3-CONNECTED GRAPHS OF PATH-WIDTH AT MOST THREE

GUOLI DING AND STAN DZIOBIAK

ABSTRACT. It is known that the list of excluded minors for the minor-closed class of graphs of path-width ≤ 3 numbers in the millions. However, if we restrict the class to 3-connected graphs of path-width ≤ 3 , then we can characterize it by five excluded minors.

1. INTRODUCTION

The concepts of tree-width and path-width were introduced by Robertson and Seymour in [6] and [7]. Let G be a graph, T a tree, and let $\mathcal{V} = \{V_t\}_{t \in V(T)}$ be a family of vertex sets $V_t \subseteq V(G)$. The pair (T, \mathcal{V}) is called a *tree-decomposition* of G if it satisfies the following two conditions:

- (T1) $V(G) = \bigcup_{t \in V(T)} V_t$, and every edge of G has both ends in some V_t ;
- (T2) for every $v \in V(G)$, the subgraph induced by those t for which $v \in V_t$ is connected.

The elements of \mathcal{V} are called *bags*. The *width* of a tree-decomposition (T, \mathcal{V}) is $\max_{t \in V(T)} \{|V_t| - 1\}$. The *tree-width* of G, denoted by $\mathbf{tw}(G)$, is the minimum width over all possible treedecompositions of G. Similarly, if the underlying structure is a path P, that is if T = P, then the pair (P, \mathcal{V}) is called a *path-decomposition* of G if again it satisfies (T1) and (T2). And, analogously, the *width* of a path-decomposition (P, \mathcal{V}) is $\max_{t \in V(P)}\{|V_t| - 1\}$, and the *pathwidth* of G, denoted by $\mathbf{pw}(G)$, is the minimum width over all possible path-decompositions of G. Since a path-decomposition of G is also a tree-decomposition of G, it follows from the definitions that $\mathbf{tw}(G) \leq \mathbf{pw}(G)$ for every graph G.

Given graphs H and G, H is a *minor* of G, denoted by $H \preceq G$, or $G \succeq H$, if H can be obtained from a subgraph of G by contracting edges. If H is not a minor of G, we say that Gis H-free, and denote it by $H \not\preceq G$, or $G \not\succeq H$. A class \mathcal{C} of graphs is *minor-closed* if for every $G \in \mathcal{C}$ all the minors of G are also in \mathcal{C} . Some examples of minor-closed classes are: planar graphs, outerplanar graphs, series-parallel graphs, and graphs embeddable in a fixed surface. Also, it is easy to check that, for a fixed positive integer k, the following classes of graphs are minor-closed: $\mathcal{T}_k := \{G : \mathbf{tw}(G) \leq k\}, \mathcal{P}_k := \{G : \mathbf{pw}(G) \leq k\}$. Equivalently, tree-width and path-width are monotone under taking minors, namely if $H \preceq G$, then $\mathbf{tw}(H) \leq \mathbf{tw}(G)$ and $\mathbf{pw}(H) \leq \mathbf{pw}(G)$. Finally, since having loops or parallel edges has no impact on the tree-width or path-width of a graph, all graphs in this paper are considered to be simple. Note that graphs of tree-width = 1 are exactly forests (or equivalently, K_3 -free graphs), and graphs of tree-width ≤ 2 are exactly series-parallel graphs (or equivalently, K_4 -free graphs). The following theorem due to Arnborg et. al. [1], and independently to Satyanarayana et. al. [10], characterizes the class \mathcal{T}_3 in terms of its excluded minors.

Theorem 1.1. [1], [10] For a graph G, $\mathbf{tw}(G) \leq 3$ if and only if G does contain any of the following graphs as a minor: K_5, V_8, Oct, L_5 .

Similarly, graphs of path-width = 1 are exactly disjoint unions of paths (or equivalently, $\{K_3, K_{1,3}\}$ -free graphs). And in [5], Kinnersley and Langston provide a complete list of 110 excluded minors for \mathcal{P}_2 . By restricting this class to only 2-connected graphs, Barát et. al. [2] obtained the following theorem.

Theorem 1.2. [2] For a 2-connected graph G, $\mathbf{pw}(G) \leq 2$ if and only if G does contain any of the following graphs as a minor.

The class of graphs of path-width at most three is known to have at least 122 million excluded minors [5], and the complete list is not known. However, we prove that if we restrict the class to 3-connected graphs of path-width ≤ 3 (as asked by the authors of [2]), then we can characterize it by five excluded minors and two exceptions. The following is the main result of this paper.

Theorem 1.3. For a 3-connected graph G, $\mathbf{pw}(G) \leq 3$ if and only if $G \notin \{V_8, Q\}$ and G does contain any of the following graphs as a minor: K_5 , Oct, Pyr, P^- , A^- .

The graph P^- is obtained from the Petersen graph P by deleting any one vertex, hence its label. The graph A^- is obtained from the graph A (see next figure) by deleting two edges. The graph A, in turn, is obtained from the third graph in Theorem 1.2 by joining all of its degree-two vertices to a newly added vertex. Note that P^- and A^- are not 3-connected. Alternatively, if we would like all of the excluded minors for our class to be 3-connected, then we can characterize it by six excluded minors and two exceptions. The graphs R_1 and R_2 in the following Corollary each contain P^- and A^- as subgraphs.

Corollary 1.4. For a 3-connected graph G, $\mathbf{pw}(G) \leq 3$ if and only if $G \notin \{V_8, Q\}$ and G does contain any of the following graphs as a minor: K_5 , Oct, Pyr, R_1 , R_2 , A.

Remark. A Θ -graph is one with two fixed vertices and at least three internally-vertexdisjoint paths between them, and with at least three such paths of length at least three. For example, the third graph in Theorem 1.2 is the smallest Θ -graph. Let C be the class of Θ -graphs, and C^* be the class of graphs that contain a vertex whose deletion results in a Θ -graph. For example, $A, A^- \in C^*$. Then, in Theorem 1.3, we can reduce the number of excluded minors by one, by increasing the number of exceptions, namely: for a 3-connected graph G, $\mathbf{pw}(G) \leq 3$ if and only if $G \notin C^* \cup \{V_8, Q\}$ and G does contain any of the following graphs as a minor: K_5, Oct, Pyr, P^- . The statement follows from the fact that a 3-connected $\{K_5, P^-\}$ -free graph containing A^- is in C^* . The proof of this fact follows from Lemma 3.7 and Seymour's splitter theorem [8] and is straightforward and thus ommitted.

2. UNAVOIDABLE MINORS

In this section we prove the following Lemma, which is key in proving the converse implication of Theorem 1.3.

Lemma 2.1. If G is 3-connected and $\mathbf{pw}(G) \ge 4$, then G contains one of the following graphs as a minor: $V_8, Q, K_5, Oct, Pyr, P^-, A^-$.

Before we prove it, we state the necessary definition and lemmas.

Definition 2.2. Let $x, y, z \in V(G)$. A 3-separation of G over $\{x, y, z\}$ is a pair of induced subgraphs (L, R) of G such that: $E(L) \cup E(R) = E(G), V(L) \cup V(R) = V(G), V(L) \neq V(G), V(R) \neq V(G), and V(L) \cap V(R) = \{x, y, z\}$. Note that in such case $\{x, y, z\}$ is necessarily a 3-vertex-cut.

Lemma 2.3. Let H be a 3-connected graph with 3-separation (L, R) over $\{x, y, z\}$. If R does not contain the graph F as a minor (with vertices x, y, z preserved), then R - z is a path from x to y.

Proof. If R - z has a cycle C, then since H is 3-connected, it follows by Menger's Theorem that H has three vertex-disjoint paths: P_1 , P_2 , P_3 from V(C) to $\{x, y, z\}$. Let the endpoints of P_1 be x and x_1 , the endpoints of P_2 be y and y_1 , and the endpoints of P_3 be z and z_1 . Then, by contracting x_1 to x along P_1 , y_1 to y along P_2 , and contracting P_3 to a single edge, we obtain an F-minor in R, a contradiction.

Therefore R - z is a forest. Since H is 3-connected, it follows that every vertex in R - z (except possibly x and y) has degree ≥ 2 . Therefore, R - z is a path from x to y.

The following basic lemma about 3-connected graphs can be found in [3].

Lemma 2.4. If G is 3-connected and $|V(G)| \ge 5$, then G has an edge e such that G/e is again 3-connected.

Such an edge is called *contractible*. Furthermore, Halin in [4] shows the following.

Theorem 2.5. [4] If G is 3-connected with $|V(G)| \ge 5$ and $v \in V(G)$ has deg(v) = 3, then one of the three edges incident with v is contractible.

Proof of Lemma 2.1. Suppose that G does not contain any of the following graphs as a minor: V_8 , Q, K_5 , Pyr, Oct, P^- , A^- . We will show that $\mathbf{pw}(G) \leq 3$.

Since $Q \leq L_5$, it follows by Theorem 1.1 that $\mathbf{tw}(G) \leq 3$. Let (T, \mathcal{V}) be a treedecomposition of G of width ≤ 3 . We may assume, without loss of generality, that: (a) for all distinct $t, t' \in V(T), V_t \not\subseteq V_{t'}$;

As a consequence of (a), we obtain:

(b) for all distinct $t, t' \in V(T), V_t \neq V_{t'}$;

- (c) for all edges $tt' \in E(T)$, $V_t \cap V_{t'}$ is a vertex-cut of G;
- (d) for all $t \in V(T)$, $|V_t| = 4$.

To see (d), note that since G is 3-connected, it follows by (c) that for all edges $tt' \in E(T)$, $|V_t \cap V_{t'}| \ge 3$. Therefore by (a) it follows that for all $t \in V(T)$, $|V_t| \ge 4$, but since the width of (T, \mathcal{V}) is at most three, we have $|V_t| \le 4$, and so $|V_t| = 4$ for all $t \in V(T)$.

For every $t \in V(T)$, we call each of the four 3-element subsets of V_t a triple of V_t . A 3-element subset $W \subseteq V(G)$ is called a *bag intersection* if there exists an edge $st \in E(T)$ such that $W = V_s \cap V_t$. Hence we can think of bag intersections as *labels* on the edges of T. Note that it follows from (c) and (d) that every bag intersection is a triple (of V_s and V_t) and a 3-vertex-cut in G.

Observe that for each V_t , not all four of its triples are bag intersections. For otherwise, suppose that $V_t := \{w, x, y, z\}$ is such a bag. Then the labels on the edges incident with t in T are the following triples $\{w, x, y\}$, $\{w, x, z\}$, $\{w, y, z\}$, and $\{x, y, z\}$. Let T_1 be the subtree of T rooted at t consisting of the branches of T that are incident with t by edges with label $\{w, x, y\}$. Similarly, let T_2 , T_3 , and T_4 be the subtrees of T rooted at t consisting of the branches of T that are incident with t by edges with label $\{w, x, z\}$, $\{w, y, z\}$, and $\{x, y, z\}$, respectively. Note that T can be obtained by identifying the trees T_1 , T_2 , T_3 , and T_4 at the vertex t. Let R_{wxy} be the subgraph of G induced by $\bigcup_{s \in T_1} V_s - \{z\}$. Similarly, let R_{wxz} , R_{wyz} , and R_{xyz} be the subgraphs of G induced by $\bigcup_{s \in T_2} V_s - \{y\}$, by $\bigcup_{s \in T_3} V_s - \{x\}$, and by $\bigcup_{s \in T_4} V_s - \{w\}$, respectively. Let $z' \in R_{wxy}$, $y' \in R_{wxz}$, $x' \in R_{wyz}$, and $w' \in R_{xyz}$.

Since G is 3-connected, it follows by Menger's Theorem that there are three internallyvertex-disjoint paths from z' to w, x, and y in R_{wxy} . Similarly, there are three internallyvertex-disjoint paths from y' to w, x, and z in R_{wxz} ; three such paths from x' to w, y, and zin R_{wyz} ; and three such paths from w' to x, y, and z in R_{xyz} . Note that the twelve paths are also pairwise internally vertex disjoint, because any two of the graphs: R_{wxy} , R_{wxz} , R_{wyz} , R_{xyz} only meet in V_t . Therefore, contracting these twelve paths to simple edges, we obtain a Q-minor of G, a contradiction.

For $t \in V(T)$, we call V_t good if at most two of its four triples are bag intersections, and we call V_t bad if exactly three of its four triples are bag intersections. We now show that:

(*) G has a tree-decomposition (T', \mathcal{V}') such that every bag in \mathcal{V}' is good.

Suppose that (T, \mathcal{V}) has a bag $V_t := \{w, x, y, z\}$ that is bad, where all triples of V_t except $\{x, y, z\}$ are bag intersections. We will construct a new tree-decomposition (T', \mathcal{V}') of G satisfying (a) such that the number of bad bags in \mathcal{V}' is one less than the number of bad bags in \mathcal{V} .

Since V_t is bad and $\{x, y, z\}$ is not a bag intersection, it follows that the labels on the edges incident with t in T are the following triples $\{w, x, y\}$, $\{w, x, z\}$, and $\{w, y, z\}$. Let T_1 be the subtree of T rooted at t consisting of the branches of T that are incident with t by edges with label $\{w, x, y\}$. Similarly, let T_2 and T_3 be the subtrees of T rooted at t consisting of the branches of T that are incident with t by edges with label $\{w, x, z\}$ and $\{w, y, z\}$, respectively. Note that T can be obtained by identifying the trees T_1 , T_2 , and T_3 at the vertex t. Let R_{wxy} be the subgraph of G induced by $\bigcup_{s \in T_1} V_s - \{z\}$. Similarly, let R_{wxz} and R_{wyz} be the subgraphs of G induced by $\bigcup_{s \in T_2} V_s - \{y\}$ and by $\bigcup_{s \in T_3} V_s - \{x\}$, respectively. Let L_{wxy} be the graph induced by $(V(G) - V(R_{wxy})) \cup \{w, x, y\}$. Similarly, let L_{wxz} and L_{wyz} be the graphs induced by $(V(G) - V(R_{wxz})) \cup \{w, x, z\}$ and by $(V(G) - V(R_{wyz})) \cup \{w, y, z\}$. Then, G has the following three 3-separations: (L_{wxy}, R_{wxy}) , (L_{wxz}, R_{wxz}) , and (L_{wyz}, R_{wyz}) . If each one of R_{wxy} , R_{wxz} , and R_{wyz} contains an F-minor (as defined in Lemma 2.3, where in each case we choose w to be the vertex of degree one in F), then $G \succeq Pyr$, a contradiction. Therefore, by symmetry, R_{wxy} does not contain an F-minor (with vertices w, x, and y preserved), and thus by Lemma 2.3, $R_{wxy} - w$ is a path P from x to y. Let $a_0, a_1, \ldots, a_n := P$ with $a_0 = x$ and $a_n = y$. Note that n > 1, since (L_{wxy}, R_{wxy}) is a 3-separation over $\{w, x, y\}$. Since G is 3-connected, we have $wa_i \in E(G)$ for all i except possibly i = 0 and i = n.

Let $G_2 := R_{wxz}$ and $G_3 := R_{wyz}$. Let $\mathcal{V}_2 := \{V_s \in \mathcal{V} : s \in V(T_2)\}$, modifying the bag $V_t \in \mathcal{V}_2$ to be just $\{w, x, z\}$, and let $\mathcal{V}_3 := \{V_s \in \mathcal{V} : s \in V(T_3)\}$, modifying the bag $V_t \in \mathcal{V}_3$ to be just $\{w, y, z\}$. Then clearly (T_2, \mathcal{V}_2) is a tree-decomposition of G_2 , and (T_3, \mathcal{V}_3) is a tree-decomposition of G_3 .

For i = 1, 2, ..., n, let $V_{t_i} = \{a_{i-1}, a_i, w, z\}$. We construct the following tree T': relabel $t \in V(T_2)$ by t_1 , relabel $t \in V(T_3)$ by t_n , and connect the two trees T_2 and T_3 by the path $t_1, t_2, ..., t_n$. Let $\mathcal{V}' = \{V_s\}_{s \in V(T')}$. Note that the bag $\{w, x, z\}$ from \mathcal{V}_2 got replaced by $V_{t_1} = \{a_1, w, x, z\} \in \mathcal{V}'$, and the bag $\{w, y, z\}$ from \mathcal{V}_3 got replaced by $V_{t_n} = \{a_{n-1}, w, y, z\} \in \mathcal{V}'$. Then clearly (T', \mathcal{V}') is a tree-decomposition of G satisfying (a). Furthermore, for all i, the bags $V_{t_i} = \{a_{i-1}, a_i, w, z\}$ are good, because the triples $\{a_{i-1}, a_i, w\}$ and $\{a_{i-1}, a_i, z\}$ are not bag intersections (because $R_{wxy} - w$ is a path from x to y). Also, note that $\{w, x, y, z\} \notin \mathcal{V}'$ (because n > 1), and $\mathcal{V}' - \bigcup_{i=1}^n \{V_{t_i}\} \subseteq \mathcal{V}$, therefore the number of bad bags in \mathcal{V}' is one less than the number of bad bags in \mathcal{V} . This proves (*).

So we may assume that in the tree-decomposition (T, \mathcal{V}) of G every bag of \mathcal{V} is good. This gives rise to the following tree structure of G. Let \mathcal{T} denote the set of all bag intersections of (T, \mathcal{V}) . We then have a natural bipartite graph B on $\mathcal{V} \cup \mathcal{T}$ where the edges of B join bag intersections in \mathcal{T} to the bags of \mathcal{V} to which they belong. Since T is a tree and the subgraph of T induced by the edges of a given label is a subtree of T, it follows that B is a tree. By definition of B, every vertex in $V(B) \cap \mathcal{V}$ has degree at most two, and all the leaves of B are elements of \mathcal{V} .

If all the vertices of \mathcal{T} lie on a path in B, then all the vertices of \mathcal{V} either also lie on the path or are leaves of B. Thus B has the structure as illustrated in the following example.

In this case, $\{V_i\}_{i=1,2,...,n}$ is a path-decomposition of G of width ≤ 3 , where $n := |\mathcal{V}|$, and each V_i consists of the vertices of a single element of \mathcal{V} . The V_i 's are indexed in the natural order as in the figure above. Hence $\mathbf{pw}(G) \leq 3$.

Finally, if the vertices of \mathcal{T} do not all lie on a path of B, we will show that we achieve a contradiction. In this case B contains the following subgraph B'.

We will show that we can reduce B to B' by contractions in G in such a way that the resulting graph G' is still 3-connected. Let L be a leaf of B such that $L \in \mathcal{V} \cap (V(B) - V(B'))$. Let $t \in \mathcal{T}$ be the neighbor of L in B. Let $t = \{v_1, v_2, v_3\}$, and let $L = \{v_1, v_2, v_3, v_4\}$. Since Lis a leaf of B, it follows that t is a 3-vertex-cut that separates v_4 from the rest of the graph. Since G is 3-connected, it follows that v_4 is adjacent to v_1, v_2 , and v_3 , hence $deg(v_4) = 3$. Hence, by Theorem 2.5, one of the edges v_4v_1, v_4v_2, v_4v_3 is contractible. Therefore, by contracting it we obtain a 3-connected minor of G whose corresponding tree is $B - \{L, t\}$. By repeating this process we can obtain a 3-connected minor G' of G and correspondingly reduce B to B'.

Therefore, we may assume that G = G' and show that G contains either a P^- - or A^- minor, obtaining a contradiction. It follows from the above that G has a tree-decomposition (T'', \mathcal{V}'') with |V(T'')| = 6 satisfying (a) such that every bag in \mathcal{V}'' is good. Let $\mathcal{V}'' :=$ $\{V_1, \ldots, V_6\}$ with triples t_1, \ldots, t_4 as in the figures above and below. Hence, we have that |V(G)| = 9.

Let $V(G) := \{1, ..., 9\}$, and let $t_1 = \{1, 2, 3\}$, $V_1 = \{1, 2, 3, 4\}$, $V_2 = \{1, 2, 3, 5\}$, and $V_3 = \{1, 2, 3, 6\}$. Note that since $t_1 \notin \{t_2, t_3, t_4\}$, it follows that $4 \in t_2 \subseteq V_4$, $5 \in t_3 \subseteq V_5$, and $6 \in t_4 \subseteq V_6$, and each of t_2 , t_3 , t_4 must contain exactly one of the subsets $\{1, 2\}$, $\{2, 3\}$, $\{1, 3\}$. Let 7, 8, and 9 be the remaining vertices in V_4 , V_5 , and V_6 , respectively. By symmetry, we have the following three cases:

Case 1:
$$\{1,2\} \subseteq t_2, \{2,3\} \subseteq t_3, \{1,3\} \subseteq t_4.$$

Therefore, $t_2 = \{1, 2, 4\}, t_3 = \{2, 3, 5\}, t_4 = \{1, 3, 6\}, \text{ and } V_4 = \{1, 2, 4, 7\}, V_5 = \{2, 3, 5, 8\}, V_6 = \{1, 3, 6, 9\}$. Since G is 3-connected and vertex 7 only belongs to bag V_4 , it follows that the degree of 7 in G is three, and $71, 72, 74 \in E(G)$. Similarly, $82, 83, 85, 91, 93, 96 \in E(G)$. Also, since t_1 separates vertices 4 and 7 from the rest of the graph, it follows from the 3-connectivity of G and Menger's Theorem that G has three internally-vertex disjoint paths from 4 to the vertices 1, 2, and 3. But, since $73 \notin E(G)$, it follows that $43 \in E(G)$. Similarly, $51, 62 \in E(G)$. Therefore G contains the following subgraph, which is isomorphic to P^- , a contradiction.

<u>Case 2:</u> $\{1, 2\} \subseteq t_2 \cap t_4, \{2, 3\} \subseteq t_3.$

Hence in this case $t_2 = \{1, 2, 4\}$, $t_3 = \{2, 3, 5\}$, $t_4 = \{1, 2, 6\}$, and $V_4 = \{1, 2, 4, 7\}$, $V_5 = \{2, 3, 5, 8\}$, $V_6 = \{1, 2, 6, 9\}$. Then, similarly to the argument in Case 1, G contains the following subgraph.

Also, since G is 3-connected, it follows (similarly to the argument in Case 1) that either $14 \in E(G)$ or $24 \in E(G)$. In the first case, G contains P^- as a subgraph (by deleting edge 17), a contradiction. And in the second case G contains A^- as a subgraph, again a contradiction.

 $\underline{\text{Case 3:}} \{1, 2\} \subseteq t_2 \cap t_3 \cap t_4,$

Hence in this case $t_2 = \{1, 2, 4\}$, $t_3 = \{1, 2, 5\}$, $t_4 = \{1, 2, 6\}$, and $V_4 = \{1, 2, 4, 7\}$, $V_5 = \{1, 2, 5, 8\}$, $V_6 = \{1, 2, 6, 9\}$. Then, similarly to the argument in Case 1, G contains the following subgraph.

Since G is 3-connected, it follows (similarly to the argument in Case 1) that either $14 \in E(G)$ or $24 \in E(G)$, and either $15 \in E(G)$ or $25 \in E(G)$. By symmetry, we only need to consider two cases. If $14, 15 \in E(G)$, then G contains A^- as a subgraph (by deleting edge 17), a contradiction. And if $14, 25 \in E(G)$, then G contains P^- as a subgraph (by deleting edges 17 and 28), a contradiction. This concludes the proof of Lemma 2.1.

3. PROOF OF THE MAIN THEOREM AND COROLLARY

We first verify that all seven graphs: V_8 , Q, K_5 , Oct, Pyr, P^- , A^- have path-width at least four, which helps establish the forward implication of Theorem 1.3. For this we need the following structural lemma about 3-connected graphs of path-width at most three.

Lemma 3.1. Let G be a connected graph with n := |V(G)| > 4 and $\mathbf{pw}(G) \leq 3$. Then for each k = 1, 2, ..., n - 4, G has 3-vertex-cut separating k vertices from (n - 3) - k vertices.

Proof. Let $\{V_i\}_{i=1,2,...,m}$ be a path-decomposition of G of width ≤ 3 . We may assume, without loss of generality, that:

(a) for all i, $|V_i| = 4$ (by adding vertices to V_i if necessary);

(b) for all distinct $i, j, V_i \nsubseteq V_j$, hence $V_i \neq V_j$;

(c) for all $i, |V_i \cap V_{i+1}| = 3$ (by inserting new bags between V_i and V_{i+1} if necessary).

Therefore, it follows that for k = 1, 2, ..., n - 4, $V_k \cap V_{k+1}$ is a 3-vertex-cut separating k vertices from (n-3) - k vertices.

The following lemma helps to establish the forward implication of Theorem 1.3.

Lemma 3.2. If $G \in \{V_8, Q, K_5, Oct, Pyr, P^-, A^-\}$, then $\mathbf{pw}(G) \ge 4$.

Proof. If $G \in \{V_8, K_5, Oct\}$, then it follows from Theorem 1.1 that $\mathbf{pw}(G) \ge \mathbf{tw}(G) \ge 4$. Now let $G \in \{Q, Pyr, P^-, A^-\}$ and suppose that $\mathbf{pw}(G) \le 3$. Then, by Lemma 3.1, it follows that G has a 3-vertex-cut separating $\lfloor \frac{n-3}{2} \rfloor$ vertices from $\lceil \frac{n-3}{2} \rceil$ vertices, where n = |V(G)|. But in each case we have a contradiction since 3-cuts in P^- and in A^- can only separate one vertex from five, or two from four, and 3-cuts in Q and in Pyr can only separate a single vertex from the rest of the graph. \Box

To finish the proof of Theorem 1.3, we will need the following theorem of Wagner [9] and the following lemmas.

Theorem 3.3. [9] If G is a 3-connected K_5 -free graph containing a V_8 -minor, then $G = V_8$.

Actually, the above theorem can also be proved directly using Seymour's splitter theorem [8].

Lemma 3.4. If G is a 3-connected $\{K_5, Pyr\}$ -free graph containing a Q-minor, then G = Q.

Proof. Suppose that $G \succeq Q$ and $G \neq Q$. Then, since both G and Q are 3-connected it follows from Seymour's splitter theorem [8], that $G \succeq Q + e$ or $G \succeq Q + f$, where Q + e, and Q + f respectively, is the graph obtained from Q by adding an edge e between two vertices at distance two from each other, and an edge f between two vertices at distance three, respectively. But this is a contradiction since $Q + e \succeq Pyr$ and $Q + f \succeq K_5$. \Box

Proof of Theorem 1.3. Since path-width is monotone under taking minors, Lemma 3.2 establishes the forward implication of Theorem 1.3.

Conversely, suppose that $G \notin \{V_8, Q\}$ and G is $\{K_5, Oct, Pyr, P^-, A^-\}$ -free. Then, from Lemmas 3.3 and 3.4, it follows that G is $\{V_8, Q, K_5, Oct, Pyr, P^-, A^-\}$ -free. Therefore, by Lemma 2.1 it follows that $\mathbf{pw}(G) \leq 3$. This proves Theorem 1.3.

Finally, Corollary 1.4 follows from the following three lemmas. By $H + v_1v_2$, we mean the graph obtained from H by adding edge v_1v_2 to H for non-adjacent vertices $v_1, v_2 \in V(H)$. For any edge $e := uv \in E(H)$ with $deg_H(v) \ge 3$, the operation of uncontracting vertex v relative to edge e is defined to be that of deleting v, adding two new adjacent vertices v_1 and v_2 each adjacent to u, and joining each old neighbor of v (in H), other than u, by an edge to exactly one of v_1 or v_2 in such a way that both v_1 and v_2 have degree at least three in the new graph.

Lemma 3.5. Let H be a 2-connected minor of a 3-connected graph G. Let $u \in V(H)$ with $deg_H(u) = 2$, and let u_1 and u_2 be its two neighbors with $deg_H(u_i) \ge 3$ for i = 1, 2. Then $G \succeq H'$, where H' is obtained from H by one of the following operations:

(1) H' = H + uv for some $v \in V(H) - \{u, u_1, u_2\};$

(2) uncontracting u_i relative to uu_i for some $i \in \{1, 2\}$.

Proof. Since H is a minor of G, it follows that G has a subgraph G' that is a union of pairwise vertex-disjoint trees $\mathcal{V} := \{T_v\}_{v \in V(H)}$, and pairwise internally-vertex-disjoint paths $\mathcal{E} := \{P_e\}_{e \in E(H)}$ that are also internally-vertex disjoint from the trees in \mathcal{V} , such that for each $vw \in E(H)$ the two endpoints of P_{vw} are a vertex in T_v and a vertex in T_w . To obtain H from G' we contract all of the trees in \mathcal{V} to single vertices and all of the paths in \mathcal{E} to single edges. We choose the trees to be as small as possible (by possibly making the paths longer). From this choice it follows that for every $v \in V(H)$, every leaf l of T_v is the endpoint of at least two paths P_{vw} and $P_{vw'}$ for some $w, w' \in V(H) - \{v\}$ (if $T_v = K_1$ then the only vertex of T_v is considered to be its leaf). Clearly this is true if $T_v = K_1$ by the 2-connectivity of H; also, if $T_v \neq K_1$ and l is a leaf of T_v and l is the endpoint of only one such path or none, then in the first case, by adding l to the path and discarding it from the tree T_v , we can make T_v smaller; and in the second case, by simply discarding l from T_v we can make T_v smaller, in both cases a contradiction. Also, if $d := deg_H(v) \leq 3$ then the vertices of T_v are the endpoints of exactly d paths P_{vw} for some $w \in V(H) - \{v\}$, hence by the above it follows that T_v has only one leaf, thus $T_v = K_1$.

Let x be the only vertex in $V(T_u)$, and let $x_1 \in V(T_{u_1})$ and $x_2 \in V(T_{u_2})$ be the other endpoints of the paths P_{u_1u} and P_{uu_2} , respectively. Let P be the concatenation of P_{u_1u} and P_{uu_2} at x. Since G is 3-connected, there is a path Q in G internally vertex disjoint from the trees in \mathcal{V} and the paths in \mathcal{E} , with one endpoint q_1 in the interior of P and the other $q_2 \in V(G') - V(P)$. Also, in the case that $u_1u_2 \in E(H)$ and the endpoints of $P_{u_1u_2}$ are x_1 and x_2 , then q_1 is in the interior of P or the interior of $P_{u_1u_2}$ and $q_2 \in V(G') - (V(P) \cup V(P_{u_1u_2}))$. Since in this case P and $P_{u_1u_2}$ are symmetric, we may assume, without loss of generality, that q_1 is in the interior of P.

If q_2 is a vertex of T_w for some $w \notin \{u, u_1, u_2\}$, then clearly G contains a minor H' obtained from H by (1).

If $q_2 \in V(T_{u_i})$ for some $i \in \{1, 2\}$, say for i = 2, then $q_2 \neq x_2$. Let x'_2 be the neighbor of x_2 on the unique x_2q_2 -path in T_{u_2} (note that possibly $x'_2 = q_2$). Deleting edge $x_2x'_2$ from T_{u_2} divides it into two trees, call them T_{x_2} and $T_{x'_2}$, the first containing x_2 and the second x'_2 and q_2 . Then, we replace T_{u_2} by T_{x_2} and $T_{x'_2}$ and add the path $P_{u_2u'_2}$ consisting of the single edge $x_2x'_2$. Also, we replace T_u by the single vertex q_1 , the path P_{u_1u} by the subpath of Pfrom x_1 to q_1 , the path P_{ux_2} by the subpath of P from q_1 to x_2 , and the path $P_{ux'_2}$ by Q. Then, since every leaf l of T_v was the endpoint of at least two paths P_{vw} and $P_{vw'}$ for some $w, w' \in V(H) - \{u\}$, the new minor $H' \preceq G$ obtained by contracting the new trees is clearly obtained from H by (2).

Therefore, q_2 lies in the interior of the path $P_{ww'}$ for some $w, w' \in V(H)$. If at least one of w or w' is different from u_1 and u_2 , then clearly G contains a minor H' obtained from H by (1). Hence $\{w, w'\} = \{u_1, u_2\}$. Let $y_1 \in T_{u_1}$ and $y_2 \in T_{u_2}$ be the endpoints of $P_{ww'} = P_{u_1u_2}$. Then we must have that either $y_1 \neq x_1$ or $y_2 \neq x_2$ and, as in the previous paragraph, we obtain a minor H' obtained from H by (2).

Remark 3.6. If in Lemma 3.5, $deg_H(u_i) = 3$ for $i = \{1, 2\}$, then G contains a minor H' obtained from H by (1), since the unique graph obtained from uncontracting u_i relative to uu_i , contains as a minor a graph obtained from H by (1).

Lemma 3.7. If G is a 3-connected K_5 -free graph containing an A^- -minor, then $G \succeq R_1$, or $G \succeq R_2$, or $G \succeq A$.

Proof. Label the vertices of A^- as in the figure below.

Since G is 3-connected and A^- is 2-connected, it follows by Lemma 3.5 and Remark 3.6 that $G \succeq G'$, where G' is obtained from A^- by adding one of the edges in $\{42, 43, 45, 46, 48, 49\} \cup \{57, 56, 54, 53, 51, 59\}$. However:

- $\blacktriangleright A^- + 45 \succeq K_5$, by contracting edges 13, 25, 47, and 68;
- ▶ $A^- + 42 \succeq K_5$, by contracting edges 13, 25, 47, and 68; and symmetrically $A^- + 57 \succeq K_5$;
- ▶ $A^- + 43 \succeq K_5$, by contracting edges 12, 47, 58, and 68; and symmetrically $A^- + 56 \succeq K_5$;
- ▶ $A^- + 46 \succeq K_5$, by contracting edges 13, 47, 25, and 58; and symmetrically $A^- + 53 \succeq K_5$;

Therefore, G' is obtained from A^- by adding one of the edges in $\{48, 49\}$ (or symmetrically, one of the edges in $\{51, 59\}$). First, suppose that $G' = A^- + 49$. Then, Lemma 3.5 and Remark 3.6 applied to the graphs G and G' yield another minor $G'' \preceq G$ obtained from G' by adding one of the edges $\{51, 59\}$. Therefore G'' is one of the following two graphs:

• $G'' = A^- + 49 + 51 = R_1$ (or symmetrically $G'' = A^- + 48 + 59 = R_1$);

• or $G'' = A^- + 49 + 59 = A;$

Finally, if $G' = A^- + 48$, then if vertex 8 is uncontracted relative to 58 according to Lemma 3.5, then G contains one of the following graphs as a minor: $A^- + 56$, $A^- + 57$, or $A^- + 45$, each of which contains a K_5 -minor (as above), a contradiction. Therefore, it follows from Lemma 3.5 that $G \succeq G''$, where $G'' = A^- + 48 + 59 = R_1$ (as above), or $G'' = A^- + 48 + 51 = R_2$ as illustrated below.

Lemma 3.8. If G is a 3-connected K_5 -free graph containing a P^- -minor, then $G \succeq A^-$.

Proof. Suppose that $G \not\succeq A^-$. Label the vertices of P^- as in the figure below.

First, note that $G \not\geq K_{3,3}^+$, where $K_{3,3}^+$ is the graph obtained from $K_{3,3}$ by adding one edge to each of the two bipartitions (see figure below). This is because $K_{3,3}^+ \succeq K_5$ by contracting the edge connecting the two vertices of degree three.

Since G is 3-connected and P^- is 2-connected, it follows by Lemma 3.5 and Remark 3.6 that $G \succeq G_1$, where G_1 is obtained from P^- by adding one of the edges $\{61, 62, 64, 65, 67, 68\}$. First, suppose that the added edge is not incident with 4 nor 5, so by symmetry let $G_1 = P^- + 62$. Then, the same Lemma and Remark applied to the graphs G and G_1 yield another minor $G_2 \preceq G$ obtained from G_1 by adding one of the edges $\{42, 43, 45, 46, 48, 49\}$. However, since $G \nsucceq K_{3,3}^+$, it follows that the only choices are $\{42, 43, 46\}$. If $G_2 = P^- + 62 + 43$, then we get a contradiction because $G_2 \succeq A^-$.

If $G_2 = P^- + 62 + 46$, then $G_2 \succeq K_5$, by contracting edges 19, 25, 38, 47, a contradiction. And if $G_2 = P^- + 62 + 42$, then if vertex 2 is uncontracted relative to 52 according to Lemma 3.5, then G contains either $K_{3,3}^+$ or $P^- + 62 + 46 \succeq K_5$ (as above), a contradiction. Therefore, it follows from Lemma 3.5 and the fact that $G \succeq K_{3,3}^+$, that $G \succeq G_3$, where G_3 is obtained from G_2 by adding one of the edges $\{51, 53\}$. By symmetry, we may assume the added edge is 53. But then, $G_3 = R_1 \succeq A^-$, a contradiction.

Therefore we have shown that $G \succeq G_1$, where G_1 is obtained from P^- by adding one of the edges $\{64, 65\}$, by symmetry, say 65. Then, applying the Lemma and Remark to the graphs G and G_1 , and using the fact that $G \nsucceq K_{3,3}^+$, we obtain another minor $G_4 \preceq G$ obtained from G_1 by adding one of the edges $\{45, 46\}$, by symmetry, say 45. But $G_4 \succeq K_5$, by contracting edges 14, 27, 38, and 69, a contradiction.

Proof of Corollary 1.4. The forward direction of the Corollary follows from Theorem 1.3 since both R_1 and R_2 contain P^- as a subgraph, and A contains A^- as a subgraph.

For the converse direction, since G is $\{K_5, Oct, Pyr, R_1, R_2, A\}$ -free, it follows from Lemma 3.7 that $G \not\geq A^-$. Therefore, it follows from Lemma 3.8 that $G \not\geq P^-$. Hence, G is $\{K_5, Oct, Pyr, P^-, A^-\}$ -free, and so by Theorem 1.3, $\mathbf{pw}(G) \leq 3$.

References

- S. Arnborg, A. Proskurowski, D. G. Corneil, Forbidden minors characterization of partial 3-trees, *Discrete Math.*, 80 (1990), no. 1, pp. 1-19.
- [2] J. Barát, P. Hajnal, Y.Lin, A. Yang, On the structure of graphs with path-width at most two, arXiv:0910.4889v1.
- [3] R. Diestel, *Graph Theory*, 2nd Edition, Springer, 2000.
- [4] R. Halin, A theorem on n-connected graphs, J. Combin. Theory, 7 (1969), pp. 150-154.
- [5] N. Kinnersley, M. Langston, Obstruction set isolation for the gate matrix layout problem. Efficient algorithms and partial k-trees, *Discrete Appl. Math.*, 54 (1994), no. 2-3, pp. 169-213.
- [6] N. Robertson, P.D. Seymour, Graph Minors I. Excluding a forest, J. Combin. Theory Ser. B, 35 (1983), no. 1, pp. 39-61.
- [7] N. Robertson, P.D. Seymour, Graph Minors II. Algorithmic aspects of tree-width, J. Algorithms, 7 (1986), pp. 309-322.
- [8] P.D. Seymour, Decomposition of regular matroids, J. Combin. Theory Ser. B, 28 (1980), pp. 305-359.
- [9] K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Math. Ann., 114 (1937), no. 1, pp. 570-590.
- [10] A. Satyanarayana, L. Tung, A characterization of partial 3-trees, Networks, 20 (1990), pp. 299-322.

DEPARTMENT OF MATHEMATICS, LOUISIANA STATE UNIVERSITY, BATON ROUGE, LOUISIANA

E-mail address: ding@math.lsu.edu

DEPARTMENT OF MATHEMATICS, LOUISIANA STATE UNIVERSITY, BATON ROUGE, LOUISIANA

E-mail address: standzio@math.lsu.edu