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EXCLUDED-MINOR CHARACTERIZATION OF APEX-OUTERPLANAR
GRAPHS

GUOLI DING AND STAN DZIOBIAK

ABSTRACT. The class of outerplanar graphs is minor-closed and can be characterized by two ex-
cluded minors: K4 and Ka,3. The class of graphs that contain a vertex whose removal leaves an
outerplanar graph is also minor-closed. We provide the complete list of 57 excluded minors for this

class.

1. INTRODUCTION

A graph is outerplanar if it can be embedded in the plane (with no edges crossing) with all
vertices incident to one common face. We say that a graph G is apez-outerplanar if there exists
v € V(G) such that G — v is outerplanar. Such a vertex, if it exists, is called an apex vertex of G.
We let O and O* denote the classes of outerplanar and apex-outerplanar graphs, respectively.

Given graphs H and G, H is a minor of G, denoted by H <,, G, or G >,, H, if H can be
obtained from a subgraph of G by contracting edges. A class C of graphs is minor-closed if for
every G € C all the minors of GG are also in C. Examples of minor-closed classes are: planar graphs,
outerplanar graphs, series-parallel graphs, graphs embeddable in a fixed surface, and graphs of
tree-width bounded by a fixed constant.

Let C be a minor-closed class of graphs, and let C* be the class of graphs that contain a vertex
whose removal leaves a graph in C. Hence, clearly C C C*, and it is easy to check that C* is also
minor-closed, thus in particular O* is minor-closed.

It is a landmark result of Robertson and Seymour (see [7]) that every proper minor-closed class
of graphs C can be characterized by its finite set of exzcluded minors, or obstructions, that is, minor-
minimal graphs not in C. We call this set obstruction set of C, and denote it by ob(C). For example,
it is a well-known fact that ob(O) = {K4, K33}. Equivalently, G is outerplanar if and only if it
does not contain a subdivision of K4 nor a subdivision of Kj3 as a subgraph. This equivalence
follows from the known fact that if H <,, G and A(H) < 3, then G contains an H-subdivision.

Let S be the set of graphs in Figure 1, 7 be the set of graphs in Figure 4, G be the set of graphs
in Figure 5, J be the set of graphs in Figure 6, H be the set of graphs in Figure 7, and Q be the
set of graphs in Figure 8.

The following is our main result.

Theorem 1.1. A graph is apex-outerplanar if and only if it does not contain any of the 57 graphs
in the set SUT UGUJ UHUQ as a minor. Equivalently, ob(O*) =SUTUGUJUHU Q.

The reader should be confident that the 57 graphs in Theorem 1.1 are indeed pairwise non-
isomorphic members of ob(O*). We have checked this several times. In this paper, we will show

that there are no more graphs in ob(O*) other than the 57, that is, the list is complete.
1
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Our result can be regarded as a test approach to the long-standing open problem of finding the
complete list of excluded minors for the class of apex-planar graphs, which plays an important
role in Graph Theory (for example, see [8]). Significant progress on this problem has already been
made by A. Kezdy [6] and his team since our work was completed and announced in [4]. For
instance, they have found all of the obstructions of connectivity 0, 1, and 2, and many of the ones
of connectivity 3, 4, and 5, altogether 396 obstructions.

While working on the problem we did not use a computer, the 57 obstructions were found “by
hand”. We believe that this was an advantage, since we were able to control and understand the
way in which the obstructions were being generated, and in which the proof should be organized.
After we found ob(O*) and proved its completeness, G.E. Turner [9] kindly informed us that the
57 graphs had been known to him, since he had found them with the aid of a computer. However,
he did not know whether his list was complete.

We now present an outline of the rest of the paper, which constitutes the proof of Theorem 1.1.
In Section 2, we provide a starting set of seven obstructions S C ob(O*), and prove a key lemma
(Lemma 2.2), which together allow us to conclude that any obstruction in ob(O*) — S is planar
and of connectivity 2 or 3. The search for the remaining obstructions begins.

The connectivity-three case is presented in Section 6. Here, we rely on the existence of con-
tractible edges in 3-connected graphs and the minor-minimality of the obstructions to prove that
there are no 3-connected obstructions in ob(O*) other then the ones already in our starting set S.

Most of the work is in the connectivity-two case. Our key lemma (Lemma 2.2) splits the proof
of this case into five major subcases, presented in Sections 3, 4, and 5. The cases are split based
on the complexity of each side of a 2-separation in G € ob(O*) — S, as indicated by Lemma 2.2.
In the following outline of the case structure, all of the 2-separations refer to 2-separations (L, R)
in G over vertices {x,y}. Also, P» and Cy are as drawn in Figure 3, with vertices {z,y} as labelled
in the Figure.

Case 1: There exists a 2-separation such that both L ¢ O and R ¢ O (Section 3);
Case 2: For each 2-separation, L = P5 or Cy (Sections 4 and 5);
Subcase 2.1: There exists a 2-separation such that L = Cy (Proposition 4.1);
Subsubcase 2.1.1: There exists a 2-separation such that L = Cy and G — {z,y} ¢ O;
Subsubcase 2.1.2: There exists a 2-separation such that L = Cy and for every such 2-separation
G —{z,y} € O;
Subcase 2.2: For each 2-separation, L = P» (Proposition 5.1);
Subsubcase 2.2.1: There exists a 2-separation such that L = P, and G — {z,y} ¢ O;
Subsubcase 2.2.2: For each 2-separation, L = P» and G — {z,y} € O.

Note that organizing the case analysis in this way restricts the structure of G more and more
as we proceed through the cases. An outline of each case will be given at the beginning of the

corresponding section.
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2. STARTING LiI1ST AND THE KEY LEMMA

In this section, we provide a starting set of seven obstructions S C ob(O*), and prove the key
Lemma 2.2, which narrows down the structure of the remaining obstructions.

For two graphs G and Ga, we let G1|G2 denote their disjoint union.

Let S := {K5, K33,0ct,Q,2K4, K4|K23,2K5 3} be the set of graphs in the figure below.

K; 5 Oct Q

2K, K, 1K, 5 2K; 3

FIGURE 1. Starting list of excluded minors for O*

It is easy to check that S C ob(O¥).

Definition 2.1. Let G be a graph and x,y € V(G). A l-separation of G over x (or across z)
(respectively, a 2-separation of G over {x,y} (or across {z,y})) is a pair S = (L, R) of induced
subgraphs L and R of G, called the sides of S, such that the following holds

(1) E(L)U E(R) = E(G);

(2) V(L)UV(R) =V(G) and V(L) NV (R) = {z} (respectively, V(L) NV (R) = {z,y});

(3) V(L) - V(R)# @ and V(R) — V(L) # @.

Note that in definition 2.1, we require that L and R to be induced subgraphs, and that x is
necessarily a cut-vertex of G (respectively, {z,y} is a 2-cut of G). Also, if S = (L,R) is a 2-
separation of G over {z,y}, then we often denote L and R by L(z,y) and R(z,y), respectively, for
emphasis.

We define a K -graph to be a graph that contains a K4- or K3 3-subdivision (both of which we call
K -subdivisions) as a subgraph. Equivalently, K-graphs are precisely non-outerplanar graphs. It is
a known fact that if G is 2-connected and contains a K-subdivision, then G = K4 or G contains a
K5 3-subdivision.

Lemma 2.2. If G € ob(O*) — S, then G is planar and of connectivity 2 or 3. Moreover, if the
connectivity of G is 2, then for every 2-separation S = (L, R) of G over vertices {x,y} the following
holds:

(1) If no side of S is in O, then one side of S is Ly, Lo, L3, Ly, or Ly with prescribed vertices
x and y, as shown in Figure 2.
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FIGURE 2. K4 and K> 3’s with prescribed vertices x and y

(2) If one side of S is in O, then xy ¢ E(G) and that side is Py or Cy, where P3 is a path on

two edges with endpoints x and y, and Cy is a cycle on four edges with x and y non-adjacent, as

< X
y y:
5 G

FIGURE 3. P, and Cy

shown n Figure 3.

Proof. Since G %, K5 and G %, K33, it follows that G is planar.

First, suppose that G is disconnected, and let G be a union of two disjoint (not necessarily
connected) graphs G and Go. If one of them, say (7 is outerplanar, then by the minor-minimality
of G, Gy = G — G € O*, hence G has a vertex v such that Go —v € O. Then, G1|(Gy —v) € O,
hence v is an apex vertex in G, a contradiction. Therefore, both G; and G5 are not outerplanar,
and so each contains K4 or K33 as a minor. Hence G contains one of 2Ky, K4|Ka3,2K23 as a
minor, a contradiction. Thus G is connected.

Now, suppose that G has a cut-vertex x and let (L, R) be the 1-separation across x. By the same
argument as above, both L and R are not outerplanar, hence they both contain K4 or K»3 as a
minor. This implies that both R —z and L — x are outerplanar (for otherwise, G would contain one
of 2Ky, K4|K>3,2K5 3 as a minor). Hence G —z € O, and so G € O, a contradiction. Therefore,
G is 2-connected.

Now, suppose that G is 4-connected. Then §(G) > 4, and so by the theorem of Halin and
Jung from [5], which says that G contains a K5- or Oct-minor whenever §(G) > 4, it follows that
the assumption that G is 4-connected is not true, because K5 and Oct are in S. Therefore the
connectivity of G is 2 or 3.

Proof of (1). Suppose now that the connectivity of G is 2 and that no side of S, neither L nor
R, is in O. Note that G — {x,y} € O, for otherwise G would contain two disjoint K-graphs (for
instance, L and R — {x,y}) which cannot happen because G does not contain 2Ky, K4| K2 3,2K33
as a minor. Since G ¢ O, none of its vertices is apex. In particular, since z is not apex in G and
y is a cut-vertex in G — z, it follows that L — z or R — x, say R — x, contains a K-subdivision, call

it K', which contains y (since R — {z, y} is outerplanar). Similarly, R —y contains a K-subdivision
4
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K" (not L — y, because such a K-subdivision would be disjoint from K’), which contains z. K’
and K" must intersect, otherwise G' would contain two disjoint K-graphs. Also, L —x € O since it
is disjoint from K", and L —y € O since it is disjoint from K’. Hence, G must have the following

structure:

Note that, as long as L ¢ O, a graph with the above structure does not belong to O*. This is
because none of its vertices is apex: x is not apex, because of K'; y is not apex, because of K”;
if v € L —{z,y}, then v is not apex, because of K’ (or K"); finally if v € R — {z,y}, then v is
not apex, because of L. Therefore, if L ¢ {K4, K23}, then since L ¢ O, it follows that L contains
an edge e # wxy such that either L\e ¢ O, or L/e ¢ O. Hence, either G\e ¢ O* or G/e ¢ O*, a
contradiction since G is minor-minimal not in O*. Therefore L € {Ly, Lo, L3, L4, L5} with x,y as
prescribed in Figure 2.

Proof of (2). Without loss of generality, suppose that L € O. Since G ¢ O*, none of its vertices
are apex. In particular, since z is not apex, it follows that R—xz contains a K-subdivision. Similarly,
R — y contains a K-subdivision. Since G is 2-connected, it follows that L is connected. We have
two cases based on the number of blocks of L.

Case 1. L has exactly one block.

Note that L # K>, for otherwise (L, R) is not a 2-separation. Hence L is 2-connected.

Since L is 2-connected and outerplanar, it follows that L is a cycle C' with chords, which has
a unique planar embedding such that all the vertices and edges of C are incident with the outer
face, and all the chords lie in the interior of the disk bounded by C. We now show that L has no
chords. So, suppose that L does have a chord e. Let s be an apex vertex in G'\e. Then, since R —z
and R — y contain K-subdivisions, it follows that s € V(R — {z,y}). Assume that (G\e) —s € O
is embedded in the plane so that all of its vertices are incident with the outer face. Then this
embedding, restricted to the subgraph L\e, is such that all the vertices and edges of C' are incident
with the outer face. Therefore, by putting the chord e back in, we obtain an embedding of G — s
with all of its vertices still incident with the outer face, hence G — s is outerplanar, a contradiction.
Hence, we have shown that L has no chords, therefore L = C.

Now, suppose that x and y are consecutive vertices of C, that is xy € E(C). Let s be an apex
vertex in G\zy. Then, again we have that s € V(R — {z,y}). Assume that (G\zy) —s € O is
embedded in the plane so that all of its vertices are incident with the outer face. Since all the
vertices of C' — {z,y} have degree = 2 in (G\zy) — s, it follows that all the edges of C' except
for zy are incident with the outer face. Therefore, by putting the edge zy back in, we obtain an
embedding of G — s with all of its vertices still incident with the outer face, a contradiction.

Therefore,  and y are non-consecutive, which implies that the length of C' is at least four. In
fact C' = Cy, for suppose that C' = C,, with n > 5. Then one of the two paths from z to y in C

must have length at least three. Let f be an edge on that path with endpoints different from x and
5



155

156

157

158

159

160

161

162

163

164

165

166

168

169

170

171

172

173

174

175

176

177

178

180

181

182

183

184

186

188

189

190

191

192

y. Let s be an apex vertex in G/f. Then, again s € V(R — {x,y}). Assume that (G/f) —s € O
is embedded in the plane so that all of its vertices are incident with the outer face. Since all the
vertices of (C/f) — {z,y} have degree = 2 in (G/f) — s, it follows that all the edges of C/f are
incident with the outer face. Therefore, by uncontracting edge f € E(C'), we obtain an embedding
of G — s with all of its vertices still incident with the outer face, hence G — s is outerplanar, a
contradiction. Hence, we have shown that L = C = (4.

Therefore, we have shown that if L has only one block, then L is 2-connected, and in fact L = Cy
with z and y non-adjacent. Now, we consider the more general case.
Case 2. L has at least two blocks.

Let B, and B, be two distinct blocks containing x and y, respectively. Then the block tree
of L is, in fact, a path from B, to B, for otherwise G would contain a cut-vertex. Every block
on this path is either Ks or is 2-connected. If L contains a block B that is 2-connected, then let
s,t € V(B) be the two cut-vertices in L (or in the case of B, and B, the associated pair is given
by the corresponding cut-vertex, and z or y, respectively). Then since G has a 2-separation (B, R’)
over {s,t}, it follows by the previous argument that B = Cy. Therefore, every block of L (which is
a path) is either Ky or Cy.

Now suppose that L contains a block B = Cjy, and let B’ be any other block. Denote by G/B’
the graph obtained by contracting all the edges of B’. Again, let s be an apex vertex in G/B’.
Then again s € V(R — {x,y}). Assume that (G/B’) — s € O is embedded in the plane so that all
of its vertices are incident with the outer face. Since two of the non-adjacent vertices of B have
degree = 2 in (G/B’) — s and since all the blocks are either Ky or Cy, it follows that all the edges of
B and, in fact, all the edges of L/B’ are incident with the outer face. Therefore, by uncontracting
block B’, we obtain an embedding of G — s with all of its vertices still incident with the outer face,
a contradiction. Hence, we have shown that L does not contain a block B = C}y, and therefore all
the blocks of L are K»’s, or equivalently L is an induced path of length at least two from x to y.

Then, in fact, L = P5, for suppose that L = P, with n > 3. Let f be an edge in L = P, with
endpoints different from = and y. Let s be an apex vertex in G/f. Then, again s € V(R — {z,y}).
Assume that (G/f)—s € O is embedded in the plane so that all of its vertices are incident with the
outer face. Since all the vertices of (L/f) — {x,y} have degree = 2 in (G/f) — s, it follows that all
the edges of L/f are incident with the outer face. Therefore, by uncontracting edge f, we obtain
an embedding of G — s with all of its vertices still incident with the outer face, a contradiction.
Hence, we have shown that L = P,. This proves (2). O

3. CONNECTIVITY 2: NO SIDE IN O

In this section, we focus on Case 1 of the outline given in the Introduction. Namely, we prove
Proposition 3.1, which says that if an obstruction G € ob(O*) — S has a 2-separation both sides of
which are not outerplanar, then G € 7.

Proposition 3.1. If G € ob(O*) — S is of connectivity 2 and has a 2-separation no side of which
is in O, then G is a member the family T.
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Proof. Let S = (L, R) be a 2-separation of G over {z,y} no side of which is in O. Since (R, L) is
also a 2-separation of G with the same property, we may assume without loss of generality that
L € {Ly, Ly, L3, L4, L5} (see Lemma 2.2). Note that R — {z,y} is outerplanar, for otherwise G
contains two disjoint K-graphs. Since G' ¢ O*, none of its vertices is apex. In particular, since z
is not apex, R — x contains a K-subdivision, which contains y (since R — {z,y} is outerplanar).
Similarly, R — y contains a K-subdivision, which contains z. These two K-subdivisions must
intersect, otherwise G would contain two disjoint K-graphs. Hence, G must have the following

structure:
X
(B
y
Note that each of the L; (i = 1,...,5) contains C4 as a minor (with the vertices x and y

preserved). Let G’ be the graph obtained from G by reducing L (under the minor operation) to
Cy, so that (Cy, R) is a 2-separation of G’ over {z,y}. Note that G’ is a proper minor of G, hence
by the minor-minimality of G, it follows that G’ € O*. If there are at least two internally disjoint
paths in R from x to y, then G’ has no apex vertex, a contradiction.

Hence, R has a cut-vertex z. Note that R — z € O, otherwise R contains two disjoint K-graphs.

Let Ry and Rs be the two sides of the 1-separation of R across z, such that x € R; and y € Rs.
By applying Lemma 2.2 to the 2-separation in G over {z,z}, and to the 2-separation in G over
{y, z}, we conclude that both Ry, Ry € {L1, Lo, L3, Ly, L5}. Therefore, G is one of the 30 graphs
{T1,T5,...,T5} listed in Figure 4. It is straightforward to verify that each 7; is minor-minimal

¢ O* satisfying the hypothesis of Case 1. Hence T; € ob(O*) for i = 1,...,30. O
7
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4. CONNECTIVITY 2: AT LEAST ONE SIDE C4

In this section and the next (Section 5) we focus on Case 2 of the outline given in the Introduction.

214 Namely, we assume that every 2-separation of G € ob(O*) — S has one side that is outerplanar,

215

216

which by Lemma 2.2 implies that that side is P» or Cy. In this section, we focus on the case that
G has a 2-separation one side of which is Cy (Subcase 2.1 of the outline given in the Introduction).
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We prove Proposition 4.1, which says that in this case G € GU J. In the next section, we analyze
the case that every 2-separation of G has one side that is P» (Subcase 2.2).

Before we state and prove Proposition 4.1, we introduce some necessary terminology and nota-
tion. If P = uy,u9, ... Un, Upy1 is a path on n vertices, then we define its length to be n, and denote
P by P,. We call the set {ug,us,...,u,} the interior of P and denote it by int(P). Two paths
P and @ are said to be internally disjoint if their interiors are disjoint. If C = wuq, us, ... Uy, uq is
a cycle, then its length is n, and we denote C by C,,. An edge e ¢ E(C) with both endpoints in
V(C) is called a chord of C. If C' = uy,us,...u,,u; is a cycle embedded in the plane with ver-
tices listed in the clockwise order around C, then we denote by Clu;, u;] the set {w;,uiy1,...,u;}
if i < j, or the set {w;, wit1,...,up,u1,...,u;} if ¢ > j. Similarly, Clu;, u;) = Clus, uj] — {u;},
C(us, uj] = Clug, uj)—{u;}, and C(u;, uj) := Clug, uj]—{ui, uj}. Also, if P = uy,us, ... uy, is a path,
then we define Plu;, uj], Pluj, uj), P(ui, uj], and P(u;, uj) analogously, and so int(P) = P(u1, uy).

Proposition 4.1. If G € ob(O*) — S is of connectivity 2 and one side of every 2-separation of G
is in O and, moreover, if G has a 2-separation S over {x,y} one side of which is Cy, then following
holds true:

(1) If G = {z,y} ¢ O for some such S, then G is a member of the family G;

(2) If G —{z,y} € O for every such S, then G is a member of the family J.

4.1. Proof of (1). Let S = (L, R) be a 2-separation G over {z,y} such that one side of it, say, L,
is Cy, and let G —{z,y} ¢ O. Then R—{z,y} ¢ O and hence R — {z,y} contains a K-subdivision,
call it K'. Note that if R does not have at least two internally disjoint paths from x to y, then R
has a cut-vertex z separating x and y, and hence G has a 2-separation (L', R’) over {x,z} or over
{y, 2z} with the property that R' ¢ O, and either L' ¢ O (violating the the hypothesis that one
side of every 2-separation of G is in O) or L' € O but with L’ different from P, and C} (violating
Lemma 2.2), a contradiction. Hence,
1. R has at least two internally disjoint paths from z to y.

Also, note that R does not have a path P from x to y disjoint from K’, for otherwise G would
contain two disjoint K-graphs (namely K’ and the K5 s-subdivision formed from the union of L
and P). Therefore G has the following structure:

Note that,
2. A graph with the above structure does not belong to O*.
This is because none of its vertices is apex: if v € V(G) —V(K'), then v is not apex, because of K';
and if v € V(K'), then R — v has a path from z to y, which along with L forms a K3 3-subdivision
in G — v, hence v is not apex.

Fix a planar embedding of G. Let C' be the outer cycle of K'. Let S, C V(C) and S, C V(C)

be the sets of vertices of C' from which there is a path to z, or respectively to y, that doesn’t
9
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contain other vertices of C. It follows, by 1, that |S;| > 2 and |S,| > 2, hence [S, U Sy| > 2.
However, if |S, U Sy| = 2 (see the following figure), then let {a,b} := S, = S,, and note that G
has a 2-separation (L”, R") over {a,b}, where L"” = K’ ¢ O and R" contains a subdivision of K5 4,
hence R” ¢ O, a contradiction because one side of (L”, R”) must be in O.

Hence, |S; US| > 3. Also note that, by 2, the paths from S, to « and S, to y are actually simple
edges, for otherwise we could perform a contraction along such a path, and by 2, the resulting graph
would still be outside of O*, contradicting the minor-minimality of G.

Since K’ is a subdivision of either K4 or Ks3, it follows that actually K/ = K4 or K' is a
subdivision of Ky3. If K’ = Ky, then in view of all the observations above, G is the following
graph:

G,= =

It is easy to verify that the above graph is minor-minimal ¢ O* satisfying the hypothesis of (1)
and the initial hypothesis of Proposition 4.1. We label it G1, and so G; € ob(O%).

So now, K" # Ky, and so K’ is a subdivision of K3 3. Therefore K’ consists of the outer cycle
C and a path @ of length at least 2 connecting two non-adjacent vertices of C'. Note that ) has
length exactly 2, for otherwise we could perform a contraction along @, and by 2, the resulting
graph would still be outside of O*, contradicting the minor-minimality of G. Let @ = a,c,b, so
that a,b € V(C). Then since K’ is a subdivision of K3 3, we have:

3. There is at least one vertex in C'(a,b) and at least one in C'(b,a).

Thus, G has the following structure:

=
R

It is straightforward to verify that the following graphs are minor-minimal ¢ O* satisfying the
hypothesis of (1) and the initial hypothesis of Proposition 4.1 (except the second one, which is
minor-minimal after contracting e; the resulting graph is J; € J from Figure 6). We label them

Go, G3, G4, G5. Hence J1,G; € Ob(O*) fori=1,...,5.
10
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In the remainder of the proof, we assume furthermore that G ¢ {J1,G1,G2,Gs,G4,G5}. Let
x1,72 € S; and y1,y2 € Sy in the clockwise order 1, x2,y1,y2 around C. First, assume that all
four can be chosen so that they are all distinct. Then, if a,b € C[xy1,z2] or a,b € Cly1,y2], then
by 3, G >, Ji, a contradiction. If a,b € Clxa,y1] or a,b € Clya,x1], then by 3, G >,, G2, a
contradiction. Finally, if @ and b are in distinct segments among C(z1,z2), C(y1,y2), C(x2,y1),
C(y2,21), or if {a,b} = {x1,y1} or if {a,b} = {x2,y2}, then G >, G5, a contradiction.

NS

y

Therefore 1,2, y1,y2 cannot be chosen to be all distinct. Since |S;| > 2 and |S,| > 2, and
|Se U Sy| = 3, it follows that |S, U Sy| = 3. Hence, we let 21 = y2 and 2 # yi, as in the figure
below.

Ve
b’ A
y

Now, if a is in one of C(x1,x2) or C(y1,x1), say C(y1,21), then: if b € Cly;, 1], then by 3,
G >y, J1, a contradiction; if b € C(x1,z2], then G >, Gy; finally, if b € C(z2,y1), then G >, Gs.
Hence, we have shown that neither a nor b can be in C(x1,22) UC(y1,21). If a = x1, then if b = x5
or yp, then by 3, G >,,, Ji, a contradiction; and if b € C(z2,y1), then G >, G3, a contradiction. So
finally, both a and b must be in Clzy,y;]. But, then it follows by 3 that G >,, G2, a contradiction.
This concludes the proof of (1) of Proposition 4.1.

Figure 5 shows slightly different embeddings of the G;’s from the ones above.
11
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FIGURE 5. G family

4.2. Proof of (2). It is straightforward to verify that the graphs in Figure 6 are minor-minimal
¢ O* satisfying the hypothesis of (2) and the initial hypothesis of Proposition 4.1. We label them
J1, Jo, J3, Ju, J5. Hence J; € ob(O*) fori=1,...,5.

B
B>+
S

In the remainder of the proof, we assume that G ¢ {J1, J2, J3, J4, J5,Q2}, where Q2 € Q from
Figure 8. Since R — {z,y} € O, it follows by the same arguments as in the proof of Proposition
3.1, that G must have the following structure:

where K’ is a K-subdivision contained in R — x containing y (so that K’ —y € O), and K" is a
K-subdivision contained in R — y containing x (so that K" — z € O). Note that,
1. R does not have a path P from z to y that is internally disjoint from K'U K”.
For otherwise, G would have a 2-separation (L', R') over {z,y}, with L'’ = LUP ¢ O and R’ =
R ¢ O, contradicting the hypothesis the one side must be in O.

Also, note that if R does not have at least two internally disjoint paths from z to y, then R has a
cut-vertex z. Note that z lies at the intersection of K’ and K" (for otherwise K’ and K" would be

disjoint, or R — {z,y} would not be outerplanar). But, R — z € O (for otherwise K’ and K" would
12
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be disjoint), therefore G — z € O, a contradiction. Hence, R has at least two internally disjoint
paths from z to y.

Note that,
2. A graph with the above structure (on the right) does not belong to O*.
This is because none of its vertices is apex: if v € V(G) — V(K'), then v is not apex, because of
K';ifv e V(G)—V(K"), then v is not apex, because of K”; and if v € V(K')NV(K"), then R—v
has a path from z to y, which along with L forms a K5 3-subdivision in G — v, hence v is not apex.
Fix a planar embedding of G with x and y incident with the outer face. Since R does not have
a cut-vertex, it is 2-connected. Let C' be the outer cycle of R, so that the rest of R is embedded
in the closed disk bounded by C. Let P, and P» be the two internally disjoint paths from z to y
whose union is C'. Note that neither P, nor P is a simple edge, since zy ¢ E(G). Note that,
3. There must be a path P3 between int(P;) and int(Ps) such that V(P3) N V(C) = {a, b}, where
a € int(Py) and b € int(Py) are the endpoints of Ps.
For otherwise, one of int(P;) or int(P;) would be vertex-disjoint from K’'U K", contradicting 1.

‘:- )
P
G = a®----@b
K P,
y

Let P be the set of paths with property 3. By 3, it follows that P is non-empty. Let {(P) be
the length of the longest path in P.

We first suppose that [(P) = 1. Then, all of the paths in P are simple edges. Let a1, as,...,as €
int(Py) be the left endpoints of the paths in P in the order of vertices in P; from x to y, and
similarly let by, bo, ..., by € int(P3) be the right endpoints of the paths in P in the order of vertices
in P, from x to y. Note that, for any ¢ = 1,...,s — 1 (and for any j = 1,...t — 1), if a;a;41 (or
bjbj+1) is not a simple edge, then G has a 2-separation (L', R') over {a;,a;11} (or over {bj,bj11}).
By the initial hypothesis of Proposition 4.1 and (2) of Lemma 2.2, L' = P, or C;. However, by the
hypothesis of (2) of Proposition 4.1, L' # Cy, because G — {a;, a1} (and G — {b;,bj11}) contains
a K> 3-subdivision. Hence,

4. Fori=1,...,s —1land for j = 1,...t — 1, a;a;41 and bjb; 41 are either simple edges or edges
subdivided once.

13
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Similarly, if zay, xb1, yas, or yb; is not a simple edge, then G has a 2-separation (L', R") over the
corresponding 2-vertex set, and by the initial hypothesis of Proposition 4.1 and Lemma 2.2, L' = P,
or Cy. If L'(z,a1) = Cy and L'(y,as) = C4 (or L'(x,by) = Cy and L'(y,b;) = C4), then G =, Js,
a contradiction (see figure below). Similarly, L'(z,a;) = Cy and L'(y,b;) = Cy (or L'(z,b1) = Cy
and L'(y,as) = , then G >,,, J1, a contradiction (see figure below).

B

Therefore, for one of the sides, say the x-side, we must have that xa; and zb; are either simple
edges, or edges subdivided once. Therefore, it follows by 4 that the vertex y is apex in G, a
contradiction since G ¢ O*. Thus we have proved that [(P) > 2.

Let P = popi . ..pn be a path in P of length n :=I(P) > 2, with py € int(P;) and p,, € int(Ps).
Since G %, J1, it follows that:
5a. For i = 0,1,...,n — 2, there is no path of length > 2 from p; to int(P;) that is internally
disjoint from P U C.

Note that, by choice of P, the same holds true for ¢ = n — 1. Similarly:
6a. For i = 2,3,...,n, there is no path of length > 2 from p; to int(P;) that is internally disjoint
from PUC.

And, by choice of P, the above also holds true for ¢ = 1. Therefore, equivalently:
5b. For i =0,1,...,n — 1, all the paths from p; to int(P) that are internally disjoint from P UC
are simple edges.
6b. for i = 1,2,...,n, all the paths from p; to int(P;) that are internally disjoint from P U C are
simple edges.

Let P11 and Pjs be the subpaths of P; from z to pg, and from pg to y, respectively. Similarly,
Let P51 and Py be the subpaths of P, from z to p,, and from p,, to y, respectively. Let C be the
cycle formed from the union of the paths P, Pi; and P, and let C, be the cycle formed from the
union of the paths P, Pio and Pss.

Again, since G #,,, Ji, it follows that:

7. All the paths in P that are internally disjoint from P are simple edges.

It follows by 5b and 6b, that G does not have a non-trivial bridge (where by a trivial bridge,
we understand a simple edge) with one foot in int(P) and another in int(P;) Uint(Ps). Also, if G
has a non-trivial bridge with two feet in P, then if the feet are consecutive vertices of P, then this
violates the choice of P; and if they are non-consecutive, then G >,, Ji, a contradiction. Therefore:
8a. The only non-trivial bridges of G that attach to int(P) have exactly two feet: one in int(P)
and the other at x or y.

Let B be a non-trivial bridge that attaches to int(P). Then, it follows by 8a that B has one
foot, call it p, in int(P) and the other at x or y, say . Then G has a 2-separation (L', R") over
{z,p}, and it follows by the hypothesis of Proposition 4.1 and Lemma 2.2 that L' = P, or Cj.
Hence, B — {x,p} is a single vertex, or a pair of non-adjacent vertices. We call such a bridge a

Py-bridge, or a Cy-bridge over {z,p}, respectively. Thus we have shown:
14
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8b. If B is a non-trivial bridge with one foot p € int(P) and the other at x (or y), then B is a P,-
or Cy-bridge over {x,p} (over {y,p} respectively).

Let Fy be the set of edges with one endpoint in int(P;) — {po} and the other in int(P2) — {pn},
and let F; be the set of edges whose both endpoints are non-consecutive vertices of P. Let Fy be
the set of edges with one endpoint in {pg,p1,...,pn—2} and the other in int(P,) — {p,}, and let F3
be the set of edges with one endpoint in {ps,ps,...,p,} and the other in int(P;) — {po}. Note that
Fy, Fy, Fs, and F3 are pairwise disjoint. Let F' := Fy U Fy U Fo U Fy if n > 3. For shorthand, we
will say that an edge or a vertex is embedded in the top or in the bottom, if it is embedded in the
closed disk bounded by C, or in the closed disk bounded by C), respectively. We now prove the
following;:

9. If F' # o, then all edges of F' can be embedded on one side: top or bottom.

Pf. First, suppose that the claim in 9 is not true due to two edges e and f of F;. If the endpoints of
e = pi,pi; and f = p;,p;, overlap, in the sense that iy < io <41 < i3, then G >, Ji, a contradiction
(see figure below).

> =jl

If the endpoints of e and f do not overlap (in the sense that ig < i1 < i < i3) and, without loss
of generality, e is in the top and f is in the bottom, then since G does not have a 2-separation over
{Piy,pi, } (by the initial hypothesis of Proposition 4.1 and (2) of Lemma 2.2), and since the vertices
Dio» Pi, are non-consecutive in P, there is a path from a vertex in P(p;,,pi,) to Pi2 (note that if
the path is to a vertex in int(Ps), then G >,, Ji as in the overlapping case above; and similarly
if the path is to a vertex p;, € P for some iy < ig or iy > 41). Similarly, since G does not have a
2-separation over {p;,,pi, }, there is a path from a vertex in P(p;,,pi;) to Pa;. Therefore G >, Q2,

PP

Second, suppose that the claim in 9 is not true due to two edges e and f of Fy (the proof for Fj

a contradiction (see figure below).

is similar). Hence, both e and f have one endpoint in {pg,p1,...,pn—2}, however e has the other
endpoint in int(Ps1) and f in int(Pa2). Then, G —{z,y} contains a K 3-subdivision, contradicting
the hypothesis that G — {z,y} is in O.

Third, suppose that the claim in 9 is not true due to an edge e € Fj, embedded, say, in the
bottom, and an edge f € F3 embedded in the top. Then G contains the following minor, which
contains a (J2-minor, a contradiction (see figure below).

- (P

Fourth, suppose that the claim in 9 is not true due to an edge e € F}, embedded, say, in the

bottom, and an edge f € F» (the proof for f € Fj is similar) embedded in the top. Let p;,q := f
15
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with ig € {0,1,...,n — 2} and ¢ € int(Pa), and let p; p;, := e with i3 < ia. If iy > g, then
G — {z,y} contains a Ky-subdivision, a contradiction. Hence, i1 < ig. If ia = n, then since
ip € {0,1,...,n — 2}, it follows that G — {x,y} contains a K> z-subdivision, a contradiction. If
i9 € (ig,n — 1], then G >,, J; (as in the overlapping case), a contradiction. Therefore, iy < g
and since G does not have a 2-separation over {p;,,pi,} (by the initial hypothesis of Proposition
4.1 and (2) of Lemma 2.2), there is a path from a vertex in P(p;,,pi,) to P12 — {po}, and thus G
contains the following minor, which contains a QQ2-minor, a contradiction (see figure below).

G>> o

Finally, suppose that the claim 9 is not true due to an edge e € Fj, embedded, say, in the top,
and an edge f € Fy U Fy U F» U F3 embedded in the bottom (the case f € Fj is illustrated below).
Then, it can easily be checked that G — {z,y} contains a K4- or K3 3-subdivision, a contradiction.
This proves 9.

[+

y
As in the [(P) =1 case, let ay,aq,...,as € int(P;) be the left endpoints of the paths in P in the
order of vertices on P; from x to y, and similarly let by,bo, ..., b € int(P) be the right endpoints

of the paths in P in the order of vertices on P, from x to y. Similarly to 4, we have that:
10. Fori=1,...,s—1and for j =1,...t -1, a;a;,4+1 and bjb; 11 are either simple edges or edges
subdivided once.

Similarly, if zay, xb1, yas, or yb; is not a simple edge, then G has a 2-separation (L', R") over
the corresponding 2-vertex set, and by the initial hypothesis of Proposition 4.1 and Lemma 2.2,
L' = Py or C4. Thus:

11. If xaq, xb1, yas, or ybs is not a simple edge, then L'(z,a1), L'(xz,b1), L'(y,as), L'(y,b:) €
{Ps,C4}, respectively (equivalently, G has a P5- or Cy-bridge over {z,a;}, {z,b1}, {y,as}, or
{y, b; }, respectively).

We now have two possibilities: either F' # @ or F = &. We consider them below as Cases 1 and
2, respectively.

Case 1. F # @.

It follows from 9 that all the edges of F' can be embedded, say, in the bottom (hence there are
no edges of F' embedded in the top). We will show that since G does not contain J;-minor for
i =1,...,5, the vertex x will be apex in G, obtaining a contradiction. To do this, we first prove
the following.

12. The only vertices embedded in the bottom are those lying on the cycle C,,.
Pf. We prove this claim by showing that there are no non-trivial bridges embedded in the interior
of the disk bounded by C,. So assume that there is such a bridge B. First, if B has a foot in

int(P), then by 8a and 8b, it follows that the other foot of B is y. Since F' # &, it contains an
16
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edge e € F; for some i = 0,1,2,3. Actually, e ¢ Fj, for otherwise e would cross B, a contradiction.
If e € Fy, then G contains the following minor, which contains a Q2-minor, contradiction (see figure

below).

And if e € Fy (the proof for Fj is similar), then G contains the following minor, which again
contains a (Jo-minor, contradiction (see figure below

- (P

Therefore B has its feet in P2 U Py, but it cannot have a foot in P2 and another in Pso,
because this would contradict either 5b, 6b, or 7. Hence, B has all of its feet in Pj5 or all in Pss;
by symmetry, we may assume that in Pjo. Let p and ¢ be the first and last feet of B in the order
of vertices on Pj3. Then G has a 2-separation (L', R") over {p, ¢}, and by the initial hypothesis of
Proposition 4.1 and Lemma 2.2, L' = P, or Cy, so that B is a P»- or Cy-bridge over {p,q}. Since
F # @, it follows that B # Cy for otherwise G would contain a Jo-, J4-, or Js-minor (see figure
below).

y y y

Hence, B = P5, and so B is a subgraph of Pjs. This proves 12.

It follows by 12 that L'(y,as) # Cy and L'(y,b;) # C4. Hence, yas and yb; are either simple
edges, or edges subdivided once. However, L'(z,a1) and L'(x,b1) could be either P, or Cy, or za;
and xb; could be simple edges.

By the fact that there are no edges of F' in the top, and from 8a, 8b, 10, and 11, it follows that
the only possible edges in the top are:

- edges from p; to Piq;

- edges from p,_1 to Poy;

- edges from int(P) to x;

- edges that are part of the P,- or Cy-bridges from int(P) to x;

- edges that are part of the P»- or Cy-bridges from a; or b; to x;

- edges of the cycle Cy;

o----9
Il
—e
=]
1
—o—o
o
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Hence, the only possible vertices lying in the interior of the disk bounded by C, are those from
the P»- or Cy-bridges from int(P) U {a1, b1} to x. Hence, from this and 12 it follows that G — z is
outerplanar (i.e. z is an apex vertex of ), a contradiction.

Case 2. F=02.

Again, by the fact F' is empty, and from 8a, 8b, 10, and 11, it follows that the only possible
edges in G are:

- edges from p; to Pp;

- edges from p,_1 to Ps;

- edges from int(P) to = or to y;

- edges that are part of the +P- or Cy-bridges from int(P) to x or to y;

- edges that are part of the P»- or Cy-bridges from ay or b; to x, and from as or b; to y;

- edges of the cycles U, and Cj,.

If there are no P»- or Cy-bridges from int(P) to = nor to y, then, just as in the proof of the
I(P) =1 case, if L'(x,a1) = Cy4 and L'(y,as) = C4 (or L'(x,b1) = Cy and L'(y,b;) = C4), then
G >, Js3. Similarly, if L'(x,a1) = Cy and L'(y,b) = C4 (or L'(z,b1) = Cy and L'(y,as) = Cy),
then G >,, J1. Therefore, for one of the sides, say the z-side, we must have that xza; and xb, are
either simple edges, or edges subdivided once. Hence, G — y is outerplanar, a contradiction.

Hence, there is a P»- or Cy-bridge from int(P) to = or to y, but there cannot be such bridges to
both x and y, for otherwise G would contain a (Qo-minor. Hence, there is a Ps- or Cy-bridge from
int(P) to, say x, but not to y. Then, L'(y,as) # Cy4 and L'(y, b;) # Cl4, for otherwise G >, J5 (see
figure below).

G > = =j5

Therefore, yas and yb; are either simple edges, or edges subdivided once. Hence, G — z is

outerplanar, a contradiction (see figure below).

This concludes the proof of (2) of Proposition 4.1.

5. CONNECTIVITY 2: ONE SIDE ALWAYS P,

In this section, we focus on the case that every 2-separation of G € ob(O*) — S has one side that
is P, (Subcase 2.2 of the outline given in the Introduction). We prove the following proposition,
which says that, in this case, G € H U Q.

Proposition 5.1. If G € ob(O*) — S is of connectivity 2 and for every 2-separation S of G over
{z,y} one side is P, then the following holds true:

(1) If G — {z,y} ¢ O for some such S, then G is a member of the family H;
18
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(2) If G — {z,y} € O for every such S, then G is a member of the family Q.

We define a few terms first. A graph H is internally 3-connected if it is 2-connected, and for
every 2-cut {s,t}, H — {s,t} has two connected components, one of which is a single vertex. We
say that a vertex in H is pendant if its degree in H is 1. Similarly, we say that an edge in H is
pendant if it is incident with a pendant vertex. Before presenting a proof of Proposition 5.1, we
first establish some preliminary observations based on the hypotheses of Proposition 5.1, which will
be used later in the proof.

It follows from the hypothesis of Proposition 5.1 that G is internally 3-connected. Let (L, R) be
a 2-separation over vertices {x,y} such that L = P. Let v be the third (middle) vertex of L. Since
G is minor-minimal ¢ O*, G /vy has an apex vertex a (i.e. a such that (G/vy) —a € O). Note
that a # y and a # x, for otherwise y (or x, respectively) is an apex vertex in G, a contradiction.
Since deg(v) = 2, it follows that G/vy is also internally 3-connected. Hence, the only possible 1-
separations in (G/vy) — a are those that separate a pendant vertex. Call such 1-separations trivial.
Therefore, (G/vy) — a is 2-connected up to trivial 1-separations (pendant edges), and outerplanar.

Fix a planar embedding of G so that all the vertices of (G/vy) —a € O and a are incident with
the outer face (i.e. infinite face). Since (G/vy) — a is 2-connected up to trivial 1-separations, it
follows that all the vertices of (G/vy) —a € O lie along a cycle C, except (possibly) for the vertices
of degree 1 in (G/vy) — a that are adjacent to some vertex of C. Note that such vertices have
degree 2 in G/vy (and in G), and that no two of them are adjacent to the same vertex ¢ of C,
for otherwise G has a 2-separation (L', R') over {c,a} such that L'’ = Cy or L' ¢ O and R’ ¢ O,
contradicting the hypothesis of Proposition 5.1. Since v € G —a ¢ O, it follows that v is embedded
in the interior of the disk bounded by C. We have
1. The edges of G are:

- edges of C

- chords of C, that is, edges not in E(C) with both endpoints in C' (note that such edges are
embedded in the interior of the disk bounded by C');

- edges zv and vy, with z,y € V(O);

- edges with one endpoint in C' and the other at a (or such edges subdivided once).

Also note that there are no two consecutive vertices in C' of degree 2, since such vertices and
their neighbors would induce a Ps or a Cy in G giving rise to a 2-separation violating the hypothesis
of Proposition 5.1 .

In this context, by a neighbor of a, we mean a vertex uw in C' such that au is actually an edge
of G or an edge subdivided once. As usual, we denote by N(a) the set of neighbors of a. Since
xy ¢ E(G), it follows that G has vertices in both C(x,y) and C(y,x). Furthermore,

2. a must have a neighbor in both C(z,y) and C(y, z).

For otherwise, G has a 2-separation over {z,y} contradicting the hypothesis of Proposition 5.1.

Note that a chord must have both of its endpoints in C|x,y] or C[y, z]. We say that two chords
c := cicy and d := dido are non-overlapping if their endpoints satisfy ¢; < ¢o < di; < ds in the
cyclic order of C, and are said to be nested if ¢; < di < dy < g or di < 1 < ¢ < do. It follows

from 1 that:
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3. If ¢ ;= c¢1c9 is a chord with ¢; < ¢z (in the clockwise order restricted to Clx,y] or Cly, z]), then
a has a neighbor in C(cy, ¢2).

For otherwise, G has a 2-separation over {c1, ca} contradicting the hypothesis of Proposition 5.1.
Also,

4. Within a single segment C[z,y] or C[y, x], there are no non-overlapping chords (or equivalently,
all the chords are nested).

Suppose that the chords ¢ := cjco and d := dyds are non-overlapping with ¢; < co < dy < do
within, say C[z,y]. Then, by 3, a has a neighbor in C(c1,¢2) and in C(dy,dz), and by 2, it has
a neighbor in C(y,x). Then, G contains the following graph as a minor, which we label @1, and
which can easily be verified to belong to ob(O*). This is a contradiction, since G is minor-minimal

¢ O,

5.1. Proof of (1). Let G — {z,y} ¢ O for a 2-separation S = (L,R) of G over {z,y}. Hence
G — {z,y} contains a K-subdivision as a subgraph, call it K’. By 1, it follows that a is a cut-vertex
in G —{z,y}, hence, without loss of generality, K’ is a subgraph of G — C[y, z]. Let C’ be the outer
cycle of K. Then, |V(C')NC(x,y)| > 2, for otherwise if u := V(C") N C(z,y), then it follows by
1 that G has a 2-separation (L', R') over {a,u} such that L' ¢ O and R’ ¢ O, contradicting the
hypothesis that one side of (L', R') must be P, (and so in O).

Let s,t € V(C") N C(x,y) be the first and last vertices, respectively, of V/(C') N C(z,y) in the
clockwise order of C(z,y). Note that s # = and ¢t # y. Also, since G does not contain two disjoint
K-graphs, it follows that:

5. G does not have a chord with one endpoint in C[z, s) and the other in C(t,y].

It is straightforward to verify that the graphs in Figure 7 are minor-minimal ¢ O* satisfying the
hypothesis of (1) and the initial hypothesis of Proposition 5.1. We label them H,, Hy, Hs, Hy, Hs.
Hence H; € ob(O*) fori=1,...,5.

Therefore, if a has at least two neighbors in C(y, ), or one neighbor z € C(y,x) and C(y, z) # &
and C(z,x) # O, then it is easy to verify that G contains an H;-minor for some i = 1,...,5 (see
figure below). Hence, let z be the only neighbor of a in C(y,x). We only need to consider two
cases: either both C(y,z) and C(z,z) are empty, or one of them is empty, say C(y,z), and the

other is not.
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First, suppose that C(y,z2) = @ and C(z,2) # &. So yz € E(G). Then G has the following
structure as a subgraph:

6. In G//yz, the only apex vertex is s.

This is because an apex vertex in G/yz must destroy both K’ and the Ky 3-subdivision with
outer cycle C. Hence it must be a vertex in V(C') N C(x,y). If u € C(s,t] is apex, then since
s, t, and a all lie on C’, it follows that in G/yz — u there is a path P’ in C’ from a to s; this
path, combined with the (possibly subdivided) edge ay (= az) and the path along C from y to
s form an outer cycle of a Kj 3-subdivision with inner path z,v,y. Hence, G/yz — u contains a
K 3-subdivision, a contradiction. This proves 6.

7. y (= z) is a cut-vertex in G/yz — s.

Note that there are no edges (or edges subdivided once) from a to C(z,z) in G/yz, since z is
the only neighbor of a in C(y,z) in G. Also, note that there are no edges (or edges subdivided
once) from a to C[z,s) in G/yz, for otherwise G/yz — s contains a K 3-subdivision, contradicting
6. Finally, there are no chords from C|[z,s) to C(s,t] in G/yz, for otherwise G/yz — s contains a
K> 3-subdivision. These facts combined with 5 imply 7.

Therefore, it follows by 7 that after uncontracting edge yz in G/yz — s, the resulting graph G — s

is also outerplanar, a contradiction since G ¢ O*.
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Now consider the other case that both C(y,z) and C(z,z) are empty (so that yz, zz € E(G)).
Recall that z is the only neighbor of a in C(y, z). Then G has the following structure as a subgraph:

Similary to 6, we obtain the following fact.

8. In G\az, the only possible apex vertices are s and ¢.

We use the above to prove the following key fact.

9. One or both of the following hold:

(i) zs is an edge of G (or an edge subdivided once) and deg(x) = 3;

(ii) yt is an edge of G (or an edge subdivided once) and deg(y) = 3.

Note that if a vertex in C(x,s) or C(t,y) has degree > 3, then it is a neighbor of a or an
endpoint of a chord. Similarly, if deg(x) > 4 or deg(y) > 4, then z, respectively y, is a neighbor
of a or an endpoint of a chord. To prove 9, we first note that a does not have neighbors in both
Clz,s) and C(t,y], for otherwise G'\az has no apex vertex (since neither s nor ¢ is apex in G\az),
a contradiction. Hence, by symmetry, we may assume that a has no neighbors in C[x,s). Then,
by 3, there are no chords with both endpoints in C|z, s|. If a has a neighbor in C(t,y], then there
are no chords with one endpoint in C|z, s) and the other in C(s,t], for otherwise G\az has no apex
vertex (note that the other endpoint cannot lie in C(¢,y] by 5), and thus (i) holds. And if a has no
neighbors in C(t,y| then, again by 3, there are no chords with both endpoints in C[t,y]. Therefore,
the only chords in G are those with one endpoint in C[xz,s) and the other in C(s,?] (in which case
(ii) holds), or those with one endpoint in Cs,t) and the other in C(¢,y] (in which case (i) holds),
but not both, since two such chords would either cross or would be non-overlapping, violating 4.
This proves 9.

By symmetry, we may assume that (i) holds in 9, so that s is an edge of G (or an edge subdivided
once, in which case denote the subdividing vertex by w). In the remainder of the proof, by G/xs
we mean the graph obtained from G by contracting the path (of length 1 or 2) along C from s to
x.

Similarly to 6 and 8, we obtain:

10. In G/xs, the only apex vertex is s (= x), unless (ii) in 9 also holds, then ¢t may also be apex.

If (ii) does not hold, then either a has a neighbor in C(¢,y] or G has a chord with one endpoint
in CJs,t) and the other in C(¢,y]. And in either case ¢ is not apex in G/xs.

Note that (G/xs) — s = G — {z, s} (or possibly (G/zs) — s = G — {x,w, s} if xs is subdivided).
Re-embed the graph (G/xzs) — s € O (if necessary), so that all of its vertices are incident with the
outer face. In (G/xs) — s, deg(z) = 2 and deg(v) = 1, hence edges zy and vy are also incident
with the outer face. Since yz is a simple edge, by putting x (and possibly w) back in, we obtain
an embedding of G — s in which all the vertices are still incident with the outer face, hence G — s

is outerplanar, a contradiction (see figure below).
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(G/xs)-s —>

608 Finally, if ¢ is also apex in G/xs, then by the above, (ii) in 9 also holds, so that yt is an edge of
600 G (or an edge subdivided once, in which case denote the subdividing vertex by u) and deg(y) = 3.

610 Since (G/xs) —t € O, there is a face f in the current embedding incident with all the vertices of

ey

611 (G/xs) —t. Since the path (of length 1 or 2) from s to x can be uncontracted along C, it follows
612 that f is also incident with all the vertices of G —t, a contradiction since G ¢ O* (see figure below).

G/xs G
613 This concludes the proof of (1) in the case that both C(y, z) and C(z,z) are empty, as well as

614 the proof of (1) of Proposition 5.1.

615 5.2. Proof of (2). It is straightforward to verify that the graphs in Figure 8 are minor-minimal
616 ¢ O satisfying the initial hypothesis and the hypothesis of (2) of Proposition 5.1. We label them

617 Q1, Q2, Q3, Q4, Q5. Hence Q; € Ob(O*) fori=1,...,5.

SC RN
SCRENE

FiGure 8. Q family

618 In the remainder of the proof, we assume that G ¢ {Q1,Q2, @3, Q4,Q5}. Observe that now the
619 vertex a from 2 satisfies

620 11. deg(a) > 3.

621 For otherwise, if deg(a) = 2, then let the two neighbors of a be a; and ay (in C(x,y) and

622 C(y,x), respectively, by 2). Note that there is a chord with one endpoint in C[z,a;) and the other
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in C(ay,y], for otherwise, it follows by 1 that a; is apex in G, a contradiction. Similarly, there
is a chord with one endpoint in C[y,as) and the other in C(aqg,x]|, for otherwise, it follows by 1
that ag is apex in G, a contradiction. Since deg(a) = 2, it follows that G has a 2-separation over
{a1, a2} such that G —{a1, a2} contains a K 3-subdivision, contradicting the hypothesis of (2) that
G —{ay,a2} € O. This proves 11.

Case 1. G has no chords.
Subcase 1.1. |N(a) NC(z,y)| =1 and |[N(a) N C(y,z)| = 1.

Then, there is a subdivided edge ay, for otherwise x is apex. Also, there is a subdivided edge
ax, for otherwise y is apex, and hence G >,, )2, a contradiction.
Subcase 1.2. |N(a) NC(z,y)| =2 and |N(a) N C(y,z)| = 1.

First suppose that z,y ¢ N(a). Let a1 € N(a) N C(y,z) and ag,a3 € N(a) N C(x,y) in the
clockwise order around C'. Then, there is a vertex in C'(ag,as), for otherwise a; is apex. Edge aas
is subdivided, for otherwise x is apex. Edge aas is subdivided, for otherwise y is apex. There is a
vertex in C(y, a1), for otherwise ay is apex. Finally, there is a vertex in C'(aq, z), for otherwise ag
is apex, and hence G >,, Q4.

Next, suppose that x € N(a), but y ¢ N(a). Then, edge aas is subdivided, for otherwise z is
apex. Edge ax is not subdivided, for otherwise G >,, Q2. Edge aay is subdivided, for otherwise y
is apex. Finally, there is a vertex in C'(a1,x), for otherwise ag is apex, and hence G >, Ji.

Finally, suppose that z,y € N(a). Then, at least one of aas, ay is subdivided, for otherwise x is
apex. Also, at least one of aas, ax is subdivided, for otherwise y is apex. If aas and aas are, then
G >, J1. If az and ay are, then G >, (J2. Finally, if ax and aag are, or a9 and ay are, then again
G >,, Q)2, a contradiction.

Subcase 1.3. |[N(a) NC(z,y)| = 3 and |[N(a) N C(y,z)| = 1.

Let a; € N(a)NC(y,z) and ag, a3z € N(a)NC(x,y) be such that as is the vertex in N(a)NC(z,y)
closest to x, and a3 is the vertex in N(a) N C(z,y) closest to y. Note that if u € N(a) N C(az,as),
then edge au is not subdivided, for otherwise G — {z,y} contains a K3 3-subdivision, contradicting
the hypothesis that G — {z,y} € O.

Therefore, at least one of aag, ay (if ay € E(G)) is subdivided, for otherwise x is apex. Also,
at least one of aag, azx (if ax € E(G)) is subdivided, for otherwise y is apex. Hence, G >, @2, a
contradiction.

Subcase 1.4. |N(a) NC(z,y)| =2 and |N(a) N C(y,z)| = 2.

Let a1,a2 € N(a) N C(y,x) and as,aqs € N(a) N C(z,y) be such that a; and a4 are the two
neighbors of a closest to y, and as and ag are the two neighbors of a closest to x. Note that if
u € N(a)N(C(a1,a2)UC(as,aq)), then edge au is not subdivided, for otherwise G —{z,y} contains
a K 3-subdivision, contradicting the hypothesis that G — {z,y} € O.

Therefore, at least one of aai, aaq, ay (if ay € E(G)) is subdivided, for otherwise z is apex.
Also, at least one of aag, aas, ax (if az € E(G)) is subdivided, for otherwise y is apex. Hence, it
follows from these two facts that if ay € E(G) and it is subdivided, then G >,, Q2, a contradiction.
Similarly, if ax € E(G) and it is subdivided, then G >,, @2, a contradiction. Hence, if ax € E(G)
or ay € E(G), then they are not subdivided. Finally, if aa; and aas are, or if aag and aay are,
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then G >,, @5, a contradiction. And if aa; and aag are, or if aas and aay4 are, then G >, Q2, a
contradiction. This concludes the proof of (2) of Proposition 5.1 in Case 1.
Case 2. G has a chord.

We first strengthen 3 to the following:

12. If ¢ := cjcg is a chord with ¢; < ¢z (in the clockwise order restricted to C[z,y] or Cly, z]), then
a has a neighbor in C(c1, ¢2). Furthermore, for any such neighbor w, the edge aw is not subdivided.

For otherwise, G would have a 2-separation over {a,w} such that G —{a,w} has K3 3-subdivision
contradicting the hypothesis that G — {a,w} € O.

The following two claims greatly limit the structure of G.

Claim 1. Let ¢ = c¢yco, with ¢1,¢9 € C(x,y) in the clockwise order around C, be an innermost
chord of G (in the sense that there are no other chords with both endpoints in Clcq, ¢2]). Then a
does not have two neighbors in C(cy, ¢2).

Pf. Suppose that a does have two neighbors a1, a2 € C(c1,c2). By 12, edges aa; and aag are not
subdivided. Also, a does not have any other neighbors in C(z,y), for otherwise G — {x,y} would
contain a Ky-subdivision, violating the hypothesis of (2) that G — {z,y} € O. Also, C(a1,a2) = &,
for otherwise G — {z,y} would contain a K 3-subdivision, violating the hypothesis of (2). Note
that possibly, edges cia; and asco are subdivided once, but since c¢ is an innermost chord, there
are no other vertices in C(c1,cz). If a has at least two neighbors in C(y,x), then G >,, @5, a
contradiction. Hence, let z be the only neighbor of a in C(y, x).

We let u be an apex vertex in G\ajaz, and we assume that the graph (G\ajaz) —u € O is
embedded in the plane with all of its vertices incident with the outer face. Note that u € {z,¢1, 2},
for otherwise: if u € {a1,as}, then clearly u is apex in G, a contradiction; if u € {a} U C(c1,a1) U
C(ag, c2), then (G\ajaz) — v contains a K 3-subdivision; and if u € {v} U C(c2,2) U C(z,¢1), then
(G\a1a2) — u contains a Ky-subdivision.

If u = z, then the only neighbors of a are aj, az and z (because if x or y is a neighbor of a
then (G\ajag) — z contains a Kj g-subdivision). Then, in (G\ajaz2) — 2, deg(a) = 2, hence edges
aa; and aag are incident with the outer face, and by putting the edge ajas back in, we obtain an
embedding of G — z in which all the vertices are still incident with the outer face, hence G — z is
outerplanar, a contradiction.

Finally, suppose that u = ¢1 (the case u = ¢ is symmetric). If cia; is subdivided once, then let
b be the subdividing vertex. Then, in (G\ajas2) — c1, then deg(aq) = 1 (except if ¢1aq is subdivided
by b, then deg(a1) = 2, but a; is adjacent to b with deg(b) = 1, that is a;b is a pendant edge),
and deg(ag) = 2. Hence edges aag and aa; (and possibly a1b) are incident with the outer face, and
since aas is a simple edge, we can put edge aias back in to obtain an embedding of G — ¢; in which
all the vertices are still incident with the outer face, a contradiction. This proves Claim 1.

Claim 2. G does not have a chord with both endpoints distinct from = and y.

Pf. Suppose that G does have a chord with endpoints s,t € C'(x,y) in the clockwise order around
C. We may assume, without loss of generality, that st is the innermost chord, in the sense that
there are no other chords with both endpoints in C[s, t]. By 12, there is a vertex w € N(a)NC(s,t)
and the edge aw is not subdivided. Also, by Claim 1, N(a) N C(s,t) = {w}. Also, a does not have
neighbors in both C(x,s| and C|t,y), for otherwise G — {z,y} would contain a Kj4-subdivision,
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violating the hypothesis that G — {z,y} € O. Also, by 4, G does not have chords with both
endpoints in C[z, s] or both in C[t,y]. Let z € N(a) N C(y,x). First, we show Claim 2a and then
Claim 2b. They are needed for the proof of Claim 2.

Claim 2a. Neither s nor ¢ can be a neighbor of a.

Pf. By symmetry, we may assume that ¢ is a neighbor of a, so that s is not. Then, C'(z,s|NN(a) =
@. Also, C(w,t) = @, for otherwise G — {x,y} would contain a Kj 3-subdivision. Also, edges sw
and ta are possibly subdivided once, but by choice of chord ¢, there are no other vertices in C(s,t).
Hence G contains the following subgraph:

First, suppose that edge ta is subdivided by vertex u. Then C(t,y] N N(a) = @, for otherwise
G >y, Q3. For the same reason, we have that (C(y,z) U C(z,x)) N N(a) = @. Hence, the only
neighbor of a other than z, w and t is possibly z. Furthermore, if az € FE(G) then it is not
subdivided for otherwise G >,, (2. Also, note that the remaining chords whose endpoints lie in
C[z,y] must have one of their endpoints at ¢, and the other in C[z,s), for otherwise 4 is violated,
or the subdivided edge ta violates 12. It follows from all of the above that if C(z,x) = @, then ¢ is
apex in G, a contradiction. Hence C(z,z) # &. Then, if ax € E(G), then G >,, J; (by contracting
z to y, contracting s to x, and deleting ws). Thus ax ¢ E(G). Therefore, since C(w,t) = &,
if G has no chords with one endpoint in C[y, z) and the other in C(z,z], then z is apex in G,
a contradiction. Hence, G does have at least one such chord c. If ¢ has one endpoint in C(z, z)
and the other in Cly, z), then G >,, @3 (by contracting z to a, and s to x). Hence, ¢ has one
endpoint at x and the other in C(y, z), but then again G >,, Q2 (by deleting st, contracting z to
a, contracting s to x, and contracting ¢ to y), a contradiction. Thus we have shown that ta is not
subdivided, that is ta € E(G).

We let p be an apex vertex in G\wt, and we assume that the graph (G\wt) —p € O is embedded
in the plane with all of its vertices incident with the outer face. Note that p ¢ {w,t}, for otherwise
p is apex in G. In fact, it is easy to see that if p ¢ {z} U Clz, s, then p is not apex in G\wt, a
contradiction. G and G\wt contain the following subgraphs, respectively:

Suppose that p = z. Then, a has no neighbors other than w, t, and z, for otherwise (G\wt) — p
contains a Ky-subdivision. Therefore, in the graph (G\wt) — p, deg(a) = 2, hence edges aw and

at are incident with the outer face, and we can put edge wt back in, to obtain an embedding of
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G — z in which all the vertices are still incident with the outer face, hence G' — z is outerplanar, a
contradiction.

Therefore p € C[z,s]. Recall from above that C(z,s] N N(a) = @. Note that there are no
chords with one endpoint in C[z,p) and the other in C[t,y], for otherwise (G\wt) — p contains
a K3 3-subdivision. Also, if a chord has one endpoint in C(p, s, then its other endpoint is ¢, for
otherwise (G\wt) — p contains a Ky-subdivision. For simplicity, assume that ¢ = ¢yt is the only
such chord with ¢; # s. If there is more than one such chord, the argument is similar. Also, note
that edges pcy, c1s, and sw may be subdivided once, but the subdividing vertices can be ignored
for the purposes of this argument, as will be apparent soon. So for simplicity, we assume that pcy,
18, and sw are simple edges. By the observations above, it follows that in (G\wt) — p, deg(w) = 2,
and deg(c1) = 2, hence edges wa, ws, c1s and ¢t are incident with the outer face, which implies
that edge st is not. Therefore, since in (G\wt) — p, deg(s) = 3, it follows that we can put edge wt
back in, to obtain an embedding of G —p in which all of the vertices are still incident with the outer
face, hence G — p is outerplanar, a contradiction (see figure below). Finally, note that if edges peq,
c18, and sw are subdivided once, then its subdividing vertices are still incident with the outer face
in the above embedding of G — p, since in the above argument edges c;s and sw are incident with

the outer face. This proves Claim 2a.

Therefore, neither s nor ¢ is a neighbor of a. We now show furthermore:
Claim 2b. a does not have a neighbor in C(x,s) U C(t,y).
Pf. By symmetry, suppose that N(a) N C(t,y) # @, so that N(a) N C(z,s) = &, and let ¢’ €
N(a)NC(t,y). Then, all the chords that have an endpoint in C(¢,y) have the other endpoint at z,
for otherwise 4 is violated, or G—{x, y} contains a K4-subdivision. Also, C(w,t) = &, for otherwise
G — {z,y} would contain a K3 3-subdivision, violating the hypothesis of (2) that G — {z,y} € O.

First, suppose that edge t'a is subdivided by vertex u. Then, C(t,t") N N(a) = @, for otherwise
G 2 Q2. Also, C(t',y] N N(a) = @, for otherwise G >,, Q3. For the same reason, we have that
(C(y,2) UC(z,2)) N N(a) = &. Hence, the only neighbor of a other than z, w and ¢’ is possibly x.
Furthermore, if az € E(G) then it is not subdivided for otherwise G >,, Q2. Now consider what
the remaining chords within C[z,y] are. Note that a chord cannot have an endpoint in C(#,y],
since it would violate either 4 or 12. And it cannot have an endpoint at ¢, since the other endpoint
would be in Clz, s), and G would contain a QQ2-minor; and similarly it cannot have an endpoint at
C(t,t") (and hence the other at x). Hence, all the remaining chords whose endpoints lie in Clz, y]
have an endpoint at ¢'. It follows from all of the above that if C'(z,2) = &, then t' is apex in G,
a contradiction. Hence C(z,x) # @, and so G >,, Q5 (by contracting s to x and deleting all the
chords incident with ¢'), a contradiction. Thus we have shown that t'a is not subdivided, that is
t'a € E(G).
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We will now proceed to show, in a sequence of steps, that the only possible chords with both
endpoints in C[z,y] other than st are the ones with one endpoint at x and the other in C[t/,y).
Recall from above that:

A. All chords that have an endpoint in C'(¢,y) have the other endpoint at x.

We prove
B. There is no chord with one endpoint at ¢ and the other in C|[z, s).

For otherwise, let u € C[z,s) be the other endpoint of such a chord, and choose u to be the
closest to s, in the sense that there are no chords with both endpoints in Cfu,t] other than st
and ut. Note that, us and sw are either edges of G or edges subdivided once, but again we may
assume, without loss of generality, that us and sw are just simple edges. Let p be an apex vertex
in G\st. It is easy to see that p € C|x,u]. If p = u, then there are no more chords with an endpoint
at t, for otherwise (G'\st) — u contains a K 3-subdivision. Hence, in (G\st) — u, deg(t) = 2 and
deg(s) = 1, hence edge wt and the pendant edge ws are incident with the outer face. Therefore,
since C'(w, t) = & (equivalently, wt € E(G)), we can put edge st back into this embedding to obtain
an outerplanar embedding of G — u, a contradiction. Therefore, we must have p € C[z,u). Also, if
a chord has one endpoint in C(p,u], then its other endpoint is ¢, for otherwise if the other endpoint
is y, then (G\st) — p contains a Kj4-subdivision. For simplicity, assume that ¢ = ¢t is the only
such chord with ¢; # s. If there is more than one such chord, the argument is similar. Also, note
that edges pci1, ciu, us and sw may be subdivided once, but again we may assume, without loss
of generality, that they are all just simple edges (since they will turn out to be incident with the
outer face in (G\st) —p). By the observations above, it follows that in (G\st) — p, deg(s) = 2, and
deg(c1) = 2, hence edges su, sw, ciu and ¢t are incident with the outer face, which implies that
edge ut is not. Therefore, since in (G\st) — p, deg(u) = 3, it follows that by putting edge st back
in, we can embed G — p so that all the vertices are still incident with the outer face, hence G — p
is outerplanar, a contradiction (see figure below). This proves B.

C. There is no chord with one endpoint in C(¢,t') and the other at z.

Suppose the contrary, and let u € C(¢,t') be the endpoint of such a chord. By B, there is no
chord with one endpoint at ¢t and the other in C[z, s), hence zs is an edge, or an edge subdivided
once. Note that, xs and sw are either edges of G or edges subdivided once, but again we may

assume, without loss of generality, that s and sw are just simple edges. Let p be an apex vertex
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in G\st. It is easy to see that p = z. Hence, in (G\st) — p, deg(t) = 2 and deg(s) = 1, hence edge
wt and the pendant edge ws are incident with the outer face. Therefore, by putting edge st back
into this embedding, we obtain an outerplanar embedding of G — z, a contradiction. This proves
C.

D. There is no chord with one endpoint at y and the other in C(z, s|.

Suppose the contrary, and let u € C(z, s] be the endpoint of such a chord, and choose u to be
the closest to s, in the sense that there is no other chords with one endpoint at y and the other in
C(u, s]. Therefore, us and sw are either edges of G or edges subdivided once, but again we may
assume, without loss of generality, that us and sw are just simple edges. It is easy to see that u
is the only possible apex vertex in G\wt. First, if u € C(z,s), then in (G\wt) — u, deg(s) = 2,
hence edges sw and st are incident with the outer face. Therefore, by putting edge wt back into
this embedding, we obtain an outerplanar embedding of G — u, a contradiction. Finally if u = s,
then in (G\wt) — s, deg(t') = 3 and deg(t) = 1 = deg(w), hence edge t'a and pendant edges tt’, aw
are incident with the outer face. Therefore, since at’ is a simple edge, by putting edge wt back into
this embedding, we obtain an outerplanar embedding of G — s, a contradiction. This proves D.

It follows by A - D that:

E. The only possible chords with both endpoints in C[z,y] other than st are the ones with one
endpoint at = and the other in C[t',y).

Hence, s and sw are either edges of G or edges subdivided once, but again we may assume,
without loss of generality, that xs and sw are just simple edges. In the remainder of the proof
of Claim 2b, by G/xs we mean the graph obtained from G by contracting the path (of length 1
or 2) along C from s to . Let p be an apex vertex in G/xs. It is easy to see that p = x or
p=t. If p=x, then in (G/xs) — z, deg(w) = 2 = deg(t), hence edge wt is incident with the outer
face. Therefore, by putting edges ws and st back into this embedding, we obtain an outerplanar
embedding of G — z, a contradiction. And if p = t/, then observe the following facts. First, there
are no chords with one endpoint at = and the other in C(#',y), therefore, by E, the only possible
chord with both endpoints in C[z,y] other than st is zt’. Second, a has no other neighbors, except
possibly z, for otherwise (G/xs) — t' contains a K4-subdivision. And if € N(a), then za is not
subdivided. Third, C(z,z) = @, and the only edges left in G are chords from z to C(y, z). These
facts account for all the edges of G. Hence t’' is apex in GG, a contradiction. This concludes the
proof of Claim 2b.

We now finish the proof of Claim 2. Note that edges sw and wt are possibly subdivided, but
again we may assume, without loss of generality, that they are simple edges. It follows from Claims
2a and 2b that a does not have neighbors in C(x,s] U C[t,y). Also, by 4, there are no chords
with both endpoints in C|z, s] or both in C[t,y]. Again, we let p be an apex vertex in G/wa. It
follows from 11 that besides w and z, a has another neighbor (in Cly, z]). Therefore p # z, since
(G/wa) — z contains a Ky-subdivision. In fact, it is easy to check that p € Clz,s] U C[t,y], for
otherwise (G /wa) — p contains a K-subdivision.
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z z

By symmetry, we may assume that p € C[x, s|. First, if p = s, then all the chords whose endpoints
lie in C[xz,y| have an endpoint at s, for otherwise (G/wa) — s contains a Kj 3-subdivision. Thus,
in (G/wa) — s, deg(t) = 2, hence edge ta is incident with the outer face. Therefore, in the current
embedding of (G /wa) — s, we can subdivide edge ta by w to obtain an embedding of G — s in which
all the vertices are still incident with the outer face, hence G — s is outerplanar, a contradiction.

Therefore, p € Clz, s). Then, by Claims 2a and 2b, a has no neighbors in C(p, s]. If a chord has
an endpoint in C(p, s|, then its other endpoint is ¢, otherwise (G/wa) —p contains a K4-subdivision.
For simplicity, assume that ¢ = c¢;t is the only such chord with ¢; # s. If there is more than one
such chord, the argument is similar. Again, the edges pc; and c¢is may be subdivided once, but
the subdividing vertices can be ignored for the purposes of this argument. So for simplicity, we
assume that pc; and c¢1s are simple edges. By the observations above, it follows that in (G/wa) — p,
deg(c1) = 2, hence edges c¢1s and ¢t are incident with the outer face, which implies that edge st is
not. Therefore, since in (G/wa) — p, deg(s) = 3, it follows that sa is also incident with the outer
face (and hence edge at is not, for otherwise the edges of the cycle a,t, ¢, s,a are all incident with
the outer face, which implies that those are all the vertices in (G/wa) — p, since (G/wa) — p has
no non-trivial 1-separations, a contradiction). Therefore, it follows that in the current embedding
of (G/wa) — p, we can delete edge sa, subdivide edge at by vertex w, and add edge ws and obtain
an embedding of G — p in which all the vertices are still incident with the outer face, hence G — p
is outerplanar, a contradiction (see figure below). This concludes the proof of Claim 2.

ag -~ a -~"""7
s S w
i :
[ . A (o . S
t - t -
(G/wa) - p G-p

We now finish the proof Case 2 (“G has a chord”) and thus the entire proof of (2) of Proposition
5.1. By 4 and Claim 2, it follows that within each of the two segments Clz,y] and C[y, z] all the
chords have an endpoint at x or all the chords have an endpoint at y. We have three subcases (of
Case 2: “G has a chord”):

Subcase 2.1. There are chords within C[z,y] and within C|y, z], and the ones within C[z,y| have
an endpoint at y, and the ones within C[y, z] have an endpoint at x.

Let c1y and diz be innermost chords within C[z,y] and C|y, z], respectively. By 12, a has a
neighbor w € C(cy,y), and a neighbor z € C(dy,x), and edges aw and az are not subdivided.

First, suppose that a has a neighbor w such that edge au is subdivided. Then, by 12, u ¢
C(e1,y) UC(dy,x). If uw € C(z,cq] or u € C(y,dy], then G >, Qs (by contracting za or wa,

respectively). Therefore, u € {z,y}, so by symmetry v = z. Since G %, Qa, it follows that
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N(a) N (C(z,w) U C(w,y)) = &, Clw,y) = &, and if y € N(a), then ay is not subdivided.
Therefore, = is apex in G, a contradiction.

Therefore, for all neighbors u of a, au is a simple edge. Note that if a has no neighbors in
C(z,w) U C(w,y) and C(w,y) = &, then x is apex in G. Similarly, if ¢ has no neighbors in
C(y,z) UC(z,z) and C(z,x) = &, then y is apex in G, a contradiction. Therefore, either N(a) N
(C(z,w)UC(w,y)) # @ or C(w,y) # &; and either N(a)N(C(y,z)UC(z,z)) # @ or C(z,z) # 2.
It can easily be seen that any one of the four combination yields a QQo-minor in G, a contradiction.
Subcase 2.2. There are chords within C[z,y] and within C[y,z], and all chords of G have an
endpoint at y.

Let c1y and dyy be innermost chords within Clz,y] and C[y,z], respectively. By 12, a has a
neighbor w € C(e1,y), and a neighbor z € C(y,d;), and edges aw and az are not subdivided.

Note that a has a neighbor u # y such that au is subdivided, for otherwise y is apex in G, a
contradiction. Then, by 12, u ¢ C(c1,y) U C(y,d1), hence u € Clz,c1] U C[dy, z]. By symmetry,
we only need to consider u € C[z,¢q]. First, if v = x, then since G %,, Q2, it follows that
N(a) N (C(xz,w) U C(w,y) U C(y,z) UC(z,z)) = &, C(w,y) UC(y,z) = &, and if y € N(a),
then ay is not subdivided. Therefore, x is apex in G, a contradiction. Second, if u € C(z,¢1),
then since G %, Qs, it follows that N(a) N C(z,u) = @. Also, since G %,, @2, it follows that
N(a) N C(u,w) = @, and C(w,y) UC(y,z) = &, and if y € N(a), then ay is not subdivided.
Therefore, u is apex in G, a contradiction. Therefore we must have v = ¢;. Again, since G %, Q3,
it follows that N(a) N C(z,u) = @. And, since G %, Qa, it follows that C(y,z) = @, and if
y € N(a), then ay is not subdivided. Therefore, u is apex in G, a contradiction.

Subcase 2.3. All the chords of G lie within C[z,y] and they all have an endpoint at y.

Let c;y be an innermost chord within C[z,y|. By 12, a has a neighbor w € C(c1,y), and edge
aw is not subdivided.

Note that a has a neighbor u # y such that au is subdivided, for otherwise y is apex in G, a
contradiction. Then, by 12, u ¢ C(c1,y). Let z € C(y,x) be the neighbor of a closest to y, in
the sense that yz is an edge of G or an edge subdivided once. Then u € C(z,¢1], for otherwise
y is apex in G. First, if u € C(z,z], then N(a) N C(u,z) = &, for otherwise G — {z,y} contains
a Ky g-subdivision. Also, since G %, Qa, it follows that N(a) N C(z,w) = @, C(w,y) = &, and
if y € N(a), then ay is not subdivided. Therefore, x is apex in G, a contradiction. Second, if
u € C(z,c1), then, by 12, there are no chords with an endpoint in C(z,u). Also, since G %, Qs,
it follows that N(a) N C(z,u) = @, and since G %, @5, we have that C(y,z) = @. Also, since
G #m Q2, it follows that N(a) N C(u,w) = @, and C(w,y) = &, and if y € N(a), then ay is not
subdivided. Therefore, u is apex in (G, a contradiction. Therefore, we must have u = ¢;. Hence, by
12, ¢1y is the only chord in G. Again, since G %,,, @3, it follows that N(a) N C(z,u) = &. Hence,
zz and xcy (= xu) are either edges of G or edges subdivided once. Also, since G %, Q2, it follows
that if y € N(a), then ay is not subdivided. Hence, C(y,z) # @, for otherwise u is apex in G.
Finally, since G %, Ji, it follows that C(u,w) = @ and N(a) N C(w,y] = &, and hence z is apex
in GG, a contradiction.

This concludes the proof of Case 2 in (2), and the entire proof of (2) of Proposition 5.1. O
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6. CONNECTIVITY 3

In this section, we focus on the case that G € ob(O*) — S has connectivity three (recall from
Lemma 2.2 that G € ob(O*) — S is not 4-connected, and thus K5 and Oct are the only 4-connected
members of ob(O*)). Here, we rely on the existence of contractible edges in 3-connected graphs
(Lemma 6.2) and the minor-minimality of G to prove the following proposition, which says that
such a G does not exist.

Proposition 6.1. There are no 3-connected graphs in ob(O*)—{Ks, K33,0ct,Q}. In other words,
the only graphs of connectivity 3 in ob(O*) are K33 and Q.

Lemma 6.2 (see [3]). If G is 3-connected and |V (G)| = 5, then G has an edge e such that G/e is

also 3-connected.

Such an edge is called contractible. We denote by v,, the new vertex obtained by contracting
edge zy in a graph.
The proof of Proposition 6.1 follows from Lemma 6.2 and two lemmas which are stated and

proved below.

Lemma 6.3. There is no 3-connected graph G in ob(O*)—{Ks, K3 3,Oct, Q} that has a contractible
edge xy such that vy, is not apex vertex in G/xy.

Proof. Suppose otherwise that there exists a 3-connected graph G in ob(O*) — {K5, K33,0ct,Q}
that has a contractible edge xy such that v,, is not apex vertex in G/xy, and hence there is an
apex vertex a # vy, in G/xy. Then, (G/xy) —a € O is 2-connected. Since G is 3-connected (and
simple and planar), it has a unique planar embedding by the well-known theorem of Whitney from
1933 (see [2]). Since (G/xy) — a € O is 2-connected, it follows that restricting this embedding to
(G/zy) — a, we have that all the vertices of (G/xy) — a lie on a cycle C' and are incident with
the outer face. This is so because, by Whitney’s theorem, it follows that every simple 2-connected
outerplanar graph has a unique outerplanar embedding. Since G — a ¢ O, it follows that = or y,
say x, is embedded in the interior of the disk bounded by C, where C' C G is the cycle isomorphic
to C’, and the corresponding isomorphism ¢ : V(C') — V(C') is the identity map on V(C’) — vy
and §(vzy) = y.

Let uj,ug,...,u, € V(C) (n > 3) be the neighbors of x in the clockwise order around C. For
i=1,...,n, let S; := Clu;, uj+1], where S, is understood to be Cluy,,u;]. We call the S;’s the
segments of C. We call u;’s the endpoint vertices of the segments and the vertices in C'(u;, u;41)
for i = 1,...,n, the interior vertices of the segments. Two segments of S; and S; are said to be
consecutive if |i — j| =1, or {i,j} = {1,n}. We observe the following facts.

1. The edges of G are:

- edges of C}

- edges zu; fori =1,...,n;

- chords of C, that is, edges not in E(C') with both endpoints in a single segment of C' (note that
such edges are embedded in the interior of the disk bounded by C);

- edges with one endpoint in C and the other at a.
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It follows by the above that:
2. Interior vertices of the segments are either endpoints of chords or neighbors of a.
3. For every chord cjcp in G with ¢; < ¢y (in the clockwise order of C' restricted to the segment
containing cjcz), a has a neighbor (in the usual sense, as opposed to the one from Section 5) in
C(c1,¢2) (by 3-connectedness of G).

Let N(a) := Ng(a). We now prove:
4. N(a) is covered by exactly two consecutive segments of C'.
Pf. First, we show that N(a) is covered by exactly two segments of C. If there are four internally
disjoint paths from a to z, then the subgraph of G formed from the union of those paths and C

contains an Oct-minor, a contradiction.

Oct =

Therefore, by Menger’s theorem and the fact that G is 3-connected, it follows that G has a 3-cut
separating a and x. By 1 above, it follows that this 3-cut is a subset of V(C'), and therefore at least
one of a or = has degree 3. Let u € {a,x} be such that degg(u) = 3, and let v € {a,x} — {u}. The
three neighbors of u divide C' into three segments. If all three segments contain interior vertices

that are in N(v), then G contains a @-minor, a contradiction

Q=

Hence, one segment does not contain any interior vertices that are in N(v). Then, if u = x then
we are done. And similarly, if u = a then we are done. Hence, we have shown that N (a) is covered
by exactly two segments of C.

Furthermore, the two segments that cover N(a) are consecutive. Suppose not, and let S; and
S; be the two segments that cover N(a) with |i — j| > 1. If both of them contain at least two
neighbors of a, then two of those neighbors in each segment can be contracted to four distinct
endpoint vertices and thus G >,, Oct, a contradiction. Hence, one of them, say .5;, contains only
one neighbor of a, call it n;. Since deg(a) > 3, S; must contain at least two neighbors of a: let ny
be the closest one to uj;, and ng be the closest one to u; 1.

Suppose n1 is an endpoint vertex, so that n; = wu; or u;4+1. Note that in this case deg(z) > 5, for
otherwise two consecutive segments cover N(a). Then, since G ¢ O*, it follows that C'(n2,n3) # @
(for otherwise ny is an apex vertex). But then, G >,, @1, a contradiction (by deleting edge nix

and contracting ng to uj, and n3 to w;q1).
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972 Therefore, n1 must be an interior vertex, so ny € C(u;,uj4+1). Again, since G ¢ OF, there is a
973 vertex in C(ng, ng), or there is a chord with one endpoint in C'[u;,n1) and the other in C(nq, ;1]
974 (for otherwise n; is an apex vertex). In the first case, G >,, @1 (just like above) while in the
975 second, G =, Oct (by contracting edge nja), a contradiction. This proves 4.

> Oct

976 We now show that C' actually has exactly three segments.

977 5. C has exactly three segments, or equivalently deg(x) = 3, or equivalently n = 3.

978 Pf. By 4, we may assume that N(a) is covered by S7 and S;. Since interior vertices are either
979 endpoints of chords or neighbors of a, it follows by 2 and 3 that C'(u;, u;+1) = @ for i = 3,4,...,n
980 (where u, 1 = ug).

981 Suppose that n > 4. By 4, it follows that a has neighbors in C[u;, u2) and in C(ug, ug]. Therefore,
982 in the graph G\zuy4, none of the vertices a, us, x, uy can be apex (since the deletion of any one
983 of them still leaves a K3 3-subdivision as a subgraph). Let s be an apex vertex in G\zus. Then
984 s € V(C). Therefore, the unique embedding of G restricted to the graph (G\zus) —s € O is an
985 embedding in which all the vertices (including x) are incident with the outer face. By adding edge
986 xuy4 to this embedding, we obtain an embedding of G — s in which all the vertices are incident with
987 the outer face, a contradiction.

988 We have shown that for i = 3,4,...,n zu; ¢ E(G) which, by 3-connectivity of G, implies that
989 ' has exactly three segments and proves 5.

990 By 5, G has the following general structure:

991 Therefore, let S and Sy cover N(a). It follows by 2, and 3 that C(us,u;) = & (that is ugu; €
992 E(G)). Also, similarly to 4 from the proof of Proposition 5.1, since G %, Q1, we have:
993 6. Within a single segment S; or Sy, there are no non-overlapping chords (or equivalently, all the

994 chords are nested).
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We say that segment S; (respectively Sq) is of type-one, if {z} := N(a) N Cluy, uz) with z # uq,
and C(z,u2) # @ (respectively, {w} := N(a) N C(ug, us] with w # ug, and C(ug,w) # &). And we
say that S (respectively S2) is of type-two, if [N (a)NClu1, uz)| > 2 (respectively |N(a)NC(ug, us]| =
2). Note that if S; (respectively S2) is not of type-one nor type-two, then {z} := N(a) N Clui, u2)
and zuy € E(C) (respectively {w} := N(a) N C(uz,u3] and ugw € E(C)). Finally, note that at
least one of S7 or Sy is of type-one or type-two, for otherwise us is apex in G.

There are two cases to consider.

Case 1. Each of S; and S is of type-one or type-two.

Suppose that one of the segments, say Ss is of type-one. Then, {w} := N(a) N C(ug, us] with
w # uz, and C(ug,w) # &. Hence, it follows by 2, that there is a chord with one endpoint
c1 € C(ug,w), and the other co € C(w,us]. Choose ¢; and ¢y so that the chord ¢jcy is innermost.
Then by 6, all other chords in Sy have one endpoint in Cug, ¢1] and the other in C[cy, us]. However,
since S7 is of type-one or type-two, we either have {z} := N(a) N Clui,u2) with z # wu;, and
C(z,u2) # @ (which by 2 implies that there is a chord with one endpoint in C[uy, z) and the other
in C(z,u2)), or |[N(a) N Clui,ug)| > 2. This implies that the only other chords in Sy that do not
have an endpoint at us (that is, those that do have an endpoint in C(ug, c1]) have an endpoint at

ca, for otherwise G >, @1 (by contracting wa and za if necessary, see figure below).

Therefore, us is apex in G, a contradiction.

Similarly, suppose that for one of the segments, say Si, is of type-two. Then, |N(a)NC[uy,us)| =
2. If there are chords with endpoints distinct from wus in Sp, then let dido, with di < dy in the
cyclic order of C', be an innermost chord of S; with dy # ug, and let z € N(a) N C(dy,ds). Then
again, since Sy is of type-one or type-two, we either have {w} := N(a) N C(u2,us] with w # us,
and C(ug,w) # @ (which by 2 implies that there is a chord with one endpoint in C(uz,w) and
the other in C(w,us]), or |[N(a) N C(ug,us]| = 2. This implies that the only other chords in S;
that do not have an endpoint at us (that is, those that do have an endpoint in C[d,u2)) have an
endpoint at dy, for otherwise G >,, @1 as above. Furthermore, N(a) N (C(d1,2) U C(z,u2)) = &,
for otherwise G >,, Q1 as above. Therefore again, us is apex in G, a contradiction.

Case 2. Exactly one of the segments S; or Ss is of type-one or type-two.

By symmetry, suppose that Ss is not of type-one nor type-two, and that Sj is. Then, {w} :=
N(a) N C(uz,us] and ugw € E(C). We divide this case into two subcases depending on whether
uiug is an edge of G.

Subcase 2.1. ujug ¢ E(G).

Let s be an apex vertex in G'\zrus, and we assume that the graph (G\zu3) — s € O is embedded
in the plane with all of its vertices incident with the outer face. Clearly, s # x and s # wusg, for
otherwise = or us is apex in G, a contradiction. Also, s # a, since (G\zu3) — a contains a K 3-

subdivision (because C'(u1,us) # &, since Sy is of type-one or type-two).
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First, suppose that w = wus. Then usus € E(C) (that is, C(ug,us) = &). If s = uy (or by
symmetry, if s = uy), then in (G\zus) — s, deg(uz) = 2 and deg(x) = 1 hence edges usui, usa, and
zu; are also incident with the outer face. Since usu; is a simple edge, by putting the edge xus back
in, we can embed G — s so that all the vertices are still incident with the outer face, hence G — s
is outerplanar, a contradiction (see figure below).

Therefore, s ¢ {u1,u2,us,z,a}, so that s € C(u1,uz). Then, in (G\zus) — s, deg(x) = 2, and
so (G\zu3) — s has an outerplanar embedding such that edges zu; and zus are incident with the
outer face. Also, note that x,uy,us, us is a 4-cycle in (G\zus) — s. Therefore, since ujuy ¢ E(G),
we can put the edge xus back in to obtain an embedding of G — s in which all the vertices are still
incident with the outer face, hence G — s is outerplanar, a contradiction (see figure below).

(G\xuy) - s G-s

Therefore, w # ug and so w € C'(ug,us). Since ugw € E(C'), the only possible chords in Sy have
one endpoint at ug and the other in C(w, us]. Note that by Case 2 hypothesis, usa ¢ E(G).

If s = ug, then in (G\zu3) — s, deg(us) = 2 and deg(x) = 1, hence edge uzu; and the other edge
incident with us, as well as the pendant edge xu; are all incident with the outer face. Since ugug
is a simple edge, by putting the edge zus back in, we obtain an embedding of G — s in which all
the vertices are still incident with the outer face, hence G — s is outerplanar, a contradiction.

Now suppose s = uy. If usug is a chord of C, then in (G\zus) — s, deg(usg) = 2 and deg(z) =1,
hence edges uguo, usw, and xus are incident with the outer face. Since usus is a simple edge, by
putting the edge xus back in, we can embed G — s so that all the vertices are still incident with
the outer face, hence G — s is outerplanar, a contradiction. Hence uoug is not a chord of C. If G
has a chord ¢ = ugcy with ¢ € C(w, ug), then choose ¢; closest to us, so that cyug € E(C). And if
there is no such chord, then let ¢; := w. Then, in (G\zusz) — s, deg(x) = 1, and deg(c¢1) = 3, but
1 is adjacent to us with deg(us) = 1, hence edge ugc; and the pendant edges xug and cjug are all
incident with the outer face. Since ugc; is a simple edge (even if ¢; = w), by putting the edge zus
back in, we can embed G — s so that all the vertices are still incident with the outer face, hence
G — s is outerplanar, a contradiction (see figure below).

(G\xug) -s —> -
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Similarly, if s = w, then G has no chords with one endpoint at ug and the other in C'(w,ug], for
otherwise (G\zu3) — s contains a K 3-subdivision (because C'(u1,u2) # @, since S is of type-one
or type-two). Hence, C(w, u3) = &. Therefore, in (G\zugz) — s, deg(z) = 2 and deg(ug) = 1, hence
edges xuy, and uwjug are incident with the outer face. Since xu; is a simple edge, by putting the
edge ruz back in, we can embed G — s so that all the vertices are still incident with the outer face,
hence G — s is outerplanar, a contradiction.

Therefore, s ¢ {u1,u2,us,x,a,w}, and so s € C(uy,u2) (by 1). Again, if G has a chord ¢ = uac;
with ¢; € C(w,ug), then choose ¢; closest to us, so that cjuz € E(G). And if there is no such
chord, then let ¢; := w. Then, in (G\zruz) — s, deg(x) = 2, hence edges xup and zu; are incident
with the outer face. Also, note that z,u,us,c1,us is a 5-cycle in (G\xuz) — s. Therefore, since
uiug ¢ E(G) (the Subcase 2.1 hypothesis) and uic; ¢ E(G) (by 1), we can put the edge xug back
in (even if uguz € E(G)) to obtain an embedding of G — s in which all the vertices are still incident
with the outer face, hence G — s is outerplanar, a contradiction (see figure below).

(G\xus) - s G-s

Subcase 2.2. ujus € E(G).

If all chords within S; have an endpoint at u; or all have an endpoint at wue, then ui, or us
respectively, is apex in G, a contradiction. Hence, there is a chord with both endpoints in C'(u1, u2).
Let cico € E(G) be the innermost chord with ¢1,co € C(ug,u2) (in the sense that there are no
other chords with both endpoints in Cf[cy, ¢2]), and let a1 € N(a) N C(cy, c2).

Suppose that as # a is another neighbor of a in C(c1,¢2). Then by choice of ¢1¢o, we have that
deg(ai1) = 3 = deg(az). Note that a has no other neighbors in C'(u1, us), for otherwise G' contains
two disjoint K-graphs, a contradiction. Let s be an apex vertex in G'\ajag, and we assume that the
graph (G\ajaz) —s € O is embedded in the plane with all of its vertices incident with the outer face.
It is easy to see that s = w (regardless of whether w = ug), for otherwise: if s € {a} U C'(u1,ua),
then (G\aijaz) — s contains a Ky-subdivision; and if u € {uj,u2} U C(w,us], then (G\ajaz) — s
contains a Ks 3-subdivision. Therefore s = w, and hence the only neighbors of a are aq, az and w
(because if u; or ug is a neighbor of a then (G\ajaz) — s contains a Kj 3-subdivision). Then, in
(G\ajaz) — s, deg(a) = 2, hence edges aa; and aas are incident with the outer face, and by putting
the edge ajag back in, we obtain an embedding of G — s in which all the vertices are still incident
with the outer face, hence G — s is outerplanar, a contradiction.

Hence, we have shown that a; is the only neighbor of a in C(cq, ¢2).

We now show furthermore that N(a) N (C(uy,c1] U Clez,u2)) = @. For suppose otherwise, and
let c3 € C(u1,c1] (the argument for ¢ € Clea, uz2) is similar). Then N(a) N Clez, u2) = @ (for
otherwise G >, 2K4). Let s be an apex vertex in G\cja;. Then clearly s € {ug,w}. If s = w,
then since w is apex in G'\cia; we have that: c¢3 = ¢1; N(a) N (Cluy,c1) U{ug}) = @; and G does

not have any chords with one endpoint at us and the other in C'(w,u] (in the case that w # us).
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Therefore w is apex in G, a contradiction. If s = wg, then since us is apex in G\cia, it follows
that G has no chords with one endpoint in Clu,c;) and the other in C[cz,u2). Hence all chords
of GG have one endpoint at ¢; or at us. Therefore usg is apex in GG, a contradiction.

Hence, we have shown that N(a)N(C(u1,a1)UC(a1,us)) = &. Thus the only possible neighbors
of a (other than a; and w) are u; and wuy. In fact, at least one of them is a neighbor of a since
degc(a) = 3. Let s be an apex vertex in G/aa;. Then clearly s € {uj,u2}. Suppose that s = ug
(the argument for s = u; is similar). Since ug is apex in G/aay, it follows that G has no chords
with one endpoint in Cfuy, ;1) and the other in C|ca, uz). Hence all chords of G have one endpoint
at ¢y or at uy. Therefore uy is apex in GG, a contradiction. This concludes the proof of Lemma
6.3. O

Lemma 6.4. There is no 3-connected graph G in ob(O*) — {K5, K33,0ct,Q} with the property
that for every contractible edge xy in G the vertex vy is apex in G/xy.

Proof. Suppose otherwise that there exists a 3-connected graph G in ob(O*) — {K5, K33,0ct,Q}
with the property that for any contractible edge zy in G the vertex v,y is an apex vertex in G/zy.
The following claim provides a way of testing whether an edge in a 3-connected graph is contractible.
1. Let G be a 3-connected graph with edge zy. Then, G/zy is 3-connected if and only if G — {z, y}
(= (G/xy) — vyy) is 2-connected.

Pf. If G/zy is 3-connected, then clearly (G/xy) — vy, is 2-connected. Now, suppose that G —{z,y}
(= (G/zy) —vyy) is 2-connected and that G//xy is not 3-connected, so that G /zy has a 2-cut. Since
G is 3-connected, it follows that v, is one of the vertices in that 2-cut (for otherwise, this 2-cut
would also be a 2-cut in G). Therefore, (G/xy) — vy has a cut-vertex, a contradiction which proves
1.

Let zy be a contractible edge in G. Then, by 1, (G/xy) — vgy € O is 2-connected. Since G is
3-connected it has a unique planar embedding. Restricting this embedding to (G/zy) — vgy, we
have that all the vertices of (G/xy) — vy lie on a cycle C and are incident with the outer face.

Let z1,22,...,2ym € V(C) (m > 2) be the neighbors of x in the clockwise order around C. And
let y1,v2,...,yn € V(C) (n = 2) be the neighbors of y in the clockwise order around C. Note that
x; ¢ C(y1,yn) for all i and y; ¢ C(x1,2,,) for all j, for otherwise G would contain a K3 3-minor.
Also, note that possibly z,,, = y1 or y, = x1.

2. The edges of G are:

- edges of C

- edges xx; fori=1,...,m, and yy; for j =1,...,n;

- chords of C, that is, edges not in E(C) with both endpoints in C' (note that such edges are
embedded in the interior of the disk bounded by C');

- edge zy.

Just as in the proof of Lemma 6.3, it follows from 2 that:

3. The vertices of C' are either endpoints of chords or neighbors of x or y.
4. For every chord cjcp in G with ¢; < ¢ (in the clockwise order restricted to the segment
containing ¢jcy), there is a neighbor of z or y in C(cy, ¢2).

Also, since neither y nor z is apex in G, it follows, respectively, that:
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5. C(r1,2m) # @ and C(y1,yn) # 9.
Hence G has the following general structure:

X Yy

Before we proceed, we prove a claim regarding the structure of G.
6. G does not have a chord with both endpoints in C[y,, y1]. And by symmetry, the same statement
holds for C[z,, z1].
Pf. Let cico be a chord of G with both endpoints in C[y,,y1]. Without loss of generality, we may
assume that cjcs is the innermost such chord, in the sense that there are no other chords with both
endpoints in C|cy, co]. By 4, it follows that x has a neighbor s in C(cy,c2). Note that = does not
have another such neighbor ¢ in C(cq, ¢2), for otherwise edge st is contractible (because G — {s,t}
is 2-connected), but (G/st) —vg ¢ O (because it contains a Ky z-subdivision, since C(y1,yn) # D),
a contradiction because vg by the assumption of the proof is an apex vertex in G/st. So, the only
vertex in C(cy,c2) is s. But then, edge xs is contractible (because G — {x, s} is 2-connected), and
(G/xs) —vgs ¢ O (because it contains a K 3-subdivision, since C'(y1,y,) # @), a contradiction.
This proves 6.

By 6, we have:
7. The only chords in G have one endpoint in C(z1,x,,) and the other in C(y1, yn).

The following claim further tightens up the structure of G.
8. There is exactly one vertex in C(x1,x,,) and exactly one in C(y1,yn).
Pf. Suppose that C(z1,x,,) has two vertices s and ¢. Then, by 3 it follows that both s and ¢ are
neighbors of z, or endpoints of chords whose other endpoints lie in C(y1,y,) by 7, or both. Note
that st is contractible (by 1, because G — {s,t} is 2-connected), and (G/st) — v ¢ O (because it
contains a Ky-subdivision, consisting of the cycle formed by edge zx,,, the clockwise path along C
from z,, to z1, and edge x;x; and the three spokes from y to this cycle), violating the hypothesis
of Lemma 6.4. This proves 8.

With the structure of G restricted by 6 and 8, we are ready to finish the proof of the lemma.
Let s and t be the unique vertices in C(z1, z) and C(y1, yn), respectively. Note that st € E(G),
for otherwise any one of x1, Z,, y1, yn is apex in G, a contradiction. Also, it follows by 2 and 7
that C(zp,,y1) = @ and C(y,,x1) = 2.

If 2., # y1 and y,, # 1, then G >,, @, a contradiction (see figure below).

X )4
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Hence, by symmetry, we have either the case that z,, # y; and y, = 1, or that z,, = y; and
yn = x1. In either case, we cannot have that both sx,ty € E(G), for otherwise G >,, Oct (see
figure below).

Oct =

Hence, by symmetry, sz ¢ E(G), and it follows that x,, is apex, a contradiction. This concludes
the proof of the lemma. O
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