
EXCLUDED-MINOR CHARACTERIZATION OF APEX-OUTERPLANAR1

GRAPHS2

GUOLI DING AND STAN DZIOBIAK3

Abstract. The class of outerplanar graphs is minor-closed and can be characterized by two ex-

cluded minors: K4 and K2,3. The class of graphs that contain a vertex whose removal leaves an

outerplanar graph is also minor-closed. We provide the complete list of 57 excluded minors for this

class.

1. Introduction4

A graph is outerplanar if it can be embedded in the plane (with no edges crossing) with all5

vertices incident to one common face. We say that a graph G is apex-outerplanar if there exists6

v ∈ V (G) such that G− v is outerplanar. Such a vertex, if it exists, is called an apex vertex of G.7

We let O and O∗ denote the classes of outerplanar and apex-outerplanar graphs, respectively.8

Given graphs H and G, H is a minor of G, denoted by H 6m G, or G >m H, if H can be9

obtained from a subgraph of G by contracting edges. A class C of graphs is minor-closed if for10

every G ∈ C all the minors of G are also in C. Examples of minor-closed classes are: planar graphs,11

outerplanar graphs, series-parallel graphs, graphs embeddable in a fixed surface, and graphs of12

tree-width bounded by a fixed constant.13

Let C be a minor-closed class of graphs, and let C∗ be the class of graphs that contain a vertex14

whose removal leaves a graph in C. Hence, clearly C ⊆ C∗, and it is easy to check that C∗ is also15

minor-closed, thus in particular O∗ is minor-closed.16

It is a landmark result of Robertson and Seymour (see [7]) that every proper minor-closed class17

of graphs C can be characterized by its finite set of excluded minors, or obstructions, that is, minor-18

minimal graphs not in C. We call this set obstruction set of C, and denote it by ob(C). For example,19

it is a well-known fact that ob(O) = {K4,K2,3}. Equivalently, G is outerplanar if and only if it20

does not contain a subdivision of K4 nor a subdivision of K2,3 as a subgraph. This equivalence21

follows from the known fact that if H 6m G and ∆(H) 6 3, then G contains an H-subdivision.22

Let S be the set of graphs in Figure 1, T be the set of graphs in Figure 4, G be the set of graphs23

in Figure 5, J be the set of graphs in Figure 6, H be the set of graphs in Figure 7, and Q be the24

set of graphs in Figure 8.25

The following is our main result.26

Theorem 1.1. A graph is apex-outerplanar if and only if it does not contain any of the 57 graphs27

in the set S ∪ T ∪ G ∪ J ∪H ∪Q as a minor. Equivalently, ob(O∗) = S ∪ T ∪ G ∪ J ∪H ∪Q.28

The reader should be confident that the 57 graphs in Theorem 1.1 are indeed pairwise non-29

isomorphic members of ob(O∗). We have checked this several times. In this paper, we will show30

that there are no more graphs in ob(O∗) other than the 57, that is, the list is complete.31
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Our result can be regarded as a test approach to the long-standing open problem of finding the32

complete list of excluded minors for the class of apex-planar graphs, which plays an important33

role in Graph Theory (for example, see [8]). Significant progress on this problem has already been34

made by A. Kezdy [6] and his team since our work was completed and announced in [4]. For35

instance, they have found all of the obstructions of connectivity 0, 1, and 2, and many of the ones36

of connectivity 3, 4, and 5, altogether 396 obstructions.37

While working on the problem we did not use a computer, the 57 obstructions were found “by38

hand”. We believe that this was an advantage, since we were able to control and understand the39

way in which the obstructions were being generated, and in which the proof should be organized.40

After we found ob(O∗) and proved its completeness, G.E. Turner [9] kindly informed us that the41

57 graphs had been known to him, since he had found them with the aid of a computer. However,42

he did not know whether his list was complete.43

We now present an outline of the rest of the paper, which constitutes the proof of Theorem 1.1.44

In Section 2, we provide a starting set of seven obstructions S ⊆ ob(O∗), and prove a key lemma45

(Lemma 2.2), which together allow us to conclude that any obstruction in ob(O∗) − S is planar46

and of connectivity 2 or 3. The search for the remaining obstructions begins.47

The connectivity-three case is presented in Section 6. Here, we rely on the existence of con-48

tractible edges in 3-connected graphs and the minor-minimality of the obstructions to prove that49

there are no 3-connected obstructions in ob(O∗) other then the ones already in our starting set S.50

Most of the work is in the connectivity-two case. Our key lemma (Lemma 2.2) splits the proof51

of this case into five major subcases, presented in Sections 3, 4, and 5. The cases are split based52

on the complexity of each side of a 2-separation in G ∈ ob(O∗) − S, as indicated by Lemma 2.2.53

In the following outline of the case structure, all of the 2-separations refer to 2-separations (L,R)54

in G over vertices {x, y}. Also, P2 and C4 are as drawn in Figure 3, with vertices {x, y} as labelled55

in the Figure.56

Case 1: There exists a 2-separation such that both L /∈ O and R /∈ O (Section 3);57

Case 2: For each 2-separation, L = P2 or C4 (Sections 4 and 5);58

Subcase 2.1: There exists a 2-separation such that L = C4 (Proposition 4.1);59

Subsubcase 2.1.1: There exists a 2-separation such that L = C4 and G− {x, y} /∈ O;60

Subsubcase 2.1.2: There exists a 2-separation such that L = C4 and for every such 2-separation61

G− {x, y} ∈ O;62

Subcase 2.2: For each 2-separation, L = P2 (Proposition 5.1);63

Subsubcase 2.2.1: There exists a 2-separation such that L = P2 and G− {x, y} /∈ O;64

Subsubcase 2.2.2: For each 2-separation, L = P2 and G− {x, y} ∈ O.65

Note that organizing the case analysis in this way restricts the structure of G more and more66

as we proceed through the cases. An outline of each case will be given at the beginning of the67

corresponding section.68
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2. Starting List and the Key Lemma69

In this section, we provide a starting set of seven obstructions S ⊆ ob(O∗), and prove the key70

Lemma 2.2, which narrows down the structure of the remaining obstructions.71

For two graphs G1 and G2, we let G1|G2 denote their disjoint union.72

Let S := {K5,K3,3, Oct,Q, 2K4,K4|K2,3, 2K2,3} be the set of graphs in the figure below.73

Figure 1. Starting list of excluded minors for O∗

It is easy to check that S ⊆ ob(O∗).74

Definition 2.1. Let G be a graph and x, y ∈ V (G). A 1-separation of G over x (or across x)75

(respectively, a 2-separation of G over {x, y} (or across {x, y})) is a pair S = (L,R) of induced76

subgraphs L and R of G, called the sides of S, such that the following holds77

(1) E(L) ∪ E(R) = E(G);78

(2) V (L) ∪ V (R) = V (G) and V (L) ∩ V (R) = {x} (respectively, V (L) ∩ V (R) = {x, y});79

(3) V (L)− V (R) 6= ∅ and V (R)− V (L) 6= ∅.80

Note that in definition 2.1, we require that L and R to be induced subgraphs, and that x is81

necessarily a cut-vertex of G (respectively, {x, y} is a 2-cut of G). Also, if S = (L,R) is a 2-82

separation of G over {x, y}, then we often denote L and R by L(x, y) and R(x, y), respectively, for83

emphasis.84

We define a K-graph to be a graph that contains a K4- or K2,3-subdivision (both of which we call85

K-subdivisions) as a subgraph. Equivalently, K-graphs are precisely non-outerplanar graphs. It is86

a known fact that if G is 2-connected and contains a K-subdivision, then G = K4 or G contains a87

K2,3-subdivision.88

Lemma 2.2. If G ∈ ob(O∗) − S, then G is planar and of connectivity 2 or 3. Moreover, if the89

connectivity of G is 2, then for every 2-separation S = (L,R) of G over vertices {x, y} the following90

holds:91

(1) If no side of S is in O, then one side of S is L1, L2, L3, L4, or L5 with prescribed vertices92

x and y, as shown in Figure 2.93
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Figure 2. K4 and K2,3’s with prescribed vertices x and y

(2) If one side of S is in O, then xy /∈ E(G) and that side is P2 or C4, where P2 is a path on94

two edges with endpoints x and y, and C4 is a cycle on four edges with x and y non-adjacent, as95

shown in Figure 3.96

Figure 3. P2 and C4

Proof. Since G �m K5 and G �m K3,3, it follows that G is planar.97

First, suppose that G is disconnected, and let G be a union of two disjoint (not necessarily98

connected) graphs G1 and G2. If one of them, say G1 is outerplanar, then by the minor-minimality99

of G, G2 = G−G1 ∈ O∗, hence G2 has a vertex v such that G2 − v ∈ O. Then, G1|(G2 − v) ∈ O,100

hence v is an apex vertex in G, a contradiction. Therefore, both G1 and G2 are not outerplanar,101

and so each contains K4 or K2,3 as a minor. Hence G contains one of 2K4,K4|K2,3, 2K2,3 as a102

minor, a contradiction. Thus G is connected.103

Now, suppose that G has a cut-vertex x and let (L,R) be the 1-separation across x. By the same104

argument as above, both L and R are not outerplanar, hence they both contain K4 or K2,3 as a105

minor. This implies that both R−x and L−x are outerplanar (for otherwise, G would contain one106

of 2K4,K4|K2,3, 2K2,3 as a minor). Hence G− x ∈ O, and so G ∈ O∗, a contradiction. Therefore,107

G is 2-connected.108

Now, suppose that G is 4-connected. Then δ(G) > 4, and so by the theorem of Halin and109

Jung from [5], which says that G contains a K5- or Oct-minor whenever δ(G) > 4, it follows that110

the assumption that G is 4-connected is not true, because K5 and Oct are in S. Therefore the111

connectivity of G is 2 or 3.112

Proof of (1). Suppose now that the connectivity of G is 2 and that no side of S, neither L nor113

R, is in O. Note that G − {x, y} ∈ O, for otherwise G would contain two disjoint K-graphs (for114

instance, L and R− {x, y}) which cannot happen because G does not contain 2K4,K4|K2,3, 2K2,3115

as a minor. Since G /∈ O∗, none of its vertices is apex. In particular, since x is not apex in G and116

y is a cut-vertex in G− x, it follows that L− x or R− x, say R− x, contains a K-subdivision, call117

it K ′, which contains y (since R−{x, y} is outerplanar). Similarly, R− y contains a K-subdivision118
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K ′′ (not L − y, because such a K-subdivision would be disjoint from K ′), which contains x. K ′
119

and K ′′ must intersect, otherwise G would contain two disjoint K-graphs. Also, L− x ∈ O since it120

is disjoint from K ′′, and L− y ∈ O since it is disjoint from K ′. Hence, G must have the following121

structure:122

x

y

K’’

K’
KG =

Note that, as long as L /∈ O, a graph with the above structure does not belong to O∗. This is123

because none of its vertices is apex: x is not apex, because of K ′; y is not apex, because of K ′′;124

if v ∈ L − {x, y}, then v is not apex, because of K ′ (or K ′′); finally if v ∈ R − {x, y}, then v is125

not apex, because of L. Therefore, if L /∈ {K4,K2,3}, then since L /∈ O, it follows that L contains126

an edge e 6= xy such that either L\e /∈ O, or L/e /∈ O. Hence, either G\e /∈ O∗ or G/e /∈ O∗, a127

contradiction since G is minor-minimal not in O∗. Therefore L ∈ {L1, L2, L3, L4, L5} with x, y as128

prescribed in Figure 2.129

Proof of (2). Without loss of generality, suppose that L ∈ O. Since G /∈ O∗, none of its vertices130

are apex. In particular, since x is not apex, it follows that R−x contains aK-subdivision. Similarly,131

R − y contains a K-subdivision. Since G is 2-connected, it follows that L is connected. We have132

two cases based on the number of blocks of L.133

Case 1. L has exactly one block.134

Note that L 6= K2, for otherwise (L,R) is not a 2-separation. Hence L is 2-connected.135

Since L is 2-connected and outerplanar, it follows that L is a cycle C with chords, which has136

a unique planar embedding such that all the vertices and edges of C are incident with the outer137

face, and all the chords lie in the interior of the disk bounded by C. We now show that L has no138

chords. So, suppose that L does have a chord e. Let s be an apex vertex in G\e. Then, since R−x139

and R − y contain K-subdivisions, it follows that s ∈ V (R − {x, y}). Assume that (G\e) − s ∈ O140

is embedded in the plane so that all of its vertices are incident with the outer face. Then this141

embedding, restricted to the subgraph L\e, is such that all the vertices and edges of C are incident142

with the outer face. Therefore, by putting the chord e back in, we obtain an embedding of G − s143

with all of its vertices still incident with the outer face, hence G− s is outerplanar, a contradiction.144

Hence, we have shown that L has no chords, therefore L = C.145

Now, suppose that x and y are consecutive vertices of C, that is xy ∈ E(C). Let s be an apex146

vertex in G\xy. Then, again we have that s ∈ V (R − {x, y}). Assume that (G\xy) − s ∈ O is147

embedded in the plane so that all of its vertices are incident with the outer face. Since all the148

vertices of C − {x, y} have degree = 2 in (G\xy) − s, it follows that all the edges of C except149

for xy are incident with the outer face. Therefore, by putting the edge xy back in, we obtain an150

embedding of G− s with all of its vertices still incident with the outer face, a contradiction.151

Therefore, x and y are non-consecutive, which implies that the length of C is at least four. In152

fact C = C4, for suppose that C = Cn with n > 5. Then one of the two paths from x to y in C153

must have length at least three. Let f be an edge on that path with endpoints different from x and154
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y. Let s be an apex vertex in G/f . Then, again s ∈ V (R − {x, y}). Assume that (G/f) − s ∈ O155

is embedded in the plane so that all of its vertices are incident with the outer face. Since all the156

vertices of (C/f) − {x, y} have degree = 2 in (G/f) − s, it follows that all the edges of C/f are157

incident with the outer face. Therefore, by uncontracting edge f ∈ E(C), we obtain an embedding158

of G − s with all of its vertices still incident with the outer face, hence G − s is outerplanar, a159

contradiction. Hence, we have shown that L = C = C4.160

Therefore, we have shown that if L has only one block, then L is 2-connected, and in fact L = C4161

with x and y non-adjacent. Now, we consider the more general case.162

Case 2. L has at least two blocks.163

Let Bx and By be two distinct blocks containing x and y, respectively. Then the block tree164

of L is, in fact, a path from Bx to By, for otherwise G would contain a cut-vertex. Every block165

on this path is either K2 or is 2-connected. If L contains a block B that is 2-connected, then let166

s, t ∈ V (B) be the two cut-vertices in L (or in the case of Bx and By the associated pair is given167

by the corresponding cut-vertex, and x or y, respectively). Then since G has a 2-separation (B,R′)168

over {s, t}, it follows by the previous argument that B = C4. Therefore, every block of L (which is169

a path) is either K2 or C4.170

Now suppose that L contains a block B = C4, and let B′ be any other block. Denote by G/B′
171

the graph obtained by contracting all the edges of B′. Again, let s be an apex vertex in G/B′.172

Then again s ∈ V (R − {x, y}). Assume that (G/B′)− s ∈ O is embedded in the plane so that all173

of its vertices are incident with the outer face. Since two of the non-adjacent vertices of B have174

degree = 2 in (G/B′)−s and since all the blocks are either K2 or C4, it follows that all the edges of175

B and, in fact, all the edges of L/B′ are incident with the outer face. Therefore, by uncontracting176

block B′, we obtain an embedding of G− s with all of its vertices still incident with the outer face,177

a contradiction. Hence, we have shown that L does not contain a block B = C4, and therefore all178

the blocks of L are K2’s, or equivalently L is an induced path of length at least two from x to y.179

Then, in fact, L = P2, for suppose that L = Pn with n > 3. Let f be an edge in L = Pn with180

endpoints different from x and y. Let s be an apex vertex in G/f . Then, again s ∈ V (R−{x, y}).181

Assume that (G/f)−s ∈ O is embedded in the plane so that all of its vertices are incident with the182

outer face. Since all the vertices of (L/f)− {x, y} have degree = 2 in (G/f)− s, it follows that all183

the edges of L/f are incident with the outer face. Therefore, by uncontracting edge f , we obtain184

an embedding of G − s with all of its vertices still incident with the outer face, a contradiction.185

Hence, we have shown that L = P2. This proves (2). �186

3. Connectivity 2: No Side in O187

In this section, we focus on Case 1 of the outline given in the Introduction. Namely, we prove188

Proposition 3.1, which says that if an obstruction G ∈ ob(O∗)−S has a 2-separation both sides of189

which are not outerplanar, then G ∈ T .190

Proposition 3.1. If G ∈ ob(O∗)− S is of connectivity 2 and has a 2-separation no side of which191

is in O, then G is a member the family T .192
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Proof. Let S = (L,R) be a 2-separation of G over {x, y} no side of which is in O. Since (R,L) is193

also a 2-separation of G with the same property, we may assume without loss of generality that194

L ∈ {L1, L2, L3, L4, L5} (see Lemma 2.2). Note that R − {x, y} is outerplanar, for otherwise G195

contains two disjoint K-graphs. Since G /∈ O∗, none of its vertices is apex. In particular, since x196

is not apex, R − x contains a K-subdivision, which contains y (since R − {x, y} is outerplanar).197

Similarly, R − y contains a K-subdivision, which contains x. These two K-subdivisions must198

intersect, otherwise G would contain two disjoint K-graphs. Hence, G must have the following199

structure:200

x

y

K

K
L i

G =

Note that each of the Li (i = 1, . . . , 5) contains C4 as a minor (with the vertices x and y201

preserved). Let G′ be the graph obtained from G by reducing L (under the minor operation) to202

C4, so that (C4, R) is a 2-separation of G′ over {x, y}. Note that G′ is a proper minor of G, hence203

by the minor-minimality of G, it follows that G′ ∈ O∗. If there are at least two internally disjoint204

paths in R from x to y, then G′ has no apex vertex, a contradiction.205

Hence, R has a cut-vertex z. Note that R− z ∈ O, otherwise R contains two disjoint K-graphs.206

Let R1 and R2 be the two sides of the 1-separation of R across z, such that x ∈ R1 and y ∈ R2.207

By applying Lemma 2.2 to the 2-separation in G over {x, z}, and to the 2-separation in G over208

{y, z}, we conclude that both R1, R2 ∈ {L1, L2, L3, L4, L5}. Therefore, G is one of the 30 graphs209

{T1, T2, . . . , T30} listed in Figure 4. It is straightforward to verify that each Ti is minor-minimal210

/∈ O∗ satisfying the hypothesis of Case 1. Hence Ti ∈ ob(O∗) for i = 1, . . . , 30. �211
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Figure 4. T family

4. Connectivity 2: At Least One Side C4212

In this section and the next (Section 5) we focus on Case 2 of the outline given in the Introduction.213

Namely, we assume that every 2-separation of G ∈ ob(O∗) − S has one side that is outerplanar,214

which by Lemma 2.2 implies that that side is P2 or C4. In this section, we focus on the case that215

G has a 2-separation one side of which is C4 (Subcase 2.1 of the outline given in the Introduction).216
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We prove Proposition 4.1, which says that in this case G ∈ G ∪ J . In the next section, we analyze217

the case that every 2-separation of G has one side that is P2 (Subcase 2.2).218

Before we state and prove Proposition 4.1, we introduce some necessary terminology and nota-219

tion. If P = u1, u2, . . . un, un+1 is a path on n vertices, then we define its length to be n, and denote220

P by Pn. We call the set {u2, u3, . . . , un} the interior of P and denote it by int(P ). Two paths221

P and Q are said to be internally disjoint if their interiors are disjoint. If C = u1, u2, . . . un, u1 is222

a cycle, then its length is n, and we denote C by Cn. An edge e /∈ E(C) with both endpoints in223

V (C) is called a chord of C. If C = u1, u2, . . . un, u1 is a cycle embedded in the plane with ver-224

tices listed in the clockwise order around C, then we denote by C[ui, uj ] the set {ui, ui+1, . . . , uj}225

if i 6 j, or the set {ui, ui+1, . . . , un, u1, . . . , uj} if i > j. Similarly, C[ui, uj) := C[ui, uj ] − {uj},226

C(ui, uj ] := C[ui, uj ]−{ui}, and C(ui, uj) := C[ui, uj ]−{ui, uj}. Also, if P = u1, u2, . . . un is a path,227

then we define P [ui, uj ], P [ui, uj), P (ui, uj ], and P (ui, uj) analogously, and so int(P ) = P (u1, un).228

Proposition 4.1. If G ∈ ob(O∗)− S is of connectivity 2 and one side of every 2-separation of G229

is in O and, moreover, if G has a 2-separation S over {x, y} one side of which is C4, then following230

holds true:231

(1) If G− {x, y} /∈ O for some such S, then G is a member of the family G;232

(2) If G− {x, y} ∈ O for every such S, then G is a member of the family J .233

4.1. Proof of (1). Let S = (L,R) be a 2-separation G over {x, y} such that one side of it, say, L,234

is C4, and let G−{x, y} /∈ O. Then R−{x, y} /∈ O and hence R−{x, y} contains a K-subdivision,235

call it K ′. Note that if R does not have at least two internally disjoint paths from x to y, then R236

has a cut-vertex z separating x and y, and hence G has a 2-separation (L′, R′) over {x, z} or over237

{y, z} with the property that R′ /∈ O, and either L′ /∈ O (violating the the hypothesis that one238

side of every 2-separation of G is in O) or L′ ∈ O but with L′ different from P2 and C4 (violating239

Lemma 2.2), a contradiction. Hence,240

1. R has at least two internally disjoint paths from x to y.241

Also, note that R does not have a path P from x to y disjoint from K ′, for otherwise G would242

contain two disjoint K-graphs (namely K ′ and the K2,3-subdivision formed from the union of L243

and P ). Therefore G has the following structure:244

x

y

K’G =

Note that,245

2. A graph with the above structure does not belong to O∗.246

This is because none of its vertices is apex: if v ∈ V (G)−V (K ′), then v is not apex, because of K ′;247

and if v ∈ V (K ′), then R− v has a path from x to y, which along with L forms a K2,3-subdivision248

in G− v, hence v is not apex.249

Fix a planar embedding of G. Let C be the outer cycle of K ′. Let Sx ⊆ V (C) and Sy ⊆ V (C)250

be the sets of vertices of C from which there is a path to x, or respectively to y, that doesn’t251
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contain other vertices of C. It follows, by 1, that |Sx| > 2 and |Sy| > 2, hence |Sx ∪ Sy| > 2.252

However, if |Sx ∪ Sy| = 2 (see the following figure), then let {a, b} := Sx = Sy, and note that G253

has a 2-separation (L′′, R′′) over {a, b}, where L′′ = K ′ /∈ O and R′′ contains a subdivision of K2,4,254

hence R′′ /∈ O, a contradiction because one side of (L′′, R′′) must be in O.255

Hence, |Sx∪Sy| > 3. Also note that, by 2, the paths from Sx to x and Sy to y are actually simple256

edges, for otherwise we could perform a contraction along such a path, and by 2, the resulting graph257

would still be outside of O∗, contradicting the minor-minimality of G.258

Since K ′ is a subdivision of either K4 or K2,3, it follows that actually K ′ = K4 or K ′ is a259

subdivision of K2,3. If K ′ = K4, then in view of all the observations above, G is the following260

graph:261

It is easy to verify that the above graph is minor-minimal /∈ O∗ satisfying the hypothesis of (1)262

and the initial hypothesis of Proposition 4.1. We label it G1, and so G1 ∈ ob(O∗).263

So now, K ′ 6= K4, and so K ′ is a subdivision of K2,3. Therefore K ′ consists of the outer cycle264

C and a path Q of length at least 2 connecting two non-adjacent vertices of C. Note that Q has265

length exactly 2, for otherwise we could perform a contraction along Q, and by 2, the resulting266

graph would still be outside of O∗, contradicting the minor-minimality of G. Let Q = a, c, b, so267

that a, b ∈ V (C). Then since K ′ is a subdivision of K2,3, we have:268

3. There is at least one vertex in C(a, b) and at least one in C(b, a).269

Thus, G has the following structure:270

It is straightforward to verify that the following graphs are minor-minimal /∈ O∗ satisfying the271

hypothesis of (1) and the initial hypothesis of Proposition 4.1 (except the second one, which is272

minor-minimal after contracting e; the resulting graph is J1 ∈ J from Figure 6). We label them273

G2, G3, G4, G5. Hence J1, Gi ∈ ob(O∗) for i = 1, . . . , 5.274
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In the remainder of the proof, we assume furthermore that G /∈ {J1, G1, G2, G3, G4, G5}. Let275

x1, x2 ∈ Sx and y1, y2 ∈ Sy in the clockwise order x1, x2, y1, y2 around C. First, assume that all276

four can be chosen so that they are all distinct. Then, if a, b ∈ C[x1, x2] or a, b ∈ C[y1, y2], then277

by 3, G >m J1, a contradiction. If a, b ∈ C[x2, y1] or a, b ∈ C[y2, x1], then by 3, G >m G2, a278

contradiction. Finally, if a and b are in distinct segments among C(x1, x2), C(y1, y2), C(x2, y1),279

C(y2, x1), or if {a, b} = {x1, y1} or if {a, b} = {x2, y2}, then G >m G5, a contradiction.280

Therefore x1, x2, y1, y2 cannot be chosen to be all distinct. Since |Sx| > 2 and |Sy| > 2, and281

|Sx ∪ Sy| > 3, it follows that |Sx ∪ Sy| = 3. Hence, we let x1 = y2 and x2 6= y1, as in the figure282

below.283

Now, if a is in one of C(x1, x2) or C(y1, x1), say C(y1, x1), then: if b ∈ C[y1, x1], then by 3,284

G >m J1, a contradiction; if b ∈ C(x1, x2], then G >m G4; finally, if b ∈ C(x2, y1), then G >m G3.285

Hence, we have shown that neither a nor b can be in C(x1, x2)∪C(y1, x1). If a = x1, then if b = x2286

or y1, then by 3, G >m J1, a contradiction; and if b ∈ C(x2, y1), then G >m G3, a contradiction. So287

finally, both a and b must be in C[x2, y1]. But, then it follows by 3 that G >m G2, a contradiction.288

This concludes the proof of (1) of Proposition 4.1.289

Figure 5 shows slightly different embeddings of the Gi’s from the ones above.290
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Figure 5. G family

4.2. Proof of (2). It is straightforward to verify that the graphs in Figure 6 are minor-minimal291

/∈ O∗ satisfying the hypothesis of (2) and the initial hypothesis of Proposition 4.1. We label them292

J1, J2, J3, J4, J5. Hence Ji ∈ ob(O∗) for i = 1, . . . , 5.293

Figure 6. J family

In the remainder of the proof, we assume that G /∈ {J1, J2, J3, J4, J5, Q2}, where Q2 ∈ Q from294

Figure 8. Since R − {x, y} ∈ O, it follows by the same arguments as in the proof of Proposition295

3.1, that G must have the following structure:296

where K ′ is a K-subdivision contained in R − x containing y (so that K ′ − y ∈ O), and K ′′ is a297

K-subdivision contained in R− y containing x (so that K ′′ − x ∈ O). Note that,298

1. R does not have a path P from x to y that is internally disjoint from K ′ ∪K ′′.299

For otherwise, G would have a 2-separation (L′, R′) over {x, y}, with L′ = L ∪ P /∈ O and R′ =300

R /∈ O, contradicting the hypothesis the one side must be in O.301

Also, note that if R does not have at least two internally disjoint paths from x to y, then R has a302

cut-vertex z. Note that z lies at the intersection of K ′ and K ′′ (for otherwise K ′ and K ′′ would be303

disjoint, or R−{x, y} would not be outerplanar). But, R− z ∈ O (for otherwise K ′ and K ′′ would304
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be disjoint), therefore G − z ∈ O, a contradiction. Hence, R has at least two internally disjoint305

paths from x to y.306

Note that,307

2. A graph with the above structure (on the right) does not belong to O∗.308

This is because none of its vertices is apex: if v ∈ V (G) − V (K ′), then v is not apex, because of309

K ′; if v ∈ V (G)−V (K ′′), then v is not apex, because of K ′′; and if v ∈ V (K ′)∩V (K ′′), then R− v310

has a path from x to y, which along with L forms a K2,3-subdivision in G− v, hence v is not apex.311

Fix a planar embedding of G with x and y incident with the outer face. Since R does not have312

a cut-vertex, it is 2-connected. Let C be the outer cycle of R, so that the rest of R is embedded313

in the closed disk bounded by C. Let P1 and P2 be the two internally disjoint paths from x to y314

whose union is C. Note that neither P1 nor P2 is a simple edge, since xy /∈ E(G). Note that,315

3. There must be a path P3 between int(P1) and int(P2) such that V (P3) ∩ V (C) = {a, b}, where316

a ∈ int(P1) and b ∈ int(P2) are the endpoints of P3.317

For otherwise, one of int(P1) or int(P2) would be vertex-disjoint from K ′ ∪K ′′, contradicting 1.318

Let P be the set of paths with property 3. By 3, it follows that P is non-empty. Let l(P) be319

the length of the longest path in P.320

We first suppose that l(P) = 1. Then, all of the paths in P are simple edges. Let a1, a2, . . . , as ∈321

int(P1) be the left endpoints of the paths in P in the order of vertices in P1 from x to y, and322

similarly let b1, b2, . . . , bt ∈ int(P2) be the right endpoints of the paths in P in the order of vertices323

in P2 from x to y. Note that, for any i = 1, . . . , s − 1 (and for any j = 1, . . . t − 1), if aiai+1 (or324

bjbj+1) is not a simple edge, then G has a 2-separation (L′, R′) over {ai, ai+1} (or over {bj , bj+1}).325

By the initial hypothesis of Proposition 4.1 and (2) of Lemma 2.2, L′ = P2 or C4. However, by the326

hypothesis of (2) of Proposition 4.1, L′ 6= C4, because G− {ai, ai+1} (and G− {bj , bj+1}) contains327

a K2,3-subdivision. Hence,328

4. For i = 1, . . . , s − 1 and for j = 1, . . . t − 1, aiai+1 and bjbj+1 are either simple edges or edges329

subdivided once.330

y

G =
a

b

x

s

t

a
1

1

b

= oror
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Similarly, if xa1, xb1, yas, or ybt is not a simple edge, then G has a 2-separation (L′, R′) over the331

corresponding 2-vertex set, and by the initial hypothesis of Proposition 4.1 and Lemma 2.2, L′ = P2332

or C4. If L′(x, a1) = C4 and L′(y, as) = C4 (or L′(x, b1) = C4 and L′(y, bt) = C4), then G >m J3,333

a contradiction (see figure below). Similarly, L′(x, a1) = C4 and L′(y, bt) = C4 (or L′(x, b1) = C4334

and L′(y, as) = C4), then G >m J1, a contradiction (see figure below).335

Therefore, for one of the sides, say the x-side, we must have that xa1 and xb1 are either simple336

edges, or edges subdivided once. Therefore, it follows by 4 that the vertex y is apex in G, a337

contradiction since G /∈ O∗. Thus we have proved that l(P) > 2.338

Let P = p0p1 . . . pn be a path in P of length n := l(P) > 2, with p0 ∈ int(P1) and pn ∈ int(P2).339

Since G �m J1, it follows that:340

5a. For i = 0, 1, . . . , n − 2, there is no path of length > 2 from pi to int(P2) that is internally341

disjoint from P ∪ C.342

Note that, by choice of P , the same holds true for i = n− 1. Similarly:343

6a. For i = 2, 3, . . . , n, there is no path of length > 2 from pi to int(P1) that is internally disjoint344

from P ∪ C.345

And, by choice of P , the above also holds true for i = 1. Therefore, equivalently:346

5b. For i = 0, 1, . . . , n− 1, all the paths from pi to int(P2) that are internally disjoint from P ∪C347

are simple edges.348

6b. for i = 1, 2, . . . , n, all the paths from pi to int(P1) that are internally disjoint from P ∪ C are349

simple edges.350

Let P11 and P12 be the subpaths of P1 from x to p0, and from p0 to y, respectively. Similarly,351

Let P21 and P22 be the subpaths of P2 from x to pn, and from pn to y, respectively. Let Cx be the352

cycle formed from the union of the paths P , P11 and P21, and let Cy be the cycle formed from the353

union of the paths P , P12 and P22.354

Again, since G �m J1, it follows that:355

7. All the paths in P that are internally disjoint from P are simple edges.356

It follows by 5b and 6b, that G does not have a non-trivial bridge (where by a trivial bridge,357

we understand a simple edge) with one foot in int(P ) and another in int(P1) ∪ int(P2). Also, if G358

has a non-trivial bridge with two feet in P , then if the feet are consecutive vertices of P , then this359

violates the choice of P ; and if they are non-consecutive, then G >m J1, a contradiction. Therefore:360

8a. The only non-trivial bridges of G that attach to int(P ) have exactly two feet: one in int(P )361

and the other at x or y.362

Let B be a non-trivial bridge that attaches to int(P ). Then, it follows by 8a that B has one363

foot, call it p, in int(P ) and the other at x or y, say x. Then G has a 2-separation (L′, R′) over364

{x, p}, and it follows by the hypothesis of Proposition 4.1 and Lemma 2.2 that L′ = P2 or C4.365

Hence, B − {x, p} is a single vertex, or a pair of non-adjacent vertices. We call such a bridge a366

P2-bridge, or a C4-bridge over {x, p}, respectively. Thus we have shown:367
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8b. If B is a non-trivial bridge with one foot p ∈ int(P ) and the other at x (or y), then B is a P2-368

or C4-bridge over {x, p} (over {y, p} respectively).369

Let F0 be the set of edges with one endpoint in int(P1)− {p0} and the other in int(P2)− {pn},370

and let F1 be the set of edges whose both endpoints are non-consecutive vertices of P . Let F2 be371

the set of edges with one endpoint in {p0, p1, . . . , pn−2} and the other in int(P2)−{pn}, and let F3372

be the set of edges with one endpoint in {p2, p3, . . . , pn} and the other in int(P1)−{p0}. Note that373

F0, F1, F2, and F3 are pairwise disjoint. Let F := F0 ∪ F1 ∪ F2 ∪ F3 if n ≥ 3. For shorthand, we374

will say that an edge or a vertex is embedded in the top or in the bottom, if it is embedded in the375

closed disk bounded by Cx or in the closed disk bounded by Cy, respectively. We now prove the376

following:377

9. If F 6= ∅, then all edges of F can be embedded on one side: top or bottom.378

Pf. First, suppose that the claim in 9 is not true due to two edges e and f of F1. If the endpoints of379

e = pi0pi1 and f = pi2pi3 overlap, in the sense that i0 < i2 < i1 < i3, then G >m J1, a contradiction380

(see figure below).381

If the endpoints of e and f do not overlap (in the sense that i0 < i1 < i2 < i3) and, without loss382

of generality, e is in the top and f is in the bottom, then since G does not have a 2-separation over383

{pi0 , pi1} (by the initial hypothesis of Proposition 4.1 and (2) of Lemma 2.2), and since the vertices384

pi0 , pi1 are non-consecutive in P , there is a path from a vertex in P (pi0 , pi1) to P12 (note that if385

the path is to a vertex in int(P2), then G >m J1 as in the overlapping case above; and similarly386

if the path is to a vertex pi4 ∈ P for some i4 < i0 or i4 > i1). Similarly, since G does not have a387

2-separation over {pi2 , pi3}, there is a path from a vertex in P (pi2 , pi3) to P21. Therefore G >m Q2,388

a contradiction (see figure below).389

Second, suppose that the claim in 9 is not true due to two edges e and f of F2 (the proof for F3390

is similar). Hence, both e and f have one endpoint in {p0, p1, . . . , pn−2}, however e has the other391

endpoint in int(P21) and f in int(P22). Then, G−{x, y} contains a K2,3-subdivision, contradicting392

the hypothesis that G− {x, y} is in O.393

Third, suppose that the claim in 9 is not true due to an edge e ∈ F2, embedded, say, in the394

bottom, and an edge f ∈ F3 embedded in the top. Then G contains the following minor, which395

contains a Q2-minor, a contradiction (see figure below).396

Fourth, suppose that the claim in 9 is not true due to an edge e ∈ F1, embedded, say, in the397

bottom, and an edge f ∈ F2 (the proof for f ∈ F3 is similar) embedded in the top. Let pi0q := f398
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with i0 ∈ {0, 1, . . . , n − 2} and q ∈ int(P21), and let pi1pi2 := e with i1 < i2. If i1 > i0, then399

G − {x, y} contains a K4-subdivision, a contradiction. Hence, i1 < i0. If i2 = n, then since400

i0 ∈ {0, 1, . . . , n − 2}, it follows that G − {x, y} contains a K2,3-subdivision, a contradiction. If401

i2 ∈ (i0, n − 1], then G >m J1 (as in the overlapping case), a contradiction. Therefore, i2 6 i0402

and since G does not have a 2-separation over {pi1 , pi2} (by the initial hypothesis of Proposition403

4.1 and (2) of Lemma 2.2), there is a path from a vertex in P (pi1 , pi2) to P12 − {p0}, and thus G404

contains the following minor, which contains a Q2-minor, a contradiction (see figure below).405

Finally, suppose that the claim 9 is not true due to an edge e ∈ F0, embedded, say, in the top,406

and an edge f ∈ F0 ∪ F1 ∪ F2 ∪ F3 embedded in the bottom (the case f ∈ F0 is illustrated below).407

Then, it can easily be checked that G− {x, y} contains a K4- or K2,3-subdivision, a contradiction.408

This proves 9.409

As in the l(P) = 1 case, let a1, a2, . . . , as ∈ int(P1) be the left endpoints of the paths in P in the410

order of vertices on P1 from x to y, and similarly let b1, b2, . . . , bt ∈ int(P2) be the right endpoints411

of the paths in P in the order of vertices on P2 from x to y. Similarly to 4, we have that:412

10. For i = 1, . . . , s− 1 and for j = 1, . . . t− 1, aiai+1 and bjbj+1 are either simple edges or edges413

subdivided once.414

Similarly, if xa1, xb1, yas, or ybt is not a simple edge, then G has a 2-separation (L′, R′) over415

the corresponding 2-vertex set, and by the initial hypothesis of Proposition 4.1 and Lemma 2.2,416

L′ = P2 or C4. Thus:417

11. If xa1, xb1, yas, or ybt is not a simple edge, then L′(x, a1), L
′(x, b1), L

′(y, as), L
′(y, bt) ∈418

{P2, C4}, respectively (equivalently, G has a P2- or C4-bridge over {x, a1}, {x, b1}, {y, as}, or419

{y, bt}, respectively).420

We now have two possibilities: either F 6= ∅ or F = ∅. We consider them below as Cases 1 and421

2, respectively.422

Case 1. F 6= ∅.423

It follows from 9 that all the edges of F can be embedded, say, in the bottom (hence there are424

no edges of F embedded in the top). We will show that since G does not contain Ji-minor for425

i = 1, . . . , 5, the vertex x will be apex in G, obtaining a contradiction. To do this, we first prove426

the following.427

12. The only vertices embedded in the bottom are those lying on the cycle Cy.428

Pf. We prove this claim by showing that there are no non-trivial bridges embedded in the interior429

of the disk bounded by Cy. So assume that there is such a bridge B. First, if B has a foot in430

int(P ), then by 8a and 8b, it follows that the other foot of B is y. Since F 6= ∅, it contains an431
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edge e ∈ Fi for some i = 0, 1, 2, 3. Actually, e /∈ F0, for otherwise e would cross B, a contradiction.432

If e ∈ F1, then G contains the following minor, which contains a Q2-minor, contradiction (see figure433

below).434

And if e ∈ F2 (the proof for F3 is similar), then G contains the following minor, which again435

contains a Q2-minor, contradiction (see figure below).436

Therefore B has its feet in P12 ∪ P22, but it cannot have a foot in P12 and another in P22,437

because this would contradict either 5b, 6b, or 7. Hence, B has all of its feet in P12 or all in P22;438

by symmetry, we may assume that in P12. Let p and q be the first and last feet of B in the order439

of vertices on P12. Then G has a 2-separation (L′, R′) over {p, q}, and by the initial hypothesis of440

Proposition 4.1 and Lemma 2.2, L′ = P2 or C4, so that B is a P2- or C4-bridge over {p, q}. Since441

F 6= ∅, it follows that B 6= C4 for otherwise G would contain a J2-, J4-, or J5-minor (see figure442

below).443

Hence, B = P2, and so B is a subgraph of P12. This proves 12.444

It follows by 12 that L′(y, as) 6= C4 and L′(y, bt) 6= C4. Hence, yas and ybt are either simple445

edges, or edges subdivided once. However, L′(x, a1) and L′(x, b1) could be either P2 or C4, or xa1446

and xb1 could be simple edges.447

By the fact that there are no edges of F in the top, and from 8a, 8b, 10, and 11, it follows that448

the only possible edges in the top are:449

- edges from p1 to P11;450

- edges from pn−1 to P21;451

- edges from int(P ) to x;452

- edges that are part of the P2- or C4-bridges from int(P ) to x;453

- edges that are part of the P2- or C4-bridges from a1 or b1 to x;454

- edges of the cycle Cx;455
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Hence, the only possible vertices lying in the interior of the disk bounded by Cx are those from456

the P2- or C4-bridges from int(P ) ∪ {a1, b1} to x. Hence, from this and 12 it follows that G− x is457

outerplanar (i.e. x is an apex vertex of G), a contradiction.458

Case 2. F = ∅.459

Again, by the fact F is empty, and from 8a, 8b, 10, and 11, it follows that the only possible460

edges in G are:461

- edges from p1 to P1;462

- edges from pn−1 to P2;463

- edges from int(P ) to x or to y;464

- edges that are part of the +P2- or C4-bridges from int(P ) to x or to y;465

- edges that are part of the P2- or C4-bridges from a1 or b1 to x, and from as or bt to y;466

- edges of the cycles Cx and Cy.467

If there are no P2- or C4-bridges from int(P ) to x nor to y, then, just as in the proof of the468

l(P) = 1 case, if L′(x, a1) = C4 and L′(y, as) = C4 (or L′(x, b1) = C4 and L′(y, bt) = C4), then469

G >m J3. Similarly, if L′(x, a1) = C4 and L′(y, bt) = C4 (or L′(x, b1) = C4 and L′(y, as) = C4),470

then G >m J1. Therefore, for one of the sides, say the x-side, we must have that xa1 and xb1 are471

either simple edges, or edges subdivided once. Hence, G− y is outerplanar, a contradiction.472

Hence, there is a P2- or C4-bridge from int(P ) to x or to y, but there cannot be such bridges to473

both x and y, for otherwise G would contain a Q2-minor. Hence, there is a P2- or C4-bridge from474

int(P ) to, say x, but not to y. Then, L′(y, as) 6= C4 and L′(y, bt) 6= C4, for otherwise G >m J5 (see475

figure below).476

Therefore, yas and ybt are either simple edges, or edges subdivided once. Hence, G − x is477

outerplanar, a contradiction (see figure below).478

This concludes the proof of (2) of Proposition 4.1.479

5. Connectivity 2: One Side Always P2480

In this section, we focus on the case that every 2-separation of G ∈ ob(O∗)−S has one side that481

is P2 (Subcase 2.2 of the outline given in the Introduction). We prove the following proposition,482

which says that, in this case, G ∈ H ∪Q.483

Proposition 5.1. If G ∈ ob(O∗)− S is of connectivity 2 and for every 2-separation S of G over484

{x, y} one side is P2, then the following holds true:485

(1) If G− {x, y} /∈ O for some such S, then G is a member of the family H;486
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(2) If G− {x, y} ∈ O for every such S, then G is a member of the family Q.487

We define a few terms first. A graph H is internally 3-connected if it is 2-connected, and for488

every 2-cut {s, t}, H − {s, t} has two connected components, one of which is a single vertex. We489

say that a vertex in H is pendant if its degree in H is 1. Similarly, we say that an edge in H is490

pendant if it is incident with a pendant vertex. Before presenting a proof of Proposition 5.1, we491

first establish some preliminary observations based on the hypotheses of Proposition 5.1, which will492

be used later in the proof.493

It follows from the hypothesis of Proposition 5.1 that G is internally 3-connected. Let (L,R) be494

a 2-separation over vertices {x, y} such that L = P2. Let v be the third (middle) vertex of L. Since495

G is minor-minimal /∈ O∗, G/vy has an apex vertex a (i.e. a such that (G/vy) − a ∈ O). Note496

that a 6= y and a 6= x, for otherwise y (or x, respectively) is an apex vertex in G, a contradiction.497

Since deg(v) = 2, it follows that G/vy is also internally 3-connected. Hence, the only possible 1-498

separations in (G/vy)−a are those that separate a pendant vertex. Call such 1-separations trivial.499

Therefore, (G/vy)− a is 2-connected up to trivial 1-separations (pendant edges), and outerplanar.500

Fix a planar embedding of G so that all the vertices of (G/vy) − a ∈ O and a are incident with501

the outer face (i.e. infinite face). Since (G/vy) − a is 2-connected up to trivial 1-separations, it502

follows that all the vertices of (G/vy)−a ∈ O lie along a cycle C, except (possibly) for the vertices503

of degree 1 in (G/vy) − a that are adjacent to some vertex of C. Note that such vertices have504

degree 2 in G/vy (and in G), and that no two of them are adjacent to the same vertex c of C,505

for otherwise G has a 2-separation (L′, R′) over {c, a} such that L′ = C4 or L′ /∈ O and R′ /∈ O,506

contradicting the hypothesis of Proposition 5.1. Since v ∈ G−a /∈ O, it follows that v is embedded507

in the interior of the disk bounded by C. We have508

1. The edges of G are:509

- edges of C;510

- chords of C, that is, edges not in E(C) with both endpoints in C (note that such edges are511

embedded in the interior of the disk bounded by C);512

- edges xv and vy, with x, y ∈ V (C);513

- edges with one endpoint in C and the other at a (or such edges subdivided once).514

Also note that there are no two consecutive vertices in C of degree 2, since such vertices and515

their neighbors would induce a P3 or a C4 in G giving rise to a 2-separation violating the hypothesis516

of Proposition 5.1 .517

In this context, by a neighbor of a, we mean a vertex u in C such that au is actually an edge518

of G or an edge subdivided once. As usual, we denote by N(a) the set of neighbors of a. Since519

xy /∈ E(G), it follows that G has vertices in both C(x, y) and C(y, x). Furthermore,520

2. a must have a neighbor in both C(x, y) and C(y, x).521

For otherwise, G has a 2-separation over {x, y} contradicting the hypothesis of Proposition 5.1.522

Note that a chord must have both of its endpoints in C[x, y] or C[y, x]. We say that two chords523

c := c1c2 and d := d1d2 are non-overlapping if their endpoints satisfy c1 < c2 6 d1 < d2 in the524

cyclic order of C, and are said to be nested if c1 6 d1 < d2 6 c2 or d1 6 c1 < c2 6 d2. It follows525

from 1 that:526
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3. If c := c1c2 is a chord with c1 < c2 (in the clockwise order restricted to C[x, y] or C[y, x]), then527

a has a neighbor in C(c1, c2).528

For otherwise, G has a 2-separation over {c1, c2} contradicting the hypothesis of Proposition 5.1.529

Also,530

4. Within a single segment C[x, y] or C[y, x], there are no non-overlapping chords (or equivalently,531

all the chords are nested).532

Suppose that the chords c := c1c2 and d := d1d2 are non-overlapping with c1 < c2 6 d1 < d2533

within, say C[x, y]. Then, by 3, a has a neighbor in C(c1, c2) and in C(d1, d2), and by 2, it has534

a neighbor in C(y, x). Then, G contains the following graph as a minor, which we label Q1, and535

which can easily be verified to belong to ob(O∗). This is a contradiction, since G is minor-minimal536

/∈ O∗.537

5.1. Proof of (1). Let G − {x, y} /∈ O for a 2-separation S = (L,R) of G over {x, y}. Hence538

G−{x, y} contains a K-subdivision as a subgraph, call it K ′. By 1, it follows that a is a cut-vertex539

in G−{x, y}, hence, without loss of generality, K ′ is a subgraph of G−C[y, x]. Let C ′ be the outer540

cycle of K ′. Then, |V (C ′) ∩ C(x, y)| > 2, for otherwise if u := V (C ′) ∩ C(x, y), then it follows by541

1 that G has a 2-separation (L′, R′) over {a, u} such that L′ /∈ O and R′ /∈ O, contradicting the542

hypothesis that one side of (L′, R′) must be P2 (and so in O).543

Let s, t ∈ V (C ′) ∩ C(x, y) be the first and last vertices, respectively, of V (C ′) ∩ C(x, y) in the544

clockwise order of C(x, y). Note that s 6= x and t 6= y. Also, since G does not contain two disjoint545

K-graphs, it follows that:546

5. G does not have a chord with one endpoint in C[x, s) and the other in C(t, y].547

It is straightforward to verify that the graphs in Figure 7 are minor-minimal /∈ O∗ satisfying the548

hypothesis of (1) and the initial hypothesis of Proposition 5.1. We label them H1, H2, H3, H4, H5.549

Hence Hi ∈ ob(O∗) for i = 1, . . . , 5.550

Therefore, if a has at least two neighbors in C(y, x), or one neighbor z ∈ C(y, x) and C(y, z) 6= ∅551

and C(z, x) 6= ∅, then it is easy to verify that G contains an Hi-minor for some i = 1, . . . , 5 (see552

figure below). Hence, let z be the only neighbor of a in C(y, x). We only need to consider two553

cases: either both C(y, z) and C(z, x) are empty, or one of them is empty, say C(y, z), and the554

other is not.555
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Figure 7. H family

First, suppose that C(y, z) = ∅ and C(z, x) 6= ∅. So yz ∈ E(G). Then G has the following556

structure as a subgraph:557

6. In G/yz, the only apex vertex is s.558

This is because an apex vertex in G/yz must destroy both K ′ and the K2,3-subdivision with559

outer cycle C. Hence it must be a vertex in V (C ′) ∩ C(x, y). If u ∈ C(s, t] is apex, then since560

s, t, and a all lie on C ′, it follows that in G/yz − u there is a path P ′ in C ′ from a to s; this561

path, combined with the (possibly subdivided) edge ay (= az) and the path along C from y to562

s form an outer cycle of a K2,3-subdivision with inner path x, v, y. Hence, G/yz − u contains a563

K2,3-subdivision, a contradiction. This proves 6.564

7. y (= z) is a cut-vertex in G/yz − s.565

Note that there are no edges (or edges subdivided once) from a to C(z, x) in G/yz, since z is566

the only neighbor of a in C(y, x) in G. Also, note that there are no edges (or edges subdivided567

once) from a to C[x, s) in G/yz, for otherwise G/yz − s contains a K2,3-subdivision, contradicting568

6. Finally, there are no chords from C[x, s) to C(s, t] in G/yz, for otherwise G/yz − s contains a569

K2,3-subdivision. These facts combined with 5 imply 7.570

Therefore, it follows by 7 that after uncontracting edge yz in G/yz−s, the resulting graph G−s571

is also outerplanar, a contradiction since G /∈ O∗.572
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Now consider the other case that both C(y, z) and C(z, x) are empty (so that yz, zx ∈ E(G)).573

Recall that z is the only neighbor of a in C(y, x). Then G has the following structure as a subgraph:574

Similary to 6, we obtain the following fact.575

8. In G\az, the only possible apex vertices are s and t.576

We use the above to prove the following key fact.577

9. One or both of the following hold:578

(i) xs is an edge of G (or an edge subdivided once) and deg(x) = 3;579

(ii) yt is an edge of G (or an edge subdivided once) and deg(y) = 3.580

Note that if a vertex in C(x, s) or C(t, y) has degree > 3, then it is a neighbor of a or an581

endpoint of a chord. Similarly, if deg(x) > 4 or deg(y) > 4, then x, respectively y, is a neighbor582

of a or an endpoint of a chord. To prove 9, we first note that a does not have neighbors in both583

C[x, s) and C(t, y], for otherwise G\az has no apex vertex (since neither s nor t is apex in G\az),584

a contradiction. Hence, by symmetry, we may assume that a has no neighbors in C[x, s). Then,585

by 3, there are no chords with both endpoints in C[x, s]. If a has a neighbor in C(t, y], then there586

are no chords with one endpoint in C[x, s) and the other in C(s, t], for otherwise G\az has no apex587

vertex (note that the other endpoint cannot lie in C(t, y] by 5), and thus (i) holds. And if a has no588

neighbors in C(t, y] then, again by 3, there are no chords with both endpoints in C[t, y]. Therefore,589

the only chords in G are those with one endpoint in C[x, s) and the other in C(s, t] (in which case590

(ii) holds), or those with one endpoint in C[s, t) and the other in C(t, y] (in which case (i) holds),591

but not both, since two such chords would either cross or would be non-overlapping, violating 4.592

This proves 9.593

By symmetry, we may assume that (i) holds in 9, so that xs is an edge of G (or an edge subdivided594

once, in which case denote the subdividing vertex by w). In the remainder of the proof, by G/xs595

we mean the graph obtained from G by contracting the path (of length 1 or 2) along C from s to596

x.597

Similarly to 6 and 8, we obtain:598

10. In G/xs, the only apex vertex is s (= x), unless (ii) in 9 also holds, then t may also be apex.599

If (ii) does not hold, then either a has a neighbor in C(t, y] or G has a chord with one endpoint600

in C[s, t) and the other in C(t, y]. And in either case t is not apex in G/xs.601

Note that (G/xs)− s = G− {x, s} (or possibly (G/xs)− s = G− {x,w, s} if xs is subdivided).602

Re-embed the graph (G/xs)− s ∈ O (if necessary), so that all of its vertices are incident with the603

outer face. In (G/xs) − s, deg(z) = 2 and deg(v) = 1, hence edges zy and vy are also incident604

with the outer face. Since yz is a simple edge, by putting x (and possibly w) back in, we obtain605

an embedding of G − s in which all the vertices are still incident with the outer face, hence G− s606

is outerplanar, a contradiction (see figure below).607
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Finally, if t is also apex in G/xs, then by the above, (ii) in 9 also holds, so that yt is an edge of608

G (or an edge subdivided once, in which case denote the subdividing vertex by u) and deg(y) = 3.609

Since (G/xs) − t ∈ O, there is a face f in the current embedding incident with all the vertices of610

(G/xs) − t. Since the path (of length 1 or 2) from s to x can be uncontracted along C, it follows611

that f is also incident with all the vertices of G− t, a contradiction since G /∈ O∗ (see figure below).612

This concludes the proof of (1) in the case that both C(y, z) and C(z, x) are empty, as well as613

the proof of (1) of Proposition 5.1.614

5.2. Proof of (2). It is straightforward to verify that the graphs in Figure 8 are minor-minimal615

/∈ O∗ satisfying the initial hypothesis and the hypothesis of (2) of Proposition 5.1. We label them616

Q1, Q2, Q3, Q4, Q5. Hence Qi ∈ ob(O∗) for i = 1, . . . , 5.617

Figure 8. Q family

In the remainder of the proof, we assume that G /∈ {Q1, Q2, Q3, Q4, Q5}. Observe that now the618

vertex a from 2 satisfies619

11. deg(a) > 3.620

For otherwise, if deg(a) = 2, then let the two neighbors of a be a1 and a2 (in C(x, y) and621

C(y, x), respectively, by 2). Note that there is a chord with one endpoint in C[x, a1) and the other622
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in C(a1, y], for otherwise, it follows by 1 that a1 is apex in G, a contradiction. Similarly, there623

is a chord with one endpoint in C[y, a2) and the other in C(a2, x], for otherwise, it follows by 1624

that a2 is apex in G, a contradiction. Since deg(a) = 2, it follows that G has a 2-separation over625

{a1, a2} such that G−{a1, a2} contains a K2,3-subdivision, contradicting the hypothesis of (2) that626

G− {a1, a2} ∈ O. This proves 11.627

Case 1. G has no chords.628

Subcase 1.1. |N(a) ∩C(x, y)| = 1 and |N(a) ∩ C(y, x)| = 1.629

Then, there is a subdivided edge ay, for otherwise x is apex. Also, there is a subdivided edge630

ax, for otherwise y is apex, and hence G >m Q2, a contradiction.631

Subcase 1.2. |N(a) ∩C(x, y)| = 2 and |N(a) ∩ C(y, x)| = 1.632

First suppose that x, y /∈ N(a). Let a1 ∈ N(a) ∩ C(y, x) and a2, a3 ∈ N(a) ∩ C(x, y) in the633

clockwise order around C. Then, there is a vertex in C(a2, a3), for otherwise a1 is apex. Edge aa3634

is subdivided, for otherwise x is apex. Edge aa2 is subdivided, for otherwise y is apex. There is a635

vertex in C(y, a1), for otherwise a2 is apex. Finally, there is a vertex in C(a1, x), for otherwise a3636

is apex, and hence G >m Q4.637

Next, suppose that x ∈ N(a), but y /∈ N(a). Then, edge aa3 is subdivided, for otherwise x is638

apex. Edge ax is not subdivided, for otherwise G >m Q2. Edge aa2 is subdivided, for otherwise y639

is apex. Finally, there is a vertex in C(a1, x), for otherwise a3 is apex, and hence G >m J1.640

Finally, suppose that x, y ∈ N(a). Then, at least one of aa3, ay is subdivided, for otherwise x is641

apex. Also, at least one of aa2, ax is subdivided, for otherwise y is apex. If aa2 and aa3 are, then642

G >m J1. If ax and ay are, then G >m Q2. Finally, if ax and aa3 are, or a2 and ay are, then again643

G >m Q2, a contradiction.644

Subcase 1.3. |N(a) ∩C(x, y)| > 3 and |N(a) ∩ C(y, x)| = 1.645

Let a1 ∈ N(a)∩C(y, x) and a2, a3 ∈ N(a)∩C(x, y) be such that a2 is the vertex in N(a)∩C(x, y)646

closest to x, and a3 is the vertex in N(a) ∩C(x, y) closest to y. Note that if u ∈ N(a) ∩C(a2, a3),647

then edge au is not subdivided, for otherwise G−{x, y} contains a K2,3-subdivision, contradicting648

the hypothesis that G− {x, y} ∈ O.649

Therefore, at least one of aa3, ay (if ay ∈ E(G)) is subdivided, for otherwise x is apex. Also,650

at least one of aa2, ax (if ax ∈ E(G)) is subdivided, for otherwise y is apex. Hence, G >m Q2, a651

contradiction.652

Subcase 1.4. |N(a) ∩C(x, y)| > 2 and |N(a) ∩ C(y, x)| > 2.653

Let a1, a2 ∈ N(a) ∩ C(y, x) and a3, a4 ∈ N(a) ∩ C(x, y) be such that a1 and a4 are the two654

neighbors of a closest to y, and a2 and a3 are the two neighbors of a closest to x. Note that if655

u ∈ N(a)∩(C(a1, a2)∪C(a3, a4)), then edge au is not subdivided, for otherwise G−{x, y} contains656

a K2,3-subdivision, contradicting the hypothesis that G− {x, y} ∈ O.657

Therefore, at least one of aa1, aa4, ay (if ay ∈ E(G)) is subdivided, for otherwise x is apex.658

Also, at least one of aa2, aa3, ax (if ax ∈ E(G)) is subdivided, for otherwise y is apex. Hence, it659

follows from these two facts that if ay ∈ E(G) and it is subdivided, then G >m Q2, a contradiction.660

Similarly, if ax ∈ E(G) and it is subdivided, then G >m Q2, a contradiction. Hence, if ax ∈ E(G)661

or ay ∈ E(G), then they are not subdivided. Finally, if aa1 and aa2 are, or if aa3 and aa4 are,662
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then G >m Q5, a contradiction. And if aa1 and aa3 are, or if aa2 and aa4 are, then G >m Q2, a663

contradiction. This concludes the proof of (2) of Proposition 5.1 in Case 1.664

Case 2. G has a chord.665

We first strengthen 3 to the following:666

12. If c := c1c2 is a chord with c1 < c2 (in the clockwise order restricted to C[x, y] or C[y, x]), then667

a has a neighbor in C(c1, c2). Furthermore, for any such neighbor w, the edge aw is not subdivided.668

For otherwise, G would have a 2-separation over {a,w} such that G−{a,w} has K2,3-subdivision669

contradicting the hypothesis that G− {a,w} ∈ O.670

The following two claims greatly limit the structure of G.671

Claim 1. Let c = c1c2, with c1, c2 ∈ C(x, y) in the clockwise order around C, be an innermost672

chord of G (in the sense that there are no other chords with both endpoints in C[c1, c2]). Then a673

does not have two neighbors in C(c1, c2).674

Pf. Suppose that a does have two neighbors a1, a2 ∈ C(c1, c2). By 12, edges aa1 and aa2 are not675

subdivided. Also, a does not have any other neighbors in C(x, y), for otherwise G − {x, y} would676

contain a K4-subdivision, violating the hypothesis of (2) that G−{x, y} ∈ O. Also, C(a1, a2) = ∅,677

for otherwise G − {x, y} would contain a K2,3-subdivision, violating the hypothesis of (2). Note678

that possibly, edges c1a1 and a2c2 are subdivided once, but since c is an innermost chord, there679

are no other vertices in C(c1, c2). If a has at least two neighbors in C(y, x), then G >m Q5, a680

contradiction. Hence, let z be the only neighbor of a in C(y, x).681

We let u be an apex vertex in G\a1a2, and we assume that the graph (G\a1a2) − u ∈ O is682

embedded in the plane with all of its vertices incident with the outer face. Note that u ∈ {z, c1, c2},683

for otherwise: if u ∈ {a1, a2}, then clearly u is apex in G, a contradiction; if u ∈ {a} ∪ C(c1, a1) ∪684

C(a2, c2), then (G\a1a2)− u contains a K2,3-subdivision; and if u ∈ {v} ∪C(c2, z) ∪C(z, c1), then685

(G\a1a2)− u contains a K4-subdivision.686

If u = z, then the only neighbors of a are a1, a2 and z (because if x or y is a neighbor of a687

then (G\a1a2) − z contains a K2,3-subdivision). Then, in (G\a1a2) − z, deg(a) = 2, hence edges688

aa1 and aa2 are incident with the outer face, and by putting the edge a1a2 back in, we obtain an689

embedding of G − z in which all the vertices are still incident with the outer face, hence G − z is690

outerplanar, a contradiction.691

Finally, suppose that u = c1 (the case u = c2 is symmetric). If c1a1 is subdivided once, then let692

b be the subdividing vertex. Then, in (G\a1a2)− c1, then deg(a1) = 1 (except if c1a1 is subdivided693

by b, then deg(a1) = 2, but a1 is adjacent to b with deg(b) = 1, that is a1b is a pendant edge),694

and deg(a2) = 2. Hence edges aa2 and aa1 (and possibly a1b) are incident with the outer face, and695

since aa2 is a simple edge, we can put edge a1a2 back in to obtain an embedding of G− c1 in which696

all the vertices are still incident with the outer face, a contradiction. This proves Claim 1.697

Claim 2. G does not have a chord with both endpoints distinct from x and y.698

Pf. Suppose that G does have a chord with endpoints s, t ∈ C(x, y) in the clockwise order around699

C. We may assume, without loss of generality, that st is the innermost chord, in the sense that700

there are no other chords with both endpoints in C[s, t]. By 12, there is a vertex w ∈ N(a)∩C(s, t)701

and the edge aw is not subdivided. Also, by Claim 1, N(a)∩C(s, t) = {w}. Also, a does not have702

neighbors in both C(x, s] and C[t, y), for otherwise G − {x, y} would contain a K4-subdivision,703
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violating the hypothesis that G − {x, y} ∈ O. Also, by 4, G does not have chords with both704

endpoints in C[x, s] or both in C[t, y]. Let z ∈ N(a) ∩ C(y, x). First, we show Claim 2a and then705

Claim 2b. They are needed for the proof of Claim 2.706

Claim 2a. Neither s nor t can be a neighbor of a.707

Pf. By symmetry, we may assume that t is a neighbor of a, so that s is not. Then, C(x, s]∩N(a) =708

∅. Also, C(w, t) = ∅, for otherwise G − {x, y} would contain a K2,3-subdivision. Also, edges sw709

and ta are possibly subdivided once, but by choice of chord c, there are no other vertices in C(s, t).710

Hence G contains the following subgraph:711

First, suppose that edge ta is subdivided by vertex u. Then C(t, y] ∩ N(a) = ∅, for otherwise712

G >m Q3. For the same reason, we have that (C(y, z) ∪ C(z, x)) ∩ N(a) = ∅. Hence, the only713

neighbor of a other than z, w and t is possibly x. Furthermore, if ax ∈ E(G) then it is not714

subdivided for otherwise G >m Q2. Also, note that the remaining chords whose endpoints lie in715

C[x, y] must have one of their endpoints at t, and the other in C[x, s), for otherwise 4 is violated,716

or the subdivided edge ta violates 12. It follows from all of the above that if C(z, x) = ∅, then t is717

apex in G, a contradiction. Hence C(z, x) 6= ∅. Then, if ax ∈ E(G), then G >m J1 (by contracting718

z to y, contracting s to x, and deleting ws). Thus ax /∈ E(G). Therefore, since C(w, t) = ∅,719

if G has no chords with one endpoint in C[y, z) and the other in C(z, x], then z is apex in G,720

a contradiction. Hence, G does have at least one such chord c. If c has one endpoint in C(z, x)721

and the other in C[y, z), then G >m Q3 (by contracting z to a, and s to x). Hence, c has one722

endpoint at x and the other in C(y, z), but then again G >m Q2 (by deleting st, contracting z to723

a, contracting s to x, and contracting t to y), a contradiction. Thus we have shown that ta is not724

subdivided, that is ta ∈ E(G).725

We let p be an apex vertex in G\wt, and we assume that the graph (G\wt)−p ∈ O is embedded726

in the plane with all of its vertices incident with the outer face. Note that p /∈ {w, t}, for otherwise727

p is apex in G. In fact, it is easy to see that if p /∈ {z} ∪ C[x, s], then p is not apex in G\wt, a728

contradiction. G and G\wt contain the following subgraphs, respectively:729

Suppose that p = z. Then, a has no neighbors other than w, t, and z, for otherwise (G\wt) − p730

contains a K4-subdivision. Therefore, in the graph (G\wt) − p, deg(a) = 2, hence edges aw and731

at are incident with the outer face, and we can put edge wt back in, to obtain an embedding of732
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G− z in which all the vertices are still incident with the outer face, hence G − z is outerplanar, a733

contradiction.734

Therefore p ∈ C[x, s]. Recall from above that C(x, s] ∩ N(a) = ∅. Note that there are no735

chords with one endpoint in C[x, p) and the other in C[t, y], for otherwise (G\wt) − p contains736

a K2,3-subdivision. Also, if a chord has one endpoint in C(p, s], then its other endpoint is t, for737

otherwise (G\wt) − p contains a K4-subdivision. For simplicity, assume that c = c1t is the only738

such chord with c1 6= s. If there is more than one such chord, the argument is similar. Also, note739

that edges pc1, c1s, and sw may be subdivided once, but the subdividing vertices can be ignored740

for the purposes of this argument, as will be apparent soon. So for simplicity, we assume that pc1,741

c1s, and sw are simple edges. By the observations above, it follows that in (G\wt)−p, deg(w) = 2,742

and deg(c1) = 2, hence edges wa, ws, c1s and c1t are incident with the outer face, which implies743

that edge st is not. Therefore, since in (G\wt) − p, deg(s) = 3, it follows that we can put edge wt744

back in, to obtain an embedding of G−p in which all of the vertices are still incident with the outer745

face, hence G− p is outerplanar, a contradiction (see figure below). Finally, note that if edges pc1,746

c1s, and sw are subdivided once, then its subdividing vertices are still incident with the outer face747

in the above embedding of G− p, since in the above argument edges c1s and sw are incident with748

the outer face. This proves Claim 2a.749

Therefore, neither s nor t is a neighbor of a. We now show furthermore:750

Claim 2b. a does not have a neighbor in C(x, s) ∪ C(t, y).751

Pf. By symmetry, suppose that N(a) ∩ C(t, y) 6= ∅, so that N(a) ∩ C(x, s) = ∅, and let t′ ∈752

N(a)∩C(t, y). Then, all the chords that have an endpoint in C(t, y) have the other endpoint at x,753

for otherwise 4 is violated, or G−{x, y} contains a K4-subdivision. Also, C(w, t) = ∅, for otherwise754

G− {x, y} would contain a K2,3-subdivision, violating the hypothesis of (2) that G− {x, y} ∈ O.755

First, suppose that edge t′a is subdivided by vertex u. Then, C(t, t′) ∩N(a) = ∅, for otherwise756

G >m Q2. Also, C(t′, y] ∩N(a) = ∅, for otherwise G >m Q3. For the same reason, we have that757

(C(y, z) ∪C(z, x)) ∩N(a) = ∅. Hence, the only neighbor of a other than z, w and t′ is possibly x.758

Furthermore, if ax ∈ E(G) then it is not subdivided for otherwise G >m Q2. Now consider what759

the remaining chords within C[x, y] are. Note that a chord cannot have an endpoint in C(t′, y],760

since it would violate either 4 or 12. And it cannot have an endpoint at t, since the other endpoint761

would be in C[x, s), and G would contain a Q2-minor; and similarly it cannot have an endpoint at762

C(t, t′) (and hence the other at x). Hence, all the remaining chords whose endpoints lie in C[x, y]763

have an endpoint at t′. It follows from all of the above that if C(z, x) = ∅, then t′ is apex in G,764

a contradiction. Hence C(z, x) 6= ∅, and so G >m Q5 (by contracting s to x and deleting all the765

chords incident with t′), a contradiction. Thus we have shown that t′a is not subdivided, that is766

t′a ∈ E(G).767
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We will now proceed to show, in a sequence of steps, that the only possible chords with both768

endpoints in C[x, y] other than st are the ones with one endpoint at x and the other in C[t′, y).769

Recall from above that:770

A. All chords that have an endpoint in C(t, y) have the other endpoint at x.771

We prove772

B. There is no chord with one endpoint at t and the other in C[x, s).773

For otherwise, let u ∈ C[x, s) be the other endpoint of such a chord, and choose u to be the774

closest to s, in the sense that there are no chords with both endpoints in C[u, t] other than st775

and ut. Note that, us and sw are either edges of G or edges subdivided once, but again we may776

assume, without loss of generality, that us and sw are just simple edges. Let p be an apex vertex777

in G\st. It is easy to see that p ∈ C[x, u]. If p = u, then there are no more chords with an endpoint778

at t, for otherwise (G\st) − u contains a K2,3-subdivision. Hence, in (G\st) − u, deg(t) = 2 and779

deg(s) = 1, hence edge wt and the pendant edge ws are incident with the outer face. Therefore,780

since C(w, t) = ∅ (equivalently, wt ∈ E(G)), we can put edge st back into this embedding to obtain781

an outerplanar embedding of G− u, a contradiction. Therefore, we must have p ∈ C[x, u). Also, if782

a chord has one endpoint in C(p, u], then its other endpoint is t, for otherwise if the other endpoint783

is y, then (G\st) − p contains a K4-subdivision. For simplicity, assume that c = c1t is the only784

such chord with c1 6= s. If there is more than one such chord, the argument is similar. Also, note785

that edges pc1, c1u, us and sw may be subdivided once, but again we may assume, without loss786

of generality, that they are all just simple edges (since they will turn out to be incident with the787

outer face in (G\st)− p). By the observations above, it follows that in (G\st)− p, deg(s) = 2, and788

deg(c1) = 2, hence edges su, sw, c1u and c1t are incident with the outer face, which implies that789

edge ut is not. Therefore, since in (G\st) − p, deg(u) = 3, it follows that by putting edge st back790

in, we can embed G− p so that all the vertices are still incident with the outer face, hence G− p791

is outerplanar, a contradiction (see figure below). This proves B.792

C. There is no chord with one endpoint in C(t, t′) and the other at x.793

Suppose the contrary, and let u ∈ C(t, t′) be the endpoint of such a chord. By B, there is no794

chord with one endpoint at t and the other in C[x, s), hence xs is an edge, or an edge subdivided795

once. Note that, xs and sw are either edges of G or edges subdivided once, but again we may796

assume, without loss of generality, that xs and sw are just simple edges. Let p be an apex vertex797
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in G\st. It is easy to see that p = x. Hence, in (G\st)− p, deg(t) = 2 and deg(s) = 1, hence edge798

wt and the pendant edge ws are incident with the outer face. Therefore, by putting edge st back799

into this embedding, we obtain an outerplanar embedding of G − x, a contradiction. This proves800

C.801

D. There is no chord with one endpoint at y and the other in C(x, s].802

Suppose the contrary, and let u ∈ C(x, s] be the endpoint of such a chord, and choose u to be803

the closest to s, in the sense that there is no other chords with one endpoint at y and the other in804

C(u, s]. Therefore, us and sw are either edges of G or edges subdivided once, but again we may805

assume, without loss of generality, that us and sw are just simple edges. It is easy to see that u806

is the only possible apex vertex in G\wt. First, if u ∈ C(x, s), then in (G\wt) − u, deg(s) = 2,807

hence edges sw and st are incident with the outer face. Therefore, by putting edge wt back into808

this embedding, we obtain an outerplanar embedding of G − u, a contradiction. Finally if u = s,809

then in (G\wt)− s, deg(t′) = 3 and deg(t) = 1 = deg(w), hence edge t′a and pendant edges tt′, aw810

are incident with the outer face. Therefore, since at′ is a simple edge, by putting edge wt back into811

this embedding, we obtain an outerplanar embedding of G− s, a contradiction. This proves D.812

It follows by A - D that:813

E. The only possible chords with both endpoints in C[x, y] other than st are the ones with one814

endpoint at x and the other in C[t′, y).815

Hence, xs and sw are either edges of G or edges subdivided once, but again we may assume,816

without loss of generality, that xs and sw are just simple edges. In the remainder of the proof817

of Claim 2b, by G/xs we mean the graph obtained from G by contracting the path (of length 1818

or 2) along C from s to x. Let p be an apex vertex in G/xs. It is easy to see that p = x or819

p = t′. If p = x, then in (G/xs)− x, deg(w) = 2 = deg(t), hence edge wt is incident with the outer820

face. Therefore, by putting edges ws and st back into this embedding, we obtain an outerplanar821

embedding of G − x, a contradiction. And if p = t′, then observe the following facts. First, there822

are no chords with one endpoint at x and the other in C(t′, y), therefore, by E, the only possible823

chord with both endpoints in C[x, y] other than st is xt′. Second, a has no other neighbors, except824

possibly x, for otherwise (G/xs) − t′ contains a K4-subdivision. And if x ∈ N(a), then xa is not825

subdivided. Third, C(z, x) = ∅, and the only edges left in G are chords from x to C(y, z). These826

facts account for all the edges of G. Hence t′ is apex in G, a contradiction. This concludes the827

proof of Claim 2b.828

We now finish the proof of Claim 2. Note that edges sw and wt are possibly subdivided, but829

again we may assume, without loss of generality, that they are simple edges. It follows from Claims830

2a and 2b that a does not have neighbors in C(x, s] ∪ C[t, y). Also, by 4, there are no chords831

with both endpoints in C[x, s] or both in C[t, y]. Again, we let p be an apex vertex in G/wa. It832

follows from 11 that besides w and z, a has another neighbor (in C[y, x]). Therefore p 6= z, since833

(G/wa) − z contains a K4-subdivision. In fact, it is easy to check that p ∈ C[x, s] ∪ C[t, y], for834

otherwise (G/wa) − p contains a K-subdivision.835
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By symmetry, we may assume that p ∈ C[x, s]. First, if p = s, then all the chords whose endpoints836

lie in C[x, y] have an endpoint at s, for otherwise (G/wa) − s contains a K2,3-subdivision. Thus,837

in (G/wa) − s, deg(t) = 2, hence edge ta is incident with the outer face. Therefore, in the current838

embedding of (G/wa)−s, we can subdivide edge ta by w to obtain an embedding of G−s in which839

all the vertices are still incident with the outer face, hence G− s is outerplanar, a contradiction.840

Therefore, p ∈ C[x, s). Then, by Claims 2a and 2b, a has no neighbors in C(p, s]. If a chord has841

an endpoint in C(p, s], then its other endpoint is t, otherwise (G/wa)−p contains a K4-subdivision.842

For simplicity, assume that c = c1t is the only such chord with c1 6= s. If there is more than one843

such chord, the argument is similar. Again, the edges pc1 and c1s may be subdivided once, but844

the subdividing vertices can be ignored for the purposes of this argument. So for simplicity, we845

assume that pc1 and c1s are simple edges. By the observations above, it follows that in (G/wa)−p,846

deg(c1) = 2, hence edges c1s and c1t are incident with the outer face, which implies that edge st is847

not. Therefore, since in (G/wa) − p, deg(s) = 3, it follows that sa is also incident with the outer848

face (and hence edge at is not, for otherwise the edges of the cycle a, t, c1, s, a are all incident with849

the outer face, which implies that those are all the vertices in (G/wa) − p, since (G/wa) − p has850

no non-trivial 1-separations, a contradiction). Therefore, it follows that in the current embedding851

of (G/wa)− p, we can delete edge sa, subdivide edge at by vertex w, and add edge ws and obtain852

an embedding of G− p in which all the vertices are still incident with the outer face, hence G− p853

is outerplanar, a contradiction (see figure below). This concludes the proof of Claim 2.854

We now finish the proof Case 2 (“G has a chord”) and thus the entire proof of (2) of Proposition855

5.1. By 4 and Claim 2, it follows that within each of the two segments C[x, y] and C[y, x] all the856

chords have an endpoint at x or all the chords have an endpoint at y. We have three subcases (of857

Case 2: “G has a chord”):858

Subcase 2.1. There are chords within C[x, y] and within C[y, x], and the ones within C[x, y] have859

an endpoint at y, and the ones within C[y, x] have an endpoint at x.860

Let c1y and d1x be innermost chords within C[x, y] and C[y, x], respectively. By 12, a has a861

neighbor w ∈ C(c1, y), and a neighbor z ∈ C(d1, x), and edges aw and az are not subdivided.862

First, suppose that a has a neighbor u such that edge au is subdivided. Then, by 12, u /∈863

C(c1, y) ∪ C(d1, x). If u ∈ C(x, c1] or u ∈ C(y, d1], then G >m Q3 (by contracting za or wa,864

respectively). Therefore, u ∈ {x, y}, so by symmetry u = x. Since G �m Q2, it follows that865
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N(a) ∩ (C(x,w) ∪ C(w, y)) = ∅, C(w, y) = ∅, and if y ∈ N(a), then ay is not subdivided.866

Therefore, x is apex in G, a contradiction.867

Therefore, for all neighbors u of a, au is a simple edge. Note that if a has no neighbors in868

C(x,w) ∪ C(w, y) and C(w, y) = ∅, then x is apex in G. Similarly, if a has no neighbors in869

C(y, z) ∪ C(z, x) and C(z, x) = ∅, then y is apex in G, a contradiction. Therefore, either N(a) ∩870

(C(x,w)∪C(w, y)) 6= ∅ or C(w, y) 6= ∅; and either N(a)∩ (C(y, z)∪C(z, x)) 6= ∅ or C(z, x) 6= ∅.871

It can easily be seen that any one of the four combination yields a Q2-minor in G, a contradiction.872

Subcase 2.2. There are chords within C[x, y] and within C[y, x], and all chords of G have an873

endpoint at y.874

Let c1y and d1y be innermost chords within C[x, y] and C[y, x], respectively. By 12, a has a875

neighbor w ∈ C(c1, y), and a neighbor z ∈ C(y, d1), and edges aw and az are not subdivided.876

Note that a has a neighbor u 6= y such that au is subdivided, for otherwise y is apex in G, a877

contradiction. Then, by 12, u /∈ C(c1, y) ∪ C(y, d1), hence u ∈ C[x, c1] ∪ C[d1, x]. By symmetry,878

we only need to consider u ∈ C[x, c1]. First, if u = x, then since G �m Q2, it follows that879

N(a) ∩ (C(x,w) ∪ C(w, y) ∪ C(y, z) ∪ C(z, x)) = ∅, C(w, y) ∪ C(y, z) = ∅, and if y ∈ N(a),880

then ay is not subdivided. Therefore, x is apex in G, a contradiction. Second, if u ∈ C(x, c1),881

then since G �m Q3, it follows that N(a) ∩ C(z, u) = ∅. Also, since G �m Q2, it follows that882

N(a) ∩ C(u,w) = ∅, and C(w, y) ∪ C(y, z) = ∅, and if y ∈ N(a), then ay is not subdivided.883

Therefore, u is apex in G, a contradiction. Therefore we must have u = c1. Again, since G �m Q3,884

it follows that N(a) ∩ C(z, u) = ∅. And, since G �m Q2, it follows that C(y, z) = ∅, and if885

y ∈ N(a), then ay is not subdivided. Therefore, u is apex in G, a contradiction.886

Subcase 2.3. All the chords of G lie within C[x, y] and they all have an endpoint at y.887

Let c1y be an innermost chord within C[x, y]. By 12, a has a neighbor w ∈ C(c1, y), and edge888

aw is not subdivided.889

Note that a has a neighbor u 6= y such that au is subdivided, for otherwise y is apex in G, a890

contradiction. Then, by 12, u /∈ C(c1, y). Let z ∈ C(y, x) be the neighbor of a closest to y, in891

the sense that yz is an edge of G or an edge subdivided once. Then u ∈ C(z, c1], for otherwise892

y is apex in G. First, if u ∈ C(z, x], then N(a) ∩ C(u, x) = ∅, for otherwise G − {x, y} contains893

a K2,3-subdivision. Also, since G �m Q2, it follows that N(a) ∩ C(x,w) = ∅, C(w, y) = ∅, and894

if y ∈ N(a), then ay is not subdivided. Therefore, x is apex in G, a contradiction. Second, if895

u ∈ C(x, c1), then, by 12, there are no chords with an endpoint in C(x, u). Also, since G �m Q3,896

it follows that N(a) ∩ C(z, u) = ∅, and since G �m Q5, we have that C(y, z) = ∅. Also, since897

G �m Q2, it follows that N(a) ∩ C(u,w) = ∅, and C(w, y) = ∅, and if y ∈ N(a), then ay is not898

subdivided. Therefore, u is apex in G, a contradiction. Therefore, we must have u = c1. Hence, by899

12, c1y is the only chord in G. Again, since G �m Q3, it follows that N(a) ∩ C(z, u) = ∅. Hence,900

zx and xc1 (= xu) are either edges of G or edges subdivided once. Also, since G �m Q2, it follows901

that if y ∈ N(a), then ay is not subdivided. Hence, C(y, z) 6= ∅, for otherwise u is apex in G.902

Finally, since G �m J1, it follows that C(u,w) = ∅ and N(a) ∩ C(w, y] = ∅, and hence z is apex903

in G, a contradiction.904

This concludes the proof of Case 2 in (2), and the entire proof of (2) of Proposition 5.1. 2905
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6. Connectivity 3906

In this section, we focus on the case that G ∈ ob(O∗) − S has connectivity three (recall from907

Lemma 2.2 that G ∈ ob(O∗)−S is not 4-connected, and thus K5 and Oct are the only 4-connected908

members of ob(O∗)). Here, we rely on the existence of contractible edges in 3-connected graphs909

(Lemma 6.2) and the minor-minimality of G to prove the following proposition, which says that910

such a G does not exist.911

Proposition 6.1. There are no 3-connected graphs in ob(O∗)−{K5,K3,3, Oct,Q}. In other words,912

the only graphs of connectivity 3 in ob(O∗) are K3,3 and Q.913

Lemma 6.2 (see [3]). If G is 3-connected and |V (G)| > 5, then G has an edge e such that G/e is914

also 3-connected.915

Such an edge is called contractible. We denote by vxy the new vertex obtained by contracting916

edge xy in a graph.917

The proof of Proposition 6.1 follows from Lemma 6.2 and two lemmas which are stated and918

proved below.919

Lemma 6.3. There is no 3-connected graph G in ob(O∗)−{K5,K3,3, Oct,Q} that has a contractible920

edge xy such that vxy is not apex vertex in G/xy.921

Proof. Suppose otherwise that there exists a 3-connected graph G in ob(O∗)− {K5,K3,3, Oct,Q}922

that has a contractible edge xy such that vxy is not apex vertex in G/xy, and hence there is an923

apex vertex a 6= vxy in G/xy. Then, (G/xy) − a ∈ O is 2-connected. Since G is 3-connected (and924

simple and planar), it has a unique planar embedding by the well-known theorem of Whitney from925

1933 (see [2]). Since (G/xy) − a ∈ O is 2-connected, it follows that restricting this embedding to926

(G/xy) − a, we have that all the vertices of (G/xy) − a lie on a cycle C ′ and are incident with927

the outer face. This is so because, by Whitney’s theorem, it follows that every simple 2-connected928

outerplanar graph has a unique outerplanar embedding. Since G − a /∈ O, it follows that x or y,929

say x, is embedded in the interior of the disk bounded by C, where C ⊆ G is the cycle isomorphic930

to C ′, and the corresponding isomorphism φ : V (C ′) → V (C) is the identity map on V (C ′) − vxy931

and φ(vxy) = y.932

Let u1, u2, . . . , un ∈ V (C) (n > 3) be the neighbors of x in the clockwise order around C. For933

i = 1, . . . , n, let Si := C[ui, ui+1], where Sn is understood to be C[un, u1]. We call the Si’s the934

segments of C. We call ui’s the endpoint vertices of the segments and the vertices in C(ui, ui+1)935

for i = 1, . . . , n, the interior vertices of the segments. Two segments of Si and Sj are said to be936

consecutive if |i− j| = 1, or {i, j} = {1, n}. We observe the following facts.937

1. The edges of G are:938

- edges of C;939

- edges xui for i = 1, . . . , n;940

- chords of C, that is, edges not in E(C) with both endpoints in a single segment of C (note that941

such edges are embedded in the interior of the disk bounded by C);942

- edges with one endpoint in C and the other at a.943
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It follows by the above that:944

2. Interior vertices of the segments are either endpoints of chords or neighbors of a.945

3. For every chord c1c2 in G with c1 < c2 (in the clockwise order of C restricted to the segment946

containing c1c2), a has a neighbor (in the usual sense, as opposed to the one from Section 5) in947

C(c1, c2) (by 3-connectedness of G).948

Let N(a) := NG(a). We now prove:949

4. N(a) is covered by exactly two consecutive segments of C.950

Pf. First, we show that N(a) is covered by exactly two segments of C. If there are four internally951

disjoint paths from a to x, then the subgraph of G formed from the union of those paths and C952

contains an Oct-minor, a contradiction.953

Therefore, by Menger’s theorem and the fact that G is 3-connected, it follows that G has a 3-cut954

separating a and x. By 1 above, it follows that this 3-cut is a subset of V (C), and therefore at least955

one of a or x has degree 3. Let u ∈ {a, x} be such that degG(u) = 3, and let v ∈ {a, x} − {u}. The956

three neighbors of u divide C into three segments. If all three segments contain interior vertices957

that are in N(v), then G contains a Q-minor, a contradiction958

Hence, one segment does not contain any interior vertices that are in N(v). Then, if u = x then959

we are done. And similarly, if u = a then we are done. Hence, we have shown that N(a) is covered960

by exactly two segments of C.961

Furthermore, the two segments that cover N(a) are consecutive. Suppose not, and let Si and962

Sj be the two segments that cover N(a) with |i − j| > 1. If both of them contain at least two963

neighbors of a, then two of those neighbors in each segment can be contracted to four distinct964

endpoint vertices and thus G >m Oct, a contradiction. Hence, one of them, say Si, contains only965

one neighbor of a, call it n1. Since deg(a) > 3, Sj must contain at least two neighbors of a: let n2966

be the closest one to uj , and n3 be the closest one to uj+1.967

Suppose n1 is an endpoint vertex, so that n1 = ui or ui+1. Note that in this case deg(x) > 5, for968

otherwise two consecutive segments cover N(a). Then, since G /∈ O∗, it follows that C(n2, n3) 6= ∅969

(for otherwise n1 is an apex vertex). But then, G >m Q1, a contradiction (by deleting edge n1x970

and contracting n2 to uj, and n3 to uj+1).971
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Therefore, n1 must be an interior vertex, so n1 ∈ C(ui, ui+1). Again, since G /∈ O∗, there is a972

vertex in C(n2, n3), or there is a chord with one endpoint in C[ui, n1) and the other in C(n1, ui+1]973

(for otherwise n1 is an apex vertex). In the first case, G >m Q1 (just like above) while in the974

second, G >m Oct (by contracting edge n1a), a contradiction. This proves 4.975

We now show that C actually has exactly three segments.976

5. C has exactly three segments, or equivalently deg(x) = 3, or equivalently n = 3.977

Pf. By 4, we may assume that N(a) is covered by S1 and S2. Since interior vertices are either978

endpoints of chords or neighbors of a, it follows by 2 and 3 that C(ui, ui+1) = ∅ for i = 3, 4, . . . , n979

(where un+1 = u1).980

Suppose that n > 4. By 4, it follows that a has neighbors in C[u1, u2) and in C(u2, u3]. Therefore,981

in the graph G\xu4, none of the vertices a, u2, x, u4 can be apex (since the deletion of any one982

of them still leaves a K2,3-subdivision as a subgraph). Let s be an apex vertex in G\xu4. Then983

s ∈ V (C). Therefore, the unique embedding of G restricted to the graph (G\xu4) − s ∈ O is an984

embedding in which all the vertices (including x) are incident with the outer face. By adding edge985

xu4 to this embedding, we obtain an embedding of G− s in which all the vertices are incident with986

the outer face, a contradiction.987

We have shown that for i = 3, 4, . . . , n xui /∈ E(G) which, by 3-connectivity of G, implies that988

C has exactly three segments and proves 5.989

By 5, G has the following general structure:990

Therefore, let S1 and S2 cover N(a). It follows by 2, and 3 that C(u3, u1) = ∅ (that is u3u1 ∈991

E(G)). Also, similarly to 4 from the proof of Proposition 5.1, since G �m Q1, we have:992

6. Within a single segment S1 or S2, there are no non-overlapping chords (or equivalently, all the993

chords are nested).994
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We say that segment S1 (respectively S2) is of type-one, if {z} := N(a) ∩C[u1, u2) with z 6= u1,995

and C(z, u2) 6= ∅ (respectively, {w} := N(a)∩C(u2, u3] with w 6= u3, and C(u2, w) 6= ∅). And we996

say that S1 (respectively S2) is of type-two, if |N(a)∩C[u1, u2)| > 2 (respectively |N(a)∩C(u2, u3]| >997

2). Note that if S1 (respectively S2) is not of type-one nor type-two, then {z} := N(a) ∩ C[u1, u2)998

and zu2 ∈ E(C) (respectively {w} := N(a) ∩ C(u2, u3] and u2w ∈ E(C)). Finally, note that at999

least one of S1 or S2 is of type-one or type-two, for otherwise u2 is apex in G.1000

There are two cases to consider.1001

Case 1. Each of S1 and S2 is of type-one or type-two.1002

Suppose that one of the segments, say S2 is of type-one. Then, {w} := N(a) ∩ C(u2, u3] with1003

w 6= u3, and C(u2, w) 6= ∅. Hence, it follows by 2, that there is a chord with one endpoint1004

c1 ∈ C(u2, w), and the other c2 ∈ C(w, u3]. Choose c1 and c2 so that the chord c1c2 is innermost.1005

Then by 6, all other chords in S2 have one endpoint in C[u2, c1] and the other in C[c2, u3]. However,1006

since S1 is of type-one or type-two, we either have {z} := N(a) ∩ C[u1, u2) with z 6= u1, and1007

C(z, u2) 6= ∅ (which by 2 implies that there is a chord with one endpoint in C[u1, z) and the other1008

in C(z, u2)), or |N(a) ∩ C[u1, u2)| > 2. This implies that the only other chords in S2 that do not1009

have an endpoint at u2 (that is, those that do have an endpoint in C(u2, c1]) have an endpoint at1010

c2, for otherwise G >m Q1 (by contracting wa and za if necessary, see figure below).1011

Therefore, u2 is apex in G, a contradiction.1012

Similarly, suppose that for one of the segments, say S1, is of type-two. Then, |N(a)∩C[u1, u2)| >1013

2. If there are chords with endpoints distinct from u2 in S1, then let d1d2, with d1 < d2 in the1014

cyclic order of C, be an innermost chord of S1 with d2 6= u2, and let z ∈ N(a) ∩ C(d1, d2). Then1015

again, since S2 is of type-one or type-two, we either have {w} := N(a) ∩ C(u2, u3] with w 6= u3,1016

and C(u2, w) 6= ∅ (which by 2 implies that there is a chord with one endpoint in C(u2, w) and1017

the other in C(w, u3]), or |N(a) ∩ C(u2, u3]| > 2. This implies that the only other chords in S11018

that do not have an endpoint at u2 (that is, those that do have an endpoint in C[d2, u2)) have an1019

endpoint at d1, for otherwise G >m Q1 as above. Furthermore, N(a) ∩ (C(d1, z) ∪ C(z, u2)) = ∅,1020

for otherwise G >m Q1 as above. Therefore again, u2 is apex in G, a contradiction.1021

Case 2. Exactly one of the segments S1 or S2 is of type-one or type-two.1022

By symmetry, suppose that S2 is not of type-one nor type-two, and that S1 is. Then, {w} :=1023

N(a) ∩ C(u2, u3] and u2w ∈ E(C). We divide this case into two subcases depending on whether1024

u1u2 is an edge of G.1025

Subcase 2.1. u1u2 /∈ E(G).1026

Let s be an apex vertex in G\xu3, and we assume that the graph (G\xu3)− s ∈ O is embedded1027

in the plane with all of its vertices incident with the outer face. Clearly, s 6= x and s 6= u3, for1028

otherwise x or u3 is apex in G, a contradiction. Also, s 6= a, since (G\xu3) − a contains a K2,3-1029

subdivision (because C(u1, u2) 6= ∅, since S1 is of type-one or type-two).1030
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First, suppose that w = u3. Then u2u3 ∈ E(C) (that is, C(u2, u3) = ∅). If s = u2 (or by1031

symmetry, if s = u1), then in (G\xu3)− s, deg(u3) = 2 and deg(x) = 1 hence edges u3u1, u3a, and1032

xu1 are also incident with the outer face. Since u3u1 is a simple edge, by putting the edge xu3 back1033

in, we can embed G − s so that all the vertices are still incident with the outer face, hence G − s1034

is outerplanar, a contradiction (see figure below).1035

Therefore, s /∈ {u1, u2, u3, x, a}, so that s ∈ C(u1, u2). Then, in (G\xu3) − s, deg(x) = 2, and1036

so (G\xu3) − s has an outerplanar embedding such that edges xu1 and xu2 are incident with the1037

outer face. Also, note that x, u1, u3, u2 is a 4-cycle in (G\xu3)− s. Therefore, since u1u2 /∈ E(G),1038

we can put the edge xu3 back in to obtain an embedding of G− s in which all the vertices are still1039

incident with the outer face, hence G− s is outerplanar, a contradiction (see figure below).1040

Therefore, w 6= u3 and so w ∈ C(u2, u3). Since u2w ∈ E(C), the only possible chords in S2 have1041

one endpoint at u2 and the other in C(w, u3]. Note that by Case 2 hypothesis, u3a /∈ E(G).1042

If s = u2, then in (G\xu3)− s, deg(u3) = 2 and deg(x) = 1, hence edge u3u1 and the other edge1043

incident with u3, as well as the pendant edge xu1 are all incident with the outer face. Since u3u11044

is a simple edge, by putting the edge xu3 back in, we obtain an embedding of G − s in which all1045

the vertices are still incident with the outer face, hence G− s is outerplanar, a contradiction.1046

Now suppose s = u1. If u2u3 is a chord of C, then in (G\xu3)− s, deg(u3) = 2 and deg(x) = 1,1047

hence edges u3u2, u3w, and xu2 are incident with the outer face. Since u3u2 is a simple edge, by1048

putting the edge xu3 back in, we can embed G − s so that all the vertices are still incident with1049

the outer face, hence G − s is outerplanar, a contradiction. Hence u2u3 is not a chord of C. If G1050

has a chord c = u2c1 with c1 ∈ C(w, u3), then choose c1 closest to u3, so that c1u3 ∈ E(C). And if1051

there is no such chord, then let c1 := w. Then, in (G\xu3) − s, deg(x) = 1, and deg(c1) = 3, but1052

c1 is adjacent to u3 with deg(u3) = 1, hence edge u2c1 and the pendant edges xu2 and c1u3 are all1053

incident with the outer face. Since u2c1 is a simple edge (even if c1 = w), by putting the edge xu31054

back in, we can embed G − s so that all the vertices are still incident with the outer face, hence1055

G− s is outerplanar, a contradiction (see figure below).1056
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Similarly, if s = w, then G has no chords with one endpoint at u2 and the other in C(w, u3], for1057

otherwise (G\xu3)− s contains a K2,3-subdivision (because C(u1, u2) 6= ∅, since S1 is of type-one1058

or type-two). Hence, C(w, u3) = ∅. Therefore, in (G\xu3)− s, deg(x) = 2 and deg(u3) = 1, hence1059

edges xu1, and u1u3 are incident with the outer face. Since xu1 is a simple edge, by putting the1060

edge xu3 back in, we can embed G− s so that all the vertices are still incident with the outer face,1061

hence G− s is outerplanar, a contradiction.1062

Therefore, s /∈ {u1, u2, u3, x, a, w}, and so s ∈ C(u1, u2) (by 1). Again, if G has a chord c = u2c11063

with c1 ∈ C(w, u3), then choose c1 closest to u3, so that c1u3 ∈ E(G). And if there is no such1064

chord, then let c1 := w. Then, in (G\xu3)− s, deg(x) = 2, hence edges xu2 and xu1 are incident1065

with the outer face. Also, note that x, u1, u3, c1, u2 is a 5-cycle in (G\xu3) − s. Therefore, since1066

u1u2 /∈ E(G) (the Subcase 2.1 hypothesis) and u1c1 /∈ E(G) (by 1), we can put the edge xu3 back1067

in (even if u2u3 ∈ E(G)) to obtain an embedding of G− s in which all the vertices are still incident1068

with the outer face, hence G− s is outerplanar, a contradiction (see figure below).1069

Subcase 2.2. u1u2 ∈ E(G).1070

If all chords within S1 have an endpoint at u1 or all have an endpoint at u2, then u1, or u21071

respectively, is apex in G, a contradiction. Hence, there is a chord with both endpoints in C(u1, u2).1072

Let c1c2 ∈ E(G) be the innermost chord with c1, c2 ∈ C(u1, u2) (in the sense that there are no1073

other chords with both endpoints in C[c1, c2]), and let a1 ∈ N(a) ∩C(c1, c2).1074

Suppose that a2 6= a1 is another neighbor of a in C(c1, c2). Then by choice of c1c2, we have that1075

deg(a1) = 3 = deg(a2). Note that a has no other neighbors in C(u1, u2), for otherwise G contains1076

two disjoint K-graphs, a contradiction. Let s be an apex vertex in G\a1a2, and we assume that the1077

graph (G\a1a2)−s ∈ O is embedded in the plane with all of its vertices incident with the outer face.1078

It is easy to see that s = w (regardless of whether w = u3), for otherwise: if s ∈ {a} ∪ C(u1, u2),1079

then (G\a1a2) − s contains a K4-subdivision; and if u ∈ {u1, u2} ∪ C(w, u3], then (G\a1a2) − s1080

contains a K2,3-subdivision. Therefore s = w, and hence the only neighbors of a are a1, a2 and w1081

(because if u1 or u2 is a neighbor of a then (G\a1a2) − s contains a K2,3-subdivision). Then, in1082

(G\a1a2)− s, deg(a) = 2, hence edges aa1 and aa2 are incident with the outer face, and by putting1083

the edge a1a2 back in, we obtain an embedding of G− s in which all the vertices are still incident1084

with the outer face, hence G− s is outerplanar, a contradiction.1085

Hence, we have shown that a1 is the only neighbor of a in C(c1, c2).1086

We now show furthermore that N(a) ∩ (C(u1, c1] ∪ C[c2, u2)) = ∅. For suppose otherwise, and1087

let c3 ∈ C(u1, c1] (the argument for c3 ∈ C[c2, u2) is similar). Then N(a) ∩ C[c2, u2) = ∅ (for1088

otherwise G >m 2K4). Let s be an apex vertex in G\c1a1. Then clearly s ∈ {u2, w}. If s = w,1089

then since w is apex in G\c1a1 we have that: c3 = c1; N(a) ∩ (C[u1, c1) ∪ {u2}) = ∅; and G does1090

not have any chords with one endpoint at u2 and the other in C(w, u] (in the case that w 6= u3).1091

37



Therefore w is apex in G, a contradiction. If s = u2, then since u2 is apex in G\c1a1, it follows1092

that G has no chords with one endpoint in C[u1, c1) and the other in C[c2, u2). Hence all chords1093

of G have one endpoint at c1 or at u2. Therefore u2 is apex in G, a contradiction.1094

Hence, we have shown that N(a)∩ (C(u1, a1)∪C(a1, u2)) = ∅. Thus the only possible neighbors1095

of a (other than a1 and w) are u1 and u2. In fact, at least one of them is a neighbor of a since1096

degG(a) > 3. Let s be an apex vertex in G/aa1. Then clearly s ∈ {u1, u2}. Suppose that s = u21097

(the argument for s = u1 is similar). Since u2 is apex in G/aa1, it follows that G has no chords1098

with one endpoint in C[u1, c1) and the other in C[c2, u2). Hence all chords of G have one endpoint1099

at c1 or at u2. Therefore u2 is apex in G, a contradiction. This concludes the proof of Lemma1100

6.3. �1101

Lemma 6.4. There is no 3-connected graph G in ob(O∗) − {K5,K3,3, Oct,Q} with the property1102

that for every contractible edge xy in G the vertex vxy is apex in G/xy.1103

Proof. Suppose otherwise that there exists a 3-connected graph G in ob(O∗)− {K5,K3,3, Oct,Q}1104

with the property that for any contractible edge xy in G the vertex vxy is an apex vertex in G/xy.1105

The following claim provides a way of testing whether an edge in a 3-connected graph is contractible.1106

1. Let G be a 3-connected graph with edge xy. Then, G/xy is 3-connected if and only if G−{x, y}1107

(= (G/xy) − vxy) is 2-connected.1108

Pf. If G/xy is 3-connected, then clearly (G/xy)−vxy is 2-connected. Now, suppose that G−{x, y}1109

(= (G/xy)−vxy) is 2-connected and that G/xy is not 3-connected, so that G/xy has a 2-cut. Since1110

G is 3-connected, it follows that vxy is one of the vertices in that 2-cut (for otherwise, this 2-cut1111

would also be a 2-cut in G). Therefore, (G/xy)−vxy has a cut-vertex, a contradiction which proves1112

1.1113

Let xy be a contractible edge in G. Then, by 1, (G/xy) − vxy ∈ O is 2-connected. Since G is1114

3-connected it has a unique planar embedding. Restricting this embedding to (G/xy) − vxy, we1115

have that all the vertices of (G/xy) − vxy lie on a cycle C and are incident with the outer face.1116

Let x1, x2, . . . , xm ∈ V (C) (m > 2) be the neighbors of x in the clockwise order around C. And1117

let y1, y2, . . . , yn ∈ V (C) (n > 2) be the neighbors of y in the clockwise order around C. Note that1118

xi /∈ C(y1, yn) for all i and yj /∈ C(x1, xm) for all j, for otherwise G would contain a K3,3-minor.1119

Also, note that possibly xm = y1 or yn = x1.1120

2. The edges of G are:1121

- edges of C;1122

- edges xxi for i = 1, . . . ,m, and yyj for j = 1, . . . , n;1123

- chords of C, that is, edges not in E(C) with both endpoints in C (note that such edges are1124

embedded in the interior of the disk bounded by C);1125

- edge xy.1126

Just as in the proof of Lemma 6.3, it follows from 2 that:1127

3. The vertices of C are either endpoints of chords or neighbors of x or y.1128

4. For every chord c1c2 in G with c1 < c2 (in the clockwise order restricted to the segment1129

containing c1c2), there is a neighbor of x or y in C(c1, c2).1130

Also, since neither y nor x is apex in G, it follows, respectively, that:1131
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5. C(x1, xm) 6= ∅ and C(y1, yn) 6= ∅.1132

Hence G has the following general structure:1133

Before we proceed, we prove a claim regarding the structure of G.1134

6. G does not have a chord with both endpoints in C[yn, y1]. And by symmetry, the same statement1135

holds for C[xm, x1].1136

Pf. Let c1c2 be a chord of G with both endpoints in C[yn, y1]. Without loss of generality, we may1137

assume that c1c2 is the innermost such chord, in the sense that there are no other chords with both1138

endpoints in C[c1, c2]. By 4, it follows that x has a neighbor s in C(c1, c2). Note that x does not1139

have another such neighbor t in C(c1, c2), for otherwise edge st is contractible (because G− {s, t}1140

is 2-connected), but (G/st)− vst /∈ O (because it contains a K2,3-subdivision, since C(y1, yn) 6= ∅),1141

a contradiction because vst by the assumption of the proof is an apex vertex in G/st. So, the only1142

vertex in C(c1, c2) is s. But then, edge xs is contractible (because G− {x, s} is 2-connected), and1143

(G/xs) − vxs /∈ O (because it contains a K2,3-subdivision, since C(y1, yn) 6= ∅), a contradiction.1144

This proves 6.1145

By 6, we have:1146

7. The only chords in G have one endpoint in C(x1, xm) and the other in C(y1, yn).1147

The following claim further tightens up the structure of G.1148

8. There is exactly one vertex in C(x1, xm) and exactly one in C(y1, yn).1149

Pf. Suppose that C(x1, xm) has two vertices s and t. Then, by 3 it follows that both s and t are1150

neighbors of x, or endpoints of chords whose other endpoints lie in C(y1, yn) by 7, or both. Note1151

that st is contractible (by 1, because G− {s, t} is 2-connected), and (G/st) − vst /∈ O (because it1152

contains a K4-subdivision, consisting of the cycle formed by edge xxm, the clockwise path along C1153

from xm to x1, and edge x1x; and the three spokes from y to this cycle), violating the hypothesis1154

of Lemma 6.4. This proves 8.1155

With the structure of G restricted by 6 and 8, we are ready to finish the proof of the lemma.1156

Let s and t be the unique vertices in C(x1, xm) and C(y1, yn), respectively. Note that st ∈ E(G),1157

for otherwise any one of x1, xm, y1, yn is apex in G, a contradiction. Also, it follows by 2 and 71158

that C(xm, y1) = ∅ and C(yn, x1) = ∅.1159

If xm 6= y1 and yn 6= x1, then G >m Q, a contradiction (see figure below).1160
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Hence, by symmetry, we have either the case that xm 6= y1 and yn = x1, or that xm = y1 and1161

yn = x1. In either case, we cannot have that both sx, ty ∈ E(G), for otherwise G >m Oct (see1162

figure below).1163

Hence, by symmetry, sx /∈ E(G), and it follows that xm is apex, a contradiction. This concludes1164

the proof of the lemma. �1165
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