proposition 11.4.13], a set F of M is a flat if and only if
F ∩ E(Mi) is a flat of Mi for 1 ≤ i ≤ 2. Moreover, for any flat F of M ,
r(F ) = r(F ∩E(M1))+r(F ∩E(M2))−r(F ∩T ) (see, for example, [9, (11.23)]).
Let C∗ be a cocircuit of M and H = E(M)−C∗. As M is binary, |C∗ ∩ T | =
0, 2, and thus |H ∩ T | = 3, 1. First assume that |C∗ ∩ T | = 0. As r(H) =
r(H∩E(M1))+r(H∩E(M2))−r(H∩T ), then r(M)−1 = r(M1)+r(M2)−3 =
r(H) = r(H ∩ E(M1)) + r(H ∩ E(M2))− 2. Thus,

r(M1) + r(M2)− 1 = r(H ∩ E(M1)) + r(H ∩ E(M2)).

Therefore, either r(H ∩E(M1)) = r(M1)− 1 and r(H ∩E(M2)) = r(M2),242

or r(H ∩ E(M2)) = r(M2) − 1 and r(H ∩ E(M1)) = r(M1). In the former243

case, as H ∩ E(M1) and H ∩ E(M2) are flats of M1 and M2 respectively, we244

deduce that H ∩E(M2) = E(M2); H ∩E(M1) is a hyperplane of M1 and thus245

C∗ ⊆ E(M1) is a cocircuit of M1 avoiding T . The latter case is similar.246

If |C∗ ∩ T | = 2, then |H ∩ T | = 1. As r(H) = r(H ∩ E(M1)) + r(H ∩
E(M2))− r(H ∩T ), we deduce that r(M)− 1 = r(M1) + r(M2)− 3 = r(H) =
r(H ∩ E(M1)) + r(H ∩ E(M2))− 1. We conclude that

r(M1) + r(M2)− 2 = r(H ∩ E(M1)) + r(H ∩ E(M2)).

Now, for 1 ≤ i ≤ 2, H ∩ E(Mi) is a proper flat of Mi, so that r(H ∩247

E(Mi)) ≤ r(Mi) − 1. Therefore, r(H ∩ E(M1)) = r(M1) − 1 and r(H ∩248

E(M2)) = r(M2)− 1. We conclude that C∗i = E(Mi)−H is a cocircuit of Mi249

and C∗ = C∗1 ∪C∗2 such that C∗1 ∩T = C∗2 ∩T , which has exactly two elements.250

Note that the converse of the above arguments is also true, thus the proof of251

the lemma is complete.252

The following corollary might be of independent interest.253

Corollary 3.6. Let M1 and M2 be a binary matroids and M = M1 ⊕3 M2254

such that M1 and M2 have the common triangle T . Then the following are255

true:256

(i) any cocircuit C∗ of M is either a cocircuit of M1 or M2 avoiding T , or257

C∗ = C∗1∆C∗2 where C∗i is a cocircuit of Mi (i = 1, 2) such that C∗1∩T = C∗2∩T ,258

which has exactly two elements.259

(ii) if C∗ is either a cocircuit of M1 or M2 avoiding T , then C∗ is also260

a cocircuit of M . Moreover, suppose that C∗i is a cocircuit of Mi such that261

C∗1 ∩ T = C∗2 ∩ T , which has exactly two elements. Then either C∗1∆C∗2 is a262

cocircuit of M , or C∗1∆C∗2 is a disjoint union of two cocircuits R∗ and Q∗ of263

M , where R∗ and Q∗ meet both M1 and M2.264
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Proof. As M = M1 ⊕3 M2 = PT (M1,M2)\T , the cocircuits of M are the265

minimal non-empty members of the set F = {D − T : D is a cocircuit of266

PT (M1,M2)}. If C∗ is a cocircuit of M , then C∗ = D − T for some cocircuit267

D of PT (M1,M2). By the last lemma, either (a) D is a cocircuit of M1 or M2268

avoiding T , or (b) D = C∗1 ∪ C∗2 where C∗i is a cocircuit of Mi (i = 1, 2) such269

that C∗1 ∩ T = C∗2 ∩ T , which has exactly two elements. In (a), C∗ = D, and270

in (b), C∗ = C∗1∆C∗2 . Hence either (i) or (ii) holds in the lemma.271

Conversely, if C∗ is either a cocircuit of M1 or M2 avoiding T , then clearly272

C∗ is also a cocircuit of M , as C∗ = C∗ − T is clearly a non-empty minimal273

member of the set F . Now suppose that C∗i (i = 1, 2) is a cocircuit of Mi such274

that C∗1 ∩ T = C∗2 ∩ T , which has exactly two elements. If C∗1∆C∗2 is not a275

cocircuit of M , then it contains a cocircuit R∗ of M which is a proper subset276

of C∗1∆C∗2 . Clearly, R∗ must meet both C∗1 and C∗2 . By (i), R∗ = R∗1∆R∗2,277

where R∗i is a cocircuit of Mi (i = 1, 2) such that R∗1 ∩ T = R∗2 ∩ T , which278

has exactly two elements. Suppose that C∗1 ∩ T = C∗2 ∩ T = {x, y}, then279

R∗1 ∩ T = R∗2 ∩ T = {x, z} or {y, z}, say the former. Moreover, R∗i \T is a280

proper subset of C∗i \T for i = 1, 2 as T does not contain any cocircuit of281

either M1 or M2. As both M1 and M2 are binary, Q∗i = C∗i ∆R∗i (i = 1, 2)282

contains, and indeed, is a cocircuit of Mi such that Q∗1 ∩T = Q∗2 ∩T = {y, z}.283

Now it is straightforward to see that Q∗1∆Q∗2 is a minimal non-empty member284

of F and thus is a cocircuit of M . As C∗ = R∗ ∪Q∗, (ii) holds.285

The 3-sum of two cographic matroids may not be cographic. However,286

the following is true.287

Lemma 3.7. Suppose that M1 = M∗(G1) and M2 = M∗(G2) are both co-288

graphic matroids with u and v being vertices of degree three in G1 and G2,289

respectively. Label both uui and vvi as ei (1 ≤ i ≤ 3) so that T = E(M1) ∩290

E(M2) = {e1, e2, e3} is the common triangle of M1 and M2. Then PT (M1,M2) =291

M∗(G), where G is obtained by adding a matching {u1v1, u2v2, u3v3} between292

G1−u and G2− v. In particular, M∗(G1)⊕3M
∗(G2) = M∗(G/e, f, g) is also293

cographic.294

Proof. We need only show that PT (M1,M2) and M∗(G) have the same set of295

cocircuits. By Lemma 3.5, C∗ is a cocircuit of M = PT (M1,M2) if and only296

if one of the following is true:297

(i) C∗ is a cocircuit of M1 or M2 avoiding T . In other words, C∗ is either298

a circuit of G1 or a circuit of G2 which does not meet T (i.e., C∗ is a circuit299

of either G1 − u or a circuit of G2 − v);300

(ii) C∗ = C∗1 ∪ C∗2 where C∗i is a cocircuit of Mi such that C∗1 ∩ T =301

C∗2 ∩ T , which has exactly two elements. In other words, C∗ = C∗1 ∪C∗2 where302

C∗i (i = 1, 2) is a circuit of Gi containing u and v respectively, such that303
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C∗1 ∩ T = C∗2 ∩ T , which contains exactly two edges. Now it is easily seen304

that the set of cocircuits of M is exactly equal to the set of circuits of M(G)305

(or the set of cocircuits of M∗(G)). In particular, M∗(G1) ⊕3 M
∗(G2) =306

PT (M∗(G1),M∗(G2))\T = M∗(G)\T = M∗(G/e, f, g) is cographic. This307

completes the proof of the lemma.308

The following consequence of the last lemma will be used frequently in309

the paper.310

Corollary 3.8. Suppose that M∗(K3,m),M∗(K ′3,m),M∗(K3,n) ∈ K (m,n ≥311

2). Then the following are true:312

(i) M∗(K3,m)⊕3 M
∗(K3,n)) ∼= M∗(K3,m+n−2);313

(ii) M∗(K ′3,m)⊕3 M
∗(K3,n) ∼= M∗(K ′3,m+n−2);314

(iii) P (M∗(K3,m),M(K4)) is cographic and is isomorphic to M∗(G) where315

G is obtained by putting a 3-edge matching between the 3-partite set of K3,m−1316

and the three vertices of K3.317

(iv) M∗(K3,m) ⊕3 M(K ′4)) ∼= M∗(K ′3,m) where K ′4 is obtained from K4318

by adding a parallel edge to an element in the common triangle T used in the319

3-sum.320

(v) if M1
∼= M∗(K ′3,m), and M2

∼= M(K ′4), then depending on which321

element in T is in a parallel pair in M(K ′4) and which extra edge was added322

to K ′3,m from K3,m, the matroid M1 ⊕3 M2 is either isomorphic to M∗(K ′′3,m)323

or M∗(G), where G is obtained from K ′3,m by adding an edge parallel to the324

extra edge.325

(vi) if M1 ∈ K and M2
∼= M(K ′4), then either M1 ⊕3 M2 ∈ K or M1 ⊕3326

M2
∼= M∗(G), where G has a parallel pair which does not meet any triad of327

G.328

(vii) if M1 ∈ K and M2 ∈ K, then either M1 ⊕3 M2 ∈ K or M1 ⊕3 M2
∼=329

M∗(G), where G has at least one parallel pair which does not meet any triad330

of G.331

Proof. (i)-(v) are direct consequences of Lemma 3.7. Suppose that M1 ∈ K332

and is isomorphic to M∗(K3,m), M∗(K ′3,m), M∗(K
′′
3,m), or M∗(K

′′′
3,m). Then333

either M1 ⊕3 M2
∼= M∗(K ′3,m),M∗(K

′′
3,m) or M∗(K

′′′
3,m) and thus is in K (in334

this case, M1 is not isomorphic to M∗(K
′′′
3,m)), or isomorphic to M∗(G), where335

G is obtained from K ′3,m,K
′′
3,m, or K

′′′
3,m by adding an edge in parallel to an336

existing edge added between two vertices of the 3-partite set of K3,m. Clearly,337

this parallel pair does not meet any triad of G. We omit the straightforward338

and similar proof of (vii).339

12



Corollary 3.9. Let M be a binary matroid and M = M1⊕3M2 where M1 is a340

starfish. Suppose that M2 is a starfish, or M2
∼= M(K ′4), or M2

∼= M∗(G) ∈ K:341

G ∼= K3,n, K ′3,n, K ′′3,n, or K ′′′3,n (n ≥ 2). Then either M is also a starfish, or342

M has a 2-element cocircuit which does not meet any triangle of M .343

Proof. Suppose that the starfish M1 uses s Fano matroids and M2 uses t344

Fano matroids where s ≥ 1 and t ≥ 0. Clearly, in the starfish M1, any345

triangle is a triad in the corresponding 3-connected graph G1
∼= K3,m, K ′3,m,346

K ′′3,m, or K ′′′3,m (m ≥ 2) used to construct M1. We assume that first s = 1347

and t = 0. Then by the definition of the starfish, M1
∼= F7 ⊕3 N1, where348

N1
∼= M∗(G1), and either M2

∼= M(K ′4), or M2
∼= M∗(G); G is 3-connected349

where G ∼= K3,n, K ′3,n, K ′′3,n, or K ′′′3,n (n ≥ 2). By Lemma 3.4, we have that350

M = (F7 ⊕3 N1) ⊕3 M2
∼= F7 ⊕3 (N1 ⊕3 M2) (the condition of the lemma is351

clearly satisfied). By Corollary 3.8, we deduce that either N1 ⊕3 M2 ∈ K, or352

it has a 2-element cocircuit avoiding any triangle of N1 ⊕3 M2. In the former353

case, we conclude that M is a starfish. In the latter case, by Corollary 3.6, M354

has a 2-element cocircuit avoiding any triangle of M . The general case follows355

from an easy induction argument using Lemmas 3.4 and Corollaries 3.6 and356

3.8.357

Lemma 3.10. Suppose that M ∼= M∗(G) for a 3-connected graph G ∼= K3,n,358

K ′3,n, K ′′3,n, or K ′′′3,n (n ≥ 2), or M is a starfish. Then for any triangle T of359

M , there are at least two elements e1, e2 of T , such that for each ei (i = 1, 2),360

there is a rooted K ′4-minor using both T and ei such that ei is in a parallel361

pair.362

Proof. Suppose that M ∼= M∗(G) for a 3-connected graph G ∼= K3,n, K ′3,n,363

K ′′3,n, or K ′′′3,n (n ≥ 2). When n ≥ 3, the proof is straightforward. When n = 2,364

then G ∼= W4 or K5\e, and the result is also true.365

Now suppose thatM is a starfish constructed by starting fromN ∼= M∗(G)366

for a 3-connected graph G ∼= K3,n, K ′3,n, K ′′3,n, or K ′′′3,n (n ≥ 2) with t (1 ≤367

t ≤ n) copies of F7 by performing 3-sum operations. Choose an element fi368

of E(M) in each copy of F7 (1 ≤ i ≤ t). By the definition of a starfish, and369

by using Lemma 3.3(iii),(v), M/f1, f2, . . . ft is isomorphic to N containing T .370

Now the result follows from the above paragraph.371

We will need the following result [11, 11.1].372

Lemma 3.11. Let e be an edge of a simple 3-connected graph G on more than373

four vertices. Then either G\e is obtained from a simple 3-connected graph374

by subdividing edges or G/e is obtained from a simple 3-connected graph by375

adding parallel edges.376
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Let G = (V,E) be a graph and let x, y be distinct elements of V ∪ E.377

By adding an edge between x, y we obtain a graph G′ defined as follows. If x378

and y are both in V , we assume xy 6∈ E and we define G′ = (V,E ∪ {xy});379

if x is in V and y = y1y2 is in E, we assume x 6∈ {y1, y2} and we define380

G′ = (V ∪ {z}, (E\{y}) ∪ {xz, y1z, y2z}); if x = x1x2 and y = y1y2 are both381

in E, we define G′ = (V ∪ {u, v}, (E\{x, y}) ∪ {ux1, ux2, uv, vy1, vy2})382

Lemma 3.12. Let G be a simple 3-connected graph with a specified triangle383

T . Then G has a rooted K ′′4 -minor unless G is K4, W4, or Prism.384

Proof. Suppose the Lemma is false. We choose a counterexample G =385

(V,E) with |E| as small as possible. Let x, y, z be the vertices of T . We first386

prove that G− {x, y, z} has at least one edge.387

Suppose G − {x, y, z} is edgeless. Since G is 3-connected, every vertex388

in V − {x, y, z} must be adjacent to all three of x, y, z, which means that389

G = K ′′′3,n for a positive integer n. Since G is a counterexample, G cannot390

be K4 and thus G contains K ′′′3,2, which contains a rooted K ′′4 -minor. This391

contradicts the choice of G and thus G− {x, y, z} has at least one edge.392

Let e = uv be an edge of G − {x, y, z}. By Lemma 3.12, there exists a393

simple 3-connected graph H such that at least one of the following holds:394

Case 1. G\e is obtained from H by subdividing edges;395

Case 2. G/e is obtained from H by adding parallel edges.396

Since H is a proper minor of G and H still contains T , by the minimality of397

G, H has to be K4, W4, or Prism, because otherwise H (and G as well) would398

have a rooted K ′′4 -minor. Now we need to deduce a contradiction in Case 1399

and Case 2 for each H ∈ {K4,W4, Prism}.400

Let P+ be obtained from Prism by adding an edge between two nonadja-401

cent vertices. Before we start checking the cases we make a simple observation:402

with respect to any of its triangles, P+ has a rooted K ′′4 -minor. As a result, G403

cannot contain a rooted P+-minor: a P+-minor in which T remains a triangle.404

We first consider Case 1. Note that G is obtained from H by adding405

an edge between some α, β ∈ V ∪ E. By the choice of e, we must have406

α, β 6∈ V (T ) ∪ E(T ). If H = K4 then G = Prism, which contradicts the407

choice of G. If G = W4 or Prism, then it is straightforward to verify that G408

contains a rooted P+-minor (by contracting at most two edges), which is a409

contradiction by the above observation.410

Next, we consider Case 2. Let w be the new vertex created by contracting411

e. Then G/e is obtained from H by adding parallel edges incident with w.412

Observe that w has degree three in H, for each choice of H. Consequently,413

as G is simple, G has four, three, or two more edges than H. Suppose G has414
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four or three more edges than H. Then H is G− u or G− v. Without loss of415

generality, let H = G−u. Choose three paths Px, Py, Pz in H from v to x, y, z,416

respectively, such that they are disjoint except for v. Now it is not difficult417

to see that a rooted K ′′4 -minor of G can be produced from the union of the418

triangle T , the three paths Px, Py, Pz, and the star formed by edges incident419

with u. This contradiction implies that G has exactly two more edges than420

H. Equivalently, G is obtained from H by adding an edge between a neighbor421

s of w and an edge wt with t 6= s.422

If H = K4 then G = W4, which contradicts the choice of G. If H = W4423

then G = W5 or P+. In both cases, G contain a rooted K ′′4 -minor, no matter424

where the special triangle is. Finally, if H = Prism then G contains a rooted425

P+-minor, which is impossible by our early observation. In conclusion, Case426

2 does not occur, which completes our proof.427

Lemma 3.13. Let M = M∗(G) be a 3-connected cographic matroid with a428

specified triangle T . Then M has a rooted K ′′4 -minor using T unless G ∼= K3,n,429

K ′3,n, K ′′3,n, or K ′′′3,n for some n ≥ 1. In particular, if M∗(G) is not graphic,430

then n ≥ 3.431

Proof. Suppose that M does not contain rooted K ′′4 -minor using T . Note that432

M∗(G) does not have a rooted K ′′4 -minor using T if and only if G does not have433

a minor obtained from K4 (where T is cocircuit) by subdividing two edges of434

T . Now we show that T is a vertex triad (which corresponds to a star of degree435

three). Otherwise, let G−E(T ) = X∪Y , where T is a 3-element edge-cut but436

not a vertex triad. If G ∼= Prism, then clearly M∗(G) has a rooted K ′′4 -minor;437

a contradiction. If G is not isomorphic to a Prism, we can choose a cycle in438

one side and a vertex in another side which is not incident with any edge of T.439

Then we can get a rooted K ′′4 -minor; a contradiction again. Hence the edges of440

T are all incident to a common vertex v of degree three with neighbors v1, v2,441

and v3. A rooted K ′′4 -minor using T exists if and only if G has a cycle missing442

v and at least two of v1, v2, and v3. Hence every cycle of G − v contains at443

least two of v1, v2, and v3, and thus G− v− vi− vj is a tree for 1 ≤ i 6= j ≤ 3.444

Moreover, G−v−v1−v2−v3 has to be an independent set. Otherwise, it is a445

forest. Take two pedants in a tree, each of which has at least two neighbors in446

v1, v2, or v3. Thus G−v contains a cycle missing at least two vertices of v1, v2,447

and v3. This contradiction shows that G− v − v1 − v2 − v3 is an independent448

set and thus G is K3,n, K ′3,n, K ′′3,n, or K ′′′3,n for some n ≥ 1. In particular, if449

M∗(G) is not graphic, then n ≥ 3.450

Lemma 3.14. Let M be a 3-connected binary P9-free matroid and M = M1⊕3451

M2 where M1 is non-regular, and M1 and M2 have the common triangle T .452

Then453
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(i) if M2 is graphic, then either M2
∼= M(G) where G is W4 or the Prism,454

or M2
∼= M(K

′
4) where M(K

′
4) is obtained from M(K4) (which contains T )455

by adding an element parallel to an element of T ;456

(ii) if M2 is cographic but not graphic, then M2
∼= M∗(G), where G ∼=457

K3,n, K ′3,n, K ′′3,n, or K ′′′3,n for some n ≥ 3.458

Proof. Suppose that M = P (M1,M2)\T , where T is the common triangle of459

M1 and M2. As M is 3-connected, by [11, 4.3], both si(M1) and si(M2) are460

3-connected, and only elements of T can have parallel elements in M1 or M2.461

Then by Lemma 3.2, T is contained in a F7-minor in si(M1). Now M2 does462

not contain a rooted K
′′
4 -minor using T , where K

′′
4 is obtained from this K4463

by adding a parallel element to any two of the three elements of T (otherwise,464

the 3-sum of M1 and M2 contains a P9-minor).465

If M2 is graphic, then by Lemma 3.12, si(M2) ∼= M(G) where G is either466

W3,W4 or the Prism. When G is either W4 or the Prism, then it is easily seen467

that M2 has to be simple, and thus M2
∼= W4 or Prism. If G ∼= W3, then as M468

is P9-free and M2 has at least seven elements (from the definition of 3-sum),469

it is easily seen that M2
∼= M(K

′
4).470

If M2 is cographic but not graphic, then by Lemma 3.13, si(M2) ∼= M∗(G),471

where G is K3,n, K ′3,n, K ′′3,n, or K ′′′3,n for some n ≥ 3. If M2 is not simple,472

then it is straightforward to find a rooted M(K
′′
4 )-minor using T in M2, thus473

a P9-minor in M ; a contradiction. This completes the proof of the lemma.474

Lemma 3.15. Let M be a 3-connected regular matroid with at least six ele-475

ments and T be a triangle of M . Then M has no rooted M(K ′′4 )-minor using T476

if and only if M is isomorphic to a 3-connected matroid M∗(K3,n), M∗(K ′3,n),477

M∗(K ′′3,n), M∗(K ′′′3,n) for some n ≥ 1.478

Proof. If M is isomorphic to a 3-connected matroid M∗(K3,n), M∗(K ′3,n),479

M∗(K ′′3,n), M∗(K ′′′3,n) (n ≥ 1), then it is straightforward to check for any480

triangle T , M has no rooted M(K ′′4 )-minor using T .481

Conversely, suppose that M is a 3-connected regular matroid with at least482

six elements and T is a triangle of M , such that M has no rooted M(K ′′4 )-483

minor using T . If M is internally 4-connected, then by Theorem 2.3, M is484

either graphic, cographic, or is isomorphic to R10. The result follows from485

Lemmas 3.12 and 3.13, and the fact that R10 is triangle-free. So we may486

assume that M is not internally 4-connected and has a 3-separation (X,Y )487

where |X|, |Y | ≥ 4. We may assume that |X ∩ T | ≥ 2.488

Suppose that Y ∩ T has exactly one element e. Then as T is a triangle,489

(X ∪ e, Y \e) is also a 3-separation. If |Y | = 4, then Y − e is a triangle or a490

triad. Moreover, r(Y ) + r∗(Y ) − |Y | = 2. As M is 3-connected and binary,491
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r(Y ), r∗(Y ) ≥ 3, and thus r(Y ) = r∗(Y ) = 3. If Y − e is a triangle, then492

it is not a triad, and thus Y contains a cocircuit which contains e. This is493

a contradiction as this cocircuit meets T with exactly one element. Hence494

Y − e is a triad, and from r(Y ) = 3, there is an element f ∈ T, f 6= e495

such that Y − f is a triangle. In other words, Y forms a 4-element fan. We496

conclude that M ∼= M1⊕3M(K ′4) by [11, 2.9] where S is the common triangle497

of M1 and M(K ′4), and M(K ′4) is obtained from M(K4) (containing T ) by498

adding an element e1 in parallel to an element e of S. By switching the499

label of e1 to e in M1, we obtain a matroid M ′1 (∼= M1) which is isomorphic500

to a minor of M having triangle T . By [11, 4.3], si(M1) is 3-connected.501

Hence by induction, si(M1) is isomorphic to a 3-connected matroid M∗(K3,m),502

M∗(K ′3,m), M∗(K ′′3,m), M∗(K ′′′3,m) for some m ≥ 1. As M has no rooted503

M(K ′′4 )-minor using T , we have that rM1(S ∪ T ) > 2. Moreover, the element504

e1 is in two triangles of si(M1), so m ≤ 3. Now using Lemma 3.7, it is505

straightforward to verify that M ∼= W4
∼= M∗(K ′′3,2) and thus the Lemma506

holds. Hence we may assume that |Y | ≥ 5 and thus |Y \e| ≥ 4.507

Therefore we may assume that M has a separation (X,Y ) such that T ⊆508

X, and both X and Y have at least four elements. Hence by [11, (2.9)],509

M = M1 ⊕3 M2 where M1 and M2 are isomorphic to minors of M having the510

common triangle S, and T is a triangle of M1. Moreover, |E(Mi)| < |E(M)|511

for i = 1, 2, and both si(M1) and si(M2) are 3-connected [11, (4.3)]. First512

assume that each element of S is parallel to an element of T in M1. Then by513

Lemma 3.1, si(M1) contains a rooted M(K4)-minor using T . As each element514

of T in M1 is in a parallel pair, we conclude that M has a rooted M(K ′′4 )-minor515

using T ; a contradiction.516

So we may assume that at least one element of T is not parallel to an517

element of S (as M is binary, there are at least two such elements). As518

si(M1) is a 3-connected minor of M , it has no rooted M(K ′′4 )-minor using T .519

By induction, si(M1) ∼= M∗(K3,s), M∗(K ′3,s), M
∗(K ′′3,s), M

∗(K ′′′3,s) for some520

s ≥ 2, or si(M1) ∼= M(K4). Remove all elements of M1 not in the set S ∪ T521

in PS(M1,M2). Then every element of T\S is parallel to an element of S\T .522

Contracting all elements of S\T , we obtained a minor of M isomorphic to M2523

and T is a triangle of this minor. By induction again, si(M2) ∼= M∗(K3,t),524

M∗(K ′3,t), M
∗(K ′′3,t), M

∗(K ′′′3,t) for some t ≥ 2, or si(M2) ∼= M(K4). Suppose525

that si(Mi) ∼= M(K4) for some i = 1, 2. Then as Mi have at least seven526

elements and M has no rooted M(K ′′4 )-minor using T , we deduce that Mi
∼=527

M(K ′4). As M has no M(K ′′4 )-minor containing T , and M is 3-connected,528

using Corollary 3.8, it is routine to verify that M ∼= M∗(K3,n),M∗(K ′3,n),529

M∗(K ′′3,n), or M∗(K ′′′3,n) for some n ≥ 2.530

Corollary 3.16. Let M be a 3-connected binary non-regular P9-free matroid.531

Suppose that M = M1⊕3M2 such that M1 and M2 have the common triangle532
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T . If M2 is regular, then M2 is isomorphic to a 3-connected matroid M∗(K3,n),533

M∗(K ′3,n), M∗(K ′′3,n), or M∗(K ′′′3,n) (n ≥ 2), or M2
∼= M(K ′4) where M(K ′4)534

is obtained from M(K4) (containing T ) by adding an element in parallel to an535

element of T .536

Proof. As M is 3-connected, by [11, 4.3], both si(M1) and si(M2) are 3-537

connected, and only elements of T can have parallel elements in M1 or M2.538

As M is non-regular and M2 is regular, si(M1) is non-regular and thus (by539

Lemma 3.2) has a F7-minor containing the common triangle T of M1 and540

M2. As M is P9-free, M2 has no rooted M(K ′′4 )-minor using T . By Lemma541

3.15, si(M2) is isomorphic to a 3-connected matroid M∗(K3,n), M∗(K ′3,n),542

M∗(K ′′3,n), M∗(K ′′′3,n) (n ≥ 2), or M(K4). Now using Lemma 3.10, it is543

straightforward to check that either M2
∼= M(K ′4), or M2 is simple, and544

M2
∼= M∗(K3,n), M∗(K ′3,n), M∗(K ′′3,n), or M∗(K ′′′3,n) (n ≥ 2).545

Now we are ready to prove our main theorem.546

Proof of Theorem 1.2. Suppose that a starfish M is constructed from a 3-547

connected cographic matroid N by consecutively applying the 3-sum opera-548

tions with t copies of F7, where N ∼= M∗(G); G ∼= K3,n,K
′
3,n,K

′′
3,n, or K ′′′3,n549

for some n ≥ 2. First we show that M is 3-connected. We use induction on t.550

When t = 0, N is 3-connected. Suppose that M is 3-connected for t < k ≤ n.551

Now suppose that t = k. Then M = M1 ⊕3 F , where F ∼= F7 and M1 and F552

share the common triangle T . Take an element f of E(F ) ∩ E(M). Then by553

Lemma 3.3, M/f = P (M1, F/e)\T ∼= M1, which is a starfish with t = k − 1,554

and thus is 3-connected by induction. If M is not 3-connected, then f is either555

in a loop of M , or is in a cocircut of size one or two. Clearly, M does not have556

any loop, thus f is in a cocircuit C∗ of M with size one or two. As P (M1, F )557

is 3-connected, it does not contain any cocircuit of size less than three. Hence558

C∗∪T contains a cocircuit D∗ of P (M1, F ). As P (M1, F ) is binary, D∗∩T has559

exactly two elements, and thus D∗ has at most four elements. As T contains560

no cocircuit of either M1 or F , by Lemma 3.5, F ∼= F7 has a cocircuit of size561

at most three meeting two elements of T . This contradiction shows that M is562

3-connected.563

Next we show that if M is one of the matroid listed in (i)-(iv), then M564

is P9-free. By Theorem 2.1 and the fact that all spikes and regular matroids565

are P9-free, we need only show that any starfish is P9-free. We use induction566

on the number of elements of the starfish M . By the definition, the unique567

smallest starfish has nine elements, and is isomorphic to P ∗9 . Clearly, P ∗9 is568

P9-free. Suppose that any starfish with less than n (≥ 10) elements is P9-free.569

Now suppose that we have a starfish M with n elements. Suppose, on the570

contrary, that M has a P9-minor. Then by the Splitter Theorem (Theorem571

2.2), there is an element e in M such that either M\e or M/e is 3-connected572
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having a P9-minor. Note that the elements of a starfish consists of two types:573

those are subsets of E(N) (denote this set by K), or those are in part of copies574

of F7 (denote this set by F ). Then E(M) = K ∪ F . First we assume that575

e ∈ F . Then M = M1⊕3M2, where M1 is either one of M∗(K3,n), M∗(K ′3,n),576

M∗(K ′′3,n), or M∗(K ′′′3,n), or a starfish with fewer elements; M2
∼= F7, and577

e ∈ E(M2). By the construction of the starfish and Lemma 3.3, M/e ∼= M1578

and is either cographic or a smaller starfish and therefore does not contain579

a P9-minor; a contradiction. Therefore M\e is 3-connected and contains a580

P9-minor. But then by Lemma 3.4, M\e ∼= P (M1,M(K4))\T . By Corollary581

3.8, as M\e is 3-connected, we conclude that M\e is a smaller starfish and582

therefore is P9-free. This contradiction shows that e ∈ K.583

If e is in a triangle of M , then M/e is not 3-connected, and thus M\e584

is 3-connected and contains a P9-minor. Each triangle of M is correspond-585

ing to a triad in G. By Lemmas 3.3 and 3.4 again, we can do the deletion586

N\e first, then perform the 3-sum operations with copies of F7. Note that587

N\e ∼= M∗(G/e) where G ∼= K3,n, K ′3,n, K ′′3,n, or K ′′′3,n (n ≥ 2). As M\e588

is 3-connected and thus simple, we deduce that n ≥ 3, N ∼= M∗(K3,n) or589

M∗(K ′3,n), and N\e ∼= M∗(K ′′3,n−1), or M∗(K ′′′3,n−1). Therefore, M\e is an-590

other starfish and does not contain any P9-minor by induction; a contradiction.591

Finally assume that e ∈ K is not in any triangle of M . Then e is not in any592

triad of G. Hence if n = 2, then G ∼= K ′′′3,2. As G/e has parallel elements,593

the matroid N\e has serial-pairs, and thus M\e is not 3-connected, we con-594

clude that M/e is 3-connected having a P9-minor. Note that N ∼= M∗(K ′3,n),595

M∗(K ′′3,n), or M∗(K ′′′3,n) (n ≥ 2), and thus N/e ∼= M∗(K3,n), M∗(K ′3,n), or596

M∗(K ′′3,n), which is still 3-connected. We conclude again, by Lemma 3.3, that597

M/e is a smaller starfish than M , thus cannot contain any P9-minor. This598

contradiction completes the proof of the first part.599

Now suppose that M is a 3-connected binary matroid with no P9-minor.600

We may assume that M is not regular. If M is internally 4-connected, then601

the theorem follows from Theorem 2.1. Now suppose that M is neither regular602

nor internally 4-connected. We show that M is either a spike or a starfish.603

Suppose that |E(M)| ≤ 9. As M is not internally 4-connected, M is not F7604

or F ∗7 . Hence |E(M)| ≥ 8. Then M is AG(3, 2), S8, Z4, Z
∗
4 (all spikes), or P ∗9 ,605

which is the 3-sum of F7 and W4 = M∗(K
′′
3,2), thus is a starfish. We conclude606

that the result holds for |E(M)| ≤ 9. Now suppose that |E(M)| ≥ 10. As607

M is not internally 4-connected, M = M1 ⊕3 M2 = P (M1,M2)\T , where M1608

and M2 are isomorphic to minors of M ([11, 4.1]) and T = {x, y, z} is the609

common triangle of M1 and M2. Moreover, |E(Mi)| < |E(M)| for i = 1, 2,610

and both si(M1) and si(M2) are 3-connected [11, (4.3)]. The only possible611

parallel element(s) of either M1 or M2 are those in the common triangle. As M612

has no P9-minor, and M1 and M2 are isomorphic to minors of M , we deduce613
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that neither si(M1) nor si(M2) has a P9-minor. By induction, the theorem614

holds for both si(M1) and si(M2). As M is not regular, at least one of si(M1)615

and si(M2), say si(M1), is not regular.616

Claim: M1 (and M2) is simple unless both si(M1) and si(M2) are spikes.617

Suppose not and we may assume that x in T has a parallel element x1 in618

M1. By Lemma 3.2, T is in a F7-minor of M1 plus a parallel element x1. By619

induction, si(M2) is either regular and 3-connected, or one of the 16 internally620

4-connected non-regular minors of Y16 (thus is F7 since it has a triangle); or621

is a spike or a starfish. Moreover, si(M1) is either one of the 16 internally622

4-connected non-regular minors of Y16 (thus is F7); or is a spike or a starfish.623

Suppose that si(M2) is not a spike. Then either si(M2) is regular or is a624

starfish. By Lemmas 3.10 and 3.16, either M2
∼= M(K ′4) where M(K

′
4) is625

obtained from M(K4) (which contains T ) by adding an element parallel to626

an element of T , or T is in a rooted M(K ′4)-minor of M2 using T (obtained627

from M(K4) containing T by adding an element parallel to either y or z).628

In either case, as M is simple, we conclude that M contains a P9-minor, a629

contradiction. Hence si(M2) is a spike thus contains an F7-minor containing630

T . Now if si(M1) is not a spike, then si(M1) is a starfish. Again using Lemma631

3.10, it is easily checked that M has a P9-minor; a contradiction. Therefore632

M1 is simple unless both si(M1) and si(M2) are spikes. A similar argument633

shows that M2 is also simple unless both si(M1) and si(M2) are spikes.634

Case 1: si(M2) is regular. By Lemma 3.16, M2 is either graphic or cographic.635

Moreover,636

(i) if M2 is graphic, then either M2
∼= M(G) where G is W4 or the Prism,637

or M2
∼= M(K ′4) where M(K

′
4) is obtained from M(K4) (which contains T )638

by adding an element parallel to an element of T ; and639

(ii) if M2 is cographic but not graphic, then M ∼= M∗(G), where G ∼= K3,n,640

K ′3,n, K ′′3,n, or K ′′′3,n for some n ≥ 3.641

By the above claim, both M1 and M2 are simple. Moreover, M1 is 3-642

connected, non-regular, and P9-free. By induction, M1 is either one of the643

16 internally 4-connected non-regular minors of Y16 (therefore is F7 as M1644

has a triangle); or M1 is a spike or a starfish. That is, either M1 is a spike645

or a starfish. If M1 is a starfish, by Lemma 3.9, M = M1 ⊕3 M2 is also a646

starfish. Thus we may assume that M1 is a spike which contains a triangle.647

Then M1 is either F7, S8, Zs (s ≥ 4) or Zs\ys for some s ≥ 5. Suppose that648

M1 is F7. Then M = F7 ⊕3 M2 is either S8 (not possible as M has at least649

10 elements) or a starfish by the definition of a starfish. Suppose that M1 is650

Zs (s ≥ 4) or Zs\ys for some s ≥ 5 and suppose that M2 is not isomorphic to651

M(K ′4). Then M1 has a Z4-restriction containing T . Clearly, such restriction652

contains a F ′7-minor which is obtained from F7 (which contains T ) by adding653
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an element parallel to the tip of the spike, say x in T . By Lemma 3.10,654

T is in a M(K ′4)- minor of M2 which is obtained from K4 containing T by655

adding an element parallel to an element z 6= x of T . Thus we can find a656

P9-minor in M , a contradiction. Suppose that M1 is Zs (s ≥ 4) or Zs\ys657

for some s ≥ 5 and suppose that M2
∼= M(K ′4). If the extra element e of658

M(K ′4) added to M(K4) is not parallel to x in M2, then using the previously659

mentioned F ′7-minor of M1 containing T and the M(K ′4)-minor containing e,660

we obtain a P9-minor of M ; a contradiction. Now it is straightforward to see661

that M ∼= Zs+2\ys+2 (s ≥ 4) which is a spike, or Zs+2\ys, ys+2 (s ≥ 5). The662

latter case does not happen as {ys, ys+2} would be a 2-element cocircuit, but663

M is 3-connected. Finally we assume that M1
∼= S8 = F7 ⊕3 M(K ′4) with tip664

x. Then M = (F7 ⊕3 M(K ′4))⊕3 M2. By Lemma 3.4, M = F7 ⊕3 (M(K ′4)⊕3665

M2). By Corollary 3.16, M2 is isomorphic to a 3-connected cographic matroid666

M∗(K3,n), M∗(K ′3,n), M∗(K ′′3,n), or M∗(K ′′′3,n) (n ≥ 2), or M2
∼= M(K ′4). If667

M2
∼= M(K ′4), then |E(M)| = 9; a contradiction. Thus M2 is not isomorphic668

to M(K ′4). By Corollary 3.8, M(K ′4)⊕3M2
∼= M∗(G), where G ∼= K ′3,n, K ′′3,n,669

or K ′′′3,n for some n ≥ 2, or M(K ′4)⊕3M2 contains a 2-element cocircuit which670

does not meet any triangle of M(K ′4) ⊕3 M2. In this case, by Corollary 3.6,671

this 2-element cocircut would also be a cocircuit of M . As M is 3-connected,672

we conclude that the latter does not happen, and that M is still a starfish.673

Case 2: Neither M1 nor M2 is regular. By induction and the fact that both674

M1 and M2 have a triangle, that si(M1) is either a spike containing a triangle675

or a starfish, and so is si(M2).676

Case 2.1: Both si(M1) and si(M2) are starfishes. By the above claim,677

both M1 and M2 must be simple matroids. Now by Lemma 3.9, M is also a678

starfish.679

Case 2.2: One of si(M1) and si(M2), say the former, is a spike. Suppose680

that si(M2) is a starfish. By the claim, both M1 and M2 are simple. As M1681

contains the triangle T , it is either Zs (s ≥ 3) or Zs\ys for some s ≥ 4. If M1
∼=682

Z3
∼= F7, by the definition of a starfish, M is also a starfish. If M1

∼= Zs (s ≥ 4)683

or Zs\ys for some s ≥ 5, then M1 contains a Z4 as a restriction which contains684

T . But Z4 contains a F ′7-minor containing T where F ′7 is obtained from F7 by685

adding an element in parallel to the tip x of M1. By Lemma 3.10, T is in a686

M(K ′4)-minor of M2 which is obtained from M(K4) containing T by adding687

an element parallel to y or z. We conclude that M contains a P9-minor, a688

contradiction. Now suppose that M1
∼= Z4\y4

∼= S8 = F7⊕3M(K ′4) with tip x.689

Then M = (F7⊕3M(K ′4))⊕3M2. By Lemma 3.4, M = F7⊕3 (M(K ′4)⊕3M2).690

By Corollary 3.9, M(K ′4)⊕3M2 is either a starfish, or M(K ′4)⊕3M2 and thus691

M contains a 2-element cocircuit. As M is 3-connected, we conclude that the692

latter does not happen, and that M is still a starfish by the definition of a693

starfish.694
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Hence we may assume that si(M2) is also a spike. As si(M2) contains a695

triangle also, it is either Zt (t ≥ 3) or Zt\y′t for some t ≥ 4. Suppose that696

si(M1) and si(M2) do not share a common tip, say si(M1) has tip x and697

si(M2) has tip z. Then neither matroid is isomorphic to F7 as any element of698

T can be considered as a tip then. We first assume either si(M1) or si(M2), say699

si(M1), has at least nine elements. Then M1 has a Z4-restriction containing700

T , thus has a F ′7-minor (with a parallel pair containing x) containing T . The701

matroid si(M2) has a S8-restriction, thus has a M(K ′4)-minor (with a parallel702

pair containing z) containing T . By Lemma 3.3, we conclude that M has703

a P9-minor; a contradiction. Hence both si(M1) and si(M2) have exactly704

eight elements and both are isomorphic to S8. Now if either M1 or M2 is705

not simple, then similar to the argument above, one can get a P9-minor; a706

contradiction. Hence both matroid are simple. Now it is straightforward to707

see that M ∼= F7 ⊕3 W4 ⊕3 F7, which is a starfish.708

Therefore we may assume that si(M1) and si(M2) share a common tip,709

say x. First assume that a non-tip element in T , say y, is in a parallel pair of710

either M1 or M2, say M1. As M is both simple and P9-free, it is easily seen711

that M2 has to be simple. Since any element of T can be considered as a tip712

in F7, we deduce that both si(M1) and M2 have at least 8 elements. If one of713

these two matroids has at least 9 elements, then it contains a Z4-restriction714

containing T . Such a restriction contains a F ′7-minor containing T with x715

being in a parallel pair. At the same time, si(Mi) contains a M(K4)-minor716

containing T for i = 1, 2. Noting that y is in a parallel pair of M1, we deduce717

that M contains a P9-minor; a contradiction. Hence we may assume that718

both si(M1) and M2 contain exactly 8 elements. Now it is easily seen that M1719

contains a F ′7-minor containing T with y being in a parallel pair. At the same720

time, si(M2) contains a M(K ′4)-minor containing T with x being in a parallel721

pair. This is a contradiction as M now contains a P9-minor.722

So from now on we may assume that if M1 or M2 is not simple, then only723

x could be in a parallel pair. Indeed, as M is simple, at most one of M1 and724

M2 is not simple. Suppose that one of M1 and M2, say M1, is not simple,725

then either M ∼= Zs+t, M ∼= Zs+t\ys, M ∼= Zs+t\y′t, or M ∼= Zs+t\ys, y
′
t, all of726

which are spikes except the last matroid. The last matroid, M ∼= Zs+t\ys, y
′
t,727

however, contains a cocircuit {ys, y
′
t}, contradicting to the fact that M is 3-728

connected. Finally assume that both M1 and M2 are simple. Then M ∼=729

Zs+t\x, M ∼= Zs+t\x, ys, M ∼= Zs+t\x, y′t, or M ∼= Zs+t\x, ys, y
′
t, all of which730

are spikes except the last matroid. The last matroid, M ∼= Zs+t\x, ys, y
′
t,731

again, contains a cocircuit {ys, y
′
t}; a contradiction. This completes the proof732

of Case 2.2, thus the proof of the theorem.733
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