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Abstract. It is known that the list of excluded minors for the minor-closed class of graphs

of path-width 6 3 numbers in the millions. However, if we restrict the class to 3-connected

graphs of path-width 6 3, then we can characterize it by five excluded minors.

1. Introduction

The concepts of tree-width and path-width were introduced by Robertson and Seymour

in [6] and [7]. Let G be a graph, T a tree, and let V = {Vt}t∈V (T ) be a family of vertex sets

Vt ⊆ V (G). The pair (T,V) is called a tree-decomposition of G if it satisfies the following

two conditions:

(T1) V (G) =
⋃

t∈V (T ) Vt, and every edge of G has both ends in some Vt;

(T2) for every v ∈ V (G), the subgraph induced by those t for which v ∈ Vt is connected.

The elements of V are called bags. The width of a tree-decomposition (T,V) is maxt∈V (T ){|Vt|−

1}. The tree-width of G, denoted by tw(G), is the minimum width over all possible tree-

decompositions of G. Similarly, if the underlying structure is a path P , that is if T = P , then

the pair (P,V) is called a path-decomposition of G if again it satisfies (T1) and (T2). And,

analogously, the width of a path-decomposition (P,V) is maxt∈V (P ){|Vt| − 1}, and the path-

width of G, denoted by pw(G), is the minimum width over all possible path-decompositions

of G. Since a path-decomposition of G is also a tree-decomposition of G, it follows from the

definitions that tw(G) 6 pw(G) for every graph G.

Given graphs H and G, H is a minor of G, denoted by H � G, or G � H , if H can be

obtained from a subgraph of G by contracting edges. If H is not a minor of G, we say that G

is H-free, and denote it by H � G, or G � H . A class C of graphs is minor-closed if for every

G ∈ C all the minors of G are also in C. Some examples of minor-closed classes are: planar

graphs, outerplanar graphs, series-parallel graphs, and graphs embeddable in a fixed surface.

Also, it is easy to check that, for a fixed positive integer k, the following classes of graphs

are minor-closed: Tk := {G : tw(G) 6 k}, Pk := {G : pw(G) 6 k}. Equivalently, tree-width

and path-width are monotone under taking minors, namely if H � G, then tw(H) 6 tw(G)

and pw(H) 6 pw(G). Finally, since having loops or parallel edges has no impact on the

tree-width or path-width of a graph, all graphs in this paper are considered to be simple.
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Note that graphs of tree-width = 1 are exactly forests (or equivalently, K3-free graphs), and

graphs of tree-width 6 2 are exactly series-parallel graphs (or equivalently, K4-free graphs).

The following theorem due to Arnborg et. al. [1], and independently to Satyanarayana et.

al. [10], characterizes the class T3 in terms of its excluded minors.

Theorem 1.1. [1], [10] For a graph G, tw(G) 6 3 if and only if G does contain any of the

following graphs as a minor: K5, V8, Oct, L5.
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Similarly, graphs of path-width = 1 are exactly disjoint unions of paths (or equivalently,

{K3, K1,3}-free graphs). And in [5], Kinnersley and Langston provide a complete list of 110

excluded minors for P2. By restricting this class to only 2-connected graphs, Barát et. al.

[2] obtained the following theorem.

Theorem 1.2. [2] For a 2-connected graph G, pw(G) 6 2 if and only if G does contain any

of the following graphs as a minor.

The class of graphs of path-width at most three is known to have at least 122 million

excluded minors [5], and the complete list is not known. However, we prove that if we

restrict the class to 3-connected graphs of path-width 6 3 (as asked by the authors of [2]),

then we can characterize it by five excluded minors and two exceptions. The following is the

main result of this paper.

Theorem 1.3. For a 3-connected graph G, pw(G) 6 3 if and only if G /∈ {V8, Q} and G

does contain any of the following graphs as a minor: K5, Oct, Pyr, P−, A−.

Q Pyramid AP
_ _

The graph P− is obtained from the Petersen graph P by deleting any one vertex, hence its

label. The graph A− is obtained from the graph A (see next figure) by deleting two edges.

The graph A, in turn, is obtained from the third graph in Theorem 1.2 by joining all of its
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degree-two vertices to a newly added vertex. Note that P− and A− are not 3-connected.

Alternatively, if we would like all of the excluded minors for our class to be 3-connected,

then we can characterize it by six excluded minors and two exceptions. The graphs R1 and

R2 in the following Corollary each contain P− and A− as subgraphs.

Corollary 1.4. For a 3-connected graph G, pw(G) 6 3 if and only if G /∈ {V8, Q} and G

does contain any of the following graphs as a minor: K5, Oct, Pyr, R1, R2, A.

R
1

R
2

A

Remark. A Θ-graph is one with two fixed vertices and at least three internally-vertex-

disjoint paths between them, and with at least three such paths of length at least three.

For example, the third graph in Theorem 1.2 is the smallest Θ-graph. Let C be the class

of Θ-graphs, and C∗ be the class of graphs that contain a vertex whose deletion results in

a Θ-graph. For example, A, A− ∈ C∗. Then, in Theorem 1.3, we can reduce the number of

excluded minors by one, by increasing the number of exceptions, namely: for a 3-connected

graph G, pw(G) 6 3 if and only if G /∈ C∗∪{V8, Q} and G does contain any of the following

graphs as a minor: K5, Oct, Pyr, P−. The statement follows from the fact that a 3-connected

{K5, P
−}-free graph containing A− is in C∗. The proof of this fact follows from Lemma 3.7

and Seymour’s splitter theorem [8] and is straightforward and thus ommitted.

2. Unavoidable minors

In this section we prove the following Lemma, which is key in proving the converse impli-

cation of Theorem 1.3.

Lemma 2.1. If G is 3-connected and pw(G) > 4, then G contains one of the following

graphs as a minor: V8, Q, K5, Oct, Pyr, P−, A−.

Before we prove it, we state the necessary definition and lemmas.

Definition 2.2. Let x, y, z ∈ V (G). A 3-separation of G over {x, y, z} is a pair of induced

subgraphs (L, R) of G such that: E(L)∪E(R) = E(G), V (L)∪V (R) = V (G), V (L) 6= V (G),

V (R) 6= V (G), and V (L) ∩ V (R) = {x, y, z}. Note that in such case {x, y, z} is necessarily

a 3-vertex-cut.
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Lemma 2.3. Let H be a 3-connected graph with 3-separation (L, R) over {x, y, z}. If R

does not contain the graph F as a minor (with vertices x, y, z preserved), then R − z is a

path from x to y.

x

F = 

z

y

Proof. If R − z has a cycle C, then since H is 3-connected, it follows by Menger’s Theorem

that H has three vertex-disjoint paths: P1, P2, P3 from V (C) to {x, y, z}. Let the endpoints

of P1 be x and x1, the endpoints of P2 be y and y1, and the endpoints of P3 be z and z1.

Then, by contracting x1 to x along P1, y1 to y along P2, and contracting P3 to a single edge,

we obtain an F -minor in R, a contradiction.

Therefore R − z is a forest. Since H is 3-connected, it follows that every vertex in R − z

(except possibly x and y) has degree > 2. Therefore, R − z is a path from x to y. �

The following basic lemma about 3-connected graphs can be found in [3].

Lemma 2.4. If G is 3-connected and |V (G)| > 5, then G has an edge e such that G/e is

again 3-connected.

Such an edge is called contractible. Furthermore, Halin in [4] shows the following.

Theorem 2.5. [4] If G is 3-connected with |V (G)| > 5 and v ∈ V (G) has deg(v) = 3, then

one of the three edges incident with v is contractible.

Proof of Lemma 2.1. Suppose that G does not contain any of the following graphs as a

minor: V8, Q, K5, Pyr, Oct, P−, A−. We will show that pw(G) 6 3.

Since Q � L5, it follows by Theorem 1.1 that tw(G) 6 3. Let (T,V) be a tree-

decomposition of G of width 6 3. We may assume, without loss of generality, that:

(a) for all distinct t, t′ ∈ V (T ), Vt * Vt′ ;

As a consequence of (a), we obtain:

(b) for all distinct t, t′ ∈ V (T ), Vt 6= Vt′;

(c) for all edges tt′ ∈ E(T ), Vt ∩ Vt′ is a vertex-cut of G;

(d) for all t ∈ V (T ), |Vt| = 4.

To see (d), note that since G is 3-connected, it follows by (c) that for all edges tt′ ∈ E(T ),

|Vt ∩ Vt′ | > 3. Therefore by (a) it follows that for all t ∈ V (T ), |Vt| > 4, but since the width

of (T,V) is at most three, we have |Vt| 6 4, and so |Vt| = 4 for all t ∈ V (T ).

For every t ∈ V (T ), we call each of the four 3-element subsets of Vt a triple of Vt. A

3-element subset W ⊆ V (G) is called a bag intersection if there exists an edge st ∈ E(T )
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such that W = Vs ∩ Vt. Hence we can think of bag intersections as labels on the edges of T .

Note that it follows from (c) and (d) that every bag intersection is a triple (of Vs and Vt)

and a 3-vertex-cut in G.

Observe that for each Vt, not all four of its triples are bag intersections. For otherwise,

suppose that Vt := {w, x, y, z} is such a bag. Then the labels on the edges incident with

t in T are the following triples {w, x, y}, {w, x, z}, {w, y, z}, and {x, y, z}. Let T1 be the

subtree of T rooted at t consisting of the branches of T that are incident with t by edges

with label {w, x, y}. Similarly, let T2, T3, and T4 be the subtrees of T rooted at t consisting

of the branches of T that are incident with t by edges with label {w, x, z}, {w, y, z}, and

{x, y, z}, respectively. Note that T can be obtained by identifying the trees T1, T2, T3, and

T4 at the vertex t. Let Rwxy be the subgraph of G induced by
⋃

s∈T1
Vs − {z}. Similarly, let

Rwxz, Rwyz, and Rxyz be the subgraphs of G induced by
⋃

s∈T2
Vs − {y}, by

⋃
s∈T3

Vs − {x},

and by
⋃

s∈T4
Vs − {w}, respectively. Let z′ ∈ Rwxy, y′ ∈ Rwxz, x′ ∈ Rwyz, and w′ ∈ Rxyz.

Since G is 3-connected, it follows by Menger’s Theorem that there are three internally-

vertex-disjoint paths from z′ to w, x, and y in Rwxy. Similarly, there are three internally-

vertex-disjoint paths from y′ to w, x, and z in Rwxz; three such paths from x′ to w, y, and z

in Rwyz; and three such paths from w′ to x, y, and z in Rxyz. Note that the twelve paths are

also pairwise internally vertex disjoint, because any two of the graphs: Rwxy, Rwxz, Rwyz,

Rxyz only meet in Vt. Therefore, contracting these twelve paths to simple edges, we obtain

a Q-minor of G, a contradiction.

= Q
w

w’

x

x’

y

y’

z

z’

For t ∈ V (T ), we call Vt good if at most two of its four triples are bag intersections, and

we call Vt bad if exactly three of its four triples are bag intersections. We now show that:

(∗) G has a tree-decomposition (T ′,V ′) such that every bag in V ′ is good.

Suppose that (T,V) has a bag Vt := {w, x, y, z} that is bad, where all triples of Vt except

{x, y, z} are bag intersections. We will construct a new tree-decomposition (T ′,V ′) of G

satisfying (a) such that the number of bad bags in V ′ is one less than the number of bad

bags in V.

Since Vt is bad and {x, y, z} is not a bag intersection, it follows that the labels on the edges

incident with t in T are the following triples {w, x, y}, {w, x, z}, and {w, y, z}. Let T1 be

the subtree of T rooted at t consisting of the branches of T that are incident with t by edges

with label {w, x, y}. Similarly, let T2 and T3 be the subtrees of T rooted at t consisting of the

branches of T that are incident with t by edges with label {w, x, z} and {w, y, z}, respectively.
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Note that T can be obtained by identifying the trees T1, T2, and T3 at the vertex t. Let

Rwxy be the subgraph of G induced by
⋃

s∈T1
Vs − {z}. Similarly, let Rwxz and Rwyz be the

subgraphs of G induced by
⋃

s∈T2
Vs−{y} and by

⋃
s∈T3

Vs−{x}, respectively. Let Lwxy be the

graph induced by (V (G)− V (Rwxy))∪ {w, x, y}. Similarly, let Lwxz and Lwyz be the graphs

induced by (V (G)−V (Rwxz))∪{w, x, z} and by (V (G)−V (Rwyz))∪{w, y, z}. Then, G has

the following three 3-separations: (Lwxy, Rwxy), (Lwxz, Rwxz), and (Lwyz, Rwyz). If each one

of Rwxy, Rwxz, and Rwyz contains an F -minor (as defined in Lemma 2.3, where in each case

we choose w to be the vertex of degree one in F ), then G � Pyr, a contradiction. Therefore,

by symmetry, Rwxy does not contain an F -minor (with vertices w, x, and y preserved), and

thus by Lemma 2.3, Rwxy − w is a path P from x to y. Let a0, a1, . . . , an := P with a0 = x

and an = y. Note that n > 1, since (Lwxy, Rwxy) is a 3-separation over {w, x, y}. Since G is

3-connected, we have wai ∈ E(G) for all i except possibly i = 0 and i = n.

Let G2 := Rwxz and G3 := Rwyz. Let V2 := {Vs ∈ V : s ∈ V (T2)}, modifying the bag

Vt ∈ V2 to be just {w, x, z}, and let V3 := {Vs ∈ V : s ∈ V (T3)}, modifying the bag Vt ∈ V3

to be just {w, y, z}. Then clearly (T2,V2) is a tree-decomposition of G2, and (T3,V3) is a

tree-decomposition of G3.

For i = 1, 2, . . . , n, let Vti = {ai−1, ai, w, z}. We construct the following tree T ′: relabel

t ∈ V (T2) by t1, relabel t ∈ V (T3) by tn, and connect the two trees T2 and T3 by the path

t1, t2, . . . , tn. Let V ′ = {Vs}s∈V (T ′). Note that the bag {w, x, z} from V2 got replaced by Vt1 =

{a1, w, x, z} ∈ V ′, and the bag {w, y, z} from V3 got replaced by Vtn = {an−1, w, y, z} ∈ V ′.

Then clearly (T ′,V ′) is a tree-decomposition of G satisfying (a). Furthermore, for all i, the

bags Vti = {ai−1, ai, w, z} are good, because the triples {ai−1, ai, w} and {ai−1, ai, z} are not

bag intersections (because Rwxy −w is a path from x to y). Also, note that {w, x, y, z} /∈ V ′

(because n > 1), and V ′ −
⋃n

i=1{Vti} ⊆ V, therefore the number of bad bags in V ′ is one less

than the number of bad bags in V. This proves (∗).

So we may assume that in the tree-decomposition (T,V) of G every bag of V is good. This

gives rise to the following tree structure of G. Let T denote the set of all bag intersections

of (T,V). We then have a natural bipartite graph B on V ∪T where the edges of B join bag

intersections in T to the bags of V to which they belong. Since T is a tree and the subgraph

of T induced by the edges of a given label is a subtree of T , it follows that B is a tree. By

definition of B, every vertex in V (B)∩V has degree at most two, and all the leaves of B are

elements of V.

If all the vertices of T lie on a path in B, then all the vertices of V either also lie on the

path or are leaves of B. Thus B has the structure as illustrated in the following example.
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In this case, {Vi}i=1,2,...,n is a path-decomposition of G of width 6 3, where n := |V|, and

each Vi consists of the vertices of a single element of V. The Vi’s are indexed in the natural

order as in the figure above. Hence pw(G) 6 3.

Finally, if the vertices of T do not all lie on a path of B, we will show that we achieve a

contradiction. In this case B contains the following subgraph B′.

B’  =
t

1

t

t

t

1

2

2 3

3

4

4 6

5
V

V

V
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V

V

We will show that we can reduce B to B′ by contractions in G in such a way that the

resulting graph G′ is still 3-connected. Let L be a leaf of B such that L ∈ V∩(V (B)−V (B′)).

Let t ∈ T be the neighbor of L in B. Let t = {v1, v2, v3}, and let L = {v1, v2, v3, v4}. Since L

is a leaf of B, it follows that t is a 3-vertex-cut that separates v4 from the rest of the graph.

Since G is 3-connected, it follows that v4 is adjacent to v1, v2, and v3, hence deg(v4) = 3.

Hence, by Theorem 2.5, one of the edges v4v1, v4v2, v4v3 is contractible. Therefore, by

contracting it we obtain a 3-connected minor of G whose corresponding tree is B − {L, t}.

By repeating this process we can obtain a 3-connected minor G′ of G and correspondingly

reduce B to B′.

Therefore, we may assume that G = G′ and show that G contains either a P−- or A−-

minor, obtaining a contradiction. It follows from the above that G has a tree-decomposition

(T ′′,V ′′) with |V (T ′′)| = 6 satisfying (a) such that every bag in V ′′ is good. Let V ′′ :=

{V1, . . . , V6} with triples t1, . . . t4 as in the figures above and below. Hence, we have that

|V (G)| = 9.

1V

2V

3V

4V

5V

6V

t 2

t 3

t 4

t 1

t
1

Let V (G) := {1, . . . , 9}, and let t1 = {1, 2, 3}, V1 = {1, 2, 3, 4}, V2 = {1, 2, 3, 5}, and

V3 = {1, 2, 3, 6}. Note that since t1 /∈ {t2, t3, t4}, it follows that 4 ∈ t2 ⊆ V4, 5 ∈ t3 ⊆ V5,

and 6 ∈ t4 ⊆ V6, and each of t2, t3, t4 must contain exactly one of the subsets {1, 2}, {2, 3},

{1, 3}. Let 7, 8, and 9 be the remaining vertices in V4, V5, and V6, respectively. By symmetry,

we have the following three cases:

Case 1: {1, 2} ⊆ t2, {2, 3} ⊆ t3, {1, 3} ⊆ t4.
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Therefore, t2 = {1, 2, 4}, t3 = {2, 3, 5}, t4 = {1, 3, 6}, and V4 = {1, 2, 4, 7}, V5 = {2, 3, 5, 8},

V6 = {1, 3, 6, 9}. Since G is 3-connected and vertex 7 only belongs to bag V4, it follows that

the degree of 7 in G is three, and 71, 72, 74 ∈ E(G). Similarly, 82, 83, 85, 91, 93, 96 ∈ E(G).

Also, since t1 separates vertices 4 and 7 from the rest of the graph, it follows from the 3-

connectivity of G and Menger’s Theorem that G has three internally-vertex disjoint paths

from 4 to the vertices 1, 2, and 3. But, since 73 /∈ E(G), it follows that 43 ∈ E(G). Similarly,

51, 62 ∈ E(G). Therefore G contains the following subgraph, which is isomorphic to P−, a

contradiction.
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Case 2: {1, 2} ⊆ t2 ∩ t4, {2, 3} ⊆ t3.

Hence in this case t2 = {1, 2, 4}, t3 = {2, 3, 5}, t4 = {1, 2, 6}, and V4 = {1, 2, 4, 7},

V5 = {2, 3, 5, 8}, V6 = {1, 2, 6, 9}. Then, similarly to the argument in Case 1, G contains the

following subgraph.
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Also, since G is 3-connected, it follows (similarly to the argument in Case 1) that either

14 ∈ E(G) or 24 ∈ E(G). In the first case, G contains P− as a subgraph (by deleting

edge 17), a contradiction. And in the second case G contains A− as a subgraph, again a

contradiction.

Case 3: {1, 2} ⊆ t2 ∩ t3 ∩ t4,

Hence in this case t2 = {1, 2, 4}, t3 = {1, 2, 5}, t4 = {1, 2, 6}, and V4 = {1, 2, 4, 7},

V5 = {1, 2, 5, 8}, V6 = {1, 2, 6, 9}. Then, similarly to the argument in Case 1, G contains the

following subgraph.

1

4

6

2

5

8

9

3

7

G >

8



Since G is 3-connected, it follows (similarly to the argument in Case 1) that either 14 ∈

E(G) or 24 ∈ E(G), and either 15 ∈ E(G) or 25 ∈ E(G). By symmetry, we only need to

consider two cases. If 14, 15 ∈ E(G), then G contains A− as a subgraph (by deleting edge

17), a contradiction. And if 14, 25 ∈ E(G), then G contains P− as a subgraph (by deleting

edges 17 and 28), a contradiction. This concludes the proof of Lemma 2.1. �

3. Proof of the main theorem and corollary

We first verify that all seven graphs: V8, Q, K5, Oct, Pyr, P−, A− have path-width at

least four, which helps establish the forward implication of Theorem 1.3. For this we need

the following structural lemma about 3-connected graphs of path-width at most three.

Lemma 3.1. Let G be a connected graph with n := |V (G)| > 4 and pw(G) 6 3. Then for

each k = 1, 2, . . . , n − 4, G has 3-vertex-cut separating k vertices from (n − 3) − k vertices.

Proof. Let {Vi}i=1,2,...,m be a path-decomposition of G of width 6 3. We may assume, without

loss of generality, that:

(a) for all i, |Vi| = 4 (by adding vertices to Vi if necessary);

(b) for all distinct i, j, Vi * Vj , hence Vi 6= Vj;

(c) for all i, |Vi ∩ Vi+1| = 3 (by inserting new bags between Vi and Vi+1 if necessary).

Therefore, it follows that for k = 1, 2, . . . , n − 4, Vk ∩ Vk+1 is a 3-vertex-cut separating k

vertices from (n − 3) − k vertices. �

The following lemma helps to establish the forward implication of Theorem 1.3.

Lemma 3.2. If G ∈ {V8, Q, K5, Oct, Pyr, P−, A−}, then pw(G) > 4.

Proof. If G ∈ {V8, K5, Oct}, then it follows from Theorem 1.1 that pw(G) > tw(G) > 4.

Now let G ∈ {Q, Pyr, P−, A−} and suppose that pw(G) 6 3. Then, by Lemma 3.1, it follows

that G has a 3-vertex-cut separating ⌊n−3
2
⌋ vertices from ⌈n−3

2
⌉ vertices, where n = |V (G)|.

But in each case we have a contradiction since 3-cuts in P− and in A− can only separate one

vertex from five, or two from four, and 3-cuts in Q and in Pyr can only separate a single

vertex from the rest of the graph. �

To finish the proof of Theorem 1.3, we will need the following theorem of Wagner [9] and

the following lemmas.

Theorem 3.3. [9] If G is a 3-connected K5-free graph containing a V8-minor, then G = V8.

Actually, the above theorem can also be proved directly using Seymour’s splitter theorem

[8].
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Lemma 3.4. If G is a 3-connected {K5, P yr}-free graph containing a Q-minor, then G = Q.

Proof. Suppose that G � Q and G 6= Q. Then, since both G and Q are 3-connected it

follows from Seymour’s splitter theorem [8], that G � Q + e or G � Q + f , where Q + e,

and Q + f respectively, is the graph obtained from Q by adding an edge e between two

vertices at distance two from each other, and an edge f between two vertices at distance

three, respectively. But this is a contradiction since Q + e � Pyr and Q + f � K5. �

Proof of Theorem 1.3. Since path-width is monotone under taking minors, Lemma 3.2

establishes the forward implication of Theorem 1.3.

Conversely, suppose that G /∈ {V8, Q} and G is {K5, Oct, Pyr, P−, A−}-free. Then, from

Lemmas 3.3 and 3.4, it follows that G is {V8, Q, K5, Oct, Pyr, P−, A−}-free. Therefore, by

Lemma 2.1 it follows that pw(G) 6 3. This proves Theorem 1.3. �

Finally, Corollary 1.4 follows from the following three lemmas. By H + v1v2, we mean the

graph obtained from H by adding edge v1v2 to H for non-adjacent vertices v1, v2 ∈ V (H).

For any edge e := uv ∈ E(H) with degH(v) > 3, the operation of uncontracting vertex v

relative to edge e is defined to be that of deleting v, adding two new adjacent vertices v1 and

v2 each adjacent to u, and joining each old neighbor of v (in H), other than u, by an edge

to exactly one of v1 or v2 in such a way that both v1 and v2 have degree at least three in the

new graph.

Lemma 3.5. Let H be a 2-connected minor of a 3-connected graph G. Let u ∈ V (H) with

degH(u) = 2, and let u1 and u2 be its two neighbors with degH(ui) > 3 for i = 1, 2. Then

G � H ′, where H ′ is obtained from H by one of the following operations:

(1) H ′ = H + uv for some v ∈ V (H) − {u, u1, u2};

(2) uncontracting ui relative to uui for some i ∈ {1, 2}.

Proof. Since H is a minor of G, it follows that G has a subgraph G′ that is a union of

pairwise vertex-disjoint trees V := {Tv}v∈V (H), and pairwise internally-vertex-disjoint paths

E := {Pe}e∈E(H) that are also internally-vertex disjoint from the trees in V, such that for

each vw ∈ E(H) the two endpoints of Pvw are a vertex in Tv and a vertex in Tw. To obtain

H from G′ we contract all of the trees in V to single vertices and all of the paths in E to

single edges. We choose the trees to be as small as possible (by possibly making the paths

longer). From this choice it follows that for every v ∈ V (H), every leaf l of Tv is the endpoint

of at least two paths Pvw and Pvw′ for some w, w′ ∈ V (H) − {v} (if Tv = K1 then the only

vertex of Tv is considered to be its leaf). Clearly this is true if Tv = K1 by the 2-connectivity

of H ; also, if Tv 6= K1 and l is a leaf of Tv and l is the endpoint of only one such path or

none, then in the first case, by adding l to the path and discarding it from the tree Tv, we
10



can make Tv smaller; and in the second case, by simply discarding l from Tv we can make

Tv smaller, in both cases a contradiction. Also, if d := degH(v) 6 3 then the vertices of Tv

are the endpoints of exactly d paths Pvw for some w ∈ V (H) − {v}, hence by the above it

follows that Tv has only one leaf, thus Tv = K1.

Let x be the only vertex in V (Tu), and let x1 ∈ V (Tu1
) and x2 ∈ V (Tu2

) be the other

endpoints of the paths Pu1u and Puu2
, respectively. Let P be the concatenation of Pu1u and

Puu2
at x. Since G is 3-connected, there is a path Q in G internally vertex disjoint from

the trees in V and the paths in E , with one endpoint q1 in the interior of P and the other

q2 ∈ V (G′)−V (P ). Also, in the case that u1u2 ∈ E(H) and the endpoints of Pu1u2
are x1 and

x2, then q1 is in the interior of P or the interior of Pu1u2
and q2 ∈ V (G′)− (V (P )∪V (Pu1u2

)).

Since in this case P and Pu1u2
are symmetric, we may assume, without loss of generality,

that q1 is in the interior of P .

If q2 is a vertex of Tw for some w /∈ {u, u1, u2}, then clearly G contains a minor H ′ obtained

from H by (1).

If q2 ∈ V (Tui
) for some i ∈ {1, 2}, say for i = 2, then q2 6= x2. Let x′

2 be the neighbor

of x2 on the unique x2q2-path in Tu2
(note that possibly x′

2 = q2). Deleting edge x2x
′

2 from

Tu2
divides it into two trees, call them Tx2

and Tx′

2
, the first containing x2 and the second x′

2

and q2. Then, we replace Tu2
by Tx2

and Tx′

2
and add the path Px2x′

2
consisting of the single

edge x2x
′

2. Also, we replace Tu by the single vertex q1, the path Pu1u by the subpath of P

from x1 to q1, the path Pux2
by the subpath of P from q1 to x2, and the path Pux′

2
by Q.

Then, since every leaf l of Tv was the endpoint of at least two paths Pvw and Pvw′ for some

w, w′ ∈ V (H)−{u}, the new minor H ′ � G obtained by contracting the new trees is clearly

obtained from H by (2).

Therefore, q2 lies in the interior of the path Pww′ for some w, w′ ∈ V (H). If at least one of

w or w′ is different from u1 and u2, then clearly G contains a minor H ′ obtained from H by

(1). Hence {w, w′} = {u1, u2}. Let y1 ∈ Tu1
and y2 ∈ Tu2

be the endpoints of Pww′ = Pu1u2
.

Then we must have that either y1 6= x1 or y2 6= x2 and, as in the previous paragraph, we

obtain a minor H ′ obtained from H by (2). �

Remark 3.6. If in Lemma 3.5, degH(ui) = 3 for i = {1, 2}, then G contains a minor H ′

obtained from H by (1), since the unique graph obtained from uncontracting ui relative to

uui, contains as a minor a graph obtained from H by (1).

Lemma 3.7. If G is a 3-connected K5-free graph containing an A−-minor, then G � R1,

or G � R2, or G � A.

Proof. Label the vertices of A− as in the figure below.
11



A  = 
_

1
3

2

74

5

8

9

6

Since G is 3-connected and A− is 2-connected, it follows by Lemma 3.5 and Remark 3.6 that

G � G′, where G′ is obtained from A− by adding one of the edges in {42, 43, 45, 46, 48, 49}∪

{57, 56, 54, 53, 51, 59}. However:

◮ A− + 45 � K5, by contracting edges 13, 25, 47, and 68;

◮ A− + 42 � K5, by contracting edges 13, 25, 47, and 68; and symmetrically A− + 57 � K5;

◮ A− + 43 � K5, by contracting edges 12, 47, 58, and 68; and symmetrically A− + 56 � K5;

◮ A− + 46 � K5, by contracting edges 13, 47, 25, and 58; and symmetrically A− + 53 � K5;

Therefore, G′ is obtained from A− by adding one of the edges in {48, 49} (or symmetrically,

one of the edges in {51, 59}) . First, suppose that G′ = A− + 49. Then, Lemma 3.5 and

Remark 3.6 applied to the graphs G and G′ yield another minor G′′ � G obtained from G′

by adding one of the edges {51, 59}. Therefore G′′ is one of the following two graphs:

◮ G′′ = A− + 49 + 51 = R1 (or symmetrically G′′ = A− + 48 + 59 = R1);

=  R1=
2

4

1
3

5 8

7

6

9

1
3

2

74

5

8

9

6

◮ or G′′ = A− + 49 + 59 = A;

Finally, if G′ = A−+48, then if vertex 8 is uncontracted relative to 58 according to Lemma

3.5, then G contains one of the following graphs as a minor: A−+56, A−+57, or A−+45, each

of which contains a K5-minor (as above), a contradiction. Therefore, it follows from Lemma

3.5 that G � G′′, where G′′ = A− + 48 + 59 = R1 (as above), or G′′ = A− + 48 + 51 = R2 as

illustrated below.

=  R
2=1 3

2

74

5

8

9

6

1 32

74

5

8

9

6

�
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Lemma 3.8. If G is a 3-connected K5-free graph containing a P−-minor, then G � A−.

Proof. Suppose that G � A−. Label the vertices of P− as in the figure below.

P  =

9

4

31 2

8

5 6

7

_

First, note that G � K+
3,3, where K+

3,3 is the graph obtained from K3,3 by adding one edge

to each of the two bipartitions (see figure below). This is because K+
3,3 � K5 by contracting

the edge connecting the two vertices of degree three.

K    =+
3,3

Since G is 3-connected and P− is 2-connected, it follows by Lemma 3.5 and Remark 3.6

that G � G1, where G1 is obtained from P− by adding one of the edges {61, 62, 64, 65, 67, 68}.

First, suppose that the added edge is not incident with 4 nor 5, so by symmetry let G1 =

P− +62. Then, the same Lemma and Remark applied to the graphs G and G1 yield another

minor G2 � G obtained from G1 by adding one of the edges {42, 43, 45, 46, 48, 49}. However,

since G � K+
3,3, it follows that the only choices are {42, 43, 46}. If G2 = P− + 62 + 43, then

we get a contradiction because G2 � A−.

G  =

9

4

31 2

8

5 6

7

1

8

4

3

69

5

27
=2

If G2 = P− + 62 + 46, then G2 � K5, by contracting edges 19, 25, 38, 47, a contradiction.

And if G2 = P−+62+42, then if vertex 2 is uncontracted relative to 52 according to Lemma

3.5, then G contains either K+
3,3 or P−+62+46 � K5 (as above), a contradiction. Therefore,

it follows from Lemma 3.5 and the fact that G � K+
3,3, that G � G3, where G3 is obtained

from G2 by adding one of the edges {51, 53}. By symmetry, we may assume the added edge

is 53. But then, G3 = R1 � A−, a contradiction.

G  =

9

4

31 2

8

5 6

7

3 = R
1
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Therefore we have shown that G � G1, where G1 is obtained from P− by adding one of the

edges {64, 65}, by symmetry, say 65. Then, applying the Lemma and Remark to the graphs

G and G1, and using the fact that G � K+
3,3, we obtain another minor G4 � G obtained from

G1 by adding one of the edges {45, 46}, by symmetry, say 45. But G4 � K5, by contracting

edges 14, 27, 38, and 69, a contradiction. �

Proof of Corollary 1.4. The forward direction of the Corollary follows from Theorem 1.3

since both R1 and R2 contain P− as a subgraph, and A contains A− as a subgraph.

For the converse direction, since G is {K5, Oct, Pyr, R1, R2, A}-free, it follows from Lemma

3.7 that G � A−. Therefore, it follows from Lemma 3.8 that G � P−. Hence, G is

{K5, Oct, Pyr, P−, A−}-free, and so by Theorem 1.3, pw(G) 6 3. �
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