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Abstract

This paper examines the classical problem of ranking a set of players on the basis of a
set of pairwise comparisons arising from a sports tournament; the objective is to minimize
the total number of upsets, where an upset occurs if a higher ranked player was actually
defeated by a lower ranked player. This problem can be rephrased as the so-called minimum
feedback arc set problem on tournaments, which arises in a rich variety of applications and
has been a subject of extensive research. In this paper we study this NP -hard problem
using polyhedral and linear programming approaches. Let T = (V,A) be a tournament with
a nonnegative integral weight w(e) on each arc e. A subset F of arcs is called a feedback arc
set if T\F contains no cycles (directed). A collection C of cycles (with repetition allowed)
is called a cycle packing if each arc e is used at most w(e) times by members of C. We
call T cycle Mengerian (CM) if, for any nonnegative integral function w defined on A, the
minimum total weight of a feedback arc set is equal to the maximum size of a cycle packing.
The purpose of this paper is to present a structural characterization of all CM tournaments,
which yields a polynomial-time algorithm for the minimum-weight feedback arc set problem
on such tournaments.
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1 Introduction

Consider a sports tournament in which each of n players is required to play precisely one game
with each other player, and assume that each game ends in a win or a loss. After completion of
the tournament, it is desirable to find a ranking of all n players that minimizes the number of
upsets, where an upset occurs if a higher ranked player was actually defeated by a lower ranked
player. This problem can be rephrased as the so-called minimum feedback arc set problem on
tournaments, and will be investigated in the more general weighted setting in this paper.

Let G = (V,A) be a digraph with a nonnegative integral weight w(e) on each arc e. A subset
F of arcs is called a feedback arc set (FAS) of G if G\F contains no cycles (directed). The
minimum-weight FAS problem (or simply FAS problem) is to find an FAS in G with minimum
total weight. Digraph G is called a tournament if there is precisely one arc between any two
vertices in G. The FAS problem on tournaments, abbreviated FAST, dates back to as early
as the 1780s when Borda [7] and Condorcet [12] each proposed voting systems for elections
with more than two candidates. Since the FAST arises in a rich variety of applications in
sports, databases, and statistics, where it is necessary to effectively combine rankings from
different sources, FAS’s in tournaments have been studied extensively from the combinatorial
[19, 20, 34, 38], statistical [33], and algorithmic [1, 2, 13, 28, 37, 36] points of view, and thus have
produced a vast body of literature. In [1], Ailon, Charikar, and Newman proved that the FAST
is NP -hard under randomized reductions even in the unweighted case. In [3], Alon showed that
this unweighted version is in fact NP -hard; in [10], Charbit, Thomassé, and Yeo established this
result independently. In [28], Mathieu and Schudy devised a polynomial time approximation
scheme (PTAS) for the FAST. Given these results, it is natural to ask the following question:
When can the FAST be solved exactly in polynomial time? Inspired by the title of Mathieu
and Schudy’s paper [28], this is equivalent to asking: Which tournaments can be ranked with
no errors? The purpose of this paper is to resolve this problem using polyhedral and linear
programming approaches.

We introduce some terminology before proceeding. Let Cx ≥ d, x ≥ 0 be a rational linear
system and let P denote the polyhedron {x : Cx ≥ d, x ≥ 0}. We call P integral if it is the
convex hull of all integral vectors contained in P . As shown by Edmonds and Giles [18], P is
integral iff the minimum in the LP-duality equation

min{wTx : Cx ≥ d, x ≥ 0} = max{yTd : yTC ≤ wT, y ≥ 0}
has an integral optimal solution, for every integral vector w for which the optimum is finite. If,
instead, the maximum in the equation enjoys this property, then the system Cx ≥ d, x ≥ 0 is
called totally dual integral (TDI). It is well known that many combinatorial optimization prob-
lems can be naturally formulated as integer programs of the form min{wTx : x ∈ P, integral};
if P is integral, then such a problem reduces to its LP-relaxation. Edmonds and Giles [18]
proved that total dual integrality implies primal integrality: if Cx ≥ d, x ≥ 0 is TDI and d is
integer-valued, then P is integral. Thus the model of TDI systems serves as a general framework
for establishing many combinatorial min-max theorems. Over the past six decades, these two
integrality properties have been the subjects of extensive research and the major concern of
polyhedral combinatorics (see Schrijver [29, 30] for comprehensive accounts).

Let us return to the FAS problem. Let M be the cycle-arc incidence matrix of the input
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digraph G, and let π(G) denote the linear system Mx ≥ 1, x ≥ 0. We call G cycle ideal
(CI) if π(G) defines an integral polyhedron, and call G cycle Mengerian (CM) if π(G) is a TDI
system. To facilitate better understanding, we give an intuitive interpretation of these concepts.
A collection C of cycles (with repetition allowed) in G is called a cycle packing of G if each arc
e is used at most w(e) times by members of C. The cycle packing problem consists in finding a
cycle packing with maximum size, which can be viewed as the dual version of the FAS problem.
To see this, let P(G,w) stand for the linear program

Minimize wTx

Subject to Mx ≥ 1

x ≥ 0,

and let D(G,w) denote its dual

Maximize yT1

Subject to yTM ≤ wT

y ≥ 0,

where w = (w(e) : e ∈ A). Then P(G,w) (resp. D(G,w)) is exactly the LP-relaxation of the
FAS problem (resp. cycle packing problem), and thus is called the fractional FAS problem (resp.
fractional cycle packing problem). Let τw(G) be the minimum total weight of an FAS, let νw(G)
be the maximum size of a cycle packing, let τ∗w(G) be the optimal value of P(G,w), and let
ν∗w(G) be the optimal value of D(G,w). Clearly,

νw(G) ≤ ν∗w(G) = τ∗w(G) ≤ τw(G);

these two inequalities, however, need not hold with equalities in general (as we shall see in Section
2). The aforementioned Edmonds-Giles theorems give rise to the following two observations:

• G is CI iff P(G,w) has an integral optimal solution for any nonnegative integral w iff
τ∗w(G) = τw(G) for any nonnegative integral w. Since the separation problem of P(G,w) is the
minimum-weight cycle problem, which admits a polynomial-time algorithm, it follows from a
theorem of Grötschel, Lovász, and Schrijver [22] that P(G,w) is always solvable in polynomial
time. Therefore, the FAS problem can be solved in polynomial time for any nonnegative integral
w, provided its input digraph G is CI; and

• G is CM iff D(G,w) has an integral optimal solution for any nonnegative integral w iff
ν∗w(G) = νw(G) for any nonnegative integral w iff the beautiful min-max relation νw(G) = τw(G)
holds for any nonnegative integral w. (This gives an equivalent definition of CM digraphs.)

So the study of CI and CM digraphs has both great theoretical interest and practical value.
Initiated in the early 1960s [14, 38], it has inspired many min-max theorems in combinatorial
optimization, such as Lucchesi and Younger [27], Seymour [31, 32], Geelen and Guenin [21],
Guenin [23, 24], Guenin and Thomas [25], Cai et al. [8, 9], and Ding et al. [16, 17]. Despite
tremendous research efforts, only some special classes of CI and CM digraphs [27, 23, 25] have
been identified to date, and a complete characterization seems extremely hard to obtain.

Let D5 be the digraph obtained from K5 (the complete graph with five vertices) by replacing
each edge ij with a pair of opposite arcs (i, j) and (j, i). Applegate, Cook, and McCormick [4] and
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Barahona, Fonlupt, and Mahjoub [5] independently proved that D5 is CM, thereby confirming a
conjecture posed in both Barahona and Mahjoub [6] and Jünger [26]. This theorem is equivalent
to saying that every tournament with five vertices is cycle Mengerian.

The purpose of this paper is to give a complete characterization of all CI and CM tour-
naments. We say that a tournament is Möbius-free if it contains none of K3,3, K

′
3,3, M5, and

M∗
5 depicted in Figure 1 as a subgraph. This class of tournaments is so named because the

forbidden structures are all Möbius ladders. Observe that M∗
5 is obtained from M5 by reversing

the direction of each arc.

Figure 1. Forbidden Structures

Theorem 1.1. For a tournament T = (V,A), the following statements are equivalent:

(i) T is Möbius-free;

(ii) T is cycle ideal; and

(iii) T is cycle Mengerian.

Throughout this paper we shall repeatedly use the following notations and terminology.
As usual, R+ and Z+ stand for the sets of nonnegative real numbers and nonnegative integers,

respectively. For any two sets Ω and K, where Ω is always a set of numbers and K is always
finite, we use ΩK to denote the set of vectors x = (x(k) : k ∈ K) whose coordinates are members
of Ω. If f is a function defined on a finite set S and R ⊆ S, then f(R) denotes

∑
s∈R f(s).

Digraphs considered in this paper contain no parallel arcs nor loops unless otherwise stated,
but they may contain opposite arcs. Let G be a digraph. We use V (G) and A(G) to denote its
vertex set and arc set, respectively, if they are not specified. For each v ∈ V (G), we use d+G(v)
and d−G(v) to denote the out-degree and in-degree of v, respectively. We call v a near-sink of
G if its out-degree is one, and call v a near-source if its in-degree is one. For simplicity, an arc
e = (u, v) of G is also denoted by uv. Arc e is called special if either u is a near-sink or v is a
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near-source of G. For each U ⊆ V (G), we use δ+(U) (resp. δ−(U)) to denote the set of all arcs
from U to V (G)\U (resp. from V (G)\U to U), and write δ+(U) = δ+(u) and δ−(U) = δ−(u)
if U = {u}. We also use G/U to denote the digraph obtained from G by first deleting arcs
between any two vertices in U , then identifying all vertices in U , and finally deleting the parallel
arcs except one from each vertex to each other vertex; we say that G/U is obtained from G by
contracting U . We say that U is a homogeneous set of G if |U | ≥ 2 and the arcs between U and
any vertex v outside U are either all directed to U or all directed to v. For each arc e = (u, v)
of G, the digraph obtained from G by contracting e, denoted by G/e, is exactly G/{u, v}. A
dicut of G is a partition (X,Y ) of V (G) such that all arcs between X and Y are directed to
Y . A dicut (X,Y ) is trivial if |X| = 1 or |Y | = 1. Recall that G is called weakly connected if
its underlying undirected graph is connected, and is called strongly connected or strong if each
vertex is reachable from each other vertex. Clearly, a weakly connected digraph G is strong iff
G has no dicut. Furthermore, a weakly connected digraph G is called internally strong if every
dicut of G is trivial, and is called internally 2-strong (i2s) if G is strong and G\v is internally
strong for every vertex v. A strong component of G is a maximal strong subgraph, where the
adjective maximal is meant with respect to set-inclusion rather than size. Note that each vertex
of G belongs to exactly one strong component. Thus the strong components of G can be ordered
as A1, A2, . . . , Ap, such that the arcs between Ai and Aj are all directed from Ai to Aj for any
1 ≤ i < j ≤ p; we refer to (A1, A2, . . . , Ap) as a strong partition of G. The reverse of G, denoted
by G∗, is obtained from G be reversing the direction of each arc.

By a cycle or a path in a digraph we always mean a directed one. By a triangle we mean a
directed cycle of length three. Let P be a directed path from a to b and let c and d be two vertices
on P such that a, b, c, d (not necessarily distinct) occur on P in order as we traverse P in its
direction from a. Then P [c, d] denotes the subpath of P from c to d, and P (c, d) = P [c, d]\{c, d}.
Let C be a directed cycle. For each vertex a on C, we use a− (resp. a+) to denote the vertex
precedes (resp. succeeds) a as we traverse C in its direction. For each pair of vertices a and b
on C, we use C[a, b] to denote the segment of C from a to b.

The remainder of this paper is organized as follows. In Section 2, we first show that every
cycle ideal tournament is Möbius-free. We then introduce a summing operation, which plays
an important role in the structural description of Möbius-free tournaments. In Section 3, we
prove that every i2s Möbius-free tournament comes from a finite list. In Section 4, we give a
structural decomposition of Möbius-free tournaments that are not i2s, and exhibit some basic
properties satisfied by the optimal solutions to the fractional cycle packing and FAS problems.
In Sections 5 (resp. 6), we carry out a series of basic (resp. composite) reduction operations
involved in the reduction step. In Section 7, we accomplish the last step of our proof. In Section
8, we conclude this paper with some remarks.

2 Preliminaries

In this section, we first show that each digraph displayed in Figure 1 is a forbidden structure of
cycle ideal (CI) tournaments. We then introduce a summing operation on tournaments, which
will be used to lift the connectivity of the Möbius-free tournament involved in Theorem 1.1.
Finally, we prove that being Möbius-free is preserved under this summing operation and under
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contracting special arcs.

Lemma 2.1. Every cycle ideal tournament is Möbius-free.

Proof. Assume the contrary: Some CI tournament T = (V,A) contains a member D of
{K3,3,K

′
3,3,M5,M

∗
5 }. Let B be the arc set of D and let C be the family of all cycles in T . Define

w(e) = 1 if e ∈ B and w(e) = 0 if e ∈ A\B. We propose to show that, for this weight function
w, the optimal value of P(T,w), denoted by τ∗w(T ), is not integral. Depending on the structure
of D, we consider four cases.

Case 1. D = K3,3.
Define x ∈ RA

+ and y ∈ RC
+ as follows:

• x(e) = 1 if e ∈ A\B, x(e) = 1/2 if e ∈ {u1u2, u3u4, u5u6}, and x(e) = 0 otherwise; and
• y(C) = 1/2 if C ∈ {u1u2u3u4u1, u3u4u5u6u3, u1u2u5u6u1} and y(C) = 0 otherwise.

It is easy to see that x and y are feasible solutions to P(T,w) and D(T,w), respectively. Since
both of their objective values are 3/2, by the LP-duality theorem, x and y are actually optimal
solutions to P(T,w) and D(T,w), respectively. Thus τ∗w(T ) = 3/2.

Case 2. D = K ′
3,3.

Define x ∈ RA
+ and y ∈ RC

+ as follows:
• x(e) = 1 if e ∈ A\B, x(e) = 1/2 if e ∈ {u1u2, u3u4, u5u6}, and x(e) = 0 otherwise; and
• y(C) = 1/2 if C ∈ {u1u2u3u4u1, u3u4u5u6u7u3, u1u2u5u6u1} and y(C) = 0 otherwise.

Similar to Case 1, we can show that x and y are optimal solutions to P(T,w) and D(T,w),
respectively, and τ∗w(T ) = 3/2.

Case 3. D = M5.
Define x ∈ RA

+ and y ∈ RC
+ as follows:

• x(e) = 1 if e ∈ A\B, x(e) = 1/2 if e ∈ {u1u2, u2u3, u3u4, u5u3, u6u5}, and x(e) = 0
otherwise; and

• y(C) = 1/2 if C ∈ {u1u2u3u1, u2u3u4u2, u3u4u5u3, u3u6u5u3, u1u2u6u5u1} and y(C) = 0
otherwise.

Similar to Case 1, we can show that x and y are optimal solutions to P(T,w) and D(T,w),
respectively, and τ∗w(T ) = 5/2.

Case 4. D = M∗
5 .

Consider the reverse T ∗. In view of the 1− 1 correspondence between cycles in T and those
in T ∗ and using the statement established in Case 3, we obtain τ∗w(T ) = 5/2 in this case as well.

Combining the above cases, we conclude that τ∗w(T ) is not integral. So P(T,w) has no inte-
gral optimal solution and hence T is not CI, a contradiction.

As an important endeavor towards a proof of Theorem 1.1, we shall demonstrate that all
Möbius-free tournaments can be constructed from some prime tournaments using the following
summing operation: Let T1 = (V1, A1) and T2 = (V2, A2) be two strong tournaments, with
|Vi| ≥ 3 for i = 1, 2. Suppose (a1, b1) is a special arc of T1 with d+T1

(a1) = 1 and (b2, a2) is

a special arc of T2 with d−T2
(a2) = 1. The 1-sum of T1 and T2 over (a1, b1) and (b2, a2) is the

tournament arising from the disjoint union of T1\a1 and T2\a2 by identifying b1 with b2 (the
resulting vertex is denoted by b) and adding all arcs from T1\{a1, b1} to T2\{a2, b2}. We call b
the hub of the 1-sum. See Figure 2 for an illustration. Note that if |Vi| = 3 for i = 1 or 2, then
Ti is a triangle, and thus T = T3−i. We say that T1 is smaller than T2 if |V1| < |V2|.
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Figure 2. 1-sum of T1 and T2.

Lemma 2.2. Let T = (V,A) be a strong tournament. If T is not i2s, then T is the 1-sum of
two smaller strong tournaments.

Proof. Since T is not i2s, it contains a vertex b such that T\b has a nontrivial dicut
(X,Y ). As T is strong, there exist a1 ∈ Y and a2 ∈ X such that {(a1, b), (b, a2)} ⊆ A. Set
T1 = T\(Y \a1), T2 = T\(X\a2), and rename b as bi in Ti for i = 1, 2. Clearly, a1 has out-degree
one in T1 and a2 has in-degree one in T2. From the definition we see that T is the 1-sum of T1 and
T2 over (a1, b1) and (b2, a2). Furthermore, Ti is strong and has fewer vertices than T for i = 1, 2.

Let us show that being Möbius-free is maintained under the 1-sum operation.

Lemma 2.3. Let T = (V,A) be the 1-sum of two tournaments T1 and T2. Then T is Möbius-free
iff both T1 and T2 are Möbius-free.

Proof. Since both T1 and T2 are sub-tournaments of T , the “only if” part holds trivially. To
establish the “if” part, assume the contrary: T contains a member D of {K3,3,K

′
3,3,M5,M

∗
5 };

subject to this, the number of vertices in D is minimum. Let b be the hub of the 1-sum. Then
b is contained in D. Observe that

(1) if D = K ′
3,3, then (u3, u6) ∈ A (see the labeling in Figure 1), for otherwise T would

contain K3,3, contradicting the minimality assumption on D.
Set D′ = D ∪ {(u3, u6)} if D = K ′

3,3 and set D′ = D otherwise. It it a routine matter to
check that D′ is i2s (while K ′

3,3 is not). Since T is the 1-sum of T1 and T2 and since T contains
D′ by (1), either T1\b or T2\b contains precisely one vertex from D′\b. Therefore, either T1 or
T2 contains a subgraph isomorphic to D′ and hence is not Möbius-free.

In the remainder of this section, we show that being Möbius-free is also preserved under the
operation of contracting a special arc. Note that the resulting digraph may contain opposite
arcs.

Lemma 2.4. Let T = (V,A) be a Möbius-free tournament with a special arc a = (x, y). Then
T/a is also Möbius-free.

Proof. Replacing T by its reverse T ∗ if necessary, we may assume that x is a near-sink of T .
Thus y is the only out-neighbor of x. Let z be the vertex obtained by identifying x and y in T/a
and let F = {K3,3,K

′
3,3,M5,M

∗
5 }. Assume the contrary: T/a contains a subdigraph D ∈ F .
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Then z is in D. We use D′ to denote the digraph obtained from D\z by adding two vertices x
and y and adding all arcs in {(x, y)} ∪ {(y, u) : (z, u) ∈ A(D)} ∪ {(u, x) : u ∈ V (D)\z}. Clearly,
D′ is a subgraph of T . We propose to prove that

(1) T contains a member of F .
Let us label the vertices of D as in Figure 1. Depending on the structure of D, we distinguish

among four cases.

Case 1. D = K3,3. In this case, symmetry allows us to assume that z = u4 or u5.
• z = u4. Then u1 and u5 are the only out-neighbors of y in D′. Thus the union of the three

cycles u1u2u5u6u1, xyu1u2x, and xyu5u6x forms a K3,3 in T .
• z = u5. Then u6 is the only out-neighbor of y in D′. If (u4, y) ∈ A, then the union of the

three cycles u1u2u3u4u1, u4yu6u3u4, and u1u2xyu6u1 forms a K ′
3,3 in T . Similarly, if (u2, y) ∈ A,

then the union of the three cycles u1u2u3u4u1, u1u2yu6u1, and u4xyu6u3u4 also forms a K ′
3,3

in T . So we assume that {(y, u4), (y, u2)} ⊆ A. Thus the union of the three cycles u4u1xyu4,
u1u2u3u4u1, and u2u3xyu2 forms a K3,3 in T .

Case 2. D = K ′
3,3. In this case, we may assume that (u3, u6) ∈ A, for otherwise the present

case reduces to Case 1.
• z = u2. Then u5 and u3 are the only out-neighbors of y in D′. It follows that the union of

the three cycles u3u4u5u6u7u3, xyu3u4x, and xyu5u6x forms a K ′
3,3 in T .

• z = u3. Then u4 is the only out-neighbor of y in D′. If (u6, y) ∈ A, then the union of
the three cycles u1u2u5u6u1, yu4u5u6y, and xyu4u1u2x forms a K ′

3,3 in T ; if (u2, y) ∈ A, then
the union of the three cycles u1u2u5u6u1, yu4u1u2y, and xyu4u5u6x also forms a K ′

3,3 in T . So
we assume that {(y, u6), (y, u2)} ⊆ A. It follows that a K3,3 is formed in T by the three cycles
xyu6u1x, xyu2u5x, and u1u2u5u6u1.

• z = u4. Then u1 and u5 are the only out-neighbors of y in D′. Thus the union of the three
cycles u1u2u5u6u1, xyu5u6x, and xyu1u2x forms a K3,3 in T .

• z = u6. Then u1 and u7 are the only out-neighbors of y in D′. It follows that the union of
the three cycles u1u2u3u4u1, xyu7u3u4x, and xyu1u2x forms a K ′

3,3 in T .
• z = u1. Then u2 is the only out-neighbor of y in D′. If {(u4, y), (u6, y)} ⊆ A, then the

union of the three cycles yu2u3u4y, yu2u5u6y, and u3u4u5u6u7u3 forms a K ′
3,3 in T . So we

assume that at least one of (y, u4) and (y, u6) is in A.
Consider the first subcase when (y, u4) ∈ A. If (u6, u2) ∈ A, then the union of the three

cycles xyu2u3x, xyu4u5x, and u2u3u4u5u6u2 forms a K ′
3,3 in T ; if (y, u7) ∈ A, then the union

of the three cycles xyu7u3x, xyu4u5x, and u3u4u5u6u7u3 forms a K ′
3,3 in T . So we assume that

{(u2, u6), (u7, y)} ⊆ A. If (u4, u6) ∈ A, then a K ′
3,3 is formed by the three cycles yu2u6u7y,

u3u4u6u7u3, and xyu2u3u4x; if (u3, u5) ∈ A, then a K ′
3,3 is formed by the three cycles yu2u6u7y,

u3u5u6u7u3, and xyu2u3u5x. So we further assume that {(u6, u4), (u5, u3)} ⊆ A. It follows that
the union of the three cycles u3u6u4u5u3, xyu4u5x, and xyu2u3u6x forms a K ′

3,3.
Consider the second subcase when (y, u6) ∈ A. If (u7, u2) ∈ A, then the union of the

three cycles xyu2u3x, u2u3u6u7u2, and xyu6u7x forms a K3,3; if (y, u3) ∈ A, then a K ′
3,3

is formed by the three cycles xyu6u7x, xyu3u4x, and u3u4u5u6u7u3; if (u4, u6) ∈ A, then a
K ′

3,3 is formed by the three cycles xyu6u7x, u3u4u6u7, and xyu2u3u4x. So we assume that
{(u2, u7), (u3, y), (u6, u4)} ⊆ A. If (u5, u3) ∈ A, then a K ′

3,3 is formed by the three cycles
u3u6u4u5u3, xyu6u4x, and xyu2u5u3x; if (u4, u2) ∈ A, then a K3,3 is formed by the three cycles
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xyu2u3x, xyu6u4x, and u2u3u6u4u2. So we further assume that {(u3, u5), (u2, u4)} ⊆ A. Now
if (y, u5) ∈ A, then the union of the three cycles u3u5u6u7u3, xyu5u6x, and xyu2u7u3x forms a
K ′

3,3; if (u5, y) ∈ A, then the union of the three cycles yu2u7u3y, yu2u4u5y, and u3u4u5u6u7u3
also forms a K ′

3,3.
• z = u5. Then u6 is the only out-neighbor of y in D′. If (y, u2) ∈ A, then the union of the

three cycles u1u2u3u6u1, xyu2u3x, and xyu6u1x forms a K3,3 in T . So we assume that (u2, y) ∈
A. If (u4, y) ∈ A, then the union of the three cycles yu6u1u2y, u1u2u3u4u1, and yu6u7u3u4y
forms a K ′

3,3 in T . So we also assume that (y, u4) ∈ A. If (u1, u7) ∈ A, then a K ′
3,3 is formed by

the three cycles u1u7u3u4u1, xyu4u1x, and xyu6u7u3x. So we further assume that (u7, u1) ∈ A.
If (y, u7) ∈ A, then a K ′

3,3 is formed by the three cycles u1u2u3u4u1, u1u2yu7u1, and xyu7u3u4x.
Similarly, if (y, u3) ∈ A, then a K ′

3,3 is formed by the three cycles u1u2u3u4u1, xyu3u4x, and
xyu6u1u2x; if (y, u1) ∈ A, then a K ′

3,3 is formed by the three cycles xyu1u2x, xyu6u7x, and
u1u2u3u6u7u1. Thus it remains to consider the subcase when {(u7, y), (u3, y), (u1, y)} ⊆ A. If
(u2, u7) ∈ A, then a K ′

3,3 is formed by the three cycles u1u2yu6u1, yu6u7u3y, and u1u2u7u3u4u1.
So we assume that (u7, u2) ∈ A. If (u6, u4) ∈ A, then a K ′

3,3 is formed by the three cycles
yu6u4u1y, u1u2u3u4u1, and yu6u7u2u3y. So we also assume that (u4, u6) ∈ A. If (u4, u7) ∈ A,
then a K ′

3,3 is formed by the three cycles yu4u6u1y, u1u2u3u6u1, and yu4u7u2u3y. So we further
assume that (u7, u4) ∈ A.

From the above observations, we conclude that u7 has a unique in-neighbor u6 in the sub-
tournament T ′ of T induced by V (D′). If {(u6, u2), (u2, u4)} ⊆ A, then an M∗

5 is formed by the
five cycles yu4u1y, u1u2u4u1, u2u4u6u2, u4u6u7u4, and yu6u7u1y. If (u2, u6) ∈ A, then a K3,3

is formed by u1u2u3u4u1, u3u4u6u7u3, and u1u2u6u7u1; if (u4, u2) ∈ A, then the union of the
three cycles u1u2u3u6u1, yu4u2u3y, and yu4u6u1y also forms a K3,3 in T .

• z = u7. Then u3 is the only out-neighbor of y in D′. If (u6, y) ∈ A, then the union of
the three cycles u1u2u5u6u1, u1u2u3u4u1, and yu3u4u5u6y forms a K ′

3,3 in T ; if (y, u1) ∈ A,
then a K3,3 is formed in T by the three cycles u1u2u3u4u1, xyu1u2x, and xyu3u4x. So we
assume that {(y, u6), (u1, y)} ⊆ A. If (u1, u3) ∈ A, then a K ′

3,3 is formed by xyu6u1x, xyu3u4x,
and u1u3u4u5u6u1; if (u4, u6) ∈ A, then the union of the three cycles xyu6u1x, xyu3u4x, and
u1u2u3u4u6u1 forms a K ′

3,3 in T ; if (y, u2) ∈ A, then the union of the three cycles u1u2u5u6u1,
xyu6u1x, and xyu2u5x forms aK3,3 in T . So we further assume that {(u3, u1), (u6, u4), (u2, y)} ⊆
A. Depending on whether (u5, y) ∈ A, we distinguish between two subcases.

Consider the first subcase when (u5, y) ∈ A. If (u4, u2) ∈ A, then a K ′
3,3 is formed in T by

the three cycles u1u2u5u6u1, yu3u6u1y, and yu3u4u2u5y. So we assume that (u2, u4) ∈ A. If
(u6, u2) ∈ A, then a K3,3 is formed by the three cycles u2u4u5u6u2, yu3u6u2y, and yu3u4u5y.
So we further assume that (u2, u6) ∈ A. If (u4, y) ∈ A, then a K3,3 is formed in T by the three
cycles u1u2u6u4u1, yu3u6u4y, and yu3u1u2y in T ; if (y, u4) ∈ A, then a K ′

3,3 is formed in T by
the three cycles xyu6u1x, xyu4u5x, and u1u2u4u5u6u1.

Consider the second subcase when (y, u5) ∈ A. If (y, u4) ∈ A, then a K ′
3,3 is formed by

the three cycles xyu5u6x, xyu4u1x, and u1u2u5u6u4u1. So we assume that (u4, y) ∈ A. If
(u2, u6) ∈ A, then a K3,3 is formed by the three cycles u1u2u6u4u1, yu3u6u4y, and yu3u1u2y. So
we also assume that (u6, u2) ∈ A. If (u2, u4) ∈ A, then a K ′

3,3 is formed in T by the three cycles
u2u4u5u6u2, xyu6u2x, and xyu3u4u5x; if (u5, u3) ∈ A, then a K3,3 is formed in T by the three
cycles xyu6u2x, xyu5u3x, and u2u5u3u6u2. Thus we further assume that {(u4, u2), (u3, u5)} ⊆ A.
It follows that a K ′

3,3 is formed in T by the three cycles u2u5u6u4u2, yu3u4u2y, and yu3u5u6u1y.
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Case 3. D = M5. In this case, u1 and u6 are symmetric, so are u2 and u5.
• z = u4. Then vertices u2 and u5 are the only out-neighbors of y in D′. If (u3, y) ∈ A, then

an M5 is formed in T by the five cycles u3u6u5u3, yu5u3y, yu2u3y, u1u2u3u1, and u1u2u6u5u1. If
(y, u3) ∈ A, then a K ′

3,3 is formed in T by the three cycles xyu5u1x, xyu3u6x, and u1u2u3u6u5u1.
• z = u5. Then u1 and u3 are the only out-neighbors of y in D′. If (u4, u1) ∈ A, then

a K3,3 is formed by the three cycles u1u2u3u4u1, xyu1u2x, and xyu3u4x. So we assume that
(u1, u4) ∈ A. If (y, u4) ∈ A, then a K3,3 is formed by the three cycles u1u4u2u3u1, xyu4u2x, and
xyu3u1x. Thus we further assume that (u4, y) ∈ A. It follows that an M5 is formed in T by the
five cycles u1u2u3u1, u2u3u4u2, yu3u4y, xyu3x, and xyu1u2x.

• z = u6. Then u5 is the only out-neighbor of y in D′. If {(u2, y), (u3, y)} ⊆ A, then an
M5 is formed in T by the five cycles u3u4u5u3, yu5u3y, u2u3u4u2, u1u2u3u1, and yu5u1u2y.
Otherwise, if (y, u2) ∈ A, then a K ′

3,3 is formed in T by the three cycles xyu5u1x, xyu2u3x, and
u1u2u3u4u5u1; if (y, u3) ∈ A, then a K ′

3,3 is formed in T by the three cycles xyu5u1x, xyu3u4x,
and u1u2u3u4u5u1.

• z = u3. Then u1, u4, and u6 are the only out-neighbors of y in D′. If {(u5, y), (u2, y)} ⊆ A,
then an M5 is formed in T by the five cycles yu6u5y, yu4u5y, yu4u2y, yu1u2y, and u1u2u6u5u1.
Suppose at least one of (y, u5) and (y, u2) is in T . If both (y, u5) and (y, u2) are in T , then a
K3,3 is formed by the three cycles u1u2u6u5u1, xyu5u1x, and xyu2u6x. So we assume that either
{(y, u5)(u2, y)} ⊆ A or {(y, u2), (u5, y)} ⊆ A.

Consider the first subcase when {(y, u5), (u2, y)} ⊆ A. If (u6, u4) ∈ A, then a K ′
3,3 is

formed in T by the three cycles xyu5u1x, xyu6u4x, and u1u2u6u4u5u1. So we may assume
that (u4, u6) ∈ A. If (u1, u4) ∈ A, then a K3,3 is formed in T by the three cycles u1u4u6u5u1,
xyu5u1x, and xyu4u6x. If (u4, u1) ∈ A, then a K ′

3,3 is formed in T by the the three cycles
u1u2u6u5u1, yu4u1u2y, and xyu4u6u5x.

Consider the second subcase when {(y, u2), (u5, y)} ⊆ A. If (u6, u4) ∈ A, then a K ′
3,3 is

formed in T by the three cycles xyu4u5x, xyu2u6x, and u1u2u6u4u5u1. If (u1, u4) ∈ A, then a
K ′

3,3 is formed in T by the three cycles xyu2u6x, xyu1u4x, and u1u4u2u6u5u1. So we assume that
{(u4, u6), (u4, u1)} ⊆ A. Then a K ′

3,3 is formed in T by the three cycles u1u2u6u5u1, yu4u6u5y,
and xyu4u1u2x.

Case 4. D = M∗
5 . In this case, u1 and u6 are symmetric, so are u2 and u5.

• z = u3. Then u5 and u2 are the only out-neighbors of y in D′. Thus a K3,3 is formed in T
by the three cycle u1u5u6u2u1, xyu2u1x, and xyu5u6x.

• z = u4. Then u3 is the only out-neighbor of y in D′. If both {(u2, y), (u5, y)} ⊆ A, then an
M∗

5 is formed by the five cycles u1u3u2u1, yu3u2y, yu3u5y, u3u5u6u3, and u1u5u6u2u1. So we
assume that at most one of (u2, y) and (u5, y) is in T . If (y, u2) ∈ A, then a K ′

3,3 is formed in T
by the three cycles u1u3u5u6u2u1, xyu2u1x, and xyu3u5x; if (y, u5) ∈ T , then a K ′

3,3 is formed
in T by the three cycles xyu3u2x, xyu5u6x, and u1u5u6u3u2u1.

• z = u6. Then u2 and u3 are the only out-neighbors of y in D′. If (u5, y) ∈ A, then an
M∗

5 is formed in T by the five cycles u1u3u2u1, u2u4u3u2, u3u5u4u3, yu3u5y, and yu2u1u5y. If
(y, u5) ∈ A, then a K ′

3,3 is formed in T by the three cycles xyu5u4x, xyu2u1x, and u1u5u4u3u2u1.
• z = u5. Then u4 and u6 are the only out-neighbors of y in D′. Observe that if both (u3, y)

and (u1, y) are arcs in T , then an M∗
5 is formed in T by the five cycles u1u3u2u1, u2u4u3u2,

yu4u3y, yu6u3y, and yu6u2u1y. So we assume that at least one of (y, u3) and (y, u1) is in T .
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Suppose (u4, u1) ∈ A. If (u1, u6) ∈ A, then a K3,3 is formed in T by the three cycles
u1u6u2u4u1, xyu4u1x, and xyu6u2x; if (y, u3) ∈ A, then a K3,3 is formed in T by the three
cycles u1u3u2u4u1, xyu4u1x, and xyu3u2x. So we assume that {(u6, u1), (u3, y)} ⊆ A. Then a
K ′

3,3 is formed in T by the three cycles u1u3u2u4u1, yu6u1u3y, and xyu6u2u4x.
Suppose (u1, u4) ∈ A. If (y, u2) ∈ A, then a K3,3 is formed by the three cycles u1u4u3u2u1,

xyu2u1x, and xyu4u3x. So we assume that (u2, y) ∈ A. Consider the subcase when (u1, y) ∈ A.
Now (y, u3) ∈ A. If (u4, u6) ∈ A, then the union of the three cycles u2u4u6u3u2, xyu4u6x,
and xyu3u2x forms a K3,3 in T ; if (u6, u4) ∈ A, then the union of the three cycles u1u4u3u2u1,
yu6u2u1y, and xyu6u4u3x forms a K ′

3,3 in T . Next, consider the subcase when (y, u1) ∈ A. If
(y, u3) ∈ A, then the union of the three cycles u1u4u3u2u1, xyu1u4x, and xyu3u2x forms a K3,3

in T ; if (u4, u6) ∈ A, then the union of the three cycles u2u4u6u3u2, yu1u3u2y, and xyu1u4u6x
forms a K ′

3,3 in T . Suppose {(u3, y), (u6, u4)} ⊆ A. Then a K ′
3,3 is formed in T by the three

cycles u1u4u3u2u1, yu6u4u3y, and xyu6u2u1x.
Combining the above four cases, we establish (1). Therefore T is not Möbius-free, a contra-

diction.

3 Structural Descriptions

In this section we show that every Möbius-free tournament can be constructed from some
prime tournaments using 1-sum operations. Our proof relies on the following chain theorem,
which asserts that every i2s tournament T = (V,A) with |V | ≥ 5 can be constructed from
{F1, F2, F3, F4, F5} (see Figure 3) by repeatedly adding vertices such that all the intermediate
tournaments are also i2s.

Figure 3. v1v2, v5v1 ∈ F1; v2v1, v1v5 ∈ F2; v2v1, v5v1 ∈ F3; v6v2 ∈ F4; v2v6 ∈ F5.

Theorem 3.1. Let T = (V,A) be an i2s tournament with |V | ≥ 5. Then the following state-
ments hold:

(i) If |V | = 5, then T ∈ {F1, F2, F3};
(ii) If |V | = 6, then either T has a vertex z with T\z ∈ {F1, F2, F3} or T ∈ {F4, F5};
(iii) If |V | ≥ 7, then T has a vertex z such that T\z remains to be i2s.

Our next theorem states that every i2s Möbius-free tournament with at least six vertices
comes from a finite family of sporadic tournaments, which, together with Lemmas 3.4 and 3.5,
gives a structural description of all i2s Möbius-free tournaments.
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Theorem 3.2. Let T = (V,A) be an i2s tournament with |V | ≥ 6. Then T is Möbius-free iff T
is one of G1, G2, G3, and F4 (see Figure 4).

Figure 4. v6v4 ∈ G2 and v4v6 ∈ G3.

Let C3 and F0 be the two tournaments depicted in Figure 5, and let

T1 = {C3, F0, F2, F3, F4, G2, G3}.

Our third theorem gives a structural description of all strong Möbius-free tournaments.

Figure 5. Strong tournaments with three or four vertices.

Theorem 3.3. Let T = (V,A) be a strong Möbius-free tournament with |V | ≥ 3. Then T can
be obtained by repeatedly taking 1-sums starting from tournaments in T1, unless T ∈ {F1, G1}.

We break the proofs of these theorems into a series of lemmas.

Lemma 3.4. Let T = (V,A) be a strong tournament. If |V | = 3, then T is C3; if |V | = 4, then
T is F0. (So T is strong iff it is i2s when |V | = 3 or 4.)

Proof. Since every strong tournament has a Hamilton cycle, it is clear that T = C3 if
|V | = 3 and T = F0 if |V | = 4. Note that both C3 and F0 are i2s, so T is strong iff it is i2s
when |V | = 3 or 4.

Lemma 3.5. Let T = (V,A) be an i2s tournament. If |V | = 5, then T ∈ {F1, F2, F3}.
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Proof. If T\u is strong for each u ∈ V , then both the in-degree and out-degree of each
vertex equal two, and hence T is isomorphic to F1.

So we assume that T\u has a trivial dicut (X,Y ) for some u ∈ V . Since each Fi is isomorphic
to its reverse for i = 1, 2, 3, replacing T by its reverse if necessary, we may assume that |X| = 1
and |Y | = 3. Let X = {x} and Y = {y1, y2, y3}. Since T\u is internally strong, Y induces a C3.
Since T is strong, (u, x) ∈ A, and u has at most two out-neighbors in Y . If u has exactly two
out-neighbors in Y , say y1 and y2 (by symmetry), then ({u, x}, {y1, y2}) would be a nontrivial
dicut of T\y3, a contradiction. So u has at most one out-neighbor in Y . If u has no out-neighbors
in Y , then all arcs between Y and u are directed to u, so T is isomorphic to F2. If u has only
one out-neighbor in Y , then T is isomorphic to F3.

Combining the above observations, we conclude that T ∈ {F1, F2, F3}.

Lemma 3.6. Let T = (V,A) be a strong tournament and let x and y be two distinct vertices
of T . Then T has a third vertex z such that T\z is still strong, unless T has a Hamilton path
between x and y such that the remaining arcs are all backward.

Proof. Since T is strong, it has a Hamilton cycle C. Let us first consider the case when
(1) T has a strong subgraph S containing both x and y with |V (S)| < |V |.

For notational simplicity, we assume that, subject to (1), S is chosen so that |V (S)| is as large
as possible. Then the vertices of S are consecutive on C. Let P = C\V (S). If P has only
one vertex, then we are done. So we assume that P has two or more vertices. Let s and t be
the initial and terminal vertices of P , respectively. Using the maximality assumption on S, we
see that {(v, s), (t, v)} ⊆ A for any vertex v in S. We claim that P contains no vertex other
than s and t, for otherwise, let z be an internal vertex of P and let v be a vertex in S. Then
either S ∪C[s−, z]∪ {(z, v)} or S ∪C[z, t+]∪ {(v, z)} would be a strong subgraph of T properly
containing S; this contradiction to (1) justifies the claim. Since {(v, s), (t, v)} ⊆ A for all vertices
v in S, we deduce that T\z is strong for any vertex z in S\{x, y}.

Next, let us consider the case when (1) does not occur. Renaming x and y if necessary, we
may assume that (x, y) ∈ A. From the hypothesis of the present case, we deduce that (x, y) is
an arc on C, {(x, y+), (x−, y)} ⊆ A, and {(x, v), (v, y)} ⊆ A for any v ∈ V \{x, y, x−, y+}. Thus
C\(x, y) is a Hamilton path from y to x such that the remaining arcs are all backward.

Corollary 3.7. Let T = (V,A) be a strong tournament with |V | ≥ 4 and let x be a vertex in T .
Then there exists a vertex z ̸= x such that T\z is strong.

Proof. Let y be a vertex of T with y ̸= x. By Lemma 2.3,
• either T has a vertex z ̸= x, y such that T\z is strong
• or T has a Hamilton path between x and y such that the remaining arcs are all backward.

In the former case z is a desired vertex, and in the latter case y is as desired.

A digraph is called trivial if it contains only one vertex. The following lemma on strong
partitions of tournaments (see Section 1) is straightforward, so we omit its proof here.

Lemma 3.8. Let T = (V,A) be an internally strong tournament and let (A1, A2, . . . , Ap) be the
strong partition of T . If |V | ≥ 3, then one of the following statements holds:

(i) p = 1; A1 is nontrivial;
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(ii) p = 2; exactly one of A1 and A2 is nontrivial;

(iii) p = 3; both A1 and A3 are trivial.

The lemma below follows instantly from the preceding one.

Lemma 3.9. Let T = (V,A) be an i2s tournament, let x be a vertex in T , and let (A1, A2, . . . , Ap)
be the strong partition of T\x. Then 1 ≤ p ≤ 3. (The value of p is called the type of x in T ).

For convenience, we shall not distinguish each Ai from its vertex set V (Ai) in subsequent
proofs, if there is no risk of confusion. Thus |Ai| = |V (Ai)|.

The following two lemmas guarantee the existence of a vertex z in an i2s tournament T with
at least six vertices such that T\z remains to be i2s.

Lemma 3.10. Let T = (V,A) be an i2s tournament with |V | ≥ 6. If T contains a vertex x of
type 3 (see Lemma 3.9), then it contains a vertex z such that T\z remains to be i2s.

Proof. Let (A1, A2, A3) be the strong partition of T\x. Since x is of type 3, |A1| = |A3| = 1
by Lemma 3.8. So |A2| ≥ 3. Let zi be the only vertex in Ai for i = 1, 3. Since T is i2s, both
(x, z1) and (z3, x) are arcs in T . Furthermore, x has at least one in-neighbor x1 and at least one
out-neighbor x2 in A2. If there exists z ∈ A2\{x1, x2} such that A2\z is strong, then T\z is i2s.
Otherwise, by Lemma 3.6, A2 has a Hamilton path between x1 and x2 such that the remaining
arcs of A2 are all backward. Let z = x2 if x1 is the only in-neighbor of x in A2 and let z = x1
otherwise. Then A2\z is strong and has at least one in-neighbor and at least one out-neighbor
of x. Therefore T\z is i2s.

Lemma 3.11. Let T = (V,A) be an i2s tournament with |V | ≥ 6 and T /∈ {F4, F5} (see Figure
3). Then T contains a vertex z such that T\z remains to be i2s.

Proof. We proceed by contradiction. By a triple (T ;x, y) we mean an i2s tournament
T = (V,A) with |V | ≥ 6 and T /∈ {F4, F5} such that T\z is not i2s for any vertex z, together
with two distinguished vertices x and y in T . Let us choose a triple (T ;x, y) such that

(1) T\x is strong while T\{x, y} is not internally strong;
(2) subject to (1), letting (A1, A2, . . . , Ap) be the strong partition of T\{x, y}, A1 contains

an out-neighbor x′ of x; and
(3) subject to (1) and (2), the tuple (|A1|, |A2|, ..., |Ap|) is minimized lexicographically.

By Corollary 3.7, there exists a triple (T ;x, y) satisfying (1). To verify the existence of a triple
(T ;x, y) satisfying both (1) and (2), note that if x has no out-neighbor in A1, then it must have
an in-neighbor in Ap, for otherwise, y would be of type 3, and hence T\z would be i2s for some
vertex z by Lemma 3.10, a contradiction. Since each of F4 and F5 is isomorphic to its reverse,
replacing T by T ∗ if necessary, we see that the triple (T ;x, y) is available.

Let us make some simple observations about the triple (T ;x, y). Since |V | ≥ 6, by (1) we
have

(4) p ≥ 2, and y has an out-neighbor y′ in A1 and an in-neighbor y′′ in Ap.
(5) If p = 2, then x has an in-neighbor in Ap.
Otherwise, since |V | ≥ 6 and T\y is internally strong, |A2| = 1 and |A1| ≥ 3, which implies

that T\{x, y} is internally strong, this contradiction justifies (5).

14



Once again, since T\y is internally strong, the statement below follows instantly from Lemma
3.8.

(6) If p ≥ 3 and x has no in-neighbor in Ap, then |Ap| = 1 and x has an in-neighbor in Ap−1.

Since Ai is strong, either |Ai| = 1 or |Ai| ≥ 3 for 1 ≤ i ≤ p. Let Ai = {ai} for each i with
|Ai| = 1 hereafter. We divide the remainder of the proof into a series of claims.

Claim 1. |A1| = 1.
Assume the contrary: |A1| ≥ 3. Replacing x′ (resp. y′) by a second out-neighbor of x

(resp. y) in A1 if necessary, we may assume that x′ ̸= y′, for otherwise, x′ = y′ is the unique
out-neighbor of both x and y in A1. Since T\x′ is internally strong and A1\x′ has no incoming
arcs, |A1\x′| ≤ 1 and thus |A1| ≤ 2, contradicting the assumption on |A1|. By Lemma 3.6, one
of (7), (8), and (9) holds:

(7) A1\{x′, y′} has a vertex z such that A1\z is strong.
(8) |A1| = 3. Renaming the vertices in A1 as x

′, y′, z if necessary, we assume that both (x, x′)
and (y, y′) are arcs in T , and that if three vertices in A1 are all out-neighbors of x, then (y′, x′)
is an arc in T ; otherwise, if three vertices in A1 are all out-neighbors of y, then (x′, y′) is an arc
in T .

(9) |A1| ≥ 4 and A1 has a Hamilton path P between x′ and y′ such that the remaining arcs
in A1 are all backward. Furthermore, we may assume that both (v, x) and (v, y) are arcs in T
for any v ∈ A1\{x′, y′}, for otherwise, (7) holds true by replacing x′ or y′ (which is z) with v.

Let z be as specified in (7) or (8), whichever holds, and let z be the terminal vertex of
P\{x′, y′} if (9) holds. Clearly, T\z is strong. We propose to prove that T\z is i2s, which
amounts to saying that

(10) T\{w, z} is internally strong for each w ∈ V \z.
From (5), (6), and the definition of z, we see that (10) holds trivially for any w ∈ ∪p−1

i=2Ai ∪
{x, y}. It remains to consider the following two cases.

Case 1.1. w ∈ Ap.
Depending on whether w = y′′ (see (4)), we distinguish between two subcases.
• w ̸= y′′. In this subcase, |Ap| ≥ 2. Thus x has at least one in-neighbor in Ap by (5) and

(6). Let (B1, B2, . . . , Bq) be the strong partition of Ap\w, let r be the largest subscript such
that Br contains an in-neighbor of x or y, and let B = ∪q

i=r+1Bi. Since B has no outgoing arcs
in T\w (which is internally strong), |B| ≤ 1. Let us show that T\{w, z} is internally strong, for
otherwise, x is a source and x′ is a near-source of T\{w, z}; in particular, (x′, y′) ∈ A. From the
descriptions of (7)-(9), we deduce that |A1| = 3 and (z, x) ∈ A. Consider the triple (T ; z, w). Let
(A′

1, A
′
2, . . . , A

′
t) be the strong partition of T\{z, w}. Then A′

1 = {x}. Since T\z is strong while
T\{z, w} is not internally strong, and |A′

1| < |A1|, the existence of the triple (T ; z, w) contradicts
the minimality assumption on (|A1|, |A2|, ..., |Ap|) in the choice of (T ;x, y) (see (1)-(3)).

• w = y′′. In this subcase, we may assume that y′′ is the only in-neighbor of y in Ap, for
otherwise, replacing y′′ by a second in-neighbor of y in Ap, we reduce the present subcase to the
preceding one. If x has an in-neighbor in Ap\w, then T\y is strong. Interchanging the roles of
x and y, we reduce the present subcase to the preceding one as well. Thus we further assume
that Ap\w contains no in-neighbors of x. Since T\w is internally strong, Ap = {w}. If w is an
in-neighbor of x, then the existence of the triple (T ∗;x, y) contradicts the minimality assumption
on (|A1|, |A2|, ..., |Ap|) in the choice of (T ;x, y) (see (1)-(3)). So w is an out-neighbor of x. By (5)
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and (6), Ap−1 contains an in-neighbor of x. Let us show that T\{w, z} is internally strong, for
otherwise, y is a source and y′ is a near-source of T\{w, z}; in particular, both (y′, x′) and (y′, x)
are arcs in T . From the descriptions of (7)-(9), we deduce that |A1| = 3 and (z, y) ∈ A. Thus
the existence of the triple (T ; z, w) contradicts the minimality assumption on (|A1|, |A2|, ..., |Ap|)
in the choice of (T ;x, y) (see (1)-(3)).

Case 1.2. w ∈ A1\z.
Depending on whether (7), (8), or (9) holds, we distinguish between two subcases.
• (7) holds. In this subcase, let (B1, B2, ..., Bq) be the strong partition of A1\{w, z}, let r

be the smallest subscript such that Br contains an out-neighbor of x or y, and let B = ∪r−1
i=1Bi.

Then (T\{w, z})\B is strong. If |B| ≤ 1, then T\{w, z} is internally strong. So we assume that
|B| ≥ 2. Since T\w is internally strong and since B has no incoming arcs in T\{w, z}, T\w
contains at least one arc from z to B. Thus the triple (T ; z, w) is a better choice than (T ;x, y)
(see (1)-(3)) because |B| < |A1|, a contradiction.

• (8) or (9) holds. In this subcase, if w = x′, then T\{w, x, z} is strong, so T\{w, z} is
internally strong. If w = y′ and x has an in-neighbor contained in Ap, then T\{w, y, z} is
strong, so T\{w, z} is also internally strong; if w = y′ and x has no in-neighbor contained in
Ap, then x has an in-neighbor x′′ contained in Ap−1 by (5) and (6), and y has an out-neighbor

contained in {x}∪(A1\y′)∪(∪p−1
i=2Ai) (as T\y′ is internally strong), and hence T\{w, z} is strong.

Suppose w /∈ {x′, y′}. In view of (5) and (6), it is clear that T\{w, z} is strong.
Combining the above two cases, we establish (10) for all w ∈ Ap ∪ (A1\z) and hence for all

w ∈ V \z. So T\z is i2s; this contradiction justifies Claim 1.

Claim 2. |A2| = 1.
Assume the contrary: |A2| ≥ 3. Since T\a1 is internally strong, A2 contains a vertex a2

which is an out-neighbor of x or y. If |A2| ≥ 4, let z be a vertex in A2\a2 such that A2\z is
strong (see Corollary 3.7); if |A2| = 3, let z be the vertex in A2 with (z, a2) ∈ A. Since T is i2s
and since x has an in-neighbor in Ap−1 ∪Ap by (5) and (6), T\z is strong. We propose to show
that T\z is i2s, which amounts to saying that

(11) T\{w, z} is internally strong for each w ∈ V \z.
From (5), (6), and the definition of z, we see that (11) holds trivially for any w ∈ {x, y} ∪

(A2\z) ∪ (∪p−1
i=3Ai). It remains to consider the following two cases.

Case 2.1. w = a1.
In this case, if a2 is an out-neighbor of y, then T\{a1, x, z} is strong and hence T\{a1, z} is

internally strong. So we assume that a2 is an out-neighbor of x. If x has an in-neighbor in Ap,
then T\{a1, y, z} is strong and hence T\{a1, z} is internally strong. So we further assume that
x has no in-neighbor in Ap. Then |Ap| = 1 and x has an in-neighbor in Ap−1 by (5) and (6).

We claim that y has an out-neighbor in {x} ∪ (A2\z) ∪ (∪p−1
i=3Ai), for otherwise, let B = {y, y′′}

and B̄ = V \{a1, y, y′′, z}. Then (B̄, B) is a nontrivial dicut in T\{a1, z}, so T\{a1, z} is not
internally strong. Therefore the existence of the triple (T ∗; z, a1) contradicts the minimality
assumption on (|A1|, |A2|, ..., |Ap|) in the choice of (T ;x, y) (see (1)-(3)). It follows instantly
from the claim that T\{a1, z} is strong.

Case 2.2. w ∈ Ap.
Depending on whether w = y′′, we distinguish between two subcases.
• w ̸= y′′. In this subcase, |Ap| ≥ 2. So x has an in-neighbor in Ap by (5) and (6). Let
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(B1, B2, ..., Bq) be the strong partition of Ap\w, let r be the largest subscript such that Br

contains an in-neighbor of x or y, and let B = ∪q
i=r+1Bi. Since B has no outgoing arcs in T\w

(which is internally strong), |B| ≤ 1. Clearly, (T\{w, z})\B is strong, so T\{w, z} is internally
strong.

• w = y′′. In this subcase, we may assume that y′′ is the only in-neighbor of y in Ap, for
otherwise, replacing y′′ by a second in-neighbor of y in Ap, we reduce the present subcase to the
preceding one. If x has an in-neighbor in Ap\w, then T\y is strong. Interchanging the roles of
x and y, we reduce the present subcase to the preceding one as well. So we assume that Ap\w
contains no in-neighbors of x. Since T\w is internally strong, |Ap\w| ≤ 1, so |Ap| ≤ 2. Since Ap

is strong, we have Ap = {w}. If w is an out-neighbor of x, then x has an in-neighbor in Ap−1 by
(5) and (6). Thus T\{w, y, z} is strong and hence T\{w, z} is internally strong. So we further
assume that w is an in-neighbor of x. If Ap−1 contains an in-neighbor of x or y, then T\{w, z}
is also internally strong; if Ap−1 contains no in-neighbor of x or y, then (∪p−2

i=1Ai ∪ {x, y}, Ap−1)
is a dicut in T\w. Since T\w is internally strong, |Ap−1| = 1. Thus the existence of the triple
(T ∗;x, y) contradicts the minimality assumption on (|A1|, |A2|, ..., |Ap|) in the choice of (T ;x, y)
(see (1)-(3)).

Combining the above two cases, we establish (11) for all w ∈ {a1} ∪ Ap and hence for all
w ∈ V \z. So T\z is i2s; this contradiction justifies Claim 2.

Claim 3. At least one of (x, a2) and (y, a2) is an arc in T .
Assume the contrary: both (a2, x) and (a2, y) are arcs in T . By (5) and (6), x has an in-

neighbor in Ap−1 ∪Ap, so T\a2 is strong. We propose to show that T\a2 is i2s, which amounts
to saying that

(12) T\{w, a2} is internally strong for each w ∈ V \a2.
Clearly, (12) holds for w ∈ ∪p−1

i=3Ai ∪ {x, y}. It remains to consider the following two cases.
Case 3.1. w = a1.
Since T\a1 is internally strong, A3 contains an out-neighbor of x or y. If A3 contains an

out-neighbor of y, then T\{a1, x, a2} is strong, and hence T\{a1, a2} is internally strong. So
we assume that A3 contains an out-neighbor of x. If Ap contains an in-neighbor of x, then
T\{a1, y, a2} is strong, so T\{a1, a2} is internally strong. If Ap contains no in-neighbor of x,
then |Ap| = 1 and x has an in-neighbor in Ap−1 by (5) and (6). Thus {x} ∪ A3 ∪ . . . ∪ Ap−1

induces a strong sub-tournament. Since T\a1 is internally strong, y has an out-neighbor in
{x} ∪A4 ∪ . . . ∪Ap−1. It follows that T\{a1, a2} is strong.

Case 3.2. w ∈ Ap.
Depending on whether w = y′′, we distinguish between two subcases.
• w ̸= y′′. In this subcase, the argument is exactly the same as the one employed in Case

2.2 when w ̸= y′′.
• w = y′′. In this subcase, we may assume that Ap = {w} and w is an in-neighbor of x (see

the proof in Case 2.2 when w = y′′). If Ap−1 contains an in-neighbor of x or y, then T\{w, a2} is

internally strong; otherwise, (∪p−2
i=1Ai ∪ {x, y}, Ap−1) is a dicut in T\w, so |Ap−1| = 1. If p = 4,

then T is isomorphic to F4 (see its labeling in Figure 3) under the mapping

(a1, a2, a3, a4, {x, y}) → (v5, v6, v2, v3, {v1, v4}),

contradicting the hypothesis. So p ≥ 5. Thus Ap−2 contains an in-neighbor of x or y, for
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otherwise (∪p−3
i=1Ai∪{x, y}, Ap−1∪Ap−2) would a nontrivial dicut in T\w, contradicting the fact

that T\w is internally strong. It follows that T\{w, a2} is internally strong, in which ap−1 is a
sink and possible y is a source.

Combining the above two cases, we establish (12) for all w ∈ {a1} ∪ Ap and hence for all
w ∈ V \a2. So T\a2 is i2s; this contradiction justifies Claim 3.

Claim 4. Let k be the largest subscript such that Ak contains an in-neighbor of x. Then
k = 3.

Assume the contrary: k ̸= 3. Since |V | ≥ 6 and |A1| = |A2| = 1 by Claims 1 and 2, we have
p ≥ 3. If p = 3, then |Ap| ≥ 2, so x has an in-neighbor in Ap by (5) and (6) and hence k = 3,
this contradiction implies that p ≥ 4. We propose to show that

(13) T\z is i2s for some vertex z of T .
Depending on the size of Ap and value of p, we distinguish among three cases.
Case 4.1. |Ap| ≥ 3.
In this case, x has an in-neighbor x′′ in Ap by (5) and (6). Let z be an arbitrary vertex in

A3. Clearly, T\z is strong. We aim to show that (13) holds for this z. By Claim 3, at least one
of (x, a2) and (y, a2) is in T . Thus T\{w, z} is internally strong for w ∈ ∪p−1

i=3Ai ∪ {x, y, a1, a2}.
To establish this statement for w ∈ Ap, we consider two subcases.

• w ̸= y′′. In this subcase, the argument is exactly the same as that employed in Case 2.2
when w ̸= y′′.

• w = y′′. In this subcase, we may assume that w is the only in-neighbor of y in Ap. Observe
that x has an in-neighbor in Ap\w, for otherwise, since T\w is internally strong, |Ap\w| ≤ 1, so
|Ap| ≤ 2, a contradiction. Interchanging the roles of x and y, we reduce the present subcase to
the preceding one.

Case 4.2. |Ap| = 1 and p ≥ 5.
In this case, x has an in-neighbor in Ap−1 ∪ Ap by (5) and (6). To prove (13), we proceed

by considering two subcases.
• A3 contains an out-neighbor of y. In this subcase, let us show that T\a2 is i2s. Clearly,

T\a2 is strong, and T\{a2, w} is internally strong for any w ∈ ∪p−1
i=3Ai ∪ {a1, x, y}. If Ap−1

contains an in-neighbor of x or y, then T\{a2, ap} is internally strong. So we assume that Ap−1

contains no in-neighbor of x or y. Note that (∪p−2
i=1Ai ∪ {x, y}, Ap−1) is a dicut in T\ap. Since

T\ap is internally strong, |Ap−1| = 1. Since p ≥ 5, Ap−2 contains an in-neighbor of x or y, for

otherwise (∪p−3
i=1Ai ∪ {x, y}, Ap−1 ∪ Ap−2) would be a nontrivial dicut in T\ap, a contradiction.

It follows that T\{a2, ap} is internally strong, in which ap−1 is a sink and possible one of x and
y is a source.

• All vertices in A3 are in-neighbors of y. In this subcase, let z be an arbitrary vertex in
A3; let us show that T\z is i2s. Clearly, T\z is strong. Observe that if ap is an out-neighbor of

x, then ∪p−1
i=4Ai ∪ {a2, x} contains an out-neighbor of y, for otherwise (∪p−1

i=3Ai ∪ {a2, x}, {y, ap})
would be an nontrivial dicut in T\a1, a contradiction. It follows that T\{w, z} is internally
strong for any w ∈ ∪p−1

i=3Ai ∪ {x, y, a2} no matter whether (x, ap) is an arc in T . Let us make
two more observations.

(14) T\{a1, z} is internally strong. To justify this, note that if (y, a2) is an arc in T , then
T\{a1, x, z} is strong, so T\{a1, z} is internally strong. Thus we may assume that (a2, y) is an
arc in T . By Claim 3, (x, a2) is also in T . If ap is an in-neighbor of x, then T\{a1, y, z} is
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strong and hence T\{a1, z} is internally strong; if ap is an out-neighbor of x, then x contains an

in-neighbor in Ap−1 by (6), and ∪p−1
i=4Ai ∪ {a2, x} contains an out-neighbor of y as observed in

the preceding paragraph. Thus (14) follows.
(15) T\{ap, z} is internally strong. To justify this, note that if Ap−1 contains an in-neighbor

of x or y, then T\{ap, z} is internally strong. If Ap−1 contains no in-neighbor of x or y, then

(∪p−2
i=1Ai ∪ {x, y}, Ap−1) is a dicut in T\ap, which implies that |Ap−1| = 1. Since p ≥ 5, Ap−2

contains an in-neighbor of x or y, for otherwise (∪p−3
i=1Ai ∪ {x, y}, Ap−1 ∪ Ap−2) is a nontrivial

dicut in T\ap, a contradiction. Thus (15) holds.
Case 4.3. |Ap| = 1 and p = 4.
In this case, (a4, x) is an arc in T by (5), (6), and the assumption k ̸= 3. Depending on the

size of A3, we consider two subcases.
• |A3| ≥ 3. In this subcase, A3 contains a vertex a3 which is an in-neighbor of x or y, because

T\a4 is internally strong. If |A3| = 3, let z be the vertex such that (a3, z) ∈ A3; if |A3| ≥ 4,
Corollary 3.7 guarantees the existence of a vertex z ∈ A3\a3 such that A3\z is strong. Let us
show that T\z is i2s. Clearly, T\z is strong, and T\{w, z} is internally strong for any w ̸= a1.
If (y, a2) is an arc in T , then T\{a1, x, z} is strong and hence T\{a1, z} is internally strong. If
(a2, y) is an arc in T , then so is (x, a2) by Claim 3. Since T\{a1, y, z} is strong, T\{a1, z} is
internally strong.

• |A3| = 1. In this subcase, if exactly one of (y, a3) and (x, a3) is an arc in T , then T\a2
is i2s. So we assume that either both (a3, y) and (a3, x) are in T or both (y, a3) and (x, a3)
are in T . If exactly one of (x, a2) and (y, a2) is in T , then T\a3 is i2s. So we further assume
that both (x, a2) and (y, a2) are in T by Claim 3. Thus both (a3, y) and (a3, x) are in T , for
otherwise, ({x, y}, {a1, a2, a3}) would be a dicut in T\a4, a contradiction. Now we can see that
T is isomorphic to F5 (see its labeling in Figure 3) under the mapping

(a1, a2, a3, a4, {x, y}) → (v5, v2, v6, v3, {v1, v4}),

contradicting the hypothesis of the present lemma.
Combining the above three cases, we have proved (13); this contradiction justifies Claim 4.

Claim 5. p = 4.
Assume the contrary: p ̸= 4. Since |V | ≥ 6 and |Ai| = 1 for i = 1, 2, we have p ≥ 3. By

Claim 4, (5), and (6), we also have p ≤ 4. So p = 3 = k. Let x′′ be an in-neighbor of x in A3.
Replacing x′′ (resp. y′′) by a second in-neighbor of x (resp. y) in A3 if necessary, we may assume
that x′′ ̸= y′′, for otherwise, x′′ is the only in-neighbor of x and y in A3. Since T\x′′ is internally
strong, |A3\x′′| ≤ 1, so |A3| ≤ 2 and hence |A3| = 1, contradicting the hypothesis that |V | ≥ 6.
If all vertices in A3 are in-neighbors of both x and y, then T\z is i2s for any z ∈ A3 by Claim 3.

So we assume that A3 contains an out-neighbor of x or y. We propose to show that T\a2
is i2s. Clearly, T\a2, T\{x, a2}, and T\{y, a2} are all strong. By the hypothesis of the present
case, A3 ∪ {x} or A3 ∪ {y} induces a strong sub-tournament of T , so T\{a1, a2} is internally
strong. Let w be an arbitrary vertex in A3. Since x′′ ̸= y′′, symmetry allows us to assume that
w ̸= x′′. If A3\w is strong, then T\{w, a2} is internally strong; otherwise, let (B1, B2, ..., Bq) be
the strong partition of A3\w. Then q ≥ 2. Let r be the largest subscript such that Br contains
an in-neighbor of x or y and let B = ∪q

i=r+1Bi. Since (∪r
i=1Bi ∪ {a1, a2, x, y}, B) is a dicut in

T\w, we have |B| ≤ 1. If T\(B ∪ {a2, w}) = ∪r
i=1Bi ∪ {a1, x, y} is strong, then T\{w, a2} is
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internally strong; otherwise, w is the only in-neighbor of y in A3 ∪ {x}. Since ∪r
i=1Bi ∪ {a1, x}

is strong, T\{w, a2} is also internally strong.
Combining the above observations, we see that T\z is i2s for some vertex z of T ; this

contradiction justifies Claim 5.

From (6) and Claims 4 and 5, we deduce that |A4| = 1 and (x, a4) is an arc in T . Depending
on the size of A3, we distinguish between two cases.

• |A3| ≥ 3. In this case, let x′′ be an in-neighbor of x in A3 (see Claim 4). If |A3| = 3, let z
be the vertex in A3 such that (x′′, z) is an arc; otherwise, let z be a vertex in A3\x′′ such that
A3\z is strong (see Corollary 3.7). Clearly, T\z is i2s. Let us show it is actually i2s; that is,
T\{w, z} is internally strong for any w ∈ V \z. This statement holds trivially when w ̸= a1. So
we assume that w = a1. If (y, a2) is an arc in T , then T\{a1, z} is strong; otherwise, by Claim
3, (x, a2) is an arc in T . So (A3\z) ∪ {a2, x} induces a strong sub-tournament of T . Since T\a1
is internally, (A3\z) ∪ {a2, x} contains an out-neighbor of y. Thus T\{a1, z} is strong.

• |A3| = 1. In this subcase, (a3, x) is an arc in T by Claim 4. If (y, a3) or (y, x) is an arc
in T , then T\a2 is i2s. So we assume that both (a3, y) and (x, y) are arcs in T . Since T\a1 is
internally strong, (y, a2) is an arc in T . Note that (a2, x) is an arc of T , for otherwise T would
be isomorphic to F4 (see its labeling in Figure 3) under the mapping

(a1, a2, a3, a4, x, y) → (v4, v1, v5, v2, v6, v3),

contradicting the hypothesis of the present lemma. It follows that T\a3 is i2s.
Combining the above two cases, we conclude that T contains a vertex z such that T\z re-

mains to be i2s; this contradiction proves the lemma.

With the above preparations, we are ready to establish the main results of this section.

Proof of Theorem 3.1. The desired statements follow instantly from Lemmas 3.5 and
3.11.

Proof of Theorem 3.2. For convenience, we say that an i2s Möbius-free tournament T ′

is an extension of T if T ′\v is isomorphic to T for some vertex v of T ′.

Claim 1. G1 is the only extension of F1.
To justify this, let T be an extension of F1, let v6 be a vertex of T such that T\v6 is

isomorphic to F1, and label the vertices of T\v6 as in Figure 3 for F1. We propose to show
that T is isomorphic to G1. Since the in-degree and out-degree of each vertex in F1 are two, F1

enjoys a high degree of symmetry in which all vertices behave likewise.
Since T is strong, symmetry allows us to assume that v1 is an in-neighbor of v6. Then at

most one of (v6, v2) and (v6, v5) is in T , for otherwise, the union of the five cycles v1v6v5v1,
v1v3v5v1, v2v3v5v2, v2v4v5v2, and v1v6v2v4v1 would form an M∗

5 in T , a contradiction. Thus we
may proceed by considering the following three cases.

• Both (v2, v6) and (v5, v6) are in T . In this case, since T is strong, at most one of (v3, v6)
and (v4, v6) is contained in T . If both (v6, v3) and (v4, v6) are in T , then the five cycles v1v2v4v1,
v5v2v4v5, v1v3v4v1, v6v3v4v6, and v2v6v3v5v2 would form an M5. Similarly, if both (v3, v6) and
(v6, v4) are in T , then the five cycles v1v3v5v1, v2v3v5v2, v2v4v5v2, v6v4v5v6, and v1v3v6v4v1
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would form an M5 in T as well. So both (v6, v3) and (v6, v4) are in T . Thus T is isomorphic
to G1, where (v1, v2, v3, v4, v5, v6) in T corresponds to (v2, v6, v4, v5, v1, v3) in G1 as labeled in
Figure 4.

• Both (v6, v2) and (v5, v6) are in T . In this case, (v6, v3) is in T , for otherwise, the five
cycles v1v3v4v1, v1v3v5v1, v2v3v5v2, v2v3v6v2, and v1v6v2v4v1 would form an M5, a contradiction.
If (v6, v4) is in T , then T is isomorphic to G1, where (v1, v2, v3, v4, v5, v6) in T corresponds to
(v2, v3, v4, v5, v1, v6) in G1 as labeled in Figure 3. If (v4, v6) is in T , then T is also isomorphic
to G1, where (v1, v2, v3, v4, v5, v6) in T corresponds to (v6, v4, v5, v1, v2, v3) in G1 as labeled in
Figure 4.

• Both (v2, v6) and (v6, v5) are in T . In this case, (v6, v4) is in T , for otherwise, the five
cycles v1v2v4v1, v1v3v4v1, v1v3v5v1, v1v6v5v1, and v2v4v6v5v2 would form an M5, a contradiction.
If (v6, v3) is in T , then T is isomorphic to G1, where (v1, v2, v3, v4, v5, v6) in T corresponds to
(v1, v2, v3, v4, v5, v6) in G1 as labeled in Figure 3. If (v3, v6) is in T , then T is also isomorphic
to G1, where (v1, v2, v3, v4, v5, v6) in T corresponds to (v1, v2, v6, v4, v5, v3) in G1 as labeled in
Figure 4.

Combining the above observations, we see that G1 is the only extension of F1.

Claim 2. F2 has no extension.
Assume the contrary: T is an extension of F2 such that T\v6 is isomorphic to F2 for some

vertex v6 of T . Let us label the vertices of T\v6 as in Figure 3 for F2. Since T is i2s, v6 has
an in-neighbor in {v1, v3, v4}, for otherwise, ({v2, v6}, {v1, v3, v4}) would be a nontrivial dicut in
T\v5, a contradiction. By symmetry, we may assume that (v1, v6) is an arc in T . Next, v3 or
v4 is an out-neighbor of v6, for otherwise ({v1, v3, v4}, {v5, v6}) would be a nontrivial dicut in
T\v2. Depending on the direction of the arc between v6 and v3, we consider two cases.

• (v6, v3) is in T . In this case, if (v6, v5) is an arc in T , then the union of the three cycles
v1v6v3v4v1, v2v3v4v5v2, and v1v6v5v2v1 is a K3,3. So (v5, v6) is an arc in T . If (v4, v6) is an arc
in T , then the union of the five cycles v2v3v5v2, v6v3v5v6, v6v3v4v6, v1v3v4v1, and v1v5v2v4v1
would form an M∗

5 ; if (v6, v4) is an arc in T , then the union of the five cycles v2v4v5v2, v6v4v5v6,
v6v4v1v6, v3v4v1v3, and v1v3v5v2v1 would form an M∗

5 as well. Thus we reach a contradiction in
either subcase.

• (v3, v6) is in T . In this case, (v6, v4) is in T . If (v6, v5) is in T , then the union of the three
cycles v1v3v6v4v1, v2v3v6v5v2, and v1v5v2v4v1 would form a K3,3. Thus (v5, v6) is in T . But
then the union of the five cycles v2v4v5v2, v6v4v5v6, v6v4v1v6, v3v4v1v3, and v1v3v5v2v1 would
form an M∗

5 , a contradiction.
Combining the above observations, we see that F2 has no extension.

Claim 3. G2 and G3 are the only extensions of F3.
To justify this, let T be an extension of F3 such that T\v6 is isomorphic to F3 for some

vertex v6 of T . Let us label the vertices of T\v6 as in Figure 3 for F3. Since T is i2s, v6 has
at least one in-neighbor in {v1, v3, v4}, for otherwise ({v2, v6}, {v1, v3, v4}) would be a nontrivial
dicut in T\v5, a contradiction.

• (v6, v1) is in T . In this case, at most one of (v6, v3) and (v6, v4) is in T . Let us first consider
the subcase when (v4, v6) is in T . Now at most one of (v2, v6) and (v5, v6) is in T , for otherwise,
({v2, v4, v5}, {v1, v6}) would be a nontrivial dicut in T\v3. Next, (v5, v6) is in T , for otherwise,
the three cycles v1v3v4v6v1, v2v4v6v5v2, and v1v3v5v2v1 would form aK3,3. It follows that (v6, v2)
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is also in T . If (v6, v3) is in T , then the five cycles v1v3v4v1, v6v3v4v6, v2v4v6v2, v2v4v5v2, and
v1v3v5v2v1 would form anM5; if (v3, v6) is in T , then the three cycles v1v3v6v2v1, v1v3v4v5v1, and
v6v2v4v5v6 would form a K3,3, a contradiction. It remains to consider the subcase when (v6, v4)
is in T . Thus (v3, v6) is also in T . If (v5, v6) is in T , then the five cycles v1v3v5v1, v2v3v5v2,
v2v4v5v2, v6v4v5v6, and v1v3v6v4v1 would form an M5, this contradiction implies that (v6, v5)
is an arc of T . If (v2, v6) is in T , then the three cycles v1v3v6v4v1, v2v6v4v5v2, and v1v3v5v2v1
would form a K3,3. So (v6, v2) is in T and thus T is isomorphic to G3, where (v1, v2, v3, v4, v5, v6)
in T corresponds to (v2, v3, v4, v1, v6, v5) in G3 as labeled in Figure 4.

• (v1, v6) is in T . Let us first consider the subcase when (v6, v3) is in T . Now (v5, v6) is in
T , for otherwise, the three cycles v1v6v3v4v1, v1v6v5v2v1, and v2v3v4v5v2 would form a K3,3. It
follows that (v4, v6) is in T , for otherwise the five cycles v2v4v5v2, v6v4v5v6, v1v6v4v1, v1v3v4v1,
and v1v3v5v2v1 would form an M∗

5 . Thus (v4, v6) is in T , which in turn implies that (v6, v2) is
in T , for otherwise ({v2, v4, v5}, {v1, v6}) would be a nontrivial dicut in T\v3. But then the five
cycles v2v3v5v2, v2v4v5v2, v2v4v6v2, v2v1v6v2, and v1v6v3v5v1 would form an M5, a contradiction.
It remains to consider the subcase when (v3, v6) is in T . If (v6, v2) is in T , then the five cycles
v1v3v4v1, v1v3v5v1, v2v3v5v2, v2v3v6v2, and v1v6v2v4v1 would form an M5. Thus (v2, v6) is in
T . If (v6, v4) is in T , then the three cycles v1v3v6v4v1, v1v3v5v2v1, and v2v6v4v5v2 would form a
K3,3. Thus (v4, v6) is in T . Since T is strong, (v6, v5) must be in T . Therefore, T is isomorphic
to G2, where (v1, v2, v3, v4, v5, v6) in T corresponds to (v1, v5, v6, v3, v4, v2) in G2 as labeled in
Figure 4.

Combining the above observations, we see that G2 and G3 are the only extensions of F3.

Claim 4. F4 is Möbius-free while F5 is not.
It is routine to check that F4 contains none of the digraphs displayed in Figure 1, so F4 is

Möbius-free. Let us label F5 as in Figure 3. Then the union of the three cycles v1v5v3v4v1,
v2v6v3v4v2, and v1v5v2v6v1 forms a K3,3. Thus F5 is not Möbius-free.

Claim 5. G1 has no extension.
Assume the contrary: T is an extension of G1 such that T\v7 is isomorphic to G1 for some

vertex v7 of T . Let us label the vertices of T\v7 as in Figure 4 for G1. Depending on the
direction of the arc between v7 and v1, we distinguish between two cases.

• (v1, v7) is in T . In this case, (v5, v7) is in T , for otherwise, the union of the three cycles
v1v7v5v2v4v1, v2v6v3v5v2, and v1v6v3v4v1 would form a K ′

3,3. If (v7, v6) is in T , then the union
of the three cycles v1v7v6v4v1, v7v6v3v5v7, and v1v3v5v2v4v1 would form a K ′

3,3. Thus (v6, v7)
is in T , which in turn implies that (v2, v7) is in T , for otherwise, the union of the three cycles
v3v5v7v2v3, v1v6v7v2v4v1, and v1v6v3v5v1 would form a K ′

3,3. If (v7, v4) is in T , then the union
of the three cycles v2v6v3v5v2, v1v3v5v7v4v1, and v1v2v6v4v1 would form a K ′

3,3. Thus (v4, v7)
is in T . Since T is strong, (v7, v3) is in T . It follows that the union of the five cycles v1v2v4v1,
v5v2v4v5, v1v3v4v1, v7v3v4v7, and v2v7v3v5v2 would form an M5, a contradiction. Therefore G1

has no extension.
• (v7, v1) is in T . Note that G1 is isomorphic to its reverse under the mapping

(v1, v2, v3, v4, v5, v6) → (v5, v4, v6, v2, v1, v3).

So if T is an extension of G1, then T ∗ is also an extension of G1. If (v7, v5) appears in T , then
(v1, v7) is in T ∗ and hence the present case reduces to the preceding one. So we may assume that
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(v5, v7) is in T , which implies that (v7, v3) is in T , for otherwise the union of the three cycles
v2v3v4v5v2, v1v2v3v7v1, and v1v6v4v5v7v1 would form a K ′

3,3. Thus (v7, v2) is in T , for otherwise,
the union of the five cycles v1v2v7v1, v1v2v4v1, v1v3v4v1, v1v3v5v1, and v2v7v3v5v2 would form
an M∗

5 . But then the union of the three cycles v2v6v5v7v2, v3v4v5v7v3, and v1v2v6v3v4v1 would
form a K ′

3,3, a contradiction.
Combining the above observations, we see that G1 has no extension.

Claim 6. Neither G2 nor G3 has an extension.
To justify this, observe that G3 is isomorphic to G∗

2 under the mapping

(v1, v2, v3, v4, v5, v6) → (v3, v5, v1, v4, v2, v6).

So if T is an extension of G2, then T ∗ is an extension of G3. Hence it suffices to show that G2

has no extension. Assume the contrary: T is an extension of G2 such that T\v7 is isomorphic to
G2 for some vertex v7 of T . Let us label the vertices of T\v7 as in Figure 4 for G2. Depending
the direction of the arc between v7 and v1, we distinguish between two cases.

• (v7, v1) is in T . Let us first consider the subcase when (v3, v7) is in T . Now (v4, v7) is
in T , for otherwise, the union of the three cycles v1v6v4v5v1, v1v6v3v7v1, and v3v7v4v5v3 would
form a K3,3. Next, (v7, v5) is in T , for otherwise, the union of the three cycles v1v6v3v7v1,
v3v4v5v6v3, and v1v2v4v5v7v1 would form a K ′

3,3. If (v7, v6) is in T , then the union of the five
cycles v1v6v3v1, v7v6v3v7, v3v7v5v3, v3v4v5v3, and v1v6v4v5v1 would form an M5; if (v6, v7) is in
T , the the union of the three cycles v1v6v7v5v1, v1v6v3v4v1, and v7v5v3v4v7 would form a K3,3,
a contradiction. It remains to consider the subcase when (v7, v3) is in T . Now (v7, v2) is in
T , for otherwise, the union of the three cycles v1v6v3v4v1, v1v6v2v7v1, and v2v7v3v4v5v2 would
form a K ′

3,3. Since T is i2s, (v6, v7) must be in T , for otherwise ({v5, v7}, {v1, v6, v3, v2}) would
be a nontrivial dicut in T\v4. Thus (v7, v4) is in T , for otherwise the union of the three cycles
v1v6v7v3v1, v2v4v7v3v2, and v1v6v2v4v5v1 would form a K ′

3,3. But then the union of the three
cycles v1v6v7v3v1, v4v5v6v7v4, and v1v2v4v5v3v1 also forms a K ′

3,3, a contradiction.
• (v1, v7) is in T . Let us first consider the subcase when (v7, v6) is in T . If (v7, v4) is in T ,

then the union of the three cycles v1v7v6v3v1, v1v7v4v5v1, and v3v4v5v6v3 would form a K3,3;
if (v4, v7) is in T , then the union of the three cycles v1v7v6v3v1, v2v4v7v6v2, and v1v2v4v5v3v1
would form a K ′

3,3, a contradiction. It remains to consider the subcase when (v6, v7) is in T .
Now (v5, v7) is in T , for otherwise the union of the five cycles v1v6v3v1, v1v6v4v1, v4v5v6v4,
v7v5v6v7, and v1v7v5v3v1 would form an M5. Since T is i2s, (v7, v3) is in T , for otherwise
({v1, v3, v5, v6}, {v2, v7}) would be a nontrivial dicut in T\v4. But then the union of the three
cycles v1v6v7v3v1, v1v6v4v5v1, and v3v4v5v7v3 forms a K3,3, a contradiction.

Combining the above observations, we see that G2 has no extension.

Claim 7. F4 has no extension.
Assume the contrary: T is an extension of F4 such that T\v7 is isomorphic to F4 for some

vertex v7 of T . Let us label the vertices of T\v7 as in Figure 3 for F4. Depending on the direction
of the arc between v2 and v7, we distinguish between two cases.

• (v2, v7) is in T . In this case, (v5, v7) appears in T , for otherwise, the union of the three
cycles v1v2v3v4v1, v3v4v5v6v3, and v1v2v7v5v6v1 would form a K ′

3,3. Next, (v6, v7) is in T , for
otherwise, if (v3, v7) is in T , then the union of the three cycles v1v5v2v3v1, v1v5v6v4v1, and
v2v3v7v6v4v2 would form a K ′

3,3; if (v7, v3) is in T , then the union of the three cycles v1v5v3v4,
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v2v7v3v4v2, and v1v5v2v7v6v1 would also form a K ′
3,3, a contradiction. Since T is i2s, at least

one of (v7, v1) and (v7, v4) is in T , for otherwise ({v6, v5, v1, v4}, {v2, v7}) would be a nontrivial
dicut in T\v3. Assume that (v7, v1) is in T . If (v7, v3) is in T , then the union of the three cycles
v1v5v3v4v1, v2v7v3v4v2, and v1v5v2v7v1 would form aK3,3; if (v3, v7) is in T , then the union of the
three cycles v1v5v6v7v1, v1v2v3v7v1, and v2v3v4v5v6v2 would form a K ′

3,3, a contradiction. Thus
(v1, v7) is in T and hence so is (v7, v4). Consequently, the union of the three cycles v1v5v6v3v1,
v7v4v5v6v7, and v1v7v4v2v3v1 forms a K ′

3,3, a contradiction.
• (v7, v2) is in T . Observe that F4 is isomorphic to its reverse under the mapping

(v1, v2, v3, v4, v5, v6) → (v4, v6, v5, v1, v3, v2).

If T is an extension of F4, then T ∗ is also an extension of F4. If (v7, v6) occurs in T , then (v2, v7)
occurs in T ∗, and hence the present case reduces to the preceding case. So we may assume
(v6, v7) is in T .

Let us first consider the subcase when (v3, v7) is in T . Then (v5, v7) is in T , for otherwise,
the union of the five cycles v1v5v6v4v1, v1v2v3v4v1, and v2v3v7v5v6v2 would form a K ′

3,3, a
contradiction. If (v7, v4) is in T , then the union of the three cycles v1v5v7v4v1, v2v3v7v4v2, and
v1v5v2v3v1 would form a K3,3. So (v4, v7) is in T . Since T is i2s, (v7, v1) is in T , for otherwise
({v6, v5, v1, v4}, {v2, v7}) would be a nontrivial dicut in T\v3. Thus the union of the three cycles
v1v2v3v7v1, v1v5v6v7v1, and v2v3v4v5v6v2 would form a K ′

3,3, a contradiction.
It remains to consider the second subcase when (v7, v3) is in T . Assume that (v1, v7) is in

T . Then (v4, v7) is in T , for otherwise, the union of the three cycles v1v5v6v3v1, v7v4v5v6v7, and
v1v7v4v2v3v1 would form a K ′

3,3, a contradiction. Since T is i2s, (v7, v5) is in T , for otherwise
({v6, v5, v1, v4}, {v2, v7}) would be a nontrivial dicut in T\v3. But then the union of the three
cycles v2v3v4v7v2, v4v7v5v6v4, and v1v5v6v2v3v1 would form a K ′

3,3, a contradiction. So (v7, v1)
must appear in T . Since T is i2s, (v4, v7) is in T , for otherwise ({v6, v7}, {v1, v2, v3, v4}) would
be a nontrivial dicut in T\v5. But then the union of the three cycles v1v5v2v3v1, v7v2v3v4v7,
and v1v5v6v4v7v1 would form a K ′

3,3, a contradiction again. So Claim 7 is justified.

From Claims 1-4, we conclude that G1, G2, G3, and F4 are the only i2s Möbius-free tour-
naments on six vertices. By Claims 5-7 and Theorem 3.1(iii), there is no i2s Möbius-free
tournament on seven or more vertices. This completes the proof of Theorem 3.2.

Proof of Theorem 3.3. We apply induction on |V |. By Lemma 3.4, T = C3 if |V | = 3
and T = F0 if |V | = 4, so T ∈ T1 if |V | ≤ 4. Let us proceed to the induction step.

If T is i2s, then T ∈ T1 by Theorem 3.2 and Lemmas 3.4 and 3.5. So we assume that T is
not i2s. Thus T can be expressed as the 1-sum of two smaller strong Möbius-free tournaments
T1 and T2 by Lemmas 2.2 and 2.3. Note that Ti /∈ {F1, G1} because neither F1 nor G1 contains
a special arc for i = 1, 2. By induction hypothesis, both T1 and T2 can be constructed by re-
peatedly taking 1-sums starting from tournaments in T1, and hence so can T .

So far we have demonstrated that every i2s Möbius-free tournament comes from a finite set.
Let us proceed to consider a strong tournament T that is not i2s; in this case, it is hard to give
a clear description of T . Nevertheless, by Lemma 2.2, T can be expressed as the 1-sum of two
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smaller strong Möbius-free tournaments T1 and T2. We can gain enough structural information
about T2 if we impose minimality constraint on |V (T2)|.

Let F6 be the tournament depicted in Figure 6. Observe that it is not i2s because F6\v6 has
a nontrivial dicut. Let

T2 = {F0, F2, F3, F4, F6, G2, G3}.

Then T2 = (T1\{C3}) ∪ {F6}.

Figure 6. A minimal tournament involved in 1-sum

Lemma 3.12. Let T = (V,A) be a strong Möbius-free tournament. Suppose T is the 1-sum of
two smaller strong Möbius-free tournaments T1 and T2 such that |V (T2)| is as small as possible.
Then T2 ∈ T2.

Proof. Since T is the 1-sum of two smaller strong Möbius-free tournaments T1 and T2, we
have |V (Ti)| ≥ 4 for i = 1, 2. If T2 is i2s, then T2 ∈ T1\{C3} by Theorem 3.3, and hence T2 ∈ T2.
It remains to consider the case when T2 is not i2s.

Recall the definition of the 1-sum operation in Section 2. There exist a special arc (a1, b1)
in T1 and a special arc (b2, a2) in T2, with d+T1

(a1) = d−T2
(a2) = 1, such that T is obtained from

the disjoint union of T1\a1 and T2\a2 by identifying b1 with b2 (the resulting vertex is denoted
by b) and adding all arcs from T1\{a1, b1} to T2\{a2, b2}. We propose to show that

(1) T2\v is internally strong for any v ∈ V (T2)\a2.
Assume the contrary: T2\v has a nontrivial dicut (X,Y ) for some v ∈ V (T2)\a2. Since a2 is

a near-source in T2, we have a2 ∈ X and Y ⊆ V (T2)\{a2, b2}. Let x be a vertex in X and y be a
vertex in Y such that both (v, x) and (y, v) are arcs in T2. Set T

′
1 = T\(Y \y) and T ′

2 = T2\(X\x).
Then T is the 1-sum of T ′

1 and T ′
2 over (v, x) and (y, v), with 3 < |V (T ′

2)| < |V (T2)|, contradicting
the minimality hypothesis on T2. So (1) is justified.

Since T2 is not i2s, T\a2 has a nontrivial dicut (X,Y ) by (1). Since T2 is strong, b2 ∈ Y .
Observe that

(2) |Y | = 2, for otherwise, (X∪{a2}, Y \b2) would be a nontrivial dicut in T2\b2, contradicting
(1).

Let c2 be the vertex in Y \b2. Since T2 contains no sink, (c2, b2) is an arc in T2. Let S be the
sub-tournament induced by X. Then

(3) S is strong, for otherwise, let (A1, A2, ..., Ap) be the strong partition of S. Then p ≥ 2.
Thus (A1 ∪ {a2},∪p

i=2Ai ∪ {c2}) would be a nontrivial dicut in T\b2, contradicting (1).
(4) |X| = 3.
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Suppose not. Then |X| ≥ 4. Since S is strong by (3), it has a 4-cycle d1d2d3d4d1. Note
that both (a2, di) and (di, b2) are arcs in T2 for 1 ≤ i ≤ 4. Thus the cycle d1d2d3d4d1 together
with the five arcs (b2, a2), (a2, d2), (a2, d4), (d1, b2), and (d3, b2) would form a K3,3 in T2, a
contradiction.

Combining (1)-(4), we see that T2 is isomorphic to F6.

Lemma 3.13. Let T = (V,A) be the 1-sum of two smaller strong Möbius-free tournaments T1

and T2 over the special arcs (a1, b1) and (b2, a2) such that T2 ∈ T2, and let T ′ be the digraph
obtained from T by contracting two vertices x and y in T2\{a2, b2}. Then T ′ is also Möbius-free.

Proof. Let T ′
2 be the digraph obtained from T2 by contracting x and y. Notice that T ′

2 may
contain opposite arcs. Since T2 ∈ T , we have |V (T ′

2)| ≤ 5, so T ′
2 is Möbius-free. Let T ′′

2 be an
arbitrary spanning tournament contained in T ′

2, and let T ′′ be the 1-sum of T1 and T ′′
2 . Then T ′′

is a spanning tournament contained in T ′. By Lemma 2.3, T ′′ is Möbius-free. It follows that T ′

is also Möbius-free, because none of K3,3, K
′
3,3, M5, and M∗

5 contains a pair of opposite arcs.

4 Reductions: Getting Started

Throughout this paper, an instance (T,w) consists of a Möbius-free tournament T = (V,A)
with a nonnegative integral weight w(e) on each arc e. We say that another instance (T ′,w′)
is smaller than (T,w) if |V ′| < |V | or if |V ′| = |V | but w(A′) < w(A), where T ′ = (V ′, A′).
Recall the fractional FAS problem P(T,w) and the fractional cycle packing problem D(T,w)
introduced in Section 1. We shall prove Theorem 1.1 using reduction methods; the objective of
the reduction step is given below.

Theorem 4.1. Let (T,w) be an instance, such that D(T ′,w′) has an integral optimal solution for
any smaller instance (T ′,w′) than (T,w). Then D(T,w) also has an integral optimal solution.

Our proof relies heavily on a structural description of T . Clearly, we may assume that T
is strong. As shown in Section 3, if T is i2s, then it comes from a finite list. The following
lemma asserts that if T is not i2s, then it can be expressed as the 1-sum of two smaller strong
Möbius-free tournaments T1 and T2, such that the structure of T2 is relatively simple. Thus our
proof may proceed by merely performing reduction on T2. In our lemma, s∗ is the vertex arising
from contracting S in T/S, the tournaments G4, G5, G6 are shown in Figure 7, and

T3 = {F0, F3, F4, F6, G2, G3, G4, G5, G6} = (T2\F2) ∪ {G4, G5, G6}.

Moreover, we say that a cycle C in T is positive if w(e) > 0 for each arc e on C, and say that
C crosses b (the hub of the 1-sum) if it contains an arc between T1\{b, a1} and T2\{b, a2}.

Lemma 4.2. Let T = (V,A) be a strong Möbius-free tournament with a nonnegative integral
weight w(e) on each arc e. Suppose τw(T ) > 0 and T is not i2s. Then T is the 1-sum of two
smaller strong Möbius-free tournaments T1 and T2 over two special arcs (a1, b1) and (b2, a2),
such that one of the following three cases occurs:

(i) τw(T2\a2) > 0 and T2 ∈ T2;
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Figure 7. Three more tournaments involved in structural description

(ii) τw(T2\a2) > 0 and there exists a vertex subset S of T2\{a2, b2} with |S| ≥ 2, such that
T [S] is acyclic, T2/S ∈ T3, and s∗ is a near-sink in T/S. Furthermore,

• (b2, a2) = (v1, v5) and s∗ = v4 if T2/S = G4;

• (b2, a2) = (v2, v6) and s∗ = v5 if T2/S = G5;

• (b2, a2) = (v6, v7) and s∗ = v5 if T2/S = G6; and

(iii) every positive cycle in T crosses b.

Proof. To establish the statement, we shall construct a sequence of 1-sums of T until one
of the three desired cases occurs.

By Lemmas 2.2 and 2.3, T can be expressed as the 1-sum of two smaller strong Möbius-free
tournaments T11 and T12; subject to this, |V (T12)| is as small as possible. Let (a11, b11) in T11

and (b12, a12) in T12 be the two special arcs involved in the definition of the 1-sum, and let b1
denote the hub of the 1-sum. By Lemma 3.12, we have T12 ∈ T2. If τw(T12\a12) > 0, then (i)
occurs, with T1 = T11 and T2 = T12. So we may assume that τw(T12\a12) = 0. Furthermore,

(1) T12\a12 is an acyclic tournament in which b1 is the sink.
To justify this, let K be an MFAS in T12\a12. Then w(K) = 0 and T12\K is acyclic. Let J

be the set of all arcs leaving b1 in T12\a12. Note that no arc in J is contained in any positive
cycle in T that crosses b1. Let T ′

12 be obtained from T12 by reversing the directions of all arcs
in J and some arcs in K so that T ′

12\a12 is acyclic, and define the weight of each reversed arc in
T ′
12 to be zero. Let T ′ = (V,A′) denote the resulting tournament and let w′ denote the resulting

weight function defined on A′. Then T ′ remains strong. Since no arc in K ∪ J is contained
in any positive cycle in T , it is clear that every optimal solution to D(T,w) corresponds to a
feasible solution to D(T ′,w′) with the same objective value, and vice versa. So we may assume
that T is T ′ and that w is w′. Thus (1) holds.

At a general step i, suppose T is the 1-sum of two smaller strong Möbius-free tournaments Ti1

and Ti2 over two special arcs (ai1, bi1) and (bi2, ai2), such that Ti2\ai2 is an acyclic tournament
in which bi (the hub of the 1-sum) is the sink. Let Si be the vertex set of Ti2\{ai2, bi}, and let
Ti be the tournament obtained from T by contracting Si into a single vertex s∗i . Clearly, Ti is
isomorphic to Ti1, in which s∗i corresponds to ai1 and is a near-sink. If τw(Ti\s∗i ) = 0, then every
positive cycle in T crosses bi. So (iii) occurs, with T1 = Ti1, T2 = Ti2, and b = bi. Thus we may
assume that τw(Ti\s∗i ) > 0. We construct a new 1-sum of T as follows.
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Assume first that Ti is i2s. In this case, Ti and hence Ti1 is a member of T2 by Lemma 3.12.
Furthermore, Ti1 ̸= F6. Let T

′, T ′
i1, and T ′

i2 be the reverses of T , Ti1, and Ti2, respectively. Then
T ′ is the 1-sum of two smaller strong Möbius-free tournaments T ′

i2 and T ′
i1, with T ′

i1 ∈ T2\F6.
Since there is a one-to-one correspondence between cycles in T and those in T ′, D(T,w) has an
integral optimal solution iff so does D(T ′,w′). Thus we may assume that T is T ′ and hence (i)
occurs.

Assume next that Ti is not i2s. By Lemmas 2.2 and 2.3, Ti can be expressed as the 1-sum
of two smaller strong Möbius-free tournaments T ′

i1 and T ′
i2; subject to this, |V (T ′

i2)| is as small
as possible. By Lemma 3.12, we have T ′

i2 ∈ T2. Let (a′i1, b
′
i1) in T ′

i1 and (b′i2, a
′
i2) in T ′

i2 be the
two special arcs involved in the definition of the 1-sum, and let b′i denote the hub of this 1-sum.
We proceed by considering two subcases.

• b′i ̸= s∗i . In this subcase, s∗i is contained in T ′
i2\{a′i2, b′i}, because it is a near-sink in Ti.

Hence bi is contained in T ′
i2\a′i2. Observe that T is the 1-sum of two smaller strong Möbius-

free tournaments T(i+1)1 and T(i+1)2, such that the hub bi+1 of this 1-sum is exactly b′i and
that T(i+1)1 = T ′

i1. Let (a(i+1)1, b(i+1)1) in T(i+1)1 and (b(i+1)2, a(i+1)2) in T(i+1)2 be the two
special arcs involved in the definition of this 1-sum. Then Ti2\ai2 is a proper subtournament
of T(i+1)2\a(i+1)2. If τw(T(i+1)2\a(i+1)2) > 0, then (ii) occurs, with T1 = T(i+1)1, T2 = T(i+1)2,
S = Si, and s∗ = s∗i . Furthermore, T2/S ̸= F2, because no vertex in {v1, v3, v4} (see the
labeling in Figure 3) is a near-sink in F2\v2 and hence corresponds to s∗. So we assume that
τw(T(i+1)2\a(i+1)2) = 0. Furthermore,

(2) T(i+1)2\a(i+2)2 is an acyclic tournament in which bi+1 is the sink.
Since the proof goes along the same line as that of (1), the details are omitted here. In view of
(2), we can repeat the construction process by replacing i with i+ 1.

• b′i = s∗i . In this subcase, bi is contained in T ′
i1\{a′i1, b′i}, because it is the only out-neighbor

of s∗i in Ti. Since T ′
i2 ∈ T2 (see the labeling in Figures 3-6) and since (b′i2, a

′
i2) is a special arc of

T ′
i2, and b′i2 = b′i = s∗i is a sink of T ′

i2\a′i2, it is routine to check that one of (3)-(5) occurs:
(3) T ′

i2 = F0, (b
′
i2, a

′
i2) = (v4, v1), and s∗i = v4;

(4) T ′
i2 = F2, (b

′
i2, a

′
i2) = (v5, v2), and s∗i = v5; and

(5) T ′
i2 = F6, (b

′
i2, a

′
i2) = (v5, v6), and s∗i = v5.

Observe that T is the 1-sum of two smaller strong Möbius-free tournaments T(i+1)1 and T(i+1)2

along two special arcs (a(i+1)1, b(i+1)1) in T(i+1)1 and (b(i+1)2, a(i+1)2), such that the hub bi+1

of this 1-sum is exactly bi and that T(i+1)1\a(i+1)1 = T ′
i1\{s∗i , a′i1}. Clearly, Ti2\ai2 is a proper

subtournament of T(i+1)2\a(i+1)2. It is a simple matter to check that T(i+1)2/Si is isomorphic to
Gt+1 when (t) holds for t = 3, 4, 5. If τw(T(i+1)2\a(i+1)2) > 0, then (ii) occurs, with T1 = T(i+1)1,
T2 = T(i+1)2, S = Si, and s∗ = s∗i . So we assume that τw(T(i+1)2\a(i+1)2) = 0. Furthermore,
T(i+1)2\a(i+2)2 is an acyclic tournament in which bi+1 is the sink. Since the proof is exactly the
same as that of (2), we omit the details here. Thus we can repeat the construction process by
replacing i with i+ 1.

Since Ti2\ai2 is a proper subtournament of T(i+1)2\a(i+1)2 for each step i, the construction
process terminates in a finite number of steps. Therefore one of (i)-(iii) holds.

In the remainder of this section, we assume that (T,w) is an instance as described in Theorem
4.1, and that T = (V,A) is the 1-sum of two strong Möbius-free tournaments T1 and T2 over
two special arcs (a1, b1) and (b2, a2).
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Let C be the set of all cycles in T , let Ci be the set of all cycles in Ti\ai for i = 1, 2, and let
C0 = C\(C1 ∪ C2). Note that each cycle in C0 crosses b, the hub of the 1-sum. For each arc e of
T , let C(e) = {C ∈ C : e ∈ C} and Ci(e) = {C ∈ Ci : e ∈ C} for i = 0, 1, 2.

Let y be an optimal solution to D(T,w), and let ν∗w(T ) denote the optimal value of D(T,w).
Then ν∗w(T ) = yT1. Set Cy = {C ∈ C : y(C) > 0} and Cy

i = {C ∈ Ci : y(C) > 0} for i = 0, 1, 2.
For each arc e of T , set z(e) = y(C(e)). We say that e is saturated by y if w(e) = z(e) and
unsaturated otherwise, and say that e is saturated by y in Ti if w(e) = y(Ci(e)) for i = 1, 2. For
each D ⊆ Cy, we say that arc e is outside D if e is not contained in any cycle in D.

Let us exhibit some properties enjoyed by optimal solutions to P(T,w) and D(T,w), and
make further technical preparations for the proof of Theorem 4.1.

Lemma 4.3. Let T = (V,A) be a tournament with a nonnegative integral weight w(e) on each
arc, and let x (resp. y) be an optimal solution to P(T,w) (resp. D(T,w)). Then the following
statements hold:

(i) x(C) = 1 for any cycle C of T with y(C) > 0;

(ii) x(e) = 0 for all e ∈ A with z(e) < w(e);

(iii) w(e) = z(e) for all e ∈ A with x(e) > 0; and

(iv) Let C1 and C2 be two cycles of T with y(Ci) > 0 for i = 1, 2. Suppose a and b are
two common vertices of C1 and C2 such that Ci(a, b) is vertex-disjoint from C3−i(b, a) for
i = 1, 2. Then

∑
e∈C1[a,b] x(e) =

∑
e∈C2[a,b] x(e).

Proof. Statements (i)-(iii) follow directly from the complementary slackness conditions. To
justify (iv), let θ = min{y(C1), y(C2)}, let C ′

i = C3−i[a, b] ∪ Ci[b, a] for i = 1, 2, and let y′ be
obtained from y by replacing y(Ci) with y(Ci)−θ and replacing y(C ′

i) with y(C ′
i)+θ for i = 1, 2.

Clearly, y′ is also an optimal solution to D(T,w). Using (i), we obtain x(Ci) = x(C ′
i) = 1 for

i = 1, 2, which implies
∑

e∈C1[a,b] x(e) =
∑

e∈C2[a,b] x(e).

Lemma 4.4. Let y be an optimal solution to D(T,w). Then D(T,w) has an integral optimal
solution if one of the following conditions is satisfied:

(i) w(e) > ⌈z(e)⌉ for some e ∈ A;

(ii) Cy
0 = ∅; and

(iii) y(C) is integral for some C ∈ Cy.

Proof. (i) Define w′ ∈ ZA
+ by w′(e) = ⌈z(e)⌉ and w′(a) = w(a) for all a ∈ A\e. Then

w(A) > w′(A). By the hypothesis of Theorem 4.1, D(T,w′) has an integral optimal solution
y′. Since y is also a feasible solution to D(T,w′), we have (y′)T1 ≥ yT1. So y′ is an integral
optimal solution to D(T,w) as well.

(ii) Since Cy
0 = ∅, each cycle in Cy is contained in Ti\ai for i = 1 or 2. Let wi be the

restriction of w to Ti\ai. Then the hypothesis of Theorem 4.1 guarantees the existence of an
integral optimal solution yi to D(Ti\ai,wi). Clearly, the union of y1 and y2 yields an integral
optimal solution to D(T,w).

(iii) Define w′ ∈ ZA
+ by w′(e) = w(e) − y(C) for each arc e on C and w′(a) = w(a) for all

other arcs a. Then w(A) > w′(A). By the hypothesis of Theorem 4.1, D(T,w′) has an integral
optimal solution y′. Clearly, y yields a feasible solution to D(T,w′) with value yT1 − y(C).
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So (y′)T1 ≥ yT1 − y(C). Let y∗ ∈ ZC
+ be defined by y∗(C) = y(C) + y′(C) and y∗(D) =

y′(D) for all D ∈ C\C. Then y∗ is an integral feasible solution to D(T,w) with value at least
(y′)T1+ y(C) ≥ yT1. Hence y∗ is an integral optimal solution to to D(T,w).

Lemma 4.5. Let G = (U,E) be a Möbius-free digraph obtained from a tournament by adding
some arcs, and let c(e) be a nonnegative integral weight associated with each arc e ∈ E. If
|U | < |V | or if |U | = |V | but c(E) < w(A), where V and w(A) are as defined in Theorem 4.1,
then D(G, c) has an integral optimal solution.

Proof. The proof technique employed below is due to Barahona and Mahjoub [6].
Let us repeatedly apply the following operations on G whenever possible: For each pair of

opposite arcs e and f , replace c(g) by c(g)−θ for g = e, f , where θ = min{c(e), c(f)}, and delete
exactly one arc g ∈ {e, f} with c(g) = 0 from G. Let G′ = (V ′, A′) be the resulting digraph and
let c′ be the resulting weight function. Clearly, G′ is a tournament. Hence, by the hypothesis of
Theorem 4.1, G′ is CM. Let F ′ be a minimum FAS of G′ and let y′ be a maximum cycle packing
in G′. Then c′(F ′) = (y′)T1.

Define y(C) = y′(C) for all cycles C in G′. For each 2-cycle C formed by arcs e and f in G,
define y(C) = θ, where θ = min{c(e), c(f)}, and place g and all arcs in F ′ into F , where g is the
arc in {e, f}\A′. Repeat the process until all 2-cycles in G are exhausted. Clearly, F is an FAS
of G, y is a cycle packing of G, and c(F ) = yT1. By the LP-duality theorem, y is an integral
optimal solution to D(G, c).

Lemma 4.6. Suppose a = (s, t) is a special arc of T = (V,A), where s is a near-sink. Then
D(T,w) has an integral optimal solution if one of the following conditions is satisfied:

(i) w(e) = z(e) for all arcs e ∈ δ−(s);

(ii) ν∗w(T ) is an integer;

(iii) x(a) = 0 for some optimal solution x of P(T,w);

(iv) a is unsaturated by y; that is, z(a) < w(a).

Proof. (i) By Lemma 4.4(i), we may assume that w(a) = ⌈z(a)⌉. Since w(e) = z(e) for all
e ∈ δ−(s) and z(a) =

∑
e∈δ−(s) z(e), we obtain w(a) =

∑
e∈δ−(s)w(e). Let T ′ = (V ′, A′) be the

digraph obtained from T by contracting the arc a; we still use t to denote the resulting vertex.
By Lemma 2.4, T ′ is also Möbius-free. Define w′ ∈ ZA′

+ as follows: w′(e) = w(e) if e is not
directed to t, w′(e) = w(f) +w(e) if f = (r, s) and e = (r, t) are both in A, and w′(e) = w(f) if
f = (r, s) is in A while e = (r, t) is not. It is easy to see that every integral feasible solution of
D(T,w) yields an integral feasible solution to D(T ′,w′) with the same objective value, and vice
versa. As D(T ′,w′) has an integral optimal solution by Lemma 4.5, so does D(T,w).

(ii) By (i), we may assume that w(e) ̸= z(e) for some arc e = (r, s) in A. By Lemma 4.4(i),
we may assume that w(e) = ⌈z(e)⌉. So ⌈z(e)⌉ ̸= z(e). Set θ = z(e) − ⌊z(e)⌋. Then 0 < θ < 1.
Let w′ be obtained from w by replacing w(e) with w(e) − 1. Then any optimal solution y of
D(T,w) yields a feasible solution of D(T,w′) with value at least ν∗w(T )− θ. By the hypothesis
of Theorem 4.1, D(T,w′) has an integral optimal solution y′ with value at least ν∗w(T )− θ and
hence at least ν∗w(T ). So y′ is also an integral optimal solution to D(T,w).

(iii) For each r ∈ V \{s, t} with e = (r, t) ∈ A, we claim that x(e) = x(f), where f = (r, s).
If w(e) = 0 or w(f) = 0, clearly we may assume that x(e) = x(f) (modifying one of them if
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necessary, the resulting solution remains optimal). Next, consider the case when w(e) > 0 and
w(f) > 0. Let C1 and C2 be two cycles passing through e and f , respectively, with y(Ci) > 0
for i = 1, 2. By Lemma 4.3(iv), x(e) = x(a) + x(f) = x(f). So the claim is justified.

Let T ′ = (V ′, A′) be the digraph obtained from T by contracting the arc a. By Lemma
2.4, T ′ is also Möbius-free. Define w′ ∈ ZA′

+ as follows: w′(e) = w(e) if e is not directed to t,
w′(e) = w(f) + w(e) if f = (r, s) and e = (r, t) are both in A, and w′(e) = w(f) if f = (r, s) is
in A while e = (r, t) is not. Let x′ ∈ RA′

+ be the projection of x, and let y′ be obtained from
y as follows: for each cycle C passing through (r, s) in T with y(C) > 0, let C ′ be the cycle in
T ′ arising from C by replacing the path rst with (r, t) and set y′(C ′) = y(C) + y(C ′). By the
LP-duality theorem, x′ and y′ are optimal solutions to P(T ′,w′) and D(T ′,w′), respectively,
with the same objective value as x and y. By the hypothesis of Theorem 4.1, D(T ′,w′) has an
integral optimal solution. So ν∗w(T ) is an integer. Thus (iii) follows from (ii).

(iv) Since z(a) < w(a), we have x(a) = 0 by Lemma 4.3(ii). Therefore (iv) can be deduced
from (iii).

Recall that C2 is the set of all cycles in T2\a2. In the following lemma, Dk is the set of all
cycles of length k in T2\a2, and q is the length of a longest cycle in T2\a2. Thus C2 = ∪q

k=3Dk.
Let Hi = (Vi, Ei) be a digraph for i = 1, 2, . . . , k. A digraph H = (V,E) is called a multiset sum
of these k digraphs if V = ∪k

i=1Vi and E is the multiset sum of all these Ei’s; that is, if an arc
(u, v) is contained in t of these Hi’s, then there are precisely t parallel arcs from u to v in H.

Lemma 4.7. Let y be an optimal solution to D(T,w) such that y(C2) is maximized and, subject
to this, (y(Dq), y(Dq−1), . . . , y(D3)) is minimized lexicographically. Then the following state-
ments hold:

(i) Every C ∈ C contains an arc e that is saturated by y;

(ii) Every C ∈ C2 contains an arc that is outside Cy
0 ;

(iii) If C1 ∈ Cy
0 and C2 ∈ C2 share arcs, then some arc on C2 but outside C1 is saturated by y;

(iv) If exactly one arc on C ∈ C2 is outside Cy
0 , then it is saturated by y in T2;

(v) Every chord of C ∈ Cy
2 is saturated by y in T2;

(vi) If the multiset sum of C1 ∈ C0, C2 ∈ C2, and unsaturated arcs in T2\a2 contains two
arc-disjoint cycles in T2\a2, then y(C1) or y(C2) is 0;

(vii) Every triangle C ∈ C2 contains an arc that is saturated by y in T2;

(viii) If the multiset sum of C1 ∈ C0 and C2 ∈ C2 contains two arc-disjoint cycles C ′
1 ∈ C0 and

C ′
2 ∈ C2, with |C ′

2| < |C2|, then y(C1) or y(C2) is 0.

Proof. (i) Assume the contrary: w(e) > z(e) for each arc e on C. Set θ = min{w(e)− z(e) :
e ∈ C}. Let y′ be obtained from y by replacing y(C) with y(C) + θ. Then y′ is a feasible
solution to D(T,w), with (y′)T1 = yT1+ θ > yT1, contradicting the optimality on y.

(ii) Assume the contrary: each arc ei on C is contained in some Ci ∈ Cy
0 . Observe that b,

the hub of the 1-sum, is not on C, for otherwise, let ej be the arc on C that leaves b. From
the definition of the 1-sum, we see that ej is contained in no cycle in C0, contradicting the
definition of Cj . Let k = |C| and let H be the multiset sum of C1, C2, ..., Ck. Then H is an
even digraph and d+H(b) = d−H(b) = k. Let H ′ be obtained from H by deleting all arcs on
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C. Then H ′ remains even and d+H′(b) = d−H′(b) = k because b is outside C. So H ′ contains k
arc-disjoint cycles C ′

1, C
′
2, ..., C

′
k passing through b and hence in C0. Set θ = min1≤i≤k y(Ci).

Let y′ be obtained from y by replacing y(C) with y(C) + θ, replacing y(Ci) with y(Ci)− θ, and
replacing y(C ′

i) with y(C ′
i) + θ for 1 ≤ i ≤ k. Clearly, y′ is a feasible solution to D(T,w) with

(y′)T1 = yT1+ θ > yT1, a contradiction.
(iii) Assume the contrary: w(e) > z(e) for each arc e in B, the set of all arcs on C2 but outside

C1. Set θ = min{y(C1), w(e)−z(e) : e ∈ B}. Let y′ be obtained from y by replacing y(C1) with
y(C1)− θ and replacing y(C2) with y(C2) + θ. Then y′ is also optimal, with y′(C2) = y(C2) + θ,
so the existence of y′ contradicts the maximality assumption on y(C2) in the choice of y.

(iv) Assume the contrary: the only arc e0 = (u, v) on C outside Cy
0 is not unsaturated by y in

T2. Then w(e0) > z(e0). Let Ci a cycle in Cy
0 that passes through each ei on C\e0. Let k = |C|−1

and let H be the multiset sum of C0, C1, C2, ..., Ck, where C0 is the 2-cycle formed by (u, v) and
(v, u). Then H is an even digraph, and d+H(b) = d−H(b) = k if b ̸= u and d+H(b) = d−H(b) = k + 1
otherwise, where b is the hub of the 1-sum. Let H ′ be obtained from H by deleting all arcs
on C. Then H ′ remains even and contains k arc-disjoint cycles C ′

1, C
′
2, ..., C

′
k passing through b

(and hence in C0). Clearly, at most one of C ′
1, C

′
2, ..., C

′
k, say C ′

k if any, contains the arc (v, u).
Then C ′

1, C
′
2, ..., C

′
k−1 are all in C0. Set θ = min{w(e0) − z(e0), y(Ci) : 1 ≤ i ≤ k}. Let y′ be

obtained from y by replacing y(C) with y(C) + θ, replacing y(Ci) with y(Ci)− θ for 1 ≤ i ≤ k,
and replacing y(C ′

j) with y(C ′
j)+θ for 1 ≤ j ≤ k−1. Then y′ is an optimal solution to D(T,w).

Since y(C) < y′(C), the existence of y′ contradicts the maximality assumption on y(C2) in the
choice of y.

(v) Assume the contrary: some chord e = (u, v) of C is not saturated by y in T2. Let
C ′ = C[v, u] ∪ {(u, v)}. Note that C ′ ∈ C2 and |C ′| < |C|.

We first consider the case when e is outside Cy
0 . Then w(e)−z(e) > 0. Set θ = min{y(C), w(e)−

z(e)}. Let y′ be obtained from y by replacing y(C) with y(C) − θ and replacing y(C ′) with
y(C ′) + θ. Then y′ is an optimal solution to D(T,w). Since y′(C) < y(C), the existence of y′

contradicts the minimality assumption on (y(Dq), y(Dq−1), . . . , y(D3)) in the choice of y.
We next consider the case when e is contained in some cycle D in Cy

0 . Then the multiset sum
of C and D contains a cycle D′ in C0 that is disjoint from C ′. Set σ = min{y(C), y(D)}. Let y′

be obtained from y by replacing y(C), y(D), y(C ′), and y(D′) with y(C)−σ, y(D)−σ, y(C ′)+σ,
and y(D′) + σ, respectively. Then y′ is an optimal solution to D(T,w). Since y′(C) < y(C),
the existence of y′ contradicts the minimality assumption on (y(Dq), y(Dq−1), . . . , y(D3)) in the
choice of y.

(vi) Assume the contrary: y(C1)y(C2) > 0. Let B be the set of unsaturated arcs in T2\a2,
and let C ′

1 and C ′
2 be two arc-disjoint cycles in C2 that are contained in the multiset sum of

C1, C2, and B. Set θ = min{y(C1), y(C2), w(e) − z(e) : e ∈ B}. Let y′ be obtained from y by
replacing y(C1), y(C2), y(C

′
1), and y(C ′

2) with y(C1) − θ, y(C2) − θ, y(C ′
1) + θ, and y(C ′

2) + θ,
respectively. Then y′ is an optimal solution to D(T,w). Since y′(C2) = y(C2) + θ, the existence
of y′ contradicts the maximality assumption on y.

(vii) Let C = ijki be a triangle in T2\u2. By (ii), at least one arc on C is outside Cy
0 , say

(i, j). If all arcs on C are outside Cy
0 , then by (i) one of the three arcs is saturated by y in T

and hence in T2. If (i, j) is the only arc on C that is outside Cy
0 , then (i, j) is saturated by y in

T2 by (iv). If exactly one arc on C, say (j, k), is contained in some cycle in Cy
0 , then by (iii) one

of (i, j) and (k, i) is saturated by y in T and hence in T2.
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(viii) Assume the contrary: y(C1)y(C2) > 0. Set θ = min{y(C1), y(C2)}. Let y′ be obtained
from y by replacing y(C1), y(C2), y(C

′
1), and y(C ′

2) with y(C1) − θ, y(C2) − θ, y(C ′
1) + θ, and

y(C ′
2)+θ, respectively. Then y′ is an optimal solution to D(T,w). Since |C ′

2| < |C2| and y′(C2) <
y(C2), the existence of y

′ contradicts the minimality assumption on (y(Dq), y(Dq−1), . . . , y(D3))
in the choice of y.

Lemma 4.8. Suppose T2\a2 contains a unique cycle C, which is a triangle. If w(a) > 0 for
each arc a on C, then D(T,w) has an integral optimal solution.

Proof. Let y be an optimal solution to D(T,w) such that y(C) is maximized. By Lemma
4.7(vii), some arc e on C is saturated by y in T2. Since C is the unique cycle in T2\a2, we have
y(C) = w(e). Thus D(T,w) has an integral optimal solution by Lemma 4.4(iii).

5 Basic Reductions

Throughout this section, we assume that (T,w) is an instance as described in Theorem 4.1, and
that T = (V,A) is the 1-sum of two strong Möbius-free tournaments T1 and T2 over the two
special arcs (a1, b1) and (b2, a2), with τw(T2\a2) > 0 and T2 ∈ T2. (Possibly T1 is a triangle
and thus T = T2.) Let us label T2 as in Figures 3-6. Since (b2, a2) is a special arc and a2 is a
near-source of T2,

• (b2, a2) = (v1, v2) or (v4, v1) if T2 = F0;
• (b2, a2) = (v5, v2) if T2 = F2 or F3;
• (b2, a2) = (v5, v6) if T2 = F4;
• (b2, a2) = (v5, v6) if T2 = F6; and
• (b2, a2) = (v4, v5) if T2 = G2 or G3.

Note that T2\a2 is a transitive triangle when T2 = F0 and (b2, a2) = (v4, v1); in this case,
unfortunately, no reduction on T2\a2 is available, and the information on T2\a2 alone does not
lead to a proof of the desired statement; that is, D(T,w) has an integral optimal solution. In
fact, the same problem occurs when τw(T2\a2) = 0, no matter what T2 is. That may partly
explain why the assumption of this section is so made and Lemma 4.2 is so stated.

Theorem 5.1. For the above instance (T,w), problem D(T,w) has an integral optimal solution.

We shall carry out a proof by performing reduction on T2\a2. We employ the same notations
as introduced before. In particular, ν∗w(T ) stands for the common optimal value of P(T,w) and
D(T,w), and τw(T ) stands for the minimum total weight of an FAS in T . An FAS K of T is
called minimal if no proper subset of K is an FAS of T . A minimum-weight FAS is denoted by
MFAS. We use F2 to denote the family of all minimal FAS’s in T2\a2. Recall that C2 stands for
the set of all cycles in T2\a2, and Dk is the set of all cycles of length k in T2\a2. For every real
number r, set [r] = r − ⌊r⌋.

We break the proof of Theorem 5.1 into a series of lemmas.

Lemma 5.2. If T2 ∈ {F0, F2, F6}, then D(T,w) has an integral optimal solution.

Proof. By the hypothesis of Theorem 5.1, τw(T2\a2) > 0. So if T2 = F0, then (b2, a2) =
(v1, v2) and hence T2\a2 is a triangle. It is then routine to check that, for each T2 ∈ {F0, F2, F6},
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there is a unique cycle contained in T2\a2, which is a triangle. Therefore D(T,w) has an integral
optimal solution by Lemma 4.8.

Lemma 5.3. If T2 = F3, then D(T,w) has an integral optimal solution.

Proof. It is routine to check that
• C2 = {v1v3v4v1, v1v3v5v1, v1v3v4v5v1} and
• F2 = {{v1v3}, {v3v4, v3v5}, {v3v4, v5v1}, {v4v1, v5v1}, {v3v5, v4v1, v4v5}}.

We also have a computer verification of these results. So |C2| = 3 and |F2| = 5. Recall that
(b2, a2) = (v5, v2).

Let y be an optimal solution to D(T,w) such that
(1) y(C2) is maximized;
(2) subject to (1), (y(Dq), y(Dq−1), . . . , y(D3)) is minimized lexicographically; and
(3) subject to (1) and (2), y(v1v3v5v1) is minimized.

Observe that
(4) if K ∈ F2 satisfies y(C2) = w(K), then K is an MFAS.
Indeed, since y(C2) = ν∗w(F3\v2), we have w(K) = ν∗w(F3\v2) ≤ τw(F3\v2) ≤ w(K). So

w(K) = τw(F3\v2).

Claim 1. y(C2) = τw(F3\v2).
To justify this, observe that v1v3 is a special arc of T and v1 is a near-sink. By Lemma 4.6(iv),

we may assume that v1v3 is saturated by y in T . If v1v3 is outside Cy
0 , then v1v3 is saturated by

y in F3. Thus y(C2) = w(v1v3). By (4), {v1v3} is an MFAS and hence y(C2) = τw(F3\v2). So
we assume that v1v3 is contained in some cycle C ∈ Cy

0 ; subject to this, C is chosen to have the
maximum number of arcs in F3\v2. Depending on whether C passes through v4v1, we consider
two cases.

• C contains v4v1. In this case, C contains the path v4v1v3v5. Applying Lemma 4.7(ii) to the
triangles v1v3v4v1 and v1v3v5v1 respectively, we see that both v3v4 and v5v1 are outside Cy

0 . By
Lemma 4.7(iv), both v3v4 and v5v1 are saturated by y in F3. Moreover, y(v1v3v4v5v1) = 0, for
otherwise, by Lemma 4.7(v), v3v5 is saturated by y in F3, contradicting the fact that v3v5 ∈ C.
So y(v1v3v4v1) = w(v3v4), y(v1v3v5v1) = w(v5v1), and y(C2) = w(K), where K = {v3v4, v5v1}.
By (4), K is an MFAS and hence y(C2) = τw(F3\v2).

• C does not contain v4v1. In this case, we may assume that v4v1 is outside Cy
0 , for otherwise,

let D be a cycle in Cy
0 passing through v4v1. Then D contains the path v1v3v5. Replacing C by

D, we see that the previous case occurs. Since C contains v1v3, it also contains v3v4 or v3v5.
If C contains v3v4, then it contains the path v1v3v4v5. Using Lemma 4.7(ii) and (iv) and the
cycles v1v3v4v1 and v1v3v4v5v1, we see that both v4v1 and v5v1 are saturated by y in F3. So
y(C2) = w(K), where K = {v4v1, v5v1}. Using (4), we obtain y(C2) = τw(F3\v2). If C contains
v3v5, then v5v1 is saturated by y in F3 by Lemma 4.7(ii) and (iv). Thus we may assume that
v4v1 is not saturated by y in F3, otherwise we are done (as shown above). It follows from Lemma
4.7(v) that y(v1v3v4v5v1) = 0, and from Lemma 4.7(ii) and (iv) (using the triangle v1v3v4v1)
that v3v4 is outside Cy

0 . So, by Lemma 4.7(iii), v3v4 is saturated by y in F3. Since y(C2) = w(J),
where J = {v3v4, v5v1}, Claim 1 is justified by (4).

Claim 2. y(C) is an integer for each C ∈ C2.
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To justify this, observe that y(v1v3v4v5v1) = 0, for otherwise, by Lemma 4.7(v), both v4v1
and v3v5 are saturated by y in F3. So y(v1v3v4v1) = w(v4v1) and y(v1v3v5v1) = w(v3v5); both
of them are integers. By Claim 1, y(v1v3v4v5v1) is also integral, as desired.

From the proof of Claim 1, we see that one of the following three cases occurs:
• y(v1v3v4v1) + y(v1v3v5v1) = w(v1v3);
• y(v1v3v4v1) = w(v3v4) and y(v1v3v5v1) = w(v5v1); and
• y(v1v3v4v1) = w(v4v1) and y(v1v3v5v1) = w(v5v1).

Thus the desired statement holds trivially in the second and third cases. It remains to consider
the first case.

Suppose on the contrary that neither y(v1v3v4v1) nor y(v1v3v5v1) is an integer. Then
[y(v1v3v4v1)] + [y(v1v3v5v1)] = 1. By the hypothesis of the present case, v1v3 is saturated
by y in F3, so v4v1 is outside Cy

0 . Thus

w(v4v1) ≥ ⌈y(v1v3v4v1)⌉ = ⌊y(v1v3v4v1)⌋+ 1 = y(v1v3v4v1) + [y(v1v3v5v1)].

We propose to show that
(5) v3v4 is saturated by y in F3.
Suppose not. If v3v4 is unsaturated in T , set θ = min{w(v3v4) − z(v3v4), [y(v1v3v5v1)]},

and let y′ be obtained from y by replacing y(v1v3v4v1) and y(v1v3v5v1) with y(v1v3v4v1) + θ
and y(v1v3v5v1) − θ, respectively; if v3v4 is saturated in T and contained in some C ∈ Cy

0 ,
set θ = min{y(C), [y(v1v3v5v1)]} and C ′ = C[v5, v3] ∪ {v3v5}, and let y′ be obtained from y by
replacing y(v1v3v4v1), y(v1v3v5v1), y(C), and y(C ′) with y(v1v3v4v1)+θ, y(v1v3v5v1)−θ, y(C)−θ,
and y(C ′) + θ, respectively. Then y′ is an optimal solution to D(T,w). Since y′(v1v3v5v1) <
y(v1v3v5v1), the existence of y′ contradicts the assumption (3) on y. So (5) is established.

By (5), we have y(v1v3v4v1) = w(v3v4) and y(v1v3v5v1) = w(v1v3)− w(v3v4); both of them
are integers. This contradiction proves Claim 2.

Since τw(F3\v2) > 0, by Claims 1 and 2, y(C) is a positive integer for some C ∈ C2. Thus,
by Lemma 4.4(iii), D(T,w) has an integral optimal solution.

Lemma 5.4. If T2 = F4, then D(T,w) has an integral optimal solution.

Proof. It is routine to check that
• C2 = {v1v2v3v1, v2v3v4v2, v1v5v3v1, v3v4v5v3, v1v2v3v4v1, v1v5v2v3v1, v1v5v3v4v1, v2v3v4v5v2,

v1v5v2v3v4v1} and
• F2 = {{v2v3, v5v3}, {v3v1, v3v4}, {v1v2, v1v5, v3v4}, {v1v5, v2v3, v3v4}, {v1v5, v2v3, v4v5},

{v1v2, v1v5, v4v2, v4v5}, {v1v2, v3v4, v5v2, v5v3}, {v1v2, v4v2, v5v2, v5v3},
{v2v3, v3v1, v4v1, v4v5}, {v3v1, v4v1, v4v2, v4v5}, {v3v1, v4v1, v4v2, v5v2, v5v3}}.

We also have a computer verification of these results. So |C2| = 9 and |F2| = 11. Recall that
(b2, a2) = (v5, v6).

Let y be an optimal solution to D(T,w) such that
(1) y(C2) is maximized;
(2) subject to (1), (y(Dq), y(Dq−1), . . . , y(D3)) is minimized lexicographically;
(3) subject to (1) and (2), y(v1v5v2v3v1) + y(v1v5v3v4v1) is minimized;
(4) subject to (1)-(3), y(v2v3v4v5v2) is minimized;
(5) subject to (1)-(4), y(v1v5v3v1) + y(v3v4v5v3) is minimized; and
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(6) subject to (1)-(5), y(v1v5v3v1) is minimized.
Let us make some simple observations about y.
(7) If K ∈ F2 satisfies y(C2) = w(K), then K is an MFAS. (The statement is exactly the

same as (4) in the proof of Lemma 5.3.)
(8) If y(v1v5v2v3v4v1) > 0, then each arc in the set {v1v2, v3v1, v4v2, v4v5, v5v3} is saturated

by y in F4. Furthermore, y(v1v2v3v1) = y(v3v4v5v3) = y(v1v5v3v1) = 0.
To justify this, note that each arc in the given set is a chord of the cycle v1v5v2v3v4v1. So

the first half follows instantly from Lemma 4.7(v). Let ⊎ stand for the multiset sum. Then
v1v5v2v3v4v1 ⊎ v1v2v3v1 = v1v5v2v3v1 ⊎ v1v2v3v4v1, v1v5v2v3v4v1 ⊎ v1v5v3v1 = v1v5v2v3v1 ⊎
v1v5v3v4v1, and v1v5v2v3v4v1⊎v3v4v5v3 = v1v5v3v4v1⊎v2v3v4v5v2. Suppose on the contrary that
y(v1v2v3v1) > 0. Let θ = min{y(v1v5v2v3v4v1), y(v1v2v3v1)} and let y′ be obtained from y by re-
placing y(v1v5v2v3v4v1), y(v1v2v3v1), y(v1v5v2v3v1), and y(v1v2v3v4v1) with y(v1v5v2v3v4v1)−θ,
y(v1v2v3v1)− θ, y(v1v5v2v3v1)+ θ, and y(v1v2v3v4v1)+ θ. Then y′ is also an optimal solution to
D(T,w). Since y′(v1v5v2v3v4v1) < y(v1v5v2v3v4v1), the existence of y′ contradicts the assump-
tion (2) on y. So y(v1v2v3v1) = 0. Similarly, y(v3v4v5v3) = y(v1v5v3v1) = 0.

(9) If y(v1v5v2v3v1) > 0, then v1v2 and v5v3 are saturated by y in F4; so is v4v5 provided
y(v1v2v3v4v1) > 0. Furthermore, y(v3v4v5v3) = 0.

To justify this, note that both v1v2 and v5v3 are chords of the cycle v1v5v2v3v1, so they are
saturated by y in F4 by Lemma 4.7(v). Since v1v5v2v3v1 ⊎ v3v4v5v3 = v1v5v3v1 ⊎ v2v3v4v5v2,
from (3) we deduce that y(v3v4v5v3) = 0 (for a proof, see that of (8)).

Consider the case when y(v1v2v3v4v1) > 0. If v4v5 is not saturated by y in T , then the
multiset sum of the cycles v1v5v2v3v1, v1v2v3v4v1, and the arc v4v5 contains two arc-disjoint
cycles v1v2v3v1 and v2v3v4v5v2; if v4v5 is saturated by y in T but contained in some cycle
C ∈ Cy

0 , then the multiset sum of v1v5v2v3v1, v1v2v3v4v1, and C contains three arc-disjoint
cycles v1v2v3v1, v2v3v4v5v2, and C ′ = C[v5, v4] ∪ {v4v1, v1v5}. In either subcase we can obtain
from y an optimal solution y′ to D(T,w) that is better than y by (2). So v4v5 is saturated by
y in F4.

(10) If y(v1v5v3v4v1) > 0, then both v3v1 and v4v5 are saturated by y in F4; so is v4v2 pro-
vided y(v1v5v2v3v1) > 0, and so is v1v2 provided y(v2v3v4v5v2) > 0. Furthermore, y(v1v2v3v1) =
0.

To justify this, note that both v3v1 and v4v5 are chords of the cycle v1v5v3v4v1, so they are
saturated by y in F4 by Lemma 4.7(v). Since v1v5v3v4v1 ⊎ v1v2v3v1 = v1v5v3v1 ⊎ v1v2v3v4v1,
from (3) we deduce that y(v1v2v3v1) = 0 (for a proof, see that of (8)).

Consider the case when y(v1v5v2v3v1) > 0. If v4v2 is not saturated by y in T , then the
multiset sum of the cycles v1v5v2v3v1, v1v5v3v4v1, and the arc v4v2 contains arc-disjoint cycles
v1v5v3v1 and v2v3v4v2; if v4v2 is saturated by y in T but contained in some cycle C1 ∈ Cy

0 , then
the multiset sum of C1, v1v5v2v3v1, and v1v5v3v4v1 contains three arc-disjoint cycles v1v5v3v1,
v2v3v4v2, and C ′

1 = C1[v5, v4]∪ {v4v1, v1v5}. In either subcase we can obtain from y an optimal
solution y′ to D(T,w) that is better than y by (2). So v4v5 is saturated by y in F4.

Next, consider the case when y(v2v3v4v5v2) > 0. If v1v2 is not saturated by y in T , then the
multiset sum of the cycles v1v5v3v4v1, v2v3v4v5v2, and the arc v1v2 contains arc-disjoint cycles
v3v4v5v3 and v1v2v3v4v1; if v1v2 is saturated by y in T but contained in some cycle C2 ∈ Cy

0 , then
the multiset sum of C2, v2v3v4v5v2, and v1v5v3v4v1 contains three arc-disjoint cycles v3v4v5v3,
v1v2v3v4v1, and C ′

2 = C2[v5, v1] ∪ {v1v5}. In either subcase we can obtain from y an optimal

36



solution y′ to D(T,w) that is better than y by (2). So v1v2 is saturated by y in F4.
(11) If y(v1v2v3v4v1) > 0, then both v3v1 and v4v2 are saturated by y in F4; so is v4v5

provided y(v1v5v3v1) > 0.
The first half follows instantly from Lemma 4.7(v). Suppose y(v1v5v3v1) > 0. If v4v5 is not

saturated by y in T , then the multiset sum of the cycles v1v5v3v1, v1v2v3v4v1, and the arc v4v5
contains arc-disjoint cycles v1v2v3v1 and v3v4v5v3; if v4v5 is saturated by y in T but contained
in some cycle C ∈ Cy

0 , then the multiset sum of v1v2v3v4v1, v1v5v3v1, and C contains three
arc-disjoint cycles v1v2v3v1, v3v4v5v3, and C ′ = C[v5, v4] ∪ {v4v1, v1v5}. In either subcase we
can obtain from y an optimal solution y′ to D(T,w) that is better than y by (2). So v4v5 is
saturated by y in F4.

(12) If y(v2v3v4v5v2) > 0, then both v4v2 and v5v3 are saturated by y in F4; so is v1v2
provided y(v1v5v3v1) > 0.

The first half follows instantly from Lemma 4.7(v). Suppose y(v1v5v3v1) > 0. If v1v2 is not
saturated by y in T , then the multiset sum of the cycles v1v5v3v1, v2v3v4v5v2, and the arc v1v2
contains arc-disjoint cycles v1v2v3v1 and v3v4v5v3; if v1v2 is saturated by y in T but contained
in some cycle C ∈ Cy

0 , then the multiset sum of C, v2v3v4v5v2, and v1v5v3v1 contains three arc-
disjoint cycles v3v4v5v3, v1v2v3v1, and C ′ = C[v5, v1] ∪ {v1v5}. In either subcase we can obtain
from y an optimal solution y′ to D(T,w) that is better than y by (2). So v1v2 is saturated by
y in F4.

Claim 1. y(C2) = τw(F4\v6).
To justify this, observe that v2v3 is a special arc of T and v2 is a near-sink. By Lemma

4.6(iv), we may assume that v2v3 is saturated by y in T . Depending on whether v2v3 is outside
Cy
0 , we distinguish between two cases.

Case 1.1. v2v3 is contained in some cycle in Cy
0 .

Choose C ∈ Cy
0 that contains v2v3 and, subject to this, has the maximum number of arcs in

F4\v6. We proceed by considering three subcases.
• C contains v1v2. In this subcase, C contains the path P = v1v2v3v4v5. By Lemma

4.7(ii) and (iv), each arc in the set K = {v3v1, v4v1, v4v2, v5v2, v5v3} is saturated by y in F4.
Since no arc on C (and hence on P ) is saturated by y in F4, we have y(v1v5v2v3v4v1) =
y(v1v5v2v3v1) = y(v1v5v3v4v1) = 0 by (8) − (10). Since the multiset sum of v1v5v3v1 and
C contains three arc-disjoint cycles v1v2v3v1, v3v4v5v3, and C ′ = C[v5, v1] ∪ {v1v5}, from the
optimality of y, we deduce that y(v1v5v3v1) = 0. So y(C2) = w(K). By (7), K is an MFAS and
hence y(C2) = τw(F3\v2).

• C contains v4v2. In this subcase, C contains the path P = v4v2v3v1v5. By Lemma 4.7(ii)
and (iv), each arc in the set K = {v1v2, v3v4, v5v2, v5v3} is saturated by y in F4. Since no arc on
C (and hence on P ) is saturated by y in F4, y(v1v5v2v3v4v1), y(v1v5v3v4v1), y(v1v2v3v4v1), and
y(v2v3v4v5v2) are all 0 by (8) and (10)-(12). Since the multiset sum of v3v4v5v3 and C contains
three arc-disjoint cycles v1v5v3v1, v2v3v4v2, and C ′ = C[v5, v4] ∪ {v4v5}, from the optimality
of y, we deduce that y(v3v4v5v3) = 0. So y(C2) = w(K). By (7), K is an MFAS and hence
y(C2) = τw(F3\v2).

• C contains neither v1v2 nor v4v2. In this subcase, we may assume that both v1v2 and v4v2
are outside Cy

0 , for otherwise, each cycle containing v1v2 or v4v2 passes through v2v3, and thus
one of the preceding subcases occurs. Clearly, C contains v3v4 or v3v1.
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Assume first that C contains v3v4. If C contains v4v1, then it also contains v1v5. By Lemma
4.7(ii) and (iv), each arc in the set K = {v1v2, v4v2, v5v2, v5v3} is saturated by y in F4. So
y(C2) = w(K). By (7), K is an MFAS and hence y(C2) = τw(F3\v2). If C does not contain
v4v1, then C contains v4v5. By Lemma 4.7(ii) and (iv), each arc in the set {v4v2, v5v2, v5v3} is
saturated by y in F4. If v1v2 is also saturated by y in F4, then y(C2) = w(K), where K is as
defined above. Again, K is an MFAS and hence y(C2) = τw(F3\v2). So we assume that v1v2 is
not saturated by y in T . Since v1v2 is outside Cy

0 , so are v4v1 and v3v1. By Lemma 4.7(iii), both
v4v1 and v3v1 are saturated by y in T and hence in F4. Moreover, by (8)-(10), y(v1v5v2v3v4v1),
y(v1v5v2v3v1), and y(v1v5v3v4v1) are all 0. Since the multiset sum of the cycles v1v5v3v1, C,
and the unsaturated arc v1v2 contains two arc-disjoint cycles v1v2v3v1 and v3v4v5v3. By Lemma
4.7(vi), we have y(v1v5v3v1) = 0. So y(C2) = w(J), where J = {v3v1, v4v1, v4v2, v5v2, v5v3}. By
(7), J is an MFAS and hence y(C2) = τw(F3\v2).

Assume next that C contains v3v1. Then C contains v1v5. By Lemma 4.7(ii) and (iv),
each arc in the set {v1v2, v5v2, v5v3} is saturated by y in F4. If v4v2 is also saturated by y in
F4, then y(C2) = w(K), where K = {v1v2, v4v2, v5v2, v5v3}. By (7), K is an MFAS and hence
y(C2) = τw(F3\v2). So we assume that v4v2 is not saturated by y in F4 and hence in T (recall
that v4v2 is outside Cy

0 ). By Lemma 4.7(iv), v3v4 is outside Cy
0 . By Lemma 4.7(iii), v3v4 is

saturated by y in T and hence in F4. By (8) and (10)-(12), y(v1v5v2v3v4v1), y(v1v5v3v4v1),
y(v1v2v3v4v1), and y(v2v3v4v5v2) are all 0. Since the multiset sum of the cycles v3v4v5v3, C,
and the unsaturated arc v4v2 contains two arc-disjoint cycles v1v5v3v1 and v2v3v4v2, we have
y(v3v4v5v3) = 0 by Lemma 4.7(vi). So y(C2) = w(J), where J = {v1v2, v3v4, v5v2, v5v3}. By (7),
K is an MFAS and hence y(C2) = τw(F3\v2).

Case 1.2. v2v3 is outside Cy
0 .

By the previous observation, v2v3 is saturated by y in F4 now. Note also that v5v3 is outside
C0. If v5v3 is saturated by y in T , so is it in F4, and hence y(C2) = w(K), whereK = {v2v3, v5v3}.
By (7), K is an MFAS and hence y(C2) = τw(F3\v2). So we assume that v5v3 is unsaturated.
By (8), (9), and (12), y(v1v5v2v3v4v1), y(v1v5v2v3v1), and y(v2v3v4v5v2) are all 0. Observe that
both v3v1 and v3v4 are outside Cy

0 , for otherwise, since each cycle passing through v3v1 or v3v4
contains v1v5 or v4v5, from Lemma 4.7(iv) we deduce that v5v3 is saturated, a contradiction. If
both v3v1 and v3v4 are saturated by y in F4, then y(C2) = w(J), where J = {v3v1, v3v4}. By
(7), J is an MFAS and hence y(C2) = τw(F3\v2). So we assume that

(13) at most one of v3v1 and v3v4 is saturated by y in F4.
Since Cy

0 ̸= ∅, there is a cycle C ∈ Cy
0 passing through v4v1, or v1v5, or v4v5; subject to this, let

C be chosen to have the maximum number of arcs in F4\v6. We proceed by considering three
subcases.

• C contains both v4v1 and v1v5. In this subcase, since v5v3 is unsaturated, by Lemma
4.7(iii), v3v1 and v3v4 are both saturated by y in F4, a contradiction.

• C contains v1v5 but not v4v1. In this subcase, from the choice of C, we see that v4v1 is
outside Cy

0 , because every cycle containing v4v1 passes through v1v5. Since v5v3 is unsaturated,
Lemma 4.7(iii) implies that v3v1 is saturated by y in F4, and thus v3v4 is not saturated by y in
F4 and hence in T by (13). Once again, by Lemma 4.7(iii), v4v1 is saturated by y in F4, and
v4v5 is outside Cy

0 . Since both v5v3 and v3v4 are unsaturated, it follows from Lemma 4.7(i) that
v4v5 is saturated by y in F4. If v4v2 is also saturated by y in F4, then y(C2) = w(K), where
K = {v3v1, v4v1, v4v2, v4v5}. By (7), K is an MFAS and hence y(C2) = τw(F4\v6). If v4v2 is not
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saturated by y in F4, then y(v1v2v3v4v1) = 0 by (11). Moreover, since the multiset sum of the
cycles v1v2v3v1, C, and the unsaturated arcs v5v3, v3v4, and v4v2 contains two arc-disjoint cycles
v2v3v4v2 and v1v5v3v1, we have y(v1v2v3v1) = 0 by Lemma 4.7(vi). Therefore, y(C2) = w(J),
where J = {v2v3, v3v1, v4v1, v4v5}. By (7), J is an MFAS and hence y(C2) = τw(F3\v2).

• C contains v4v5. In this subcase, we may assume that both v4v1 and v1v5 are outside Cy
0 ,

otherwise one of the preceding subcases occurs. By Lemma 4.7(iii), v3v4 is saturated by y in T
and hence in F4, which together with (13) implies that v3v1 is not saturated by y in F4. Using
(10) and (11), we deduce that y(v1v5v3v4v1) = y(v1v2v3v4v1) = 0. Using Lemma 4.7(iii) and the
triangle v1v5v3v1, we see that v1v5 is outside Cy

0 . Using Lemma 4.7(i) and the triangle v1v5v3v1,
we also deduce that v1v5 is saturated by y in T and hence in F4. If v1v2 is also saturated by
y in F4, then y(C2) = w(K), where K = {v1v2, v1v5, v3v4}. By (7), K is an MFAS and hence
y(C2) = τw(F4\v6). So we assume that v1v2 is not saturated by y in F4 and hence in T , because
v1v2 is outside Cy

0 , by the hypothesis of the present case. Since the multiset sum of the cycles
C, v2v3v4v2, and unsaturated arcs v5v3, v3v1, and v1v2 contains two arc-disjoint cycles v1v2v3v1
and v3v4v5v3, we have y(v2v3v4v2) = 0 by Lemma 4.7(vi). It follows that y(C2) = w(J), where
J = {v1v5, v2v3, v3v4}. By (7), J is an MFAS and hence y(C2) = τw(F4\v6). This completes the
proof of Claim 1.

Claim 2. y(C) is integral for all C ∈ C2 or ν∗w(T ) is an integer.
To justify this, let G2 = F2\{{v1v5, v2v3, v4v5}, {v1v2, v1v5, v4v2, v4v5}}. From the proof of

Claim 1, we see that y(C2) = w(K) for some K ∈ G2. Observe that if y(C2) = w(J) for
J = {v1v5, v2v3, v4v5} or {v1v2, v1v5, v4v2, v4v5}, then both v1v5 and v4v5 are saturated by y in
F4, so Cy

0 = ∅ in this case, which has been excluded by Lemma 4.4(ii).
Let us make some further observations about y.
(14) y(v1v5v2v3v4v1) = 0.
Suppose on the contrary that y(v1v5v2v3v4v1) > 0. By (8), we have y(v1v2v3v1) = y(v3v4v5v3)

= y(v1v5v3v1) = 0, and each arc in the set {v1v2, v3v1, v4v2, v4v5, v5v3} is saturated by y in F4.
So y(C2(v1v2)) = w(v1v2), y(C2(v3v1)) = w(v3v1), y(C2(v4v2)) = w(v4v2), y(C2(v4v5)) = w(v4v5),
and y(C2(v5v3)) = w(v5v3). It follows that y(v1v2v3v4v1) = w(v1v2), y(v1v5v2v3v1) = w(v3v1),
y(v2v3v4v2) = w(v4v2), y(v2v3v4v5v2) = w(v4v5), and y(v1v5v3v4v1) = w(v5v3). From Claim 1
we deduce that y(v1v5v2v3v4v1) is also integral, and hence ν∗w(T ) is an integer by Lemma 4.4(iii).

(15) y(v1v5v2v3v1) or y(v1v5v3v4v1) is 0.
Assume the contrary: both y(v1v5v2v3v1) and y(v1v5v3v4v1) are positive. By (9) and (10),

we have y(v1v2v3v1) = y(v3v4v5v3) = 0, and each arc in the set {v1v2, v5v3, v3v1, v4v2, v4v5} is
saturated by y in F4. So y(C2(v1v2)) = w(v1v2), y(C2(v5v3)) = w(v5v3), y(C2(v3v1)) = w(v3v1),
y(C2(v4v2)) = w(v4v2), and y(C2(v4v5)) = w(v4v5). It follows that y(v1v2v3v4v1) = w(v1v2),
y(v2v3v4v2) = w(v4v2), y(v2v3v4v5v2) = w(v4v5), y(v1v5v3v1) + y(v1v5v2v3v1) = w(v3v1), and
y(v1v5v3v1) + y(v1v5v3v4v1) = w(v5v3). Given the above equations and (14), to prove that
y(C) is integral for all C ∈ C2, it suffices to show that one of y(v1v5v3v4v1), y(v1v5v2v3v1), and
y(v1v5v3v1) is integral.

By Lemma 4.3 and Claim 1, each arc e ∈ K satisfies w(e) = z(e) = y(C2(e)). Let us proceed
by considering four subcases.

If v2v3 ∈ K, then w(v2v3) = y(C2(v2v3)) = y(v2v3v4v2) + y(v1v2v3v4v1) + y(v1v5v2v3v1)
+ y(v2v3v4v5v2), which implies that y(v1v5v2v3v1) is integral.
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If v3v4 ∈ K, then w(v3v4) = y(C2(v3v4)) = y(v2v3v4v2) + y(v1v2v3v4v1) + y(v2v3v4v5v2)
+ y(v1v5v3v4v1), which implies that y(v1v5v3v4v1) is integral.

If v4v1 ∈ K, then w(v4v1) = y(C2(v4v1)) = y(v1v2v3v4v1)+y(v1v5v3v4v1), which implies that
y(v1v5v3v4v1) is integral.

If v5v2 ∈ K, then w(v5v2) = y(C2(v5v2)) = y(v1v5v2v3v1)+y(v2v3v4v5v2), which implies that
y(v1v5v2v3v1) is integral.

Since each K ∈ G2 contains at least one arc in the set {v2v3, v3v4, v4v1, v5v2}, it follows that
y(C) is integral for all C ∈ C2. So y(v1v5v2v3v1) is a positive integer, and hence ν∗w(T ) is an
integer by Lemma 4.4(iii). Therefore we may assume that (15) holds.

Depending on what K ∈ G2 is, we distinguish among nine cases.
Case 2.1. K = {v1v5, v2v3, v3v4}.
In this case, by Lemma 4.3(i) and (iii), we have y(v2v3v4v2) = y(v1v2v3v4v1) = y(v2v3v4v5v2) =

y(v1v5v2v3v1) = y(v1v5v3v4v1) = 0 and w(e) = y(C2(e)) for each e ∈ K, which together with
(14) yields w(v1v5) = y(C2(v1v5)) = y(v1v5v3v1), w(v2v3) = y(C2(v2v3)) = y(v1v2v3v1), and
w(v3v4) = y(C2(v3v4)) = y(v3v4v5v3). So y(C) is integral for all C ∈ C2.

Case 2.2. K = {v1v2, v3v4, v5v2, v5v3}.
In this case, by Lemma 4.3(i) and (iii), we have y(v1v5v3v4v1) = y(v3v4v5v3) = y(v1v2v3v4v1) =

y(v2v3v4v5v2) = 0, which together with (14) yields w(v1v2) = y(C2(v1v2)) = y(v1v2v3v1),
w(v3v4) = y(C2(v3v4)) = y(v2v3v4v2), w(v5v2) = y(C2(v5v2)) = y(v1v5v2v3v1), and w(v5v3) =
y(C2(v5v3)) = y(v1v5v3v1). So y(C) is integral for all C ∈ C2.

Case 2.3. K = {v2v3, v3v1, v4v1, v4v5}.
In this case, by Lemma 4.3(i) and (iii), we have y(v1v2v3v1) = y(v1v5v2v3v1) = y(v1v2v3v4v1)

= y(v2v3v4v5v2) = 0, which together with (14) yields w(v2v3) = y(C2(v2v3)) = y(v2v3v4v2),
w(v3v1) = y(C2(v3v1)) = y(v1v5v3v1), w(v4v1) = y(C2(v4v1)) = y(v1v5v3v4v1), and w(v4v5) =
y(C2(v4v5)) = y(v3v4v5v3). So y(C) is integral for all C ∈ C2.

Case 2.4. K = {v3v1, v4v1, v4v2, v5v2, v5v3}.
In this case, by Lemma 4.3(i) and (iii), we have y(v1v5v3v1) = y(v1v5v2v3v1) = y(v1v5v3v4v1) =

0, which together with (14) yields w(v3v1) = y(C2(v3v1)) = y(v1v2v3v1), w(v4v1) = y(C2(v4v1)) =
y(v1v2v3v4v1), w(v4v2) = y(C2(v4v2)) = y(v2v3v4v2), w(v5v2) = y(C2(v5v2)) = y(v2v3v4v5v2),
and w(v5v3) = y(C2(v5v3)) = y(v3v4v5v3). So y(C) is integral for all C ∈ C2.

Case 2.5. K = {v1v2, v1v5, v3v4}.
In this case, by Lemma 4.3(i) and (iii), we have y(v1v2v3v4v1) = y(v1v5v3v4v1) = 0 and

w(e) = y(C2(e)) for each e ∈ K, which together with (14) yields the following three equations:
w(v1v2) = y(C2(v1v2)) = y(v1v2v3v1);
w(v1v5) = y(C2(v1v5)) = y(v1v5v3v1) + y(v1v5v2v3v1); and
w(v3v4) = y(C2(v3v4)) = y(v2v3v4v2) + y(v3v4v5v3) + y(v2v3v4v5v2).

Depending on the value of y(v1v5v2v3v1), we consider two subcases.
• y(v1v5v2v3v1) = 0. In this subcase, y(v1v5v3v1) = w(v1v5). If y(v2v3v4v5v2) > 0, then

w(v5v3) = y(C2(v5v3)) = y(v1v5v3v1) + y(v3v4v5v3) and w(v4v2) = y(C2(v4v2)) = y(v2v3v4v2)
by (12). Thus both y(v3v4v5v3) and y(v2v3v4v5v2) are integral, and hence y(C) is integral for
all C ∈ C2. So we assume that y(v2v3v4v5v2) = 0. Then w(v3v4) = y(v2v3v4v2) + y(v3v4v5v3).
If y(v2v3v4v2) is an integer, then y(C) is integral for all C ∈ C2. So we further assume that
y(v2v3v4v2) is not integral. Thus [y(v2v3v4v2)] + [y(v3v4v5v3)] = 1. Since each arc in K is
saturated by y in F4, both v2v3 and v4v2 are outside Cy

0 . Let y
′ be obtained from y by replacing
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y(v2v3v4v2) and y(v3v4v5v3) with y(v2v3v4v2) + [y(v3v4v5v3)] and ⌊y(v3v4v5v3)⌋ respectively.
Then y′ is also an optimal solution to D(T,w). Since y′(v3v4v5v3) < y(v3v4v5v3), the existence
of y′ contradicts the assumption (5) on y.

• y(v1v5v2v3v1) > 0. In this subcase, y(v3v4v5v3) = 0 and v5v3 is saturated by y in F4

by (9). So w(v3v4) = y(v2v3v4v2) + y(v2v3v4v5v2) and w(v5v3) = y(v1v5v3v1). It follows that
y(v1v5v2v3v1) = w(v1v5) − w(v5v3). If y(v2v3v4v5v2) = 0, then y(v2v3v4v2) = w(v3v4); other-
wise, by (12), both v1v5 and v4v2 are saturated by y in F4. Thus y(v2v3v4) = w(v4v2) and
y(v2v3v4v5v2) = w(v3v4)− w(v4v2). So y(C) is integral for all C ∈ C2.

Case 2.6. K = {v3v1, v4v1, v4v2, v4v5}.
In this case, by Lemma 4.3 (iii), we have w(e) = y(C2(e)) for each e ∈ K, which together

with (14) yields the following four equations:
w(v3v1) = y(C2(v3v1)) = y(v1v2v3v1) + y(v1v5v3v1) + y(v1v5v2v3v1);
w(v4v1) = y(C2(v4v1)) = y(v1v2v3v4v1) + y(v1v5v3v4v1);
w(v4v2) = y(C2(v4v2)) = y(v2v3v4v2); and
w(v4v5) = y(C2(v4v5)) = y(v3v4v5v3) + y(v2v3v4v5v2).

Depending on the values of y(v1v5v3v4v1) and y(v1v5v2v3v1), we consider three subcases.
• y(v1v5v3v4v1) > 0. In this subcase, by (10) and (15), we have y(v1v2v3v1) = y(v1v5v2v3v1) =

0. So y(v1v5v3v1) = w(v3v1). If y(v2v3v4v5v2) > 0, then both v1v2 and v5v3 are saturated by y
in F4 by (10) and (12). So w(v1v2) = y(C2(v1v2)) = y(v1v2v3v4v1) and w(v5v3) = y(C2(v5v3)) =
y(v1v5v3v1) + y(v3v4v5v3) + y(v1v5v3v4v1). Since y(v1v5v3v4v1) = w(v4v1) − y(v1v2v3v4v1)
and y(v2v3v4v5v2) = w(v4v5) − y(v3v4v5v3), it follows that y(v1v5v3v4v1), y(v3v4v5v3), and
y(v2v3v4v5v2) are all integral. So we assume that y(v2v3v4v5v2) = 0. Then y(v3v4v5v3) =
w(v4v5). Since each arc in K is saturated by y in F4, both v1v2 and v2v3 are outside Cy

0 .
By Lemma 4.4(i), we may assume that w(e) = ⌈z(e)⌉ for all arcs e in T . Thus, from (3) we
deduce that y(v1v2v3v4v1) = min{w(v1v2), w(v2v3) − w(v4v2)} and y(v1v5v3v4v1) = w(v4v1) −
y(v1v2v3v4v1). Therefore y(C) is integral for all C ∈ C2.

• y(v1v5v2v3v1) > 0. In this subcase, from (9) and (15), we deduce that y(v3v4v5v3) =
y(v1v5v3v4v1) = 0, and that both v1v2 and v5v3 are saturated by y in F4. So y(v1v2v3v4v1) =
w(v4v1) y(v2v3v4v5v2) = w(v4v5), w(v1v2) = y(C2(v1v2)) = y(v1v2v3v1) + y(v1v2v3v4v1), and
w(v5v3) = y(C2(v5v3)) = y(v1v5v3v1). Thus y(v1v2v3v1) = w(v1v2) − w(v4v1) is integral, so is
y(v1v5v2v3v1). Therefore y(C) is integral for all C ∈ C2.

• y(v1v5v3v4v1) = y(v1v5v2v3v1) = 0. In this subcase, y(v1v2v3v4v1) = w(v4v1). Suppose
y(v2v3v4v5v2) > 0. Then v5v3 is saturated by y in F4 by (12). So w(v5v3) = y(C2(v5v3)) =
y(v1v5v3v1) + y(v3v4v5v3). If y(v1v5v3v1) > 0, then v1v2 is saturated by y in F4 by (12). So
w(v1v2) = y(C2(v1v2)) = y(v1v2v3v1) + y(v1v2v3v4v1), It follows that y(v1v2v3v1) and hence
y(C) is integral for any C ∈ C2. If y(v1v5v3v1) = 0, then y(v1v2v3v1) = w(v3v1), which im-
plies that y(C) is integral for any C ∈ C2. So we assume that y(v2v3v4v5v2) = 0. Then
y(v3v4v5v3) = w(v4v5). Observe that y(v1v2v3v1) is integral, for otherwise, let y′ be ob-
tained from y by replacing y(v1v2v3v1) and y(v1v5v3v1) with y(v1v2v3v1) + [y(v1v5v3v1)] and
⌊y(v1v5v3v1)⌋, respectively. Since v1v2 and v2v3 are outside Cy

0 , we see y′ is also an optimal
solution to D(T,w). Since y′(v1v5v3v1) < y(v1v5v3v1), the existence of y′ contradicts the as-
sumption (5) on y. From the above observation, it is easy to see that y(C) is integral for any
C ∈ C2.

Case 2.7. K = {v1v2, v4v2, v5v2, v5v3}.
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In this case, by Lemma 4.3(iii), we have w(e) = y(C2(e)) for each e ∈ K, which together
with (14) yields the following four equations:

w(v1v2) = y(C2(v1v2)) = y(v1v2v3v1) + y(v1v2v3v4v1);
w(v4v2) = y(C2(v4v2)) = y(v2v3v4v2);
w(v5v2) = y(C2(v5v2)) = y(v1v5v2v3v1) + y(v2v3v4v5v2); and
w(v5v3) = y(C2(v5v3)) = y(v1v5v3v1) + y(v3v4v5v3) + y(v1v5v3v4v1).

Depending on the values of y(v1v5v3v4v1) and y(v1v5v2v3v1), we consider three subcases.
• y(v1v5v3v4v1) > 0. In this subcase, by (10) and (15), y(v1v2v3v1) = y(v1v5v2v3v1) = 0

and both v3v1 and v4v5 are saturated by y in F4. So y(v2v3v4v2) = w(v4v2), y(v1v2v3v4v1) =
w(v1v2), y(v2v3v4v5v2) = y(C2(v5v2)) = w(v5v2), and y(v1v5v3v1) = y(C2(v3v1)) = w(v3v1).
Thus y(v3v4v5v3) and y(v1v5v3v4v1) are also integral.

• y(v1v5v2v3v1) > 0. In this subcase, by (9) and (15), we have y(v3v4v5v3) = y(v1v5v3v4v1) =
0. So y(v1v5v3v1) = w(v5v3). If y(v1v2v3v4v1) > 0, then both v3v1 and v4v5 are saturated by y
in F4 by (9) and (11). So w(v3v1) = y(C2(v3v1)) = y(v1v2v3v1) + y(v1v5v3v1) + y(v1v5v2v3v1)
and w(v4v5) = y(C2(v4v5)) = y(v2v3v4v5v2). It follows that y(C) is integral for all C ∈ C2. So
we assume that y(v1v2v3v4v1) = 0. Then y(v1v2v3v1), y(v2v3v4v2), and y(v1v5v3v1) are integral,
and y(v1v5v2v3v1)+y(v2v3v4v5v2) = w(v5v2). If y(v2v3v4v5v2) is an integer, then y(C) is integral
for any C ∈ C2. So we assume that y(v2v3v4v5v2) is not integral. We propose to show that

(16) ν∗w(T ) is an integer.
To justify this, let x be an optimal solution to P(T,w). By Lemma 4.4(iii), we may assume

that w(v1v2) = w(v4v2) = w(v5v3) = 0. Thus y(C) = 0 for all C ∈ C2\{v1v5v2v3v1, v2v3v4v5v2}.
Observe that v3v4 is outside Cy

0 , for otherwise, let D be a cycle in Cy
0 that contains v3v4. It is

then easy to see that an optimal solution y′ to D(T,w) can be obtained from y by modifying
y(D), y(v1v5v2v3v1), and y(v2v3v4v5v2) and by possibly rerouting D, so that y′(v1v5v2v3v1) <
y(v1v5v2v3v1), contradicting (3). Since y(v2v3v4v5v2) < w(v3v4), we have x(v3v4) = 0 by Lemma
4.3(ii). Since both y(v1v5v2v3v1) and y(v2v3v4v5v2) are positive, x(v3v1) + x(v1v5) = x(v3v4) +
x(v4v5) by Lemma 4.3(i). So x(v4v5) = x(v3v1) + x(v1v5).

Let us show that if w(v4v1) > 0, then x(v4v1) = x(v3v1). For this purpose, note that
both v4v1 and v4v5 are contained in some cycles in Cy

0 , for otherwise, we can obtain a new
optimal solution y′ from y satisfying (1) and (2), but y′(v1v5v2v3v1) = ⌊y(v1v5v2v3v1)⌋ and
y′(v2v3v4v5v2) = y(v2v3v4v5v2) + [y(v1v5v2v3v1)], which again contradicts (3). Thus x(v4v5) =
x(v1v5)+x(v4v1) by Lemma 4.3(iii). Combining it with the equality established in the preceding
paragraph, we obtain the x(v4v1) = x(v3v1). If w(v4v1) = 0, then we may assume that x(v4v1) =
x(v3v1) (replacing the smaller of these two with the larger if necessary).

Similarly, we can prove that x(uv3) = x(uv4) for each u ∈ V (T1)\{b, a1}, where b is the hub
of the 1-sum. Let T ′ be the the digraph obtained from T by identifying v3 and v4; the resulting
vertex is still denoted by v4. Let w

′ be obtained from the restriction of w to A(T ′) by replacing
w(uv4) with w(uv3)+w(uv4) for each u ∈ V (T1)\{b, a1}. Note that T ′ is Möbius-free by Lemma
3.13, x corresponds to a feasible solution x′ to P(T ′,w′), and y corresponds to a feasible solution
y′ to P(T ′,w′) with y′(v4v5v4) = y′(v4v2v4) = 0, both having the same objective value ν∗w(T ) as
x and y. So x′ and y′ are optimal solutions to P(T,w) and D(T,w), respectively. By Lemma
4.5, the optimal value ν∗w(T ) of P(T ′,w′) is integral. So (16) is established.

• y(v1v5v3v4v1) = y(v1v5v2v3v1) = 0. In this subcase, y(v2v3v4v2) and y(v2v3v4v5v2) are
integral. Assume first that y(v1v2v3v4v1) > 0. Then, by (11), the arc v3v1 is saturated by y in F4.
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So w(v3v1) = y(C2(v3v1)) = y(v1v2v3v1) + y(v1v5v3v1). If y(v1v5v3v1) = 0, then y(v3v4v5v3) =
w(v5v3). So y(C) is integral for any C ∈ C2. If y(v1v5v3v1) > 0, then v4v5 is is saturated by y
in F4 by (11). Thus w(v4v5) = y(C2(v4v5)) = y(v3v4v5v3) + y(v2v3v4v5v2), which is integral. It
follows that y(v3v4v5v3) = w(v4v5)− w(v5v2). So y(C) is integral for any C ∈ C2. Assume next
that y(v1v2v3v4v1) = 0. Then y(v1v2v3v1) is integral and y(v1v5v3v1) + y(v3v4v5v3) = w(v5v3).
Clearly, we may assume that neither y(v1v5v3v1) nor y(v3v4v5v3) is integral, otherwise we are
done. Similar to (16), we can show that

(17) ν∗w(T ) is an integer.
The proof goes along the same line as that of (16). In fact, we only need to replace

y(v1v5v2v3v1) and y(v2v3v4v5v2) with y(v1v5v3) and y(v3v4v5v3), respectively. So we omit the
details here.

Case 2.8. K = {v2v3, v5v3}.
In this case, by Lemma 4.3(iii), we have w(e) = y(C2(e)) for each e ∈ K, which together

with (14) yields the following two equations:
w(v2v3) = y(v1v2v3v1) + y(v2v3v4v2) + y(v1v2v3v4v1) + y(v2v3v4v5v2) + y(v1v5v2v3v1); and
w(v5v3) = y(v1v5v3v1) + y(v3v4v5v3) + y(v1v5v3v4v1).

Since v2v3 is saturated by y in F4, we have w(uv2) = z(uv2) = 0 for any u ∈ V (T1)\{b, a1}
in this case. Depending on the values of y(v1v5v3v4v1) and y(v1v5v2v3v1), we consider three
subcases.

• y(v1v5v3v4v1) > 0. In this subcase, from (10) and (15) we deduce that y(v1v2v3v1) =
y(v1v5v2v3v1) = 0 and that both v3v1 and v4v5 are saturated by y in F4. So y(v3v4v5v3) +
y(v2v3v4v5v2) = w(v4v5) and y(v1v5v3v1) = w(v3v1). If y(v2v3v4v5v2) > 0, then both v1v2 and
v4v2 are saturated by y in F4 by (10) and (12). Thus y(v2v3v4v2) = w(v4v2) and y(v1v2v3v4v1) =
w(v1v2). It follows that y(v3v4v5v3), y(v2v3v4v5v2), and y(v1v5v3v4v1) are all integral. So we
assume that y(v2v3v4v5v2) = 0. Then y(v3v4v5v3) = w(v4v5), and y(v1v5v3v4v1) = w(v5v3) −
w(v3v1) − w(v4v5). Moreover, y(v2v3v4v2) = w(v4v2) and y(v1v2v3v4v1) = w(v2v3) − w(v4v2)
if y(v1v2v3v4v1) > 0, and y(v2v3v4v2) = w(v2v3) otherwise. Therefore y(C) is integral for all
C ∈ C2, no matter whether if y(v2v3v4v5v2) > 0.

• y(v1v5v2v3v1) > 0. In this subcase, by (9) and (15) we deduce that y(v3v4v5v3) =
y(v1v5v3v4v1) = 0 and that v1v2 is saturated by y in F4. So y(v1v2v3v1) + y(v1v2v3v4v1) =
w(v1v2). If y(v1v2v3v4v1) > 0, then v3v1, v4v2, and v4v5 are saturated by y in F4 by (9) and
(11). So y(v2v3v4v2) = w(v4v2), y(v2v3v4v5v2) = w(v4v5), and y(v2v3v4v2) + y(v1v5v3v1) +
y(v1v5v2v3v1) = w(v3v1). It follows that y(v1v2v3v1), y(v1v2v3v4v1), and y(v1v5v2v3v1) are all
integral. Hence y(C) is integral for all C ∈ C2. So we assume that y(v1v2v3v4v1) = 0. Then
y(v1v2v3v1) = w(v1v2). If y(v2v3v4v5v2) = 0, then y(v2v3v4v2) + y(v1v5v2v3v1) = w(v2v3) −
w(v1v2). Since y(v1v5v2v3v1) > 0, we see that v3v4 is outside Cy

0 , for otherwise, we can obtain an
optimal solution y′ to D(T,w) with y′(v1v5v2v3v1) < y(v1v5v2v3v1), contradicting (3). It follows
that y(v2v3v4v2) = min{w(v4v2), w(v3v4)} and y(v1v5v2v3v1) = w(v2v3)−w(v1v2)−y(v2v3v4v2).
If y(v2v3v4v5v2) > 0, then y(v2v3v4v2) = w(v4v2) by (12) and y(v1v5v2v3v1) + y(v2v3v4v5v2) =
w(v2v3)−w(v1v2)−w(v4v2). Thus we always have w(viv2) = ⌈z(viv2)⌉ = z(viv2) for i = 1, 4, 5.
Since v2 is a near-sink, D(T,w) has an integral optimal solution by Lemma 4.6(i).

• y(v1v5v2v3v1) = y(v1v5v3v4v1) = 0. In this subcase, depending on whether y(v2v3v4v5v2) >
0, we distinguish between two subsubcases.

(a) We first assume that y(v2v3v4v5v2) > 0. Now, in view of (12), v4v2 is saturated by
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y in F4, which yields w(v4v2) = y(v2v3v4v2). If y(v1v5v3v1) > 0, then v1v2 is saturated by
y in F4. So y(v1v2v3v1) + y(v1v2v3v4v1) = w(v1v2) and y(v2v3v4v5v2) = w(v2v3) − w(v1v2) −
w(v4v2). Thus w(viv2) = ⌈z(viv2)⌉ = z(viv2) for i = 1, 4, 5. By Lemma 4.6(i), D(T,w) has
an integral optimal solution. So we assume that y(v1v5v3v1) = 0. If y(v1v2v3v4v1) = 0, then
y(v1v2v3v1) + y(v2v3v4v5v2) = w(v2v3) − w(v4v2). Since y satisfies (1), we have y(v1v2v3v1) =
min{w(v1v2), w(v3v1)} and y(v2v3v4v5v2) = w(v2v3)−w(v4v2)−y(v1v2v3v1). If y(v1v2v3v4v1) >
0, then y(v1v2v3v1) = w(v3v1) by (11) and y(v1v2v3v4v1)+ y(v2v3v4v5v2) = w(v2v3)−w(v3v1)−
w(v4v2). Assume y(v1v2v3v4v1) is not integral. Then [y(v1v2v3v4v1)] + [y(v2v3v4v5v2)] = 1. We
propose to show that

(18) v4v1 is saturated by y in F4.
Suppose the contrary. If v4v1 is not saturated by y in T , we set θ = min{w(v4v1) −

z(v4v1), [y(v2v3v4v5v2)]}, and let y′ arise from y by replacing y(v1v2v3v4v1) and y(v2v3v4v5v2)
with y(v1v2v3v4v1)+ θ and y(v2v3v4v5v2)− θ, respectively. Since v1v2 is outside Cy

0 , y
′ is also an

optimal solution to D(T,w), contradicting (4). If v4v1 is saturated by y in T but contained in a
cycle C ∈ Cy

0 , let C
′ = C[v5, v4] ∪ {v4v5} and σ = min{y(C), [y(v2v3v4v5v2)]}, and let y′ be ob-

tained from y by replacing y(v1v2v3v4v1), y(v2v3v4v5v2), y(C), and y(C ′) with y(v1v2v3v4v1)+σ,
y(v2v3v4v5v2)− σ, y(C)− σ, and y(C ′) + σ, respectively. Then y′ is also an optimal solution to
D(T,w), contradicting (4) again. So (18) is established.

By (18), we have y(v1v2v3v4v1) = w(v4v1). It follows that y(C) is integral for all C ∈ C2.
(b) We next assume that y(v2v3v4v5v2) = 0. If y(v1v2v3v4v1) > 0, then v4v2 is saturated by

y in F4 by (11). So y(v2v3v4v2) = w(v4v2) and y(v1v2v3v1)+y(v1v2v3v4v1) = w(v2v3)−w(v4v2).
Thus w(viv2) = ⌈z(viv2)⌉ = z(viv2) for i = 1, 4, 5. By Lemma 4.6(i), D(T,w) has an integral
optimal solution. So we assume that y(v1v2v3v4v1) = 0. Then y(v1v2v3v1) + y(v2v3v4v2) =
w(v2v3) and y(v1v5v3v1) + y(v3v4v5v3) = w(v5v3). If y(v1v2v3v1) is integral, then w(viv2) =
⌈z(viv2)⌉ = z(viv2) for i = 1, 4, 5. Hence, by Lemma 4.6(i), D(T,w) has an integral optimal
solution. So we assume that y(v1v2v3v1) is not integral. We propose to show that

(19) ν∗w(T ) is an integer.
To justify this, let x be an optimal solution to P(T,w). Since 0 < y(v1v2v3v1) < w(v1v2)

and 0 < y(v2v3v4v2) < w(v4v2), by Lemma 4.3(i) and (ii), we have x(v1v2) = x(v4v2) = 0 and
x(v3v1) = x(v3v4).

Let us show that x(v1v5) = x(v4v5). If both y(v1v5v3v1) and y(v3v4v5v3) are positive, then,
by Lemma 4.3(i), we have x(v1v5v3v1) = x(v3v4v5v3) = 1, which implies x(v1v5) = x(v4v5), as
desired. If one of y(v1v5v3v1) and y(v3v4v5v3) is zero, then the other equals w(v5v3). By Lemma
4.4(iii), we may assume that w(v5v3) = 0. Since v2v3 is saturated by y in F4, both v1v2 and
v4v2 are outside Cy

0 . If v3v4 is also outside Cy
0 , let y

′ be obtained from y by replacing y(v3v4v5v3)
and y(v1v5v3v1) with y(v3v4v5v3) + [y(v1v5v3v1)] and ⌊y(v1v5v3v1)⌋, respectively, then y′ is an
optimal solution to D(T,w). Since y′(v3v4v5v3) is a positive integer, D(T,w) has an integral
optimal solution by Lemma 4.4(iii). So we may assume that v3v4 is contained in some cycle
in Cy

0 ; the same holds for v3v1. Let C1 and C2 be two cycles in Cy
0 passing through v3v1 and

v3v4, respectively. By Lemma 4.3(iii), we have x(v3v1) + x(v1v5) = x(v3v4) + x(v4v5). Thus
x(v1v5) = x(v4v5) also holds.

Similarly, we can prove that x(uv1) = x(uv4) for each vertex u ∈ V (T1)\{b, a1}, where b is
the hub of the 1-sum. Let T ′ = (V ′, A′) be the digraph obtained from T by identifying v1 and
v4; the resulting vertex is still denoted by v1. Let w′ be the restriction of w to A′. Then x
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corresponds to a feasible solution x′ to P(T ′,w′) with x′(v1v5) = x(v4v1) + x(v1v5) = x(v4v5)
by Lemma 4.3(iii), and y corresponds to a feasible solution y′ to D(T ′,w′); both having the
same objective value ν∗w(T ) as P(T,w) and D(T,w). By the LP-duality theorem, x′ and y′

are optimal solutions to P(T ′,w′) and D(T ′,w′), respectively. By Lemma 4.5, D(T ′,w′) has an
integral optimal solution. So ν∗w(T ) is an integer. This proves (19).

Case 2.9. K = {v3v1, v3v4}.
In this case, by Lemma 4.3(iii), we have w(e) = y(C2(e)) for each e ∈ K, which together

with (14) yields the following two equations:
w(v3v1) = y(v1v2v3v1) + y(v1v5v3v1) + y(v1v5v2v3v1); and
w(v3v4) = y(v2v3v4v2) + y(v3v4v5v3) + y(v1v2v3v4v1) + y(v2v3v4v5v2) + y(v1v5v3v4v1).

Since each e ∈ K is saturated by y in F4, we have w(uvi) = z(uvi) = 0 for i = 2, 3 and all
u ∈ V (T1)\{b, a1}, where b is the hub of the 1-sum. Depending on the values of y(v1v5v3v4v1)
and y(v1v5v2v3v1), we consider three subcases.

• y(v1v5v2v3v1) > 0. In this subcase, from (9) and (15) we deduce that y(v3v4v5v3) =
y(v1v5v3v4v1) = 0 and that v1v2 and v5v3 are saturated by y in F4. So w(v1v2) = y(v1v2v3v1)+
y(v1v2v3v4v1) and w(v5v3) = y(v1v5v3v1). If y(v1v2v3v4v1) > 0, then both v4v2 and v4v5 are
saturated by y in F4 by (9) and (11). Thus y(v2v3v4v2) = w(v4v2) and y(v2v3v4v5v2) = w(v4v5).
It follows that y(C) is integral for all C ∈ C2. So we assume that y(v1v2v3v4v1) = 0. If
y(v2v3v4v5v2) > 0, then v4v2 is saturated by y in F4 by (12), which implies that y(v2v3v4v2) =
w(v4v2); if y(v2v3v4v5v2) = 0, then y(v2v3v4v2) = w(v3v4). So y(C) is integral for all C ∈ C2,
regardless of the value of y(v2v3v4v5v2).

• y(v1v5v3v4v1) > 0. In this subcase, from (10) and (15) we deduce that y(v1v2v3v1) =
y(v1v5v2v3v1) = 0 and that v4v5 is saturated by y in F4. So w(v3v1) = y(v1v5v3v1) and
w(v4v5) = y(v3v4v5v3) + y(v2v3v4v5v2). If y(v2v3v4v5v2) > 0, then v1v2, v4v2, and v5v3 are all
saturated by y in F4 by (10) and (12). So y(v1v2v3v4v1) = w(v1v2), y(v2v3v4v2) = w(v4v2),
and y(v3v4v5v3) + y(v1v5v3v4v1) = w(v5v3) − y(v1v5v3v1). It follows that y(C) is integral
for all C ∈ C2. So we assume that y(v2v3v4v5v2) = 0. Then y(v3v4v5v3) = w(v4v5). If
y(v1v2v3v4v1) > 0, then v4v2 is saturated by y in F4 by (11). So y(v2v3v4v2) = w(v4v2) and
hence y(v1v2v3v4v1) + y(v1v5v3v4v1) = w(v3v4)− w(v4v5)− w(v4v2); if y(v1v2v3v4v1) = 0, then
y(v2v3v4v2)+y(v1v5v3v4v1) = w(v3v4)−w(v4v5). Since all arcs in F4\v6 except {v1v5, v4v1, v4v5}
are outside Cy

0 and y(v1v5v3v4v1) > 0, by (ii) we have y(v1v2v3v4v1) = min{w(v1v2), w(v2v3) −
w(v4v2)} if y(v1v2v3v4v1) > 0 and y(v2v3v4v2) = min{w(v4v2), w(v2v3)} otherwise. So y(v1v5v3v4v1)
is integral, and hence y(C) is integral for all C ∈ C2, regardless of the value of y(v1v2v3v4v1).

• y(v1v5v2v3v1) = y(v1v5v3v4v1) = 0. In this subcase, depending on whether y(v2v3v4v5v2)
> 0, we distinguish between two subsubcases.

(a) We first assume that y(v2v3v4v5v2) > 0. By (12), both v4v2 and v5v3 are saturated
by y in F4, which implies w(v4v2) = y(v2v3v4v2) and w(v5v3) = y(v1v5v3v1) + y(v3v4v5v3).
If y(v1v5v3v1) > 0, then v1v2 is saturated by y in F4 by (12). So w(v1v2) = y(v1v2v3v1) +
y(v1v2v3v4v1). Moreover, if y(v1v2v3v4v1) > 0, then v4v5 is saturated by y in F4 by (11), which
yields one more equation w(v4v5) = y(v3v4v5v3) + y(v2v3v4v5v2). Hence y(C) is integral for
all C ∈ C2, no matter whether y(v1v2v3v4v1) = 0. So we assume that y(v1v5v3v1) = 0. Then
y(v1v2v3v1) = w(v3v1), y(v3v4v5v3) = w(v5v3) and y(v1v2v3v4v1) + y(v2v3v4v5v2) = w(v3v4) −
w(v4v2) − w(v5v3). If y(v1v2v3v4v1) is integral, then y(C) is integral for all C ∈ C2. So we
assume that y(v1v2v3v4v1) is integral. Similar to (18), we can prove that v4v1 is saturated by y
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in F4. Then y(v1v2v3v4v1) = w(v4v1), a contradiction.
(b) We next assume that y(v2v3v4v5v2) = 0. Suppose y(v1v2v3v4v1) = 0. Then y(v1v2v3v1)+

y(v1v5v3v1) = w(v3v1) and y(v2v3v4v2) + y(v3v4v5v3) = w(v3v4). If neither y(v1v5v3v1) nor
y(v3v4v5v3) is integral, then neither y(v1v2v3v1) nor y(v2v3v4v2) is integral. Similar to (19),
we can show that ν∗w(T ) is an integer. So we may assume that y(v1v5v3v1) or y(v3v4v5v3)
is integral. Observe that both of them are integral, for otherwise, let y′ be obtained from y
by replacing y(v1v2v3v1) and y(v1v5v3v1) with y(v1v2v3v1) + [y(v1v5v3v1)] and ⌊y(v1v5v3v1)⌋,
respectively. Since v1v2, v2v3, and v4v2 are all outside Cy

0 , y
′ is an optimal solution to D(T,w),

with y′(v1v5v3v1) < y(v1v5v3v1), contradicting (5).
Suppose y(v1v2v3v4v1) > 0. Then y(v2v3v4v2) = w(v4v2). If y(v1v5v3v1) > 0, then v4v5 is

saturated by y in F4 by (11), which implies y(v3v4v5v3) = w(v4v5), y(v1v2v3v4v1) = w(v3v4) −
w(v4v2) − w(v4v5), and y(v1v2v3v1) + y(v1v5v3v1) = w(v3v1). If y(v1v5v3v1) is not integral, let
y′ be obtained from y by replacing y(v1v2v3v1) and y(v1v5v3v1) with y(v1v2v3v1)+ [y(v1v5v3v1)]
and ⌊y(v1v5v3v1)⌋, respectively. Since both v1v2 and v2v3 are outside C0, y′ is an optimal solution
to D(T,w), with y′(v1v5v3v1) < y(v1v5v3v1), contradicting (5). So y(v1v5v3v1) is integral and
hence is zero by Lemma 4.4(iii). It follows that y(v1v2v3v1) = w(v3v1) and y(v1v2v3v4v1) +
y(v3v4v5v3) = w(v3v4)−w(v4v2). If y(v3v4v5v3) is integral, then y(C) is integral for all C ∈ C2.
So we assume that y(v3v4v5v3) is not integral. Let us show that

(20) ν∗w(T ) is an integer.
By Lemma 4.4(iii), we may assume that w(v3v1) = w(v4v2) = 0. Recall that w(v5v2) =

z(v5v2) = 0 and w(uvi) = z(uvi) = 0 for i = 2, 3 and all u ∈ V (T1)\{b, a1}. So we may assume
that x(uv2) = x(uv3). Let T ′ = (V ′, A′) be the digraph obtained from T by identifying v2 and
v3; the resulting vertex is still denoted by v3, and let w′ be the restriction of w to A′. Then
x corresponds to a feasible solution x′ to P(T ′,w′), and y corresponds to a feasible solution
y′ to D(T ′,w′); both having the same objective value ν∗w(T ) as P(T,w) and D(T,w). By the
LP-duality theorem, x′ and y′ are optimal solutions to P(T ′,w′) and D(T ′,w′), respectively. By
Lemma 4.5, D(T ′,w′) has an integral optimal solution. So ν∗w(T ) is an integer. This proves (20)
and hence Claim 2.

Since τw(F4\v6) > 0, from Claim 2, Lemma 4.4(iii) and Lemma 4.6(ii) we deduce that
D(T,w) has an integral optimal solution. This completes the proof of Lemma 5.4.

Lemma 5.5. If T2 = G2, then D(T,w) has an integral optimal solution.

Proof. It is routine to check that
• C2 = {v1v2v4v1, v1v6v3v1, v1v6v4v1, v1v6v2v4v1, v1v6v3v4v1, v1v6v3v2v4v1} and
• F2 = {{v1v6, v1v2}, {v1v6, v2v4}, {v1v6, v4v1}, {v3v1, v4v1}, {v4v1, v6v3}, {v2v4, v6v3, v6v4},

{v2v4, v3v1, v3v4, v6v4}, {v1v2, v6v2, v6v3, v6v4}, {v1v2, v3v1, v3v2, v3v4, v6v2, v6v4}}.
We also have a computer verification of these results. So |C2| = 6 and |F2| = 9. Recall that
(b2, a2) = (v4, v5).

Let y be an optimal solution to D(T,w) such that
(1) y(C2) is maximized;
(2) subject to (1), (y(Dq), y(Dq−1), . . . , y(D3)) is minimized lexicographically;
(3) subject to (1) and (2), y(v1v6v3v4v1) is minimized; and
(4) subject to (1)-(3), y(v1v6v4v1) is minimized;
Let us make some simple observations about y.
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(5) If K ∈ F2 satisfies y(C2) = w(K), then K is an MFAS. (The statement is exactly the
same as (4) in the proof of Lemma 5.3.)

The three statements below follow instantly from Lemma 4.7(v).
(6) If y(v1v6v3v2v4v1) > 0, then each arc in the set {v1v2, v3v1, v3v4, v6v2, v6v4} is saturated

by y in G2.
(7) If y(v1v6v3v4v1) > 0, then both v3v1 and v6v4 are saturated by y in G2.
(8) If y(v1v6v2v4v1) > 0, then both v1v2 and v6v4 are saturated by y in G2.

Claim 1. y(C2) = τw(G2\v5).
To justify this, observe that if both v1v2 and v1v6 are saturated by y in G2, then y(C2) =

w(K), where K = {v1v2, v1v6}; if both v3v1 and v4v1 are saturated by y in G2, then y(C2) =
w(K), where K = {v3v1, v4v1}. By (5), K is an MFAS and hence y(C2) = τw(G2\v5) in either
case. So we assume that

(9) at most one of v1v2 and v1v6 is saturated by y in G2. The same holds for v3v1 and v4v1.
As v2v4 is a special arc of T and v2 is a near-sink, by Lemma 4.6(iv), we may assume that

v2v4 is saturated by y in T . Depending on whether v2v4 is outside Cy
0 , we distinguish between

two cases.
Case 1.1. v2v4 is contained by some cycle in Cy

0 .
In this case, we proceed by considering two subcases.
• v3v1 is saturated by y in G2. In this subcase, by (9), v4v1 is not saturated by y in G2

and hence in T , because v4v1 is outside C0. By the hypothesis of the present case and Lemma
4.7(iii), v1v2 is saturated by y in T . Observe that v1v2 is outside Cy

0 , for otherwise, a cycle
C ∈ Cy

0 containing v1v2 must pass through v2v4. Thus, by Lemma 4.7(iv), v4v1 is saturated by
y in G2, a contradiction. It follows that v1v2 is saturated by y in G2. So, by (9), v1v6 is not
saturated by y in G2. If v1v6 is contained in some cycle C ∈ Cy

0 , applying Lemma 4.7(iv) to the
cycle C[v1, v4]∪{v4v1} in C2, we see that v4v1 is saturated by y in T , a contradiction. So v1v6 is
outside C ∈ Cy

0 . By Lemma 4.7(iii), v6v2 is saturated by y in G2 and v6v4 is outside Cy
0 . Using

Lemma 4.7(i), we further deduce that v6v4 is saturated by y in G2. If v6v3 is also saturated by
y in G2, then y(C2) = w(K), where K = {v1v2, v6v2, v6v3, v6v4}. By (5), K is an MFAS and
thus y(C2) = τw(G2\v5). If v6v3 is saturated by y in T but contained in some cycle C ∈ Cy

0 ,
applying Lemma 4.7(iii) to the cycle C[v6, v4] ∪ {v4v1, v1v6} ∈ C2, we see that v4v1 or v1v6 is
saturated, a contradiction. If v6v3 is not saturated by y in T then, by Lemma 4.7(iii), v3v2 is
saturated by y in G2 and and v3v4 is outside Cy

0 . Using Lemma 4.7(i), we further deduce that
v3v4 is saturated by y in G2. Thus y(C2) = w(J), where J = {v1v2, v3v1, v3v2, v3v4, v6v2, v6v4}.
By (5), J is an MFAS and thus y(C2) = τw(G2\v5).

• v3v1 is not saturated by y inG2. In this subcase, we have y(v1v6v3v4v1) = y(v1v6v3v2v4v1) =
0 by (6) and (7). Assume first that v1v2 is saturated by y in G2. Then v1v6 is not satu-
rated by y in G2 by (9). Thus v6v3 is saturated by y in G2 by Lemma 4.7(iii) and (iv). If
v4v1 is also saturated by y in G2, then y(C2) = w(K), where K = {v4v1, v6v3}; otherwise,
both v6v2 and v6v4 are saturated by y in G2 by Lemma 4.7(iii) and (iv). So y(C2) = w(K),
where K = {v1v2, v6v2, v6v3, v6v4}. By (5), K is an MFAS in either subsubcase, and thus
y(C2) = τw(G2\v5).

Assume next that v1v2 is not saturated by y in G2. By (8), we have y(v1v6v2v4v1) = 0. By
the hypothesis of the present case and by Lemma 4.7(iii) and (iv), v4v1 is saturated by y in G2.
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If v6v3 is also saturated by y in G2, then y(C2) = w(K), where K = {v4v1, v6v3}. By (5), K
is an MFAS and thus y(C2) = τw(G2\v5). So we assume that v6v3 is not saturated by y in G2.
Thus v1v6 is saturated by y in G2 by Lemma 4.7(iii) and (iv). We propose to show that

(10) y(v1v6v4v1) = 0.
Assume the contrary: y(v1v6v4v1) > 0. Observe that v1v2 is outside Cy

0 , for otherwise, let
C be a cycle in Cy

0 containing v1v2. Then the multiset sum of v1v6v4v1 and C contains two
arc-disjoint cycles v1v2v4v1 and C[v4, v1]∪ {v1v6, v6v4}. Set θ = min{y(v1v6v4v1), y(C)}. Let y′

be obtained from y by replacing y(v1v6v4v1), y(v1v2v4v1), y(C), and y(C ′) with y(v1v6v4v1)−θ,
y(v1v2v4v1) + θ, y(C) − θ, and y(C ′) + θ, respectively. Then y′ is also an optimal solution to
D(T,w). Since y′(v1v6v4v1) < y(v1v6v4v1), the existence of y′ contradicts the assumption (4)
on y. It follows that v3v1 is also outside Cy

0 , because every cycle containing v3v1 in Cy
0 must pass

through v1v2. So neither v1v2 nor v3v1 is saturated by y in T .
Let us show that v6v3 is outside Cy

0 , for otherwise, let C ∈ Cy
0 contain v6v3. Then the

multiset sum of v1v6v4v1, C, and the unsaturated arc v3v1 contains arc-disjoint cycles v1v6v3v1
and C ′ = C[v4, v6] ∪ {v6v4}. Set θ = min{y(v1v6v4v1), y(C), w(v3v1) − z(v3v1)}. Let y′ be
obtained from y by replacing y(v1v6v4v1), y(v1v6v3v1), y(C), and y(C ′) with y(v1v6v4v1) − θ,
y(v1v6v3v1) + θ, y(C) − θ, and y(C ′) + θ, respectively. Then y′ is also an optimal solution to
D(T,w). Since y′(v1v6v4v1) < y(v1v6v4v1), the existence of y′ contradicts the assumption (4)
on y. Let D ∈ Cy

0 be a cycle containing v2v4. Then the multiset sum of D, v1v6v4v1, and the
unsaturated arcs v6v3, v3v1, and v1v2 contains two arc-disjoint cycles v1v2v4v1 and v1v6v3v1.
Thus, by Lemma 4.7(vi), we obtain y(v1v6v4v1) = 0; this contradiction proves (10).

From (10), we deduce that y(C2) = w(K), where K = {v1v6, v4v1}. So, by (5), K is an
MFAS and thus y(C2) = τw(G2\v5).

Case 1.2. v2v4 is outside Cy
0 .

In this case, v2v4 is saturated by y in G2. So v1v2, v3v2, and v6v2 are all outside Cy
0 . Assume

first that v1v6 is saturated by y in G2. Then v1v2 is not saturated by y by (9). By (6) and (8),
we have y(v1v6v3v2v4v1) = y(v1v6v2v4v1) = 0 and hence y(C2) = w(K), where K = {v1v6, v2v4}.
It follows from (5) that K is an MFAS and thus y(C2) = τw(G2\v5). Assume next that v1v6 is
not saturated by y in G2. If v4v1 is not saturated by y in T , then v6v4 is outside Cy

0 by Lemma
4.7(iii). So v3v4 is contained in some cycle in Cy

0 because Cy
0 ̸= ∅. Using Lemma 4.7(iii), we deduce

that both v6v3 and v6v4 are saturated by y in G2. Using (6), we obtain y(v1v6v3v2v4v1) = 0.
Thus y(C2) = w(K), where K = {v2v4, v6v3, v6v4}. If v4v1 is saturated by y in T , then so is it
in G2 because v4v1 is outside Cy

0 . By (9), v3v1 is not saturated by y in G2. By Lemma 4.7(iii),
v6v3 is saturated by y in G2. By (6) and (7), we have y(v1v6v3v4v1) = y(v1v6v3v2v4v1) = 0.
Hence y(C2) = w(K), where K = {v4v1, v6v3}. In either subsubcase, K is an MFAS by (5) and
thus y(C2) = τw(G2\v5). This proves Claim 1.

Claim 2. y(C) is integral for all C ∈ C2 or ν∗w(T ) is an integer.
To justify this, we may assume that
(11) y(v1v6v3v2v4v1) = 0.
Otherwise, by (6), we have w(e) = y(C2(e)) for each e in the set {v1v2, v3v1, v3v4, v6v2, v6v4}.

So y(v1v2v4v1) = w(v1v2), y(v1v6v3v1) = w(v3v1), y(v1v6v3v4v1) = w(v3v4), y(v1v6v2v4v1) =
w(v6v2), and y(v1v6v4v1) = w(v6v4). By Claim 1, y(C2) is an integer, so is y(v1v6v3v2v4v1).
Hence y(C) is integral for all C ∈ C2.
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By Claim 1, y(C2) = w(K) for some K ∈ F2. Depending on what K is, we distinguish among
nine cases.

Case 2.1. K = {v1v2, v3v1, v3v2, v3v4, v6v2, v6v4}.
In this case, by Lemma 4.3 (iii), we have w(e) = y(C2(e)) for each e ∈ K. It follows instantly

that y(C) is integral for all C ∈ C2.
Case 2.2. K = {v1v6, v4v1}.
In this case, by Lemma 4.3 (i), we have y(v1v6v4v1) = y(v1v6v2v4v1) = y(v1v6v3v4v1) =

y(v1v6v3v2v4v1) = 0. By Lemma 4.3 (iii), we further obtain w(e) = y(C2(e)) for each e ∈ K. It
follows that y(v1v2v4v1) = w(v4v1) and y(v1v6v3v1) = w(v1v6). Therefore y(C) is integral for
all C ∈ C2.

Case 2.3. K = {v1v2, v6v2, v6v3, v6v4}.
In this case, by Lemma 4.3 (iii), we have w(e) = y(C2(e)) for each e ∈ K, which together

with (11) yields the following equations: y(v1v2v4v1) = w(v1v2), y(v1v6v2v4v1) = w(v6v2),
y(v1v6v4v1) = w(v6v4), and y(v1v6v3v1)+y(v1v6v3v4v1) = w(v6v3). Note that if y(v1v6v3v4v1) >
0, we have one more equation y(v1v6v3v1) = w(v3v1) by (7). Hence y(C) is integral for all C ∈ C2,
no matter whether y(v1v6v3v4v1) = 0.

Case 2.4. K = {v2v4, v6v3, v6v4}.
In this case, by Lemma 4.3 (iii), we have w(e) = y(C2(e)) for each e ∈ K, which together

with (11) yields the following equations: y(v1v2v4v1) + y(v1v6v2v4v1) = w(v2v4), y(v1v6v3v1) +
y(v1v6v3v4v1) = w(v6v3), and y(v1v6v4v1) = w(v6v4). Note that if y(v1v6v2v4v1) > 0, we have
one more equation y(v1v2v4v1) = w(v1v2) by (8); if y(v1v6v3v4v1) > 0, we have one more
equation y(v1v6v3v1) = w(v3v1) by (7). Hence y(C) is integral for all C ∈ C2 in any subcase.

Case 2.5. K = {v2v4, v3v1, v3v4, v6v4}.
In this case, by Lemma 4.3 (iii), we have w(e) = y(C2(e)) for each e ∈ K, which together

with (11) yields the following equations: y(v1v2v4v1) + y(v1v6v2v4v1) = w(v2v4), y(v1v6v3v1) =
w(v3v1), y(v1v6v3v4v1) = w(v3v4), and y(v1v6v4v1) = w(v6v4). Note that if y(v1v6v2v4v1) > 0,
we have one more equation y(v1v2v4v1) = w(v1v2) by (8). Hence y(C) is integral for all C ∈ C2,
no matter whether y(v1v6v2v4v1) = 0.

Case 2.6. K = {v1v6, v2v4}.
In this case, by Lemma 4.3 (i), we have y(v1v6v2v4v1) = 0. By Lemma 4.3 (iii), we ob-

tain w(e) = y(C2(e)) for each e ∈ K, which together with (11) yields the following equa-
tions: y(v1v2v4v1) = w(v2v4) and y(v1v6v3v1) + y(v1v6v4v1) + y(v1v6v3v4v1) = w(v1v6). More-
over, in this case v1v2, v3v2, and v6v2 are all outside Cy

0 , and w(uv2) = z(uv2) = 0 for any
u ∈ V (T1)\{b, a1}, where b is the hub of the 1-sum. Examining the cycles in C2, we see that
z(v3v2) = z(v6v2) = 0 and so w(viv2) = ⌈z(viv2)⌉ = z(viv2) for i = 1, 3, 6. Thus D(T,w) has an
integral optimal solution by Lemma 4.6(i).

Case 2.7. K = {v4v1, v6v3}.
In this case, by Lemma 4.3 (i) and (iii), we have y(v1v6v3v4v1) = 0, y(v1v6v3v1) = w(v6v3),

and y(v1v2v4v1) + y(v1v6v4v1) + y(v1v6v2v4v1) = w(v4v1). Lemma 4.4(iii) allows us to assume
that w(v6v3) = 0. If y(v1v6v2v4v1) > 0, then both v1v2 and v6v4 are saturated by y in G2 by (8).
So y(v1v2v4v1) = w(v1v2) and y(v1v6v4v1) = w(v6v4). Hence y(C) is integral for all C ∈ C2; the
same holds if y(v1v6v2v4v1) = 0 and y(v1v2v4v1) is integral. So we assume that y(v1v6v2v4v1) = 0
and y(v1v2v4v1) is not integral. Observe that v1v2 is outside Cy

0 , for otherwise, let C be a cycle in
Cy
0 containing v1v2, let C

′ = C[v4, v1]∪{v1v6, v6v4}, and set θ = min{y(C), y(v1v6v4v1)}. Let y′
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be obtained from y by replacing y(v1v6v4v1), y(v1v2v4v1), y(C), and y(C ′) with y(v1v6v4v1)−θ,
y(v1v2v4v1) + θ, y(C) − θ, and y(C ′) + θ, respectively. Then y′ is also an optimal solution to
D(T,w). Since y′(v1v6v4v1) < y(v1v6v4v1), the existence of y′ contradicts the assumption (4)
on y. Similarly, we can prove that v6v2 is outside Cy

0 . Examining cycles in C2, we see that
w(v6v2) = z(v6v2) = 0. Now we propose to show that

(12) ν∗w(T ) is an integer.
To justify this, let x be an optimal solution to P(T,w). Since both y(v1v2v4v1) and

y(v1v6v4v1) are positive, we have x(v1v2) + x(v2v4) = x(v1v6) + x(v6v4) by Lemma 4.3(i). Since
y(v1v2v4v1) < w(v1v2), we have x(v1v2) = 0 by Lemma 4.3(ii). So x(v2v4) = x(v1v6) + x(v6v4).
If each of v3v1 and v3v2 is contained in some cycle in Cy

0 , then x(v3v1) = x(v3v2) by Lemma
4.3(iv). If one of v3v1 and v3v2 is outside Cy

0 , say v3v1, then we may assume that w(v3v1) = 0
and x(v3v1) = x(v3v2). Similarly, we can prove that x(uv1) = x(uv2) for each u ∈ V (T1)\{a1, b}.

Let T ′ = (V ′, A′) be obtained from T by deleting vertex v2, let w′ be obtained from the
restriction of w to A′ by defining w′(uv1) = w(uv1) + w(uv2) for u = v3 or u ∈ V (T1)\{b, a1}
and w′(vivj) = w(vivj) + w(v2v4) for (i, j) = (1, 6) or (6, 4). Let x′ be the restriction of x to
A′ and let y′ be obtained from y as follows: for each cycle C passing through the path uv2v4
with u ∈ (V (T1)\{a1, b}) ∪ {v3}, let C ′ be the cycle arising from C by replacing uv2v4 with
uv1v6v4, and set y′(C ′) = y(C) + y(C ′) and y′(v1v6v4v1) = y(v1v6v4v1) + y(v1v2v4v1). From
the LP-duality theorem, we see that x′ and y′ are optimal solutions to P(T ′,w′) and D(T ′,w′)
respectively, both having the same value ν∗w(T ) as x and y. Hence ν∗w(T ) is an integer by the
hypothesis of Theorem 4.1.

Case 2.8. K = {v1v6, v1v2}.
In this case, by Lemma 4.3 (iii), we have w(e) = y(C2(e)) for each e ∈ K, which together

with (11) yields the following equations: y(v1v2v4v1) = w(v1v2) and y(v1v6v3v1)+y(v1v6v4v1)+
y(v1v6v2v4v1) + y(v1v6v3v4v1) = w(v1v6). Moreover, v3v1 is outside Cy

0 . Depending on whether
y(v1v6v3v4v1) = 0, we consider two subcases.

• y(v1v6v3v4v1) = 0. In this subcase, we first assume that y(v1v6v2v4v1) > 0. Then
y(v1v6v4v1) = w(v6v4) by (8). Thus y(v1v6v3v1) + y(v1v6v2v4v2) = w(v1v6) − w(v6v4). Let us
show that y(v1v6v3v1) is integral. Suppose not. If v6v3 is outside Cy

0 , let y
′ be obtained from y by

replacing y(v1v6v3v1) and y(v1v6v2v4v1) with y(v1v6v3v1)+ [y(v1v6v2v4v1)] and ⌊y(v1v6v2v4v1)⌋,
respectively; if v6v3 is contained in some cycle C in Cy

0 , set θ = min{y(C), [y(v1v6v2v4v1)]}
and C ′ = C[v4, v6] ∪ {v6v2, v2v4}, and let y′ be obtained from y by replacing y(v1v6v3v1),
y(v1v6v2v4v1), y(C), and y(C ′) with y(v1v6v3v1)+ θ, y(v1v6v2v4v1)− θ, y(C)− θ, and y(C ′)+ θ,
respectively. In both subsubcases, y′ is an optimal solution to D(T,w) with y′(v1v6v2v4v1) <
y(v1v6v2v4v1), contradicting (2). We next assume that y(v1v6v2v4v1) = 0. The proof of this
subsubcase is similar to that in the preceding one (with y(v1v6v4v1) in place of y(v1v6v2v4v1)).
Thus we reach a contradiction to (4).

• y(v1v6v3v4v1) > 0. In this subcase, by (7), both v3v1 and v6v4 are saturated by y in G2. So
y(v1v6v3v1) = w(v3v1), y(v1v6v4v1) = w(v6v4), and y(v1v6v2v4v1) + y(v1v6v3v4v1) = w(v1v6) −
w(v3v1)−w(v6v4). If y(v1v6v2v4v1) is integral, then y(C) is integral for all C ∈ C2. So we assume
that y(v1v6v2v4v1) is not integral. Then [y(v1v6v2v4v1)]+[y(v1v6v3v4v1)] = 1. Observe that v6v2
is outside Cy

0 , for otherwise, let C be a cycle in Cy
0 containing v6v2, let C

′ = C[v4, v6]∪{v6v3, v3v4},
let θ = min{y(C), [y(v1v6v3v4v1]}, and let y′ be obtained from y by replacing y(v1v6v3v4v1),
y(v1v6v2v4v1), y(C), y(C ′) with y(v1v6v3v4v1) − θ, y(v1v6v2v4v1) + θ, y(C) − θ, and y(C ′) + θ,
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respectively. Then y′ is an optimal solution to D(T,w) with y′(v1v6v3v4v1) < y(v1v6v3v4v1),
contradicting (2). Similarly, we can show that v3v2 is also outside Cy

0 . Thus w(v3v2) = z(v3v2) =
0. By Lemma 4.4(iii), we may assume that w(v1v2), w(v3v1), and w(v6v4) are all 0. We propose
to show that

(13) ν∗w(T ) is an integer.
To justify this, let x be an optimal solution to P(T,w). Since y(v1v6v2v4v1) > 0 and

y(v1v6v3v4v1) > 0, from Lemma 4.3(i) we deduce that x(v6v2) + x(v2v4) = x(v6v3) + x(v3v4).
Since y(v1v6v2v4v1) < w(v6v2), we have x(v6v2) = 0 by Lemma 4.3(ii). It follows that x(v2v4) =
x(v6v3) + x(v3v4). Since w(v6v4) = 0 and v6v2 is outside Cy

0 , x(uv6) = x(uv2) for each u ∈
V (T1)\{b, a1}. Let T ′ = (V ′, A′) be the tournament obtained from T by deleting vertex v2, let
w′ be obtained from the restriction of w to A′ by replacing w(uv6) with w(uv6)+w(uv2) for each
u ∈ V (T1)\{b, a1} and replacing w(vivj) with w(vivj) + w(v2v4) for (i, j) = (6, 3) or (3, 4). Let
x′ be the restriction of x to A′, and let y′ be obtained from y as follows: for each cycle C passing
through uv2v4 with u ∈ V (T1)\{b, a1}, let C ′ be the cycle arising from C by replacing uv2v4
with uv6v3v4, and set y′(C ′) = y(C ′)+y(C) and y′(v1v6v3v4v1) = y(v1v6v3v4v1)+y(v1v6v2v4v1).
From the LP-duality theorem, we deduce that x′ and y′ are optimal solutions to P(T ′,w′) and
D(T ′,w′), respectively, both having the same value ν∗w(T ) as x and y. Hence ν∗w(T ) is an integer
by the hypothesis of Theorem 4.1.

Case 2.9. K = {v3v1, v4v1}.
In this case, by Lemma 4.3 (iii), we have w(e) = y(C2(e)) for each e ∈ K, which to-

gether with (11) yields the following equations: y(v1v6v3v1) = w(v3v1) and y(v1v2v4v1) +
y(v1v6v4v1) + y(v1v6v2v4v1) + y(v1v6v3v4v1) = w(v4v1). Assume first that y(v1v6v2v4v1) = 0.
If y(v1v6v3v4v1) > 0, then v6v4 is saturated by y in G2. So y(v1v6v4v1) = w(v6v4) and hence
y(v1v2v4v1) + y(v1v6v3v4v1) = w(v4v1) − w(v6v4); if y(v1v6v3v4v1) = 0, then y(v1v2v4v1) +
y(v1v6v4v1) = w(v4v1). If y(v1v2v4v1) is an integer, then y(C) is integral for all C ∈ C2. So we
assume that y(v1v2v4v1) is not integral. Then we can prove that both v6v2 and v1v2 are outside
Cy
0 and that ν∗w(T ) is an integer. The proof is the same as that of (12) (with y(v1v6v4v1) in place

of y(v1v6v3v4v1) when y(v1v6v3v4v1) > 0), so we omit the details here .
Assume next that y(v1v6v2v4v1) > 0. Then both v1v2 and v6v4 are saturated by y in

G2. So y(v1v2v4v1) = w(v1v2), y(v1v6v4v1) = w(v6v4), and y(v1v6v2v4v1) + y(v1v6v3v4v1) =
w(v4v1)−w(v1v2)−w(v6v4). If y(v1v6v3v4v1) is an integer, then y(C) is integral for all C ∈ C2.
So we assume that y(v1v6v3v4v1) is not integral. Then we can prove that both v6v2 and v3v2
are outside Cy

0 and that ν∗w(T ) is an integer. The proof is the same as that of (13), so we omit
the details here. Thus Claim 2 is established.

Since τw(F4\v6) > 0, from Claim 2, Lemma 4.4(iii) and Lemma 4.6(ii) we deduce that
D(T,w) has an integral optimal solution. This completes the proof of Lemma 5.5.

Lemma 5.6. If T2 = G3, then D(T,w) has an integral optimal solution.

Proof. It is routine to check that
• C2 = {v1v2v4v1, v1v6v3v1, v2v4v6v2, v3v4v6v3, v1v6v2v4v1, v1v6v3v4v1, v2v4v6v3v2, v1v6v3v2v4v1,

v1v2v4v6v3v1} and
• F2 = {{v2v4, v6v3}, {v1v2, v1v6, v4v6}, {v1v2, v6v2, v6v3}, {v1v6, v2v4, v3v4}, {v1v6, v2v4, v4v6},

{v1v6, v4v1, v4v6}, {v2v4, v3v1, v3v4}, {v3v1, v4v1, v4v6}, {v4v1, v4v6, v6v3},
{v4v1, v6v2, v6v3}, {v1v2, v3v1, v3v2, v3v4, v6v2}, {v1v2, v1v6, v3v2, v3v4, v6v2},
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{v3v1, v3v2, v3v4, v4v1, v6v2}}.
We also have a computer verification of these results. So |C2| = 9 and |F2| = 13. Recall that
(b2, a2) = (v4, v5).

Let y be an optimal solution to D(T,w) such that
(1) y(C2) is maximized;
(2) subject to (1), (y(Dq), y(Dq−1), . . . , y(D3)) is minimized lexicographically;
(3) subject to (1) and (2), y(v1v6v3v4v1) is minimized; and
(4) subject to (1)-(3), y(v1v2v4v1) + y(v3v4v6v3) is minimized;
Let us make some simple observations about y.
(5) If K ∈ F2 satisfies y(C2) = w(K), then K is an MFAS. (The statement is exactly the

same as (4) in the proof of Lemma 5.3.)
(6) If y(v1v2v4v6v3v1) > 0, then each arc in the set {v1v6, v3v2, v3v4, v4v1, v6v2} is saturated

by y in G3. Furthermore, y(v1v6v2v4v1) = y(v1v6v3v4v1) = y(v1v6v3v2v4v1) = 0.
To justify this, note that each arc in the given set is a chord of the cycle v1v2v4v6v3v1. So

the first half follows instantly from Lemma 4.7(v). Once again let ⊎ stand for the multiset sum.
Then v1v2v4v6v3v1 ⊎ v1v6v2v4v1 = v1v2v4v1 ⊎ v1v6v3v1 ⊎ v2v4v6v2, v1v2v4v6v3v1 ⊎ v1v6v3v4v1 =
v1v2v4v1⊎v1v6v3v1⊎v3v4v6v3, and v1v2v4v6v3v1⊎v1v6v3v2v4v1 = v1v2v4v1⊎v1v6v3v1⊎v2v4v6v3v2.
It follows from the optimality of y that y(v1v6v2v4v1) = y(v1v6v3v4v1) = y(v1v6v3v2v4v1) = 0.

(7) If y(v1v6v3v2v4v1) > 0, then each arc in the set {v1v2, v3v1, v3v4, v4v6, v6v2} is saturated
by y in G3. Furthermore, y(v2v4v6v2) = y(v3v4v6v3) = 0.

To justify this, note that each arc in the given set is a chord of the cycle v1v2v4v6v3v1. So
the first half follows instantly from Lemma 4.7(v). Observe that v1v6v3v2v4v1 ⊎ v3v4v6v3 =
v1v6v3v4v1⊎ v2v4v6v3v2 and v1v6v3v2v4v1⊎ v2v4v6v2 = v1v6v2v4v1⊎ v2v4v6v3v2. Since y satisfies
(2), it is clear that y(v2v4v6v2) = y(v3v4v6v3) = 0.

(8) If y(v1v6v3v4v1) > 0, then both v3v1 and v4v6 are saturated by y in G3; so is v1v2 if
y(v2v4v6v3v2) > 0. Furthermore, y(v2v4v6v2) = 0.

To justify this, note that both v3v1 and v4v6 are chords of the cycle v1v2v4v6v3v1, so they are
saturated by y in G3 by Lemma 4.7(v). Suppose y(v2v4v6v3v2) > 0. If v1v2 is not saturated by y
in T , then v1v6v3v4v1⊎v2v4v6v3v2⊎{v1v2} = v1v2v4v1⊎v3v4v6v3; if v1v2 is saturated by y in T but
contained in some cycle C ∈ Cy

0 , then the multiset sum of C, v1v6v3v4v1, and v2v4v6v3v2 contains
arc-disjoint cycles v1v2v4v1, v3v4v6v3, and C ′ = C[v4, v1] ∪ {v1v6, v6v3, v3v2, v2v4}. Thus we can
obtain an optimal solution y′ to D(T,w) that contradicts the assumption (3) on y. Moreover,
since v1v6v3v4v1 ⊎ v2v4v6v2 = v3v4v6v3 ⊎ v1v6v2v4v1, it follows from (3) that y(v2v4v6v2) = 0.

(9) If y(v1v6v2v4v1) > 0, then both v1v2 and v4v6 are saturated by y in G3; so is v3v1 if
y(v3v4v6v3) > 0 or y(v2v4v6v3v2) > 0.

The first half follows instantly from Lemma 4.7(v). To prove the second half, assume the
contrary. If v3v1 is not saturated by y in T , then v3v4v6v3 ⊎ v1v6v2v4v1 ⊎ {v3v1} = v2v4v6v2 ⊎
v1v6v3v1, and v2v4v6v3v2⊎v1v6v2v4v1⊎{v3v1} = v2v4v6v2⊎v1v6v3v1; if v3v1 is saturated by y in T
but contained in some cycle C in Cy

0 , then the multiset sum of C, v1v6v2v4v1, and v3v4v6v3 (resp.
v2v4v6v3v2) contains arc-disjoint cycles v2v4v6v2, v1v6v3v1, and C ′ = C[v4, v3] ∪ {v3v4} (resp.
C ′ = C[v4, v3] ∪ {v3v2, v2v4}). Since y satisfies (2), we have y(v3v4v6v3) = y(v2v4v6v3v2) = 0, a
contradiction.

(10) If y(v2v4v6v3v2) > 0, then both v3v4 and v6v2 are saturated by y in G3 by Lemma
4.7(v).

52



(11) If v1v6 is contained in a cycle in Cy
0 , then both v4v1 and v4v6 are saturated by y in G3.

Since both C[v1, v4] ∪ {v4v1} and C[v6, v4] ∪ {v4v6} are cycles in C2, the statement follows
instantly from Lemma 4.7(iv).

(12) If v6v3 is contained in a cycle in Cy
0 , then v4v6 is saturated by y in G3; so is v1v6 or

v4v1.
The first half follows instantly from Lemma 4.7(iv). To prove the second half, we may

assume, by (11), that v1v6 is outside Cy
0 . Let C be a cycle in Cy

0 containing v6v3. Then both
C[v6, v4] ∪ {v4v6} and C[v6, v4] ∪ {v4v1, v1v6} are cycles in C2. Thus, by Lemma 4.7(iv), v4v6
and at least one of v1v6 and v4v1 are saturated by y in G3.

Claim 1. y(C2) = τw(G3\v5).
To justify this, observe that v2v4 is a special arc of T and v2 is a near-sink. By Lemma 4.6(iv),

we may assume that v2v4 is saturated by y in T . Let G2 = {{v1v2, v1v6, v4v6}, {v1v2, v6v2, v6v3},
{v2v4, v3v1, v3v4}, {v3v1, v4v1, v4v6}}. Then G2 ⊂ F2. Observe that

(13) if y(v1v2v4v6v3v1) = 0, then for each K ∈ G2, not all arcs in K are saturated by y in
G3.

Suppose the contrary: all arcs in K are saturated by y in G3. Examining cycles in C2, we see
that y(C2) = w(K). By (5), K is an MFAS and hence y(C2) = τw(G3\v5). So we may assume
that (13) holds.

Depending on whether v2v4 is outside Cy
0 , we distinguish between two cases.

Case 1.1. v2v4 is contained in some cycle in Cy
0 .

We proceed by considering four subcases.
• Neither v4v1 nor v4v6 is saturated by y in G3. In this subcase, by Lemma 4.7(iii) and

(iv), both v1v2 and v6v2 are saturated by y in G3. By (6)-(9), y(v1v2v4v6v3v1), y(v1v6v3v2v4v1),
y(v1v6v3v4v1), and y(v1v6v2v4v1) are all zero. By (12) and (13), v6v3 is outside Cy

0 and not
saturated by y. By Lemma 4.7(iii), both v3v2 and v3v4 are saturated by y in G3. By Lemma
4.7(i) and (iii), at least one of v1v6 and v3v1 is saturated by y in G3. Thus y(C2) = w(K),
where K is {v1v2, v1v6, v3v2, v3v4, v6v2} or {v1v2, v3v1, v3v2, v3v4, v6v2}. By (5), K is an MFAS
and hence y(C2) = τw(G3\v5).

• v4v6 is saturated by y in G3 while v4v1 is not. In this subcase, by Lemma 4.7(iii), v1v2
is saturated by y in G3. By (6), we have y(v1v2v4v6v3v1) = 0. By (11) and (13), v1v6 is
outside Cy

0 and not saturated by y. By Lemma 4.7(i) and (iii), v6v2 is saturated by y in G3.
So, by (12) and (13), v6v3 is outside Cy

0 and not saturated by y. It follows from Lemma 4.7(i)
and (iii) that v3v1, v3v2, and v3v4 are all saturated by y in G3. Thus y(C2) = w(K), where
K = {v1v2, v3v1, v3v2, v3v4, v6v2}. By (5), K is an MFAS and hence y(C2) = τw(G3\v5).

• v4v1 is saturated by y in G3 while v4v6 is not. In this subcase, by Lemma 4.7(iii), v6v2 is
saturated by y in G3. By (7)-(9), y(v1v6v3v2v4v1), y(v1v6v3v4v1), and y(v1v6v2v4v1) are all zero.
By (12), v6v3 is outside Cy

0 . Furthermore, we may assume that v6v3 is not saturated by y, for
otherwise y(C2) = w(K), where K = {v4v1, v6v2, v6v3}. Then, by Lemma 4.7(iii) and (iv), both
v3v2 and v3v4 are saturated by y in G3. If v3v1 is also saturated by y in G3, then y(C2) = w(K),
where K = {v3v1, v3v2, v3v4, v4v1, v6v2}; otherwise, by Lemma 4.7(i) and (iii), both v1v2 and
v1v6 are saturated by y in G3. So y(C2) = w(J), where J = {v1v2, v1v6, v3v2, v3v4, v6v2}.

• Both v4v1 and v4v6 are saturated by y in G3. In this subcase, if y(v1v2v4v6v3v1) > 0, then
v1v6 is saturated by y in G3 and y(v1v6v2v4v1) = y(v1v6v3v4v1) = y(v1v6v3v2v4v1) = 0 by (6).
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Thus y(C2) = w(K), where K = {v4v1, v4v6, v1v6}. So we assume that y(v1v2v4v6v3v1) = 0.
Then v3v1 is not saturated by y in G3 by (13). Thus y(v1v6v3v2v4v1) = y(v1v6v3v4v1) = 0
by (7) and (8). If y(v1v6v2v4v1) > 0, then v1v2 is saturated by y in G3 and y(v3v4v6v3) =
y(v2v4v6v3v2) = 0 by (9). By (13), v1v6 is not saturated by y in G3. Hence, by Lemma
4.7(iii), v6v3 is saturated by y in G3. Therefore, y(C2) = w(K), where K = {v4v1, v4v6, v6v3}.
So we may assume that y(v1v6v2v4v1) = 0 and that v1v6 is not saturated by y in G3, for
otherwise y(C2) = w(K), where K = {v4v1, v4v6, v1v6}. Thus, by Lemma 4.7(iii) and (iv), v6v3
is saturated by y in G3. We may further assume that v6v2 is not saturated by y in G3, for
otherwise, y(C2) = w(J), where J = {v4v1, v6v2, v6v3}. Then y(v2v4v6v3v2) = 0 by (10). We
propose to show that

(14) y(v3v4v6v3) = 0.
Assume the contrary: y(v3v4v6v3) > 0. Since neither v1v6 nor v3v1 is saturated by y in G3,

we distinguish among four subsubcases.
(a) Neither v1v6 nor v3v1 is saturated by y in T . In this subsubcase, set θ = min{w(v1v6)−

z(v1v6), w(v3v1)−z(v3v1), y(v3v4v6v3)}. Let y′ be obtained from y by replacing y(v3v4v6v3) and
y(v1v6v3v1) with y(v3v4v6v3) − θ and y(v1v6v3v1) + θ, respectively. Then y′ is also an optimal
solution to D(T,w) with y′(v3v4v6v3) < y(v3v4v6v3), contradicting (4).

(b) v3v1 is not saturated by y in T and v1v6 is contained in some cycle C1 ∈ Cy
0 . In this

subsubcase, since v6v3 is saturated by y in G3, cycle C1 contains the path v6v2v4. Thus the
multiset sum of C1, v3v4v6v3, and v3v1 contains two arc-disjoint cycles v2v4v6v2 and v1v6v3v1.
By Lemma 4.7(iv), we have y(v3v4v6v3) = 0, a contradiction.

(c) v1v6 is not saturated by y in T and v3v1 is contained in some cycle C2 ∈ Cy
0 . In this

subsubcase, it is clear that C2 contains the path v1v2v4. Observe that the multiset sum of
C2, v3v4v6v3, and the unsaturated v1v6 contains two arc-disjoint cycles v1v6v3v1 and C ′

2 =
C2[v4, v3] ∪ {v3v4}. Set θ = min{y(C2), y(v3v4v6v3), w(v1v6) − z(v1v6)}. Let y′ be obtained
from y by replacing y(C2), y(v3v4v6v3), y(v1v6v3v1), and y(C ′

2) with y(C2)− θ, y(v3v4v6v3)− θ,
y(v1v6v3v1)+θ, and y(C ′

2)+θ, respectively. Then y′ is also an optimal solution to D(T,w) with
y′(v3v4v6v3) < y(v3v4v6v3), contradicting (4).

(d) v1v6 and v3v1 are contained in some cycles C1 and C2 in Cy
0 , respectively. In this

subsubcase, if v3v1 is also on C1, then the multiset sum of C1 and v3v4v6v3 contains arc-disjoint
cycles v1v6v3v1, v2v4v6v2, and C ′

1 = C1[v4, v3]∪{v3v4}. From the optimality of y, we deduce that
y(v3v4v6v3) = 0. If v3v1 is outside C1, then the multiset sum of C1, C2, and v3v4v6v3 contains
arc-disjoint cycles v1v6v3v1, v2v4v6v2, C

′
1 = C1[v4, v1]∪{v1v2, v2v4}, and C ′

2 = C2[v4, v3]∪{v3v4}.
From the optimality of y, we again deduce that y(v3v4v6v3) = 0.

By (14), we have y(C2) = w(K), where K = {v4v1, v4v6, v6v3}. So K is an MFAS by (5) and
hence y(C2) = τw(G3\v5).

Case 1.2. v2v4 is outside Cy
0 .

In this case, v2v4 is saturated by y in G3, and v1v2, v3v2, and v6v2 are all outside Cy
0 . Since

Cy
0 ̸= ∅, there exists a cycle C ∈ Cy

0 containing v3v4. From (6), (7), and (10), we see that
y(v1v2v4v6v3v1), y(v1v6v3v2v4v1), and y(v2v4v6v3v2) are all zero. If v6v3 is also saturated by y
in G3, then y(C2) = w(K), where K = {v2v4, v6v3}. So we assume that v6v3 is not saturated by
y in G3. By Lemma 4.7(iii) and (iv), v4v6 is saturated by y in G3.

Assume first that v4v1 is not saturated by y in G3. Then, by Lemma 4.7(iii) and (iv), v1v6
is saturated by y in G3. By (13), v1v2 is not saturated by y in G3 and hence in T . By (9),
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y(v1v6v2v4v1) = 0. If v6v3 is not saturated by y in T , then the multiset sum of C, v2v4v6v2, and
the unsaturated arcs v6v3, v4v1, and v1v2 contains two arc-disjoint cycles v1v2v4v1 and v3v4v6v3;
if v6v3 is saturated by y in T but contained in some cycle C in Cy

0 , then the multiset sum of
C, v2v4v6v2, and the unsaturated arcs v4v1 and v1v2 contains two arc-disjoint cycles v1v2v4v1
and v3v4v6v3. By Lemma 4.7(vi), we have y(v2v4v6v2) = 0 in either subcase. So y(C2) = w(K),
where K = {v1v6, v4v6, v2v4}.

Assume next that v4v1 is saturated by y in G3. Then, by (13), v3v1 and at least one of
v1v2 and v1v6 are not saturated by y in G3. By Lemma 4.7(iii) and (iv), both v3v1 and v1v6
are outside Cy

0 ; using Lemma 4.7(i) and (iii), we further deduce that v1v6 is saturated by y
in G3. Thus, by (13), v1v2 is not saturated by y in G3. It follows from (8) and (9) that
y(v1v6v3v4v1) = y(v1v6v2v4v1) = 0. Therefore y(C2) = w(K), where K = {v1v6, v4v1, v4v6}. So
K is an MFAS by (5) and hence y(C2) = τw(G3\v5). This proves Claim 1.

Claim 2. y(C) is integral for all C ∈ C2 or ν∗w(T ) is an integer.
To justify this, we may assume that
(15) y(v1v2v4v6v3v1) = y(v1v6v3v2v4v1) = 0.
Assume the contrary: y(v1v2v4v6v3v1) = 0. Then, from (6) we deduce that y(v1v6v2v4v1) =

y(v1v6v3v4v1) = y(v1v6v3v2v4v1) = 0 and that each arc in the set {v1v6, v3v2, v3v4, v4v1, v6v2} is
saturated by y in G3. So y(v1v2v4v1) = w(v4v1), y(v1v6v3v1) = w(v1v6), y(v3v4v6v3) = w(v3v4),
y(v2v4v6v2) = w(v6v2), and y(v2v4v6v3v1) = w(v3v2). By Claim 1, y(C2) is an integer; so is
y(v1v2v4v6v3v1). Thus Lemma 4.4(iii) allows us to assume that y(v1v2v4v6v3v1) = 0.

If y(v1v6v3v2v4v1) > 0, then from (7) we deduce that y(v2v4v6v2) = y(v3v4v6v3) = 0 and that
each arc in the set {v1v2, v3v1, v3v4, v4v6, v6v2} is saturated by y inG3. So y(v1v2v4v1) = w(v1v2),
y(v1v6v3v1) = w(v3v1), y(v1v6v3v4v1) = w(v3v4), y(v1v6v2v4v1) = w(v6v2), and y(v2v4v6v3v2) =
w(v4v6). By Claim 1, y(C2) is an integer; so is y(v1v6v3v2v4v1). Thus Lemma 4.4(iii) allows us
to further assume that y(v1v6v3v2v4v1) = 0.

By Claim 1, y(C2) = w(K) for some K ∈ F2. Depending on what K is, we distinguish among
13 cases.

Case 2.1. K = {v1v6, v2v4, v4v6}.
In this case, by Lemma 4.3 (i), we have y(v2v4v6v2) = y(v1v6v2v4v1) = y(v2v4v6v3v2) =

y(v1v6v3v2v4v1) = y(v1v2v4v6v3v1) = 0. By Lemma 4.3 (iii), we obtain w(e) = y(C2(e)) for each
e ∈ K, which together with (15) yields the following equations: y(v1v6v3v1) + y(v1v6v3v4v1) =
w(v1v6), y(v1v2v4v1) = w(v2v4), and y(v3v4v6v3) = w(v4v6). If y(v1v6v3v4v1) > 0, then by (8)
we have one more equation y(v1v6v3v1) = w(v3v1). So y(C) is integral for any C ∈ C2, no matter
whether y(v1v6v3v4v1) = 0.

Case 2.2. K = {v4v1, v4v6, v6v3}.
In this case, by Lemma 4.3 (i), we have y(v3v4v6v3) = y(v1v6v3v4v1) = y(v2v4v6v3v2) =

y(v1v6v3v2v4v1) = y(v1v2v4v6v3v1) = 0. By Lemma 4.3 (iii), we obtain w(e) = y(C2(e)) for each
e ∈ K, which together with (15) yields the following equations: y(v1v2v4v1) + y(v1v6v2v4v1) =
w(v4v1), y(v2v4v6v2) = w(v4v6), and y(v1v6v3v1) = w(v6v3). If y(v1v6v2v4v1) > 0, then by (9)
we have one more equation y(v1v2v4v1) = w(v1v2). So y(C) is integral for any C ∈ C2, no matter
whether y(v1v6v2v4v1) = 0.

Case 2.3. K = {v1v2, v3v1, v3v2, v3v4, v6v2}.
In this case, by Lemma 4.3 (iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which to-
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gether with (15) yields the following equations: y(v1v2v4v1) = w(v1v2), y(v1v6v3v1) = w(v3v1),
y(v2v4v6v3v2) = w(v3v2), y(v3v4v6v3)+y(v1v6v3v4v1) = w(v3v4), and y(v2v4v6v2)+y(v1v6v2v4v1)
= w(v6v2). Observe that if y(v1v6v3v4v1) > 0, then by (8) we have y(v3v4v6v3) = w(v4v6) −
w(v3v2) and y(v2v4v6v2) = 0; if y(v1v6v3v4v1) = 0 and y(v1v6v2v4v1) > 0, then by (9) we have
y(v2v4v6v2) = w(v4v6) − w(v3v2) − w(v3v4). So y(C) is integral for any C ∈ C2, no matter
whether y(v1v6v2v4v1) or y(v1v6v3v4v1) is zero.

Case 2.4. K = {v1v2, v1v6, v3v2, v3v4, v6v2}.
In this case, by Lemma 4.3 (i), we have y(v1v6v3v4v1) = y(v1v6v2v4v1) = 0. By Lemma

4.3 (iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which together with (15) yields the fol-
lowing equations: y(v1v2v4v1) = w(v1v2), y(v1v6v3v1) = w(v1v6), y(v2v4v6v3v2) = w(v3v2),
y(v3v4v6v3) = w(v3v4), and y(v2v4v6v2) = w(v6v2). Hence y(C) is integral for all C ∈ C2.

Case 2.5. K = {v3v1, v3v2, v3v4, v4v1, v6v2}.
In this case, by Lemma 4.3 (i), we have y(v1v6v3v4v1) = 0. By Lemma 4.3 (iii), we ob-

tain w(e) = y(C2(e)) for each e ∈ K, which together with (15) yields the following equations:
y(v1v6v3v1) = w(v3v1), y(v2v4v6v3v2) = w(v3v2), y(v3v4v6v3) = w(v3v4), y(v1v2v4v1) = w(v4v1),
and y(v2v4v6v2) + y(v1v6v2v4v1) = w(v6v2). Observe that if y(v1v6v2v4v1) > 0, then by (9) we
have y(v2v4v6v2) = w(v4v6) − w(v3v2) − w(v3v4). So y(C) is integral for all C ∈ C2, no matter
whether y(v1v6v2v4v1) is zero.

Case 2.6. K = {v1v6, v2v4, v3v4}.
In this case, by Lemma 4.3 (i), we have y(v1v6v2v4v1) = y(v1v6v3v4v1) = 0. By Lemma 4.3

(iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which together with (15) yields the following
equations: y(v1v6v3v1) = w(v1v6), y(v1v2v4v1) + y(v2v4v6v2) + y(v2v4v6v3v2) = w(v2v4), and
y(v3v4v6v3) = w(v3v4). If y(v2v4v6v3v2) > 0, then y(v2v4v6v2) = w(v6v2) by (10). Since v4v1 and
v1v2 are outside Cy

0 and y satisfies (2), it is easy to see that y(v1v2v4v1) = min{w(v1v2), w(v4v1)}.
So y(C) is integral for all C ∈ C2. Thus we may assume that y(v2v4v6v3v2) = 0. Since both
v4v6 and v6v2 are outside Cy

0 , by (4) we have y(v2v4v6v2) = min{w(v6v2), w(v4v6)−w(v3v4)}. It
follows that y(C) is integral for all C ∈ C2.

Case 2.7. K = {v2v4, v3v1, v3v4}.
In this case, by Lemma 4.3 (iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which to-

gether with (15) yields the following equations: y(v1v2v4v1) + y(v2v4v6v2) + y(v1v6v2v4v1) +
y(v2v4v6v3v2) = w(v2v4), y(v1v6v3v1) = w(v3v1), and y(v3v4v6v3) + y(v1v6v3v4v1) = w(v3v4).

Assume first that y(v1v6v3v4v1) > 0. Then, by (8), we have y(v2v4v6v2) = 0 and y(v3v4v6v3)+
y(v2v4v6v3v2) = w(v4v6). If y(v2v4v6v3v2) > 0, then, by (8) and (10), we obtain y(v1v2v4v1) =
w(v1v2) and y(v1v6v2v4v1) = w(v6v2); if y(v2v4v6v3v2) = 0 and y(v1v6v2v4v1) > 0, then, by (9),
we get y(v1v2v4v1) = w(v1v2), y(v1v6v2v4v1) = w(v2v4) − w(v1v2), and y(v3v4v6v3) = w(v4v6);
if y(v1v6v2v4v1) = y(v2v4v6v3v2) = 0, then y(v1v2v4v1) = w(v2v4), and y(v3v4v6v3) = w(v4v6).
Thus y(C) is integral for all C ∈ C2 in any subcase.

Assume next that y(v1v6v3v4v1) = 0. If y(v1v6v2v4v1) > 0, then, by (9), we have y(v1v2v4v1) =
w(v1v2) and y(v2v4v6v2) + y(v2v4v6v3v2) = w(v4v6)− y(v3v4v6v3) = w(v4v6)− w(v3v4), and so
y(v1v6v2v4v1) = w(v2v4)+w(v3v4)−w(v1v2)−w(v4v6). Observe that if y(v2v4v6v3v2) > 0, then
we have one more equation y(v2v4v6v2)+y(v1v6v2v4v1) = w(v6v2) by (10). Thus y(C) is integral
for all C ∈ C2, no matter whether y(v2v4v6v3v2) = 0. So we assume that y(v1v6v2v4v1) = 0.
If y(v2v4v6v3v2) > 0, then y(v2v4v6v2) = w(v6v2) and y(v1v2v4v1) + y(v2v4v6v3v2) = w(v2v4)−
w(v6v2); if y(v2v4v6v3v2) = 0, then y(v1v2v4v1) + y(v2v4v6v2) = w(v2v4). Since y satisfies
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(2) and (4) and since v4v1, v4v6, v1v2, and v6v2 are all outside Cy
0 , if y(v1v2v4v1) > 0, then

y(v1v2v4v1) = min{w(v4v1), w(v1v2)} or y(v2v4v6v2) = min{w(v4v6) − y(v3v4v6v3), w(v6v2)},
regardless of the value of y(v2v4v6v3v2). Hence y(C) is integral for all C ∈ C2.

Case 2.8. K = {v1v2, v6v2, v6v3}.
In this case, by Lemma 4.3 (iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which together

with (15) yields the following equations: y(v1v2v4v1) = w(v1v2), y(v2v4v6v2) + y(v1v6v2v4v1) =
w(v6v2), and y(v1v6v3v1) + y(v3v4v6v3) + y(v1v6v3v4v1) + y(v2v4v6v3v2) = w(v6v3). Depending
on the value of y(v1v6v3v4v1), we consider two subcases.

• y(v1v6v3v4v1) > 0. In this subcase, by (8), we have y(v2v4v6v2) = 0, y(v1v6v3v1) = w(v3v1),
and y(v3v4v6v3) + y(v2v4v6v3v2) = w(v4v6). So y(v1v6v3v4v1) = w(v6v3) − w(v3v1) − w(v4v6).
Observe that if y(v2v4v6v3v2) > 0, then we have one more equation y(v3v4v6v3) = w(v3v4) −
y(v1v6v3v4v1) by (10). So y(C) is integral for all C ∈ C2, no matter whether y(v2v4v6v3v2) = 0.

• y(v1v6v3v4v1) = 0. In this subcase, assume first that y(v1v6v2v4v1) > 0. If y(v3v4v6v3) > 0
or y(v2v4v6v3v2) > 0, then, by (9), we have y(v1v6v3v1) = w(v3v1), y(v3v4v6v3)+y(v2v4v6v3v2) =
w(v6v3) − w(v3v1), and y(v2v4v6v2) = w(v4v6) + w(v3v1) − w(v6v3). If y(v2v4v6v3v2) > 0,
then y(v3v4v6v3) = w(v3v4) by (10). Thus y(v2v4v6v3v2) and y(v1v6v2v4v1) are integral. If
y(v3v4v6v3) = y(v2v4v6v3v2) = 0, then y(v2v4v6v2) = w(v4v6) and y(v1v6v2v4v1) = w(v6v2) −
w(v4v6). So y(C) is integral for all C ∈ C2 in any subsubcase. Assume next that y(v1v6v2v4v1) =
0. If y(v2v4v6v3v2) > 0, then y(v3v4v6v3) = w(v3v4) by (10) and y(v1v6v3v1) + y(v2v4v6v3v2) =
w(v6v3) − w(v3v4); if y(v2v4v6v3v2) = 0, then y(v1v6v3v1) + y(v3v4v6v3) = w(v6v3). Note that
both v3v1 and v1v6 are outside Cy

0 . As y satisfies (2) and (4), we deduce that y(v1v6v3v1) =
min{w(v1v6), w(v3v1)}, no matter whether y(v2v4v6v3v2) > 0. Hence y(C) is integral for all
C ∈ C2.

Case 2.9. K = {v4v1, v6v2, v6v3}.
In this case, by Lemma 4.3 (i), we have y(v1v6v2v4v1) = y(v1v6v3v4v1) = 0. By Lemma 4.3

(iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which together with (15) yields the following
equations: y(v1v2v4v1) = w(v4v1), y(v2v4v6v2) = w(v6v2), and y(v1v6v3v1) + y(v3v4v6v3) +
y(v2v4v6v3v2) = w(v6v3). If y(v2v4v6v3v2) > 0, then y(v3v4v6v3) = w(v3v4) by (10), so
y(v1v6v3v1) + y(v2v4v6v3v2) = w(v6v3) − w(v3v4); if y(v2v4v6v3v2) > 0, then y(v1v6v3v1) +
y(v2v4v6v3v2) = w(v6v3). Clearly, v1v6 is outside Cy

0 . We propose to show that
(16) y(v1v6v3v1) is integral.
Suppose on the contrary that y(v1v6v3v1) is not integral. If v3v1 is outside Cy

0 , then from (2)
and (4) we deduce that y(v1v6v3v1) = min{w(v3v1), w(v1v6)}, a contradiction. So we assume
that v3v1 is contained in some cycle C in Cy

0 . Then C contains the path v1v2v4. Set C ′ =
C[v4, v3] ∪ {v3v2, v2v4} if y(v2v4v6v3v2) > 0 and C ′ = C[v4, v3] ∪ {v3v4} otherwise, and set
θ = min{[y(v2v4v6v3v2)], y(C)} if y(v2v4v6v3v2) > 0 and θ = min{[y(v3v4v6v3)], y(C)} otherwise.
Let y′ be obtained from y by replacing y(v2v4v6v3v2) (resp. y(v3v4v6v3)), y(v1v6v3v1), y(C),
and y(C ′) with y(v2v4v6v3v2)−θ (resp. y(v3v4v6v3)−θ), y(v1v6v3v1)+θ, y(C)−θ, and y(C ′)+θ,
respectively. Then y′(v2v4v6v3v2) < y(v2v4v6v3v2) or y′(v3v4v6v3) < y(v3v4v6v3), contradicting
(2) or (4). So (16) is established.

From (16) it follows that y(C) is integral for all C ∈ C2.
Case 2.10. K = {v2v4, v6v3}.
In this case, by Lemma 4.3 (i), we have y(v2v4v6v3v2) = 0. By Lemma 4.3 (iii), we ob-

tain w(e) = y(C2(e)) for each e ∈ K, which together with (15) yields the following equa-
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tions: y(v1v2v4v1) + y(v2v4v6v2) + y(v1v6v2v4v1) = w(v2v4) and y(v1v6v3v1) + y(v3v4v6v3) +
y(v1v6v3v4v1) = w(v6v3). It follows that all arcs in G3\v5 are outside Cy

0 except possibly
v3v4. If y(v1v6v3v4v1) > 0, then, by (8), we have y(v2v4v6v2) = 0, y(v1v6v3v1) = w(v3v1),
and y(v3v4v6v3) = w(v4v6). Observe that if y(v1v6v2v4v1) > 0, then we have one more
equation y(v1v2v4v1) = w(v1v2). Thus y(C) is integral for all C ∈ C2, no matter whether
y(v1v6v2v4v1) = 0. So we assume that y(v1v6v3v4v1) = 0.

If y(v1v6v2v4v1) > 0, then, by (9), we obtain y(v1v2v4v1) = w(v1v2) and y(v2v4v6v2) +
y(v3v4v6v3) = w(v4v6). Furthermore, y(v1v6v3v1) = w(v3v1) if y(v3v4v6v3) > 0 and y(v1v6v3v1) =
w(v6v3) otherwise. Hence y(C) is integral for all C ∈ C2, no matter whether y(v3v4v6v3) = 0.
So we may assume that y(v1v6v2v4v1) = 0.

If y(v3v4v6v3) = 0, then y(v1v6v3v1) = w(v6v3). Recall that both v4v6 and v6v2 are outside
Cy
0 . If y(v1v2v4v1) > 0, then from (4) we deduce that y(v2v4v6v2) = min{w(v4v6), w(v6v2)}.

Hence y(C) is integral for all C ∈ C2, no matter whether y(v1v2v4v1) > 0. It remains to
consider the subcase when y(v3v4v6v3) > 0. Since both v3v1 and v1v6 are outside Cy

0 , from (4)
we deduce that y(v1v6v3v1) = min{w(v3v1), w(v1v6)}. If y(v1v2v4v1) = 0, then y(v2v4v6v2) =
w(v2v4); otherwise, by (4), at least one of v4v6 and v6v2 is saturated by y in G3. It follows that
y(v2v4v6v2) = min{w(v6v2), w(v4v6) − y(v3v4v6v3)}. Hence y(C) is integral for all C ∈ C2, no
matter whether y(v1v2v4v1) = 0.

Case 2.11. K = {v3v1, v4v1, v4v6}.
In this case, by Lemma 4.3 (iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which together

with (15) yields the following equations: y(v1v6v3v1) = w(v3v1), y(v1v2v4v1) + y(v1v6v2v4v1) +
y(v1v6v3v4v1) = w(v4v1), and y(v2v4v6v2) + y(v3v4v6v3) + y(v2v4v6v3v2) = w(v4v6). Depending
on the value of y(v1v6v3v4v1), we consider two subcases.

• y(v1v6v3v4v1) > 0. In this subcase, y(v2v4v6v2) = 0 by (8). If y(v2v4v6v3v2) > 0, then,
by (8) and (10), we have y(v1v2v4v1) = w(v1v2), y(v1v6v2v4v1) = w(v6v2), and y(v3v4v6v3) =
w(v3v4). Hence y(C) is integral for all C ∈ C2. So we assume that y(v2v4v6v3v2) = 0. Then
y(v3v4v6v3) = w(v4v6). Depending on the value of y(v1v6v2v4v1), we distinguish between two
subsubcases.

(a) y(v1v6v2v4v1) > 0. By (9), y(v1v2v4v1) = w(v1v2) and y(v1v6v2v4v1) + y(v1v6v3v4v1) =
w(v4v1) − w(v1v2). If y(v1v6v2v4v1) is integral, then y(C) is integral for all C ∈ C2. So we
assume that y(v1v6v2v4v1) is not integral. By Lemma 4.4(iii), we may assume that w(v3v1),
w(v1v2), and w(v4v6) are all zero. Observe that v6v2 is outside Cy

0 , for otherwise, let C be a
cycle in Cy

0 containing v6v2. Then C passes through v2v4. Let C ′ = C[v4, v6] ∪ {v6v3, v3v4},
let θ = min{y(C), y(v1v6v3v4v1)}, and let y′ be obtained from y by replacing y(v1v6v3v4v1),
y(v1v6v2v4v1), y(C), and y(C ′) with y(v1v6v3v4v1)−θ, y(v1v6v2v4v1)+θ, y(C)−θ, and y(C ′)+θ,
respectively. Then y′ is also an optimal solution to D(T,w) with y′(v1v6v3v4v1) < y(v1v6v3v4v1),
contradicting (3). Similarly, we can prove that v3v2 is outside Cy

0 . Thus w(v3v2) = z(v3v2) = 0.
We propose to show that

(17) ν∗w(T ) is an integer.
To justify this, let x be an optimal solution to P(T,w). Since y(v1v6v2v4v1) > 0 and

y(v1v6v3v4v1) > 0, by Lemma 4.3(i) we have x(v6v2) + x(v2v4) = x(v6v3) + x(v3v4). Since
y(v1v6v2v4v1) < w(v6v2), by Lemma 4.3(ii) we obtain x(v6v2) = 0, which implies x(v2v4) =
x(v6v3) + x(v3v4). Since v6v2 is outside Cy

0 , for each vertex u in V (T1)\{b, a1}, we obtain
x(uv6) = x(uv2). Let T ′ = (V ′, A′) be obtained from T by deleting vertex v2, let w′ be
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obtained from the restriction of w to A′ by replacing w(uv6) with w(uv6) + w(uv2) for each u
in V (T1)\{b, a1} and replacing w(vivj) with w(vivj) +w(v2v4) for (i, j) = (6, 3) or (3, 4). Let x′

be the restriction of x to A′ and let y′ be defined from y as follows: for each cycle C passing
through uv2v4 with u ∈ V (T1)\{b, a1}, let C ′ be the cycle arising from C by replacing uv2v4
with uv6v3v4, and set y′(C ′) = y(C)+y(C ′) and y′(v1v6v3v4v1) = y(v1v6v3v4v1)+y(v1v6v2v4v1).
Then x′ and y′ are optimal solutions to P(T ′,w′) and D(T ′,w′), respectively, with the same
value ν∗w(T ) as x and y. Hence ν∗w(T ) is an integer by the hypothesis of Theorem 4.1. So (17)
follows.

(b) y(v1v6v2v4v1) = 0. Then y(v1v2v4v1) + y(v1v6v3v4v1) = w(v4v1). If y(v1v2v4v1) is
integral, then y(C) is integral for all C ∈ C2. So we assume that y(v1v2v4v1) is not integral.
Observe that v1v2 is outside Cy

0 , for otherwise, let C be a cycle in Cy
0 containing v1v2. Since

the multiset sum of C and v1v6v3v4v1 contains arc-disjoint cycles v1v2v4v1 and C ′ = C[v4, v1] ∪
{v1v6, v6v3, v3v4}. By Lemma 4.7(vi), we have y(C) = 0, a contradiction. Similarly, we can
prove that v6v2 and v3v2 are outside Cy

0 as well. Thus w(viv2) = z(viv2) = 0 for i = 3, 6. We
propose to show that

(18) ν∗w(T ) is an integer.
To justify this, let x be an optimal solution to P(T,w). Since both y(v1v2v4v1) and

y(v1v6v3v4v1) are positive, by Lemma 4.3(i) we have x(v1v2) + x(v2v4) = x(v1v6) + x(v6v3) +
x(v3v4). Since y(v1v2v4v1) < w(v1v2), by Lemma 4.3(ii) we obtain x(v1v2) = 0, which im-
plies that x(v2v4) = x(v1v6) + x(v6v3) + x(v3v4). Since v1v2 is outside Cy

0 , for each vertex
u ∈ V (T1)\{b, a1}, we obtain x(uv1) = x(uv2). Let T

′ = (V ′, A′) be obtained from T by deleting
vertex v2, and let w′ be the restriction of w to A′ by replacing w(uv1) with w(uv1)+w(uv2) for
each u ∈ V (T1)\{b, a1} and replacing w(vivj) with w(vivj)+w(v2v4) for (i, j) = (1, 6), (6, 3), and
(3, 4). Let x′ be the restriction of x to A′ and let y′ be defined from y as follows: for each cycle
C passing through uv2v4 with u ∈ V (T1)\{b, a1}, let C ′ be obtained from C by replacing uv2v4
with uv1v6v3v4, and set y′(C ′) = y(C)+y(C ′) and y′(v1v6v3v4v1) = y(v1v6v3v4v1)+y(v1v2v4v1).
Then x′ and y′ are optimal solutions to P(T ′,w′) and D(T ′,w′), respectively, with the same
value ν∗w(T ) as x and y. Hence ν∗w(T ) is an integer by the hypothesis of Theorem 4.1. This
proves (18).

• y(v1v6v3v4v1) = 0. In this subcase, y(v1v2v4v1) = w(v1v2). By (9), if y(v1v6v2v4v1) > 0,
then y(v1v6v2v4v1) = w(v4v1)−w(v1v2); otherwise, y(v1v2v4v1) = w(v4v1). If y(v2v4v6v3v2) > 0,
then, by (10), we have y(v3v4v6v3) = w(v3v4), y(v2v4v6v2) = w(v6v2) − y(v1v6v2v4v2), and
y(v2v4v6v3v2) = w(v4v6) − w(v3v4) − y(v2v4v6v2). Hence y(C) is integral for all C ∈ C2. So
we assume that y(v2v4v6v3v2) = 0. Thus y(v2v4v6v2) + y(v3v4v6v3) = w(v4v6). If y(v2v4v6v2)
is integral, then y(C) is integral for all C ∈ C2. So we further assume that y(v2v4v6v2) is not
integral. By Lemma 4.4(iii), we may assume that w(v3v1) = w(v4v1) = 0. Observe that v6v2 is
outside Cy

0 , for otherwise, let C be a cycle in Cy
0 containing v6v2. Then C passes through v2v4.

Let C ′ = C[v4, v6] ∪ {v6v3, v3v4}, let θ = min{y(C), y(v3v4v6v3)}, and let y′ be obtained from
y by replacing y(v3v4v6v3), y(v2v4v6v2), y(C), and y(C ′) with y(v3v4v6v3)− θ, y(v2v4v6v2) + θ,
y(C) − θ, and y(C ′) + θ, respectively. Then y′ is also an optimal solution to D(T,w) with
y′(v3v4v6v3) < y(v3v4v6v3), contradicting (4). Similarly, we can show that v3v2 is outside Cy

0 .
So w(v3v2) = z(v3v2) = 0. Moreover, ν∗w(T ) is an integer; the proof is the same as that of (17)
(with y(v2v4v6v2) and y(v3v4v6v3) in place of y(v1v6v2v4v1) and y(v1v6v3v4v1), respectively), so
we omit the details here.
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Case 2.12. K = {v1v6, v4v1, v4v6}.
In this case, by Lemma 4.3 (i), we have y(v1v6v2v4v1) = y(v1v6v3v4v1) = 0. By Lemma 4.3

(iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which together with (15) yields the following
equations: y(v1v6v3v1) = w(v1v6), y(v1v2v4v1) = w(v4v1), and y(v2v4v6v2) + y(v3v4v6v3) +
y(v2v4v6v3v2) = w(v4v6). If y(v2v4v6v3v2) > 0, then, by (10), we have y(v2v4v6v2) = w(v6v2) and
y(v3v4v6v3) = w(v3v4), so y(v2v4v6v3v2) = w(v4v6)−w(v6v2)−w(v3v4). Hence y(C) is integral
for all C ∈ C2, It remains to assume that y(v2v4v6v3v2) = 0. Then y(v2v4v6v2) + y(v3v4v6v3) =
w(v4v6). If y(v2v4v6v2) is integral, then y(C) is integral for all C ∈ C2. So we further assume
that y(v2v4v6v2) is not integral. Then we can prove that ν∗w(T ) is an integer; the proof is the
same as that of (17), so we omit the details here.

Case 2.13. K = {v1v2, v1v6, v4v6}.
In this case, by Lemma 4.3 (iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which together

with (15) yields the following equations: y(v1v2v4v1) = w(v1v2), y(v1v6v3v1) + y(v1v6v2v4v1) +
y(v1v6v3v4v1) = w(v1v6), and y(v2v4v6v2) + y(v3v4v6v3) + y(v2v4v6v3v2) = w(v4v6). Clearly,
v3v1 is outside Cy

0 . Depending on the value of y(v1v6v3v4v1), we consider two subcases.
• y(v1v6v3v4v1) > 0. In this subcase, y(v2v4v6v2) = 0 and y(v1v6v3v1) = w(v3v1) by (8).

If y(v2v4v6v3v2) > 0, then y(v1v6v2v4v1) = w(v6v2) and y(v3v4v6v3) + y(v1v6v3v4v1) = w(v3v4)
by (10). Thus y(C) is integral for all C ∈ C2. So we assume that y(v2v4v6v3v2) = 0. Then
y(v3v4v6v3) = w46 and y(v1v6v2v4v1) + y(v1v6v3v4v1) = w(v1v6) − w(v3v1). If y(v1v6v2v4v1) is
integral, then y(C) is integral for all C ∈ C2. So we further assume that y(v1v6v2v4v1) is not
integral. Then we can prove that ν∗w(T ) is an integer; the proof is the same as that of (17), so
we omit the details here.

• y(v1v6v3v4v1) = 0. In this subcase, y(v1v6v3v1)+y(v1v6v2v4v1) = w(v1v6). If y(v2v4v6v3v2)
> 0, then y(v3v4v6v3) = w(v3v4) and y(v2v4v6v2) + y(v1v6v2v4v1) = w(v6v2) by (10). Observe
that if y(v1v6v2v4v1) > 0, then we have one more equation y(v1v6v3v1) = w(v3v1) by (9). So
y(C) is integral for all C ∈ C2, no matter whether y(v1v6v2v4v1) = 0. Thus we may assume that
y(v2v4v6v3v2) = 0. We proceed by considering two subsubcases.

(a) Assume first that y(v3v4v6v3) = 0. Then y(v2v4v6v2) = w(v4v6). If y(v1v6v3v1) is
integral, then so is y(C) for all C ∈ C2. Thus we assume that y(v1v6v3v1) is not integral.
If v6v3 is outside Cy

0 , then it follows from (4) that y(v1v6v3v1) = min{w(v3v1), w(v6v3)}; this
contradiction implies that v6v3 is contained in a cycle C in Cy

0 . Let C
′ = C[v4, v6]∪{v6v2, v2v4},

let θ = min{[y(v1v6v2v4v1)], y(C)}, and let y′ be obtained from y by replacing y(v1v6v2v4v1),
y(v1v6v3v1), y(C), and y(C ′) with y(v1v6v2v4v1)− θ, y(v1v6v3v1) + θ, y(C)− θ, and y(C ′) + θ,
respectively. Then y′ is also an optimal solution to D(T,w) with y′(v1v6v2v4v1) < y(v1v6v2v4v1),
contradicting (2).

(b) Assume next that y(v3v4v6v3) > 0. If y(v1v6v2v4v1) > 0, then y(v1v6v3v1) = w(v3v1)
and y(v1v6v2v4v1) = w(v1v6)−w(v3v1) by (9); otherwise, y(v1v6v3v1) = w(v1v6). If y(v3v4v6v3)
is integral, then so is y(C) for all C ∈ C2. Thus we assume that y(v3v4v6v3) is not integral. Let
us prove that

(19) ν∗w(T ) is an integer.
By Lemma 4.4(iii), we may assume that w(v1v2) = w(v1v6) = 0. Let T ′ = (V ′, A′) be

obtained from T by deleting v1, and let w be the restriction of w to A′. It is routine to check
that D(T ′,w′) has the same optimal value ν∗w(T ) as D(T,w). Hence ν∗w(T ) is an integer by the
hypothesis of Theorem 4.1. This proves (19) and hence Claim 2.
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Since τw(G3\v5) > 0, from Claim 2, Lemma 4.4(iii) and Lemma 4.6(ii) we deduce that
D(T,w) has an integral optimal solution. This completes the proof of Lemma 5.6.

Now we are ready to establish the main result of this section.
Proof of Theorem 5.1. By the hypothesis of this section, T is the 1-sum of two smaller

strong Möbius-free tournaments T1 and T2, with T2 ∈ T2. Since T2 = {F0, F2, F3, F4, F6, G2, G3},
the desired statement follows instantly from Lemmas 5.2-5.6.

6 Composite Reductions

Throughout this section, we assume that (T,w) is an instance as described in Theorem 4.1, and
that T = (V,A) is the 1-sum of two smaller strong Möbius-free tournaments T1 and T2 over two
special arcs (a1, b1) and (b2, a2), such that

(α) τw(T2\a2) > 0;

(β) there exists a vertex subset S of T2\{a2, b2} with |S| ≥ 2 and with the following properties:

• T [S] is acyclic and T2/S ∈ T3; and
• the vertex s∗ arising from contracting S is a near-sink in T/S.

From (β) we see that S is actually a homogeneous set of T . The purpose of this section is
to establish the following statement.

Theorem 6.1. For the above instance (T,w), problem D(T,w) has an integral optimal solution.

Let us label T2/S as in Figures 3-7. Since (b2, a2) is a special arc, a2 is a near-source of T2,
and s∗ is a near-sink in T/S, we have

• (b2, a2) = (v1, v2) and s∗ = v3 or v4 if T2/S = F0;
• (b2, a2) = (v5, v2) and s∗ = v1 if T2/S = F3;
• (b2, a2) = (v5, v6) and s∗ = v2 if T2/S = F4;
• (b2, a2) = (v5, v6) and s∗ = v2 if T2/S = F6;
• (b2, a2) = (v4, v5) and s∗ = v2 if T2/S = G2 or G3;
• (b2, a2) = (v1, v5) and s∗ = v4 if T2/S = G4;
• (b2, a2) = (v2, v6) and s∗ = v5 if T2/S = G5; and
• (b2, a2) = (v6, v7) and s∗ = v5 if T2/S = G6,

where the last three follow from Lemma 4.2(ii). Observe that if T2/S = F0, then (b2, a2) ̸=
(v4, v1), for otherwise, T2\v1 is acyclic, contradicting (α).

Since T [S] is acyclic, we can label the vertices in S as s1, s2, . . . , sr such that sjsi is an arc
in T for any 1 ≤ i < j ≤ r, where r = |S|. For convenience, we use v0 to denote the only
out-neighbor of S in T2\a2 (for example, v0 = v3 if T2/S = F3), use fi to denote the arc siv0,
and use R to denote the vertex subset V \(S ∪ {v0}).

In this section, we employ the same notations as introduced in Sections 4 and 5. In particular,
given an optimal solution y to D(T,w), we use Cy to denote {C ∈ C : y(C) > 0} and use Cy

i to
denote {C ∈ Ci : y(C) > 0} for i = 0, 1, 2. For each arc e of T , we use z(e) to denote y(C(e)).
Let G be a digraph with a weight on each arc and let U be a vertex subset of G. By reorienting
G[U ] acyclically we mean the operation of reorienting some arcs of G[U ] so that the resulting
subgraph induced by U is acyclic, where each new arc is associated with the same weight as its
reverse in G.
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Lemma 6.2. Let x and y be optimal solutions to P(T,w) and D(T,w), respectively. Then we
may assume that the following statements hold:

(i) z(sjsi) = w(sjsi) = 0 for any 1 ≤ i < j ≤ r (so if we reorient T [S] acyclically, then
the resulting digraph is isomorphic to T , and the optimal value of the resulting D(T,w)
remains the same);

(ii) x(fi)z(fi) > 0 for any 1 ≤ i ≤ r;

(iii) z(fi) = w(fi) > 0 for any 1 ≤ i ≤ r;

(iv) x(fi) ̸= x(fj) for any 1 ≤ i < j ≤ r;

(v) Every cycle C ∈ Cy contains at most one vertex from S; and

(vi) z(usi)z(usj) = 0 for any u ∈ R and 1 ≤ i < j ≤ r.

Proof. (i) Assume the contrary: z(sjsi) > 0 and, subject to this, j + i is minimized. Then
there exists a cycle D passing through sjsiv0 with y(D) > 0.

Consider first the case when x(sjsi) = 0. If z(fj) > 0, then x(fj) = x(sjsi) + x(fi) = x(fi)
by Lemma 4.3(iv). If z(fj) = 0, then w(fj) = 0 by Lemma 4.4(i). Since x(C) ≥ 1 for any C ∈ C,
we have x(fj) ≥ x(sjsi) + x(fi); replacing x(fj) by x(sjsi) + x(fi) if necessary, the resulting x
is also an optimal solution to P(T,w). So we may assume that x(fj) = x(sjsi) + x(fi) = x(fi).
Similarly, we may assume that x(usj) = x(usi) for any u ∈ R. Let T ′ = (V ′, A′) be obtained
from T by deleting sj . Note that T

′ also arises from T by identifying si with sj and then deleting
some arcs incident with sj . Let w′ be obtained from the restriction of w to A′ by replacing
w(fi) with w(fi) +w(fj) and replacing w(usi) with w(usi) +w(usj) for every u ∈ R. Let x′ be
the restriction of x to A′, and let y′ be the projection of y into the set of all cycles in T ′. From
the LP-duality theorem, we see that x′ and y′ are optimal solutions to P(T,w) and D(T,w),
respectively, having the same objective value ν∗w(T ) as x and y. By the hypothesis of Theorem
4.1, ν∗w(T ) is an integer. It follows from Lemma 4.6(ii) that D(T,w) has an integral optimal
solution.

Next consider the case when x(sjsi) > 0. By Lemma 4.3(iii), w(sjsi) = z(sjsi). Let w′ be
obtained from w by replacing w(fj) with w(fj)+w(sjsi) and replacing w(e) with w(e)−w(sjsi)
for e = sjsi and fi, let x

′ = x, and let y′ be obtained from y as follows: for each cycle C passing
through sjsi with y(C) > 0, let C ′ be the cycle obtained from C by replacing the path sjsiv0
with fj , and set y′(C) = 0 and y′(C ′) = y(C ′)+y(C). From the LP-duality theorem, we see that
x′ and y′ are optimal solutions to P(T,w′) and D(T,w′), respectively, having the same objective
value ν∗w(T ) as x and y. Since w′(A) < w(A), by the hypothesis of Theorem 4.1, ν∗w(T ) is an
integer. It follows from Lemma 4.6(ii) that D(T,w) has an integral optimal solution.

Combining the above two cases, we may assume that z(sjsi) = 0 and hence w(zjzi) = 0 by
Lemma 4.4(i) for any 1 ≤ i < j ≤ r. From (β) we see that S is a homogeneous set of T , so if
we reorient T [S] acyclically, then the resulting digraph is isomorphic to T . Given the weights
w(zjzi) for all 1 ≤ i < j ≤ r, it is clear that the optimal value of the resulting D(T,w) remains
the same.

(ii) Assume the contrary: x(fi)z(fi) = 0 for some i. Consider first the case z(fi) = 0. Let
T ′ = (V ′, A′) be obtained from T by deleting si, and let w′ be the restriction of w to A′. Then
D(T ′,w′) has an integral optimal solution by the hypothesis of Theorem 4.1. From (i) and the
value of z(fi), we deduce that si is contained in no cycle C with y(C) > 0, so D(T ′,w′) has
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the same optimal value ν∗w(T ) as D(T ′,w′). It follows from Lemma 4.6(ii) that D(T,w) has an
integral optimal solution. Thus we may assume that z(fj) > 0 for any 1 ≤ j ≤ r.

Next consider the case when x(fi) = 0. Observe that for any u ∈ R with uv0 ∈ A, if
z(uv0)z(usi) > 0, then x(uv0) = x(usi) + x(fi) = x(usi) by Lemma 4.3(iv), so x(uv0) = x(usi);
if z(uv0)z(usi) = 0, modifying x(uv) for v ∈ {v0, si} with z(uv) = 0 (thus w(uv) = 0) so that
the equality x(uv0) = x(usi) + x(fi) = x(usi) holds, the resulting x is also an optimal solution
to D(T,w). Hence we may assume that x(uv0) = x(usi).

Set U = {u ∈ R : z(usi) > 0 and uv0 /∈ A}. Let T ′ = (V ′, A′) be obtained from T\si by
adding an arc uv0 for each u ∈ U , and define w(uv0) = w(usi) and x(uv0) = x(usi) for each
u ∈ U . Let w′ be obtained from w by replacing w(uv0) with w(uv0) + w(usi) for each u ∈ R
with uv0 ∈ A, let x′ = x, and let y′ be obtained from y as follows: for each cycle C passing
through usi with y(C) > 0, let C ′ be the cycle arising from C by replacing the path usiv0
with uv0, and set y′(C ′) = y(C ′) + y(C). From the LP-duality theorem, we see that x′ and y′

are optimal solutions to P(T ′,w′) and D(T ′,w′), respectively, having the same objective value
ν∗w(T ) as x and y. In view of (i), we may assume that i = 1. So fi = f1 is a special arc of T .
By Lemma 2.4, T ′ = T/f1 is a Möbius-free digraph and thus, by Lemma 4.5, ν∗w(T ) is integral.
It follows from Lemma 4.6(ii) that D(T,w) has an integral optimal solution.

(iii) The statement follows directly from (ii), Lemma 4.4(i), and Lemma 4.3(iii).
(iv) Assume on the contrary that x(fi) = x(fj) for some 1 ≤ i < j ≤ r. Observe that for

any u ∈ R, if z(usi)z(usj) > 0, then x(usi) + x(fi) = x(usj) + x(fj) by Lemma 4.3(iv), so
x(usi) = x(usj); if z(usi)z(usj) = 0, letting (k, l) be a permutation of (i, j) with z(usk) = 0,
and replacing xk by xl if necessary, the resulting x is also an optimal solution to P(T,w). So we
may assume that x(usi) = x(usj). Let T

′ = (V ′, A′) be obtained from T by deleting si, and let
w′ be obtained from the restriction of w to A′ by replacing w(usj) with w(usj)+w(usi) for any
u ∈ R and replacing w(fj) with w(fj) +w(fi). Let x

′ be the restriction of x to A′ and let y′ be
obtained from the restriction of y to cycles in T ′ as follows: for each cycle C passing through
usi with y(C) > 0, let C ′ be obtained from C by replacing the path usiv0 with the path usjv0,
and set y′(C ′) = y(C ′)+ y(C). From the LP-duality theorem, we see that x′ and y′ are optimal
solutions to P(T ′,w′) and D(T ′,w′), respectively, having the same objective value ν∗w(T ) as x
and y. By the hypothesis of Theorem 4.1, ν∗w(T ) is an integer. Thus it follows from Lemma
4.6(ii) that D(T,w) has an integral optimal solution.

(v) Suppose on the contrary that C contains two distinct vertices si and sj in S. Let s+k be
the vertex succeeding sk as we traverse C in its direction, for k = i, j. Since y(C) > 0, from (i)
we deduce that s+i and s+j are two distinct vertices outside S. Thus the vertex s∗ arising from
contracting S would not be a near-sink in T/S, contradicting (β).

(vi) Assume the contrary: z(usi)z(usj) > 0 for some u ∈ R and 1 ≤ i < j ≤ r. Consider
first the case when z(usk) ≥ 1 for k = i or j. In view of (i), we may assume that z(usi) ≥ 1. Let
T ′ be obtained from T by adding an arc uv0 if it is not present in T and define w(uv0) = 0, and
let w′ be obtained from w by replacing w(a) with w(a) − ⌊z(e)⌋ for a ∈ {e, fi} and replacing
w(uv0) with w(uv0) + ⌊z(e)⌋. Let x be an optimal solution to P(T,w), and let x′ be obtained
from x by setting x(uv0) = x(e)+x(fi). Let D be the set of all cycles C passing through e with
y(C) > 0, let π(C) be a constant between 0 and y(C) such that π(D) = ⌊z(e)⌋, and let y′ be
obtained from y as follows: for each cycle C ∈ D, let C ′ be obtained from C by replacing the
path usiv0 with uv0, set y

′(C) = y(C)− π(C) and y′(C ′) = y(C ′) + π(C). From the LP-duality
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theorem, we see that x′ and y′ are optimal solutions to P(T ′,w′) and D(T ′,w′), respectively,
having the same objective value ν∗w(T ) as x and y. Let T ′′ be the tournament obtained from T
be adding a new vertex s0, an arc s0v0, and an arc uv0 for each u ∈ V \{v0}. By Lemma 2.3,
T ′′ is Möbius-free because it is the 1-sum of two smaller Möbius-free tournaments with hub v0.
By Lemma 2.4, the digraph G obtained from T ′′ by contracting s0v0 is also Möbius-free; so is
T ′ because it is a subgraph of G. As w(A′) < w(A), from Lemma 4.5 we deduce that ν∗w(T ) is
integral. Therefore, D(T,w) has an integral optimal solution by Lemma 4.6(ii).

So we may assume that z(usk) < 1 for k = i, j. Thus w(usk) = ⌈z(usk)⌉ = 1 > z(usk) for
k = i, j. It follows instantly from Lemma 4.3(ii) that x(usk) = 0 for k = i, j. By Lemma 4.3(iv),
we obtain x(usi) + x(fi) = x(usj) + x(fj), and hence x(fi) = x(fj), contradicting (iv).

We break the proof of Theorem 6.1 into a series of lemmas.

Lemma 6.3. If T2/S = F6, then D(T,w) has an integral optimal solution.

Proof. Recall that (b2, a2) = (v5, v6) and s∗ = v2. Clearly, C = v1v3v4v1 is the unique cycle
contained in T2\v6, which is a triangle. Since τw(T2\v6) > 0 by (α), we have w(a) > 0 for each
arc a on C. Therefore D(T,w) has an integral optimal solution by Lemma 4.8.

Lemma 6.4. If T2/S = F0, then D(T,w) has an integral optimal solution.

Proof. Recall that (b2, a2) = (v1, v2) and s∗ = v3 or v4. We only consider the case when
s∗ = v3, as the proof in other case goes along the same line. To establish the statement, by
Lemma 4.6(ii), it suffices to prove that

(1) the optimal value ν∗w(T ) of D(T,w) is integral.
Let y be an optimal solution to D(T,w). By Lemma 4.4(i), we have w(e) = ⌈z(e)⌉ for each

arc e in T . By (α) and Lemma 6.2(i) and (vi), there exists precisely one vertex sk in S such that
z(v1sk) > 0, which implies y(v1skv4v1) > 0. By Lemma 6.2(i), we may assume that sk = s1, the
sink of T [S]. Observe that T is also the 1-sum of two smaller Möbius-free tournaments T ′

1 and
T ′
2 with the same hub b, where T ′

2 arises from T2 by deleting S\s1. Since v1s1v4v1 is the unique
cycle contained in T ′

2\v2, which is a triangle, (1) follows instantly from Lemma 4.8.

Lemma 6.5. If T2/S = F3, then D(T,w) has an integral optimal solution.

Proof. Recall that (b2, a2) = (v5, v2), s
∗ = v1, and v0 = v3. To establish the statement, by

Lemma 4.6(ii), it suffices to prove that
(1) the optimal value ν∗w(T ) of D(T,w) is integral.
Given an optimal solution y to D(T,w), set φ(si) = {u : z(usi) > 0 for u ∈ V (T2)\a2} for

each si ∈ S. By Lemma 6.2(i) and (vi), we have
(2) φ(si) ∩ φ(sj) = ∅ whenever i ̸= j.
(3) There exist precisely two vertices si’s in S with φ(si) ̸= ∅.
In view of (2) and the structure of F3, there are at most two vertices si’s in S with φ(si) ̸= ∅.

Suppose on the contrary that there exists precisely one vertex si ∈ S with φ(si) ̸= ∅. By Lemma
6.2(i), we may assume that si = s1, the sink of T [S]. Let T ′ be obtained from T by reversing the
direction of the arc v4vj for each j with 1 < j ≤ r. Define the weight of each new arc to be zero.
As w(v4vj) = 0 for each j with 1 < j ≤ r by Lemma 4.4(i), the optimal value of D(T ′,w) equals
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ν∗w(T ). Observe that T ′ is the 1-sum of two smaller Möbius-free tournaments T ′
1 and T ′

2 with
the same hub b, where T ′

2 arises from T2 by deleting S\s1. Since T ′
2 = F3 and τw(T

′
2\v2) > 0,

statement (1) follows instantly from Lemma 5.3. So we may assume that (3) holds.
By (3) and Lemma 6.2(i), we may further assume that φ(s1) = {v5} and φ(s2) = {v4} for

any optimal solution y to D(T,w).
In the remainder of our proof, we reserve y for an optimal solution to D(T,w) such that
(4) y(C2) is maximized; and
(5) subject to (4), (y(Dq), y(Dq−1), . . . , y(D3)) is minimized lexicographically.
Let us make some observations about y. By Lemma 6.2(v), we have
(6) Cy

2 ⊆ {v5s1v3v5, v5s1v3v4v5, v4s2v3v4}.
In view of φ(si) for i = 1, 2 and Lemma 6.2(iii), we obtain

(7) w(v5s1) ≥ z(v5s1) > 0, w(v4s2) ≥ z(v4s2) > 0, and w(siv3) = z(siv3) > 0 for i = 1, 2.
From Lemma 4.7(v) we see that

(8) if y(v5s1v3v4v5) > 0, then v3v5 is saturated by y in T2.
(9) If w(v3v4) > 0, then y(v4s2v3v4) is a positive integer.
To justify this, observe that s2v3 is contained in some cycle C ∈ Cy

0 , for otherwise, s2v3
is saturated by y in T2 and hence, by (6), we have y(v4s2v3v4) = w(s2v3), which is a positive
integer by (7). If C contains v4s2, then it also contains v3v5. By Lemma 4.7(iv), v3v4 is saturated
by y in T2. By (8), we have y(v5s1v3v4v5) = 0. From (6) we deduce that y(v4s2v3v4) = w(v3v4),
which is a positive integer. So we assume that v4s2 is outside C. Furthermore, v4s2 is outside
Cy
0 , because every cycle containing v4s2 passes through s2v3. If v4s2 is saturated by y in T2,

then y(v4s2v3v4) = w(v4s2) by (6), as desired. So we assume that v4s2 is not saturated by y in
T and that C contains v3v5. By Lemma 4.7(iii) and (iv), v3v4 is saturated by y in T2. By (8),
we have y(v5s1v3v4v5) = 0. From (6) we see that y(v4s2v3v4) = w(v3v4). Hence (9) holds.

By (9) and Lemma 4.4(iii), we may assume that w(v3v4) = 0. Let us show that
(10) y(v5s1v3v5) is a positive integer.
If s1v3 is outside Cy

0 , then s1v3 is saturated by y in T2. Thus y(v5s1v3v5) = w(s1v3) > 0. If
s1v3 is contained in some cycle in Cy

0 , then, by Lemma 4.7(iv), v5s1 is saturated by y in T2. So
y(v5s1v3v5) = w(v5s1) > 0. Hence (10) holds in either case.

Using (10) and Lemma 4.4(iii), we conclude that the optimal value ν∗w(T ) of D(T,w) is
integral, as described in (1) above.

Lemma 6.6. If T2/S = F4, then D(T,w) has an integral optimal solution.

Proof. Recall that (b2, a2) = (v5, v6), s
∗ = v2, and v0 = v3. To establish the statement, by

Lemma 4.6(ii), it suffices to prove that
(1) the optimal value ν∗w(T ) of D(T,w) is integral.
Given an optimal solution y to D(T,w), set φ(si) = {u : z(usi) > 0 for u ∈ V (T2)\a2} for

each si ∈ S. By Lemma 6.2(i) and (vi), we have
(2) φ(si) ∩ φ(sj) = ∅ whenever i ̸= j.
(3) There exist at least two and at most three vertices si’s in S with φ(si) ̸= ∅.
In view of (2) and the structure of F4, there are at most three vertices si’s in S with φ(si) ̸= ∅.

Suppose on the contrary that there exists precisely one vertex si ∈ S with φ(si) ̸= ∅. Then (1)
follows immediately from Lemma 5.4; the argument can be found in that of (3) in the proof of
Lemma 6.5.
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Lemma 6.2(i) allows us to assume that
(4) if φ(si) ̸= ∅, then i ∈ {1, 2, 3}.
Let t be the subscript in {1, 2, 3} with v5 ∈ φ(st), if any. By (2), t is well defined. In the

remainder of our proof, we reserve y for an optimal solution to D(T,w) such that
(5) y(C2) is maximized;
(6) subject to (5), (y(Dq), y(Dq−1), . . . , y(D3)) is minimized lexicographically; and
(7) subject to (5) and (6), y(v1v5stv3v1) + y(v1v5v3v4v1) is minimized.
Let us make a few observations about y before proceeding.
(8) If y(v1v5siv3v4v1) > 0 for some i ∈ {1, 2, 3}, then each arc in the set {v1si, v3v1, v4si, v4v5,

v5v3} is saturated by y in T2. Furthermore, y(v1sjv3v1) = y(v3v4v5v3) = y(v1v5v3v1) = 0 for
any j ∈ {1, 2, 3}\{i}.

To justify this, note that each arc in the given set is a chord of the cycle v1v5siv3v4v1. So
the first half follows instantly from Lemma 4.7(v). Once again let ⊎ stand for the multiset sum.
Then v1v5siv3v4v1 ⊎ v1sjv3v1 = v1v5siv3v1 ⊎ v1sjv3v4v1, v1v5siv3v4v1 ⊎ v1v5v3v1 = v1v5siv3v1 ⊎
v1v5v3v4v1, and v1v5siv3v4v1 ⊎ v3v4v5v3 = v1v5v3v4v1 ⊎ v5siv3v4v5. Since y satisfies (6), we
deduce that y(v1sjv3v1) = y(v3v4v5v3) = y(v1v5v3v1) = 0.

(9) If y(v1v5siv3v1) > 0 for some i ∈ {1, 2, 3}, then both v1si and v5v3 are saturated by y in
T2; so are v4si and v4v5 if y(v1sjv3v4v1) > 0. Furthermore, y(v3v4v5v3) = 0.

Since both v1si and v5v3 are chords of the cycle v1v5siv3v1, the first half follows instantly
from Lemma 4.7(v). To establish the second half, observe that v1v5siv3v1⊎v3v4v5v3 = v1v5v3v1⊎
v5siv3v4v5. Hence y(v3v4v5v3) = 0 by (7). Suppose y(v1sjv3v4v1) > 0. Since the multiset sum
of the cycles v1v5siv3v1, v1sjv3v4v1, and the arc v4v5 (resp. v4si) contains arc-disjoint cycles
v1sjv3v1 and v5siv3v4v5 (resp. v4siv3v4), from (7) we deduce that both v4si and v4v5 are are
saturated by y in T2.

(10) If y(v1v5v3v4v1) > 0, then both v3v1 and v4v5 are saturated by y in T2. Furthermore,
y(v1siv3v1) = 0 for any i ∈ {1, 2, 3}.

Since both v3v1 and v4v5 are chords of the cycle v1v5v3v4v1, the first half follows instantly
from Lemma 4.7(v). To establish the second half, observe that v1v5v3v4v1⊎v1siv3v1 = v1v5v3v1⊎
v1siv3v4v1. Since y satisfies (7), we have y(v1siv3v1) = 0.

The following two statements can be seen from Lemma 4.7(v).
(11) If y(v1siv3v4v1) > 0, then both v3v1 and v4si are saturated by y in T2, for i ∈ {1, 2, 3}.
(12) If y(v5siv3v4v5) > 0, then both v4si and v5v3 are saturated by y in T2, for i ∈ {1, 2, 3}.

We proceed by considering two cases, depending on whether φ(sk) = {v4} for some k ∈
{1, 2, 3} (see (4)).

Case 1. φ(sk) = {v4} for some k ∈ {1, 2, 3}.
By Lemma 6.2(i), we may assume that k = 1; that is, φ(s1) = {v4}. Let i and j be the

subscripts in {2, 3}, if any (possibly i = j), such that v5 ∈ φ(si) and v1 ∈ φ(sj). Then
(13) Cy

2 ⊆ {v4s1v3v4, v1sjv3v1, v1sjv3v4v1, v1v5siv3v1, v5siv3v4v5, v1v5siv3v4v1, v1v5v3v1,
v3v4v5v3, v1v5v3v4v1}.

We propose to show that
(14) if w(v3v4) > 0, then y(v4s1v3v4) is a positive integer.
For this purpose, note that z(s1v3) = w(s1v3) > 0 by Lemma 6.2(iii). If s1v3 is outside Cy

0 ,
then y(v4s1v3v4) = w(s1v3) > 0. So we assume that s1v3 is contained in some cycle C ∈ Cy

0 . If C
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contains v4s1, then v3v4 is saturated by y in T2 by Lemma 4.7(iii). Moreover, the multiset sum of
C and each cycle in the set {v1sjv3v4v1, v5siv3v4v5, v1v5siv3v4v1, v3v4v5v3, v1v5v3v4v1} contains
the cycle v4s1v3v4, a cycle in {v1sjv3v1, v1v5siv3v1, v1v5v3v1}, and a cycle C ′ ∈ C0 that are arc-
disjoint, where C ′ = C[v5, v4] ∪ {v4v5} or C[v5, v4] ∪ {v4v1, v1v5}. From the optimality of y, we
thus deduce that y(v1sjv3v4v1), y(v5siv3v4v5), y(v1v5siv3v4v1), y(v3v4v5v3), and y(v1v5v3v4v1)
are all zero. Hence y(v4s1v3v4) = w(v3v4) > 0. So we assume that C does not contain v4s1.
Furthermore, v4s1 is outside Cy

0 , because every cycle using v4s1 passes through s1v3. Note that
v4s1 is not saturated by y in T , for otherwise y(v4s1v3v4) = w(v4s1) > 0, as desired. By Lemma
4.7(vii), v3v4 is saturated by y in T2 and C contains v3v1. It follows from (8), (10) and (11) that
y(v1v5siv3v4v1), y(v1v5v3v4v1) and y(v1sjv3v4v1) are all zero. As the multiset sum of C, each of
v5siv3v4v5 and v3v4v5v3, and the unsaturated arc v4s1 contains arc-disjoint cycles v4s1v3v4 and
one of v1v5siv3v1 and v1v5v3v1, both y(v5siv3v4v5) and y(v3v4v5v3) are zero by Lemma 4.7(vi).
So y(v4s1v3v4) = w(v3v4) > 0. This proves (14).

By (14) and Lemma 4.4(iii), we may assume that w(v3v4) = 0. It follows that w(v3v1) ≥
z(v3v1) > 0, for otherwise, τw(T2\a2) = w(v3v1) + w(v3v4) = 0, contradicting (α). Since
z(v4s1) > 0 and w(v3v4) = 0, the arc v4s1 is contained in some cycle in Cy

0 . From the proof of
(14) we see that

(15) y(v1sjv3v4v1), y(v5siv3v4v5), y(v1v5siv3v4v1), y(v3v4v5v3), and y(v1v5v3v4v1) are all
zero.

(16) If w(v1sj) ≥ z(v1sj) > 0, then y(v1sjv3v1) is a positive integer.
To justify this, note that z(sjv3) = w(sjv3) > 0 by Lemma 6.2(iii). Assume first that sjv3

is outside Cy
0 . If i ̸= j, then y(v1sjv3v1) = w(sjv3) > 0. So we assume that i = j. Then

y(v1siv3v1) + y(v1v5siv3v1) = w(siv3). If y(v1v5siv3v1) > 0, then v1si is saturated by y in T2

by (9). Thus y(v1siv3v1) = w(v1si). Next assume that sjv3 is contained in some cycle C ∈ Cy
0 .

Since w(v3v4) = 0, cycle C contains v3v1. It follows that v1sj is saturated by y in T2. So
y(v1sjv3v1) = w(v1sj) > 0 and hence (16) is established.

By (16) and Lemma 4.4(iii), we may assume that w(v1sj) = 0. By (3), we have z(v5si) > 0
and φ(si) = {v5}. By (13)-(16), we obtain

(17) Cy
2 ⊆ {v1v5siv3v1, v1v5v3v1}.

(18) y(v1v5siv3v1) is a positive integer.
To justify this, note that z(siv3) = w(siv3) > 0 by Lemma 6.2(iii). If siv3 is outside Cy

0 ,
then y(v1v5siv3v1) = w(siv3) > 0 by (17), as desired. So we assume that siv3 is contained in
some cycle C ∈ Cy

0 . Applying Lemma 4.7(iii) to the cycle v1v5siv3v1, we deduce that (v5, si) is
saturated by y in T2. So y(v1v5siv3v1) = w(v5si) > 0 and hence (18) holds.

By (18) and Lemma 4.4(iii), D(T,w) has an integral optimal solution, which implies (1).
Case 2. φ(sk) ̸= {v4} for any k ∈ {1, 2, 3}.
By (3), the hypothesis of the present case, and Lemma 6.2(i), we may assume that v1 ∈ φ(s1)

and v5 ∈ φ(s2). Then
(19) Cy

2 ⊆ {v1s1v3v1, v1s1v3v4v1, v1v5s2v3v1, v5s2v3v4v5, v1v5s2v3v4v1, v1v5v3v1, v3v4v5v3,
v1v5v3v4v1, v4s1v3v4, v4s2v3v4}.

By Lemma 6.2(vi), we have
(20) if v4 ∈ φ(si), then z(v4s3−i) = 0 and y(v4s3−iv3v4) = 0 for i = 1, 2.
Claim 1. y(C2) = τw(T2\a2).
To justify this, observe that
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(21) if K is an FAS of T2\a2 such that y(C2) = w(K), then K is an MFAS. (The statement
is exactly the same as (4) in the proof of Lemma 5.3.)

In view of Lemma 6.2(iii), we distinguish among three subcases, depending on whether siv3
is contained in a cycle in Cy

0 .
Subcase 1.1. Both s1v3 and s2v3 are outside Cy

0 . In this subcase, siv3 is saturated by y in T2

for i = 1, 2. If v5v3 is also saturated by y in T2, then y(C2) = w(K), whereK = {v5v3, s1v3, s2v3}.
Since K is an FAS of T2\a2, it is an MFAS by (21) and hence y(C2) = τw(T2\a2). So we assume
that v5v3 is not saturated by y in T2.

(22) Both v3v1 and v3v4 are outside Cy
0 . Furthermore, at least one of them is not saturated

by y in T2.
Indeed, the first half follows directly from Lemma 4.7(iii). To justify the second half, assume

the contrary. Then y(C2) = w(K), where K = {v3v1, v3v4}. Thus K is an MFAS of T2\a2 by
(21) and hence y(C2) = τw(T2\a2).

By (22), (8), (9), and (12), we have
(23) y(v1v5s2v3v1), y(v5s2v3v4v5), and y(v1v5s2v3v4v1) are all zero.
Since Cy

0 ̸= ∅, some cycle C ∈ Cy
0 contains v1v5 or v4v5. Thus there are two possibilities to

consider.
• C contains v1v5. Now by (22) and Lemma 4.7(iii), v3v1 is saturated by y in T2 and

hence v3v4 is not saturated by y in T2. It follows from Lemma 4.7(i) and (iii) that both v4v1
and v4v5 are saturated by y in T2. If z(v4si) = w(v4si) for i = 1, 2, then y(C2) = w(K),
where K = {v3v1, v4v1, v4v5, v4s1, v4s2}. Thus K is an MFAS of T2\a2 by (21) and hence
y(C2) = τw(T2\a2). So we assume that 0 < z(v4si) < w(v4si) for i = 1 or 2. Then z(v4s3−i) =
w(v4s3−i) = 0 by (2). If i = 2, then y(C2) = w(K), where K = {v3v1, v4v1, v4v5, v4s1, s2v3}, and
hence y(C2) = τw(T2\a2). If i = 1, then y(v1s1v3v4v1) = 0 by (11). Since the multiset sum of
the cycles v1s1v3v1, C, and the unsaturated arcs {v4s1, v5v3, v3v4} contains arc-disjoint cycles
v4s1v3v4 and v1v5v3v1, we have y(v1s1v3v1) = 0 by Lemma 4.7(vi). Thus y(C2) = w(K), where
K = {v3v1, v4v1, v4v5, s1v3, v4s2}. It follows that y(C2) = τw(T2\a2).

• C contains v4v5. Now by (22) and Lemma 4.7(iii), v3v4 is saturated by y in T2 and hence
v3v1 is not saturated by y in T2. It follows from Lemma 4.7(i) and (iii) that v1v5 is saturated
by y in T2. By (10) and (11), we have y(v1v5v3v4v1) = y(v1s1v3v4v1) = 0. If v1s1 is saturated
by y in T2, then y(C2) = w(K), where K = {v1v5, v3v4, v1s1}. Thus y(C2) = τw(T2\a2). So we
assume that v1s1 is not saturated by y in T2 and hence not in T by (22). Since the multiset
sum of the cycles C, v4s1v3v4, and the unsaturated arcs {v3v1, v5v3, v1s1} contains arc-disjoint
cycles v1s1v3v1 and v3v4v5v3, we have y(v4s1v3v4) = 0 by Lemma 4.7(vi). So y(C2) = w(K),
where K = {v1v5, v3v4, s1v3}. It follows that y(C2) = τw(T2\a2).

Subcase 1.2. s1v3 is contained in some cycle C ∈ Cy
0 ; subject to this, we choose C so that

it contains as many edges in T2\a2 as possible.
Assume first that C contains v1s1. Then C contains the path v1s1v3v4v5. By Lemma 4.7(iii),

each arc in the set {v3v1, v4v1, v4s1, v5v3} is saturated by y in T2. By (2), (8) and (10), we have
y(v1v5s2v3v4v1) = y(v1v5v3v4v1) = 0. Since the multiset sum of C and one of v1v5v3v1 and
v1v5s2v3v1 contains arc-disjoint cycles v3v4v5v3, C

′ = C[v5, v1] ∪ {v1v5}, and one of v1s1v3v1
and v5s2v3v4v5, from the optimality of y we deduce that y(v1v5v3v1) = y(v1v5s2v3v1) = 0. If
s2v3 is outside Cy

0 , then s2v3 is saturated by y in T2 by Lemma 6.2(iii). So y(C2) = w(K),
where K = {v3v1, v4v1, v4s1, s2v3, v5v3}. Hence y(C2) = τw(T2\a2). So we assume that s2v3 is
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contained in some cycle in Cy
0 . Since v3v1 is saturated by y in T2, every cycle in Cy

0 containing
s2v3 passes through v3v4. By Lemma 4.7(iii), both v4s2 and v5s2 are saturated by y in T2. Thus
y(C2) = w(K), where K = {v3v1, v4v1, v4s1, v4s2, v5s2, v5v3}. It follows that y(C2) = τw(T2\a2).

Assume next that v1s1 is not on C. Then we may further assume that v1s1 is outside Cy
0 .

We proceed by considering three subsubcases.
• C contains v3v1. Now v1s1 and v5v3 are saturated by y in T2 by Lemma 4.7(iii). Hence

y(v1v5s2v3v4v1) = y(v1v5v3v4v1) = y(v1s1v3v4v1) = 0 by (8), (10) and (11). If v4s1 is not
saturated by y in T2, then v3v4 is saturated by y in T2 by Lemma 4.7(iii). Moreover, for
each D ∈ {v3v4v5v3, v5s2v3v4v5}, if v4s1 is on C, then the multiset sum of C and D contains
arc-disjoint cycles v4s1v3v4, C ′ = C[v5, v4] ∪ {v4v5}, and one of v1v5v3v1 and v1v5s2v3v1; if
v4s1 is not saturated by y in T , then the multiset sum of C, D and the arc v4s1 contains
v4s1v3v4 and one of v1v5v3v1 and v1v5s2v3v1 that are arc-disjoint. It follows from the optimality
of y or Lemma 4.7(iv) that y(v3v4v5v3) = y(v5s2v3v4v5) = 0. So y(C2) = w(K) if s2v3 is
contained in some cycle in Cy

0 and y(C2) = w(J) otherwise, where K = {v1s1, v3v4, v5v3, s2v3}
and J = {v1s1, v3v4, v5v3, v5s2}. Hence y(C2) = τw(T2\a2). So we assume that v4s1 is saturated
by y in T2. If s2v3 is outside Cy

0 , then y(C2) = w(K), where K = {v1s1, v4s1, v5v3, s2v3},
which implies that y(C2) = τw(T2\a2). So we further assume that s2v3 is contained in some
cycle in Cy

0 . By Lemma 4.7(iii), v5s2 is saturated by y in T2. If v4s2 is also saturated by y in
T2, then y(C2) = w(K), where K = {v1s1, v4s1, v5v3, v5s2, v4s2}; otherwise, v3v4 is saturated
by y in T2, and w(v4s1) = z(v4s1) = 0. Similar to the case when v4s1 is not saturated by
y in T2, we can show that y(v3v4v5v3) = y(v5s2v3v4v5) = 0. Thus y(C2) = w(J), where
J = {v1s1, v3v4, v5v3, v5s2}. Therefore y(C2) = τw(T2\a2) in either situation.

• C contains both v3v4 and v4v1. Now v1s1, v4s1 and v5v3 are saturated by y in T2 by
Lemma 4.7(iii). If s2v3 is outside Cy

0 , then y(C2) = w(K), where K = {v1s1, v4s1, v5v3, s2v3};
otherwise, v5s2 and v4s2 are saturated by y in T2 by Lemma 4.7(iii). So y(C2) = w(J), where
J = {v1s1, v4s1, v5v3, v5s2, v4s2}. Therefore y(C2) = τw(T2\a2) in either situation.

• C contains both v3v4 and v4v5. Now v4s1 and v5v3 are saturated by y in T2 by Lemma
4.7(iii) and y(v1v5v3v4v1) = y(v1v5s2v3v4v1) = 0 by (8) and (10). If v1s1 is also saturated by y in
T2, then y(C2) = w(K) or w(J), whereK = {v1s1, v4s1, v5v3, s2v3} and J = {v1s1, v4s1, v5v3, v5s2,
v4s2}; otherwise, both v3v1 and v4v1 are saturated by y in T2, and every cycle in Cy

0 con-
taining s2v3 traverses v3v4v5. Since the multiset sum of C, each of v1v5v3v1 and v1v5s2v3v1,
and the unsaturated arc v1s1 contains v1s1v3v1 and one of v3v4v5v3 and v5s2v3v4v5 that are
arc-disjoint, we have y(v1v5v3v1) = y(v1v5s2v3v1) = 0 by Lemma 4.7(iv). So y(C2) = w(K)
if s2v3 is outside Cy

0 and y(C2) = w(J) otherwise, where K = {v3v1, v4v1, v4s1, v5v3, s2v3} and
J = {v1s1, v4s1, v5v3, v4s2, v5s2}. Therefore y(C2) = τw(T2\a2) in either situation.

Subcase 1.3. s2v3 is contained in some cycle C ∈ Cy
0 and s1v3 is saturated by y in T2.

In this subcase, both v5s2 and v5v3 are saturated by y in T2 by Lemma 4.7(iii). If v4s2 is
also saturated by y in T2, then y(C2) = w(K), where K = {s1v3, v5v3, v4s2, v5s2}; otherwise,
z(v4s2) > 0 and w(v4s1) = z(v4s1) = 0 by Lemma 6.2(vii). In this case C contains v3v1, so
v3v4 is saturated by y in T2 by Lemma 4.7(iii). By (8) and (10)-(12), we have y(v1v5s2v3v4v1),
y(v1v5v3v4v1), y(v1s1v3v4v1), and y(v5s2v3v4v5) are all zero. Since the multiset sum of the
cycles C, v3v4v5v3, and the unsaturated arc v4s2 contains arc-disjoint cycles v4s2v3v4 and
v1v5v3v1, by Lemma 4.7(iv), we have y(v3v4v5v3) = 0. It follows that y(C2) = w(K), where
K = {s1v3, v5v3, v3v4, v5s2}.
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Combining the above three subcases, we see that the equality y(C2) = τw(T2\a2) holds. So
Claim 1 is established.

Claim 2. y(C) is a positive integer for some C ∈ C2 or ν∗w(T ) is an integer.
To justify this, note that y(C2) = w(K) for some MFAS K of T2\a2 by Claim 1. Depending

on what K is, we distinguish among eight cases.
Subcase 2.1. K is one of {v1v5, v3v4, v1s1}, {v1s1, v3v4, s2v3, v5v3}, {v1s1, v3v4, v5s2, v5v3},

{v1v5, v3v4, s1v3}, and {s1v3, v3v4, v5s2, v5v3}.
In this case, by Lemma 4.3(i), we have y(C) = 0 for some cycles C listed in (19). By

Lemma 4.3(iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which, together with (19), implies
that y(v1s1v3v1) = w(v1s1) or w(s1v3), each of them is positive by Lemma 6.2(iii) and the
assumption that v1 ∈ φ(s1).

Subcase 2.2. K = {v3v1, v4v1, v4s1, s2v3, v5v3}.
In this case, by Lemma 4.3(i), we have y(C) = 0 for some cycles C listed in (19). By

Lemma 4.3(iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which, together with (19), implies
that y(v1s1v3v1) = w(v3v1), y(v1s1v3v4v1) = w(v4v1), y(v4s1v3v4) = w(v4s1), y(v4s2v3v4) +
y(v5s2v3v4v5) = w(s2v3), y(v3v4v5v3) = w(v5v3). If y(v5s2v3v4v5) = 0, then y(v4s2v3v4) =
w(s2v3) > 0 by Lemma 6.2(iii). If y(v5s2v3v4v5) > 0, then v4s2 is saturated by y in T2 by
Lemma 4.7(iii). So w(v4s2) = y(C2(v4s2)). It follows that y(v4s2v3v4) = w(v4s2), and hence
y(v5s2v3v4v5) is a positive integer.

Subcase 2.3. K = {v3v1, v4v1, v4s1, v4s2, v5s2, v5v3}.
In this case, by Lemma 4.3(i), we have y(C) = 0 for some cycles C listed in (19). By Lemma

4.3(iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which, together with (19), implies that
y(v1s1v3) = w(v3v1), y(v1s1v3v4v1) = w(v4v1), y(v4s1v3v4) = w(v4s1), y(v4s2v3v4) = w(v4s2),
y(v5s2v3v4v5) = w(v5s2), and y(v3v4v5) = w(v5v3). Since v5 ∈ φ(s2), we have w(v5s2) > 0. So
y(v5s2v3v4v5) is a positive integer.

Subcase 2.4. K = {v3v1, v4v1, v4v5, v4s1, s2v3} or {v3v1, v4v1, v4v5, s1v3, v4s2}.
In this case, by Lemma 4.3(i), we have y(C) = 0 for some cycles C listed in (19). By Lemma

4.3(iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which, together with (19), implies that
y(v4s2v3v4) = w(s2v3) > 0 or y(v4s1v3v4) = w(s1v3) > 0 by Lemma 6.2(iii).

Subcase 2.5. K = {v1s1, v4s1, s2v3, v5v3} or {v1s1, v4s1, v4s2, v5s2, v5v3}.
We only consider the subcase when K = {v1s1, v4s1, s2v3, v5v3}, as the other subcase can be

justified likewise.
By Lemma 4.3(i), we have y(C) = 0 for some cycles C listed in (19). By Lemma 4.3(iii), we

obtain w(e) = y(C2(e)) for each e ∈ K, which, together with (19), implies that y(v1s1v3v1) +
y(v1s1v3v4v1) = w(v1s1), y(v1v5v3v1) + y(v3v4v5v3) + y(v1v5v3v4v1) = w(v5v3), y(v4s1v3v4) =
w(v4s1), and y(v4s2v3v4) + y(v1v5s2v3v1) + y(v5s2v3v4v5) + y(v1v5s2v3v4v1) = w(s2v3). We
may assume that y(v1v5s2v3v4v1) = y(v1v5v3v4v1) = 0, for otherwise, by (8) or (10), we have
y(v1s1v3v1) = 0 and hence y(v1s1v3v4v1) = w(v1s1) > 0.

If y(v1v5s2v3v1) = 0, then y(v5s2v3v4v5)+y(v4s2v3v4) = w(s2v3). Observe that y(v4s2v3v4) >
0, for otherwise, y(v5s2v3v4v5) = w(s2v3) > 0. By (6), we obtain y(v4s2v3v4) = w(s2v3) or
w(v4s2), which is a positive integer. So we assume that y(v1v5s2v3v1) > 0. Then y(v3v4v5v3) = 0
by (9). Note that y(v1s1v3v4v1) > 0, for otherwise, y(v1s1v3v1) = w(v1s1) > 0. Thus, by
(9), both v4s2 and v4v5 are saturated by y in T2. It follows that y(v4s2v3v4) = w(v4s2) and
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y(v5s2v3v4v5) = w(v4v5). So y(v1v5s2v3v1) = w(s2v3) − y(v4s2v3v4) − y(v5s2v3v4v5). Since
w(s2v3) > 0, at least one of y(v4s2v3v4), y(v5s2v3v4v5), and y(v1v5s2v3v1) is a positive integer.

Subcase 2.6. K = {s1v3, v4s2, v5s2, v5v3} or {s1v3, s2v3, v5v3}.
We only consider the subcase when K = {s1v3, s2v3, v5v3}, as the other subcase can be

justified likewise.
By Lemma 4.3(iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which, together with (19),

implies that y(v4s1v3v4) + y(v1s1v3v1) + y(v1s1v3v4v1) = w(s1v3), y(v1v5v3v1) + y(v3v4v5v3) +
y(v1v5v3v4v1) = w(v5v3), and y(v4s2v3v4) + y(v1v5s2v3v1) + y(v5s2v3v4v5) + y(v1v5s2v3v4v1) =
w(s2v3).

We may assume that y(v1v5s2v3v4v1) = y(v1v5v3v4v1) = 0, for otherwise, by (8) or (10), we
have y(v1s1v3v1) = 0 and hence y(v4s1v3v4)+y(v1s1v3v4v1) = w(v1s1) > 0, which together with
(6) implies that y(v4s1v3v4) = w(s1v3) or w(v4s1), so y(v1s1v3v4v1) = w(v1s1) − y(v4s1v3v4).
Since w(s1v3) > 0, at least one of y(v4s1v3v4) and y(v1s1v3v4v1) is a positive integer.

If y(v1v5s2v3v1) = 0, then y(v5s2v3v4v5) + y(v4s2v3v4) = w(s2v3), which together with (6)
implies that y(v4s2v3v4) = w(s2v3) or w(v4s2), so y(v5s2v3v4v5) = w(s2v3)− y(v4s2v3v4). Since
w(s2v3) > 0, at least one of y(v4s2v3v4) and y(v5s2v3v4v5) is a positive integer. So we assume
that y(v1v5s2v3v1) > 0. Thus, by (9), we have y(v1v5v3v1) = w(v5v3). If y(v1s1v3v4v1) >
0, then y(v4s2v3v4) = w(v4s2), y(v5s2v3v4v5) = w(v4v5), and y(v1v5s2v3v1) = w(s2v3) −
y(v4s2v3v4) − y(v5s2v3v4v5). Since w(s2v3) > 0, at least one of y(v4s2v3v4), y(v5s2v3v4v5),
and y(v1v5s2v3v1) is a positive integer. So we further assume that y(v1s1v3v4v1) = 0. Then
y(v1s1v3v1) + y(v4s1v3v4) = w(s1v3). If y(v4s1v3v4) = 0, then y(v1s1v3v1) = w(s1v3) >
0. So we assume that y(v4s1v3v4) > 0. By Lemma 6.2(vii), we have y(v4s2v3v4) = 0, so
y(v1v5s2v3v1) + y(v5s2v3v4v5) = w(s2v3). Observe that if y(v1s1v3v1) or y(v1v5s2v3v1) is an in-
teger, then accordingly y(v4s1v3v4) or y(v5s2v3v4v5) is an integer. Since w(siv3) > 0 for i = 1, 2
by Lemma 6.2(iii), at least one of y(v1s1v3v1), y(v4s1v3v4), y(v1v5s2v3v1), and y(v5s2v3v4v5) is
a positive integer, as claimed.

It remains to consider the subcase when neither y(v1s1v3v1) nor y(v1v5s2v3v1) is an integer.
We propose to show that

(24) ν∗w(T ) is an integer.
To justify this, let x be an optimal solution to P(T,w). Since 0 < y(v1s1v3v1) < w(v1s1)

and 0 < y(v4s1v3v4) < w(v4s1), by Lemma 4.3(i) and (ii), we have x(v1s1) = x(v4s1) = 0
and x(v1s1v3v1) = x(v4s1v3v4) = 1, which implies x(v3v1) = x(v3v4). Furthermore, since
y(v1v5s2v3v1) > 0 and y(v5s2v3v4v5) > 0, we have x(v1v5s2v3v1) = x(v5s2v3v4v5) = 1, which
implies x(v3v1)+x(v1v5) = x(v3v4)+x(v4v5). Thus x(v1v5) = x(v4v5). Similarly, for each vertex
u ∈ V \(V (T2)\a2), we deduce that x(uv1) = x(uv4). Let T ′ = (V ′, A′) be obtained from T by
identifying v1 and v4; the resulting vertex is still denoted by v1. Let w

′ be obtained from the re-
striction of w by setting w′(v1v5) = w(v1v5)+w(v4v5), w

′(v3v1) = w(v3v1)+w(v3v4), w
′(v1si) =

w(v1si)+w(v4si) for 1 ≤ i ≤ r, and w′(uv1) = w(uv1)+w(uv4) for each u ∈ V \(V (T2)\a2). By
the LP-duality theorem, x and y naturally correspond to solutions to P(T ′,w′) and D(T ′,w′)
respectively with the same optimal value ν∗w(T ). From the hypothesis of Theorem 4.1, we deduce
that ν∗w(T ) is an integer. This proves (24).

Subcase 2.7. K = {v3v1, v4v1, v4v5, v4s1, v4s2}.
In this case, by Lemma 4.3(iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which, to-

gether with (19), implies that y(v4siv3v4) = w(v4si) for i = 1, 2, y(v1s1v3v1) + y(v1v5v3v1) +
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y(v1v5s2v3v1) = w(v3v1), y(v1s1v3v4v1) + y(v1v5v3v4v1) + y(v1v5s2v3v4v1) = w(v4v1), and
y(v3v4v5v3) + y(v5s2v3v4v5) = w(v4v5). We may assume that w(v4si) = 0 for i = 1, 2, for other-
wise, y(v4s1v3v4) or y(v4s2v3v4) is a positive integer. Note that both s1v3 and s2v3 are outside
Cy
0 . So siv3 is saturated by y in T2 for i = 1, 2, and hence y(v1s1v3v1)+y(v1s1v3v4v1) = w(s1v3)

and y(v1v5s2v3v1) + y(v5s2v3v4v5) + y(v1v5s2v3v4v1) = w(s2v3). If y(v1v5s2v3v4v1) > 0 or
y(v1v5v3v4v1) > 0, then y(v1s1v3v4v1) = w(s1v3) > 0 by (8) or (10). So we assume that
y(v1v5s2v3v4v1) = y(v1v5v3v4v1) = 0. Then y(v1s1v3v4v1) = w(v4v1) and y(v1s1v3v1) =
w(s1v3) − y(v1s1v3v4v1). Since w(s1v3) > 0, at least one of y(v1s1v3v1) and y(v1s1v3v4v1)
is a positive integer.

Subcase 2.8. K = {v3v1, v3v4}.
In this case, by Lemma 4.3(iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which, together

with (19), implies that y(v1s1v3v1) + y(v1v5v3v1) + y(v1v5s2v3v1) = w(v3v1), y(v4s1v3v4) +
y(v4s2v3v4) + y(v3v4v5v3) + y(v1v5v3v4v1) + y(v1s1v3v4v1) + y(v5s2v3v4v5) + y(v1v5s2v3v4v1) =
w(v3v4). Since both s1v3 and s2v3 are outside Cy

0 , we see that siv3 is saturated by y in T2 for i =
1, 2. Hence y(v1s1v3v1)+y(v4s1v3v4)+y(v1s1v3v4) = w(s1v3) and y(v4s2v3v4)+y(v1v5s2v3v1)+
y(v5s2v3v4v5) + y(v1v5s2v3v4v1) = w(s2v3).

If y(v1v5s2v3v4v1) > 0 or y(v1v5v3v4v1) > 0, then y(v4s1v3v4) + y(v1s1v3v4v1) = w(s1v3) by
(8) and (10). It follows from (6) that either y(v4s1v3v4) = w(s1v3) > 0 or y(v4s1v3v4) = w(v4s1)
and y(v1s1v3v4v1) = w(s1v3) − y(v4s1v3v4). Since w(s1v3) > 0, at least one of y(v4s1v3v4)
and y(v1s1v3v4) is a positive integer. So we assume that y(v1v5s2v3v4v1) = y(v1v5v3v4v1) = 0.
If y(v1v5s2v3v1) = 0, then either y(v4s2v3v4) = w(s2v3) or y(v4s2v3v4) = w(v4s2) by (12),
so y(v5s2v3v4v5) = w(s2v3) − w(v4s2). Since w(s2v3) > 0, at least one of y(v4s2v3v4) and
y(v5s2v3v4v5) is a positive integer.

Suppose y(v1v5s2v3v1) > 0. Then y(v1v5v3v1) = w(v5v3) by (9). If y(v1s1v3v4v1) > 0, then
y(v4s2v3v4) = w(v4s2), y(v5s2v3v4v5) = w(v4v5), and y(v4s1v3v4) = w(v4s1) by (9) and (11).
It follows that y(v1v5s2v3v1) = w(s2v3) − y(v4s2v3v4) − y(v5s2v3v4v5). Since w(s2v3) > 0, at
least one of y(v4s2v3v4), y(v5s2v3v4v5), and y(v1v5s2v3v1) is a positive integer. So we assume
that y(v1s1v3v4v1) = 0. If y(v5s2v3v4v5) = 0, then y(v4s1v3v4) + y(v4s2v3v4) = w(v3v4). By
Lemma 6.2(vii), at most one of w(v4s1) and w(v4s2) is nonzero. Thus either y(v4s1v3v4) = 0 or
y(v4s2v3v4) = 0, and hence either y(v1s1v3v1) = w(s1v3) > 0 or y(v1v5s2v3v1) = w(s2v3) > 0.
So we further assume that y(v5s2v3v4v5) > 0. If y(v1s1v3v1) or y(v1v5s2v3v1) is an integer, then
accordingly y(v4s1v3v4) or y(v5s2v3v4v5) is an integer. Since w(siv3) > 0 for i = 1, 2, at least one
of y(v1s1v3v1), y(v4s1v3v4), y(v1v5s2v3v1), and y(v5s2v3v4v5) is a positive integer, as claimed.

It remains to consider the subcase when neither y(v1s1v3v1) nor y(v1v5s2v3v1) is an integer.
Now we can prove that ν∗w(T ) is an integer. Since the proof is the same as that of (24), we omit
the details here.

Combining the above subcases, we see that Claim 2 holds. Hence, by Lemma 4.4(iii), the
optimal value ν∗w(T ) of D(T,w) is integral, as described in (1) above.

Lemma 6.7. If T2/S = G2, then D(T,w) has an integral optimal solution.

Proof. Recall that (b2, a2) = (v4, v5), s
∗ = v2, and v0 = v4. To establish the statement, by

Lemma 4.6(ii), it suffices to prove that
(1) the optimal value ν∗w(T ) of D(T,w) is integral.
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Given an optimal solution y to D(T,w), set φ(si) = {u : z(usi) > 0 for u ∈ V (T2)\a2} for
each si ∈ S. By Lemma 6.2 (i) and (vi), we have

(2) φ(si) ∩ φ(sj) = ∅ whenever i ̸= j.
(3) There exist at least two and at most three vertices si’s in S with φ(si) ̸= ∅.
In view of (2) and the structure ofG2, there are at most three vertices si’s in S with φ(si) ̸= ∅.

Suppose on the contrary that there exists precisely one vertex si ∈ S with φ(si) ̸= ∅. Then (1)
follows immediately from Lemma 5.5; the argument can be found in that of (3) in the proof of
Lemma 6.5.

Lemma 6.2(i) allows us to assume that
(4) if φ(si) ̸= ∅, then i ∈ {1, 2, 3}.
In the remainder of our proof, we reserve y for an optimal solution to D(T,w) such that
(5) y(C2) is maximized;
(6) subject to (5), (y(Dq), y(Dq−1), . . . , y(D3)) is minimized lexicographically;
(7) subject to (5) and (6), y(v1v6v3v4v1) is minimized; and
(8) subject to (5)-(7), y(v1v6v4v1) is minimized.
Let us make some observations about y before proceeding.
(9) If K is an FAS of T2\a2 such that y(C2) = w(K), then K is an MFAS. (The statement

is exactly the same as (4) in the proof of Lemma 5.3.)
The statements below follow instantly from Lemma 4.7(v).
(10) If y(v1v6v3v4v1) > 0, then both v3v1 and v6v4 are saturated by y in T2.
(11) If y(v1v6siv4v1) > 0 for some i ∈ {1, 2, 3}, then both v1si and v6v4 are saturated by y

in T2.
(12) If y(v1v6v3siv4v1) > 0 for some i ∈ {1, 2, 3}, then each arc in the set {v3v1, v3v4, v6v4, v1si,

v6si} is saturated by y in T2.

Claim 1. y(C2) = τw(T2\a2).
To justify this, we may assume that
(13) at most one of v3v1 and v4v1 is saturated by y in T2, for otherwise, y(C2) = w(K),

where K = {v3v1, v4v1}. Since K is an FAS of T2\a2, it is an MFAS by (9) and hence y(C2) =
τw(T2\a2).

We proceed by considering two cases, depending on whether v1 ∈ φ(si) for some i.
Case 1.1. v1 /∈ φ(si) for any i ∈ {1, 2, 3}.
By (2), (3) and Lemma 6.2(i), we may assume that φ(s1) = {v6} and φ(s2) = {v3}. Thus
(14) Cy

2 ⊆ {v1v6v3v1, v1v6v4v1, v1v6v3v4v1, v1v6s1v4v1, v1v6v3s2v4v1}.
By Lemma 6.2(iii), z(siv4) = w(ziv4) > 0. If siv4 is outside Cy

0 for i = 1 or 2, then siv4 is
saturated by y in T2. In view of (14), we have y(v1v6s1v4v1) = w(s1v4) > 0 or y(v1v6v3s2v4v1) =
w(s2v4) > 0, and hence (1) follows from Lemma 4.4(iii). Similarly, if v6s1 or v3s2 is saturated
by y in T2, then y(v1v6s1v4v1) = w(v6s1) > 0 or y(v1v6v3s2v4v1) = w(v3s2) > 0, and hence (1)
follows from Lemma 4.4(iii). So we assume that

(15) siv4 is contained in some cycle in Cy
0 for i = 1 and 2. Furthermore, neither v6s1 nor

v3s2 is saturated by y in T2.
By (15) and Lemma 4.7(iii), at least one of v1v6 and v4v1 is saturated by y in T2. If v1v6

is saturated by y in T2, then y(C2) = w(v1v6). By (9), {v1v6} is an MFAS of T2\a2 and hence
y(C2) = τw(T2\a2). If v4v1 is saturated by y in T2, then v3v1 is not saturated by y in T2
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by (13). So, by Lemma 4.7(vi), v6v3 is saturated by y in T2 and, by (10) and (12), we have
y(v1v6v3s2v4v1) = y(v1v6v3v4v1) = 0. Thus y(C2) = w(K), where K = {v4v1, v6v3}. Since K is
an FAS of T2\a2, it is an MFAS by (9) and hence y(C2) = τw(T2\a2).

Case 1.2. v1 ∈ φ(si) for some i ∈ {1, 2, 3}.
By (2), (3) and Lemma 6.2(i), we may assume that v1 ∈ φ(s1), v6 ∈ φ(si), and v3 ∈ φ(sj),

with {1} ̸= {i, j} ⊆ {1, 2, 3}. Furthermore,
(16) Cy

2 ⊆ {v1v6v3v1, v1v6v4v1, v1v6v3v4v1, v1s1v4v1, v1v6siv4v1, v1v6v3sjv4v1}.
We may further assume that s1v4 is contained in some cycle in Cy

0 and v1s1 is not saturated
by y in T2, for otherwise, y(v1s1v4v1) = w(s1v4) > 0 or y(v1s1v4v1) = w(v1s1) > 0. Hence (1)
follows instantly from Lemma 4.4(iii). It follows from Lemma 4.7(vii) that v4v1 is saturated
by y in T2 and hence, by (13), v3v1 is not saturated by y in T2. By (10) and (12), we obtain
y(v1v6v3sjv4v1) = y(v1v6v3v4v1) = 0. If v6v3 is saturated by y in T2, then y(C2) = w(K),
where K = {v4v1, v6v3}. Since K is an FAS of T2\a2, it is an MFAS by (9) and hence y(C2) =
τw(T2\a2). So we assume that v6v3 is not saturated by y in T2. Thus, by Lemma 4.7(vii), v1v6
is saturated by y in T2. We propose to show that

(17) y(v1v6v4v1) = y(v1v6siv4v1) = 0.
Assume the contrary: y(v1v6v4v1) > 0 or y(v1v6siv4v1) > 0. Then v1s1 is outside Cy

0 ,
for otherwise, let C be a cycle in Cy

0 containing v1s1. Then the multiset sum of the cycles
C and v1v6v4v1 (resp. v1v6siv4v1) contains arc-disjoint cycles v1s1v4v1 and C ′ = C[v4, v1] ∪
{v1v6, v6v4} (resp. C ′ = C[v4, v1] ∪ {v1v6, v6si, siv4}). Set θ = min{y(v1v6v4v1), y(C)} (resp.
min{y(v1v6siv4v1), y(C)}). Let y′ be obtained from y by replacing y(v1v6v4v1) (resp. y(v1v6siv4v1)),
y(v1v2v4v1), y(C), and y(C ′) with y(v1v6v4v1) − θ (resp. y(v1v6siv4v1) − θ), y(v1v2v4v1) + θ,
y(C)− θ, and y(C ′) + θ, respectively. It is easy to see that y′ is an optimal solution to D(T,w)
with y′(v1v6v4v1) < y(v1v6v4v1) or y′(v1v6siv4v1) < y(v1v6siv4v1), contradicting (8) or (6).
Since v1v6 is saturated by y in T2, every cycle in Cy

0 containing v3v1 passes through v1s1. Thus
v3v1 is outside Cy

0 , and neither v1s1 nor v3v1 is saturated by y in T .
Observe that v6v3 is outside Cy

0 , for otherwise, let C be a cycle in Cy
0 containing v6v3. Then the

multiset sum of the cycles C, v1v6v4v1 (resp. v1v6siv4v1), and the unsaturated arc v3v1 contain
arc-disjoint cycles v1v6v3v1 and C ′ = C[v4, v6] ∪ {v6v4} (resp. C ′ = C[v4, v6] ∪ {v6si, siv4)}).
Set θ = min{y(v1v6v4v1), y(C), w(v3v1)−z(v3v1)} (resp. θ = min{y(v1v6siv4v1), y(C), w(v3v1)−
z(v3v1)}). Let y′ be obtained from y by replacing y(v1v6v4v1) (resp. y(v1v6siv4v1)), y(v1v6v3v1),
y(C), and y(C ′) with y(v1v6v4v1) − θ (resp. y(v1v6siv4v1) − θ), y(v1v6v3v1) + θ, y(C) − θ,
and y(C ′) + θ, respectively. It is easy to see that y′ is an optimal solution to D(T,w) with
y′(v1v6v4v1) < y(v1v6v4v1) or y′(v1v6siv4v1) < y(v1v6siv4v1), contradicting (8) or (6). Hence
v6v3 is not saturated by y in T .

Let C be a cycle in Cy
0 containing s1v4. Then the multiset sum of the cycles C, each of the cy-

cles v1v6v4v1 and v1v6siv4v1, and the unsaturated arcs v6v3, v3v1, and v1s1 contains arc-disjoint
cycles v1s1v4v1 and v1v6v3v1. So, by Lemma 4.7(vi), we have y(v1v6v4v1) = y(v1v6siv4v1) = 0;
this contradiction establishes (17).

Using (17), we obtain y(C2) = w(K), where K = {v1v6, v4v1}. Since K is an FAS of T2\a2,
it is an MFAS by (9) and hence y(C2) = τw(T2\a2). This proves Claim 1.

The above proof yields the following statement, which will be used later.
(18) If Case 1.1 occurs, then every MFAS comes from {{v3v1, v4v1}, {v1v6}, {v4v1, v6v3}}. If

Case 1.2 occurs, then every MFAS comes from {{v3v1, v4v1}, {v1v6, v4v1}, {v4v1, v6v3}}.
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Claim 2. y(C) is a positive integer for some C ∈ C2 or ν∗w(T ) is an integer.
To justify this, we first show that
(19) if v3 ∈ φ(si) for i ∈ {1, 2, 3}, then y(v1v6v3siv4v1) = 0.
Assume the contrary: y(v1v6v3siv4v1) > 0. Then y(v1v6v3v1) = w(v3v1), y(v1v6v3v4v1) =

w(v3v4), and y(v1v6v4v1) = w(v6v4) by (12). So Lemma 4.4(iii) allows us to assume that
w(v3v1) = w(v3v4) = w(v6v4) = 0. Let j and k be subscripts in {1, 2, 3}, if any, such that
v6 ∈ φ(sj) and v1 ∈ φ(sk). If both y(v1skv4v1) and y(v1v6sjv4v1) are integral, then, by Claim 1,
y(v1v6v3siv4v1) is a positive integer, so Claim 2 holds. Thus we may assume that y(v1skv4v1) or
y(v1v6sjv4v1) is not integral. Then, by (11) and Lemma 4.4(iii), we have j, k ̸= i. Furthermore,
both v1sk and v6sj are outside Cy

0 , for otherwise, we can construct an optimal solution y′ to
D(T,w) with y′(v1v6v3sjv4v1) < y(v1v6v3sjv4v1), contradicting (6).

Consider first the case when y(v1v6sjv4v1) is not integral. If j = k and y(v1skv4v1) > 0,
then y(v1skv4v1) = w(v1sk) > 0 by (11), so Claim 2 holds. Thus we may assume that j ̸= k if
y(v1skv4v1) > 0. Let us show that ν∗w(T ) is an integer.

For this purpose, let x be an optimal solution to P(T,w). Since both y(v1v6sjv4v1) and
y(v1v6v3siv4v1) are positive, x(v1v6sjv4v1) = x(v1v6v3siv4v1) = 1 by Lemma 4.3(i). By Lemma
6.2(vi), x(v6sj) = x(v3si) = 0. It follows that x(sjv4) = x(v6v3) + x(siv4). If v6v3 is outside
Cy
0 , then x(v6v3) = 0 by Lemma 4.3(ii), because z(v6v3) = y(v1v6v3siv4v1) < w(v6v3). Thus

x(siv4) = x(sjv4), contradicting Lemma 6.2(iv). So we assume that v6v3 is contained in some
cycle in Cy

0 . Since w(v3v4) = w(v6v4) = 0 and (v6, sj) is outside Cy
0 , for any u ∈ V \(V (T2)\a2),

if a cycle in Cy
0 contains uv6, then it passes through v6v3siv4. Moreover, if a cycle in Cy

0

contains usj , then it passes through sjv4. By Lemma 4.3(iv), we obtain x(uv6) + x(v6v3) +
x(v3si) + x(siv4) = x(usj) + x(sjv4). Hence x(uv6) = x(usj). Clearly, we may assume that
this equality holds in any other situation. Let T ′ = (V ′, A′) be obtained from T by delet-
ing vertex sj , and let w′ be obtained from the restriction of w to A′ by replacing w(e) with
w(e)+w(sjv4) for each e ∈ {v6v3, v3si, siv4} and replacing w(uv6) with w(uv6)+w(usj) for each
u ∈ V \(V (T2)\a2). Let x′ be the restriction of x to A′ and let y′ be obtained from y as follows:
set y′(v1v6v3siv4v1) = y(v1v6sjv4v1) + y(v1v6v3siv4v1); for each C ∈ Cy

0 passing through usjv4
for any u ∈ V \(V (T2)\a2), let C ′ be the cycle arising from C by replacing the path usjv4 with
the path uv6v3siv4, and set y′(C ′) = y(C ′)+y(C). From the LP-duality theorem, we see that x′

and y′ are optimal solutions to P(T ′,w′) and D(T ′,w′), respectively, with the same value ν∗w(T )
as x and y. By the hypothesis of Theorem 4.1, ν∗w(T ) is an integer.

In the other case when y(v1v6sjv4v1) = 0 and y(v1skv4v1) is not integral, the proof goes
along the same line, so we omit the details here.

By Claim 1, y(C2) = w(K) for some FAS K of T2\a2 as described in (18). Recall that
(20) in Case 1.1, we have v1 /∈ φ(si) for any i ∈ {1, 2, 3}, φ(s1) = {v6}, and φ(s2) = {v3}; in

Case 1.2, we have v1 ∈ φ(s1), v6 ∈ φ(si), and v3 ∈ φ(sj), with {1} ̸= {i, j} ⊆ {1, 2, 3}.
Depending on what K is, we distinguish among four cases.
Case 2.1. K = {v4v1, v6v3} in Case 1.1 or K = {v1v6, v4v1} in Case 1.2.
Consider first the subcase when K = {v4v1, v6v3} in Case 1.1. Now y(v1v6v3v1) = w(v6v3)

and y(v1v6v4v1) + y(v1v6s1v4v1) = w(v4v1) (see (20)). If y(v1v6s1v4v1) = 0, then y(v1v6v4v1) =
w(v4v1). If y(v1v6s1v4v1) > 0, then y(v1v6v4v1) = w(v6v4) by (11), and hence y(v1v6s1v4v1) =
w(v4v1)−w(v6v4). By the hypothesis of the present section, w(K) = τw(T2\a2) > 0. So at least
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one of y(v1v6v3v1), y(v1v6v4v1), and y(v1v6s1v4v1) is a positive integer.
Next consider the subcase when K = {v1v6, v4v1} in Case 1.2. Now y(v1s1v4v1) = w(v4v1)

and y(v1v6v3v1) = w(v1v6). So at least one of y(v1s1v4v1) and y(v1v6v3v1) is a positive integer.
Case 2.2. K = {v1v6} or {v3v1, v4v1} in Case 1.1.
We only consider the subcase when K = {v1v6}, as the proof in the other subcase goes along

the same line. Now y(v1v6v3v1) + y(v1v6v4v1) + y(v1v6v3v4v1) + y(v1v6s1v4v1) = w(v1v6), and
v3v1 is outside Cy

0 .
Observe that y(v1v6v3v4v1) > 0, for otherwise, if y(v1v6s1v4v1) > 0, then y(v1v6v4v1) =

w(v6v4) by (11), and hence y(v1v6v3v1)+y(v1v6s1v4v1) = w(v1v6)−w(v6v4); if y(v1v6s1v4v1) = 0,
then y(v1v6v3v1)+y(v1v6v4v1) = w(v1v6). Let us show that y(v1v6v3v1) is integral. Assume first
that y(v1v6s1v4v1) > 0. If v6v3 is outside Cy

0 , let y
′ be obtained from y by replacing y(v1v6v3v1)

and y(v1v6s1v4v1) with y(v1v6v3v1)+[y(v1v6s1v4v1)] and ⌊y(v1v6s1v4v1)⌋, respectively; if v6v3 is
contained in a cycle C ∈ Cy

0 , set θ = min{y(C), [y(v1v6s1v4v1)]} and C ′ = C[v4, v6]∪{v6s1, s1v4},
and let y′ be obtained from y by replacing y(v1v6v3v1), y(v1v6s1v4v1), y(C), and y(C ′) with
y(v1v6v3v1) + θ, y(v1v6s1v4v1) − θ, y(C) − θ, and y(C ′) + θ, respectively. Then y′ is also an
optimal solution to D(T,w) with y′(v1v6v3v1) > y(v1v6v3v1) while y′(v1v6s1v4) < y(v1v6s1v4v1)
in either situation, so y′ is a better choice than y (see (6)), a contradiction. Assume next that
y(v1v6s1v4v1) = 0. Imitating the above proof, with y(v1v6v4v1) in place of y(v1v6s1v4v1), we
can reach a contradiction to (8).

Since y(v1v6v3v4v1) > 0, by (10), we have y(v1v6v3v1) = w(v3v1) and y(v1v6v4v1) = w(v6v4);
so Lemma 4.4(iii) allows us to assume that w(v3v1) = w(v6v4) = 0. Thus the previous equality
concerning w(v1v6) becomes y(v1v6s1v4v1) + y(v1v6v3v4v1) = w(v1v6). So we may assume that
neither y(v1v6s1v4v1) nor y(v1v6v3v4v1) is integral, for otherwise, at least one of them is a
positive integer. Observe that v6s1 is outside Cy

0 , for otherwise, let C be a cycle in Cy
0 that

contains v6s1, let C
′ = C[v4, v6]∪ {v6v3, v3v4}, and let θ = min{y(C), y(v1v6v3v4v1)}. Let y′ be

obtained from y by replacing y(v1v6s1v4v1), y(v1v6v3v4v1), y(C), and y(C ′) with y(v1v6s1v4v1)+
θ, y(v1v6v3v4v1)− θ, y(C)− θ, and y(C ′) + θ, respectively. Then y′ is also an optimal solution
to D(T,w) with y′(v1v6v3v4v1) < y(v1v6v3v4v1), contradicting (7).

We propose to show that ν∗w(T ) is an integer. For this purpose, let x be an optimal so-
lution to P(T,w). Since both y(v1v6s1v4v1) and y(v1v6v3v4v1) are positive, x(v1v6s1v4v1) =
x(v1v6v3v4v1) = 1 by Lemma 4.3(i). Since y(v1v6s1v4v1) < w(v6s1), we have x(v6s1) = 0
by Lemma 4.3(ii). Thus x(s1v4) = x(v6v3) + x(v3v4). Since w(v6v4) = 0, for any u ∈
V \(V (T2)\a2), if a cycle in Cy

0 contains uv6, then it passes through v6v3v4 or v6s1v4. More-
over, if a cycle in Cy

0 contains us1, then it passes through s1v4. By Lemma 4.3(iv), we obtain
x(uv6)+ x(v6v3)+ x(v3v4) = x(us1)+ x(s1v4) or x(uv6)+ x(v6s1)+ x(s1v4) = x(us1)+ x(s1v4).
Hence x(uv6) = x(usj). Clearly, we may assume that this equality holds in any other situation.
Let T ′ = (V ′, A′) be obtained from T by deleting vertex s1, and let w′ be obtained from the
restriction of w to A′ by replacing w(e) with w(e)+w(s1v4) for e = v6v3 and v3v4 and replacing
w(uv6) with w(uv6) +w(us1) for any u ∈ V \V (T2)\a2. Let x′ be the restriction of x to A′ and
let y′ be obtained from y as follows: set y′(v1v6v3v4v1) = y(v1v6s1v4v1) + y(v1v6v3v4v1); for
each C ∈ Cy

0 passing through us1v4 for any u ∈ V \(V (T2)\a2), let C ′ be the cycle arising from
C by replacing the path us1v4 with the path uv6v3v4, and set y′(C ′) = y(C ′) + y(C). From
the LP-duality theorem, we see that x′ and y′ are optimal solutions to P(T ′,w′) and D(T ′,w′),
respectively, with the same value ν∗w(T ) as x and y. By the hypothesis of Theorem 4.1, ν∗w(T )
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is an integer.
Case 2.3. K = {v4v1, v6v3} in Case 1.2.
In this case, y(v1v6v3v1) = w(v6v3) and y(v1s1v4v1)+ y(v1v6v4v1)+ y(v1v6siv4v1) = w(v4v1)

(see (20)). By Lemma 4.4(iii), we may assume that w(v6v3) = 0. Let us show that
(21) y(v1v6siv4v1) = 0.
Assume the contrary. Then, by (11), we have y(v1v6v4v1) = w(v6v4), and v1si is saturated

by y in T2. Lemma 4.4(iii) allows us to assume that w(v6v4) = 0 and that y(v1v6siv4v1) is not
integral. It follows from (6) and Lemma 4.7(v) that i ̸= 1 and v1s1 is outside Cy

0 . We propose
to prove that ν∗w(T ) is an integer.

For this purpose, let x be an optimal solution to P(T,w). Since both y(v1s1v4v1) and
y(v1v6siv4v1) are positive, by Lemma 4.3(i), we have x(v1s1v4v1) = x(v1v6siv4v1) = 1. Since
y(v1s1v4v1) < w(v1s1), by Lemma 4.3(ii), we obtain x(v1s1) = 0, so x(s1v4) = x(v1v6)+x(v6si)+
x(siv4). If v1v6 is outside Cy

0 , then x(v1v6) = 0, because z(v1v6) = y(v1v6siv4v1) < w(v1v6).
By Lemma 6.2(vi), x(v1s1) = x(v6si) = 0. Hence, x(s1v4) = x(siv4), contradicting Lemma
6.2(iv). So we assume that v1v6 is contained in some cycle in Cy

0 . Since w(v6v3) = w(v6v4) = 0,
for any u ∈ V \(V (T2)\a2), if a cycle in Cy

0 contains uv1, then it passes through v1v6siv4.
Moreover, if a cycle in Cy

0 contains us1, then it passes through s1v4. By Lemma 4.3(iv), we
obtain x(uv1)+x(v1v6)+x(v6si)+x(siv4) = x(us1)+x(s1v4). Hence x(uv1) = x(us1). Clearly,
we may assume that this equality holds in any other situation. Let T ′ = (V ′, A′) be obtained from
T by deleting vertex s1, and let w′ be obtained from the restriction of w to A′ by replacing w(e)
with w(e)+w(s1v4) for e ∈ {v1v6, v6si, siv4} and replacing w(uv1) with w(uv1)+w(us1) for any
u ∈ V \(V (T2)\a2), Let x′ be the restriction of x to A′, and let y′ be obtained from y as follows:
set y′(v1v6siv4v1) = y(v1s1v4v1) + y(v1v6siv4v1); for each C ∈ Cy

0 passing through us1v4, let C
′

arise from C by replacing the path us1v4 with the path uv1v6siv4, and set y′(C ′) = y(C ′)+y(C).
From the LP-duality theorem, we see that x′ and y′ are optimal solutions to P(T ′,w′) and
D(T ′,w′), respectively, with the same value ν∗w(T ) as x and y. By the hypothesis of Theorem
4.1, ν∗w(T ) is an integer. So we may assume that (21) holds.

By (21), the equality concerning w(v4v1) becomes y(v1s1v4v1) + y(v1v6v4v1) = w(v4v1). As
w(v4v1) = w(K) = τw(T2\a2) > 0, neither y(v1s1v4v1) nor y(v1v6v4v1) is integral. Observe that
v1s1 is outside Cy

0 , for otherwise, let C be a cycle containing v1s1 in Cy
0 , let C ′ = C[v4, v1] ∪

{v1v6, v6v4}, and let θ = min{y(C), y(v1v6v4v1)}. Let y′ be obtained from y by replacing
y(v1s1v4v1), y(v1v6v4v1), y(C), and y(C ′) with y(v1s1v4v1) + θ, y(v1v6v4v1)− θ, y(C)− θ, and
y(C ′) + θ, respectively. Then y′ is also an optimal solution to D(T,w) with y′(v1v6v4v1) <
y(v1v6v4v1), contradicting (8). Moreover, i ̸= 1, for otherwise, it can be shown similarly that
v6s1 is outside Cy

0 , which implies z(v6s1) = 0, contradicting that v6 ∈ φ(s1). Let us show that
(22) ν∗w(T ) is an integer.
For this purpose, let x be an optimal solution to P(T,w). Since both y(v1s1v4v1) and

y(v1v6v4v1) are positive, we have x(v1s1v4v1) = x(v1v6v4v1) = 1 by Lemma 4.3(i). By (16)
and Lemma 4.4(iii), we have y(v1s1v4v1) < w(v1s1) and hence x(v1s1) = 0. So x(s1v4) =
x(v1v6) + x(v6v4). Note that if a cycle in Cy

0 contains us1, then it passes through s1v4. For
any u ∈ V \(V (T2)\a2), if there exists a cycle C ∈ Cy

0 containing uv1 and passing through
v1v6v4, then by Lemma 4.3(iv), we obtain x(uv1) + x(v1v6) + x(v6v4) = x(us1) + x(s1v4), and
hence x(uv1) = x(us1). Otherwise, since w(v6v3) = 0, if a cycle in Cy

0 contains uv1, then it
passes through v1v6siv4. By Lemma 4.3(i) and (iv), we have x(v6v4) ≥ x(v6si) + x(siv4) and
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x(uv1)+x(v1v6)+x(v6si)+x(siv4) = x(us1)+x(s1v4). Since x(v1v6v4v1) = 1 and x(v1v6siv4v1) ≥
1, we see that x(v6v4) ≤ x(v6si) + x(siv4). Hence, x(uv1) = x(us1) also holds. Clearly, we may
assume that this equality holds in any other situation. Let T ′ = (V ′, A′) be obtained from T
by deleting vertex s1, and let w′ be obtained from the restriction of w to A′ by replacing w(e)
with w(e) + w(s1v4) for e = v1v6 and v6v4 and replacing w(uv1) with w(uv1) + w(us1) for any
u ∈ V \(V (T2)\a2). Let x′ be the restriction of x to A′ and let y′ be obtained from y as follows:
set y′(v1v6v4v1) = y(v1s1v4v1) + y(v1v6v4v1); for each C ∈ Cy

0 passing through us1v4 for any
u ∈ V \(V (T2)\a2), let C ′ arise from C by replacing the path us1v4 with the path uv1v6v4, and
set y′(C ′) = y(C ′) + y(C). From the LP-duality theorem, we see that x′ and y′ are optimal
solutions to P(T ′,w′) and D(T ′,w′), respectively, with the same value as x and y. From the
hypothesis of Theorem 4.1, (22) follows.

Case 2.4. K = {v3v1, v4v1} in Case 1.2.
In this case, y(v1v6v3v1) = w(v3v1) and y(v1s1v4v1)+y(v1v6v4v1)+y(v1v6siv4v1)+y(v1v6v3v4v1)

= w(v4v1) (see (20)). By Lemma 4.4(iii), we may assume that w(v3v1) = 0.
If y(v1v6siv4v1) = y(v1v6v3v4v1) = 0, then y(v1s1v4v1) + y(v1v6v4v1) = w(v4v1). Since

w(v4v1) = w(K) = τw(T2\a2) > 0, we see that y(v1s1v4v1) is not integral. Imitating the
proof of (22), it can be shown that ν∗w(T ) is an integer. So we assume that at least one of
y(v1v6v3v4v1) and y(v1v6siv4v1) is positive. By (10) or (11), v6v4 is saturated by y in T2, and
hence y(v1v6v4v1) = w(v6v4). By Lemma 4.4(iii), we may assume that w(v6v4) = 0. If neither
y(v1v6siv4v1) nor y(v1v6v3v4v1) is integral then, imitating the proof in Case 2.2, it can be shown
that ν∗w(T ) is an integer. It remains to consider the subcase when precisely one of them is
positive. Now it can be shown that ν∗w(T ) is an integer. Since the proof is the same as that
contained in the argument of (21), we omit the routine details here.

Combining the above four cases, we see that Claim 2 holds. Hence, by Lemma 4.4(iii), the
optimal value ν∗w(T ) of D(T,w) is integral, as described in (1) above.

Lemma 6.8. If T2/S = G3, then D(T,w) has an integral optimal solution.

Proof. Recall that (b2, a2) = (v4, v5), s
∗ = v2, and v0 = v4. To establish the statement, by

Lemma 4.4(iii) and Lemma 4.6(ii), it suffices to prove that
(1) y(C) is a positive integer for some C ∈ C2 or the optimal value ν∗w(T ) of D(T,w) is an

integer.
Given an optimal solution y to D(T,w), set φ(si) = {u : z(usi) > 0 for u ∈ V (T2)\a2} for

each si ∈ S. By Lemma 6.2 (i) and (vi), we have
(2) φ(si) ∩ φ(sj) = ∅ whenever i ̸= j.
(3) There exist at least two and at most three vertices si’s in S with φ(si) ̸= ∅. (The

statement is exactly the same as (3) in the proof of Lemma 6.7.)
Lemma 6.2(i) allows us to assume that
(4) if φ(si) ̸= ∅, then i ∈ {1, 2, 3}.
Let t be the subscript in {1, 2, 3} with v1 ∈ φ(st), if any. By (2), t is well defined. In the

remainder of our proof, we reserve y for an optimal solution to D(T,w) such that
(5) y(C2) is maximized;
(6) subject to (5), (y(Dq), y(Dq−1), . . . , y(D3)) is minimized lexicographically;
(7) subject to (5) and (6), y(v1v6v3v4v1) is minimized; and
(8) subject to (5)-(7), y(v1stv4v1) + y(v3v4v6v3) is minimized.
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Let us make some observations about y before proceeding.
(9) If K is an FAS of T2\a2 such that y(C2) = w(K), then K is an MFAS. (The statement

is exactly the same as (4) in the proof of Lemma 5.3.)
The statements below follow instantly from Lemma 4.7(v) and the choice of y.
(10) If y(v1v6v3v4v1) > 0, then both v3v1 and v4v6 are saturated by y in T2. Furthermore,

for any i ∈ {1, 2, 3}, we have y(v6siv4v6) = 0; if y(v3siv4v6v3) > 0, then v1si is saturated by y
in T2.

(11) If y(v1v6siv4v1) > 0 for some i ∈ {1, 2, 3}, then both v1si and v4v6 are saturated by y
in T2. Furthermore, if y(v3v4v6v3) > 0, then v3v1 is saturated by y in T2; for any 1 ≤ j ̸= i ≤ 3,
if y(v3sjv4v6v3) > 0, then both v3v1 and v1sj are saturated by y in T2.

(12) If y(v3siv4v6v3) > 0 for some i ∈ {1, 2, 3}, then both v3v4 and v6si are saturated by y
in T2.

(13) If v1 ∈ φ(si) for some i ∈ {1, 2, 3}, then y(v1siv4v6v3v1) = 0.
Assume the contrary: y(v1siv4v6v3v1) > 0. Then v1v6, v3v4, and v4v1 are saturated by y in

T2 by Lemma 4.7(v). Let j and k be subscripts in {1, 2, 3}, if any, such that v3 ∈ φ(sj) and
v6 ∈ φ(sk) (possibly j = k). As before, let ⊎ denote the multiset sum. Then v1siv4v6v3v1 ⊎
v1v6v3v4v1 = v1siv4v1 ⊎ v1v6v3v1 ⊎ v3v4v6v3, v1siv4v6v3v1 ⊎ v1v6skv4v1 = v1siv4v1 ⊎ v1v6v3v1 ⊎
v6skv4v6, and v1siv4v6v3v1 ∪ v1v6v3sjv4v1 = v1siv4v1 ⊎ v1v6v3v1 ⊎ v3sjv4v6v3. Thus, from the
optimality of y, we deduce that y(v1v6v3v4v1), y(v1v6skv4v1), and y(v1v6v3sjv4v1) are all zero.
So y(v1v6v3v1) = w(v1v6), y(v1siv4v1) = w(v4v1), and y(v3v4v6v3) = w(v3v4). Clearly, we may
assume that w(v1v6) = w(v4v1) = w(v3v4) = 0, otherwise (1) holds. By (3), we have {j, k} ̸= {i}.
Let us show that one of y(v6skv4v6), y(v3sjv4v6v3), and y(v1siv4v6v3v1) is a positive integer or
ν∗w(T ) is an integer. We proceed by considering two cases.

• k exists and i ̸= k. In this case, observe first that v6sk is not saturated by y in T2, for
otherwise, y(v6skv4v6) = w(v6sk) > 0 and hence (1) holds. Next, vkv4 is not saturated by y
in T2, for otherwise, if k ̸= j, then y(v6skv4v6) = w(skv4) > 0; if k = j, then y(v6skv4v6) +
y(v3skv4v6v3) = w(skv4) > 0, and y(v6skv4v6) = w(v6sk) > 0 by Lemma 4.7(v) provided
y(v3skv4v6v3) > 0. So y(v6skv4v6) is a positive integer, and hence (1) also holds. Moreover,
both v6sk and v3sj are outside Cy

0 , for otherwise, let C1 (resp. C2) be a cycle in Cy
0 containing v6sk

(resp. v3sj). Since C1 ⊎ v1siv4v6v3v1 = v6skv4v6 ⊎C ′
1 and C2 ⊎ v1siv4v6v3v1 = v3sjv4v6v3 ⊎C ′

2,
where C ′

1 = C1[v4, v6]∪{v6v3, v3v1, v1si, siv4} and C ′
2 = C2[v4, v3]⊎{v3v1, v1si, siv4}, by Lemma

4.7(viii), we have y(Ci) = 0 for i = 1, 2, a contradiction. It follows that v6sk is not saturated by
y in T , and skv4 is contained in some cycle in Cy

0 . By Lemma 4.7(vii), v4v6 is saturated by y in
T2, so y(v1siv4v6v3v1)+ y(v6skv4v6)+ y(v3sjv4v6v3) = w(v4v6). If j = k and y(v3skv4v6v3) > 0,
then v6sk is saturated by y in T2 by Lemma 4.7(v), a contradiction. So either j ̸= k or j = k
and y(v3skv4v6v3) = 0. Since w(v6sk) > 0 and v6sk is outside Cy

0 , we have y(v6skv4v6) > 0.
Assume y(v6skv4v6) is not integral. Let us show that ν∗w(T ) is an integer.

For this purpose, let x be an optimal solution to P(T,w). Since both y(v6skv4v6) and
y(v1siv4v6v3v1) are positive, by Lemma 4.3(i), we have x(v6skv4v6) = x(v1siv4v6v3v1) = 1. By
Lemma 4.3(ii), we obtain x(v6sk) = 0. Hence x(skv4) = x(v6v3) + x(v3v1) + x(v1si) + x(siv4).
Since w(v3v4) = 0 and v6sk is outside Cy

0 , for any u ∈ V \(V (T2)\a2), if a cycle in Cy
0 contains

uv6, then it passes through v6v3v1siv4. Moreover, if a cycle in Cy
0 contains usk, then it passes

through skv4. By Lemma 4.3(iv), we obtain x(uv6) + x(v6v3) + x(v3v1) + x(v1si) + x(siv4) =
x(usk)+x(skv4). Hence x(uv6) = x(usk). Clearly, we may assume that this equality holds in any

79



other situation. Let T ′ = (V ′, A′) be obtained from T by deleting sk, and letw′ be obtained from
the restriction of w to A′ by replacing w(e) with w(e) + w(v4sk) for e ∈ {v6v3, v3v1, v1si, siv4}
and replacing w(uv6) with w(uv6)+w(usk) for any u ∈ V \(V (T2)\a2). Let x′ be the restriction
of x to A′, and let y′ be obtained from y as follows: set y′(v1siv4v6v3v1) = y(v1siv4v6v3v1) +
y(v6skv4v6); for each C ∈ Cy

0 passing through uskv4, let C
′ arise from C by replacing the path

uskv4 with the path uv6v3v1siv4, and set y′(C ′) = y(C ′) + y(C). From the LP-duality theorem,
we see that x′ and y′ are optimal solutions to P(T ′,w′) and D(T ′,w′), respectively, with the
same value ν∗w(T ) as x and y. By the hypothesis of Theorem 4.1, ν∗w(T ) is an integer.

• Either k does not exist or i = k. In this case, by (3), we see that j exists; that is, v3 ∈ φ(sj).
Similar to the above case, we can show that either y(v3sjv4v6v3) is a positive integer or ν∗w(T )
is an integer. Since the proof goes along the same line (with v3sj and y(v3sjv4v6v3) in place of
v6sk and y(v6skv4v6), respectively), we omit the details here. Hence we may assume that (13)
holds.

(14) If v3 ∈ φ(sj) for some j ∈ {1, 2, 3}, then y(v1v6v3sjv4v1) = 0.
Assume the contrary: y(v1v6v3sjv4v1) > 0. Then v3v1, v3v4, and v4v6 are saturated by y

in T2 by Lemma 4.7(v). Let i and k be subscripts in {1, 2, 3}, if any, such that v1 ∈ φ(si)
and v6 ∈ φ(sk) (possibly i = k). Since v1v6v3sjv4v1 ⊎ v3v4v6v3 = v1v6v3v4v1 ⊎ v3sjv4v6v3,
and v1v6v3sjv4v1 ∪ v6skv4v6 = v1v6skv4v1 ⊎ v3sjv4v6v3, from the optimality of y, we deduce
that y(v3v4v6v3) = y(v6skv4v6) = 0. So y(v1v6v3v1) = w(v3v1), y(v1v6v3v4v1) = w(v3v4), and
y(v3sjv4v6v3) = w(v4v6). Clearly, we may assume that w(v3v1) = w(v3v4) = w(v4v6) = 0,
otherwise (1) holds. By (3), we have {i, k} ̸= {j}. Let us show that one of y(v1siv4v1),
y(v1v6skv4v1), and y(v1v6v3sjv4v1) is a positive integer or ν∗w(T ) is an integer. We proceed by
considering two cases.

• i exists and i ̸= j. In this case, observe first that v1si is not saturated by y in T2, for
otherwise, y(v1siv4v1) = w(v1si) > 0 and hence (1) holds. Next, siv4 is not saturated by y in T2,
for otherwise, if i ̸= k, then y(v1siv4v1) = w(siv4) > 0; if i = k, then y(v1siv4v1)+y(v1v6siv4) =
w(siv4) > 0, and y(v1siv4v1) = w(v1si) > 0 by Lemma 4.7(v) provided y(v1v6siv4v1) > 0.
So y(v1siv4v1) is a positive integer, and hence (1) also holds. Moreover, both v1si and v6sk
are outside Cy

0 , for otherwise, let C1 (resp. C2) be a cycle in Cy
0 containing v1si (resp. v6sk).

Since C1 ⊎ v1v6v3sjv4v1 = v1siv4v1 ∪ C ′
1 and C2 ⊎ v1v6v3sjv4v1 = v1v6skv4v1 ⊎ C ′

2, where C ′
1 =

C1[v4, v1] ∪ {v1v6, v6v3, v3sj , sjv4} and C ′
2 = C2[v4, v6] ∪ {v6v3, v3sj , sjv4}, by Lemma 4.7(viii),

we have y(Ci) = 0 for i = 1, 2, a contradiction. It follows that v1si is not saturated by y in T
and siv4 is contained in some cycle in Cy

0 . By Lemma 4.7(vii), v4v1 is saturated by y in T2, so
y(v1siv4v1) + y(v1v6skv4v1) + y(v1v6v3sjv4v1) = w(v4v1). If i = k and y(v1v6skv4v1) > 0, then
v1si is saturated by y in T2 by Lemma 4.7(v), a contradiction. So either i ̸= k or i = k and
y(v1v6skv4v1) = 0. Since w(v1si) > 0 and v1si is outside Cy

0 , we have y(v1siv4v1) > 0. Assume
y(v1siv4v1) is not integral. Let us show that ν∗w(T ) is an integer.

For this purpose, let x be an optimal solution to P(T,w). Since both y(v1siv4v1) and
y(v1v6v3sjv4v1) are positive, by Lemma 4.3(i), we have x(v1siv4v1) = y(v1v6v3sjv4v1) = 1. By
Lemma 4.3(ii), we obtain x(v1si) = 0. Hence x(siv4) = x(v1v6) + x(v6v3) + x(v3sj) + x(sjv4).
Since w(v3v1) = w(v3v4) = 0, for any u ∈ V \(V (T2)\a2), if a cycle in Cy

0 contains uv1, then it
passes through v6v3sjv4. Moreover, if a cycle in Cy

0 contains usi, then it passes through siv4.
By Lemma 4.3(iv), we obtain x(uv1)+ x(v1v6)+ x(v6v3)+ x(v3sj)+ x(sjv4) = x(usi)+ x(siv4).
Hence x(uv1) = x(usi). Clearly, we may assume that this equality holds in any other situation.
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Let T ′ = (V ′, A′) be obtained from T by deleting si, and let w′ be obtained from the restriction
of w to A′ by replacing w(e) with w(e) + w(v4si) for e ∈ {v1v6, v6v3, v3sj , sjv4} and replacing
w(uv1) with w(uv1) + w(usi) for any u ∈ V \(V (T2)\a2). Let x′ be the restriction of x to A′

and let y′ be obtained from y as follows: set y′(v1v6v3sjv4v1) = y(v1v6v3sjv4v1) + y(v1siv4v1);
for each C ∈ Cy

0 passing through usiv4, let C
′ be obtained from C by replacing the path usiv4

with the path uv1v6v3sjv4, and set y′(C ′) = y(C ′) + y(C). From the LP-duality theorem, we
see that x′ and y′ are optimal solutions to P(T ′,w′) and D(T ′,w′), respectively, with the same
value ν∗w(T ) as x and y. By the hypothesis of Theorem 4.1, ν∗w(T ) is an integer.

• Either i does not exist or i = j. In this case, by (3), we see that k exists; that is, v6 ∈ φ(sk).
Similar to the above case, we can show that either y(v1v6skv4v1) is a positive integer or ν∗w(T )
is an integer. Since the proof goes along the same line (with v6sk and y(v1v6skv4v1) in place of
v1si and y(v1siv4v1), respectively), we omit the details here. Hence we may assume that (14)
holds.

We proceed by considering two cases, depending on whether φ(si) = {v1} for some i.
Case 1. φ(si) = {v1} for some i ∈ {1, 2, 3}.
By Lemma 6.2(i), we may assume that φ(s1) = {v1}. Let j and k be subscripts in {1, 2, 3},

if any, such that v3 ∈ φ(sj) and v6 ∈ φ(sk) (possibly j = k). By (13) and (14), we have
(15) Cy

2 ⊆ {v1v6v3v4v1, v1v6skv4v1, v3sjv4v6v3, v1s1v4v1, v6skv4v6, v1v6v3v1, v3v4v6v3}.
Observe that neither s1v4 nor v1s1 is saturated by y in T2, for otherwise, y(v1s1v4v1) =

w(s1v4) or w(v1s1); both of them are positive, so (1) holds. By Lemma 6.2(iii), z(s1v4) =
w(z1v4) > 0. Thus there exists a cycle C ∈ Cy

0 containing s1v4; subject to this, C is chosen to
contain v1s1 if possible. If v1s1 is outside C, then v1s1 is not saturated by y in T . By Lemma
4.7(vii), v4v1 is saturated by y in T2 and hence y(v1s1v4v1) + y(v1v6skv4v1) + y(v1v6v3v4v1) =
w(v4v1).

(16) If w(v4v1) > 0, then either y(v1s1v4v1) is a positive integer or ν∗w(T ) is an integer.
To justify this, assume y(v1s1v4v1) is not a positive integer. Then at least one of y(v1v6skv4v1)

and y(v1v6v3v4v1) is positive. Observe that v1s1 is outside Cy
0 , for otherwise, let D be a cycle

in Cy
0 containing v1s1. If y(v1v6v3v4v1) > 0 then, using D ⊎ v1v6v3v4v1 = v1s1v4v1 ⊎D′, where

D′ = D[v4, v1] ∪ {v1v6, v6v3, v3v4}, and applying Lemma 4.7(viii), we deduce that y(D) = 0,
a contradiction. If y(v1v6skv4v1) > 0, then a contradiction can be reached similarly. Since
w(v1s1) > 0, we obtain y(v1s1v4v1) > 0. As y(v1s1v4v1) is not integral, at least one of
y(v1v6skv4v1) and y(v1v6v3v4v1) is not integral. Let us show that ν∗w(T ) is an integer.

We only consider the case when y(v1v6v3v4v1) is not integral, as the proof in the other case
when y(v1v6v3v4v1) = 0 and y(v1v6skv4v1) > 0 goes along the same line.

Let x be an optimal solution to P(T,w). Since both y(v1s1v4v1) and y(v1v6v3v4v1) are
positive, by Lemma 4.3(i), we have x(v1s1v4v1) = x(v1v6v3v4v1) = 1. By Lemma 4.3(ii), we
obtain x(v1s1) = 0, because v1s1 is not saturated by y. It follows that x(s1v4) = x(v1v6) +
x(v6v3) + x(v3v4). Observe that there is no cycle D in Cy

0 that contains the path v1v6skv4,
for otherwise, let θ = min{y(D), y(v1v6v3v4v1)}, let D′ = D[v4, v1] ∪ {v1v6, v6v3, v3v4}, and
let y′ be obtained from y by replacing y(D), y(D′), y(v1v6v3v4v1), and y(v1v6skv4v1) with
y(D)− θ, y(D′) + θ, y(v1v6v3v4v1)− θ, and y(v1v6skv4v1) + θ, respectively. Then y′ is also an
optimal solution to D(T,w) with y′(v1v6v3v4v1) < y(v1v6v3v4v1), contradicting (7). For any
u ∈ V \(V (T2)\a2), if a cycle in Cy

0 contains uv1, then it passes through v1v6v3v4. Moreover, if
a cycle in Cy

0 contains us1, then it passes through s1v4. By Lemma 4.3(iv), we obtain x(uv1) +

81



x(v1v6) + x(v6v3) + x(v3v4) = x(us1) + x(s1v4). Hence x(uv1) = x(us1). Clearly, we may
assume that this equality holds in any other situation. Let T ′ = (V ′, A′) be obtained from
T by deleting s1, and let w′ be obtained from the restriction of w to A′ by replacing w(e)
with w(e) + w(s1v4) for e ∈ {v1v6, v6v3, v3v4} and replacing w(uv1) with w(uv1) + w(us1) for
any u ∈ V \(V (T2)\a2). Let x′ be the restriction of x to A′, and let y′ be obtained from y
as follows: set y′(v1v6v3v4v1) = y(v1v6v3v4v1) + y(v1s1v4v1); for each C ∈ Cy

0 passing through
us1v4, let C ′ be obtained from C by replacing the path us1v4 with the path uv1v6v3v4, and
set y′(C ′) = y(C ′) + y(C). From the LP-duality theorem, we see that x′ and y′ are optimal
solutions to P(T ′,w′) and D(T ′,w′), respectively, with the same value ν∗w(T ) as x and y. By
the hypothesis of Theorem 4.1, ν∗w(T ) is an integer. So (16) follows.

By (16) and Lemma 4.4(iii), we may assume that w(v4v1) = 0 hereafter.
(17) If k exists (so v6 ∈ φ(sk)) and w(v4v6) > 0, then either y(v6skv4v6) is a positive integer

or ν∗w(T ) is an integer.
To justify this, observe first that v6sk is not saturated by y in T2, for otherwise, y(v6skv4v6) =

w(v6sk) > 0, so (17) holds. Next, skv4 is not saturated by y in T2, for otherwise, if j ̸= k,
then y(v6skv4v6) = w(skv4) > 0; if j = k, then y(v6skv4v6) + y(v3skv4v6v3) = w(skv4), and
y(v6skv4v6) = w(v6sk) > 0 by Lemma 4.7(v) provided y(v3skv4v6v3) > 0, so (17) also holds.
By Lemma 6.2(iii), skv4 is saturated by y in T , so skv4 is contained in some cycle C ∈ Cy

0 ;
subject to this, C is chosen to contain v6sk if possible. Clearly, if v6sk is not on C, then
v6sk is not saturated by y in T . By Lemma 4.7(vii), v4v6 is saturated by y in T2, and hence
y(v6skv4v6) + y(v3v4v6v3) + y(v3sjv4v6v3) = w(v4v6).

Assume y(v6skv4v6) is not a positive integer. Then at least one of y(v3v4v6v3) and y(v3sjv4v6v3)
is positive, say the former. Note that v6sk is outside Cy

0 , for otherwise, let D be a cycle in Cy
0

containing v6sk. Set D′ = D[v4, v6] ∪ {v6v3, v3v4} and θ = min{y(v3v4v6v3), y(C)}. Let y′ be
obtained from y by replacing y(v3v4v6v3), y(v6skv4v6), y(C), and y(C ′) with y(v3v4v6v3) − θ,
y(v6skv4v6) + θ, y(C) − θ, and y(C ′) + θ, respectively. Then y′ is also an optimal solution
to D(T,w) with y′(v3v4v6v3) < y(v3v4v6v3), contradicting (8). Since w(v6sk) > 0, we have
y(v6skv4v6) > 0. As y(v6skv4v6) is not integral, y(v3v4v6v3) or y(v3sjv4v6v3) is not integral. If
y(v3sjv4v6v3) > 0, then v3v4 is saturated by y in T2 by Lemma 4.7(v), so y(v3v4v6v3) = w(v3v4).
Hence we may assume that exactly one of y(v3v4v6v3) and y(v3sjv4v6v3) is positive. Let us show
that ν∗w(T ) is an integer.

We only consider the case when y(v3v4v6v3) is not integral, because the proof in the other
case when y(v3v4v6v3) = 0 and y(v3sjv4v6v3) > 0 goes along the same line.

Let x be an optimal solution to P(T,w). Since both y(v6skv4v6) and y(v3v4v6v3) are positive,
we have x(v6skv4v6) = x(v3v4v6v3) = 1 by Lemma 4.3(i). Since v6sk is not saturated by y in T ,
we obtain x(v6sk) = 0 by Lemma 4.3(ii). It follows that x(skv4) = x(v6v3) + x(v3v4). For any
u ∈ V \(V (T2)\a2), if a cycle in Cy

0 contains uv6, then it passes through v6v3v4. Moreover, if a
cycle in Cy

0 contains usk, then it passes through skv4. By Lemma 4.3(iv), we obtain x(uv6) +
x(v6v3) + x(v3v4) = x(usk) + x(skv4). Hence x(uv6) = x(usk). Clearly, we may assume that
this equality holds in any other situation. Let T ′ = (V ′, A′) be obtained from T by deleting sk,
and let w′ be obtained from the restriction of w to A′ by replacing w(e) with w(e) + w(skv4)
for e = v6v3 and v3v4 and replacing w(uv6) with w(uv6) + w(usk) for any u ∈ V \(V (T2)\a2).
Let x′ be the restriction of x to A′ and let y′ be obtained from y as follows: set y′(v3v4v6v3) =
y(v3v4v6v3) + y(v6skv4v6); for each C ∈ Cy

0 passing through usiv4, let C ′ be the cycle arising
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from C by replacing the path uskv4 with the path uv6v3v4, and set y′(C ′) = y(C ′)+y(C). From
the LP-duality theorem, we see that x′ and y′ are optimal solutions to P(T ′,w′) and D(T ′,w′),
respectively, with the same value ν∗w(T ) as x and y. By the hypothesis of Theorem 4.1, ν∗w(T )
is an integer. So (17) holds.

By (17) and Lemma 4.4(iii), we may assume that if w(v4v6) > 0, then k does no exist, and
hence j exists (so v3 ∈ φ(sj)) by (3).

(18) If w(v4v6) > 0, then at least one of y(v1v6v3v1), y(v3v4v6v3), and y(v3sjv4v6v3) is a
positive integer.

To justify this, note that neither sjv4 nor v3sj is saturated by y in T2, for otherwise,
y(v3sjv4v6v3) = w(sjv4) or w(v3sj); both of them are positive, so (18) holds. By Lemma
6.2(iii), sjv4 is saturated by y in T , so sjv4 is contained in a cycle C ∈ Cy

0 ; subject to this,
C is chosen to contain v3sj if possible. Clearly, if v3sj is not on C, then v3sj is not satu-
rated by y in T . By Lemma 4.7(iii), at least one of v4v6 and v6v3 is saturated by y in T2.
Furthermore, by Lemma 4.7(iv), if v6v3 is contained in some cycle in Cy

0 , then v4v6 is satu-
rated by y in T2. If v4v6 is saturated by y in T2, then y(v3v4v6v3) + y(v3sjv4v6v3) = w(v4v6),
and y(v3v4v6v3) = w(v3v4) by Lemma 4.7(v) provided y(v3sjv4v6v3) > 0. So at least one of
y(v3v4v6v3) and y(v3sjv4v6v3) is a positive integer, and hence (18) holds. Thus we may assume
that v4v6 is not saturated by y in T2, which implies that v6v3 saturated by y in T2. It follows that
y(v1v6v3v1)+y(v3v4v6v3)+y(v3sjv4v6v3) = w(v6v3). If w(v6v3) = 0, then K = {v4v1, v6v3, v6sj}
is an FAS of T with total weight zero, so τw(T2\a2) = 0, contradicting the hypothesis (α) of this
section. Therefore w(v6v3) > 0. If y(v3sjv4v6v3) > 0, then y(v3v4v6v3) = w(v3v4) by (15) and
Lemma 4.7(v). So we may further assume that exactly one of y(v3v4v6v3) and y(v3sjv4v6v3) is
positive, and thus y(v1v6v3v1) > 0.

Let us show that y(v1v6v3v1) is an integer. Suppose not. Then y(v3v4v6v3) or y(v3sjv4v6v3)
is not integral, say the former (the proof in the other case goes along the same line). Since v6v3 is
saturated by y in T2 and w(v6sj) = 0, the arc v1v6 is outside Cy

0 . If v3v1 is also outside C
y
0 , let y

′ be
obtained from y by replacing y(v3v4v6v3) and y(v1v6v3v1) with y(v3v4v6v3)−θ and y(v1v6v3v1)+
θ, respectively, where θ = min{w(v1v6) − z(v1v6), w(v3v1) − z(v3v1), y(v3v4v6v3)}; if v3v1 is
contained in some cycle C ∈ Cy

0 , let y
′ be obtained from y by replacing y(v3v4v6v3), y(v1v6v3v1),

y(C), and y(C ′) with y(v3v4v6v3)− σ, y(v1v6v3v1) + σ, y(C)− σ, y(C ′) + σ, respectively, where
C ′ = C[v4, v3]∪{v3v4} and σ = min{w(v1v6)− z(v1v6), y(C), y(v3v4v6v3)}. It is easy to see that
in either situation y′ is also an optimal solution to D(T,w) with y′(v3v4v6v3) < y(v3v4v6v3),
contradicting (8). This proves (18).

By (16)-(18), we may assume that w(v4v1) = w(v4v6) = 0. Since each of {v4v1, v4v6, v1v6},
{v4v1, v4v6, v6v3}, and {v4v1, v4v6, v3v1} is a minimal FAS of T2\a2,

ϵ = min{w(v1v6), w(v6v3), w(v3v1)} > 0

by the hypothesis (α) of this section. By Lemma 4.7(vii), we obtain y(v1v6v3v1) = ϵ > 0. Thus
(1) is established in the present case.

Case 2. φ(si) ̸= {v1} for any i ∈ {1, 2, 3}.
By the hypothesis of the present case, we may assume that v6 ∈ φ(s1), v3 ∈ φ(s2), and

v1 ∈ φ(si) for i = 1 or 2. By (13) and (14), we have
(19) Cy

2 ⊆ {v1v6v3v1, v3v4v6v3, v1v6v3v4v1, v6s1v4v6, v1v6s1v4v1, v3s2v4v6v3, v1s1v4v1, v1s2v4v1}
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and y(v1siv4v1) = 0 for i = 1 or 2.
Claim 1. y(C2) = τw(T2\a2).
To justify this, note that z(siv4) = w(siv4) > 0 for i = 1 and 2 by Lemma 6.2(iii). Depending

on the saturation of s1v4 and s2v4, we distinguish among three subcases.
Subcase 1.1. s1v4 is contained in some cycle C ∈ Cy

0 . In this subcase, v4v6 is saturated
by y in T2, for otherwise, v4v6 is not saturated by y in T , because it is outside Cy

0 . By Lemma
4.7(iii), v6s1 is saturated by y in T2. By (11), we have y(v1v6s1v4v1) = 0, which together with
(19) implies y(v6s1v4v6) = w(v6s1) > 0, so (1) holds. Clearly, v4v1 is outside Cy

0 . We proceed
by considering two subsubcases.

Assume first that v4v1 is not saturated by y in T2 (and hence in T ). Then, by Lemma 4.7(iii),
v1s1 and at least one of v1s2 and s2v4 are saturated by y in T2. Furthermore, v1s2 is outside Cy

0 .
If v1s2 is not saturated by y in T , then y(v3s2v4v6v3) = 0, for otherwise, let y′ be obtained from
y by replacing y(v1s2v4v1) and y(v3s2v4v6v3) with y(v1s2v4v1)+ θ and y(v3s2v4v6v3)− θ, where
θ = min{w(v4v1) − z(v4v1), w(v1s2) − z(v1s2), y(v3s2v4v6v3)} > 0. Then y′ is also an optimal
solution to D(T,w), contradicting (6). It follows from (19) that y(v1s2v4v1) = w(s2v4) > 0, so
(1) holds. Thus we may assume that v1s2 is saturated by y in T2. If v1v6 is saturated by y
in T2, then y(C2) = w(K), where K = {v1v6, v4v6, v1s1, v1s2}. By (9), K is an MFAS of T2\a2
and hence y(C2) = τw(T2\a2). By Lemma 4.7(iii), v1v6 is outside Cy

0 , for otherwise, v4v1 would
be saturated by y in T2, a contradiction. So we may assume that v1v6 is not saturated by y
in T . By Lemma 4.7(iii), v6s1 is saturated by y in T2. If v6v3 is also saturated by y in T2,
then y(C2) = w(K), where K = {v6v3, v6s1, v1s1, v1s2}. So we assume that v6v3 is not saturated
by y in T2. By Lemma 4.7(iii), v6v3 is outside Cy

0 . Furthermore, v3v1, v3s2, and v3v4 are all
saturated by y in T2. So y(C2) = w(J), where J = {v3v1, v3v4, v6s1, v1s1, v1s2, v3s2}. By (9), J
is an MFAS of T2\a2 and hence y(C2) = τw(T2\a2).

Next assume that v4v1 is saturated by y in T2. We may assume that v3v1 is not saturated by y
in T2, for otherwise, y(C2) = w(K), whereK = {v3v1, v4v1, v4v6}. By (9), K is an MFAS of T2\a2
and hence y(C2) = τw(T2\a2). Thus, by (10), we have y(v1v6v3v4v1) = 0. If y(v1v6s1v4v1) = 0
and v1v6 is saturated by y in T2, then y(C2) = w(K), where K = {v1v6, v4v1, v4v6}. So we
may assume that y(v1v6s1v4v1) > 0 or v1v6 is not saturated by y in T2. Consider the situation
when y(v1v6s1v4v1) > 0. Now, by (11), v1s1 is saturated by y in T2, and y(v3v4v6v3) =
y(v3s2v4v6v3) = 0. Moreover, at least one of v1s2 and s2v4 is saturated by y in T2 (otherwise,
y(v1s2v4v1) can be made larger). If v1v6 is saturated by y in T2, then y(C2) = w(K), where K =
{v1v6, v4v6, v1s1, v1s2} or {v1v6, v4v6, v1s1, s2v4}; if v1v6 is not saturated by y in T2, then v6v3 is
saturated by y in T2 by Lemma 4.7(iiv). So y(C2) = w(K), whereK = {v4v1, v4v6, v6v3}. By (9),
K is an MFAS of T2\a2 and hence y(C2) = τw(T2\a2). So we may assume that y(v1v6s1v4v1) = 0
and v1v6 is not saturated by y in T2. By Lemma 4.7(vii), v6v3 is saturated by y in T2. If v6s1
is also saturated by y in T2, then y(C2) = w(K), where K = {v4v1, v6s1, v6v3}. So we further
assume that v6s1 is not saturated by y in T2. We propose to show that

(20) y(v3v4v6v3) = y(v3s2v4v6v3) = 0.
We only prove that y(v3s2v4v6v3) = 0, as the proof of the other equality y(v3v4v6v3) = 0

goes along the same line. Assume the contrary: y(v3s2v4v6v3) > 0. Depending on the saturation
of v1v6 and v3v1, we consider several possibilities.

• Both v1v6 and v3v1 are not saturated by y in T . Define θ = min{w(v1v6)−z(v1v6), w(v3v1)−
z(v3v1), y(v3s2v4v6v3)}. Then θ > 0. Let y′ be obtained from y by replacing y(v3s2v4v6v3) and
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y(v1v6v3v1) with y(v3s2v4v6v3)− θ and y(v1v6v3v1)+ θ, respectively. Then y′ is also an optimal
solution to D(T,w) with y′(v3s2v4v6v3) < y(v3s2v4v6v3), contradicting (6).

• v3v1 is not saturated by y in T and v1v6 is contained in some cycle C ∈ Cy
0 . Since v6v3

is saturated by y in T2, cycle C passes through v6s1v4. Thus the multiset sum of the cycles
C, v3s2v4v6v3 and the unsaturated arc v3v1 contains arc-disjoint cycles v6s1v4v6 and v1v6v3v1.
From Lemma 4.7(vi) we deduce that y(v3s2v4v6v3) = 0, a contradiction.

• v1v6 is is not saturated by y in T and v3v1 is contained in some cycle D ∈ Cy
0 . It is clear

that D passes through v1siv4 for i = 1 or 2. Furthermore, the multiset sum of D, v3s2v4v6v3, and
the unsaturated arc v1v6 contains arc-disjoint cycles v1v6v3v1 and D′ = D[v4, v3] ∪ {v3s2, s2v4}.
Define θ = min{y(D), y(v3s2v4v6v3), w(v1v6)−z(v1v6)}. Let y′ be obtained from y by replacing
y(D), y(D′), y(v3s2v4v6v3), and y(v1v6v3v1) with y(D) − θ, y(D′) + θ, y(v3s2v4v6v3) − θ, and
y(v1v6v3v1)+θ, respectively. Then y′ is also an optimal solution to D(T,w) with y′(v3s2v4v6v3) <
y(v3s2v4v6v3), contradicting (6).

• v1v6 and v3v1 are contained in some cycles C and D in Cy
0 , respectively. If v3v1 is on

C, then the multiset sum of C and v3s2v4v6v3 contains arc-disjoint cycles v1v6v3v1, v6s1v4v6,
and C ′ = C[v4, v3] ∪ {v3s2, s2v4}; if v3v1 is outside C, then the multiset sum of C, D, and
v3s2v4v6v3 contains arc-disjoint cycles v1v6v3v1, v6s1v4v6, C

′ = C[v4, v1] ∪ {v1si, siv4} for i = 1
or 2, and D′ = D[v4, v3] ∪ {v3s2, s2v4}. In either situation from the optimality of y we deduce
that y(v3s2v4v6v3) = 0.

Combining the above observations, we see that (20) holds. Thus y(C2) = w(K), where
K = {v4v1, v4v6, v6v3}. By (9), K is an MFAS of T2\a2 and hence y(C2) = τw(T2\a2).

Subcase 1.2. s1v4 is saturated by y in T2 and s2v4 is contained in some cycle C ∈ Cy
0 ;

subject to this, C is chosen to contain v3s2 if possible. In this subcase, observe first that
both v1s1 and v6s1 are outside Cy

0 . Next, v3s2 is not saturated by y in T2, for otherwise,
y(v3s2v4v6v3) = w(v3s2) > 0, so (1) holds. If both v6v3 and v1s2 are saturated by y in T2,
then y(C2) = w(K), where K = {s1v4, v1s2, v6v3}. By (9), K is an MFAS of T2\a2 and hence
y(C2) = τw(T2\a2). We proceed by considering two subsubcases.

(a) v6v3 is not saturated by y in T2. Now v4v6 is saturated by y in T2 by Lemma 4.7(iii).
Assume first that v4v1 is not saturated by y in T . Then both v1v6 and v1s2 are saturated

by y in T2 by Lemma 4.7(iii). If v1s1 is also saturated by y in T2, then y(C2) = w(K), where
K = {v1v6, v4v6, v1s1, v1s2}; otherwise, v1s1 is not saturated by y in T . By (11), we have
y(v1v6s1v4v1) = 0. Let us show that

(21) y(v6s1v4v6) = 0.
Indeed, if v6v3 is not saturated by y in T , then the multiset sum of the cycles C, v6s1v4v6,

and the unsaturated arcs v4v1, v1s1, and v6v3 (or v3s2 if it is outside C) contains arc-disjoint
cycles v1s1v4v1 and v3s2v4v6v3. Thus, by Lemma 4.7(vi), we have y(v6s1v4v6) = 0. If v6v3 is
contained in some cycle C ∈ Cy

0 , then C contains v3v4 or v3s2. Thus the multiset sum of cycles
C, v6s1v4v6, and the unsaturated arcs v4v1 and v1s1 contains arc-disjoint cycles v1s1v4v1 and
one of v3v4v6v3 and v3s2v4v6v3. Thus, by Lemma 4.7(vi), we have y(v6s1v4v6) = 0. This proves
(21).

It follows from (19) and (21) that y(v1s1v4v1) = w(s1v4) > 0, so (1) holds. Thus we may
assume that v4v1 is saturated by y in T (and hence in T2). Then we may further assume that
v3v1 is not saturated by y in T2, for otherwise, y(C2) = w(K), where K = {v4v1, v4v6, v3v1}.
Thus y(C2) = τw(T2\a2). By Lemma 4.7(vii), v1v6 is saturated by y in T2 and hence, by (10),
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we have y(v1v6v3v4v1) = 0. Let us show that
(22) y(v1v6s1v4v1) = 0.
To justify this, we consider four possibilities, depending on the saturation of v6v3 and v3v1.
• Both v6v3 and v3v1 are saturated by y in T . Now define θ = min{w(v6v3)−z(v6v3), w(v3v1)−

z(v3v1), y(v1v6s1v4v1)}. Then θ > 0. Let y′ be obtained from y by replacing y(v1v6v3v1) and
y(v1v6s1v4v1) with y(v1v6v3v1)+θ and y(v1v6s1v4v1)−θ, respectively. Then y′ is also an optimal
solution to D(T,w) with y′(v1v6s1v4v1) < y(v1v6s1v4v1), contradicting (6).

• v3v1 is not saturated by y in T and v6v3 is contained in some cycle C ∈ Cy
0 . Now the multiset

sum of the cycles C, v1v6s1v4v1 and the unsaturated arc v3v1 contains arc-disjoint cycles v1v6v3v1
and C ′ = C[v4, v6]∪{v6s1, s1v4}. Define θ = min{w(v3v1)−z(v3v1), y(C), y(v1v6s1v4v1)}. Then
θ > 0. Let y′ be obtained from y by replacing y(v1v6s1v4v1), y(v1v6v3v1), y(C), and y(C ′) with
y(v1v6s1v4v1) − θ, y(v1v6v3v1) + θ, y(C) − θ, and y(C ′) + θ, respectively. Then y′ is also an
optimal solution to D(T,w) with y′(v1v6s1v4v1) < y(v1v6s1v4v1), contradicting (6).

• v6v3 is not saturated by y in T and v3v1 is contained in some cycle D ∈ Cy
0 . Now D passes

through v1s2v4. Since the multiset sum of the cycles D, v1v6s1v4v1, and the unsaturated arc v6v3
contains arc-disjoint cycles v1v6v3v1 and v1s2v4v1, by Lemma 4.7(vi), we have y(v1v6s1v4v1) = 0,
a contradiction.

• v6v3 and v3v1 are contained in some cycles C and D in Cy
0 , respectively. Now if v3v1 is on

C, then the multiset sum of the cycles C and v1v6s1v4v1 contains arc-disjoint cycles v1v6v3v1,
v1s2v4v1, and C ′ = C[v4, v6] ∪ {v6s1, s1v4}; otherwise, the multiset sum of the cycles C, D,
and v1v6s1v4v1 contains arc-disjoint cycles v1v6v3v1, v1s2v4v1, and C ′ = C[v4, v6]∪{v6s1, s1v4},
and D′ = D[v4, v3] ∪ C[v3, v4]. In each situation from the optimality of y we deduce that
y(v1v6s1v4v1) = 0.

Combining the above observations, we see that (22) holds. Thus y(C2) = w(K), where
K = {v4v1, v4v6, v1v6}. By (9), K is an MFAS of T2\a2 and hence y(C2) = τw(T2\a2).

(b) v6v3 is saturated by y in T2. Now v1s2 is not saturated by y in T2. By Lemma 4.7(vii),
v4v1 is saturated by y in T2. Since z(v1s2) > 0, by Lemma 6.2(vii), we have z(v1s1) = 0.
Furthermore, we may assume that y(v1v6v3v4v1) = 0, for otherwise, both v3v1 and v4v6 saturated
by y in T2 by (10). Hence y(C2) = w(K), where K = {v4v1, v4v6, v3v1}. If y(v1v6s1v4v1) = 0,
then y(C2) = w(K), where K = {v4v1, v6v3, s1v4}; if y(v1v6s1v4v1) > 0 then, by (11), v4v6 is
saturated by y in T2, and either v3v1 is saturated by y in T2 or y(v3v4v6v3) = y(v3s2v4v6v3) = 0.
Thus y(C2) = w(J), where J = {v4v1, v4v6, v3v1} or {v4v1, v4v6, v6v3}. Therefore y(C2) =
τw(T2\a2).

Subcase 1.3. siv4 is saturated by y in T2 for i = 1 and 2. In this subcase, since Cy
0 ̸= ∅,

v3v4 is contained in some cycle in Cy
0 . By (12), we have y(v3s2v4v6v3) = 0. Thus y(v1s2v4v1) =

w(s2v4) > 0 and (1) holds. This completes the proof of Claim 1.
Claim 2. y(C) is a positive integer for some C ∈ Cy

2 or ν∗w(T ) is an integer.
To justify this, note that y(C2) = w(K) for some MFAS K of T2\a2 by Claim 1. From

the proof of Claim 1, we see that K has ten possibilities. So we proceed by considering them
accordingly.

Subcase 2.1. K is one of {v1v6, v4v6, v1s1, s2v4}, {v4v1, v6v3, v6s1}, and {v4v1, v6v3, s1v4}.
In this subcase, by (15) and (19), we have y(v1s2v4v1) = w(s2v4) > 0 ifK = {v1v6, v4v6, v1s1,

s2v4}, y(v6s1v4v6) = w(v6s1) > 0 if K = {v4v1, v6v3, v6s1}, and y(v6s1v4v6) = w(s1v4) > 0 if
K = {v4v1, v6v3, s1v4}, as desired.
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Subcase 2.2. K = {v3v1, v3v4, v6s1, v1s1, v1s2, v3s2}.
In this subcase, by (15) and (19), we have y(v6s1v4v6) + y(v1v6s1v4v1) = w(v6s1) > 0 and

y(v3v4v6v3)+y(v1v6v3v4v1) = w(v3v4). So we may assume that y(v1v6s1v4v1) > 0, for otherwise,
y(v6s1v4v6) = w(v6s1) > 0. It follows from Lemma 4.7(v) that v4v6 is saturated by y in T2.
If y(v1v6v3v4v1) > 0, then y(v6s1v4v6) = 0 by (10), and hence y(v1v6s1v4v1) = w(v6s1) > 0;
if y(v1v6v3v4v1) = 0, then y(v3v4v6v3) = w(v3v4) and so y(v6s1v4v6) = w(v4v6) − y(v3v4v6v3).
Since w(v6s1) > 0, at least one of y(v6s1v4v6) and y(v1v6s1v4v1) is a positive integer.

Subcase 2.3. K = {v6v3, v6s1, v1s1, v1s2} or {v6v3, s1v4, v1s2}.
In this subcase, we only consider the situation when K = {v6v3, s1v4, v1s2}, as the proof in

the other situation goes along the same line.
Given the arcs inK, we have y(v1s2v4v1) = w(v1s2), y(v1s1v4v1)+y(v6s1v4v6)+y(v1v6s1v4v1)

= w(s1v4) > 0, and y(v1v6v3v1) + y(v3v4v6v3) + y(v1v6v3v4v1) + y(v3s2v4v6v3) = w(v6v3). If
y(v1v6v3v4v1) > 0, then y(v6s1v4v6) = 0 by (10). Thus y(v1s1v4v1) + y(v1v6s1v4) = w(s1v4).
If y(v1v6s1v4v1) > 0, then one more equality y(v1s1v4v1) = w(v1s1) holds by (11). Since
w(s1v4) > 0, at least one of y(v1s1v4v1) and y(v1v6s1v4v1) is a positive integer. So we assume
that y(v1v6v3v4v1) = 0 in the following discussion.

Assume first that y(v1v6s1v4v1) > 0. Then y(v1s1v4v1) = w(v1s1) and y(v6s1v4v6) +
y(v3v4v6v3) + y(v3s2v4v6v3) = w(v4v6) by (11). If y(v3v4v6v3) = y(v3s2v4v6v3) = 0, then
y(v6s1v4v6) = w(v4v6), and hence y(v1v6s1v4v1) = w(s1v4) − y(v1s1v4v1) − y(v6s1v4v6). Since
w(s1v4) > 0, at least one of y(v1s1v4v1), y(v6s1v4v6), and y(v1v6s1v4v1) is a positive integer. So
we assume that y(v3v4v6v3) or y(v3s2v4v6v3) is positive. By (11), we have y(v1v6v3v1) = w(v3v1);
by (12), one more equality y(v3v4v6v3) = w(v3v4) holds if y(v3s2v4v6v3) > 0. Thus y(v6s1v4v6),
y(v1v6s1v4v1), y(v3v4v6v3), and y(v3s2v4v6v3) are all integers.

Assume next that y(v1v6s1v4v1) = 0. Then y(v1s1v4v1) + y(v6s1v4v6) = w(s1v4). If
y(v3s2v4v6v3) > 0, then y(v6v3v4v6) = w(v3v4) by (12), so y(v1v6v3v1) + y(v3s2v4v6v3) =
w(v6v3)− w(v3v4); if y(v3s2v4v6v3) = 0, then y(v1v6v3v1) + y(v6v3v4v6) = w(v6v3). Since both
v1v6 and v3v1 are outside Cy

0 , from the choice of y, we deduce that y(v1v6v3v1) = min{w(v3v1),
w(v1v6)}. This implies that in either situation y(v3s2v4v6v3) and y(v6v3v4v6) are integers. On
the other hand, since both v4v6 and v6s1 are outside Cy

0 , by (8), we obtain y(v6s1v4v6) =
min{w(v6s1), w(v4v6)−y(v6v3v4v6)−y(v3s2v4v6v3)}, which is also an integer. Since w(s1v4) > 0,
at least one of y(v1s1v4v1) and y(v6s1v4v6) is a positive integer.

Subcase 2.4. K = {v1v6, v4v6, v4v1}.
In this subcase, we have y(v1v6v3v1) = w(v1v6), y(v1s1v4v1) + y(v1s2v4v1) = w(v4v1), and

y(v3v4v6v3) + y(v6s1v4v6) + y(v3s2v4v6v3) = w(v4v6). By Lemma 4.4(iii) and Lemma 6.2(vi),
we may assume that w(v1v6) = w(v4v1) = 0 and thus w(v4v6) = w(K) > 0. If y(v3s2v4v6v3) >
0, then y(v3v4v6v3) = w(v3v4) by (12), and thus we may assume that w(v3v4) = 0. Hence
y(v3v4v6v3) + y(v6s1v4v6) = w(v4v6) or y(v6s1v4v6) + y(v3s2v4v6v3) = w(v4v6). If y(v6s1v4v6)
is an integer, then one of y(v3v4v6v3), y(v6s1v4v6), and y(v6s2v4v6v3) is a positive integer. So
we assume that y(v6s1v4v6) is not integral. Then we can prove that ν∗w(T ) is an integer; for a
proof, see the argument of the same statement contained in the proof of (17) (with y(v6s1v4v6)
in place of y(v6siv4v6)).

Subcase 2.5. K = {v1v6, v4v6, v1s1, v1s2}.
In this subcase, we have y(v1s1v4v1) = w(v1s1), y(v1s2v4v1) = w(v1s2), y(v1v6v3v1) +

y(v1v6v3v4v1) + y(v1v6s1v4v1) = w(v1v6), and y(v3v4v6v3) + y(v6s1v4v6) + y(v3s2v4v6v3) =
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w(v4v6). By Lemma 4.4(iii), we may assume that w(v1s1) = w(v1s2) = 0.
Assume first that y(v1v6v3v4v1) > 0. Then y(v6s1v4v6) = 0 and y(v1v6v3v1) = w(v3v1) by

(10). So y(v3v4v6v3) + y(v3s2v4v6v3) = w(v4v6). By (12), one more equality y(v3v4v6v3) =
w(v3v4) holds if y(v3s2v4v6v3) > 0. So both y(v3v4v6v3) and y(v3s2v4v6v3) are integers. By
Lemma 4.4(iii), we may assume that w(v3v1) and w(v4v6) are both zero. Thus y(v1v6v3v4v1) +
y(v1v6s1v4v1) = w(v1v6) > 0. By Lemma 4.4(iii), we may assume that neither y(v1v6v3v4v1)
nor y(v1v6s1v4v1) is integral. Observe that v6s1 is outside Cy

0 , for otherwise, let C ∈ Cy
0 be

a cycle containing v6s1. Then C contains s1v4. Let C ′ = C[v4, v6] ∪ {v6v3, v3v4} and θ =
min{y(C), y(v1v6v3v4v1)}. Let y′ be obtained from y by replacing y(v1v6v3v4v1), y(v1v6s1v4v1),
y(C), and y(C ′) with y(v1v6v3v4v1)− θ, y(v1v6s1v4v1)+ θ, y(C)− θ, and y(C ′)+ θ, respectively.
Then y′ is also an optimal solution to D(T,w) with y′(v1v6v3v4v1) < y(v1v6v3v4v1), contradicting
(7). Let us show that ν∗w(T ) is an integer.

For this purpose, let x be an optimal solution to P(T,w). Since both y(v1v6s1v4v1) and
y(v1v6v3v4v1) are positive, we have x(v1v6s1v4v1) = x(v1v6v3v4v1) = 1 by Lemma 4.3(i). So
x(v6s1)+x(s1v4) = x(v6v3)+x(v3v4). Since y(v1v6s1v4v1) < w(v6s1), by Lemma 4.3(ii), we have
x(v6s1) = 0, which implies x(s1v4) = x(v6v3)+x(v3v4). For any u ∈ V \(V (T2)\a2), if a cycle in
Cy
0 contains uv6, then it passes through v6v3v4. Moreover, if a cycle in Cy

0 contains us1, then it
passes through s1v4. By Lemma 4.3(iv), we obtain x(uv6)+x(v6v3)+x(v3v4) = x(us1)+x(s1v4).
Hence x(uv6) = x(us1). Clearly, we may assume that this equality holds in any other situation.
Let T ′ = (V ′, A′) be obtained from T by deleting vertex s1, and let w′ be obtained from the
restriction of w to A′ by setting w′(uv6) = w(uv6) + w(us1) for any u ∈ V \(V (T2)\a2). Let x′

be the restriction of x to A′ and let y′ be obtained from y as follows: for each cycle C passing
through us1v4 with u ∈ V \(V (T2)\a2), let C ′ arise from C by replacing the path us1v4 with
uv6v3v4, and set y′(C ′) = y(C) + y(C ′) and y′(v1v6v3v4v1) = y(v1v6v3v4v1) + y(v1v6s1v4v1). It
is easy to see that x′ and y′ are optimal solutions to P(T ′,w′) and D(T ′,w′), respectively, with
the same value ν∗w(T ) as x and y. By the hypothesis of Theorem 4.1, ν∗w(T ) is an integer.

Assume next that y(v1v6v3v4v1) = 0. Then both y(v1v6v3v1) and y(v1v6s1v4v1) are inte-
gers, for otherwise, neither of them is integral, because their sum is w(v1v6). If y(v3v4v6v3) or
y(v3s2v4v6v3) is positive, then y(v1v6v3v1) = w(v3v1) by (11), a contradiction. So y(v3v4v6v3) =
y(v3s2v4v6v3) = 0. Since v1v6 is saturated by y in T2, the arc v3v1 is outside Cy

0 . If v3v1 is is
saturated by y in T2, then y(v1v6v3v1) = w(v3v1); this contradiction implies that v3v1 is not
saturated by y in T2 (and hence in T ). If v6v3 is outside Cy

0 , then from the choice of y we
see that y(v1v6v3v1) = min{w(v6v3), w(v3v1)}, a contradiction again. So we assume that v6v3
is contained in some cycle C ∈ Cy

0 . Define θ = min{w(v3v1) − z(v3v1), y(C), y(v1v6s1v4v1)}.
Let C ′ = C[v4, v6] ∪ {v6s1, s1v4}, and let y′ be obtained from y by replacing y(v1v6v3v1),
y(v1v6s1v4v1), y(C), and y(C ′) with y(v1v6v3v1) + θ, y(v1v6s1v4v1) − θ, y(C) − θ, y(C ′) + θ,
respectively. Then y′ is also an optimal solution to D(T,w) with y′(v1v6s1v4v1) < y(v1v6s1v4v1),
contradicting (6). By Lemma 4.4(iii), we may assume w(v1v6) = 0. Thus z(v4v1) = w(v4v1) = 0;
the remainder of the proof is exactly the same as that in the preceding subcase.

Subcase 2.6. K = {v4v1, v4v6, v6v3}.
In this subcase, we have y(v1v6v3v1) = w(v6v3), y(v6s1v4v6) = w(v4v6), and y(v1s1v4v1) +

y(v1s2v4v1) + y(v1v6s1v4v1) = w(v4v1). Since w(K) = τw(T2\a2) > 0, we have w(v4v1) > 0.
By Lemma 6.2(vi), y(v1s1v4v1) or y(v1s2v4v1) is zero. By Lemma 4.4(iii), we may assume
that w(v6v3) = w(v4v6) = 0 and y(v1v6s1v4v1) > 0. So y(v1s1v4v1) = w(v1s1) by (11). By
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Lemma 4.4(iii), we may further assume that w(v1s1) = 0. Thus y(v1s2v4v1) + y(v1v6s1v4v1) =
w(v4v1), and hence neither y(v1s2v4v1) nor y(v1v6s1v4v1) is integral. Observe that v1s2 is
outside Cy

0 , for otherwise, let C ∈ Cy
0 be a cycle containing v1s2. Then C contains s2v4. Let

C ′ = C[v4, v1]∪{v1v6, v6s1, s1v4} and θ = min{y(C), y(v1v6s1v4v1)}. Let y′ be obtained from y
by replacing y(v1s2v4v1), y(v1v6s1v4v1), y(C), and y(C ′) with y(v1s2v4v1)+θ, y(v1v6s1v4v1)−θ,
y(C) − θ, and y(C ′) + θ, respectively. Then y′ is also an optimal solution to D(T,w) with
y′(v1v6s1v4v1) < y(v1v6s1v4v1), contradicting (6). Furthermore, since w(v1s1) = 0, the arc v3v1
is also outside Cy

0 . Thus w(v3v1) = z(v3v1) = 0. Let us show that ν∗w(T ) is an integer.
For this purpose, let x be an optimal solution to P(T,w). Since both y(v1s2v4v1) and

y(v1v6s1v4v1) are positive, we have x(v1s2v4v1) = x(v1v6s1v4v1) = 1 by Lemma 4.3(i). Since
y(v1s2v4v1) < w(v1s2), we have x(v1s2) = 0 by Lemma 4.3(ii). It follows that x(s2v4) =
x(v1v6)+x(v6s1)+x(s1v4). Since w(v1s1) = 0 and v1s2 is outside Cy

0 , for any u ∈ V \(V (T2)\a2),
if a cycle in Cy

0 contains uv1, then it passes through v1v6s1v4. Moreover, if a cycle in Cy
0 contains

us2, then it passes through s2v4. By Lemma 4.3(iv), we obtain x(uv1) + x(v1v6) + x(v6, s1) +
x(s1v4) = x(us2) + x(s2v4). Hence x(uv1) = x(us2). Clearly, we may assume that this equality
holds in any other situation. Let T ′ = (V ′, A′) be obtained from T by deleting s2, and let w′

be the restriction of w to A′ by replacing w(e) with w(e) + w(s2v4) for e ∈ {v1v6, v6s1, s1v4},
replacing w(uv1) with w(uv1) + w(us2) for any u ∈ V \(V (T2)\a2), and replacing w(v3v1) with
w(v3v1) + w(v3s2). Let x

′ be obtained from x by setting x(v3v1) = x(v3s2). Since w(v3v1) = 0
and w′(v3v1) = w(v3s2), we have (w′)Tx′ = wTx. Let y′ be obtained from y as follows: set
y′(v1v6s1v4v1) = y(v1v6s1v4v1)+y(v1s2v4v1); for each C ∈ Cy

0 passing through us2v4, let C
′ arise

from C by replacing the path us2v4 with the path uv1v6s1v4, and set y′(C ′) = y(C ′) + y(C).
From the LP-duality theorem, we see that x′ and y′ are optimal solutions to P(T ′,w′) and
D(T ′,w′), respectively, with the same value ν∗w(T ) as x and y. By the hypothesis of Theorem
4.1, ν∗w(T ) is an integer.

Subcase 2.7. K = {v4v1, v4v6, v3v1}.
In this subcase, we have y(v1v6v3v1) = w(v3v1), y(v1s1v4v1)+ y(v1s2v4v1)+ y(v1v6s1v4v1)+

y(v1v6v3v4v1) = w(v4v1), and y(v6s1v4v6) + y(v3v4v6v3) + y(v3s2v4v6v3) = w(v4v6). By Lemma
4.4(iii), we may assume that w(v3v1) = 0.

Assume first that y(v1v6v3v4v1) > 0. Then y(v6s1v4v6) = 0 by (10). If y(v3s2v4v6v3) > 0,
then y(v3v4v6v3) = w(v3v4) by (12); otherwise, y(v3v4v6v3) = w(v4v6). So both y(v3v4v6v3)
and y(v3s2v4v6v3) are integers in either situation. Thus we may assume that w(v4v6) = 0. The
remainder of the proof is exactly the same as that of (16).

Assume next that y(v1v6v3v4v1) = 0. Consider first the subsubcase when w(v4v1) = 0.
Then w(v4v6) = w(K) > 0. If y(v3s2v4v6v3) > 0, then y(v3v4v6v3) = w(v3v4) by (12), so
y(v6s1v4v6) + y(v3s2v4v6v3) = w(v4v6) − w(v3v4); if y(v3s2v4v6v3) = 0, then y(v6s1v4v6) +
y(v3v4v6v3) = w(v4v6). It can be shown that ν∗w(T ) is an integer; for a proof, see the argument
of the same statement contained in the proof of (17).

Consider next the subsubcase when w(v4v1) > 0. Observe that y(v1v6s1v4v1) > 0 and
y(v3s2v4v6v3) = 0, for otherwise, since w(v1s1)w(v1s2) = 0 by Lemma 6.2(vi), at most one of
y(v1s1v4v1) and y(v1s2v4v1) is positive. Hence, if y(v1v6s1v4v1) = 0, then either y(v1s1v4v1) =
w(v4v1) or y(v1s2v4v1) = w(v4v1); if y(v1v6s1v4v1) > 0 and y(v3s2v4v6v3) > 0, then, by (11),
we have y(v1s1v4v1) = w(v1s1), y(v1s2v4v1) = w(v1s2). So y(v1v6s1v4v1) = w(v4v1)−w(v1s1)−
w(v1s2). By Lemma 4.4(iii), we see that ν∗w(T ) is an integer. The preceding observation together
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with (11) implies that y(v1s1v4v1) = w(v1s1), y(v1s2v4v1) + y(v1v6s1v4v1) = w(v4v1)−w(v1s1),
and y(v6s1v4v6) + y(v3v4v6v3) = w(v4v6). Lemma 4.4(iii) allows us to assume that w(v1s1) = 0
and that neither y(v1s2v4v1) nor y(v1v6s1v4v1) is integral.

It can then be shown that v1s2 is outside Cy
0 and ν∗w(T ) is an integer; for a proof, see the

argument of the same statement contained in the preceding case.
Combining the above seven subcases, we see that Claim 2 holds. Hence, by Lemma 4.4(iii),

the optimal value ν∗w(T ) of D(T,w) is integral, as described in (1) above.

To establish the corresponding lemmas for the cases when T2/S ∈ {G4, G5, G6}, we need
some further preparations.

Lemma 6.9. If T2/S ∈ {G5, G6}, then we may assume that min{w(v1v3), w(v3v4), w(v4v1)} =
0.

Proof. Let θ = min{w(v1v3), w(v3v4), w(v4v1)} and C0 = v1v3v4v1. Assume the contrary:
θ > 0. Let y be an optimal solution to D(T,w) such that

(1) y(C2) is maximized; and
(2) subject to (1), (y(Dq), y(Dq−1), . . . , y(D3)) is minimized lexicographically.
Let C′

2 = C2\{C0}. Note that every cycle in C′
2 passes through b. By Lemma 4.7(vii), at least

one of v1v3, v3v4, and v4v1 is saturated by y in T2, say v1v3 (by symmetry). Thus w(v1v3) = θ.
We propose to show that

(3) there is no cycle C ∈ C′
2 with y(C) > 0 passing through v1v3.

Assume the contrary: v1v3 is contained in some cycle C1 ∈ C′
2 with y(C1) > 0. Clearly, |C1| ≥

4. If neither v3v4 nor v4v1 is saturated by y in T , then θ1 = min{w(v3v4) − z(v3v4), w(v4v1) −
z(v4v1)} > 0. Let y′ be obtained from y by replacing y(C1) and y(C0) with y(C1) − θ1 and
y(C0) + θ1, respectively. Then y′ is an optimal solution to D(T,w) with y′(C1) < y(C1),
contradicting (2). Thus at least one of v3v4 and v4v1 is saturated by y in T . We proceed by
considering two cases.

• Both v3v4 and v4v1 are saturated by y in T . In this case, let C2 ∈ Cy
0 ∪ C′

2 be a cycle
containing v3v4 with y(C2) > 0; subject to this, C2 is chosen to contain v4v1, if possible.
If v4v1 is on C2, then the multiset sum of C1 and C2 contains three arc-disjoint cycles C0,
C ′
1 = {bv1} ∪ C2[v1, b], and C ′

2 = C2[b, v3] ∪ C1[v3, b]. Define ϵ = min{y(C1), y(C2)}. Let y′ be
obtained from y by replacing y(C0) with y(C0)+ ϵ, and replacing y(Ci) and y(C ′

i) with y(Ci)− ϵ
and y(C ′

i)+ϵ, respectively, for i = 1, 2. Then y′ is an optimal solution to D(T,w) with (y′)T1 =
yT1+ ϵ, a contradiction. If v4v1 is outside C2, then there exists a cycle C3 ∈ Cy

0 ∪ C′
2 containing

v4v1 with y(C3) > 0. Observe that the multiset sum of C1, C2, and C3 contains four arc-disjoint
cycles C0, C

′
1 = {bv1} ∪C3[v1, b], C

′
2 = C2[b, v3]∪C1[v3, b], and C ′

3 = C3[b, v4]∪C2[v4, b]. Define
ϵ = min1≤i≤3 y(Ci). Let y

′ be obtained from y by replacing y(C0) with y(C0)+ ϵ, and replacing
y(Ci) and y(C ′

i) with y(Ci)− ϵ and y(C ′
i) + ϵ, respectively, for 1 ≤ i ≤ 3. Then y′ is an optimal

solution to D(T,w) with (y′)T1 = yT1+ ϵ, a contradiction again.
• Exactly one of v3v4 and v4v1 is saturated by y in T . In this case, by symmetry, we may

assume that v3v4 is saturated while v4v1 is not. Let C2 ∈ Cy
0 ∪ C′

2 be a cycle containing v3v4
with y(C2) > 0. Then the multiset sum of C1, C2, and the unsaturated arc v4v1 contains two
arc-disjoint cycles C0 and C ′

2 = C2[b, v3] ∪ C1[v3, b]. Clearly, C ′
2 ∈ C′

2 if C2 ∈ C′
2. Define ϵ =

min{y(C1), y(C2), w(v4v1)−z(v4v1)}. Let y′ be obtained from y by replacing y(C0) with y(C0)+
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ϵ, replacing y(C1) with y(C1)− ϵ, and replacing y(C2) and y(C ′
2) with y(C2)− ϵ and y(C ′

2) + ϵ,
respectively. Then y′ is an optimal solution to D(T,w) with y′(C1) < y(C1), contradicting (2).

Combining the above two cases, we see that (3) holds. So y(C0) = θ > 0, and hence D(T,w)
has an integral optimal solution by Lemma 4.4(iii). This proves the lemma.

LetQ = V (T2)\(S∪{b2, a2}). ThenQ = {v2, v3} if T2/S = G4, Q = {v1, v3, v4} if T2/S = G5,
and Q = {v1, v2, v3, v4} if T2/S = G6. Moreover, v1v3v4v1 is the unique cycle in T [Q] when
T2/S = G5 or G6. Let T

′ = T if T2/S = G4, and let T ′ be obtained from T be reversing precisely
one arc e on v1v3v4v1 with w(e) = 0 (see Lemma 6.9) so that T [Q] is acyclic if T2/S = G5 and G6.
From Lemma 2.3 we see that T ′ is also Möbius-free. Note that every integral optimal solution to
D(T,w) naturally corresponds to an integral optimal solution to D(T ′,w) with the same value,
and vice versa. So we shall not make effort to distinguish between D(T,w) and D(T ′,w). Let
us label the vertices in Q as q1, q2, . . . , qt such that qjqi is an arc in T ′ for 1 ≤ i < j ≤ t, where
t = |Q|.

Lemma 6.10. Suppose T2/S ∈ {G4, G5, G6}. Let x and y be optimal solutions to P(T,w) and
D(T,w), respectively. Then we may assume that the following statements hold:

(i) For each qi ∈ Q, there exists exactly one sk ∈ S such that z(qisk) > 0;

(ii) z(qjqi) = w(qjqi) = 0 for 1 ≤ i < j ≤ t, where t = |Q|;
(iii) If z(qisk)z(qjsk) > 0 for some 1 ≤ i < j ≤ t and sk ∈ S, then x(qisk) ̸= x(qjsk).

Proof. As remarked above the lemma, we may simply treat T , P(T,w), and D(T,w) as T ′

and P(T ′,w), and D(T ′,w), respectively, in our proof.
(i) By Lemma 6.2(vi), for each vertex qi ∈ Q, there exists at most one sk ∈ S with z(qisk) > 0.

Assume on the contrary that z(qisk) = 0 for all sk ∈ S. Then no cycle in Cy passes through qi.
Let G = T\qi and let w′ be the restriction of w to the arcs of G. By the hypothesis of Theorem
4.1, D(G,w′) has an integral optimal solution, and so does D(T ′,w). Hence we assume that (i)
holds.

(ii) Assume the contrary: z(qjqi) > 0; subject to this, j + i is minimized. If there exists
exactly one sk ∈ S such that z(qisk)z(qjsk) > 0, then the proof is the same as that of Lemma
6.2(i) (with sk, qi, and qj in place of v0, si, and sj , respectively), so we omit the details here. In
view of Lemma 6.2(i), we may assume that z(qis1)z(qjs2) > 0. We proceed by considering two
cases.

Case 1. x(qjqi) = 0. In this case, we may assume that x(uqj) = x(uqi) for any u ∈ V \(S∪Q).
Indeed, if z(uqj)z(uqi) > 0, then Lemma 4.3(iv) implies x(uqj) = x(uqi); if z(uqj)z(uqi) = 0,
then w(us′i)w(us

′
j) = 0 by Lemma 4.4(i). Thus we may modify x(uqj) and x(uqi) so that they

become equal. Let T ′ = (V ′, A′) be obtained from T by identifying qj with qi; we still use qi
to denote the resulting vertex. Let w′ be obtained from the restriction of w to A′ by replacing
w(uqi) with w(uqj) + w(uqi) for any u ∈ V \(S ∪ Q). Let x′ and y′ be the projections of x
and y onto T ′, respectively. From the LP-duality theorem, it is easy to see that x′ and y′ are
optimal solutions to P(T,w′) and D(T,w′), respectively, with the same value as x and y. By
the hypothesis of Theorem 4.1, ν∗w(T ) is an integer. It follows from Lemma 4.6(ii) that D(T,w)
has an integral optimal solution.

Case 2. x(qjqi) > 0. In this case, z(qjqi) = w(qjqi) > 0 by Lemma 4.3(iii). Let C1 and C2

be two cycles in Cy that passes through qjqi and qjs2, respectively. Clearly, both C1 and C2 pass
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through b. By Lemma 4.3(iv), we have x(qjqi) + x(qis1) + x(s1b) = x(qjs2) + x(s2b). Let w
′ be

obtained from w by replacing w(e1) with w(e1) + w(qjqi) for e1 = qjs2 and s2b and replacing
w(e2) with w(e2)−w(qjqi) for e2 = qjqi, qis1, and s1b. Let x

′ = x, and let y′ be obtained from
y as follows: for each cycle passing through qjqi, let C

′ be the cycle arising from C by replacing
the path qjqis1b with qjs2b. From the LP-duality theorem, we see that x′ and y′ are optimal
solutions to P(T,w′) and D(T,w′), respectively, with the same value ν∗w(T ) as x and y. Since
w′(A) < w(A), by the hypothesis of Theorem 4.1, ν∗w(T ) is an integer. It follows from Lemma
4.6(ii) that D(T,w) has an integral optimal solution.

Combining the above two cases, we may assume that z(qjqi) = 0.
(iii) Since the proof is the same as that of Lemma 6.2(iv) (with sk, qi, and qj in place of v0,

si, and sj , respectively), we omit the routine details here.

Lemma 6.11. If T2/S = G4, then D(T,w) has an integral optimal solution.

Proof. Recall that (b2, a2) = (v1, v5), s
∗ = v4, and Q = {v2, v3}. Given an optimal solution

y to D(T,w), set φ(si) = {u : z(usi) > 0 for u ∈ V (T2)\a2} for each si ∈ S. By Lemma 6.2(i)
and (vi), we have

(1) φ(si) ∩ φ(sj) = ∅ whenever i ̸= j.
From (1) and Lemma 6.10(i), we see that

(2) there exists at least one and at most two vertices si’s in S with φ(si) ̸= ∅.
Lemma 6.2(i) allows us to assume that

(3) if φ(si) ̸= ∅, then i ∈ {1, 2}.
By Lemma 6.10(ii), we obtain
(4) w(v2v3) = z(v2v3) = 0.
In the remainder of our proof, we reserve y for an optimal solution to D(T,w) such that
(5) y(C2) is maximized; and
(6) subject to (5), (y(Dq), y(Dq−1), . . . , y(D3)) is minimized lexicographically.
Claim. y(C) is integral for some C ∈ Cy

2 .
To justify this, we distinguish between two cases.
Case 1. φ(si) = {v2} for i = 1 or 2.
In this case, by Lemma 6.2(i) and Lemma 6.10(i), we may assume that φ(s1) = {v2} and

φ(s2) = {v3}. By (4), we obtain
(7) Cy

2 ⊆ {v1v2s1v1, v1v3s2v1}.
From Lemma 4.7(vii), we deduce that y(v1v2s1v1) = min{w(v1v2), w(v2s1), w(s1v1)} and

y(v1v3s2v1) = min{w(v1v3), w(v3s2), w(s2v1)}. If both y(v1v2s1v1) and y(v1v3s2v1) are zero,
then τw(T2\a2) = min{w(v1v2), w(v2s1), w(s1v1)}+min{w(v1v3), w(v3s2), w(s2v1)} = 0, contra-
dicting (α). Therefore, y(v1v2s1v1) or y(v1v3s2v1) is a positive integer.

Case 2. φ(si) ̸= {v2}.
In this case, Lemma 6.10(i), (2) and (3) allow us to assume that φ(s1) = {v2, v3}. By (4),

we have
(8) Cy

2 ⊆ {v1v2s1v1, v1v3s1v1}.
By Lemma 6.2(iii), we also obtain z(s1v1) = w(s1v1) > 0. Assume first that s1v1 is outside Cy

0 .
Then both v2s1 and v3s1 are outside Cy

0 , and s1v1 is saturated by y in T2. So y(v1v2s1v1) +
y(v1v3s1v1) = w(s1v1) > 0. Observe that both y(v1v2s1v1) and y(v1v3s1v1) are integral, for
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otherwise, 0 < y(v1vis1v1) < w(vis1) for i = 2, 3, by Lemma 4.3(i) and (ii), we have x(v2s1) =
x(v3s1) = 0, contradicting Lemma 6.9(iii). Hence y(v1v2s1v1) or y(v1v3s1v1) is a positive integer.

Assume next that s1v1 is contained in some cycle C ∈ Cy
0 . From Lemma 4.7(vii), we see that

y(v1vis1v1) = min{w(v1vi), w(vis1)} for i = 2, 3. If y(v1vis1v1) = 0 for i = 2, 3, then τw(T2\a2) =∑2
i=1min{w(v1vi), w(vis1)} = 0, contradicting (α). Therefore y(v1v2s1v1) or y(v1v3s1v1) is a

positive integer. So the above Claim is established.
From the above Claim and Lemma 4.4(iii), we conclude that D(T,w) has an integral optimal

solution.

Lemma 6.12. If T2/S = G5, then D(T,w) has an integral optimal solution.

Proof. Recall that (b2, a2) = (v2, v6), s
∗ = v5, and Q = {v1, v3, v4}. Given an optimal

solution y to D(T,w), set φ(si) = {u : z(usi) > 0 for u ∈ V (T2)\a2} for each si ∈ S. By Lemma
6.2(i) and (vi), we have

(1) φ(si) ∩ φ(sj) = ∅ whenever i ̸= j.
From (1) and Lemma 6.10(i), we see that

(2) there exists at least one and at most three vertices si’s in S with φ(si) ̸= ∅.
Lemma 6.2(i) allows us to assume that

(3) if φ(si) ̸= ∅, then i ∈ {1, 2, 3}.
By Lemma 6.10(ii), we obtain
(4) w(e) = z(e) = 0 for e ∈ {v1v3, v3v4, v4v1}.
In the remainder of our proof, we reserve y for an optimal solution to D(T,w) such that
(5) y(C2) is maximized; and
(6) subject to (5), (y(Dq), y(Dq−1), . . . , y(D3)) is minimized lexicographically.
Claim. y(C) is integral for some C ∈ Cy

2 .
To justify this, we consider three possible cases (see the structure of G5), depending on the

size of φ(si) for 1 ≤ i ≤ 3.
Case 1. |φ(si)| = 1 for each 1 ≤ i ≤ 3.
In this case, by Lemma 6.10(i), (2) and (3), we may assume that φ(s1) = {v1}, φ(s2) = {v3},

and φ(s3) = {v4}. By (4), we obtain
(7) Cy

2 ⊆ {v2v1s1v2, v2v3s2v2, v2v4s3v2}.
From Lemma 4.7(vii), we deduce that y(v2v1s1v2) = min{w(v2v1), w(v1s1), w(s1v2)}, y(v2v3s2v2)
= min{w(v2v3), w(v3s2), w(s2v2)}, and y(v2v4s3v2) = min{w(v2v4), w(v4s3), w(s3v2)}. If y(v2v1s1v2),
y(v2v3s2v2), and y(v2v4s3v2) are all zero, then τw(T2\a2) = min{w(v2v1), w(v1s1), w(s1v2)} +
min{w(v2v3), w(v3s2), w(s2v2)}+min{w(v2v4), w(v4s3), w(s3v2)} = 0, contradicting (α). There-
fore, at least one of y(v2v1s1v2), y(v2v3s2v2), and y(v2v4s3v2) is a positive integer.

Case 2. |φ(si)| = 1 for exactly one i ∈ {1, 2, 3}.
In this case, by Lemma 6.10(i), (2) and (3), we may assume that φ(s1) = {v1}, φ(s2) =

{v3, v4}. By (4), we have
(8) Cy

2 ⊆ {v2v1s1v2, v2v3s2v2, v2v4s2v2}.
From Lemma 4.7(vii), we see that y(v2v1s1v2) = min{w(v2v1), w(v1s1), w(s1v2)}. If y(v2v1s1v2) >
0, we are done. So we assume that y(v2v1s1v2) = 0. Since w(v1s1)w(s1v2) > 0, we ob-
tain w(v2v1) = min{w(v2v1), w(v1s1), w(s1v2)} = 0. By Lemma 6.2(iii), we have z(s2v2) =
w(s2v2) > 0.
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Assume first that s2v2 is outside Cy
0 . Then both v3s2 and v4s2 are outside Cy

0 , and s2v2
is saturated by y in T2. Hence y(v2v3s2v2) + y(v2v4s2v2) = w(s2v2) > 0. Observe that both
y(v2v3s2v2) and y(v2v4s2v2) are integral, for otherwise, since 0 < y(v2vis2v2) < w(vis2) for
i = 3, 4, by Lemma 4.3(i) and (ii), we have x(v3s2) = x(v4s2) = 0, contradicting Lemma 6.9(iii).
Hence both y(v2v3s2v2) and y(v2v4s2v2) are positive integers.

Assume next that s2v2 is contained in some cycle C ∈ Cy
0 . From Lemma 4.7(vii), we

see that y(v2vis2v2) = min{w(v2vi), w(vis2)} for i = 3, 4. If y(v2vis2v2) = 0 for i = 3, 4,
then τw(T2\a2) = w(v2v1) +

∑4
i=3min{w(v2vi), w(vis2)} = 0, contradicting (α). Therefore

y(v2v3s2v2) or y(v2v4s2v2) is a positive integer.
Case 3. |φ(si)| ̸= 1 for any i ∈ {1, 2, 3}.
In this case, by Lemma 6.10(i), (2), and (3), we may assume that φ(s1) = {v1, v3, v4} (see

the structure of G5). By (4), we obtain
(9) Cy

2 ⊆ {v2v1s1v2, v2v3s1v2, v2v4s1v2}.
By Lemma 6.2(iii), we have z(s1v2) = w(s1v2) > 0.

Assume first that s1v2 is outside Cy
0 . Then vis1 is outside Cy

0 for each i ∈ {1, 3, 4}, and s1v2
is saturated by y in T2. So

∑
i∈{1,3,4} y(v2vis1v2) = w(s1v2) > 0. Observe that y(v2vis1v2) is

integral for each i ∈ {1, 3, 4}, for otherwise, symmetry allows us to assume that y(v2v1s1v2)
is not integral. Then y(v2v3s1v2) or y(v2v4s1v2) is not integral, say y(v2v3s1v2). Since 0 <
y(v2vis1v2) < w(vis1) for i = 1, 3, by Lemma 4.3(i) and (ii), we have x(v1s1) = x(v3s1) = 0,
contradicting Lemma 6.9(iii). It follows that y(v2vis1v2) is a positive integer for each i ∈ {1, 3, 4}.

Assume next that s1v2 is contained in some cycle C ∈ Cy
0 . From Lemma 4.7(vii), we de-

duce that y(v2vis1v2) = min{w(v2vi), w(vis1)} for i ∈ {1, 3, 4}. If y(v2vis1v2) = 0 for each
i ∈ {1, 3, 4}, then τw(T2\a2) =

∑
i∈{1,3,4}min{w(v2vi), w(vis1)} = 0, contradicting (α). Hence

y(v2vis1v2) is a positive integer for some i ∈ {1, 3, 4}. This proves the Claim.
From the Claim and Lemma 4.4(iii), we conclude that D(T,w) has an integral optimal

solution.

Lemma 6.13. If T2/S = G6, then D(T,w) has an integral optimal solution.

Proof. Recall that (b2, a2) = (v6, v7), s
∗ = v5, and Q = {v1, v2, v3, v4}. Given an optimal

solution y to D(T,w), set φ(si) = {u : z(usi) > 0 for u ∈ V (T2)\a2} for each si ∈ S. By Lemma
6.2(i) and (vi), we have

(1) φ(si) ∩ φ(sj) = ∅ whenever i ̸= j.
From (1) and Lemma 6.10(i), we see that

(2) there exists at least one and at most four vertices si’s in S with φ(si) ̸= ∅.
Lemma 6.2(i) allows us to assume that

(3) if φ(si) ̸= ∅, then 1 ≤ i ≤ 4.
By Lemma 6.10(ii), we obtain
(4) w(e) = z(e) = 0 for e ∈ {v1v3, v3v4, v4v1, v1v2, v3v2, v4v2}.
In the remainder of our proof, we reserve y for an optimal solution to D(T,w) such that
(5) y(C2) is maximized; and
(6) subject to (5), (y(Dq), y(Dq−1), . . . , y(D3)) is minimized lexicographically.
Claim. y(C) is integral for some C ∈ Cy

2 .
To justify this, we consider five possible cases (see the structure of G6), depending on the

size of φ(si) for 1 ≤ i ≤ 4.
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Case 1. |φ(si)| = 1 for each 1 ≤ i ≤ 4.
In this case, by Lemma 6.10(i), (2) and (3), we may assume that φ(si) = {vi} for each

1 ≤ i ≤ 4. By (4), we obtain
(7) Cy

2 ⊆ {v6v1s1v6, v6v2s2v6, v6v3s3v6, v6v4s4v6}.
From Lemma 4.7(vii), we deduce that y(v6visiv6) = min{w(v6vi), w(visi), w(siv6)} for each 1 ≤
i ≤ 4. If y(v6visiv6) = 0 for 1 ≤ i ≤ 4, then τw(T2\a2) =

∑4
i=1min{w(v6vi), w(visi), w(siv6)} =

0, contradicting (α). Hence y(v6visiv6) is a positive integer for some i ∈ {1, 2, 3, 4}.
Case 2. |φ(si)| = 1 for exactly one i ∈ {1, 2, 3, 4}.
In this case, by Lemma 6.10(i), (2) and (3), we may assume that φ(s1) = {v1}, φ(s2) =

{v2, v3, v4}. By (4), we have
(8) Cy

2 ⊆ {v6v1s1v6, v6v2s2v6, v6v3s2v6, v6v4s2v6}.
From Lemma 4.7(vii), we see that y(v6v1s1v6) = min{w(v6v1), w(v1s1), w(s1v6)}. If y(v6v1s1v6)
> 0, we are done. So we assume that y(v6v1s1v6) > 0. Since w(v1s1)w(s1v6) > 0, we obtain
w(v6v1) = min{w(v6v1), w(v1s1), w(s1v6)} = 0. By Lemma 6.2(iii), we have z(s2v6) = w(s2v6) >
0.

Assume first that s2v6 is outside Cy
0 . Then vis2 is outside Cy

0 for i ∈ {2, 3, 4}, and s2v6
is saturated by y in T2. So

∑4
i=2 y(v6vis2v6) = w(s2v6) > 0. Observe that y(v6vis2v6) is

integral for each i ∈ {2, 3, 4}, for otherwise, symmetry allows us to assume that y(v6v2s2v6) is
not integral. Then one of y(v6v3s2v6) and y(v6v4s2v6) is not integral, say y(v6v3s2v6). Since
0 < y(v6vis2v6) < w(vis2) for i = 2, 3, by Lemma 4.3(i) and (ii), we have x(v2s2) = x(v3s2) = 0,
contradicting Lemma 6.9(iii). It follows that y(v6vis2v6) is a positive integer for each i ∈ {2, 3, 4}.

Assume next that s2v6 is contained in some cycle C ∈ Cy
0 . By Lemma 4.7(vii), we obtain

y(v6vis2v6) = min{w(v6vi), w(vis2)} for i ∈ {2, 3, 4}. If y(v6vis2v6) = 0 for i ∈ {2, 3, 4}, then
τw(T2\a2) = w(v6v1) +

∑4
i=2min{w(v6vi), w(vis2)} = 0, contradicting (α). Hence y(v6vis2v6) is

a positive integer for some i ∈ {2, 3, 4}.
Case 3. |φ(si)| = 1 for exactly two i’s in {1, 2, 3, 4}.
In this case, by Lemma 6.10(i), (2) and (3), we may assume that φ(s1) = {vi} for i = 1, 2

and φ(s3) = {v3, v4}. By (4), we obtain
(9) Cy

2 ⊆ {v6v1s1v6, v6v2s2v6, v6v3s3v6, v6v4s3v6}.
From Lemma 4.7(vii), we see that y(v6visiv6) = min{w(v6vi), w(visi), w(siv6)} for i = 1, 2. If
y(v6visiv6) > 0, we are done. So we assume that y(v6visiv6) = 0. Since w(visi)w(siv6) > 0, we
obtain w(v6vi) = min{w(v6vi), w(visi), w(siv6)} = 0 for i = 1, 2. By Lemma 6.2(iii), we have
z(s3v6) = w(s3v6) > 0.

Assume first that s3v6 is outside Cy
0 . Then vis3 is outside Cy

0 for i = 3, 4, and s3v6 is saturated
by y in T2. So y(v6v3s3v6) + y(v6v4s3v6) = w(s3v6) > 0. Observe that both y(v6v3s3v6) and
y(v6v4s3v6) are integral, for otherwise, since 0 < y(v6vis3v6) < w(vis3) for i = 3, 4, by Lemma
4.3(i) and (ii), we have x(v3s3) = x(v4s3) = 0, contradicting Lemma 6.9(iii). It follows that
y(v6vis3v6) is a positive integer for i = 3, 4.

Assume next that s3v6 is contained in some cycle C ∈ Cy
0 . By Lemma 4.7(vii), we obtain

y(v6vis3v6) = min{w(v6vi), w(vis2)} for i = 3, 4. If y(v6vis3v6) = 0 for i = 3, 4, then τw(T2\a2) =∑2
i=1w(v6vi) +

∑4
i=3min{w(v6vi), w(vis3)} = 0, contradicting (α). Hence y(v6vis3v6) is a posi-

tive integer for i = 3 or 4.
Case 4. 1 < |φ(si)| < 4 if φ(si) ̸= ∅, for i ∈ {1, 2, 3, 4}.
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In this case, by Lemma 6.10(i), (2) and (3), we may assume that φ(s1) = {v1, v2} and
φ(s2) = {v3, v4}. By (4), we obtain

(10) Cy
2 ⊆ {v6v1s1v6, v6v2s1v6, v6v3s2v6, v6v4s2v6}.

By Lemma 6.2(iii), we have z(siv6) = w(siv6) > 0 for i = 1, 2.
Assume first that s1v6 is outside Cy

0 . Then both v1s1 and v2s1 are outside Cy
0 , and s1v6

is saturated by y in T2. So y(v6v1s1v6) + y(v6v2s1v6) = w(s1v6) > 0. Observe that both
y(v6v1s1v6) and y(v6v2s1v6) are integral, for otherwise, since 0 < y(v6vis1v6) < w(vis1) for
i = 1, 2, by Lemma 4.3(i) and (ii), we have x(v1s1) = x(v2s1) = 0, contradicting Lemma 6.9(iii).
It follows that y(v6vis1v6) is a positive integer for i = 1, 2. Similarly, we can show that if s2v6
is outside Cy

0 , then y(v6vis2v6) is a positive integer for i = 3, 4.
Assume next that siv6 is contained in some cycle in Cy

0 for i = 1, 2. By Lemma 4.7(vii), we
have y(v6vis1v6) = min{w(v6vi), w(vis1)} for i = 1, 2, and y(v6vis2v6) = min{w(v6vi), w(vis2)}
for i = 3, 4. If y(v6v1s1v6), y(v6v2s1v6), y(v6v3s2v6) and y(v6v4s2v6) are all zero, then τw(T2\a2) =∑2

i=1min{w(v6vi), w(vis1)}+
∑4

i=3min{w(v6vi), w(vis2)} = 0, contradicting (α). So at least one
of y(v6v1s1v6), y(v6v2s1v6), y(v6v3s2v6), and y(v6v4s2v6) is a positive integer.

Case 5. |φ(si)| > 2 if φ(si) ̸= ∅, for i ∈ {1, 2, 3, 4}.
In this case, by Lemma 6.10(i), (2) and (3), we may assume that φ(s1) = {v1, v2, v3, v4}. By

(4), we obtain
(11) Cy

2 ⊆ {v6v1s1v6, v6v2s1v6, v6v3s1v6, v6v4s1v6}.
By Lemma 6.2(iii), we have z(s1v6) = w(s1v6) > 0.

Assume first that s1v6 is outside Cy
0 . Then

∑4
i=1 y(v6vis1v6) = w(s1v6). If y(v6vis1v6) is a

positive integer for some i ∈ {1, 2, 3, 4}, we are done. So we assume the contrary. Thus at least
two of y(v6v1s1v6), y(v6v2s1v6), y(v6v3s1v6), and y(v6v4s1v6) are not integral, say y(v6v1s1v6)
and y(v6v2s1v6). Since 0 < y(v6vis1v6) < w(vis1) for i = 1, 2, by Lemma 4.3 (i) and (ii), we
have x(v1s1) = x(v2s1) = 0, contradicting Lemma 6.9(iii).

Assume next that s1v6 is contained in some cycle of Cy
0 . By Lemma 4.7(vii), we have

y(v6vis1v6) = min{w(v6vi), w(vis1)} for 1 ≤ i ≤ 4. If y(v6vis1v6) is zero for 1 ≤ i ≤ 4, then
τw(T2\a2) =

∑4
i=1min{w(v6vi), w(vis1)} = 0, contradicting (α). So y(v6vis1v6) is a positive

integer for some i ∈ {1, 2, 3, 4}. This proves the Claim.
From the above Claim and Lemma 4.4(iii), we conclude that D(T,w) has an integral optimal

solution.

With the aid of the above lemmas, we can now derive the desired total-dual integrality.
Proof of Theorem 6.1. By the hypothesis of this section, T is the 1-sum of two smaller

strong Möbius-free tournaments T1 and T2 with properties (α) and (β). Since T2/S ∈ T3, the
statement follows instantly from Lemmas 6.3-6.8 and Lemmas 6.11-6.13.

7 Proof: Last Step

In the preceding two sections we have carried out a series of reduction operations, and finished
the main body of the proof of Theorem 4.1. To complete the proof, we still need to consider
two more cases.
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Lemma 7.1. Let G = (V,A) be a digraph with a nonnegative integral weight c(e) on each arc e,
and let v be a vertex of G. If each positive cycle in G contains v, then D(G, c) has an integral
optimal solution.

Proof. Construct a flow network N = (V ′, A′) with vertex set V ′ = (V \v)∪{s, t} as follows:
• for each arc ab ∈ A with a ̸= v ̸= b, there is an arc ab ∈ A′ with capacity c(ab);
• for each arc va ∈ A, there is an arc sa ∈ A′ with capacity c(va); and
• for each arc av ∈ A, there is an arc at ∈ A′ with capacity c(av).

Then there is a one-to-one correspondence between cycles containing v in G and s-t paths in N .
So, by the max-flow min-cut theorem, D(G, c) has an integral optimal solution.

Lemma 7.2. Tournament G1 is cycle Mengerian.

For a computer-assisted proof of this lemma, see Appendix [11].

Proof of Theorem 4.1. Clearly, we may assume that T is strong, T ̸= C3, and τw(T ) > 0.
Since F1 can be obtained from G1 by deleting vertex v6 (see the labeling in Figure 4), from
Lemma 7.2 we deduce that F1 is also cycle Mengerian. So we may further assume that F1 ̸=
T ̸= G1.

By Theorems 3.1 and 3.2 and Lemma 3.4, {C3, F0, F1, F2, F3, F4, G1, G2, G3} is the list of all
i2s Möbius-free tournaments. Hence

(1) if T is i2s, then T ∈ {F0, F2, F3, F4, G2, G3} = T2\{F6}.
We claim that T can be expressed as a 1-sum of two strong Möbius-free tournaments T1 and

T2 over two special arcs (a1, b1) and (b2, a2), such that one of the following three cases occurs:
(2) τw(T2\a2) > 0 and T2 ∈ T2;
(3) τw(T2\a2) > 0 and there exists a vertex subset S of T2\{a2, b2} with |S| ≥ 2, such that

T [S] is acyclic, T2/S ∈ T3, and the vertex s∗ arising from contracting S is a near-sink in T/S;
and

(4) every positive cycle in T crosses the hub b of the 1-sum.
Indeed, if T is not i2s, then the statement follows from Lemma 4.2. It remains to consider

the case when T is i2s. By (1), we have T ∈ T2\{F6}. Since each tournament in T2\{F6} has a
special arc, we may view T as a 1-sum of T1 and T2 over two special arcs (a1, b1) and (b2, a2),
where T1 is a triangle and T2 = T . If τw(T2\a2) > 0, then (2) holds. If τw(T2\a2) = 0, then
every positive cycle in T contains the hub of the 1-sum. So (4) occurs.

Applying Theorem 5.1, Theorem 6.1, and Lemma 7.1 to (2), (3), and (4), respectively, we
conclude that D(T,w) has an integral optimal solution in any case.

Proof of Theorem 1.1. Implication (iii) ⇒ (ii) holds, because total-dual integrality
implies primal integrality (see Edmonds-Giles theorem [18] stated in Section 1). Implication
(ii) ⇒ (i) is established in Lemma 2.1. Implication (i) ⇒ (iii) follows instantly from Theorem
4.1.

8 Concluding Remarks

In this paper we have characterized all tournaments with the min-max relation on packing
and covering cycles. Our characterization yields a polynomial-time algorithm for the minimum-
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weight feedback arc set problem on cycle Mengerian tournaments. But this algorithm is based on
the ellipsoid method for linear programming, and therefore very much unlike the typical combi-
natorial optimization procedures. It would be interesting to know whether it can be replaced by
a strongly polynomial-time algorithm of a transparent combinatorial nature. In combinatorial
optimization, there are some other min-max results that are obtained using the “structure-
driven” approach. Despite availability of structural descriptions, combinatorial polynomial-time
algorithms for the corresponding optimization problems have yet to be found, for instance, those
on matroids with the max-flow min-cut property; see Seymour [31] for a characterization and
Truemper [35] for efficient algorithms once again based on the ellipsoid method. Certainly, these
types of problems deserve more research efforts.
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