3-CONNECTED GRAPHS OF PATH-WIDTH AT MOST THREE

GUOLI DING AND STAN DZIOBIAK

ABSTRACT. It is known that the list of excluded minors for the minor-closed class of graphs
of path-width < 3 numbers in the millions. However, if we restrict the class to 3-connected

graphs of path-width < 3, then we can characterize it by five excluded minors.

1. INTRODUCTION

The concepts of tree-width and path-width were introduced by Robertson and Seymour
in [6] and [7]. Let G be a graph, T" a tree, and let V = {V;},cv(r) be a family of vertex sets
Vi C V(G). The pair (T,V) is called a tree-decomposition of G if it satisfies the following
two conditions:

(T1) V(G) = Uievr) Vi: and every edge of G has both ends in some V;;
(T2) for every v € V(G), the subgraph induced by those ¢ for which v € V; is connected.

The elements of V are called bags. The width of a tree-decomposition (T, V) is maxyey (1) {|Vi|—
1}. The tree-width of G, denoted by tw(G), is the minimum width over all possible tree-
decompositions of G. Similarly, if the underlying structure is a path P, that is if 7' = P, then
the pair (P, V) is called a path-decomposition of G if again it satisfies (T1) and (T2). And,
analogously, the width of a path-decomposition (P, V) is max,cy (p){|V;| — 1}, and the path-
width of G, denoted by pw(G), is the minimum width over all possible path-decompositions
of G. Since a path-decomposition of G is also a tree-decomposition of G, it follows from the
definitions that tw(G) < pw(G) for every graph G.

Given graphs H and G, H is a minor of G, denoted by H <X G, or G = H, if H can be
obtained from a subgraph of G by contracting edges. If H is not a minor of GG, we say that G
is H-free, and denote it by H A G, or G % H. A class C of graphs is minor-closed if for every
G € C all the minors of GG are also in C. Some examples of minor-closed classes are: planar
graphs, outerplanar graphs, series-parallel graphs, and graphs embeddable in a fixed surface.
Also, it is easy to check that, for a fixed positive integer k, the following classes of graphs
are minor-closed: 7;, := {G : tw(G) < k}, P := {G : pw(G) < k}. Equivalently, tree-width
and path-width are monotone under taking minors, namely if H < G, then tw(H) < tw(G)
and pw(H) < pw(G). Finally, since having loops or parallel edges has no impact on the

tree-width or path-width of a graph, all graphs in this paper are considered to be simple.
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Note that graphs of tree-width = 1 are exactly forests (or equivalently, K3-free graphs), and
graphs of tree-width < 2 are exactly series-parallel graphs (or equivalently, K,-free graphs).
The following theorem due to Arnborg et. al. [1], and independently to Satyanarayana et.
al. [10], characterizes the class 73 in terms of its excluded minors.

Theorem 1.1. [1], [10] For a graph G, tw(G) < 3 if and only if G does contain any of the
following graphs as a minor: Ks, Vg, Oct, Ls.

EBOE

Octahedron L5

Similarly, graphs of path-width = 1 are exactly disjoint unions of paths (or equivalently,
{K3, K 3}-free graphs). And in [5], Kinnersley and Langston provide a complete list of 110
excluded minors for Py. By restricting this class to only 2-connected graphs, Barat et. al.
2] obtained the following theorem.

Theorem 1.2. [2] For a 2-connected graph G, pw(G) < 2 if and only if G does contain any
of the following graphs as a minor.

A AN =

The class of graphs of path-width at most three is known to have at least 122 million
excluded minors [5], and the complete list is not known. However, we prove that if we
restrict the class to 3-connected graphs of path-width < 3 (as asked by the authors of [2]),
then we can characterize it by five excluded minors and two exceptions. The following is the
main result of this paper.

Theorem 1.3. For a 3-connected graph G, pw(G) < 3 if and only if G ¢ {V5,Q} and G
does contain any of the following graphs as a minor: Ks, Oct, Pyr, P~ A~.

Q Pyramid P~ A~

The graph P~ is obtained from the Petersen graph P by deleting any one vertex, hence its
label. The graph A~ is obtained from the graph A (see next figure) by deleting two edges.

The graph A, in turn, is obtained from the third graph in Theorem 1.2 by joining all of its
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degree-two vertices to a newly added vertex. Note that P~ and A~ are not 3-connected.
Alternatively, if we would like all of the excluded minors for our class to be 3-connected,
then we can characterize it by six excluded minors and two exceptions. The graphs R; and
R5 in the following Corollary each contain P~ and A~ as subgraphs.

Corollary 1.4. For a 3-connected graph G, pw(G) < 3 if and only if G ¢ {V5,Q} and G
does contain any of the following graphs as a minor: Ks, Oct, Pyr, Ry, Rs, A.

R R A

1 2

Remark. A O-graph is one with two fixed vertices and at least three internally-vertex-
disjoint paths between them, and with at least three such paths of length at least three.
For example, the third graph in Theorem 1.2 is the smallest ©-graph. Let C be the class
of ©-graphs, and C* be the class of graphs that contain a vertex whose deletion results in
a ©-graph. For example, A, A~ € C*. Then, in Theorem 1.3, we can reduce the number of
excluded minors by one, by increasing the number of exceptions, namely: for a 3-connected
graph G, pw(G) < 3 if and only if G ¢ C*U{V;5,Q} and G does contain any of the following
graphs as a minor: K3, Oct, Pyr, P~. The statement follows from the fact that a 3-connected
{K5, P~ }-free graph containing A~ is in C*. The proof of this fact follows from Lemma 3.7
and Seymour’s splitter theorem [8] and is straightforward and thus ommitted.

2. UNAVOIDABLE MINORS

In this section we prove the following Lemma, which is key in proving the converse impli-
cation of Theorem 1.3.

Lemma 2.1. If G is 3-connected and pw(G) > 4, then G contains one of the following
graphs as a minor: Vg, Q, K5, Oct, Pyr, P~  A™.

Before we prove it, we state the necessary definition and lemmas.

Definition 2.2. Let z,y,z € V(G). A 3-separation of G over {x,y, z} is a pair of induced
subgraphs (L, R) of G such that: E(L)UE(R) = E(G), V(L)UV(R) =V (G), V(L) # V(G),
V(R) # V(G), and V(L) NV (R) = {z,y, z}. Note that in such case {x,y, z} is necessarily

a 3-vertex-cut.
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Lemma 2.3. Let H be a 3-connected graph with 3-separation (L, R) over {z,y,z}. If R
does not contain the graph F as a minor (with vertices x, y, z preserved), then R — z is a
path from x to y.

Proof. If R — z has a cycle C, then since H is 3-connected, it follows by Menger’s Theorem
that H has three vertex-disjoint paths: Py, Py, Ps from V(C) to {z,y, z}. Let the endpoints
of P, be x and z1, the endpoints of P, be y and y;, and the endpoints of P; be z and z.
Then, by contracting x; to z along P;, y; to y along P, and contracting P; to a single edge,
we obtain an F-minor in R, a contradiction.

Therefore R — z is a forest. Since H is 3-connected, it follows that every vertex in R — z
(except possibly x and y) has degree > 2. Therefore, R — z is a path from z to y. O

The following basic lemma about 3-connected graphs can be found in [3].

Lemma 2.4. If G is 3-connected and |V (G)| = 5, then G has an edge e such that G/e is
again 3-connected.

Such an edge is called contractible. Furthermore, Halin in [4] shows the following.

Theorem 2.5. [4] If G is 3-connected with |V(G)| = 5 and v € V(G) has deg(v) = 3, then
one of the three edges incident with v is contractible.

Proof of Lemma 2.1. Suppose that G does not contain any of the following graphs as a
minor: Vg, Q, K5, Pyr, Oct, P~, A~. We will show that pw(G) < 3.

Since ) = Ls, it follows by Theorem 1.1 that tw(G) < 3. Let (7,V) be a tree-
decomposition of G of width < 3. We may assume, without loss of generality, that:
(a) for all distinct ¢,¢' € V(T), Vi € Vir;

As a consequence of (a), we obtain:

(b) for all distinct t,¢' € V(T), V; # Vi;
(c) for all edges tt' € E(T), V, N Vy is a vertex-cut of G;
(d) for all t € V(T), |V4| = 4.

To see (d), note that since G is 3-connected, it follows by (c) that for all edges tt' € E(T),
|V; N V| = 3. Therefore by (a) it follows that for all ¢ € V(T'), |V;| > 4, but since the width
of (T,V) is at most three, we have |V;| < 4, and so |V;| =4 for all t € V(T).

For every t € V(T), we call each of the four 3-element subsets of V; a triple of V;. A

3-element subset W C V(G) is called a bag intersection if there exists an edge st € E(T)
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such that W = V; N V,. Hence we can think of bag intersections as labels on the edges of T'.
Note that it follows from (c) and (d) that every bag intersection is a triple (of V; and V)
and a 3-vertex-cut in G.

Observe that for each V;, not all four of its triples are bag intersections. For otherwise,
suppose that V; := {w,z,y, z} is such a bag. Then the labels on the edges incident with
t in T are the following triples {w,z,y}, {w,z, 2z}, {w,y, 2z}, and {z,y,z}. Let T} be the
subtree of T rooted at t consisting of the branches of T' that are incident with ¢ by edges
with label {w, z,y}. Similarly, let Ty, T3, and Tj be the subtrees of T" rooted at ¢ consisting
of the branches of T that are incident with ¢ by edges with label {w,z, z}, {w,y, 2z}, and
{z,y, 2}, respectively. Note that 7" can be obtained by identifying the trees T}, T5, T3, and
Ty at the vertex t. Let R,y be the subgraph of G induced by (J,c, Vi — {2}. Similarly, let
Rz, Ryys, and Ry, be the subgraphs of G induced by UseT2 Vs —{y}, by UseT3 Vs — {z},
and by Us€T4 Vs — {w}, respectively. Let 2’ € Ryuy, ¥ € Ruysz, &' € Ry, and w' € Ry,

Since G is 3-connected, it follows by Menger’s Theorem that there are three internally-
vertex-disjoint paths from 2’ to w, z, and y in R,,,. Similarly, there are three internally-
vertex-disjoint paths from 3’ to w, x, and z in R,,,.; three such paths from 2’ to w, y, and z
in R,,.; and three such paths from w’ to z, y, and z in R,,,. Note that the twelve paths are
also pairwise internally vertex disjoint, because any two of the graphs: Ry, Ruzz, Ruwyzs
R,,. only meet in V;. Therefore, contracting these twelve paths to simple edges, we obtain
a (Q-minor of GG, a contradiction.

For t € V(T), we call V; good if at most two of its four triples are bag intersections, and
we call V; bad if exactly three of its four triples are bag intersections. We now show that:

(x) G has a tree-decomposition (7”,1”) such that every bag in V' is good.

Suppose that (T,V) has a bag V; := {w, z,y, z} that is bad, where all triples of V; except
{z,y,z} are bag intersections. We will construct a new tree-decomposition (77,V’) of G
satisfying (a) such that the number of bad bags in V'’ is one less than the number of bad
bags in V.

Since V; is bad and {x, y, 2} is not a bag intersection, it follows that the labels on the edges
incident with ¢ in 7" are the following triples {w,z,y}, {w,z, z}, and {w,y, z}. Let T} be
the subtree of T rooted at t consisting of the branches of T" that are incident with ¢ by edges
with label {w, z,y}. Similarly, let T, and T3 be the subtrees of T rooted at ¢ consisting of the

branches of T" that are incident with ¢ by edges with label {w, z, z} and {w, y, 2}, respectively.
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Note that T can be obtained by identifying the trees T;, T, and T3 at the vertex t. Let
R,z be the subgraph of G induced by Us€T1 Vs —{z}. Similarly, let R, and R,,. be the
subgraphs of G induced by |,cp, Va—{y} and by U,cp, Va—{x}, respectively. Let Ly, be the
graph induced by (V(G) — V(Ruyay)) U{w, z,y}. Similarly, let Ly, and L., be the graphs
induced by (V(G) =V (Ruys:)) U{w, z, 2z} and by (V(G) =V (Ruyy:)) U{w,y, z}. Then, G has
the following three 3-separations: (Luyuy, Ruzy), (Lwwzs Ruwzz), and (Lyys, Ryy.). If each one
of Ryuy, Ruwsz, and Ry, contains an F-minor (as defined in Lemma 2.3, where in each case
we choose w to be the vertex of degree one in F'), then G = Pyr, a contradiction. Therefore,
by symmetry, R, does not contain an F-minor (with vertices w, =, and y preserved), and
thus by Lemma 2.3, Ry, — w is a path P from z to y. Let ap,a1,...,a, := P with ap = x
and a,, = y. Note that n > 1, since (Lygy, Rusy) is & 3-separation over {w, x,y}. Since G is
3-connected, we have wa; € F(G) for all ¢ except possibly i = 0 and i = n.

Let Gy := Rys. and G3 := Ry,.. Let Vo := {V, € V : s € V(T3)}, modifying the bag
Vi € Vs, to be just {w,x, z}, and let V3 := {V, € V : s € V(13)}, modifying the bag V;, € Vs
to be just {w,y,z}. Then clearly (15,V,) is a tree-decomposition of Gs, and (73,Vs) is a
tree-decomposition of G3.

For i = 1,2,...,n, let V,, = {a;_1,a;,w,z}. We construct the following tree T": relabel
t € V(T3) by ty, relabel t € V(T3) by t,, and connect the two trees Ty and T3 by the path
ti,ta, ... tn. Let V' = {V,}sev(rvy. Note that the bag {w, z, z} from V, got replaced by V;, =
{a1,w,z,z} € V', and the bag {w,y, z} from V3 got replaced by V; = {a,_1,w,y,z} € V.
Then clearly (77,)') is a tree-decomposition of G satisfying (a). Furthermore, for all ¢, the
bags Vi, = {ai_1, a;,w, z} are good, because the triples {a;_1, a;,w} and {a;_1, a;, z} are not
bag intersections (because Ry, —w is a path from x to y). Also, note that {w, z,y, 2z} ¢ V'
(because n > 1), and V' — | J_ {V;,} €V, therefore the number of bad bags in V' is one less
than the number of bad bags in V. This proves (x).

So we may assume that in the tree-decomposition (7', V) of G every bag of V is good. This
gives rise to the following tree structure of G. Let 7 denote the set of all bag intersections
of (T, V). We then have a natural bipartite graph B on VU7 where the edges of B join bag
intersections in 7 to the bags of V to which they belong. Since T is a tree and the subgraph
of T induced by the edges of a given label is a subtree of T', it follows that B is a tree. By
definition of B, every vertex in V' (B) NV has degree at most two, and all the leaves of B are
elements of V.

If all the vertices of 7 lie on a path in B, then all the vertices of V either also lie on the
path or are leaves of B. Thus B has the structure as illustrated in the following example.

1 5 8 9 14

10 13
2 3 4 6 7 11 12



In this case, {V;}iz12
each V; consists of the vertices of a single element of V. The V;’s are indexed in the natural

,,,,, n is a path-decomposition of G of width < 3, where n := |V|, and
order as in the figure above. Hence pw(G) < 3.

Finally, if the vertices of 7 do not all lie on a path of B, we will show that we achieve a
contradiction. In this case B contains the following subgraph B'.

We will show that we can reduce B to B’ by contractions in G in such a way that the
resulting graph G is still 3-connected. Let L be a leaf of B such that L € VN(V(B)—-V(B')).
Let t € T be the neighbor of L in B. Let t = {vy,v9,v3}, and let L = {vy, va,v3,v4}. Since L
is a leaf of B, it follows that t is a 3-vertex-cut that separates v, from the rest of the graph.
Since G is 3-connected, it follows that v, is adjacent to vy, vy, and vs, hence deg(vy) = 3.
Hence, by Theorem 2.5, one of the edges vsvq, v4v9, v4v3 is contractible. Therefore, by
contracting it we obtain a 3-connected minor of G whose corresponding tree is B — {L,t}.
By repeating this process we can obtain a 3-connected minor G’ of G and correspondingly
reduce B to B'.

Therefore, we may assume that G = G’ and show that G contains either a P~- or A™-
minor, obtaining a contradiction. It follows from the above that G has a tree-decomposition
(T, V") with |V(T")| = 6 satisfying (a) such that every bag in V" is good. Let V' :=
{W1,...,Vs} with triples ¢;,...t; as in the figures above and below. Hence, we have that
V(G)| = 9.

Let V(G) := {1,...,9}, and let t; = {1,2,3}, Vi = {1,2,3,4}, Vo = {1,2,3,5}, and
Vs = {1,2,3,6}. Note that since t; ¢ {t2, 13,14}, it follows that 4 € t, C Vj, 5 € t3 C V5,
and 6 € t; C Vg, and each of ty, t3, t4 must contain exactly one of the subsets {1,2}, {2,3},
{1,3}. Let 7, 8, and 9 be the remaining vertices in V}, V5, and V;, respectively. By symmetry,
we have the following three cases:

7(3&86 L: {1a2} C t27 {2a3} C t3> {1a3} C ty.
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Therefore, to = {1,2,4},t3 = {2,3,5},t4 = {1,3,6},and V, = {1,2,4,7}, V5 = {2, 3,5, 8},
Ve ={1,3,6,9}. Since G is 3-connected and vertex 7 only belongs to bag Vj, it follows that
the degree of 7 in G is three, and 71,72,74 € E(G). Similarly, 82,83,85,91,93,96 € E(G).
Also, since t; separates vertices 4 and 7 from the rest of the graph, it follows from the 3-
connectivity of G and Menger’s Theorem that G has three internally-vertex disjoint paths
from 4 to the vertices 1, 2, and 3. But, since 73 ¢ E(G), it follows that 43 € E(G). Similarly,
51,62 € E(G). Therefore G contains the following subgraph, which is isomorphic to P~, a
contradiction.

Case 2: {1, 2} Q tg N t4, {2,3} Q tg.

Hence in this case to = {1,2,4}, t3 = {2,3,5}, t4 = {1,2,6}, and V; = {1,2,4,7},
Vs ={2,3,5,8}, Vs = {1,2,6,9}. Then, similarly to the argument in Case 1, G contains the
following subgraph.

Also, since G is 3-connected, it follows (similarly to the argument in Case 1) that either
14 € E(G) or 24 € E(G). In the first case, G contains P~ as a subgraph (by deleting
edge 17), a contradiction. And in the second case G contains A~ as a subgraph, again a

contradiction.
Case 3: {1, 2} Q tg N tg N t4,

Hence in this case to = {1,2,4}, t3 = {1,2,5}, t4 = {1,2,6}, and V; = {1,2,4,7},
Vs ={1,2,5,8}, Vs = {1,2,6,9}. Then, similarly to the argument in Case 1, G contains the
following subgraph.




Since G is 3-connected, it follows (similarly to the argument in Case 1) that either 14 €
E(G) or 24 € E(G), and either 15 € E(G) or 25 € E(G). By symmetry, we only need to
consider two cases. If 14,15 € E(G), then G contains A~ as a subgraph (by deleting edge
17), a contradiction. And if 14,25 € E(G), then G contains P~ as a subgraph (by deleting
edges 17 and 28), a contradiction. This concludes the proof of Lemma 2.1. O

3. PROOF OF THE MAIN THEOREM AND COROLLARY

We first verify that all seven graphs: Vg, @, K5, Oct, Pyr, P~, A~ have path-width at
least four, which helps establish the forward implication of Theorem 1.3. For this we need
the following structural lemma about 3-connected graphs of path-width at most three.

Lemma 3.1. Let G be a connected graph with n := |V(G)| > 4 and pw(G) < 3. Then for
each k =1,2,...,n—4, G has 3-vertez-cut separating k vertices from (n — 3) — k vertices.

Proof. Let {Vi}z’:m
loss of generality, that:

,,,,, m be a path-decomposition of G of width < 3. We may assume, without

(a) for all 4, |V;| = 4 (by adding vertices to V; if necessary);

(b) for all distinct i, j, V; € V}, hence V; # Vj;

(c) for all 7, |V; N V11| = 3 (by inserting new bags between V; and V;,; if necessary).
Therefore, it follows that for k =1,2,...,n —4, V; NV, is a 3-vertex-cut separating k

vertices from (n — 3) — k vertices. O

The following lemma helps to establish the forward implication of Theorem 1.3.

Lemma 3.2. If G € {4, Q, K5,Oct, Pyr, P~, A~ }, then pw(G) > 4.

Proof. If G € {Vg, K5,0ct}, then it follows from Theorem 1.1 that pw(G) > tw(G) > 4.

Now let G € {Q, Pyr, P~, A~} and suppose that pw(G) < 3. Then, by Lemma 3.1, it follows

223 | vertices from [252] vertices, where n = |V(G)|.

But in each case we have a contradiction since 3-cuts in P~ and in A~ can only separate one

that G has a 3-vertex-cut separating |

vertex from five, or two from four, and 3-cuts in @) and in Pyr can only separate a single
vertex from the rest of the graph. U

To finish the proof of Theorem 1.3, we will need the following theorem of Wagner [9] and
the following lemmas.

Theorem 3.3. [9] If G is a 3-connected Ks-free graph containing a Vs-minor, then G = V5.

Actually, the above theorem can also be proved directly using Seymour’s splitter theorem

8].
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Lemma 3.4. IfG is a 3-connected { K5, Pyr}-free graph containing a Q-minor, then G = Q.

Proof. Suppose that G = @ and G # (). Then, since both G and () are 3-connected it
follows from Seymour’s splitter theorem [8], that G = Q +e or G = Q + f, where Q + e,
and () + f respectively, is the graph obtained from @) by adding an edge e between two
vertices at distance two from each other, and an edge f between two vertices at distance
three, respectively. But this is a contradiction since ) + e = Pyr and @ + f = K5. O

Proof of Theorem 1.3. Since path-width is monotone under taking minors, Lemma 3.2
establishes the forward implication of Theorem 1.3.

Conversely, suppose that G ¢ {Vs,Q} and G is { K5, Oct, Pyr, P~, A~ }-free. Then, from
Lemmas 3.3 and 3.4, it follows that G is {Vs, Q, K5, Oct, Pyr, P~, A~ }-free. Therefore, by
Lemma 2.1 it follows that pw(G) < 3. This proves Theorem 1.3. O

Finally, Corollary 1.4 follows from the following three lemmas. By H + v,vy, we mean the
graph obtained from H by adding edge vivy to H for non-adjacent vertices vi,ve € V(H).
For any edge e := wwv € E(H) with degy(v) > 3, the operation of uncontracting vertex v
relative to edge e is defined to be that of deleting v, adding two new adjacent vertices v; and
vy each adjacent to u, and joining each old neighbor of v (in H), other than u, by an edge
to exactly one of v; or vy in such a way that both v; and vy have degree at least three in the
new graph.

Lemma 3.5. Let H be a 2-connected minor of a 3-connected graph G. Let u € V(H) with
degy(u) = 2, and let uy; and uy be its two neighbors with degy(u;) = 3 for i = 1,2. Then
G = H', where H' is obtained from H by one of the following operations:

(1) H = H + uv for some v € V(H) — {u,uy, us};

(2) uncontracting u; relative to uu; for some i € {1,2}.

Proof. Since H is a minor of G, it follows that G has a subgraph G’ that is a union of
pairwise vertex-disjoint trees V := {71, },cv (m), and pairwise internally-vertex-disjoint paths
€ = {P.}ecrm) that are also internally-vertex disjoint from the trees in V, such that for
each vw € E(H) the two endpoints of P,, are a vertex in T, and a vertex in 7T),. To obtain
H from G’ we contract all of the trees in V to single vertices and all of the paths in & to
single edges. We choose the trees to be as small as possible (by possibly making the paths
longer). From this choice it follows that for every v € V(H), every leaf [ of T, is the endpoint
of at least two paths P,, and P, for some w,w’ € V(H) — {v} (if T, = K; then the only
vertex of T, is considered to be its leaf). Clearly this is true if 7, = K by the 2-connectivity
of H; also, if T, # K; and [ is a leaf of T, and [ is the endpoint of only one such path or

none, then in the first case, by adding [ to the path and discarding it from the tree T, we
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can make T, smaller; and in the second case, by simply discarding [ from T, we can make
T, smaller, in both cases a contradiction. Also, if d := degy(v) < 3 then the vertices of T,
are the endpoints of exactly d paths P,, for some w € V(H) — {v}, hence by the above it
follows that T, has only one leaf, thus T, = K.

Let z be the only vertex in V(7,), and let z; € V(T,,) and 3 € V(T,,) be the other
endpoints of the paths P,,, and P,,,, respectively. Let P be the concatenation of P, , and
P,., at x. Since G is 3-connected, there is a path @) in G internally vertex disjoint from
the trees in V and the paths in &£, with one endpoint ¢; in the interior of P and the other
¢ € V(G")—V(P). Also, in the case that uyus € E(H) and the endpoints of P,,,, are x; and
Tq, then ¢ is in the interior of P or the interior of P,,,, and ¢o € V(G') — (V(P)UV(Pyu,))-
Since in this case P and P,,,, are symmetric, we may assume, without loss of generality,
that ¢; is in the interior of P.

If go is a vertex of T,, for some w ¢ {u,uy, us}, then clearly G contains a minor H’ obtained
from H by (1).

If ¢ € V(T,,) for some i € {1,2}, say for i = 2, then ¢ # x2. Let 2/, be the neighbor
of x5 on the unique zyge-path in T, (note that possibly x}, = ¢o). Deleting edge zoz), from
Ty, divides it into two trees, call them T}, and T,;, the first containing x, and the second %,
and ¢z. Then, we replace T,, by T, and T}, and add the path P,,,; consisting of the single
edge xox). Also, we replace T, by the single vertex ¢y, the path P,,, by the subpath of P
from z; to ¢, the path P, by the subpath of P from ¢, to 2, and the path P, by Q.
Then, since every leaf [ of T, was the endpoint of at least two paths P,, and P, for some
w,w" € V(H)—{u}, the new minor H' < G obtained by contracting the new trees is clearly
obtained from H by (2).

Therefore, g, lies in the interior of the path P, for some w,w" € V(H). If at least one of
w or w' is different from u; and us, then clearly G contains a minor H’ obtained from H by
(1). Hence {w,w'} = {uy,us}. Let y; € T,,, and ys € Ty, be the endpoints of P, = Py, u,-
Then we must have that either y; # 7 or y» # x9 and, as in the previous paragraph, we
obtain a minor H’ obtained from H by (2). O

Remark 3.6. If in Lemma 3.5, degy(u;) = 3 for i = {1,2}, then G contains a minor H’
obtained from H by (1), since the unique graph obtained from uncontracting u; relative to
uu;, contains as a minor a graph obtained from H by (1).

Lemma 3.7. If G is a 3-connected Ks-free graph containing an A~ -minor, then G > Ry,
or G = Ry, or G = A.

Proof. Label the vertices of A~ as in the figure below.
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Since G is 3-connected and A~ is 2-connected, it follows by Lemma 3.5 and Remark 3.6 that
G = G’, where G’ is obtained from A~ by adding one of the edges in {42,43,45,46,48,49} U
{57,56,54,53,51,59}. However:

» A~ + 45 > Kj, by contracting edges 13, 25, 47, and 68;

» A~ +42 = Kjx, by contracting edges 13, 25, 47, and 68; and symmetrically A~ + 57 = Kj;
» A™ +43 = Kj5, by contracting edges 12, 47, 58, and 68; and symmetrically A~ + 56 = K5;
» A™ +46 = K5, by contracting edges 13, 47, 25, and 58; and symmetrically A~ + 53 = K5;

Therefore, G’ is obtained from A~ by adding one of the edges in {48,49} (or symmetrically,
one of the edges in {51,59}) . First, suppose that G’ = A~ + 49. Then, Lemma 3.5 and
Remark 3.6 applied to the graphs G and G’ yield another minor G” < G obtained from G’
by adding one of the edges {51,59}. Therefore G” is one of the following two graphs:

» G' = A" +49+ 51 = Ry (or symmetrically G = A~ + 48 + 59 = Ry);

»or G =A" +49+ 59 = A;

Finally, if G’ = A~ +48, then if vertex 8 is uncontracted relative to 58 according to Lemma
3.5, then G contains one of the following graphs as a minor: A~ 456, A~ 457, or A~ 445, each
of which contains a Kz-minor (as above), a contradiction. Therefore, it follows from Lemma
3.5 that G = G", where G” = A~ + 48+ 59 = R, (as above), or G” = A~ +48 +51 = Ry as

illustrated below.
o e
N
7
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Lemma 3.8. If G is a 3-connected Ks5-free graph containing a P~-minor, then G = A~.

Proof. Suppose that G % A~. Label the vertices of P~ as in the figure below.

First, note that G % K3, where K3, is the graph obtained from K33 by adding one edge
to each of the two bipartitions (see figure below). This is because K. ; 5 = K5 by contracting
the edge connecting the two vertices of degree three.

K. =

3,3

Since G is 3-connected and P~ is 2-connected, it follows by Lemma 3.5 and Remark 3.6
that G = G, where G is obtained from P~ by adding one of the edges {61, 62, 64, 65,67, 68}.
First, suppose that the added edge is not incident with 4 nor 5, so by symmetry let G; =
P~ +62. Then, the same Lemma and Remark applied to the graphs G and G yield another
minor Gy = G obtained from G by adding one of the edges {42,43,45,46,48,49}. However,
since G % K3, it follows that the only choices are {42,43,46}. If Gy = P~ 4 62 + 43, then
we get a contradiction because Go = A™.

If Gy = P~ 462+ 46, then G, > K5, by contracting edges 19, 25, 38, 47, a contradiction.
And if Gy = P~ +62+42, then if vertex 2 is uncontracted relative to 52 according to Lemma
3.5, then G contains either K35 or P~ +62+46 = Kj; (as above), a contradiction. Therefore,
it follows from Lemma 3.5 and the fact that G % Kgf 5, that G = G3, where (G5 is obtained
from G5 by adding one of the edges {51,53}. By symmetry, we may assume the added edge
is 53. But then, G3 = R; = A™, a contradiction.




Therefore we have shown that G = G, where (&1 is obtained from P~ by adding one of the
edges {64, 65}, by symmetry, say 65. Then, applying the Lemma and Remark to the graphs
G and Gy, and using the fact that G % K. ; 3, we obtain another minor G4 < G obtained from
G1 by adding one of the edges {45,46}, by symmetry, say 45. But G, > K5, by contracting
edges 14, 27, 38, and 69, a contradiction. O

Proof of Corollary 1.4. The forward direction of the Corollary follows from Theorem 1.3
since both Ry and Ry contain P~ as a subgraph, and A contains A~ as a subgraph.

For the converse direction, since G is { K5, Oct, Pyr, Ry, Ry, A}-free, it follows from Lemma
3.7 that G # A~. Therefore, it follows from Lemma 3.8 that G % P~. Hence, G is
{Ks, Oct, Pyr, P~, A~ }-free, and so by Theorem 1.3, pw(G) < 3. O
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