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Abstract

We consider the follow poset merging problem: Let X and Y be two subsets of a partially
ordered set S. Given complete information about the ordering within both X and Y , how
many comparisons are needed to determine the order on X ∪ Y ? This problem is a natural
generalization of the list merging problem. While searching in partially ordered sets and sorting
partially ordered sets have been considered before, it seems that the problem of poset merging
is an unexplored one. We present efficient algorithms for this problem, and show the first lower
bounds. In certain cases, our algorithms use the optimal number of comparisons.
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1 Introduction

Role based access control is a system of security which has generated a lot of recent interest within
the database community, since it is able to model many sorts of security requirements [14].

In the role based model of Nyanchama and Osborn [13], security privileges are modeled using
a directed acyclic graph called a role graph. Each user is a node in the graph. There is a directed
path from user s to user t if and only if the privileges of s are a superset of those of t. The role
graph induces a partial order on the set of users.

Database interoperability and federated databases [15] are two important current research topics
in databases. A basic requirement for both interoperability and federation is that one should be
able to integrate access control information [14]. The study of interoperability in role based access
control was initiated by Osborn [14], who gave an algorithm for merging two role graphs. Inspired
by [14], we further study the problem of merging role graphs.

Problem Description: Let S be a finite set. A subset R of S × S is called a binary relation
on S. In this paper, we write x � y if (x, y) ∈ R. As usual, we call the binary relation � a partial
order on S if it has the following three properties, for all x, y, z ∈ S:

(1) Reflexivity: x � x;
(2) Antisymmetry: x � y and y � x imply x = y;
(3) Transitivity: x � y and y � z imply x � z.
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S will be called a partially ordered set, or simply, a poset, if � is a partial order on S. We will write
(S;�) if we need to specify �. We also write s ≺ t if s � t but s 6= t. We use the notation s|t to
indicate that s and t are incomparable, i.e. (s, t) 6∈ R and (t, s) 6∈ R. A poset where all pairs of
elements are comparable is called a total order. A subset T of S where all elements are comparable
is called a chain. A poset can be represented by a directed acyclic graph G(S;�), where there is
a directed path from s to t in G(S;�) if and only if s � t. We also define G(T ;�) analogously
for any subset T of S. A comparison between two elements s, t ∈ S returns one of three distinct
values, namely s � t, s � t or s|t. Suppose we have a partially ordered set S, which is partitioned
into X and Y . In this paper, we examine the question “How many comparisons are required to
construct G(S;�) given G(X;�) and G(Y ;�)?” We call this the poset merging problem. If S is
totally ordered, then this is exactly the ordinary list merging problem.

Two closely related problems are as follows: In the poset sorting problem, one is given no initial
information and asked to determine G(S;�). In the poset searching problem, we have a partially
ordered set S and a subset T of S. We are given G(T ;�). We wish to answer queries of the form
“Does a given element s ∈ S belong to T?” As with poset merging, in both of these problems the
goal is to use the minimum number of comparisons.

Three natural ways to categorize posets are width, dimension and number of ideals, all measure
how close a poset is to being totally ordered. We explain these measures briefly. An antichain of
poset (S;�) is a subset T of S where all elements are pairwise incomparable. The width of (S;�)
is the cardinality of the largest antichain. A well known result of Dilworth [2] tells us that any
poset of width w can be partitioned into w chains. A poset has dimension d if it is the intersection
of d total orders. An ideal in (S;�) is a subset T of S closed under �. Algorithms that operate on
posets often have running times bounded as some function of their size and one or more of three
parameters just described.

Previous Results: To the best of our knowledge, the poset merging problem have not been
previously investigated. The role-graph merging algorithm of Osborn [14] is a näıve poset merging
algorithm. It requires

∑n+m−1
i=n i comparisons to merge two role-graphs (acyclic digraphs) on m and

n vertices.
Next, we explore briefly what is known about the list merging problem. For a more complete

treatment, we refer the reader to Section 5.3.2 of Knuth [10]. We denote the minimum number
of comparisons to merge two sorted lists of lengths n and m by M(m,n). As is standard in the
merging literature, we always assume that m ≤ n. The Linear merge algorithm [10] implies that
M(m,n) ≤ n + m − 1. Knuth [10] credits Graham and Karp with independently showing that
M(m,m) ≥ 2m− 1 and M(m,m + 1) ≥ 2m. Stockmeyer and Yao [16] show that M(m, m + d) ≥
2m+ d− 1 for all m ≥ 2d− 2. Therefore, Linear is optimal for these cases. Knuth [10] generalizes
the argument of Graham and Karp to obtain lower bounds for small values of n and m. The
information theoretic bound [10] states that for all n and m

M(m, n) ≥
⌈
log2

(
m + n

m

)⌉
.

When m = 1, the information theoretic bound is tight, since binary search can be used to find
the position for a single element using dlog2(n + 1)e comparisons. Graham [6] and independently
Hwang and Lin [8] show that

M(2, n) =
⌈
log2

7
12(n + 1)

⌉
+
⌈
log2

14
17(n + 1)

⌉
.
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The first general merging procedure to outperform Linear was proposed by Hwang and Lin [9].
Their algorithm is a combination of Linear and binary search. They show that the number of
comparisons it uses is at most ⌈

log2

(
m + n

m

)⌉
+ m− 1.

A series of increasingly complicated and specialized algorithms have been developed by Hwang
and Deutsch [7], Manacher [12], and Christen [1]. These algorithms provide improved bounds for
small m.

Poset searching was first investigated by Linial and Saks [11]. They generalize binary search
by defining the concept of a central element in a poset. By comparing the candidate element with
the central element, we can eliminate a constant fraction of the ideals in the poset. They show
that such elements always exist, and that therefore searching can be accomplished using O(log N)
comparisons, where N is the number of ideals in the poset. Unfortunately, there is no known
polynomial time algorithm for finding central elements [3].

The problem of poset sorting has also received some attention. The case where there is a total
order is, of course, the standard sorting problem, which has been studied extensively [10]. Poset
sorting was first studied by Faigle and Turán [4]. Let w be the width of a poset and N be the
number of ideals. Faigle and Turán show a number of upper and lower bounds, the main upper
bound being

O (min{n log N,wn log n})

on the number of comparisons required for sorting. The situation with lower bounds is not very
good. If the poset is an antichain, then

(n
2

)
comparisons are required. However, if the width is w,

the best lower bound on the number of comparisons is

n log3 n− n log3 w − 5n.

Further, the O(n log N) upper bound relies on the recognition of central elements [11]. Felsner,
Kant, Rangan and Wagner [5] improve the lower order terms in the O (wn log n) upper bound on
poset sorting.

Our Results: In this paper, we will give the first set of lower bounds and the first two
non-trivial algorithms for poset merging. Our lower bounds generalize the adversary argument
of Graham and Karp [10], and the information theoretic bound [10]. Our first algorithm is a
generalization of the Linear algorithm. We will prove that this algorithm is optimal when merging
partial orders consisting of two equal sized chains. Our second algorithm uses any list merging
algorithm A as a subroutine. When A is the Hwang-Lin algorithm, we show that the number of
comparisons used is at most 4m− 3 (recall that m ≤ n) more than optimal when two total orders
are merged. Most of our results bound the number of comparisons using some function of the
widths of the posets being merged.

2 Preliminaries

For a binary relation R on S, for any two elements x and y of S, adding (x, y) to R or deleting
(x, y) from R simply results in a new binary relation R ∪ {(x, y)} or R− {(x, y)}, respectively.
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In this paper, the posets to be merged are always denoted by X and Y . We define m = |X|,
n = |Y | and assume that 0 < m ≤ n. We define v ≤ m and w ≤ n to be the widths of X
and Y , respectively. In this case, we always assume that X and Y are given decomposed as
chains X1, . . . , Xv and Y1, . . . , Yw. If X and Y are not in this format, they can be decomposed in
polynomial time without using any comparisons (all relations within X and Y are already known).
Clearly, the width of X ∪ Y is at most v + w.

In general, if (S;�) is a poset of width w then G(S;�) can be represented using O(w|S|) space.
If C ⊂ S is a chain in (S;�) and s ∈ S, then the greatest lower bound of s in C is an element c such
that c � s and c′ 6� s for all c′ ∈ C such that c′ � c. If such a c exists, then it is unique. If c does
not exist, we define the greatest lower bound to be −∞. The least upper bound of s in C is the
unique element c such that s � c and s 6� c′ for all c′ ∈ C such that c′ ≺ c. Analogously, if c does
not exist, we define the least upper bound to be ∞. Suppose S1, . . . , Sw is a decomposition of S.
Each element s ∈ S is completely defined by its w least upper bounds and w greatest lower bounds
with respect to the chains S1 . . . Sw. We use 2w pointers for each element, and w global pointers
to indicate the head of each chain. We call these pointers glb(s, Si) and lub(s, Si) for s ∈ S and
1 ≤ i ≤ w.

So we can think of the problem of merging X and Y as that of correctly assigning glb(x, Yi) and
lub(x, Yi) for all x ∈ X and 1 ≤ i ≤ w and glb(y, Xi) and lub(y, Xi) for all y ∈ Y and 1 ≤ i ≤ v.

3 Generalizing the Linear Algorithm

We start by presenting an algorithm PLinear for merging two chains of a poset. PLinear is
a natural generalization of the Linear merging algorithm and, as shown later, the number of
comparisons used by PLinear is optimal when the two chains have equal size. At the end of this
section, we will show how PLinear can be adapted to merge two general posets.

Suppose we are given a poset (X ∪ Y ;�), where X = {x1, x2, ..., xm} and Y = {y1, y2, ..., yn}.
Let us also assume that xi � xj and yi � yj for all i ≤ j. Algorithm PLinear, which is given in
Figure 1 below, operates in two phases. In the first phase, we recognize all relations of the form
xi � yj , while in the second phase we recognize all relations of the form yi � xj . Other than
bookkeeping, the second phase works in the same way as the first one does.

Proposition 3.1 PLinear is correct.

Proof. Since X and Y are symmetric, we only need to consider Phase 1. We will show, for each
i, that xi � yj if and only if the algorithm declares so. First, suppose i is the kind of index for
which the algorithm detects xi � yj , for some j, and also declares xi � yk, for all k ≥ j. Since �
is transitive, the algorithm is obviously correct for all k ≥ j. For each k < j, notice that when the
subscript of y turns from k to k + 1 in the algorithm, there exists i′ ≤ i such that xi′ 6� yk. By
transitivity, we must have xi 6� yk, as we wanted.

Next, let i be an index such that xi � yj is never detected, for any j. There are two possible
situations here, either xi is not compared with any yj , or xi is compared with some yj but xi � yj

never occurred. In both cases, it is clear that the algorithm terminates because the subscript of y
turns from n to n + 1. Consequently, there exists i′ with xi′ 6� yn. Notice that i > i′ in the first
situation and i = i′ in the second situation. Now by transitivity, it is easy to see that xi 6� yj for
all j.
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Algorithm PLinear:

Phase 1. We start with i = j = 1 and terminate when i > m or j > n.
In a general step, we compare xi with yj and record the result.
If xi � yj , declare xi � yk for all k ≥ j, set i = i + 1, and then
repeat. If xi 6� yj , set j = j + 1 and repeat.

Phase 2. We start with i = j = 1 and terminate when i > n or j > m.
In a general step, we compare yi with xj , in case these two
were not compared in Phase 1 (if they have been compared in
Phase 1, we use our record and this saves one comparison). If
yi � xj , declare yi � xk for all k ≥ j, set i = i + 1, and then
repeat. If yi 6� xj , set j = j + 1 and repeat.

Figure 1: The PLinear algorithm.

In order to analyze the complexity of PLinear, we need to distinguish between comparisons
that are made or requested by the algorithm. They are the same in Phase 1. But in Phase 2, when
a comparison is requested, the result might be given by the record.

Proposition 3.2 When the comparison of xi and yj is requested, within that phase, PLinear has
requested, including this pair, i + j − 1 comparisons.

Proof. This is clear when i = j = 1. Notice that, after each comparison, one of i and j is increased
by one and the other remains the same. This behaves exactly the same as the formula i + j − 1.
Thus the proposition is proved.

Theorem 3.1 If m + n > 2, then PLinear makes at most 2m + 2n − 4 comparisons when it
terminates.

Proof. Let C1 and C2 be the number of comparisons requested in Phases 1 and 2, respectively.
Let C be the number of comparisons made in both phases and let δ be the number of comparisons
requested but not made in Phase 2. Then it is clear that C = C1 + C2 − δ.

Notice that both phases start with the request of comparing x1 with y1. It follows that δ ≥ 1.
By the last proposition, it is clear that C1 ≤ m + n − 1 and C2 ≤ m + n − 1. If at least one of
them holds with strict inequality, then C ≤ 2m + 2n − 4 and we are done. Thus we may assume
C1 = C2 = m + n − 1. But, by Proposition 3.2, each phase terminates only after the request
of comparing xm with yn. Since m + n > 2, we have (1, 1) 6= (m,n). Therefore, δ ≥ 2 and so
C ≤ 2m + 2n− 4, as we wanted.

Clearly, when m + n ≤ 2, that is, when m = n = 1 (as 0 < m ≤ n), PLinear uses only one
comparison, which is obviously the best possible. In fact, it will follow from Theorem 5.2 that, in
the comparison model, PLinear is also optimal when m = n ≥ 2.
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Finally, we explain how to use PLinear to merge two general posets X and Y . As discussed
earlier in Section 2, we assume that both X and Y are decomposed into chains X1, . . . , Xv and
Y1, . . . , Yw, where v and w are the widths of X and Y , respectively. Now PLinear adapts easily to
the general situation: We simply apply the algorithm to (Xi, Yj) for all 1 ≤ i ≤ v and 1 ≤ j ≤ w.

To count the number of comparisons used by the algorithm, we need a couple of more definitions.
Let S be a poset of width k and let S1, . . . , Sk be a partition of S into chains. The partition is
balanced if the cardinality of {Si : |Si| = 1} is minimized, over all partitions of S into k chains. We
denote this minimum value by λ(S).

Theorem 3.2 If PLinear is used to merge X and Y , as suggested above, than it makes at most
2wm + 2vn− 4vw + λ(X)λ(Y ) comparisons.

Proof. To merge X and Y using PLinear, we need to first decompose them into chains. For
the purpose of counting the number of comparisons used by the algorithm, we assume that the
partitions are balanced. Since we know the complete information on both X and Y , finding such
a decomposition does not cost any comparisons.

Let mi = |Xi| for 1 ≤ i ≤ v and ni = |Yi| for 1 ≤ i ≤ w. Let λ(Xi, Yj) = 1 if mi = nj = 1,
and λ(Xi, Yj) = 0 if otherwise. Then, by Theorem 3.1, we need at most 2mi + 2nj − 4 + λ(Xi, Yj)
comparisons to merge Xi and Yj . Thus, the total number of comparisons used is at most

v∑
i=1

w∑
j=1

{2mi + 2nj − 4 + λ(Xi, Yj)} = 2wm + 2vn− 4vw + λ(X)λ(Y ),

as we wanted.

4 Upper Bounds for Small m

The poset merging algorithm given in the previous section is based on Linear. As we will see
in the next section (Theorem 5.2) that Linear is optimal for merging partial orders consisting of
two equal sized chains. In this section, we develop algorithms, which perform better than Linear
when merging a large chain with a small one. To facilitate this, we present a general method for
applying a list merging algorithm to poset merging. Again, we examine first the case of merging
two total orders.

Given any algorithm A for list merging, we define an algorithm PMerge(A, X, Y ) for merging
two total orders: We assume A uses a total order comparison operation � in the process of merging
X and Y . The algorithm appears in Figure 2 below. As before, this algorithm can be easily
generalized to merge general posets, just apply the algorithm to all pairs (Xi, Yj) of chains.

Let a(m,n) be the maximum number of comparisons used by A in merging a list of size m with
one of size n. We say a merging algorithm A is consistent if for all m and n there exist i and j such
that for all X = {x1, . . . , xm} and Y = {y1, . . . , yn} the first comparison made by A is xi ≤ yj .
Note that all merging algorithms in the literature are consistent.

Theorem 4.1 PMerge is correct. Further, if A is consistent it uses at most 2a(m,n) − 1 com-
parisons.
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Algorithm PMerge(A, X, Y ):

1. Phase(A, X, Y ).

2. Phase(A, Y,X).

Phase(A, U, V ):

1. Define � as follows: If a|b then a � b if and only if (a, b) ∈ U × V .
If a and b are comparable then a � b if and only if a � b.

2. Use A to merge U and V to get list Z = z1, . . . , zn+m.

3. z0 ← −∞ and `← 0.

4. For i← 1, . . . , n + m:

If zi ∈ V then `← i else glb(zi, V )← z`.

5. zn+m+1 ←∞ and `← n + m + 1.

6. For i← n + m, . . . , 1:

If zi ∈ U then `← i else lub(zi, U)← z`.

Figure 2: The PMerge algorithm.

Proof. During a call to Phase, the variables glb(u, V ), u ∈ U are assigned in Steps 3 and 4. A
merges U and V to get Z using the definition of � in Step 1 of Phase. Note that � is a total order
on U ∪ V . If zi ∈ U then zj � zi for all j ≤ i and zj 6� zi for all j > i. Define V ∗ = V ∪ {−∞}. It
is easy to prove by induction that at each iteration of Step 4, ` is the maximum index j ≤ i such
that zj ∈ V ∗. Clearly, z` is maximal in V ∗ ∩ {z1, . . . , zi}. Therefore z` is the greatest lower bound
of zi in V . Also during Phase, the variables lub(v, U), v ∈ V are assigned in Steps 5 and 6. Define
U∗ = U ∪ {∞}. It is easy to prove by induction that at each iteration of Step 6, ` is the minimum
index j ≥ i such that zj ∈ U∗. If zi ∈ V then zi 6� zj for all j < i and zi � zj for all j ≥ i.
Therefore z` is minimal among U∗ ∩ {zi, . . . , zn+m} and it is the least upper bound of zi in U .

During the two calls to Phase, all the variables glb(y, X), y ∈ Y ; lub(x, Y ), x ∈ X; glb(x, Y ),
x ∈ X and lub(y, X), y ∈ Y are assigned.

Obviously, PMerge uses at most 2a(m,n) comparisons, since it uses A to merge X and Y
twice. If A is consistent, the first time we merge X and Y , we record the outcome of the first
comparison and then recall it the second time we merge them.

To understand how well the algorithm PMerge performs, let us define T (m,n) to be the
number of comparisons required to merge two total orders of sizes m and n. We point out in the
following that the number of comparisons used by PMerge is not too far away from T (m,n). In
order to do so, we have to use not only Theorem 4.1, but also a result from the next section which
tells us a lower bound on T (m,n). We choose to present this result here, instead of waiting till
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the lower bounds have been established, because we do not like to put it too far away from the
algorithm.

Corollary 4.1 PMerge uses at most T (m,n) + 4m− 3 comparisons.

Proof. Let A be the Hwang-Lin algorithm [9], which is a generalization of both binary search and
Linear. Then, by [9], we have

a(m,n) ≤
⌈
log2

(
m + n

m

)⌉
+ m− 1.

Now it follows from Theorem 4.1 that the number of comparisons used by PMerge is at most

2a(m,n)− 1 ≤ 2

⌈
log2

(
m + n

m

)⌉
+ 2m− 3

= 2
⌈
log2

(m + n)(m− 1 + n) · · · (1 + n)
m!

⌉
+ 2m− 3

≤ 2
⌈
log2

2m(m + bn/2c)(m− 1 + bn/2c) · · · (1 + bn/2c)
m!

⌉
+ 2m− 3

= 2

⌈
log2

(
m + bn/2c

m

)⌉
+ 4m− 3

≤ T (m,n) + 4m− 3,

where the last step is by Theorem 5.3 from the next section.

It should be pointed out that Corollary 4.1 can be further improved by using more sophisticated
algorithms for A, for instance the algorithm of Christen [1]. It should also be emphasized again
that, as with PLinear, PMerge can be easily adapted to general poset merging.

5 Lower Bounds

In this section, we show the first lower bounds for poset merging. We begin by showing that if
v and w are arbitrary, then nm comparisons are required. We then show lower bounds for the
merging of two total orders. As we shall see, this special case turns out to be quite important. We
are able to generalize these lower bounds for merging two total orders to get lower bounds which
are functions of v and w.

Theorem 5.1 If both X and Y are antichains then poset merging requires nm comparisons.

Proof. We prove the theorem by using the following simple adversary argument: Each time the
algorithm compares two elements, answer ‘incomparable’. Suppose the algorithm outputs a can-
didate for G(X ∪ Y ;�) but does not compare some element x ∈ X with some element y ∈ Y .
Then x � y and x|y are both consistent with all comparisons made, so the adversary can assign
the relation between x and y in such a way that the algorithm’s answer is wrong.
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We now consider the merging of two total orders. Recall that T (m, n) is the number of com-
parisons required to merge two total orders of sizes m and n. We start by considering n = m, and
then move to the general case. When the total orders are the same size, we show

T (n, n) ≥ β(n) =

{
n if n = 0 or 1
4n− 4 if n ≥ 2.

Let X = {x1, x2, ..., xm} and Y = {y1, y2, ..., yn} be disjoint sets. Suppose a binary relation �
on X ∪ Y satisfies the following:

(∗)



(i) xi � xj if and only if i ≤ j;
(i′) yi � yj if and only if i ≤ j;
(ii) xi � yj implies xi � yj′ for all j′ ≥ j, and xi′ � yj for all i′ ≤ i;
(ii′) yi � xj implies yi � xj′ for all j′ ≥ j, and yi′ � xj for all i′ ≤ i;
(iii) xi � yj � xk implies i < k;
(iii′) yi � xj � yk implies i < k.

Then we prove a few propositions on �.

Proposition 5.1 The binary relation � is a partial order.

Proof. First, since X and Y are disjoint, (i) and (i’) directly imply reflexivity.
If a, b ∈ X then (i) implies antisymmetry, while if a, b ∈ Y then (i’) implies it. If a ∈ X and

b ∈ Y , then a 6= b since X and Y are disjoint. Suppose both a � b and b � a. Condition (iii) gives
us a contradiction. If a ∈ Y and b ∈ X, the argument is analogous. Therefore, antisymmetry holds
in all cases.

Now consider transitivity. Suppose a, b, c ∈ X ∪Y with a � b � c. We need to show that a � c.
Since X and Y are symmetric, we may assume, without loss of generality, that a = xi, for some i.
We first consider the case b = yj , for some j. If c = yk, for some k, then, by (i’), j ≤ k and thus,
by (ii), a � c holds. If c = xk, for some k, then, by (iii), i ≤ k and thus, by (i), a � c holds. The
case b = xj , for some j, is similar to the last case. It follows from (i) that i ≤ j. If c = xk, for some
k, then we deduce a � c from (i). If c = yk, for some k, then we deduce a � c from (ii).

Proposition 5.2 Suppose there are indices p and q such that xp � yq and neither xp � yq−1 nor
xp+1 � yq holds. Then the binary relation �′ obtained by deleting (xp, yq) from � also satisfies (*).

Proof. It is clear that we only need to verify (ii), since all other conditions are obviously satisfied.
Suppose, on the contrary, that, for some i and j, we have xi �′ yj while either xi 6�′ yj′ for some
j′ ≥ j or xi′ 6�′ yj for some i′ ≤ i. By the definition of �′ it is easy to see that (i, j′) = (p, q) in the
first case, and (i′, j) = (p, q) in the second case. It follows that, in the first case, q− 1 ≥ j and thus
xp � yq−1 (as � satisfies (ii)), while in the second case, p + 1 ≤ i and thus xp+1 � yq (also because
� satisfies (ii)), both contradict our assumption.

Remark 5.1 By the symmetry between X and Y , if there are indices p and q such that yp � xq

and neither yp � xq−1 nor yp+1 � xq holds, then the binary relation obtained by deleting (yp, xq)
from � also satisfies (*).
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Proposition 5.3 Suppose xp 6� yq and yq 6� xp. If both xp � yq+1 and xp−1 � yq hold, then the
binary relation �′ obtained by adding (xp, yq) to � also satisfies (*).

Proof. It is clear that we only need to verify (ii), (iii), and (iii’), since all other conditions are
obviously satisfied. If (iii) or (iii’) is violated, then there exists either k < p with yq � xk or i > q
with yi � xp. In both cases, we deduce from (ii’) that yq � xp, a contradiction. Now it remains
to prove (ii). Clearly, if (ii) does not hold, then we must have (i, j) = (p, q). In addition, we must
also have either xi 6� yj′ for some j′ > j or xi′ 6� yj for some i′ < i. It follows that, in the first
case, q + 1 ≤ j′ and thus xp 6� yq+1, while in the second case, p− 1 ≥ i′ and thus xp−1 6� yq. This
contradiction completes our proof of the proposition.

Remark 5.2 By the symmetry between X and Y , if yp 6� xq, xq 6� yp, yp � xq+1, and yp−1 � xq

hold, then the binary relation obtained by adding (yp, xq) to � also satisfies (*).

In the following, we consider a special poset. Let X = {x1, x2, ..., xn} and Y = {y1, y2, ..., yn},
where n ≥ 2. Let us define a binary relation � on X ∪ Y as follows:

(a) xi � xj and yi ≤ yj for all i ≤ j;
(b) xi � yj if and only if j − i ≥ 2;
(c) yi ≤ xj if and only if j − i ≥ 1.

It is not difficult to see that � satisfies (*) and thus, by Proposition 5.1, X ∪Y is partially ordered
by �.

Let R1 = {(xi, yi+2) : i = 1, 2, ..., n− 2}, R2 = {(yi, xi+1) : i = 1, 2, ..., n− 1}, R3 = {(xi, yi+1) :
i = 1, 2, ..., n− 1}, and R4 = {(yi, xi) : i = 1, 2, ..., n}.

Proposition 5.4 If (a, b) ∈ R1 ∪R2, then deleting (a, b) from the partial order � results in a new
partial order.

Proof. It is straightforward to verify that the assumption here satisfies the assumptions of Propo-
sition 5.2 or Remark 5.1. Then the result follows immediately from Proposition 5.1.

Proposition 5.5 If (a, b) ∈ R3 ∪ R4, then adding (a, b) to the partial order � results in a new
partial order.

Proof. This is very similar to the last proof. It is straightforward to verify that the assumption here
satisfies the assumptions of Proposition 5.3 or Remark 5.2. Then the result follows immediately
from Proposition 5.1.

Theorem 5.2 The number of comparisons needed to recognize (X ∪ Y ;�) is at least β(n).

Proof. If an algorithm has made less than β(n) comparisons, then for some (a, b) ∈ R1 ∪ R2 ∪
R3 ∪ R4, a and b are not compared by the algorithm, as |R1 ∪ R2 ∪ R3 ∪ R4| = β(n). However,
by Propositions 5.4 and 5.5, there is another partial order �′ that agrees with � everywhere else,
except for (a, b). Thus the algorithm cannot determine if the partial order is � or �′.
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As mentioned earlier in Section 3, by combining Theorem 3.1 and Theorem 5.2 we conclude that
PLinear is optimal when merging two total orders of the same size. Theorem 5.2 also generalizes
easily as follows: Suppose n/w = m/v = k is integral. Then a lower bound for merging X and Y is
vwβ(k). To see this, consider the case where ni = k for all 1 ≤ i ≤ w and mj = k for all 1 ≤ j ≤ v.
For all x, x′ ∈ X, x|x′ if and only x ∈ Xi, x′ ∈ Xj with i 6= j. In other words, only elements within
a chain are comparable in X. The same condition holds for Y . Then, for all pairs (i, j) and (k, `),
it is not difficult to see that Xi merges with Yj independently of how Xk merges with Y`, since
G(Xi ∪ Yj ;�) and G(Xk ∪ Yl;�) are independent.

We now give a general lower bound for merging two total orders:

Theorem 5.3 For all positive integers m and n,

T (m,n) ≥
⌈
log2

(
dn/2e+ m

m

)⌉
+

⌈
log2

(
bn/2c+ m

m

)⌉
.

Proof. The proof is a variation on the information-theoretic lower bound for merging. Let X and
Y be total orders with |X| = n and |Y | = m. Let k = bn/2c. We consider only instances X, Y
where glb(y, X) � xk and xk+1 � lub(y, X) for all y ∈ Y . We further require that for all y, y′ ∈ Y
such that y � y′, glb(y, X) � glb(y′, X) and lub(y, X) � lub(y′, X). It is easy to verify that the
conditions (*) hold in this case, so we have a partial order. For instances of this type, merging X
and Y involves solving two totally independent sub-problems. The first is to determine glb(y, X)
for all y ∈ Y . The number of possible solutions to this sub-problem is s =

(bn/2c+m
m

)
. Note that

in solving this sub-problem, the three outcomes of a comparison really only give us one bit of
information. That is, when comparing an element y ∈ Y with xi for i ≤ k, we never get the answer
y � xi. Therefore, the number of comparisons needed is at least dlog2 se. A similar argument holds
for the sub-problem of determining lub(y, X) for all y ∈ Y .

6 Summary and Future Research Directions

Poset merging is an important but understudied research area. In this paper, we have presented
the first non-trivial upper bounds, and the first lower bounds for this problem. We proved that our
upper bounds are not too far away from our lower bounds, and in some cases, these two bounds
are actually equal. In our model, we do not impose any condition on the union of the two posets
to be merged. It will be very interesting to see whether tighter bounds exist if we do know some
extra information on the union. In particular, the following problem is still open: Suppose we are
merging X and Y and we are given that the width of X ∪ Y is k < v + w. How can we use this
information to reduce the number of comparisons? For instance, for n = m and v = w = 1 if k = 2
we require at least 2m + 2m− 4 comparisons, while if k = 1 we need at most n + m− 1.

Acknowledgment. We are grateful to the two anonymous referees for carefully reading our paper
and for helping us improving the paper.
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