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Abstract

This paper examines the classical problem of ranking a set of players on the basis of a
set of pairwise comparisons arising from a sports tournament; the objective is to minimize
the total number of upsets, where an upset occurs if a higher ranked player was actually
defeated by a lower ranked player. This problem can be rephrased as the so-called minimum
feedback arc set problem on tournaments, which arises in a rich variety of applications and
has been a subject of extensive research. In this paper we study this NP-hard problem
using polyhedral and linear programming approaches. Let T' = (V, A) be a tournament with
a nonnegative integral weight w(e) on each arc e. A subset F' of arcs is called a feedback arc
set if T\F contains no cycles (directed). A collection C of cycles (with repetition allowed)
is called a cycle packing if each arc e is used at most w(e) times by members of C. We
call T' cycle Mengerian (CM) if, for any nonnegative integral function w defined on A, the
minimum total weight of a feedback arc set is equal to the maximum size of a cycle packing.
The purpose of this paper is to present a structural characterization of all CM tournaments,
which yields a polynomial-time algorithm for the minimum-weight feedback arc set problem
on such tournaments.
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1 Introduction

Consider a sports tournament in which each of n players is required to play precisely one game
with each other player, and assume that each game ends in a win or a loss. After completion of
the tournament, it is desirable to find a ranking of all n players that minimizes the number of
upsets, where an upset occurs if a higher ranked player was actually defeated by a lower ranked
player. This problem can be rephrased as the so-called minimum feedback arc set problem on
tournaments, and will be investigated in the more general weighted setting in this paper.

Let G = (V, A) be a digraph with a nonnegative integral weight w(e) on each arc e. A subset
F of arcs is called a feedback arc set (FAS) of G if G\F contains no cycles (directed). The
minimum-weight FAS problem (or simply FAS problem) is to find an FAS in G with minimum
total weight. Digraph G is called a tournament if there is precisely one arc between any two
vertices in G. The FAS problem on tournaments, abbreviated FAST, dates back to as early
as the 1780s when Borda [7] and Condorcet [12] each proposed voting systems for elections
with more than two candidates. Since the FAST arises in a rich variety of applications in
sports, databases, and statistics, where it is necessary to effectively combine rankings from
different sources, FAS’s in tournaments have been studied extensively from the combinatorial
[19, 20, 34, 38|, statistical [33], and algorithmic [1, 2, 13, 28, 37, 36] points of view, and thus have
produced a vast body of literature. In [1], Ailon, Charikar, and Newman proved that the FAST
is N P-hard under randomized reductions even in the unweighted case. In [3], Alon showed that
this unweighted version is in fact N P-hard; in [10], Charbit, Thomassé, and Yeo established this
result independently. In [28], Mathieu and Schudy devised a polynomial time approximation
scheme (PTAS) for the FAST. Given these results, it is natural to ask the following question:
When can the FAST be solved exactly in polynomial time? Inspired by the title of Mathieu
and Schudy’s paper [28], this is equivalent to asking: Which tournaments can be ranked with
no errors? The purpose of this paper is to resolve this problem using polyhedral and linear
programming approaches.

We introduce some terminology before proceeding. Let Cx > d, > 0 be a rational linear
system and let P denote the polyhedron {x : Cx > d, * > 0}. We call P integral if it is the
convex hull of all integral vectors contained in P. As shown by Edmonds and Giles [18], P is
integral iff the minimum in the LP-duality equation

min{w’z : Cz >d, x >0} = max{y’d: y'C < w’, y > 0}

has an integral optimal solution, for every integral vector w for which the optimum is finite. If,
instead, the maximum in the equation enjoys this property, then the system Cx > d, > 0 is
called totally dual integral (TDI). It is well known that many combinatorial optimization prob-
lems can be naturally formulated as integer programs of the form min{w”x : & € P, integral};
if P is integral, then such a problem reduces to its LP-relaxation. Edmonds and Giles [18]
proved that total dual integrality implies primal integrality: if Cx > d, > 0 is TDI and d is
integer-valued, then P is integral. Thus the model of TDI systems serves as a general framework
for establishing many combinatorial min-max theorems. Over the past six decades, these two
integrality properties have been the subjects of extensive research and the major concern of
polyhedral combinatorics (see Schrijver [29, 30] for comprehensive accounts).

Let us return to the FAS problem. Let M be the cycle-arc incidence matrix of the input



digraph G, and let 7(G) denote the linear system Mz > 1, x > 0. We call G cycle ideal
(CI) if 7(G) defines an integral polyhedron, and call G cycle Mengerian (CM) if 7(G) is a TDI
system. To facilitate better understanding, we give an intuitive interpretation of these concepts.
A collection C of cycles (with repetition allowed) in G is called a cycle packing of G if each arc
e is used at most w(e) times by members of C. The cycle packing problem consists in finding a
cycle packing with maximum size, which can be viewed as the dual version of the FAS problem.
To see this, let P(G,w) stand for the linear program

Minimize wlz

Subject to Max > 1
x>0,

and let D(G, w) denote its dual

Maximize yT1
Subject to  yI M < w’
y >0,

where w = (w(e) : e € A). Then P(G,w) (resp. D(G,w)) is exactly the LP-relaxation of the
FAS problem (resp. cycle packing problem), and thus is called the fractional FAS problem (resp.
fractional cycle packing problem). Let 7, (G) be the minimum total weight of an FAS, let v,,(G)
be the maximum size of a cycle packing, let 7.5(G) be the optimal value of P(G,w), and let
v (G) be the optimal value of D(G, w). Clearly,

vu(G) < vy (G) = 7,(G) < 7(G);

these two inequalities, however, need not hold with equalities in general (as we shall see in Section
2). The aforementioned Edmonds-Giles theorems give rise to the following two observations:

e (G is CI iff P(G,w) has an integral optimal solution for any nonnegative integral w iff
T (G) = Tw(G) for any nonnegative integral w. Since the separation problem of P(G,w) is the
minimum-weight cycle problem, which admits a polynomial-time algorithm, it follows from a
theorem of Grotschel, Lovasz, and Schrijver [22] that P(G, w) is always solvable in polynomial
time. Therefore, the FAS problem can be solved in polynomial time for any nonnegative integral
w, provided its input digraph G is CI; and

e GG is CM iff D(G,w) has an integral optimal solution for any nonnegative integral w iff
v (G) = v, (G) for any nonnegative integral w iff the beautiful min-max relation v,,(G) = 7, (QG)
holds for any nonnegative integral w. (This gives an equivalent definition of CM digraphs.)

So the study of CI and CM digraphs has both great theoretical interest and practical value.
Initiated in the early 1960s [14, 38|, it has inspired many min-max theorems in combinatorial
optimization, such as Lucchesi and Younger [27], Seymour [31, 32], Geelen and Guenin [21],
Guenin [23, 24|, Guenin and Thomas [25], Cai et al. [8, 9], and Ding et al. [16, 17]. Despite
tremendous research efforts, only some special classes of CI and CM digraphs [27, 23, 25] have
been identified to date, and a complete characterization seems extremely hard to obtain.

Let D5 be the digraph obtained from K5 (the complete graph with five vertices) by replacing

each edge ij with a pair of opposite arcs (7, j) and (j,4). Applegate, Cook, and McCormick [4] and



Barahona, Fonlupt, and Mahjoub [5] independently proved that Dy is CM, thereby confirming a
conjecture posed in both Barahona and Mahjoub [6] and Jiinger [26]. This theorem is equivalent
to saying that every tournament with five vertices is cycle Mengerian.

The purpose of this paper is to give a complete characterization of all CI and CM tour-
naments. We say that a tournament is Mobius-free if it contains none of K33, K§,3, M5, and
M: depicted in Figure 1 as a subgraph. This class of tournaments is so named because the
forbidden structures are all Mobius ladders. Observe that M; is obtained from Ms by reversing
the direction of each arc.
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Figure 1. Forbidden Structures

Theorem 1.1. For a tournament T = (V, A), the following statements are equivalent:
(i) T is Mdbius-free;
(ii) T is cycle ideal; and

(iii) T is cycle Mengerian.

Throughout this paper we shall repeatedly use the following notations and terminology.

Asusual, Ry and Z, stand for the sets of nonnegative real numbers and nonnegative integers,
respectively. For any two sets 2 and K, where €2 is always a set of numbers and K is always
finite, we use QX to denote the set of vectors = (z(k) : k € K) whose coordinates are members
of Q. If f is a function defined on a finite set S and R C S, then f(R) denotes > s f(s).

Digraphs considered in this paper contain no parallel arcs nor loops unless otherwise stated,
but they may contain opposite arcs. Let G be a digraph. We use V(G) and A(G) to denote its
vertex set and arc set, respectively, if they are not specified. For each v € V(G), we use dj(v)
and dg(v) to denote the out-degree and in-degree of v, respectively. We call v a near-sink of
G if its out-degree is one, and call v a near-source if its in-degree is one. For simplicity, an arc
e = (u,v) of G is also denoted by uwv. Arc e is called special if either u is a near-sink or v is a



near-source of G. For each U C V(G), we use §1(U) (resp. 6 (U)) to denote the set of all arcs
from U to V(G)\U (resp. from V(G)\U to U), and write 67 (U) = 6" (u) and 6 (U) = 6 (u)
if U = {u}. We also use G/U to denote the digraph obtained from G by first deleting arcs
between any two vertices in U, then identifying all vertices in U, and finally deleting the parallel
arcs except one from each vertex to each other vertex; we say that G/U is obtained from G by
contracting U. We say that U is a homogeneous set of G if |U| > 2 and the arcs between U and
any vertex v outside U are either all directed to U or all directed to v. For each arc e = (u,v)
of G, the digraph obtained from G by contracting e, denoted by G/e, is exactly G/{u,v}. A
dicut of G is a partition (X,Y) of V(G) such that all arcs between X and Y are directed to
Y. A dicut (X,Y) is trivial if | X| =1 or |Y| = 1. Recall that G is called weakly connected if
its underlying undirected graph is connected, and is called strongly connected or strong if each
vertex is reachable from each other vertex. Clearly, a weakly connected digraph G is strong iff
G has no dicut. Furthermore, a weakly connected digraph G is called internally strong if every
dicut of G is trivial, and is called internally 2-strong (i2s) if G is strong and G\v is internally
strong for every vertex v. A strong component of G is a maximal strong subgraph, where the
adjective maximal is meant with respect to set-inclusion rather than size. Note that each vertex
of G belongs to exactly one strong component. Thus the strong components of G can be ordered
as A1, Aa, ..., Ap, such that the arcs between A; and A; are all directed from A; to A; for any
1 <i < j <p; werefer to (A1, As,...,A,) as a strong partition of G. The reverse of G, denoted
by G*, is obtained from G be reversing the direction of each arc.

By a cycle or a path in a digraph we always mean a directed one. By a triangle we mean a
directed cycle of length three. Let P be a directed path from a to b and let ¢ and d be two vertices
on P such that a, b, c,d (not necessarily distinct) occur on P in order as we traverse P in its
direction from a. Then Plc, d] denotes the subpath of P from ¢ to d, and P(c,d) = Plc,d]\{c, d}.
Let C be a directed cycle. For each vertex a on C, we use a~ (resp. at) to denote the vertex
precedes (resp. succeeds) a as we traverse C' in its direction. For each pair of vertices a and b
on C, we use C[a,b] to denote the segment of C' from a to b.

The remainder of this paper is organized as follows. In Section 2, we first show that every
cycle ideal tournament is Mobius-free. We then introduce a summing operation, which plays
an important role in the structural description of Mobius-free tournaments. In Section 3, we
prove that every i2s Mobius-free tournament comes from a finite list. In Section 4, we give a
structural decomposition of Mobius-free tournaments that are not 2s, and exhibit some basic
properties satisfied by the optimal solutions to the fractional cycle packing and FAS problems.
In Sections 5 (resp. 6), we carry out a series of basic (resp. composite) reduction operations
involved in the reduction step. In Section 7, we accomplish the last step of our proof. In Section
8, we conclude this paper with some remarks.

2 Preliminaries

In this section, we first show that each digraph displayed in Figure 1 is a forbidden structure of
cycle ideal (CI) tournaments. We then introduce a summing operation on tournaments, which
will be used to lift the connectivity of the Md&bius-free tournament involved in Theorem 1.1.
Finally, we prove that being Mobius-free is preserved under this summing operation and under



contracting special arcs.
Lemma 2.1. Every cycle ideal tournament is Mobius-free.

Proof. Assume the contrary: Some CI tournament 7' = (V, A) contains a member D of
{K33, K33, M5, M3}. Let B be the arc set of D and let C be the family of all cycles in T'. Define
w(e) =1if e € B and w(e) = 0 if e € A\B. We propose to show that, for this weight function
w, the optimal value of P(T', w), denoted by 7. (7'), is not integral. Depending on the structure
of D, we consider four cases.

Case 1. D = K33.

Define x € Rﬂ and y € Ri as follows:

e x(e) =1if e € A\B, z(e) =1/2 if e € {ujug, usus, usug}, and xz(e) = 0 otherwise; and

e y(C) =1/2if C € {ujugusuguy, usususugus, ugususugu } and y(C) = 0 otherwise.

It is easy to see that @ and y are feasible solutions to P(7,w) and D(7T, w), respectively. Since
both of their objective values are 3/2, by the LP-duality theorem,  and y are actually optimal
solutions to P(7,w) and D(7T, w), respectively. Thus 7.5 (T") = 3/2.

Case 2. D = K3 ;.

Define x € Rﬁ and y € Ri as follows:

e x(e) =1if e € A\B, z(e) =1/2 if e € {ujug, usus, usug}, and x(e) = 0 otherwise; and

e y(C) =1/2if C € {ujugusuguy, usususugurus, uyusususui } and y(C) = 0 otherwise.
Similar to Case 1, we can show that & and y are optimal solutions to P(7,w) and D(7T, w),
respectively, and 7, (1) = 3/2.

Case 3. D = Ms.

Define « € Rﬂ and y € Ri as follows:

e x(e)=1if e € A\B, z(e) = 1/2 if e € {ujua, ugus, usuy, usus, ugus }, and z(e) =0

otherwise; and

e y(C) =1/2if C € {ujugusuy, ugusugua, usususus, Usugusus, uiugugusul } and y(C) =0

otherwise.
Similar to Case 1, we can show that & and y are optimal solutions to P(7,w) and D(T, w),
respectively, and 7, (1) = 5/2.

Case 4. D = M.

Consider the reverse T*. In view of the 1 — 1 correspondence between cycles in T" and those
in T* and using the statement established in Case 3, we obtain 7,5 (T") = 5/2 in this case as well.

Combining the above cases, we conclude that 7.5(7) is not integral. So P(T,w) has no inte-
gral optimal solution and hence T is not CI, a contradiction. |

As an important endeavor towards a proof of Theorem 1.1, we shall demonstrate that all
Moébius-free tournaments can be constructed from some prime tournaments using the following
summing operation: Let 77 = (Vi,A;) and To = (Va, A2) be two strong tournaments, with
|[Vi| > 3 for i = 1,2. Suppose (a1,b;1) is a special arc of 77 with dJTrl(al) = 1 and (bg,as9) is
a special arc of To with di(ag) = 1. The 1-sum of Ty and T, over (ai,b1) and (b2, az) is the
tournament arising from the disjoint union of 77\a; and Th\a2 by identifying by with be (the
resulting vertex is denoted by b) and adding all arcs from T7\{a1,b1} to T5\{az,b2}. We call b
the hub of the 1-sum. See Figure 2 for an illustration. Note that if |V;| = 3 for ¢ = 1 or 2, then
T; is a triangle, and thus 7" = T3_;. We say that T} is smaller than T if |Vi| < |Va].
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Figure 2. 1-sum of 77 and T5.

Lemma 2.2. Let T = (V, A) be a strong tournament. If T is not i2s, then T is the 1-sum of
two smaller strong tournaments.

Proof. Since T is not i2s, it contains a vertex b such that 7'\b has a nontrivial dicut
(X,Y). As T is strong, there exist a; € Y and ag € X such that {(a1,b), (b,a2)} C A. Set
T, =T\(Y\a1), To = T\(X\a2), and rename b as b; in T; for i = 1,2. Clearly, a; has out-degree
one in 771 and a9 has in-degree one in T5. From the definition we see that T is the 1-sum of 77 and
T over (a1, b1) and (bg, az). Furthermore, T; is strong and has fewer vertices than 7 for i = 1,2. 1

Let us show that being Mobius-free is maintained under the 1-sum operation.

Lemma 2.3. Let T = (V, A) be the 1-sum of two tournaments Th and Ty. Then T is Mébius-free
iff both T1 and Ty are Mobius-free.

Proof. Since both 77 and T3 are sub-tournaments of 7', the “only if” part holds trivially. To
establish the “if” part, assume the contrary: T' contains a member D of {K33, K3 5, M5, M3 };
subject to this, the number of vertices in D is minimum. Let b be the hub of the 1-sum. Then
b is contained in D. Observe that

(1) if D = Kj3, then (u3,ug) € A (see the labeling in Figure 1), for otherwise 7" would
contain K3 3, contradicting the minimality assumption on D.

Set D" = DU {(us,ug)} if D = K33 and set D' = D otherwise. It it a routine matter to
check that D’ is i2s (while K3 5 is not). Since T is the 1-sum of 7} and T and since T' contains
D' by (1), either T1\b or T\b contains precisely one vertex from D’\b. Therefore, either T} or
T, contains a subgraph isomorphic to D’ and hence is not Mobius-free. |

In the remainder of this section, we show that being Mobius-free is also preserved under the
operation of contracting a special arc. Note that the resulting digraph may contain opposite
arcs.

Lemma 2.4. Let T = (V, A) be a Mébius-free tournament with a special arc a = (x,y). Then
T/a is also Mébius-free.

Proof. Replacing T by its reverse 1™ if necessary, we may assume that x is a near-sink of 7.
Thus y is the only out-neighbor of z. Let z be the vertex obtained by identifying x and y in T'/a
and let F = {K33, K33, M5, M3}. Assume the contrary: T'/a contains a subdigraph D € F.

7



Then z is in D. We use D’ to denote the digraph obtained from D\z by adding two vertices x
and y and adding all arcs in {(z,y)} U{(y,u) : (z,u) € A(D)}U{(u,z) : uw € V(D)\z}. Clearly,
D’ is a subgraph of T. We propose to prove that

(1) T contains a member of F.

Let us label the vertices of D as in Figure 1. Depending on the structure of D, we distinguish
among four cases.

Case 1. D = K3 3. In this case, symmetry allows us to assume that z = u4 or us.

e 2 = uy. Then uy and us are the only out-neighbors of y in D’. Thus the union of the three
cycles ujugusuguy, ryuiusz, and ryususr forms a K33 in 7'

e 2 = u5. Then ug is the only out-neighbor of y in D’. If (u4,y) € A, then the union of the
three cycles ujusugusuy, usyuguzuy, and uyusryugu, forms a K§73 in 7. Similarly, if (ug,y) € A,
then the union of the three cycles ujuousgugquy, uiuoyuguy, and ugryugusuy also forms a Ké’g
in T. So we assume that {(y,u4), (y,u2)} C A. Thus the union of the three cycles usuizyuy,
ujuguzu4y, and uguzxryus forms a Kz 3 in 7.

Case 2. D = K§’3. In this case, we may assume that (us,ug) € A, for otherwise the present
case reduces to Case 1.

e 2 = us. Then us and ug are the only out-neighbors of y in D’. It follows that the union of
the three cycles usuqusugurus, xyususz, and ryusugx forms a K§73 inT.

e 2 = uz. Then uy is the only out-neighbor of y in D'. If (ug,y) € A, then the union of
the three cycles ujususuguy, yususugy, and xyusuiusx forms a K§73 in T if (ug,y) € A, then
the union of the three cycles ujususugu, yuqguiuoy, and ryugsusugr also forms a K§73 in T. So
we assume that {(y, ue), (y,u2)} C A. It follows that a K33 is formed in 7" by the three cycles
TYUusU1T, TYUU5T, and UTU2U5UCUT -

e 2 = uy. Then uy and us are the only out-neighbors of y in D’. Thus the union of the three
cycles uiugusugur, ryusuer, and ryujusr forms a K33 in 7T

e 2z = ug. Then u; and w7 are the only out-neighbors of y in D’. It follows that the union of
the three cycles ujususugsul, ryurususz, and ryujusx forms a K§73 inT.

e 2 = uy. Then uy is the only out-neighbor of y in D'. If {(u4,y), (us,y)} C A, then the
union of the three cycles yusususy, yususugy, and usususugurus forms a Kéjg in T. So we
assume that at least one of (y,u4) and (y,ug) is in A.

Consider the first subcase when (y,us) € A. If (ug,u2) € A, then the union of the three
cycles zyuguzz, ryususz, and uguzususuguz forms a K35 in T if (y,u7) € A, then the union
of the three cycles xyurusx, xyuqusz, and usuqsusugurug forms a K§73 in T. So we assume that
{(ua,u6), (u7,y)} C A. If (ug,ug) € A, then a K34 is formed by the three cycles yusugury,
usugugurug, and ryusususx; if (ug,us) € A, then a Ké73 is formed by the three cycles yusugury,
ususugurus, and ryusususx. So we further assume that {(ug, uq), (us,usz)} C A. It follows that
the union of the three cycles usugugqusus, ryususer, and ryususugr forms a K§,73.

Consider the second subcase when (y,us) € A. If (ur,u2) € A, then the union of the
three cycles xyuguzx, ugususurug, and zyusurr forms a Kss3; if (y,us3) € A, then a Ké’g
is formed by the three cycles zyugurz, ryususzr, and usuqusugurus; if (ug,ug) € A, then a
K§73 is formed by the three cycles xyugurx, usuqugur, and ryususuqsx. So we assume that
{(ua,u7), (us, y), (u,ua)} S A. If (us,u3) € A, then a K3 is formed by the three cycles
UZUGULUSUZ, TYUsUsT, and Tyusususx; if (u4, ug) € A, then a K33 is formed by the three cycles



TYuguzx, ryususr, and ugusugusug. So we further assume that {(us,us), (u2,uq)} € A. Now
if (y,us) € A, then the union of the three cycles ususugurus, ryusuez, and ryusurusx forms a
K3 3; if (us,y) € A, then the union of the three cycles yusurusy, yusususy, and uzususugurus
also forms a K3 5.

e 2 = u5. Then ug is the only out-neighbor of y in D’. If (y,uz) € A, then the union of the
three cycles ujugusugu, ryuguge, and zyuguix forms a K33 in T'. So we assume that (u2,y) €
A. If (u4,y) € A, then the union of the three cycles yuguiuoy, ujugugusu, and yugurusugsy
forms a K3 5 in 7. So we also assume that (y,us) € A. If (u1,u7) € A, then a K3 5 is formed by
the three cycles ujurusugquy, xyusuix, and ryugurusr. So we further assume that (u7,uq) € A.
If (y,ur) € A, then a K§73 is formed by the three cycles ujusususu, ujusyuru, and ryurugugr.
Similarly, if (y,us) € A, then a K§73 is formed by the three cycles ujususuqui, ryusuqx, and
ryuguiugx; if (y,u1) € A, then a K35 is formed by the three cycles xyujusz, ryusurz, and
ujugusuguyur. Thus it remains to consider the subcase when {(u7,v), (us,y), (ui,y)} C A. If
(u2,u7) € A, then a K3 5 is formed by the three cycles ujuayugus, yusuruzy, and uiuguruzusus .
So we assume that (u7,u2) € A. If (ug,us) € A, then a Kj 4 is formed by the three cycles
Yugu U1 Y, Uiuususul, and yusuruguzy. So we also assume that (ug,ug) € A. If (uq,uy) € A,
then a K;g,g is formed by the three cycles yugquguiy, uiususugu, and yuqgurusuzy. So we further
assume that (u7,uq) € A.

From the above observations, we conclude that uy has a unique in-neighbor ug in the sub-
tournament 7" of T" induced by V(D'). If {(ug, u2), (u2,us)} C A, then an MZ is formed by the
five cycles yuqu1y, uiusuaui, ugusugus, usugurug, and yusurury. If (ug,us) € A, then a K33
is formed by wujusuguguy, ususugurus, and ujusuguruy; if (ug,u9) € A, then the union of the
three cycles ujusugugu1, yusuguzy, and yusueury also forms a Kz 3 in T

e 2 = u7. Then ugz is the only out-neighbor of y in D'. If (ug,y) € A, then the union of
the three cycles ujugusugu1, uruguzusuy, and yugugusuey forms a Kj 5 in T if (y,u1) € A,
then a K33 is formed in T by the three cycles wjusususui, ryuiusz, and ryugusr. So we
assume that {(y,us), (u1,y)} € A. If (u1,u3) € A, then a K3 5 is formed by zyuguiz, ryuzusr,
and ujugugusuguy; if (ug,ug) € A, then the union of the three cycles xyuguiz, ryususz, and
ujUgu3UsUgu, forms a K§73 in T; if (y,u2) € A, then the union of the three cycles ujususuguy,
zyusuiz, and ryususx forms a K33 in T. So we further assume that {(us, u1), (ug, ua), (u2,y)} C
A. Depending on whether (us,y) € A, we distinguish between two subcases.

Consider the first subcase when (us,y) € A. If (us,uz) € A, then a Kj 5 is formed in T by
the three cycles ujususugui, yusuguiy, and yuguquousy. So we assume that (ug,ug) € A. If
(ug,u2) € A, then a K33 is formed by the three cycles ugususugug, yugusuy, and yusususy.
So we further assume that (ug,us) € A. If (u4,y) € A, then a K33 is formed in T by the three
cycles uiugueusut, yusueusy, and yuguiugy in T if (y,us) € A, then a K3 5 is formed in 7' by
the three cycles ryuguix, Tyususz, and uquguitsugus -

Consider the second subcase when (y,us) € A. If (y,us) € A, then a K33 is formed by
the three cycles zyusugr, ryusuiz, and ujususugusui. So we assume that (ug,y) € A. If
(u2,up) € A, then a K3 3 is formed by the three cycles ujusuguaur, yusuguay, and yuguiugy. So
we also assume that (ug,u2) € A. If (ug,us) € A, then a Kj 5 is formed in T' by the three cycles
UUaUsUGU2, TYUcU2x, and zyuzususz; if (us,uz) € A, then a K33 is formed in T by the three
cycles zyugusz, ryususz, and ugususugug. Thus we further assume that {(ug, u2), (us,us)} C A.
It follows that a K§73 is formed in T" by the three cycles uousuguqusa, yusususy, and yususuguly.



Case 3. D = Ms. In this case, u; and ug are symmetric, so are us and us.

e 2 = uy. Then vertices uy and us are the only out-neighbors of y in D’'. If (u3,y) € A, then
an My is formed in T by the five cycles usugusus, yususy, yuousy, ujugusul, and ujugugusuy. If
(y,u3) € A, then a K3 5 is formed in T’ by the three cycles xyusuiz, ryuzusz, and uiuguzugusus.

e 2 = u5. Then u; and ugz are the only out-neighbors of y in D'. If (u4,u1) € A, then
a K33 is formed by the three cycles ujususuqui, ryuiusz, and ryugusr. So we assume that
(ur,uq) € A. If (y,us) € A, then a K3 3 is formed by the three cycles ujusugusgui, xyususz, and
zyuzuix. Thus we further assume that (ug,y) € A. It follows that an Mj is formed in T" by the
five Cycles ULU2U3UTL, U2U3U4LU2, YUSU4LY, TYUST, and TYULU2x.

e 2 = ug. Then ujz is the only out-neighbor of y in D’. If {(ug,y), (us,y)} C A, then an
My is formed in T by the five cycles usuqusus, yususy, usususs, uiususui, and yusuiusy.
Otherwise, if (y,uz) € A, then a K3 5 is formed in 7' by the three cycles xyusuiz, ryususz, and
uruguzugusuy; if (y,uz) € A, then a Kj 3 is formed in T by the three cycles zyusuiz, ryuzusr,
and Ui1U2U3U4LU5UT -

e 2z = u3. Then uq, ug, and ug are the only out-neighbors of y in D’. If {(us, ), (u2,y)} C A,
then an M5 is formed in T by the five cycles yugusy, yuausy, yususy, yuiusy, and ujusugus] .
Suppose at least one of (y,us) and (y,usz) is in T. If both (y,us) and (y,us) are in T, then a
K3 3 is formed by the three cycles ujugugusu1, xyusuiz, and xyusuer. So we assume that either
{(y,us) (2, )} € A or {(y,uz), (us,y)} € A.

Consider the first subcase when {(y,us), (u2,y)} € A. If (ug,us) € A, then a Kj3 is
formed in T by the three cycles xyusuiz, ryugusxr, and ujusugususul. SO We may assume
that (u4,ue) € A. If (ug,uq) € A, then a K33 is formed in T" by the three cycles ujuqususuy,
ryusurr, and zyuguer. If (ug,u1) € A, then a Kj 3 is formed in T by the the three cycles
ULU2UUSUT, YULULUY, and TYU4UEUST .

Consider the second subcase when {(y,u2), (us,y)} € A. If (ug,us) € A, then a K3 is
formed in T by the three cycles zyugusz, xyususx, and ujusugugusuy. If (ui,ug) € A, then a
Ké’g is formed in T" by the three cycles xyusugx, ryuiusx, and ujususugusui. So we assume that
{(ug,ug), (ug,u1)} € A. Then a K§73 is formed in T" by the three cycles ujusugusuy, yusugusy,
and TyuquiuaT.

Case 4. D = M;. In this case, u; and ug are symmetric, so are us and us.

e z = u3. Then us and ug are the only out-neighbors of y in D’. Thus a K33 is formed in T'
by the three cycle ujusugusur, xyusuiz, and xyusuge.

e 2 = uy. Then ug is the only out-neighbor of y in D’. If both {(u2,y), (us,y)} C A, then an
M is formed by the five cycles ujugugui, yususy, yususy, ususueus, and ujusuguat. SO we
assume that at most one of (uz,y) and (us,y) is in T. If (y,u2) € A, then a K3 5 is formed in T'
by the three cycles ujususuguauy, xyusuiz, and ryususz; if (y,us) € T, then a K:’,,’3 is formed
in T by the three cycles xyususx, zyusugz, and uiusuguzuol.

e 2 = ug. Then uy and ug are the only out-neighbors of y in D'. If (us,y) € A, then an
M is formed in T by the five cycles ujusuguy, ugususug, ugususug, yususy, and yusuiusy. If
(y,us) € A, then a K3 5 is formed in T' by the three cycles ryususz, ryusuiz, and uyususuzuguy.

e 2 = uz. Then uy and ug are the only out-neighbors of y in D’. Observe that if both (us,y)
and (u1,y) are arcs in 7', then an M is formed in T' by the five cycles ujuguguy, usususus,
yugusy, yugusy, and yugugu1y. So we assume that at least one of (y,us) and (y,uq) is in 7.
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Suppose (ugq,u1) € A. If (u1,us) € A, then a K33 is formed in T' by the three cycles
uruguguaul, ryusuix, and ryusugx; if (y,us) € A, then a Kz3 is formed in T by the three
cycles ujusuguqui, ryusuix, and ryusugx. So we assume that {(ug,u1), (us,y)} € A. Then a
K§73 is formed in T by the three cycles ujusuouquy, yuguiusy, and ryuguousx.

Suppose (u1,us) € A. If (y,uz) € A, then a K33 is formed by the three cycles ujuqugugus,
ryuguix, and xyusugx. So we assume that (ugz,y) € A. Consider the subcase when (u1,y) € A.
Now (y,u3) € A. If (u4,ug) € A, then the union of the three cycles uguqugusus, ryugsuez,
and ryugugx forms a K33 in T'; if (ug, uq4) € A, then the union of the three cycles ujuquzugus,
yuguou1y, and ryuguqsusz forms a Ké,g in T. Next, consider the subcase when (y,u1) € A. If
(y,ug) € A, then the union of the three cycles ujuquzusui, ryuiusx, and xyugugz forms a K3
in T if (ug,ug) € A, then the union of the three cycles ususugusug, yuiuguoy, and ryuiusuex
forms a K35 in T. Suppose {(u3,¥), (us,us)} € A. Then a K33 is formed in 7' by the three
cycles ujuqususuy, yuguqusy, and ryuguotl .

Combining the above four cases, we establish (1). Therefore T" is not Mébius-free, a contra-
diction. |

3 Structural Descriptions

In this section we show that every Mobius-free tournament can be constructed from some
prime tournaments using 1-sum operations. Our proof relies on the following chain theorem,
which asserts that every i2s tournament 7" = (V, A) with |V| > 5 can be constructed from
{Fy, Fy, F3,Fy, F5} (see Figure 3) by repeatedly adding vertices such that all the intermediate
tournaments are also #2s.

U3

F19F2’F3 F4,F5

Figure 3. vivg,v5v1 € F; vovy,vivs € Fy; vovy, vsv1 € F3; vgvg € Fy; vovg € F.

Theorem 3.1. Let T = (V, A) be an i2s tournament with |V| > 5. Then the following state-
ments hold:

(Z) If |V| =25, thenT € {Fl,FQ,Fg};

(i1) If |V| = 6, then either T has a vertex z with T\z € {Fy, F5, F3} or T € {Fy, F5};
(iii) If |V| > 7, then T has a vertex z such that T\z remains to be i2s.

Our next theorem states that every i2s Mobius-free tournament with at least six vertices
comes from a finite family of sporadic tournaments, which, together with Lemmas 3.4 and 3.5,
gives a structural description of all i2s Mobius-free tournaments.
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Theorem 3.2. Let T = (V, A) be an i2s tournament with |V'| > 6. Then T is Mobius-free iff T’
is one of Gy, Ga, G3, and Fy (see Figure 4).

Vg

V4

Gl G27 G3

Figure 4. vguy € Go and vqv6 € Gs.
Let C3 and Fy be the two tournaments depicted in Figure 5, and let
Ty = {Cs, Fy, Iy, I, Fy, Ga, G}
Our third theorem gives a structural description of all strong Mobius-free tournaments.

U1 U2

V4 U3
Cs Fy

Figure 5. Strong tournaments with three or four vertices.

Theorem 3.3. Let T = (V, A) be a strong Mdébius-free tournament with |V| > 3. Then T can
be obtained by repeatedly taking 1-sums starting from tournaments in Ty, unless T € {F1,G1}.

We break the proofs of these theorems into a series of lemmas.

Lemma 3.4. Let T = (V, A) be a strong tournament. If |V| =3, then T is Cs; if |V| =4, then
T is Fy. (So T is strong iff it is i2s when |V| =3 or4.)

Proof. Since every strong tournament has a Hamilton cycle, it is clear that T = Cj if
|[V| =3 and T = Fj if |V| = 4. Note that both C3 and Fy are i2s, so T is strong iff it is i2s
when |V| =3 or 4. 1

Lemma 3.5. Let T = (V, A) be an i2s tournament. If |V| =5, then T € {Fy, Fs, F3}.
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Proof. If T\u is strong for each u € V, then both the in-degree and out-degree of each
vertex equal two, and hence T is isomorphic to F}.

So we assume that 7'\u has a trivial dicut (X,Y) for some u € V. Since each Fj is isomorphic
to its reverse for i = 1,2, 3, replacing T by its reverse if necessary, we may assume that |X| =1
and |Y| = 3. Let X = {z} and Y = {y1,y2,y3}. Since T'\u is internally strong, Y induces a Cs.
Since T is strong, (u,x) € A, and u has at most two out-neighbors in Y. If u has exactly two
out-neighbors in Y, say y; and ys (by symmetry), then ({u,z},{y1,y2}) would be a nontrivial
dicut of T'\ys, a contradiction. So u has at most one out-neighbor in Y. If v has no out-neighbors
in Y, then all arcs between Y and u are directed to u, so T is isomorphic to F5. If u has only
one out-neighbor in Y, then T is isomorphic to Fj.

Combining the above observations, we conclude that T € {F}, Fy, F3}. |

Lemma 3.6. Let T = (V, A) be a strong tournament and let x and y be two distinct vertices
of T. Then T has a third vertex z such that T\z is still strong, unless T has a Hamilton path
between x and y such that the remaining arcs are all backward.

Proof. Since T is strong, it has a Hamilton cycle C. Let us first consider the case when

(1) T has a strong subgraph S containing both = and y with [V(S)| < |V].

For notational simplicity, we assume that, subject to (1), S is chosen so that |V (59)] is as large
as possible. Then the vertices of S are consecutive on C. Let P = C\V(S). If P has only
one vertex, then we are done. So we assume that P has two or more vertices. Let s and t be
the initial and terminal vertices of P, respectively. Using the maximality assumption on S, we
see that {(v,s),(t,v)} C A for any vertex v in S. We claim that P contains no vertex other
than s and ¢, for otherwise, let z be an internal vertex of P and let v be a vertex in S. Then
either SUC[s™, z]U{(z,v)} or SUC[z,tT]U{(v,2)} would be a strong subgraph of T' properly
containing S; this contradiction to (1) justifies the claim. Since {(v, s), (t,v)} C A for all vertices
v in S, we deduce that T'\z is strong for any vertex z in S\{z, y}.

Next, let us consider the case when (1) does not occur. Renaming x and y if necessary, we
may assume that (z,y) € A. From the hypothesis of the present case, we deduce that (x,y) is
an arc on C, {(z,y"), (z7,y)} C A, and {(z,v), (v,y)} C A for any v € V\{z,y,z~,y*}. Thus
C\(z,y) is a Hamilton path from y to x such that the remaining arcs are all backward. |

Corollary 3.7. Let T = (V, A) be a strong tournament with |V| > 4 and let x be a vertex in T.
Then there exists a vertex z # x such that T\z is strong.

Proof. Let y be a vertex of T" with y # x. By Lemma 2.3,

e cither T has a vertex z # z,y such that T'\z is strong

e or T has a Hamilton path between x and y such that the remaining arcs are all backward.
In the former case z is a desired vertex, and in the latter case y is as desired. |

A digraph is called trivial if it contains only one vertex. The following lemma on strong
partitions of tournaments (see Section 1) is straightforward, so we omit its proof here.

Lemma 3.8. Let T = (V, A) be an internally strong tournament and let (A, As, ..., Ap) be the
strong partition of T. If |V| > 3, then one of the following statements holds:

(i) p=1; Ay is nontrivial;
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(i) p = 2; exactly one of Ay and Az is nontrivial;
(i1i) p = 3; both Ay and A3 are trivial.

The lemma below follows instantly from the preceding one.

Lemma 3.9. Let T = (V, A) be an i2s tournament, let x be a vertex in T, and let (Aq, Az, ..., Ap)
be the strong partition of T\x. Then 1 < p < 3. (The value of p is called the type of x in T).

For convenience, we shall not distinguish each A; from its vertex set V(4;) in subsequent
proofs, if there is no risk of confusion. Thus |4;| = |V (A;)].

The following two lemmas guarantee the existence of a vertex z in an i2s tournament 1" with
at least six vertices such that T'\z remains to be i2s.

Lemma 3.10. Let T = (V, A) be an i2s tournament with |V| > 6. If T contains a vertex x of
type 3 (see Lemma 3.9), then it contains a vertex z such that T\z remains to be i2s.

Proof. Let (A;, A2, A3) be the strong partition of T\x. Since x is of type 3, |A;]| = |A3| =1
by Lemma 3.8. So |A2| > 3. Let z; be the only vertex in A; for i« = 1,3. Since T is i2s, both
(x,21) and (23, z) are arcs in T. Furthermore, = has at least one in-neighbor x; and at least one
out-neighbor x5 in Ay. If there exists z € Ao\ {z1,z2} such that As\z is strong, then T'\z is i2s.
Otherwise, by Lemma 3.6, A has a Hamilton path between 1 and x5 such that the remaining
arcs of Ao are all backward. Let z = x5 if 1 is the only in-neighbor of x in Ay and let z = x;
otherwise. Then As\z is strong and has at least one in-neighbor and at least one out-neighbor
of . Therefore T\ z is i2s. 1

Lemma 3.11. Let T = (V, A) be an i2s tournament with |V| > 6 and T ¢ {Fy, F5} (see Figure
3). Then T contains a vertex z such that T\z remains to be i2s.

Proof. We proceed by contradiction. By a triple (T;x,y) we mean an i2s tournament
T = (V,A) with |V| > 6 and T ¢ {Fy, F5} such that T\z is not i2s for any vertex z, together
with two distinguished vertices  and y in T". Let us choose a triple (T'; x,y) such that

(1) T\z is strong while T\{x, y} is not internally strong;

(2) subject to (1), letting (A1, Aa, ..., Ap) be the strong partition of T\{x,y}, A1 contains
an out-neighbor z’ of z; and

(3) subject to (1) and (2), the tuple (|A1],|As2|, ..., |Ap|) is minimized lexicographically.
By Corollary 3.7, there exists a triple (T'; x,y) satisfying (1). To verify the existence of a triple
(T'; z,y) satisfying both (1) and (2), note that if x has no out-neighbor in Aj;, then it must have
an in-neighbor in A,, for otherwise, y would be of type 3, and hence T'\z would be i2s for some
vertex z by Lemma 3.10, a contradiction. Since each of Fy and Fj5 is isomorphic to its reverse,
replacing 7" by T™ if necessary, we see that the triple (T’ x,y) is available.

Let us make some simple observations about the triple (7;z,y). Since |V| > 6, by (1) we
have

(4) p > 2, and y has an out-neighbor ¢’ in A; and an in-neighbor y” in A,,.

(5) If p = 2, then x has an in-neighbor in A,,.

Otherwise, since |V| > 6 and T'\y is internally strong, |As| = 1 and |A;| > 3, which implies
that T\{z,y} is internally strong, this contradiction justifies (5).
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Once again, since T'\y is internally strong, the statement below follows instantly from Lemma
3.8.
(6) If p > 3 and z has no in-neighbor in A, then |4,| = 1 and z has an in-neighbor in A,_;.

Since A; is strong, either |A;] =1 or |A;| > 3 for 1 <i < p. Let A; = {a;} for each ¢ with
|A;| = 1 hereafter. We divide the remainder of the proof into a series of claims.

Claim 1. |4;| =1.

Assume the contrary: |A;| > 3. Replacing 2’ (resp. %') by a second out-neighbor of z
(resp. y) in A; if necessary, we may assume that z’ # o/, for otherwise, 2’ = 1/ is the unique
out-neighbor of both z and y in A;. Since T\z' is internally strong and A;\z’ has no incoming
arcs, |A1\7'| <1 and thus |A;| < 2, contradicting the assumption on |A;|. By Lemma 3.6, one
of (7), (8), and (9) holds:

(7) A1\{2,y'} has a vertex z such that A;\z is strong.

(8) |A1| = 3. Renaming the vertices in A; as 2/,y/, z if necessary, we assume that both (x, z’)
and (y,y’) are arcs in T, and that if three vertices in A; are all out-neighbors of z, then (y/, z')
is an arc in T'; otherwise, if three vertices in A; are all out-neighbors of y, then (2/,y') is an arc
in T

(9) |A1] > 4 and A; has a Hamilton path P between 2’ and ¢ such that the remaining arcs
in A; are all backward. Furthermore, we may assume that both (v,z) and (v,y) are arcs in T'
for any v € A;\{2',y'}, for otherwise, (7) holds true by replacing 2’ or ¢’ (which is z) with v.

Let z be as specified in (7) or (8), whichever holds, and let z be the terminal vertex of
P\{z',y'} if (9) holds. Clearly, T'\z is strong. We propose to prove that T\z is i2s, which
amounts to saying that

(10) T\{w, z} is internally strong for each w € V'\z.

From (5), (6), and the definition of z, we see that (10) holds trivially for any w € Uf:_QI A; U
{z,y}. It remains to consider the following two cases.

Case 1.1. w € A,.

Depending on whether w = y” (see (4)), we distinguish between two subcases.

e w # y”. In this subcase, |Ap| > 2. Thus x has at least one in-neighbor in A, by (5) and
(6). Let (Bi,Ba,...,By;) be the strong partition of A,\w, let r be the largest subscript such
that B, contains an in-neighbor of z or y, and let B = UL 41 Bi. Since B has no outgoing arcs
in T\w (which is internally strong), |B| < 1. Let us show that T\{w, z} is internally strong, for
otherwise, z is a source and 2’ is a near-source of T'\{w, z}; in particular, (2/,y') € A. From the
descriptions of (7)-(9), we deduce that |A;| = 3 and (z,2) € A. Consider the triple (T’; z, w). Let
(A}, AL, ..., A}) be the strong partition of T\{z,w}. Then A} = {x}. Since T'\z is strong while
T\{z,w} is not internally strong, and |A}| < |A1], the existence of the triple (T’; z, w) contradicts
the minimality assumption on (|41, |Az2], ..., |Ap|) in the choice of (T;z,y) (see (1)-(3)).

e w = y”. In this subcase, we may assume that y” is the only in-neighbor of y in A,, for
otherwise, replacing y” by a second in-neighbor of y in A,,, we reduce the present subcase to the
preceding one. If  has an in-neighbor in Ap\w, then T'\y is strong. Interchanging the roles of
x and y, we reduce the present subcase to the preceding one as well. Thus we further assume
that A,\w contains no in-neighbors of . Since T\w is internally strong, A, = {w}. If w is an
in-neighbor of z, then the existence of the triple (7; z, y) contradicts the minimality assumption
on (|A1], Az, ...,|A4,]) in the choice of (T';z,y) (see (1)-(3)). So w is an out-neighbor of z. By (5)
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and (6), Ap—1 contains an in-neighbor of z. Let us show that T\ {w, 2} is internally strong, for
otherwise, y is a source and y’ is a near-source of T'\{w, z}; in particular, both (y/,2’) and (v/, z)
are arcs in 7. From the descriptions of (7)-(9), we deduce that |A;| = 3 and (z,y) € A. Thus
the existence of the triple (T'; z, w) contradicts the minimality assumption on (|A1],|Az2], ..., |4p]|)
in the choice of (T';z,y) (see (1)-(3)).

Case 1.2. w € A;\z.

Depending on whether (7), (8), or (9) holds, we distinguish between two subcases.

e (7) holds. In this subcase, let (B, Bs, ..., By) be the strong partition of A;\{w, z}, let r
be the smallest subscript such that B, contains an out-neighbor of x or y, and let B = UZT:_IIBZ-.
Then (T\{w, z})\B is strong. If |B| <1, then T\{w, z} is internally strong. So we assume that
|B| > 2. Since T\w is internally strong and since B has no incoming arcs in T\{w, z}, T\w
contains at least one arc from z to B. Thus the triple (T'; z,w) is a better choice than (T;z,y)
(see (1)-(3)) because |B| < |A1], a contradiction.

e (8) or (9) holds. In this subcase, if w = 2/, then T\{w,x, z} is strong, so T\{w, z} is
internally strong. If w = 3 and z has an in-neighbor contained in A,, then T\{w,y,z} is
strong, so T\{w, z} is also internally strong; if w = ¢ and z has no in-neighbor contained in
A,, then z has an in-neighbor z” contained in A, 1 by (5) and (6), and y has an out-neighbor
contained in {z}U (Al\y’)U(Uf;QlAi) (as T'\y/ is internally strong), and hence T\{w, z} is strong.
Suppose w ¢ {2/,y'}. In view of (5) and (6), it is clear that T\{w, z} is strong.

Combining the above two cases, we establish (10) for all w € A, U (A1\z) and hence for all
w € V\z. So T'\z is i2s; this contradiction justifies Claim 1.

Claim 2. |A| =1.

Assume the contrary: |As| > 3. Since T\a; is internally strong, As contains a vertex asg
which is an out-neighbor of x or y. If |As] > 4, let z be a vertex in As\az such that Ag\z is
strong (see Corollary 3.7); if |Aa| = 3, let z be the vertex in Ay with (z,a2) € A. Since T is i2s
and since x has an in-neighbor in 4, ;1 U A, by (5) and (6), T'\z is strong. We propose to show
that T'\z is i2s, which amounts to saying that

(11) T\{w, z} is internally strong for each w € V'\z.

From (5), (6), and the definition of z, we see that (11) holds trivially for any w € {z,y} U
(Ax\z) U (Uf;g1 A;). Tt remains to consider the following two cases.

Case 2.1. w = a;.

In this case, if ay is an out-neighbor of y, then T\{a1, z, z} is strong and hence T\{aq, z} is
internally strong. So we assume that as is an out-neighbor of . If x has an in-neighbor in A,
then T\{a1,y, 2} is strong and hence T'\{a1, z} is internally strong. So we further assume that
x has no in-neighbor in A,. Then |A,| = 1 and z has an in-neighbor in A, by (5) and (6).
We claim that y has an out-neighbor in {z} U (A2\z) U (Uf:_glAi), for otherwise, let B = {y,vy"}
and B = V\{ai1,y,vy",z}. Then (B, B) is a nontrivial dicut in T\{ay,z}, so T\{a1,z} is not
internally strong. Therefore the existence of the triple (T*;z,a1) contradicts the minimality
assumption on (|A1],|As2|, ..., |Ap|) in the choice of (T;z,y) (see (1)-(3)). It follows instantly
from the claim that T\{a1, z} is strong.

Case 2.2. w € A).

Depending on whether w = 3", we distinguish between two subcases.

e w # y”. In this subcase, |A,] > 2. So z has an in-neighbor in A, by (5) and (6). Let

16



(B1, By, ..., By) be the strong partition of A,\w, let r be the largest subscript such that B,
contains an in-neighbor of x or y, and let B = UL__ 41 Bi. Since B has no outgoing arcs in T'\w
(which is internally strong), |B| < 1. Clearly, (T'\{w, z})\B is strong, so T\{w, z} is internally
strong.

e w = y”. In this subcase, we may assume that y” is the only in-neighbor of y in A,, for
otherwise, replacing y” by a second in-neighbor of y in A,,, we reduce the present subcase to the
preceding one. If  has an in-neighbor in Ap,\w, then Ty is strong. Interchanging the roles of
x and y, we reduce the present subcase to the preceding one as well. So we assume that A,\w
contains no in-neighbors of z. Since T'\w is internally strong, |4,\w| <1, so |[4,| < 2. Since A4,
is strong, we have A, = {w}. If w is an out-neighbor of z, then x has an in-neighbor in A,_; by
(5) and (6). Thus T\{w,y, z} is strong and hence T\{w, z} is internally strong. So we further
assume that w is an in-neighbor of z. If A,_; contains an in-neighbor of x or y, then T\{w, z}
is also internally strong; if A,_; contains no in-neighbor of = or y, then (Uf:_f A U{z,y}, Ap—1)
is a dicut in T\w. Since T\w is internally strong, |A,_1| = 1. Thus the existence of the triple
(T*;z,y) contradicts the minimality assumption on (|A1], |As2], ..., |4p]) in the choice of (T;z,y)
(see (1)-(3)).

Combining the above two cases, we establish (11) for all w € {a1} U A, and hence for all
w € V\z. So T'\z is i2s; this contradiction justifies Claim 2.

Claim 3. At least one of (z,a2) and (y,a2) is an arc in 7.

Assume the contrary: both (ag,z) and (ag,y) are arcs in 7. By (5) and (6), = has an in-
neighbor in A, 1 U A, so T\ay is strong. We propose to show that T\as is i2s, which amounts
to saying that

(12) T\{w,az} is internally strong for each w € V\as.

Clearly, (12) holds for w € U?:_gl A; U{z,y}. It remains to consider the following two cases.

Case 3.1. w = a;.

Since T'\a; is internally strong, As contains an out-neighbor of = or y. If A3 contains an
out-neighbor of y, then T\{a1,z,as} is strong, and hence T\{a1,az2} is internally strong. So
we assume that A3 contains an out-neighbor of z. If A, contains an in-neighbor of z, then
T\{a1,y,as} is strong, so T\{a1,as} is internally strong. If A, contains no in-neighbor of z,
then |[Ap| = 1 and z has an in-neighbor in A, 1 by (5) and (6). Thus {z} UA3U...U A,
induces a strong sub-tournament. Since T\a; is internally strong, y has an out-neighbor in
{z} UA4U...UA,_;. It follows that T\{a1,az} is strong.

Case 3.2. w € A).

Depending on whether w = 3", we distinguish between two subcases.

e w # y”. In this subcase, the argument is exactly the same as the one employed in Case
2.2 when w # y".

e w = y”. In this subcase, we may assume that A, = {w} and w is an in-neighbor of x (see
the proof in Case 2.2 when w = y”). If A, contains an in-neighbor of x or y, then T\{w, as} is
internally strong; otherwise, (Uf:_fAi U{z,y}, Ap—1) is a dicut in T\w, so |[Ap_1| = 1. If p = 4,
then T is isomorphic to Fy (see its labeling in Figure 3) under the mapping

(ala az, az, a4, {.’L‘, y}) - (’U5, Ve, V2, V3, {Ula U4})7

contradicting the hypothesis. So p > 5. Thus A,_» contains an in-neighbor of x or y, for
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otherwise (Uf:_f’ A;U{z,y}, Ap—1UA,_2) would a nontrivial dicut in T\w, contradicting the fact
that T\w is internally strong. It follows that T\{w,as} is internally strong, in which a,_; is a
sink and possible y is a source.

Combining the above two cases, we establish (12) for all w € {a1} U A, and hence for all
w € V\ag. So T\ay is i2s; this contradiction justifies Claim 3.

Claim 4. Let k be the largest subscript such that Ay contains an in-neighbor of x. Then
k= 3.

Assume the contrary: k # 3. Since |V| > 6 and |A;| = |A2| =1 by Claims 1 and 2, we have
p > 3. If p =3, then |A4,| > 2, so  has an in-neighbor in A4, by (5) and (6) and hence k = 3,
this contradiction implies that p > 4. We propose to show that

(13) T'\z is i2s for some vertex z of T'.

Depending on the size of A, and value of p, we distinguish among three cases.

Case 4.1. |4,]| > 3.

In this case, x has an in-neighbor z” in A, by (5) and (6). Let z be an arbitrary vertex in
As. Clearly, T'\z is strong. We aim to show that (13) holds for this z. By Claim 3, at least one
of (z,a2) and (y,a2) is in T'. Thus T\{w, z} is internally strong for w € Uf:_?)lAi U{z,y,a1,a2}.
To establish this statement for w € A,, we consider two subcases.

e w # y”. In this subcase, the argument is exactly the same as that employed in Case 2.2
when w # 3"

e w = y”. In this subcase, we may assume that w is the only in-neighbor of y in A,. Observe
that z has an in-neighbor in Ap,\w, for otherwise, since T\w is internally strong, |A,\w| < 1, so
|Ap| <2, a contradiction. Interchanging the roles of z and y, we reduce the present subcase to
the preceding one.

Case 4.2. |A)| =1and p > 5.

In this case, z has an in-neighbor in A, ;1 U A, by (5) and (6). To prove (13), we proceed
by considering two subcases.

e A3 contains an out-neighbor of y. In this subcase, let us show that T\ a9 is i2s. Clearly,
T\as is strong, and T\{ag,w} is internally strong for any w € Uf:_?)lAi U{ai,z,y}. If Apq
contains an in-neighbor of z or y, then T\{as, a,} is internally strong. So we assume that A, ;
contains no in-neighbor of « or y. Note that (UPZ7A; U {x,y}, Ap_1) is a dicut in T\a,. Since
T\a, is internally strong, |A,_1| = 1. Since p > 5, A,_» contains an in-neighbor of = or y, for
otherwise (Uf:_f’ A; U{z,y}, Ap—1 U Ap_2) would be a nontrivial dicut in T'\a,, a contradiction.
It follows that T'\{a2, a,} is internally strong, in which a,_; is a sink and possible one of z and
y is a source.

e All vertices in Ag are in-neighbors of y. In this subcase, let z be an arbitrary vertex in
As; let us show that T'\z is i2s. Clearly, T'\z is strong. Observe that if a, is an out-neighbor of
x, then Uf;llAi U{ag,z} contains an out-neighbor of y, for otherwise (Ufz_glAi U{az, z}, {y,ap})
would be an nontrivial dicut in T\a;, a contradiction. It follows that T\{w, z} is internally
strong for any w € U?;?} A; U{x,y,a2} no matter whether (z,a,) is an arc in T'. Let us make
two more observations.

(14) T\{a1, z} is internally strong. To justify this, note that if (y,as) is an arc in 7', then
T\{a1,x,z} is strong, so T\{a1, z} is internally strong. Thus we may assume that (ag,y) is an
arc in 7. By Claim 3, (z,az) is also in T". If a, is an in-neighbor of x, then T\{a1,y, z} is
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strong and hence T'\{a1, 2} is internally strong; if a, is an out-neighbor of z, then = contains an
in-neighbor in A,_; by (6), and Uf:_i A; U{ag,x} contains an out-neighbor of y as observed in
the preceding paragraph. Thus (14) follows.

(15) T\{ap, z} is internally strong. To justify this, note that if A,_; contains an in-neighbor
of z or y, then T\{a,, z} is internally strong. If A, ; contains no in-neighbor of x or y, then
(Uf;fAi U{x,y}, Ap—1) is a dicut in T\ap, which implies that |A,_;| = 1. Since p > 5, 4, 2
contains an in-neighbor of z or y, for otherwise (Uf;f’ A;U{z,y}, Ap—1 UAp_») is a nontrivial
dicut in T'\a,, a contradiction. Thus (15) holds.

Case 4.3. |A)| =1and p=4.

In this case, (a4, ) is an arc in T by (5), (6), and the assumption k # 3. Depending on the
size of As, we consider two subcases.

e |A3| > 3. In this subcase, A3 contains a vertex as which is an in-neighbor of z or y, because
T\ay is internally strong. If |Az| = 3, let z be the vertex such that (as,z) € As; if |A3g| > 4,
Corollary 3.7 guarantees the existence of a vertex z € Asz\as such that As\z is strong. Let us
show that T\z is i2s. Clearly, T'\z is strong, and T\{w, z} is internally strong for any w # a;.
If (y,az2) is an arc in T, then T\{a1, z, z} is strong and hence T\{a1, z} is internally strong. If
(ag,y) is an arc in T, then so is (z,az) by Claim 3. Since T\{a1,y, z} is strong, T\{a1, z} is
internally strong.

e |A3] = 1. In this subcase, if exactly one of (y,as) and (x,as) is an arc in 7', then T\as
is i2s. So we assume that either both (as,y) and (as,z) are in T" or both (y,as3) and (x,as3)
are in T. If exactly one of (x,a2) and (y,a2) is in T, then T'\a3 is i2s. So we further assume
that both (z,a2) and (y,az2) are in T by Claim 3. Thus both (as,y) and (a3, z) are in T, for
otherwise, ({z,y}, {a1, a2, as}) would be a dicut in T\ a4, a contradiction. Now we can see that
T is isomorphic to Fy (see its labeling in Figure 3) under the mapping

(a1,a2,a3,a4,{z,y}) = (vs,v2,v6,v3, {v1,04}),

contradicting the hypothesis of the present lemma.
Combining the above three cases, we have proved (13); this contradiction justifies Claim 4.

Claim 5. p =4.

Assume the contrary: p # 4. Since |V| > 6 and |A;| = 1 for i = 1,2, we have p > 3. By
Claim 4, (5), and (6), we also have p < 4. So p =3 = k. Let 2 be an in-neighbor of z in As.
Replacing x” (resp. y”) by a second in-neighbor of x (resp. y) in As if necessary, we may assume
that 2" # ", for otherwise, z” is the only in-neighbor of  and y in As. Since T'\z” is internally
strong, |As\z”| < 1, so |As| < 2 and hence |As| = 1, contradicting the hypothesis that |V > 6.
If all vertices in Aj3 are in-neighbors of both x and y, then T'\z is i2s for any z € Az by Claim 3.

So we assume that Az contains an out-neighbor of = or y. We propose to show that T\as
is i2s. Clearly, T\ a2, T\{z, a2}, and T\{y, a2} are all strong. By the hypothesis of the present
case, Az U {x} or A3 U {y} induces a strong sub-tournament of T, so T\{a1,as} is internally
strong. Let w be an arbitrary vertex in As. Since z” # 3", symmetry allows us to assume that
w # 2. If Az\w is strong, then T\{w, as} is internally strong; otherwise, let (B, Bs, ..., By) be
the strong partition of Ag\w. Then g > 2. Let r be the largest subscript such that B, contains
an in-neighbor of z or y and let B = U{_, ., B;. Since (Uj_;B; U {ay,a2,z,y}, B) is a dicut in
T\w, we have |B| < 1. If T\(B U {a2,w}) = U_;B; U {a1,x,y} is strong, then T\{w,as} is
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internally strong; otherwise, w is the only in-neighbor of y in Az U{z}. Since U;_,B; U{ai,z}
is strong, T\{w, a2} is also internally strong.

Combining the above observations, we see that T'\z is i2s for some vertex z of T’; this
contradiction justifies Claim 5.

From (6) and Claims 4 and 5, we deduce that |A4] =1 and (z, a4) is an arc in 7. Depending
on the size of A3, we distinguish between two cases.

e |A3| > 3. In this case, let ” be an in-neighbor of z in A3 (see Claim 4). If |As| = 3, let 2
be the vertex in As such that (z”,2) is an arc; otherwise, let z be a vertex in Ag\z” such that
As\z is strong (see Corollary 3.7). Clearly, T\z is i2s. Let us show it is actually i2s; that is,
T\{w, z} is internally strong for any w € V'\z. This statement holds trivially when w # a;. So
we assume that w = a;. If (y,a2) is an arc in T, then T'\{a1, 2} is strong; otherwise, by Claim
3, (x,a2) is an arc in T'. So (As\z) U {a2,x} induces a strong sub-tournament of 7'. Since T\ a1
is internally, (As\z) U {a2,x} contains an out-neighbor of y. Thus T'\{ay, 2} is strong.

e |A3] = 1. In this subcase, (a3, z) is an arc in T' by Claim 4. If (y,a3) or (y,z) is an arc
in T, then T\ag is i2s. So we assume that both (a3,y) and (x,y) are arcs in 7. Since T'\a; is
internally strong, (y,a2) is an arc in T. Note that (ag, ) is an arc of T, for otherwise T" would
be isomorphic to Fy (see its labeling in Figure 3) under the mapping

(a17 az, a3, a4,, y) — (U47 V1, U5, V2, Vg, U3)7

contradicting the hypothesis of the present lemma. It follows that T\ag is i2s.
Combining the above two cases, we conclude that T' contains a vertex z such that T'\z re-
mains to be i2s; this contradiction proves the lemma. |

With the above preparations, we are ready to establish the main results of this section.

Proof of Theorem 3.1. The desired statements follow instantly from Lemmas 3.5 and
3.11. |

Proof of Theorem 3.2. For convenience, we say that an i2s Mobius-free tournament T”
is an extension of T if T"\v is isomorphic to T for some vertex v of T".

Claim 1. G is the only extension of F}.

To justify this, let T be an extension of F}, let vg be a vertex of T' such that T\vg is
isomorphic to Fi, and label the vertices of T\vg as in Figure 3 for F;. We propose to show
that T is isomorphic to (G1. Since the in-degree and out-degree of each vertex in F; are two, F
enjoys a high degree of symmetry in which all vertices behave likewise.

Since T' is strong, symmetry allows us to assume that v; is an in-neighbor of vg. Then at
most one of (vg,v2) and (vg,vs) is in T', for otherwise, the union of the five cycles vivgvsv,
V1U3V5V1, V2VU3V5V2, V2V4U5V2, and v1vev2v4v1 would form an M in T', a contradiction. Thus we
may proceed by considering the following three cases.

e Both (vg,v6) and (vs,ve) are in T'. In this case, since T' is strong, at most one of (v, vg)
and (vy, vg) is contained in T'. If both (vg, v3) and (vy, vg) are in T', then the five cycles vivov4v7,
UsV2U4V5, V1V3V4V], VeU3V4V6, and vavu3vsvy would form an Ms. Similarly, if both (vs, vg) and
(U6,U4) are in T, then the five Cycles V1V3VU5V1, V2U3V5V2, V2U4V5V2, VgU4U5V6, and V1V3V6V4U1
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would form an Ms in T as well. So both (vg,v3) and (vg,v4) are in 7. Thus T is isomorphic
to G1, where (v1,v2,v3,v4,v5,06) in T corresponds to (ve,vg, v4, V5, v1,v3) in G1 as labeled in
Figure 4.

e Both (vg,v2) and (vs,vg) are in T. In this case, (vg,vs3) is in T, for otherwise, the five
cycles v1v3V4V1, V1V3V5V1, VaU3VU5V3, VaU3VVs, and vyvguovgvy would form an Ms, a contradiction.
If (vg,v4) is in T, then T is isomorphic to G1, where (v1,va,v3, V4, v5,v) in T corresponds to
(va, v3,v4,v5,v1,06) in Gp as labeled in Figure 3. If (vg,vg) is in T, then T is also isomorphic
to G1, where (v1,v2,v3,v4,v5,v6) in T corresponds to (vg,v4, vs,v1,v2,v3) in G as labeled in
Figure 4.

e Both (v2,v6) and (ve,vs) are in T. In this case, (vg,v4) is in T, for otherwise, the five
cycles v1v9v4V1, V1V3V4V1, V1V3V5V1, V1VgV5V1, and vovgvgvsve would form an Ms, a contradiction.
If (vg,v3) is in T, then T is isomorphic to G1, where (vy,va,v3,v4,v5,06) in T' corresponds to
(v1,v2,v3,v4,05,06) in G7 as labeled in Figure 3. If (vs,vg) is in T', then T' is also isomorphic
to G1, where (v1,v2,v3,v4,v5,06) in T corresponds to (v1,ve, ve, V4, V5, v3) in G as labeled in
Figure 4.

Combining the above observations, we see that (G; is the only extension of Fj.

Claim 2. F5 has no extension.

Assume the contrary: T is an extension of Fy such that T\vg is isomorphic to Fy for some
vertex vg of T'. Let us label the vertices of T\vg as in Figure 3 for F,. Since T is i2s, vg has
an in-neighbor in {vy,vs,v4}, for otherwise, ({v2, v}, {v1,v3,v4}) would be a nontrivial dicut in
T\vs, a contradiction. By symmetry, we may assume that (vi,vg) is an arc in 7. Next, vs or
v4 is an out-neighbor of vg, for otherwise ({v1,vs,v4}, {vs,v6}) would be a nontrivial dicut in
T\vy. Depending on the direction of the arc between vg and vz, we consider two cases.

e (vg,v3) is in 7. In this case, if (vg,vs) is an arc in 7', then the union of the three cycles
V1VeU3V4VT, V2U3V4U5V2, and v1veUsvauy 1S a K3 3. So (us,ve) is an arc in T'. If (vg,v6) is an arc
in T, then the union of the five cycles vouzvsve, VgU3V5Vg, VgU3V4VE, V1U3V4V1, and v1U5V2U4V1
would form an M?Z; if (vg, v4) is an arc in 7', then the union of the five cycles vavsv5v2, VeV4V5VE,
VeU4V1 V6, V3040103, and v1v3v5v2v1 would form an M; as well. Thus we reach a contradiction in
either subcase.

e (v3,v6) is in T'. In this case, (vg,v4) is in T'. If (vg, v5) is in T', then the union of the three
cycles v1v3vgU4V1, V2U3VEU5V2, and vivsvav4v; would form a Ks3. Thus (vs,ve) is in T. But
then the union of the five cycles vav vsv9, VgU4V5VE, VgULVIVG, V3V4V1V3, and v1v3vsvev; would
form an Mg, a contradiction.

Combining the above observations, we see that F, has no extension.

Claim 3. G2 and Gj3 are the only extensions of Fj.

To justify this, let 7" be an extension of F3 such that T\vg is isomorphic to F3 for some
vertex vg of T'. Let us label the vertices of T\vg as in Figure 3 for F5. Since T is i2s, vg has
at least one in-neighbor in {v1, vs,v4}, for otherwise ({va, v}, {v1,v3,v4}) would be a nontrivial
dicut in T'\vs, a contradiction.

e (vg,v1) isin T'. In this case, at most one of (vg, v3) and (ve,v4) is in T'. Let us first consider
the subcase when (vy, vg) is in T. Now at most one of (va, vg) and (vs, vg) is in T, for otherwise,
({va,v4,v5},{v1,v6}) would be a nontrivial dicut in T\vs. Next, (vs,vg) is in T, for otherwise,
the three cycles v1v3v4V6V1, V2V4UsV5V2, and v1v3V5V2v1 Would form a K3 3. It follows that (ve, v2)
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is also in T". If (vg,v3) is in T', then the five cycles vjv3v4v1, VeU3V4VE, V2V4VEV2, V2V4V5V2, and
v1v3V5v201 would form an Ms; if (vs, vg) is in T', then the three cycles vivzvgvav1, V1v3V4V5V1, and
veU2v4U5v6 would form a K33 3, a contradiction. It remains to consider the subcase when (vg, v4)
is in T. Thus (vs,ve) is also in T. If (vs,vg) is in T, then the five cycles v1v3vsv1, VV3V5Ve,
VU4 U5V2, VeU4U5V6, and vivzvgvavr would form an Ms, this contradiction implies that (v, vs)
is an arc of T. If (ve,vg) is in T, then the three cycles v1v3vgv4v1, V2VEU4V5V2, and v1V3V5VLVY
would form a K3 3. So (vg,v2) is in T" and thus 7" is isomorphic to G3, where (v1, v, v3,v4, V5, Vg)
in T corresponds to (ve,vs,v4,v1,v6,v5) in G3 as labeled in Figure 4.

e (v1,vg) is in T. Let us first consider the subcase when (vg, v3) is in T. Now (vs,vg) is in
T, for otherwise, the three cycles vivgv3v4v1, V1V6V5V2V1, and vov3v4V5v2 Would form a K3 3. It
follows that (v4,vg) is in T', for otherwise the five cycles vav4v5v2, V6VLV5VE, V1VEVLVL, V1V3V4VT,
and vivzvsveu; would form an MZ. Thus (v4,ve) is in T, which in turn implies that (ve, v2) is
in T, for otherwise ({va,v4,v5},{v1,v6}) would be a nontrivial dicut in 7"\v3. But then the five
cycles vov3UsvU2, V2U4U5V2, V2U4VgV2, V2V Vg2, and v1vgv3vsv; would form an My, a contradiction.
It remains to consider the subcase when (vs,vg) is in T. If (vg,v2) is in T', then the five cycles
V1V3V4V1, V1V3V5V1, V2U3V5V2, V2U3V6V2, and vivguavavy would form an Ms. Thus (ve,ve) is in
T. If (vg,v4) is in T, then the three cycles vivzvv4v1, V1V3V5V20V1, and vovgU4V5V2 Would form a
K3 3. Thus (v4,ve) is in T'. Since T is strong, (ve, vs) must be in T'. Therefore, T is isomorphic
to Ga, where (v1,v2,v3,v4,v5,v6) in T corresponds to (v1,vs, vg, V3, V4, v2) in G as labeled in
Figure 4.

Combining the above observations, we see that G2 and G3 are the only extensions of Fj.

Claim 4. Fj is Mobius-free while Fj is not.

It is routine to check that Fj contains none of the digraphs displayed in Figure 1, so Fjy is
Mobius-free. Let us label F5 as in Figure 3. Then the union of the three cycles vivsvsvgvy,
VaV6U3V4V2, and v1vsvaUev forms a K3 3. Thus Fj is not Mdbius-free.

Claim 5. (G; has no extension.

Assume the contrary: T is an extension of G such that T'\v; is isomorphic to G for some
vertex vy of T. Let us label the vertices of T\v; as in Figure 4 for G;. Depending on the
direction of the arc between vy and v1, we distinguish between two cases.

e (v1,v7) is in T. In this case, (vs,v7) is in T, for otherwise, the union of the three cycles
V1UTUV2U4V, VaVgU3V5V2, and v1vgugvavy would form a Kéjg. If (v7,v6) is in T', then the union
of the three cycles vivrvgvavy, v7vgUsVEVT, and v1v3VsV2v4v1 Would form a K§73. Thus (v, v7)
is in 7', which in turn implies that (ve,v7) is in T, for otherwise, the union of the three cycles
V3V5V7U2V3, V1VgUTU204V1, and v vgv3vsv, would form a K§73. If (v7,v4) is in T, then the union
of the three cycles vovguzusve, vV1V3V5VTV4V1, and v1V9vgV4v1 Would form a K§73. Thus (vy,v7)
is in 7. Since T is strong, (vy,v3) is in T. It follows that the union of the five cycles vivav4v1,
V5UaV4U5, V1VU3V4V1, V7U3V407, and vev7v3vsve would form an Ms, a contradiction. Therefore G
has no extension.

e (v7,v1) is in T. Note that G; is isomorphic to its reverse under the mapping

(v1,v2,v3, 04,5, V6) — (Vs, V4, Vs, V2, V1, V3).

So if T' is an extension of G, then 7™ is also an extension of G;. If (v7,vs) appears in T, then
(v1,v7) is in T* and hence the present case reduces to the preceding one. So we may assume that
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(vs,v7) is in T, which implies that (v7,vs) is in T, for otherwise the union of the three cycles
V9U3V4U5V2, V1U2U3V7V1, and v1vgv4v5v7v1 would form a Kéyg. Thus (v7,v9) is in T, for otherwise,
the union of the five cycles viv9v7v1, V1V2V4V1, V1VU3V4VL, V1V3V5V1, and vov7VU3V5Ve Would form
an M. But then the union of the three cycles vavgusv7v2, v3V4V5V7V3, and vivaveV3V4V Would
form a K3 3, a contradiction.

Combining the above observations, we see that G; has no extension.

Claim 6. Neither G5 nor G3 has an extension.
To justify this, observe that 3 is isomorphic to G5 under the mapping

(v1, v2,v3, 4,5, V6) — (U3, Vs, V1,04, V2, V).

So if T is an extension of G9, then T™* is an extension of G3. Hence it suffices to show that Go
has no extension. Assume the contrary: 7" is an extension of G such that T'\v7 is isomorphic to
G4 for some vertex vy of T. Let us label the vertices of T\v7 as in Figure 4 for G3. Depending
the direction of the arc between vy and vy, we distinguish between two cases.

e (v7,v1) is in T. Let us first consider the subcase when (vs,v7) is in T. Now (vg,v7) is
in T, for otherwise, the union of the three cycles vivgvivsv1, v1V6V3V7v1, and v3v7v4v5v3 would
form a Ks33. Next, (v7,vs) is in T, for otherwise, the union of the three cycles vivgvzv7vy,
V3V4U506V3, and v1v2v4V5v7v; would form a K§,3. If (v7,v6) is in T, then the union of the five
cycles v1v6U3V1, V7VEU3VT, U3VTU5VS, U3U4U5V3, and v1vv4v5v] would form an Ms; if (ve, v7) is in
T, the the union of the three cycles vivgvrvsv1, V1VsV3V4V1, and v7vsv3v4v7 Would form a K3 3,
a contradiction. It remains to consider the subcase when (v7,v3) is in 7. Now (v7,v2) is in
T, for otherwise, the union of the three cycles v1vgv3v4v1, vV1VgUoVTVL, and VoV7V3V4V5V9 Would
form a K3 3. Since T is i2s, (v, v7) must be in 7', for otherwise ({vs,v7}, {v1,ve,v3,v2}) would
be a nontrivial dicut in T\vy. Thus (v7,v4) is in T, for otherwise the union of the three cycles
V1VgUTU3V1, VaU4U7V3V2, and v1vgv2v4v5v1 would form a K§73. But then the union of the three
cycles v1vgv7v3V1, V4U5VEVTV4, and v1vov4v5v3v1 also forms a K :’;,73, a contradiction.

e (v1,v7) is in T. Let us first consider the subcase when (v7,vg) is in T. If (v7,v4) is in T,
then the union of the three cycles vivrvgvsvi, viv7v4V5V1, and vsvavsvevs would form a K3 3;
if (vq,v7) is in T, then the union of the three cycles viv7vgv3V1, Vov4V7VEV2, and vivaV V5V3VL
would form a K33, a contradiction. It remains to consider the subcase when (vg,v7) is in 7.
Now (vs,v7) is in T, for otherwise the union of the five cycles vivgvzv1, v1v6VLV1, V4V5VEVL,
v7vsvev7, and vivrvsvsv; would form an Ms. Since T is i2s, (vr,v3) is in T, for otherwise
({v1,v3,v5,v6}, {v2,v7}) would be a nontrivial dicut in 7'\vs. But then the union of the three
cycles v1vgv7U3V1, V1V6V4V5V1, and v3v4vsvrvs forms a K3 3, a contradiction.

Combining the above observations, we see that G2 has no extension.

Claim 7. F4 has no extension.

Assume the contrary: 7' is an extension of Fjy such that 7T'\v7 is isomorphic to Fj for some
vertex vy of T. Let us label the vertices of T'\v; as in Figure 3 for Fy. Depending on the direction
of the arc between vy and v7, we distinguish between two cases.

e (vg,v7) is in T. In this case, (vs,v7) appears in T, for otherwise, the union of the three
cycles vivouzvavy, V3V4V5V6Vs, and vivaVTUsVgY1 Wwould form a K§,3. Next, (ve,v7) is in T, for
otherwise, if (v3,v7) is in 7', then the union of the three cycles vjvsvovsvy, v1v5VgV4v1, and
V9U3V7VgU4V2 would form a K§,3; if (v7,v3) is in T', then the union of the three cycles vivsv3vy,
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VoU7V3V4V9, and v1vsvav7vgv1; would also form a K{)),g, a contradiction. Since T is i2s, at least
one of (v7,v1) and (vy,v4) is in T, for otherwise ({vg, vs,v1,v4},{v2,v7}) would be a nontrivial
dicut in T\v3. Assume that (v7,v;) isin 7. If (v7,v3) is in T', then the union of the three cycles
V1U5U3V4V1, V2U7U3V4V2, and v1usvav7vr would form a K3 3; if (v3, v7) is in T', then the union of the
three cycles vivsvgvrv1, v1V2V3V7V1, and VoV3V4V5VeV2 Would form a K. §73, a contradiction. Thus
(v1,v7) is in T and hence so is (v7,v4). Consequently, the union of the three cycles vivsvgvsvy,
V7U405VgV7, and v1v7v4V9v3v1 forms a K§73, a contradiction.
e (v7,v2) is in T. Observe that Fj is isomorphic to its reverse under the mapping

(v1,v2,v3, V4, V5, v6) — (V4, Vg, Us, U1, U3, U2).

If T is an extension of Fy, then T* is also an extension of Fy. If (v7,vg) occurs in T, then (ve, v7)
occurs in 7™, and hence the present case reduces to the preceding case. So we may assume
(v, v7) isin T

Let us first consider the subcase when (vs,v7) is in 7. Then (vs,v7) is in T, for otherwise,
the union of the five cycles vivsvgvav1, v1V2v3V4v1, and vovgv7VsVgU2 Would form a K§73, a
contradiction. If (v7,v4) is in T, then the union of the three cycles vivsv7v4v1, Vov3V7V4V2, and
vivsvauzvy would form a Ks3. So (v4,v7) is in T. Since T is i2s, (v7,v1) is in T', for otherwise
({ve, vs,v1,v4}, {v2,v7}) would be a nontrivial dicut in 7"\vs. Thus the union of the three cycles
V1U2V3V7V1, V1U5V6UTV1, and vav3v4v5v6v2 would form a K§73, a contradiction.

It remains to consider the second subcase when (v7,v3) is in 7. Assume that (v, v7) is in
T. Then (v4,v7) is in T', for otherwise, the union of the three cycles vjvsvgvzv1, V7V4V5V6vV7, and
V10704020301 would form a K§73, a contradiction. Since T is i2s, (v7,vs) is in T, for otherwise
({ve, vs,v1,v4},{v2,v7}) would be a nontrivial dicut in T'\vs. But then the union of the three
cycles vav3v4V7V9, V4VTUEVEV,, and v1V5v6V2v3v1 Would form a K§,3, a contradiction. So (v7,v1)
must appear in 7. Since T is i2s, (v4,v7) is in T, for otherwise ({vg,v7}, {v1, v2, v3,v4}) would
be a nontrivial dicut in T\vs. But then the union of the three cycles vivsvov3v1, V7VV3V4VT,
and v1v5v6v4v7v1 would form a Ké’g, a contradiction again. So Claim 7 is justified.

From Claims 1-4, we conclude that Gy, Gs, G3, and Fy are the only i2s Mobius-free tour-
naments on six vertices. By Claims 5-7 and Theorem 3.1(iii), there is no i2s Mobius-free
tournament on seven or more vertices. This completes the proof of Theorem 3.2. |

Proof of Theorem 3.3. We apply induction on |V|. By Lemma 3.4, T = Cs if |[V| =3
and T'= Fp if |V| =4, so T € Ty if |V| < 4. Let us proceed to the induction step.

If T is i2s, then T' € T; by Theorem 3.2 and Lemmas 3.4 and 3.5. So we assume that 7T is
not i2s. Thus T' can be expressed as the 1-sum of two smaller strong Mdobius-free tournaments
T) and T5 by Lemmas 2.2 and 2.3. Note that T; ¢ {F1, G1} because neither F} nor G; contains
a special arc for i = 1,2. By induction hypothesis, both 77 and T5 can be constructed by re-
peatedly taking 1-sums starting from tournaments in 77, and hence so can 7. |

So far we have demonstrated that every i2s Mobius-free tournament comes from a finite set.

Let us proceed to consider a strong tournament 7' that is not i2s; in this case, it is hard to give
a clear description of T'. Nevertheless, by Lemma 2.2, T' can be expressed as the 1-sum of two
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smaller strong Mobius-free tournaments 77 and 75. We can gain enough structural information
about T if we impose minimality constraint on |V (7%)|.
Let Fg be the tournament depicted in Figure 6. Observe that it is not i2s because Fg\vg has

a nontrivial dicut. Let
75 - {F07F27F37F47F67G27G3}‘

Then 72 = (T1\{C3}) U {Fs}.

Fy

Figure 6. A minimal tournament involved in 1-sum

Lemma 3.12. Let T = (V, A) be a strong Mdébius-free tournament. Suppose T is the 1-sum of
two smaller strong Mobius-free tournaments Ty and Ty such that |V (T5)| is as small as possible.
Then Ty € 7.

Proof. Since T is the 1-sum of two smaller strong Mobius-free tournaments 77 and T, we
have |V (T;)| > 4 for i = 1,2. If Ty is i2s, then Ty € T1\{C3} by Theorem 3.3, and hence T» € 7.
It remains to consider the case when T5 is not i2s.

Recall the definition of the 1-sum operation in Section 2. There exist a special arc (a1, b1)
in 77 and a special arc (by, ag) in Th, with dE (a1) = drp,(az) = 1, such that T' is obtained from
the disjoint union of T7\a; and Ts\ag by identifying b; with be (the resulting vertex is denoted
by b) and adding all arcs from 771\{a1,b1} to T2\{az, b2}. We propose to show that

(1) T>\v is internally strong for any v € V(73)\ax.

Assume the contrary: T»\v has a nontrivial dicut (X,Y") for some v € V(T3)\ag. Since ag is
a near-source in 75, we have ag € X and Y C V(T)\{az2,b2}. Let x be a vertex in X and y be a
vertex in Y such that both (v, z) and (y,v) are arcs in Ty. Set T] = T\ (Y \y) and T3 = T\ (X \z).
Then T is the 1-sum of T] and T3 over (v, z) and (y, v), with 3 < |V (T3)| < |V (T%)], contradicting
the minimality hypothesis on T5. So (1) is justified.

Since T3 is not i2s, T\ag has a nontrivial dicut (X,Y") by (1). Since T5 is strong, by € Y.
Observe that

(2) |Y| = 2, for otherwise, (XU{az2}, Y\b2) would be a nontrivial dicut in 75\b2, contradicting
(1).
Let co be the vertex in Y'\be. Since T3 contains no sink, (cg,b2) is an arc in 7. Let S be the
sub-tournament induced by X. Then

(3) S is strong, for otherwise, let (A1, A, ..., A,) be the strong partition of S. Then p > 2.
Thus (A1 U{ag}, U'_,A; U {co}) would be a nontrivial dicut in T'\bs, contradicting (1).

(4) |X| = 3.
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Suppose not. Then |X| > 4. Since S is strong by (3), it has a 4-cycle djdadsdsd;. Note
that both (ag,d;) and (d;, be) are arcs in Ty for 1 < i < 4. Thus the cycle dydadsdsd; together
with the five arcs (b2, a2), (a2,d2), (az,ds), (di,b2), and (ds,b2) would form a K33 in T3, a
contradiction.

Combining (1)-(4), we see that T is isomorphic to Fg. 1

Lemma 3.13. Let T = (V, A) be the 1-sum of two smaller strong Mdébius-free tournaments Ty
and Ty over the special arcs (a1,by) and (be,as) such that Ty € Tz, and let T' be the digraph
obtained from T by contracting two vertices x and y in To\{az,bo}. Then T is also Mébius-free.

Proof. Let Ty be the digraph obtained from 75 by contracting x and y. Notice that 7% may
contain opposite arcs. Since Ty € T, we have |V (T3)| < 5, so Ty is Mobius-free. Let T3 be an
arbitrary spanning tournament contained in 7%, and let 7" be the 1-sum of T} and 7%'. Then T"
is a spanning tournament contained in 7”. By Lemma 2.3, 7" is Mobius-free. It follows that T’
is also Mobius-free, because none of K3 3, K§73, Ms, and M7 contains a pair of opposite arcs. 1

4 Reductions: Getting Started

Throughout this paper, an instance (T, w) consists of a Mobius-free tournament 7' = (V, A)
with a nonnegative integral weight w(e) on each arc e. We say that another instance (7", w')
is smaller than (T,w) if |[V'| < |V] or if |[V'| = |[V| but w(A") < w(A), where T = (V', A").
Recall the fractional FAS problem P(7T,w) and the fractional cycle packing problem D(T', w)
introduced in Section 1. We shall prove Theorem 1.1 using reduction methods; the objective of
the reduction step is given below.

Theorem 4.1. Let (T, w) be an instance, such that D(T', w') has an integral optimal solution for
any smaller instance (T',w') than (T,w). Then D(T,w) also has an integral optimal solution.

Our proof relies heavily on a structural description of T. Clearly, we may assume that T
is strong. As shown in Section 3, if T" is i2s, then it comes from a finite list. The following
lemma asserts that if T is not ¢2s, then it can be expressed as the 1-sum of two smaller strong
Mobius-free tournaments 77 and 75, such that the structure of T5 is relatively simple. Thus our
proof may proceed by merely performing reduction on 75. In our lemma, s* is the vertex arising
from contracting S in 7'/S, the tournaments G4, G5, Gg are shown in Figure 7, and

7-3 = {F07F37F47F67G27G37G47G57G6} — (7—2\F2) U {G47G5a GG}

Moreover, we say that a cycle C in T is positive if w(e) > 0 for each arc e on C, and say that
C crosses b (the hub of the 1-sum) if it contains an arc between 77\ {b, a1} and T5\{b, as}.

Lemma 4.2. Let T = (V, A) be a strong Mdébius-free tournament with a nonnegative integral
weight w(e) on each arc e. Suppose T,(T) > 0 and T is not i2s. Then T is the 1-sum of two
smaller strong Mébius-free tournaments Ty and T over two special arcs (a1,b1) and (ba,a2),
such that one of the following three cases occurs:

(i) Tw(To\a2) >0 and Ty € Ta;
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N

Gy

Figure 7. Three more tournaments involved in structural description

(1i) Tw(To\a2) > 0 and there exists a vertex subset S of To\{az,ba} with |S| > 2, such that
T[S] is acyclic, To/S € T3, and s* is a near-sink in T/S. Furthermore,

o (by,a2) = (vi,v5) and s* =wvg if To/S = Gy;
o (by,a2) = (ve,v6) and s* = v if To/S = G5;
o (by,a2) = (vg,v7) and s* = w5 if To/S = Gg; and

(i1i) every positive cycle in T crosses b.

Proof. To establish the statement, we shall construct a sequence of 1-sums of 7' until one
of the three desired cases occurs.

By Lemmas 2.2 and 2.3, T' can be expressed as the 1-sum of two smaller strong Mobius-free
tournaments 771 and Ti9; subject to this, |V (T12)| is as small as possible. Let (aj1,b11) in 711
and (bj2,a12) in T12 be the two special arcs involved in the definition of the 1-sum, and let by
denote the hub of the 1-sum. By Lemma 3.12, we have T2 € To. If 7,,(T12\a12) > 0, then (i)
occurs, with 77 = 711 and T = T12. So we may assume that 7,,(T12\a12) = 0. Furthermore,

(1) Ty2\a12 is an acyclic tournament in which by is the sink.

To justify this, let K be an MFAS in T12\a12. Then w(K) = 0 and T12\ K is acyclic. Let J
be the set of all arcs leaving b; in Ti2\a12. Note that no arc in J is contained in any positive
cycle in T that crosses b. Let T{, be obtained from Tj2 by reversing the directions of all arcs
in J and some arcs in K so that T75\a12 is acyclic, and define the weight of each reversed arc in
T}, to be zero. Let T = (V, A’) denote the resulting tournament and let w’ denote the resulting
weight function defined on A’. Then T’ remains strong. Since no arc in K U .J is contained
in any positive cycle in T, it is clear that every optimal solution to (7', w) corresponds to a
feasible solution to D(7”, w') with the same objective value, and vice versa. So we may assume
that T is 7" and that w is w’. Thus (1) holds.

At a general step i, suppose 1T is the 1-sum of two smaller strong M&bius-free tournaments 751
and Ty over two special arcs (a;1,b;1) and (b2, a;2), such that Tjs\ai2 is an acyclic tournament
in which b; (the hub of the 1-sum) is the sink. Let S; be the vertex set of Tjo\{a;2,b;}, and let
T; be the tournament obtained from 7' by contracting \S; into a single vertex s;. Clearly, T; is
isomorphic to Tj;, in which s} corresponds to a;; and is a near-sink. If 7,,(7;\s}) = 0, then every
positive cycle in T crosses b;. So (iii) occurs, with 71 = T;1, T5 = T2, and b = b;. Thus we may
assume that 7,(7;\s;) > 0. We construct a new 1-sum of 7" as follows.
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Assume first that T; is i2s. In this case, T; and hence T;; is a member of 75 by Lemma 3.12.
Furthermore, Tj; # Fg. Let T”, T/;, and T}, be the reverses of T, T;;, and Tja, respectively. Then
T" is the 1-sum of two smaller strong Mobius-free tournaments T}, and T};, with T}, € T2\ Fg.
Since there is a one-to-one correspondence between cycles in T and those in 77, D(T, w) has an
integral optimal solution iff so does D(7”, w’). Thus we may assume that T is 7" and hence (i)
occurs.

Assume next that 7T; is not i2s. By Lemmas 2.2 and 2.3, T; can be expressed as the 1-sum
of two smaller strong Mébius-free tournaments 77, and T}y; subject to this, |[V(T7y)| is as small
as possible. By Lemma 3.12, we have T}, € T5. Let (al;,b};) in T/, and (b}y,aly) in T}, be the
two special arcs involved in the definition of the 1-sum, and let b, denote the hub of this 1-sum.
We proceed by considering two subcases.

e b, # s. In this subcase, s} is contained in T},\{ay, b;}, because it is a near-sink in 7;.
Hence b; is contained in T} \a},. Observe that 7' is the 1-sum of two smaller strong Mobius-
free tournaments 7(;;1); and T{;y1)2, such that the hub b;1; of this 1-sum is exactly b, and
that T(i+1)1 = T;II' Let (a(i+1)1,b(i+1)1) in T(i—l—l)l and (b(i+1)2,a(i+1)2) in T(i+1)2 be the two
special arcs involved in the definition of this 1-sum. Then Tjs\a;2 is a proper subtournament
of T(i+1)2\a(i+1)2. If Tw(T(i+1)2\a(i+1)2) > 0, then (ii) occurs, with T} = T(i+1)1a T = T(i+1)2a
S = S, and s* = sf. Furthermore, T5/S # F», because no vertex in {vi,vs,vs} (see the
labeling in Figure 3) is a near-sink in F»\vy and hence corresponds to s*. So we assume that
Tw(T(i+1)2\(i41)2) = 0. Furthermore,

(2) T(i41)2\@(i42)2 is an acyclic tournament in which b;1; is the sink.

Since the proof goes along the same line as that of (1), the details are omitted here. In view of
(2), we can repeat the construction process by replacing @ with i + 1.

e U, = s¥. In this subcase, b; is contained in T}, \{a};,b;}, because it is the only out-neighbor
of s} in T;. Since Tjy € T3 (see the labeling in Figures 3-6) and since (by, aly) is a special arc of
T},, and b}, = b} = s} is a sink of T}, \a},, it is routine to check that one of (3)-(5) occurs:

(3) Ti/2 = I, (b§27a§2) = (va,v1), and s} = vg;

(4) Ty = Fy, (b, aly) = (vs,v2), and sF = vs; and

(5) Tz’/2 = Fs, (b227a;2) = (vs, v6), and s} = vs.

Observe that T is the 1-sum of two smaller strong Mobius-free tournaments T{;41); and T{;41)2
along two special arcs (ai+1)1,ba+1)1) 0 T(i41)1 and (bgq1)2, a(i+1)2), such that the hub by
of this 1-sum is exactly b; and that T(;11y1\a@4+1)1 = 71 \{s},a}; }. Clearly, Tio\a;2 is a proper
subtournament of T(i+1)2\a(i+1)2. It is a simple matter to check that T(; )2 /S; is isomorphic to
Gi+1 when () holds for t = 3,4, 5. If 7, (T(;31)2\@(i+1)2) > 0, then (ii) occurs, with T1 = T{;;1)1,
Ty = Tii41)2, S = Si, and s* = s7. So we assume that 7,(T(;41)2\a(i4+1)2) = 0. Furthermore,
T(i+1)2\@(i42)2 is an acyclic tournament in which b; 41 is the sink. Since the proof is exactly the
same as that of (2), we omit the details here. Thus we can repeat the construction process by
replacing ¢ with ¢ + 1.

Since Tj2\a;o is a proper subtournament of T(i+1)2\(l(i+1)2 for each step ¢, the construction
process terminates in a finite number of steps. Therefore one of (i)-(iii) holds. 1

¥ =

¥ =

In the remainder of this section, we assume that (7', w) is an instance as described in Theorem
4.1, and that T = (V, A) is the 1-sum of two strong Mobius-free tournaments 77 and T over
two special arcs (a1,b1) and (bg, az).
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Let C be the set of all cycles in T', let C; be the set of all cycles in T;\a; for i = 1,2, and let
Co = C\(C1 UCs). Note that each cycle in Cy crosses b, the hub of the 1-sum. For each arc e of
T,let Cle)={C €C:ecC}andCie)={C e€C;:ecC}fori=0,1,2.

Let y be an optimal solution to D(7', w), and let v (T") denote the optimal value of D(7T’, w).
Then v} (T) = yT1. Set C¥ = {C € C: y(C) > 0} and C! = {C € C; : y(C) > 0} for i = 0,1, 2.
For each arc e of T, set z(e) = y(C(e)). We say that e is saturated by y if w(e) = z(e) and
unsaturated otherwise, and say that e is saturated by y in T; if w(e) = y(C;(e)) for i = 1,2. For
each D C CY, we say that arc e is outside D if e is not contained in any cycle in D.

Let us exhibit some properties enjoyed by optimal solutions to P(7,w) and D(T,w), and
make further technical preparations for the proof of Theorem 4.1.

Lemma 4.3. Let T' = (V, A) be a tournament with a nonnegative integral weight w(e) on each
arc, and let & (resp. y) be an optimal solution to P(T,w) (resp. D(T,w)). Then the following
statements hold:

(i) x(C) =1 for any cycle C of T with y(C) > 0;

(ii) x(e) =0 for all e € A with z(e) < w(e);

(iii) w(e) = z(e) for all e € A with z(e) > 0; and

(iv) Let Cy and Co be two cycles of T with y(C;) > 0 for i = 1,2. Suppose a and b are

two common vertices of C1 and Cy such that Ci(a,b) is vertez-disjoint from Cs_;(b,a) for

i=1,2. Then Y eeclap 2(€) = YecCslap (€)-

Proof. Statements (i)-(iii) follow directly from the complementary slackness conditions. To
justify (iv), let & = min{y(C1),y(C2)}, let C! = Cs_;[a,b] U C;[b,a] for i = 1,2, and let y' be
obtained from y by replacing y(C;) with y(C;) — 6 and replacing y(C!) with y(C!)+6 for i = 1, 2.
Clearly, ¥’ is also an optimal solution to D(7',w). Using (i), we obtain z(C;) = z(C}) = 1 for
i = 1,2, which implies Y ccc(ap) T(€) = Yeeccylap T(e)- 1

Lemma 4.4. Let y be an optimal solution to D(T,w). Then D(T,w) has an integral optimal
solution if one of the following conditions is satisfied:

(i) w(e) > [z(e)] for some e € A;
(ii) C§ = 0; and
(iii) y(C) is integral for some C € CY.

Proof. (i) Define w’ € Z4 by w'(e) = [z(e)] and w/(a) = w(a) for all a € A\e. Then
w(A) > w'(A). By the hypothesis of Theorem 4.1, D(T,w’) has an integral optimal solution
y'. Since y is also a feasible solution to D(T,w’), we have (y/)T1 > y71. So 9 is an integral
optimal solution to D(7, w) as well.

(ii) Since C§ = 0, each cycle in CY is contained in T;\a; for ¢ = 1 or 2. Let w; be the
restriction of w to T;\a;. Then the hypothesis of Theorem 4.1 guarantees the existence of an
integral optimal solution y; to D(7;\a;, w;). Clearly, the union of y; and ys yields an integral
optimal solution to D(T, w).

(iii) Define w’ € Z4 by w'(e) = w(e) — y(C) for each arc e on C and w'(a) = w(a) for all
other arcs a. Then w(A) > w'(A). By the hypothesis of Theorem 4.1, D(7, w'’) has an integral
optimal solution y’. Clearly, y yields a feasible solution to D(T,w’) with value y”'1 — y(C).
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So (y)T1 > yT1 — y(C). Let y* € ZS& be defined by y*(C) = y(C) + y/(C) and y*(D) =
y'(D) for all D € C\C. Then y* is an integral feasible solution to D(7T,w) with value at least
(y)T1+ y(C) > yT'1. Hence y* is an integral optimal solution to to D(T, w). 1

Lemma 4.5. Let G = (U, E) be a Mdébius-free digraph obtained from a tournament by adding
some arcs, and let c¢(e) be a nonnegative integral weight associated with each arc e € E. If
|U| < |V| orif |U| = |V| but ¢(E) < w(A), where V and w(A) are as defined in Theorem 4.1,
then D(G, c) has an integral optimal solution.

Proof. The proof technique employed below is due to Barahona and Mahjoub [6].

Let us repeatedly apply the following operations on G whenever possible: For each pair of
opposite arcs e and f, replace ¢(g) by ¢(g) —0 for g = e, f, where § = min{c(e), ¢(f)}, and delete
exactly one arc g € {e, f} with ¢(g) =0 from G. Let G’ = (V’, A’) be the resulting digraph and
let ¢’ be the resulting weight function. Clearly, G’ is a tournament. Hence, by the hypothesis of
Theorem 4.1, G’ is CM. Let F’ be a minimum FAS of G’ and let y’ be a maximum cycle packing
in G'. Then ¢(F') = (y)"1.

Define y(C) = ¢/(C) for all cycles C' in G’. For each 2-cycle C formed by arcs e and f in G,
define y(C') = 0, where § = min{c(e), ¢(f)}, and place g and all arcs in F” into F', where g is the
arc in {e, f}\A’. Repeat the process until all 2-cycles in G are exhausted. Clearly, F' is an FAS
of G, y is a cycle packing of G, and ¢(F) = yT1. By the LP-duality theorem, y is an integral
optimal solution to D(G, c). ]

Lemma 4.6. Suppose a = (s,t) is a special arc of T = (V, A), where s is a near-sink. Then
D(T,w) has an integral optimal solution if one of the following conditions is satisfied:

(i) w(e) = z(e) for all arcs e € 6 (s);

(ii) v (T) is an integer;
(i1i) x(a) =0 for some optimal solution x of P(T, w);
(v) a is unsaturated by y; that is, z(a) < w(a).

Proof. (i) By Lemma 4.4(i), we may assume that w(a) = [z(a)]. Since w(e) = z(e) for all
e € 67 (s) and z(a) = Y ces-(s) 2(€), we obtain w(a) = Y ce5-(s) w(e). Let T" = (V', A’) be the
digraph obtained from T by contracting the arc a; we still use ¢ to denote the resulting vertex.
By Lemma 2.4, T' is also Mobius-free. Define w’ € Z4' as follows: w/(e) = w(e) if e is not
directed to ¢, w'(e) = w(f) +w(e) if f = (r,s) and e = (r,t) are both in A, and w'(e) = w(f) if
f=1(r,s)isin A while e = (r,t) is not. It is easy to see that every integral feasible solution of
D(T,w) yields an integral feasible solution to D(7”,w’) with the same objective value, and vice
versa. As D(7”,w’) has an integral optimal solution by Lemma 4.5, so does D(T, w).

(ii) By (i), we may assume that w(e) # z(e) for some arc e = (r,s) in A. By Lemma 4.4(i),
we may assume that w(e) = [z(e)]. So [z(e)] # z(e). Set § = z(e) — |z(e)|. Then 0 < 6 < 1.
Let w’ be obtained from w by replacing w(e) with w(e) — 1. Then any optimal solution y of
D(T, w) yields a feasible solution of D(7,w’) with value at least v}, (T') — 0. By the hypothesis
of Theorem 4.1, D(T,w’) has an integral optimal solution vy’ with value at least v (T') — 6 and
hence at least v (T). So ¥y’ is also an integral optimal solution to D(7T, w).

(iii) For each r € V\{s,t} with e = (r,t) € A, we claim that z(e) = z(f), where f = (r,s).
If w(e) = 0 or w(f) = 0, clearly we may assume that z(e) = z(f) (modifying one of them if
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necessary, the resulting solution remains optimal). Next, consider the case when w(e) > 0 and
w(f) > 0. Let C7 and Cy be two cycles passing through e and f, respectively, with y(C;) > 0
for i = 1,2. By Lemma 4.3(iv), z(e) = x(a) + z(f) = z(f). So the claim is justified.

Let T" = (V' A’) be the digraph obtained from T by contracting the arc a. By Lemma
2.4, T' is also Mobius-free. Define w’ € Z4' as follows: w'(e) = w(e) if e is not directed to t,
w'(e) = w(f) +w(e) if f = (r,s) and e = (r,t) are both in A, and w'(e) = w(f) if f = (r,s) is
in A while e = (r,t) is not. Let &’ € Rﬁ/ be the projection of @, and let y’ be obtained from
y as follows: for each cycle C passing through (7, s) in T with y(C) > 0, let C’ be the cycle in
T’ arising from C by replacing the path rst with (r,¢) and set y'(C’) = y(C) + y(C’). By the
LP-duality theorem, &’ and y’ are optimal solutions to P(T",w’) and D(T”,w’), respectively,
with the same objective value as  and y. By the hypothesis of Theorem 4.1, D(7”, w’) has an
integral optimal solution. So v (T) is an integer. Thus (iii) follows from (ii).

(iv) Since z(a) < w(a), we have z(a) = 0 by Lemma 4.3(ii). Therefore (iv) can be deduced
from (iii). 1

Recall that Cy is the set of all cycles in Th\ag2. In the following lemma, Dy, is the set of all
cycles of length k in T\ a9, and ¢ is the length of a longest cycle in Th\az. Thus Cy = Ug:3 Dy..
Let H; = (V;, E;) be a digraph for i = 1,2,... k. A digraph H = (V, E) is called a multiset sum
of these k digraphs if V = Uf:ﬂ/; and FE is the multiset sum of all these E;’s; that is, if an arc
(u,v) is contained in ¢ of these H;’s, then there are precisely ¢ parallel arcs from u to v in H.

Lemma 4.7. Lety be an optimal solution to D(T, w) such that y(Cz) is maximized and, subject
to this, (y(Dy),y(Dg-1),--.,y(D3)) is minimized lexicographically. Then the following state-
ments hold:
(i) Every C € C contains an arc e that is saturated by y;
(ii) Every C € Cy contains an arc that is outside C§;
(iii) If Cy € C§ and Cy € Co share arcs, then some arc on Co but outside Cy is saturated by y;
(iv) If exactly one arc on C € Cy is outside CY, then it is saturated by y in Th;
(v) Every chord of C € CY is saturated by y in Ty;
(vi) If the multiset sum of C1 € Cy, Cy € Co, and unsaturated arcs in Tr\az contains two
arc-disjoint cycles in Th\ag, then y(Cy) or y(Csq) is 0;
(vii) Every triangle C' € Cy contains an arc that is saturated by y in Ty;

(viii) If the multiset sum of C1 € Cy and Co € Cy contains two arc-disjoint cycles C| € Cy and
CY € Cy, with |Ch] < |Cy|, then y(C1) or y(Cs) is 0.

Proof. (i) Assume the contrary: w(e) > z(e) for each arc e on C. Set § = min{w(e) — z(e) :
e € C}. Let y' be obtained from y by replacing y(C) with y(C) + 6. Then vy’ is a feasible
solution to D(T, w), with (y/)T1 = y”1 + 6 > y’1, contradicting the optimality on y.

(ii) Assume the contrary: each arc e; on C is contained in some C; € C§. Observe that b,
the hub of the 1-sum, is not on C, for otherwise, let e; be the arc on C that leaves b. From
the definition of the 1-sum, we see that e; is contained in no cycle in Cp, contradicting the
definition of C;. Let k = |C| and let H be the multiset sum of C1,Cs,...,Cy. Then H is an
even digraph and d}(b) = dy(b) = k. Let H' be obtained from H by deleting all arcs on
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C. Then H' remains even and d};,(b) = dy(b) = k because b is outside C. So H' contains k
arc-disjoint cycles C1,C5, ..., C}. passing through b and hence in Cy. Set 6 = minj<;<; y(C;).
Let ¢y’ be obtained from y by replacing y(C') with y(C') + 0, replacing y(C;) with y(C;) — 6, and
replacing y(C?) with y(C!) + 6 for 1 < i < k. Clearly, y’ is a feasible solution to D(7, w) with
(y)1'1 =yT1+ 60 > y''1, a contradiction.

(iii) Assume the contrary: w(e) > z(e) for each arc e in B, the set of all arcs on Co but outside
Cy. Set 6 = min{y(C1), w(e)—=z(e) : e € B}. Let ¢y’ be obtained from y by replacing y(C7) with
y(C1) — 0 and replacing y(C2) with y(C2) + 6. Then y’ is also optimal, with y'(C2) = y(C2) + 6,
so the existence of ¢y’ contradicts the maximality assumption on y(Cs) in the choice of y.

(iv) Assume the contrary: the only arc eg = (u,v) on C outside C{ is not unsaturated by y in
Ty. Then w(eg) > z(ep). Let C; a cycle in Cf that passes through each e; on C\eg. Let k = |C|—1
and let H be the multiset sum of Cy, C1, Cy, ..., Ck, where Cj is the 2-cycle formed by (u,v) and
(v,u). Then H is an even digraph, and dj;(b) = d(b) = k if b # u and dj;(b) = d(b) = k + 1
otherwise, where b is the hub of the 1-sum. Let H’ be obtained from H by deleting all arcs
on C. Then H' remains even and contains k arc-disjoint cycles C1, C5, ..., C}. passing through b
(and hence in Cp). Clearly, at most one of C1,C5, ..., C}, say C) if any, contains the arc (v, u).
Then C1,C5,...,C},_; are all in Cy. Set § = min{w(eg) — z(eo), y(C;) : 1 < i < k}. Let y' be
obtained from y by replacing y(C) with y(C') + 6, replacing y(C;) with y(C;) — 0 for 1 <i < k,
and replacing y(C?) with y(C})+0 for 1 < j < k—1. Then y' is an optimal solution to D(7’, w).
Since y(C) < y/(C), the existence of y' contradicts the maximality assumption on y(C3) in the
choice of y.

(v) Assume the contrary: some chord e = (u,v) of C is not saturated by y in T>. Let
C" = Clv,u] U {(u,v)}. Note that C' € Cy and |C’| < |C].

We first consider the case when e is outside C§. Then w(e)—z(e) > 0. Set § = min{y(C), w(e)—
z(e)}. Let ¢y’ be obtained from y by replacing y(C) with y(C) — 6 and replacing y(C’) with
y(C") 4+ 6. Then y’ is an optimal solution to D(T,w). Since y'(C) < y(C), the existence of y’
contradicts the minimality assumption on (y(Dy),y(Dg—1),--.,y(Ds3)) in the choice of y.

We next consider the case when e is contained in some cycle D in C§. Then the multiset sum
of C' and D contains a cycle D’ in Cy that is disjoint from C’. Set o = min{y(C),y(D)}. Let y’
be obtained from y by replacing y(C), y(D), y(C"), and y(D’) with y(C)—o, y(D)—0, y(C')+0,
and y(D') 4+ o, respectively. Then gy’ is an optimal solution to D(7T,w). Since y'(C) < y(C),
the existence of ¢y’ contradicts the minimality assumption on (y(Dg), y(Dg—1), - - -,y(D3)) in the
choice of y.

(vi) Assume the contrary: y(C;)y(C2) > 0. Let B be the set of unsaturated arcs in T5\as,
and let C1 and C% be two arc-disjoint cycles in Cy that are contained in the multiset sum of
Cy, Cy, and B. Set # = min{y(C1),y(Cs),w(e) — z(e) : e € B}. Let ¢y’ be obtained from y by
replacing y(C1), y(C2), y(C1), and y(Cy) with y(C1) — 0, y(C2) — 0, y(C1) + 6, and y(C3) + 0,
respectively. Then vy’ is an optimal solution to D(T, w). Since y'(C2) = y(C2) + 0, the existence
of ¢y’ contradicts the maximality assumption on y.

(vil) Let C' = ijki be a triangle in Th\ug. By (ii), at least one arc on C' is outside C§, say
(i,7). If all arcs on C are outside C, then by (i) one of the three arcs is saturated by y in T
and hence in Ty. If (4, ) is the only arc on C' that is outside C§, then (i, j) is saturated by y in
T, by (iv). If exactly one arc on C, say (j, k), is contained in some cycle in C§, then by (iii) one
of (4,7) and (k, 1) is saturated by y in 7" and hence in T5.
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(viii) Assume the contrary: y(C1)y(C2) > 0. Set = min{y(C1),y(C2)}. Let y’ be obtained
from y by replacing y(C1), y(C2), y(C1), and y(C3) with y(C1) — 0, y(C2) — 0, y(C1) + 0, and
y(C%)+0, respectively. Then gy’ is an optimal solution to D(T, w). Since |C)| < |Ca] and y'(C2) <
y(C2), the existence of y’ contradicts the minimality assumption on (y(Dy), y(Dg—1), - - -,y(D3))
in the choice of y. |

Lemma 4.8. Suppose Tyo\ay contains a unique cycle C, which is a triangle. If w(a) > 0 for
each arc a on C, then D(T,w) has an integral optimal solution.

Proof. Let y be an optimal solution to D(7', w) such that y(C) is maximized. By Lemma
4.7(vii), some arc e on C is saturated by y in T5. Since C is the unique cycle in T5\az, we have
y(C) = w(e). Thus D(T,w) has an integral optimal solution by Lemma 4.4(iii). 1

5 Basic Reductions

Throughout this section, we assume that (7', w) is an instance as described in Theorem 4.1, and
that T = (V, A) is the 1-sum of two strong Mdobius-free tournaments 77 and 75 over the two
special arcs (a1, b1) and (bg,az), with 7,(T5\a2) > 0 and Ty € T3. (Possibly T} is a triangle
and thus T' = T».) Let us label T3 as in Figures 3-6. Since (by,a2) is a special arc and a9 is a
near-source of 15,

o (b, a2) = (U1,02 or (vg,v1) if Th = Fp;
o (ba,a2) = (vs,v2) if Ty = F» or F3;
(b27a2):

)=

(bQ,GQ ( 5, U6 if Tg Fﬁ; and

(bg, ag) (U4, Vs if T2 G2 or Gg.
Note that Th\ag is a transitive triangle when Ty = Fy and (bg,a2) = (v4,v1); in this case,
unfortunately, no reduction on T5\ay is available, and the information on T5\az alone does not
lead to a proof of the desired statement; that is, D(7,w) has an integral optimal solution. In
fact, the same problem occurs when 7,(72\a2) = 0, no matter what 75 is. That may partly
explain why the assumption of this section is so made and Lemma 4.2 is so stated.

)
v2)
(vs,ve) if T = Fy;
)
)

Theorem 5.1. For the above instance (T, w), problem D(T,w) has an integral optimal solution.

We shall carry out a proof by performing reduction on 75\az. We employ the same notations
as introduced before. In particular, v (T') stands for the common optimal value of P(7, w) and
D(T, w), and 7,(7T) stands for the minimum total weight of an FAS in 7. An FAS K of T is
called minimal if no proper subset of K is an FAS of T. A minimum-weight FAS is denoted by
MFAS. We use F3 to denote the family of all minimal FAS’s in T5\as. Recall that Cy stands for
the set of all cycles in Th\ag, and Dy, is the set of all cycles of length k in T5\ag. For every real
number 7, set [r] =r — |r].

We break the proof of Theorem 5.1 into a series of lemmas.

Lemma 5.2. If T, € {Fy, F», Fs}, then D(T,w) has an integral optimal solution.
Proof. By the hypothesis of Theorem 5.1, 7,,(T5\az) > 0. So if Th = Fp, then (by,as2) =
(v1,v2) and hence Th\aq is a triangle. It is then routine to check that, for each Ty € {Fy, F», Fs},
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there is a unique cycle contained in T5\ag, which is a triangle. Therefore D(7', w) has an integral
optimal solution by Lemma 4.8. |

Lemma 5.3. If Ty = F3, then D(T, w) has an integral optimal solution.

Proof. It is routine to check that

o Cy = {v1v3v4v1, V1V3V5V1, V1V3V4V5V1 } and

o Fo = {{v1vs}, {vsvy, v3vs}, {v3vy, vsv1 }, {vav1, v501}, {v3Us, V4V, VaU5}}
We also have a computer verification of these results. So |C2| = 3 and |F2| = 5. Recall that
(b2, az) = (vs, v2).

Let y be an optimal solution to (T, w) such that

(1) y(Cz) is maximized;

(2) subject to (1), (y(Dyq),y(Dy-1),...,y(D3)) is minimized lexicographically; and

(3) subject to (1) and (2), y(viv3vsv1) is minimized.
Observe that

(4) if K € Fy satisfies y(C2) = w(K), then K is an MFAS.

Indeed, since y(Ca) = v} (F3\v2), we have w(K) = v} (F3\v2) < 7 (F3\v2) < w(K). So
’U)(K) = Tw(Fg\’Ug).

Claim 1. y(Ca) = 7y (F5\v2).

To justify this, observe that v1vs is a special arc of T" and v is a near-sink. By Lemma 4.6(iv),
we may assume that vivs is saturated by y in T'. If vivs is outside CE{ , then vyv3 is saturated by
y in F3. Thus y(C2) = w(vivs). By (4), {vivs} is an MFAS and hence y(C2) = 7w (F3\v2). So
we assume that vivs is contained in some cycle C' € C; subject to this, C' is chosen to have the
maximum number of arcs in F3\vy. Depending on whether C' passes through v4v;, we consider
two cases.

e C contains vqvy. In this case, C' contains the path vyviv3vs. Applying Lemma 4.7(ii) to the
triangles v1vsv4v1 and vivzvsv1 Tespectively, we see that both vsvs and vsv; are outside C§. By
Lemma 4.7(iv), both vsvy and vsv; are saturated by y in F3. Moreover, y(vivsvgvsvr) = 0, for
otherwise, by Lemma 4.7(v), vzvs is saturated by y in F3, contradicting the fact that vsvs € C.
So y(v1vsvav1) = w(vsvy), y(vivsvsvr) = w(vsvr), and y(Co) = w(K), where K = {vsvy, vsv1 }.
By (4), K is an MFAS and hence y(C2) = 7w (F3\v2).

e (' does not contain vqv1. In this case, we may assume that vqvy is outside Cg , for otherwise,
let D be a cycle in C§ passing through vqv1. Then D contains the path vivsvs. Replacing C' by
D, we see that the previous case occurs. Since C' contains vivs3, it also contains vsvy or vsvs.
If C contains vsvy, then it contains the path vjvsvsvs. Using Lemma 4.7(ii) and (iv) and the
cycles vivgvgvy and vivsvgvsvy, we see that both vsv; and vsv; are saturated by y in F3. So
y(Ca) = w(K), where K = {vqv1,vsv1}. Using (4), we obtain y(Ca) = 7, (F3\v2). If C contains
v3vs, then vsv is saturated by y in F3 by Lemma 4.7(ii) and (iv). Thus we may assume that
v4v1 is not saturated by y in F3, otherwise we are done (as shown above). It follows from Lemma
4.7(v) that y(vivsvavsvy) = 0, and from Lemma 4.7(ii) and (iv) (using the triangle vjvzvsvy)
that vsvy is outside C§. So, by Lemma 4.7(iii), v3vy is saturated by y in F3. Since y(C2) = w(J),
where J = {vsvy, vsv1}, Claim 1 is justified by (4).

Claim 2. y(C) is an integer for each C € C.
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To justify this, observe that y(vjvsvivsvi) = 0, for otherwise, by Lemma 4.7(v), both vqv;
and v3vs are saturated by y in F3. So y(vivzvgv1) = w(vgvr) and y(vivzvsvy) = w(vsvs); both
of them are integers. By Claim 1, y(vivsvavsv1) is also integral, as desired.

From the proof of Claim 1, we see that one of the following three cases occurs:

o y(viv3vgv1) + y(v1v3v50V1) = W(V1V3);

e y(vivzvavr) = w(vgve) and y(vivsvsvr) = w(vsvr); and

e y(viv3vavr) = w(vgvr) and y(vivzvsv1) = w(v5v1).

Thus the desired statement holds trivially in the second and third cases. It remains to consider
the first case.

Suppose on the contrary that neither y(vivsvsvi) nor y(vivsvsvi) is an integer. Then
[y(vivsvgvr)] + [y(vivsvsvr)] = 1. By the hypothesis of the present case, vivs is saturated
by y in F3, so vqv; is outside C§. Thus

w(vgvy) > [y(vivsvgvr)| = |y(vivsvavr) | + 1 = y(vivsvgr) + [y(vivsvsvr)].

We propose to show that

(5) v3vy is saturated by y in F3.

Suppose not. If vsvs is unsaturated in T, set 6 = min{w(vsvs) — z(v3vs), [y(vivsvsV1)]},
and let ¢y’ be obtained from y by replacing y(vivsvavy) and y(vivsvsvr) with y(vivsvgvy) + 0
and y(vivsvsvr) — 6, respectively; if vzvy is saturated in 7 and contained in some C' € Cf,
set 6 = min{y(C), [y(vivsvsv1)]} and C" = Clvs, vs] U {vsvs}, and let y' be obtained from y by
replacing y(vivzvav1), y(vivsvsvr), y(C), and y(C”) with y(vivsvavr)+0, y(vivsvsvr) -0, y(C) -0,
and y(C") + 0, respectively. Then vy’ is an optimal solution to D(T,w). Since ' (vivzvsv1) <
y(vivzvsvr ), the existence of y' contradicts the assumption (3) on y. So (5) is established.

By (5), we have y(vivzvgv1) = w(vzvy) and y(vivsvsvr) = w(vivg) — w(vgvy); both of them
are integers. This contradiction proves Claim 2.

Since 7y, (F3\v2) > 0, by Claims 1 and 2, y(C) is a positive integer for some C € Cy. Thus,
by Lemma 4.4(iii), D(7, w) has an integral optimal solution. 1

Lemma 5.4. If T5 = Fy, then D(T, w) has an integral optimal solution.

Proof. It is routine to check that
° CQ = {’Ulvgvg’ul, V2U3V40V2, V1V5V3V1, UV3V4V5V3, UV1V2V3V4V1, UV1VU5V2V3V1, V1V5V3V4V1, V2UV3V4V5V9,
V1050203041 } and
° .FQ = {{1}2'03, '1)51)3}, {1)3?}1, 1)31)4}, {1}11)2, V15, 1)31)4}, {1)11)5, VU3, '1)31)4}, {1)1?}5, V23, 1)41)5},
{v1v, V15, V4V2, V4V5 }, {V1V2, V3V4, V52, V5V3 |, {V1V2, VaV2, V5V2, U5V
{’1)2’1)3, v3v1, U401, ’U4’U5}, {1131)1, V401, V4V, U4’U5}, {1}31]1, V4U1, V4V9, U5V2, 115’03}}.
We also have a computer verification of these results. So |C2] = 9 and |F2| = 11. Recall that
(62, CLQ) = (1}5, Uﬁ).
Let y be an optimal solution to D(7', w) such that
(1) y(Ca) is maximized;
(2) subject to (1), (y(Dq),y(Dg—1),...,y(D3)) is minimized lexicographically;
(3) subject to (1) and (2), y(vivsvev3vy) + y(v1v5v3v4v1) is minimized;
(4) subject to (1)-(3), y(vevsvavsve) is minimized;
(5) subject to (1)-(4), y(vivsvsvy) + y(vsv4vsv3) is minimized; and
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(6) subject to (1)-(5), y(vivsvsvy) is minimized.

Let us make some simple observations about y.

(7) If K € F, satisfies y(C2) = w(K), then K is an MFAS. (The statement is exactly the
same as (4) in the proof of Lemma 5.3.)

(8) If y(vivsveusvavy) > 0, then each arc in the set {vive, v3v1, V4v2, V45, V5V3} is saturated
by y in Fy. Furthermore, y(vivavsvy) = y(vsvavsvs) = y(vivsvgvr) = 0.

To justify this, note that each arc in the given set is a chord of the cycle vivsvovsvv1. SO
the first half follows instantly from Lemma 4.7(v). Let W stand for the multiset sum. Then
V1V5V203V401 W V1020301 = V1U5V203V1 W V10203V4V1, V1VU5V2V3V4V1 W V1U5V3V1 = V1U5V20301 W
V1VU503V4V1, and v1U5V2V3V4V1 WU3V4V5V3 = V105V3V401 HU903U4U5V9. Suppose on the contrary that
y(vivauzvy) > 0. Let 6 = min{y(vivsvav30v401), y(vivavsv1)} and let y' be obtained from y by re-
placing y(vivsvov3vgvy), y(vivav3vy), y(vivsvavzvr), and y(vivavzvavy) with y(vivsvavzvgvy) —0,
y(v1v9v3v1) — 0, y(v1v50920301) + 6, and y(vivavsvavr) + 6. Then y' is also an optimal solution to
D(T,w). Since y'(v1v5v203v4v1) < y(vivsv2V3V401 ), the existence of y’ contradicts the assump-
tion (2) on y. So y(vivavsvy) = 0. Similarly, y(vsvgvsvs) = y(vivsvsvy) = 0.

(9) If y(vivsveuszvy) > 0, then vive and vsvs are saturated by y in Fjy; so is vgvs provided
y(v1vavgvgvy) > 0. Furthermore, y(vsvgvsvsg) = 0.

To justify this, note that both vyve and vsvs are chords of the cycle vivsvevsvy, SO they are
saturated by y in Fy by Lemma 4.7(v). Since v1v5v2v301 W 03040503 = 01050301 W 020304U502,
from (3) we deduce that y(vsvsvsvs) = 0 (for a proof, see that of (8)).

Consider the case when y(vivovgvgvy) > 0. If vgvs is not saturated by y in 7', then the
multiset sum of the cycles vivsvovsvy, vivovsvav1, and the arc vyvs contains two arc-disjoint
cycles vivousvy and wvougvavsve; if vavs is saturated by y in T but contained in some cycle
C e Cg , then the multiset sum of vivsvov3v1, vivovsvgvy, and C contains three arc-disjoint
cycles v1vav3V1, VoV3V4V5Ve, and C' = Clus, v4] U {vgv1,v1v5}. In either subcase we can obtain
from y an optimal solution y’ to D(T, w) that is better than y by (2). So vyvs is saturated by
y in Fjy.

(10) If y(vivsvsvgvy) > 0, then both vsv; and vivs are saturated by y in Fy; so is vqvg pro-
vided y(vivsveusv1) > 0, and so is vivg provided y(vavsvgvsve) > 0. Furthermore, y(vivovsvy) =
0.

To justify this, note that both vsv; and vqvs are chords of the cycle vivsvsvgvy, So they are
saturated by y in Fy by Lemma 4.7(v). Since vjv5v3v401 W 01020301 = 01050301 W 0102030401
from (3) we deduce that y(vivavsv1) = 0 (for a proof, see that of (8)).

Consider the case when y(vivsvovsvy) > 0. If vqvy is not saturated by y in T, then the
multiset sum of the cycles vivsvovsvy, vivsvsVav1, and the arc vyve contains arc-disjoint cycles
01050301 and vav3v4ve; if v4vy is saturated by y in T’ but contained in some cycle C; € Cf, then
the multiset sum of C7, v1v5v9v3v1, and vivsvsv vy contains three arc-disjoint cycles vivsv3vy,
v9U3v4ve, and C] = C4[vs, v4) U {vgv1, v105}. In either subcase we can obtain from y an optimal
solution y’ to D(T,w) that is better than y by (2). So vyvs is saturated by y in Fj.

Next, consider the case when y(vovzvsvsve) > 0. If vivg is not saturated by y in T, then the
multiset sum of the cycles vivsv3v4v1, Vov3V4V5v2, and the arc vivy contains arc-disjoint cycles
v3vavsvs and v1v9v3v4v7; if v1ve is saturated by y in T but contained in some cycle Cy € Cg , then
the multiset sum of C5, vovszvivsve, and vivsvzvav1 contains three arc-disjoint cycles vsvg vsvs,
v1vauzvavy, and Ch = Csvs, v1] U {vivs}. In either subcase we can obtain from y an optimal
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solution y’ to D(T,w) that is better than y by (2). So vjvsy is saturated by y in Fj.

(11) If y(vivevzvgvy) > 0, then both vsvy and vyvy are saturated by y in Fy; so is vqvs
provided y(vivsvsvy) > 0.

The first half follows instantly from Lemma 4.7(v). Suppose y(vivsvzvy) > 0. If vqvs is not
saturated by y in 7', then the multiset sum of the cycles vivsvsvi, vivovsvgvy, and the arc vqvs
contains arc-disjoint cycles viv9v3v, and vzvavsvs; if v4vs is saturated by y in T but contained
in some cycle C € Cg , then the multiset sum of vivovgvavy, v1vsv3v, and C contains three
arc-disjoint cycles vjvav3vy, v3v4vsv3, and C7 = Clvs, v4) U {vgvy,v105}. In either subcase we
can obtain from y an optimal solution y’ to D(7,w) that is better than y by (2). So v4vs is
saturated by y in Fj.

(12) If y(vavsvgvsvy) > 0, then both vyve and vsvs are saturated by y in Fy; so is vivg
provided y(vivsvzvy) > 0.

The first half follows instantly from Lemma 4.7(v). Suppose y(vivsvzvy) > 0. If v1v9 is not
saturated by y in 7', then the multiset sum of the cycles vivsv3v1, vovsv4U5V2, and the arc vivo
contains arc-disjoint cycles vivovsv; and vsvqvsvs; if v1vy is saturated by y in T but contained
in some cycle C € Cé’ , then the multiset sum of C, vovgvavsv9, and vivsv3v contains three arc-
disjoint cycles v3v4vs5v3, v1v2v3v1, and C' = Clvs, v1] U {v1v5}. In either subcase we can obtain
from y an optimal solution y’ to D(7T,w) that is better than y by (2). So vive is saturated by
y in F4.

Claim 1. y(Co) = 7y (Fy\vg).

To justify this, observe that vouvs is a special arc of 1" and v is a near-sink. By Lemma
4.6(iv), we may assume that vovs is saturated by y in 7. Depending on whether vovs is outside
CY, we distinguish between two cases.

Case 1.1. v is contained in some cycle in Cf.

Choose C € C§ that contains vovs and, subject to this, has the maximum number of arcs in
Fy\vg. We proceed by considering three subcases.

e (' contains vijvy. In this subcase, C contains the path P = wvivsvszvqvs. By Lemma
4.7(i1) and (iv), each arc in the set K = {vsv1,v4v1, v4v2, U502, v503} is saturated by y in Fjy.
Since no arc on C (and hence on P) is saturated by y in Fjy, we have y(vivsvavsvgvy) =
y(vivsvovsvy) = y(vivsvsvgvr) = 0 by (8) — (10). Since the multiset sum of vivsvsv; and
C' contains three arc-disjoint cycles vivavsvy, vsvgvsvs, and C' = Clvs, v1] U {v1vs}, from the
optimality of y, we deduce that y(vivsvsvy) = 0. So y(C2) = w(K). By (7), K is an MFAS and
hence y(Cz) = 7w (F3\v2).

e C contains vqvg. In this subcase, C' contains the path P = vqvovsviv5. By Lemma 4.7(ii)
and (iv), each arc in the set K = {vjva, v3v4, v502, v5v3} is saturated by y in Fy. Since no arc on
C' (and hence on P) is saturated by y in Fy, y(vivsv2v3v401), y(v1v5030401), y(v102030401), and
y(vavgvgvsv2) are all 0 by (8) and (10)-(12). Since the multiset sum of vsv vsv3 and C contains
three arc-disjoint cycles v1v5v3v1, vovzv4ve, and C' = Clus, v4] U {v4v5}, from the optimality
of y, we deduce that y(vsvqvsvs) = 0. So y(C2) = w(K). By (7), K is an MFAS and hence
yY(C2) = Tw(F5\v2).

e (' contains neither v1vy nor vyve. In this subcase, we may assume that both vive and v4v9
are outside Cg , for otherwise, each cycle containing vjvy or v4ve passes through vevs, and thus
one of the preceding subcases occurs. Clearly, C' contains vzvy or vgvy.
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Assume first that C' contains vzvs. If C contains vqvq, then it also contains vyvs. By Lemma
4.7(i1) and (iv), each arc in the set K = {v1v2, v4v2, v50v2,v5v3} is saturated by y in Fy. So
y(C2) = w(K). By (7), K is an MFAS and hence y(C2) = 7w(F3\v2). If C does not contain
v4v1, then C' contains vqvs. By Lemma 4.7(ii) and (iv), each arc in the set {vqve, v5v2, v5v3} is
saturated by y in Fy. If vjve is also saturated by y in Fjy, then y(C2) = w(K), where K is as
defined above. Again, K is an MFAS and hence y(C2) = 7, (F3\v2). So we assume that vyve is
not saturated by y in 7. Since v1v9 is outside C3, so are v4v; and v3vy. By Lemma 4.7(iii), both
vqv1 and vzv; are saturated by y in 7" and hence in Fy. Moreover, by (8)-(10), y(v1vsvovsvavy),
y(v1vsvu3vy), and y(vivsvsvavy) are all 0. Since the multiset sum of the cycles vivsvgvy, C,
and the unsaturated arc vivy contains two arc-disjoint cycles vivovsv] and vsvavsvs. By Lemma
4.7(vi), we have y(vivsvsvy) = 0. So y(Ca2) = w(J), where J = {vzv1, v4v1, v4v2, UsV2, UsV3}. By
(7), J is an MFAS and hence y(C2) = 7, (F3\v2).

Assume next that C contains vsvy. Then C contains vivs. By Lemma 4.7(ii) and (iv),
each arc in the set {vjvg, v5v9,v5v3} is saturated by y in Fy. If vqvy is also saturated by y in
Fy, then y(Co) = w(K), where K = {v1vg, v4v2,v502,v5v3}. By (7), K is an MFAS and hence
y(Ca) = Ty (F3\v2). So we assume that vqve is not saturated by y in Fy and hence in T (recall
that vqvg is outside C§). By Lemma 4.7(iv), vsvs is outside Cj. By Lemma 4.7(iii), vsvs is
saturated by y in T and hence in F;. By (8) and (10)-(12), y(vivsvavsvavy), y(vivsvsvavy),
y(v1vavgvgvy), and y(vavsvavsvy) are all 0. Since the multiset sum of the cycles vsvqvsvs, C,
and the unsaturated arc v4ve contains two arc-disjoint cycles vivsvsv: and vavsvive, we have
y(vsvavsv3) = 0 by Lemma 4.7(vi). So y(Ca2) = w(J), where J = {v1v2, v3v4, v502, v503}. By (7),
K is an MFAS and hence y(C2) = 7 (F3\v2).

Case 1.2. vus is outside CJ.

By the previous observation, vovs is saturated by y in F; now. Note also that vsvs is outside
Co. If vsvs is saturated by y in T', so is it in Fy, and hence y(C2) = w(K), where K = {vgv3, v503}.
By (7), K is an MFAS and hence y(C2) = 7 (F3\v2). So we assume that vsvs is unsaturated.
By (8), (9), and (12), y(vivsv2v3v4v1), y(vivsv203v1 ), and y(vavsvavsvy) are all 0. Observe that
both vsvy and vsvy are outside C§, for otherwise, since each cycle passing through vsv; or vsvy
contains vvs or v4vs, from Lemma 4.7(iv) we deduce that vsvs is saturated, a contradiction. If
both vsv; and wvzvy are saturated by y in Fy, then y(C2) = w(J), where J = {vszv,v3v4}. By
(7), J is an MFAS and hence y(Ca) = 7y (F3\v2). So we assume that

(13) at most one of vgv; and vsvy is saturated by y in Fj.

Since C§ # 0, there is a cycle C' € C§ passing through v4v1, or v1vs, or v4vs; subject to this, let
C' be chosen to have the maximum number of arcs in Fj\vg. We proceed by considering three
subcases.

e (' contains both v4v; and vivs. In this subcase, since vsvs is unsaturated, by Lemma
4.7(iii), v3v1 and vsvg are both saturated by y in Fjy, a contradiction.

e C contains vivs but not vgv1. In this subcase, from the choice of C, we see that vsvq is
outside C§, because every cycle containing v4v1 passes through vivs. Since vsvs is unsaturated,
Lemma 4.7(iii) implies that vsv; is saturated by y in Fy, and thus vsvs is not saturated by y in
Fy and hence in T by (13). Once again, by Lemma 4.7(iii), vqv; is saturated by y in Fy, and
v4vs5 is outside C§. Since both vsvs and v3vy are unsaturated, it follows from Lemma 4.7(i) that
v4vs is saturated by y in Fy. If vyve is also saturated by y in Fjy, then y(C2) = w(K), where
K = {v3v1,v4v1, 0402, 0405 }. By (7), K is an MFAS and hence y(C2) = 7 (F1\vs). If vqvg is not
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saturated by y in Fy, then y(vivevgvgvy) = 0 by (11). Moreover, since the multiset sum of the
cycles v1v9v3v1, C, and the unsaturated arcs vsvs, vsvy, and v4vo contains two arc-disjoint cycles
vou3v4ve and vivsvsvy, we have y(vivavsvy) = 0 by Lemma 4.7(vi). Therefore, y(C2) = w(J),
where J = {vovs, v3v1, v4v1,v405}. By (7), J is an MFAS and hence y(Ca) = 7 (F3\v2).

e C contains v4vs. In this subcase, we may assume that both v4v; and vivs are outside Cg ,
otherwise one of the preceding subcases occurs. By Lemma 4.7(iii), vsvy is saturated by y in T
and hence in Fy, which together with (13) implies that vsv; is not saturated by y in Fjy. Using
(10) and (11), we deduce that y(v1vsvzvsv1) = y(vivevzvavr) = 0. Using Lemma 4.7(iii) and the
triangle vivsvsv1, we see that vyvs is outside Cg. Using Lemma 4.7(i) and the triangle vjvsvsvy,
we also deduce that vivs is saturated by y in 7" and hence in Fjy. If vivsg is also saturated by
y in Fy, then y(C2) = w(K), where K = {vjv2,v1v5,v3v4}. By (7), K is an MFAS and hence
Y(C2) = Tw(Fy\vg). So we assume that vve is not saturated by y in Fy and hence in T, because
v1v9 is outside C§, by the hypothesis of the present case. Since the multiset sum of the cycles
C, vou3vave, and unsaturated arcs vsvs, v3vy, and vivg contains two arc-disjoint cycles vyvovsvy
and vzvgvsvs, we have y(vavsvgve) = 0 by Lemma 4.7(vi). It follows that y(Ce) = w(J), where
J = {vivs,vov3,v304}. By (7), J is an MFAS and hence y(C2) = 7, (F4\vs). This completes the
proof of Claim 1.

Claim 2. y(C) is integral for all C' € Cy or v}, (T) is an integer.

To justify this, let Go = Fo\{{v1vs, vovs, v4vs5}, {v1v2, V105, V4V2, v4v5}}. From the proof of
Claim 1, we see that y(C2) = w(K) for some K € Gy. Observe that if y(C2) = w(J) for
J = {v1vs, vav3, v4V5 } or {V1V2, V15, V4V2, V45 }, then both vivs and vyvs are saturated by y in
Fy, so C§ = 0 in this case, which has been excluded by Lemma 4.4(ii).

Let us make some further observations about y.

(14) y(v1vsvav3v401) = 0.

Suppose on the contrary that y(vivsvavsvgvy) > 0. By (8), we have y(vivavsv1) = y(vsvgvsvs)
= y(vivsv3vy) = 0, and each arc in the set {vve, v3v1, V4V, V4U5, U5V} is saturated by y in Fy.
So y(Ca(v1v2)) = w(vivz), Y(Ca(vsv1)) = w(v3v1), Y(Co(vav2)) = w(v4v2), Y(Ca(vavs)) = w(vavs),
and y(Ca(vsv3)) = w(vsvs). It follows that y(vivavsvavy) = w(vive), y(vivsvavsvr) = w(vsvy),
y(v2v3v4v2) = w(v4ve), Y(vav3V4vV5v2) = w(v4vs), and y(vivsv3v4v1) = w(vsvsy). From Claim 1
we deduce that y(vivsvavsvavy) is also integral, and hence v (7)) is an integer by Lemma 4.4(iii).

(15) y(vivsvavsvy) or y(vivsvsvavy) is 0.

Assume the contrary: both y(vivsvevsvi) and y(vivsvsvavr) are positive. By (9) and (10),
we have y(vivav3v1) = y(vsvgvsvy) = 0, and each arc in the set {vive, v5v3, V3V1, V4V, V4V5} 1S
saturated by y in Fy. So y(Ca(v1v2)) = w(viva), y(Ca(vsvs)) = w(vsvs), y(Ca(vsvy)) = w(vsvy),
Y(Ca(vav2)) = w(vgv2), and y(Co(v4vs)) = w(vavs). It follows that y(vivevzvivy) = w(vive),
y(vav3v4v2) = w(v4v2), Y(v2v3v4U5vV2) = W(v4vs), Y(vVivsV3V1) + Y(V1v5V2U3VL) = w(v3V1), and
y(vivsvsvr) + y(vivsvsvgwy) = w(vsvy). Given the above equations and (14), to prove that
y(C) is integral for all C € Co, it suffices to show that one of y(vivsv3v4v1), y(vivsV2V3V1), and
y(vivsvsgvy) is integral.

By Lemma 4.3 and Claim 1, each arc e € K satisfies w(e) = z(e) = y(Ca(e)). Let us proceed
by considering four subcases.

If vovg € K, then w(vovz) = y(Ca(vavs)) = y(vavzvgva) + y(v1v2v3v4v1) + y(v105V2V301)

+ y(vou3vav5v2), which implies that y(vivsvavsvy) is integral.
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If v3vg € K, then w(vsvy) = y(Ca(vsvs)) = y(vov3vgva) + y(v1v2v304v1) + y(v2v304V502)
+ y(v1v5v304v1 ), which implies that y(vivsvzvavy) is integral.

If vgv € K, then w(vgvy) = y(Co(v4v1)) = y(v1v203v401) + y(v1050304v1 ), which implies that
y(v1vsvsvgvr) is integral.

If v5vy € K, then w(vsve) = y(Co(vsv2)) = y(v1v5v2v301) + y(v2v30405v2), which implies that
y(v1vsvousvy) is integral.

Since each K € Gy contains at least one arc in the set {vovs, v3v4, v4v1, vV502}, it follows that
y(C) is integral for all C € Cy. So y(vivsvavsvy) is a positive integer, and hence v (T') is an
integer by Lemma 4.4(iii). Therefore we may assume that (15) holds.

Depending on what K € Gy is, we distinguish among nine cases.

Case 2.1. K = {v1v5, v2v3,v304 }.

In this case, by Lemma 4.3(i) and (iii), we have y(vav3v4v9) = y(v1v20304v1) = y(vov3v4v502) =
y(v1vsvovsvy) = y(vivsvzvgvy) = 0 and w(e) = y(Ca(e)) for each e € K, which together with
(14) yields w(vivs) = y(Ca(v1vs)) = y(vivsvavy), w(vevs) = y(Ca(vavs)) = y(vivevsvy), and
w(vsvg) = y(Ca(vsvg)) = y(vsvavsvs). So y(C) is integral for all C € Cs.

Case 2.2. K = {v1v9, v304, U502, U503 }.

In this case, by Lemma 4.3(i) and (iii), we have y(v1v5v3v4v1) = y(v3v4v503) = y(v1v2030401) =
y(vavgvgusvy) = 0, which together with (14) yields w(vive) = y(Ca(vive)) = y(vivavsvy),
w(vsvg) = y(Co(vzvy)) = y(vovzvgva), w(vsve) = y(Ca(vsva)) = y(vivsvavgvy), and w(vsvs) =
y(Ca(vsv3)) = y(vivsvsvy). So y(C) is integral for all C' € Co.

Case 2.3. K = {vyv3, v301, 0401, U405 }.

In this case, by Lemma 4.3(i) and (iii), we have y(v1vav3v1) = y(vivsv20301) = y(v1v2v30401)
= y(vouzvgusve) = 0, which together with (14) yields w(vovs) = y(Ca(vavs)) = y(vevzvava),
w(vsvy) = y(Co(vzv1)) = y(v1ivsv3v1), w(vavy) = y(Ca(vav1)) = y(vivsv3vav1), and w(vgvs) =
y(Ca(v4vs)) = y(vzvavsvs). So y(C) is integral for all C € Ca.

Case 2.4. K = {v3v1, 0401, 0402, U502, V503 }.

In this case, by Lemma 4.3(i) and (iii), we have y(vivsv3v1) = y(vivsv203v1) = y(v1v5v304v1) =
0, which together with (14) yields w(vzv1) = y(Ce(v3v1)) = y(vivev3v1), w(v4v1) = Y(Co(v4v1)) =
y(vivauzvavr ), w(vgve) = y(Ca(vave)) = y(vauzvava), w(vsve) = y(Ca(vsve)) = y(vauzvavsV2),
and w(vsvs) = y(Ca(vsv3)) = y(vzvavsvsy). So y(C) is integral for all C' € Ca.

Case 2.5. K = {v1v2,v1v5,v304}.

In this case, by Lemma 4.3(1) and (iii), we have y(vivovsvsvy) = y(vivsvsvav;) = 0 and
w(e) = y(Ca(e)) for each e € K, which together with (14) yields the following three equations:

w(vive) = y(Ca(v1v2)) = y(vivavzvy);

w(v1vs) = y(Ca(v1vs)) = y(v1v5v3v1) + y(vivsvavsvr); and

w(vsvg) = y(Ca(vsvs)) = y(vou3vav2) + Y(v3v405v3) + Y(V2V3V4V5V2).

Depending on the value of y(v1vsvav3v1), we consider two subcases.

e y(vivsveuzvy) = 0. In this subcase, y(vivsvsvr) = w(vivs). If y(vavsvgvsvy) > 0, then
w(vsvs) = y(Ca(vsv3)) = y(vivsv3v1) + y(v3vgvsvy) and w(vgva) = y(Ca(vave)) = y(vavsvave)
by (12). Thus both y(vsvsvsvs) and y(vevsvavsve) are integral, and hence y(C) is integral for
all C' € Cy. So we assume that y(vevsvgvsve) = 0. Then w(vsvy) = y(vevzvava) + y(v3vgvsv3).
If y(vavsvgve) is an integer, then y(C') is integral for all C' € C3. So we further assume that
y(vouzvgvg) is not integral. Thus [y(vavsvave)] + [y(vsvavsvs)] = 1. Since each arc in K is
saturated by y in Fjy, both vov3 and vqvy are outside Cg . Let ¢ be obtained from y by replacing
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y(vouzvgve) and y(vzvavsvs) with y(vavsvave) + [y(vsvgvsvs)] and |y(vsvgvsvs)| respectively.
Then gy’ is also an optimal solution to D(T, w). Since y'(v3v4vsv3) < y(v3vavsv3), the existence
of y’ contradicts the assumption (5) on y.

e y(vivsvuzvy) > 0. In this subcase, y(vsvqvsvs) = 0 and wvsvs is saturated by y in Fj
by (9). So w(vsvs) = y(vavzvave) + y(vavsvavsva) and w(vsvs) = y(vivsvavr). It follows that
Y(v1v5v2v301) = w(v1vs) — w(vsvs). If y(vavsvavsve) = 0, then y(vavzvave) = w(vzve); other-
wise, by (12), both vjvs and vqvy are saturated by y in Fy. Thus y(vevzvy) = w(vgvz) and
y(v2v3v4v5v2) = w(vzvy) — w(vave). So y(C) is integral for all C' € Co.

Case 2.6. K = {v3v1, v401, 0402, 405 }.

In this case, by Lemma 4.3 (iii), we have w(e) = y(Cz2(e)) for each e € K, which together
with (14) yields the following four equations:

w(vsvy) = y(Ca(vsvy)) = y(vivavsvy) + y(v1vsv301) + Y(v1V5V20301 );
w(vav1) = y(Ca(vav1)) = y(v1v203v401) + y(v1V5V3V401);

(7)41)2) ( (U4U2)) (U203U47)2) and

w(vgvs) = y(Ca(vavs)) = y(v304v5v3) + Y(v203V4V502).

Depending on the values of y(v1vsv3v4v1) and y(vivsvavsvy ), we consider three subcases.

e y(vivsv3v4v1) > 0. In this subcase, by (10) and (15), we have y(v1vov3v1) = y(v1v5020301) =
0. So y(vivsvzv1) = w(vsvy). If y(vavsvgvsve) > 0, then both vive and vsvs are saturated by y
in Fy by (10) and (12). So w(viv2) = y(Ca(v1v2)) = y(vivevzvav:) and w(vsvs) = y(Ca(vsvs)) =
y(v1vsv3v1) + y(vsvavsvs) + y(vivsvsvgwr).  Since y(vivsvsvgvy) = w(vgvy) — y(vivevzvavy)
and y(vovsvgvsve) = w(vavs) — y(vsvavsvs), it follows that y(vivsvsvav:), y(vsvavsvs), and
y(vavgvgvsve) are all integral. So we assume that y(vevsvsvsve) = 0. Then y(vsvivsvs) =
w(vqvs). Since each arc in K is saturated by y in Fy, both vjvy and wvyvs are outside Cg.
By Lemma 4.4(i), we may assume that w(e) = [z(e)] for all arcs e in 7. Thus, from (3) we
deduce that y(vivevzvsv1) = min{w(vivy), w(vevs) — w(vave)} and y(vivsvsvavy) = w(vgvy) —
y(v1vavgvgvy). Therefore y(C) is integral for all C' € Co.

o y(vivsvavsvy) > 0. In this subcase, from (9) and (15), we deduce that y(vsvivsvs) =
y(vivsvgvgvr) = 0, and that both vive and vsvs are saturated by y in Fy. So y(vivevzvgvy) =
w(vgv1) y(v2v3v4v5v2) = w(v4vs), w(v1ve) = Y(Ca(vive)) = y(vivavsvy) + y(vivavsvavy), and
w(vsvs) = y(Ca(vsv3)) = y(vivsvzvy). Thus y(vivevzvy) = w(vive) — w(vgwy) is integral, so is
y(v1vsveusvy). Therefore y(C) is integral for all C € Cs.

o y(vivsvgvav) = y(vivsvavsvr) = 0. In this subcase, y(vivovsvavy) = w(vavy). Suppose
y(vavgvgvsve) > 0. Then wvsvs is saturated by y in Fy by (12). So w(vsvs) = y(Ca(vsvs)) =
y(vivsvsvy) + y(vsvgvsvs). If y(vivsvsvr) > 0, then vyve is saturated by y in Fy by (12). So
w(vivy) = y(Ca(viv2)) = y(vivevsvy) + y(vivavsvgvy), It follows that y(vivevsvy) and hence
y(C) is integral for any C' € Ca. If y(vivsvsvy) = 0, then y(vivavsvy) = w(vsvy), which im-
plies that y(C) is integral for any C € Cs. So we assume that y(vevsvgvsve) = 0. Then
y(vsvgvsvs) = w(vgvs). Observe that y(vivovzvr) is integral, for otherwise, let y’ be ob-
tained from y by replacing y(vivevzvy) and y(vivsvsvy) with y(vivevsvr) + [y(vivsvsvr)] and
|y(vivsvsvr) |, respectively. Since vive and wvovs are outside CY, we see y is also an optimal
solution to D(T, w). Since y'(v1v5v3v1) < y(vivsvzvy), the existence of y' contradicts the as-
sumption (5) on y. From the above observation, it is easy to see that y(C) is integral for any
C e (.

Case 2.7. K = {v1v2, v402, U502, U503 }.
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In this case, by Lemma 4.3(iii), we have w(e) = y(Cz(e)) for each e € K, which together
with (14) yields the following four equations:
w(v1vz) = y(Ca(v1v2)) = y(viv2vsv1) + Y(V1v2V3V401);
w(vgvz) = y(Ca(vava)) = y(vav3v4v2);
w(vsve) = y(Ca(vsv2)) = y(v1v5v20301) + Y(V2V3V4V5V2); and
w(vsvz) = y(Ca(vsv3)) = y(v1v5v3v1) + Y(V3040503) + Y(V1V5V3V401 ).
Depending on the values of y(vivsvzvavy) and y(vivsvevsvr), we consider three subcases.

e y(vivsvgvgvr) > 0. In this subcase, by (10) and (15), y(vivevsvy) = y(vivsvevzvy) = 0
and both vzv; and vgvs are saturated by y in Fj. So y(vovsvgve) = w(vave), y(vivavgvgvy) =
w(v1ve), Y(vavsvavsve) = y(Ca(vsv2)) = w(vsve), and y(vivsvsvy) = y(Ca(vavi)) = w(vzvy).
Thus y(vsvavsvs) and y(vivsvsvgvy) are also integral.

e y(vivsvv3v1) > 0. In this subcase, by (9) and (15), we have y(vsvsvsv3) = y(vivsv3V401) =
0. So y(vivsvsvy) = w(vsvs). If y(vivevzvgvy) > 0, then both vsvy and vyvs are saturated by y
in Fy by (9) and (11). So w(vzv1) = y(Ca(vsvy)) = y(vivavsvy) + y(vivsv301) + Yy(v1V5V20301)
and w(vqvs) = y(Co(v4vs)) = y(vavsvavsve). It follows that y(C) is integral for all C' € Ca. So
we assume that y(vivavsvavr) = 0. Then y(vivevsvy), y(vavsvave), and y(vivsvsvy) are integral,
and y(v1v5v2v3v1) +y(v2v3v4v502) = w(vsve). If y(vavsv4v5v2) is an integer, then y(C) is integral
for any C € Cy. So we assume that y(vevzvsvsve) is not integral. We propose to show that

(16) v (T) is an integer.

To justify this, let  be an optimal solution to P(T,w). By Lemma 4.4(iii), we may assume
that w(vive) = w(vgve) = w(vsvy) = 0. Thus y(C) = 0 for all C' € Co\{v1v5v2v3v1, Vov3V4V5V2 }.
Observe that vsvy is outside C§, for otherwise, let D be a cycle in C§ that contains vsvs. It is
then easy to see that an optimal solution ¢y’ to D(7,w) can be obtained from y by modifying
y(D), y(vivsvavsvy), and y(vavsvavsvg) and by possibly rerouting D, so that 3/ (vivsvevzvy) <
y(v1vsv2v30v1 ), contradicting (3). Since y(v2vzvavsv2) < w(vavs), we have z(vsvy) = 0 by Lemma
4.3(ii). Since both y(vivsvavsv1) and y(vavsvavsve) are positive, x(vsvy) + x(vivs) = x(vsvs) +
x(vqvs) by Lemma 4.3(1). So z(v4vs) = x(v3vi) + z(v10s).

Let us show that if w(vqv1) > 0, then z(vqv1) = x(vsvy). For this purpose, note that
both vyv; and vsqvs are contained in some cycles in Cg , for otherwise, we can obtain a new
optimal solution y’ from y satisfying (1) and (2), but y/(vivsvevsvy) = |y(vivsvevzvy)] and
Y (v2030405v2) = y(vav3v4v5v2) + [y(v1vsV2v3v1)], Which again contradicts (3). Thus z(v4vs) =
x(v1vs) +x(vav1) by Lemma 4.3(iii). Combining it with the equality established in the preceding
paragraph, we obtain the x(vqv1) = z(v3v1). If w(vgv1) = 0, then we may assume that z(vqvy) =
x(v3vy) (replacing the smaller of these two with the larger if necessary).

Similarly, we can prove that z(uvs) = x(uvs) for each u € V(T1)\{b, a1}, where b is the hub
of the 1-sum. Let 7" be the the digraph obtained from T by identifying v3 and vy4; the resulting
vertex is still denoted by vs. Let w’ be obtained from the restriction of w to A(T”) by replacing
w(uvy) with w(uvs) +w(uvy) for each u € V(T1)\{b, a1}. Note that 7" is Mobius-free by Lemma
3.13, x corresponds to a feasible solution x’ to P(T”,w’), and y corresponds to a feasible solution
y' to P(T,w') with ¢/ (v4vsvs) = v (v4v9v4) = 0, both having the same objective value v} (T') as
x and y. So &’ and y’ are optimal solutions to P(T, w) and D(T,w), respectively. By Lemma
4.5, the optimal value v (T) of P(T",w’) is integral. So (16) is established.

o y(vivsv3v4v1) = y(vivsvavsv) = 0. In this subcase, y(vovzvava) and y(vavsvivsva) are
integral. Assume first that y(vivovsvgvi) > 0. Then, by (11), the arc vsv; is saturated by y in Fy.
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So w(vzvy) = y(Ca(v3v1)) = y(vivavzvy) + y(vivsvzvy). If y(vivsvzvr) = 0, then y(vsvgvsvs) =
w(vsvs). So y(C) is integral for any C € Cy. If y(vivsvsvy) > 0, then vyvs is is saturated by y
in Fy by (11). Thus w(vsvs) = y(Ca(vavs)) = y(v3v4v5v3) + y(vav3v4v5v2), which is integral. It
follows that y(vsvivsvs) = w(vgvs) — w(vsva). So y(C) is integral for any C' € C. Assume next
that y(vivevsvavr) = 0. Then y(vivevzvy) is integral and y(vivsvsvi) + y(v3vavsvs) = w(vsv3).
Clearly, we may assume that neither y(vivsv3v1) nor y(vsvgvsvs) is integral, otherwise we are
done. Similar to (16), we can show that

(17) v (T) is an integer.

The proof goes along the same line as that of (16). In fact, we only need to replace
y(vivsvousvy) and y(vevzvgvsve) with y(vivsvs) and y(vsvgvsvs), respectively. So we omit the
details here.

Case 2.8. K = {U2U3,U5U3}.

In this case, by Lemma 4.3(iii), we have w(e) = y(Cz(e)) for each e € K, which together
with (14) yields the following two equations:

w(vaug) = y(v1v2v3v1) + Y(v2U30402) + Y(v1v2V3V4V1) + Y(V2V3V4V5V2) + Y(v1v5V2U3V1); and

w(vsv3) = y(v1vsv301) + Y(v3V40503) + Y(V1V5V3V47 ).

Since vqugz is saturated by y in Fjy, we have w(uve) = z(uvy) = 0 for any u € V(T1)\{b,a1}
in this case. Depending on the values of y(vivsvsvsv1) and y(vivsvavsvy), we consider three
subcases.

e y(vivsvsvgvr) > 0. In this subcase, from (10) and (15) we deduce that y(vivevzvy) =
y(vivsvausvy) = 0 and that both vzv; and wvsvs are saturated by y in Fy. So y(vsvgvsvs) +
y(vav3vav5v2) = w(vavs) and y(vivsvavr) = w(vsvy). If y(vevsvavsve) > 0, then both vive and
v4v9 are saturated by y in Fy by (10) and (12). Thus y(vovsvsve) = w(vgve) and y(vivavsvavy) =
w(vivg). It follows that y(vsvivsvs), y(vavsvavsve), and y(vivsvsvavy) are all integral. So we
assume that y(vovsvgvsvy) = 0. Then y(vsvgvsvs) = w(vgvs), and y(vivsvgvgvy) = w(vsvy) —
w(vsvy) — w(vgvs). Moreover, y(vovsvgvy) = w(vgve) and y(vivavsvavy) = w(vavs) — w(v4ve)
if y(vivavgvavy) > 0, and y(vavsvava) = w(vavy) otherwise. Therefore y(C') is integral for all
C € Ca, no matter whether if y(vovsvivsve) > 0.

e y(vivsvauzvy) > 0. In this subcase, by (9) and (15) we deduce that y(vzvqvsvs) =
y(vivsvgvgvr) = 0 and that vivy is saturated by y in Fy. So y(vivavsvy) + y(vivevsvgvy) =
w(vive). If y(vivavsvgvy) > 0, then vsvy, vive, and vqvs are saturated by y in Fy by (9) and
(11). So y(vavsvavz) = w(vavz), Y(v2v3v4v5v2) = w(v4vs), and y(vavzvave) + Y(vivsV3VL) +
y(v1vsvvzvy) = w(vzvy). It follows that y(vivavsvy), y(vivevsvavy), and y(vivsvavsvy) are all
integral. Hence y(C) is integral for all C' € C3. So we assume that y(vivevsvgvy) = 0. Then
y(vivavsvy) = w(vive). If y(vavsvgvsve) = 0, then y(vovsvive) + y(vivsvav3v1) = w(vaVs) —
w(vive). Since y(vivsvavsvr) > 0, we see that vsvy is outside Cf, for otherwise, we can obtain an
optimal solution y’ to D(T, w) with ' (vivsvav3v1) < y(vivsV20301), contradicting (3). It follows
that y(vovsvavy) = min{w(vave), w(vsvs)} and y(v1vsvevzv1) = W(V2v3) — wW(V1vV2) — Y(V2V3V4V2).
If y(vavgvavsve) > 0, then y(vevsvgva) = w(vgvy) by (12) and y(vivsvevzvy) + y(vavsvavsve) =
w(vavg) — w(v1ve) — w(vgvy). Thus we always have w(vjve) = [z(viv2)] = z(vvg) for i = 1,4, 5.
Since vy is a near-sink, D(7', w) has an integral optimal solution by Lemma 4.6(i).

o y(v1v5v9v3v1) = y(v1vsv3v4v1) = 0. In this subcase, depending on whether y(vovsvavsve) >
0, we distinguish between two subsubcases.

(a) We first assume that y(vevsvsvsve) > 0. Now, in view of (12), vsve is saturated by
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y in Fy, which yields w(vqve) = y(vovgvgva). If y(vivsvzvy) > 0, then vivy is saturated by
y in Fy. So y(vivavsvy) + y(vivevgvgvy) = w(vive) and y(vevsvgvsve) = w(vevs) — w(vive) —
w(vgvz). Thus w(vive) = [z(vive)] = z(viva) for i = 1,4,5. By Lemma 4.6(i), D(T,w) has
an integral optimal solution. So we assume that y(vivsvsvy) = 0. If y(vivevzvgvy) = 0, then
y(v1v203v1) + Y(v2v3v4U5v2) = w(v2v3) — w(vave). Since y satisfies (1), we have y(vivavsvy) =
min{w(viv2), w(vavy)} and y(vovzvavsve) = w(vavs) — w(vava) —y(vivavzvy). If y(vivevzvgvy) >
0, then y(vivevzv1) = w(vgvy) by (11) and y(v1vevsv4v1) + Yy(vev3V4V5V2) = w(vov3) — w(v3v1) —
w(vqvz). Assume y(vivavsvavy) is not integral. Then [y(vivovsvav)] + [y(vavsvgvsve)] = 1. We
propose to show that

(18) wqvy is saturated by y in Fj.

Suppose the contrary. If vyv; is not saturated by y in T, we set § = min{w(vqv1) —
z(vqv1), [y(vavsvavsve)]}, and let ¢’ arise from y by replacing y(vivovsvivy) and y(vevszvsvsve)
with y(v1vevsvavy) + 6 and y(vavsvsvsve) — 6, respectively. Since vqvs is outside Cf, y' is also an
optimal solution to D(7, w), contradicting (4). If vqv; is saturated by y in 7" but contained in a
cycle C € CY, let C' = Clvs,v4] U {v4v5} and o = min{y(C), [y(vovsvavsv2)]}, and let y’ be ob-
tained from y by replacing y(vivavsv4vy ), y(vavsvavsv2), y(C), and y(C’) with y(vivevsvsvy)+0,
y(vav3vgvsv2) — 0, y(C) — o, and y(C’) + o, respectively. Then 3y’ is also an optimal solution to
D(T, w), contradicting (4) again. So (18) is established.

By (18), we have y(vivavzvavy) = w(vavy). It follows that y(C) is integral for all C' € Ca.

(b) We next assume that y(vavsvgvsve) = 0. If y(vivavsvgvy) > 0, then vqvy is saturated by
y in Fy by (11). So y(vavgvave) = w(vave) and y(vivavsvy) + y(v1v2v3v4v1) = w(vavsg) — w(v4v2).
Thus w(vive) = [z(vive)] = z(vive) for i = 1,4,5. By Lemma 4.6(i), D(7', w) has an integral
optimal solution. So we assume that y(vivevzvgvy) = 0. Then y(vivovsvy) + y(vavsvave) =
w(veus) and y(v1vsv3v1) + y(vsvavsvs) = w(vsvs). If y(vivgvsvy) is integral, then w(v;ve) =
[z(vive)] = z(vive) for i = 1,4,5. Hence, by Lemma 4.6(i), D(T,w) has an integral optimal
solution. So we assume that y(vivavsv1) is not integral. We propose to show that

(19) v (T) is an integer.

To justify this, let & be an optimal solution to P(7,w). Since 0 < y(vivovsvy) < w(vive)
and 0 < y(vovsvavy) < w(vgve), by Lemma 4.3(i) and (ii), we have z(vivy) = x(vqv2) = 0 and
x(v3v1) = x(v3vy).

Let us show that x(vivs) = x(v4vs). If both y(vivsvsvr) and y(vsvavsvs) are positive, then,
by Lemma 4.3(i), we have x(vivsvsvy) = z(vsvgvsvs) = 1, which implies z(vivs) = x(v4vs), as
desired. If one of y(vivsvzv1) and y(vsvsvsvs) is zero, then the other equals w(vsvs). By Lemma
4.4(iii), we may assume that w(vsvs) = 0. Since vovs is saturated by y in Fjy, both vive and
v4v9 are outside C§. If vsvy is also outside C, let y’ be obtained from y by replacing y(vsvivsv3)
and y(v1vsv3v1) with y(vsvavsvs) + [y(vivsvsvr)] and [y(vivsvsvr)], respectively, then ¢’ is an
optimal solution to D(T,w). Since y'(vsvgvsv3) is a positive integer, D(T, w) has an integral
optimal solution by Lemma 4.4(iii). So we may assume that vsvs is contained in some cycle
in C§; the same holds for v3vy. Let C; and Cs be two cycles in C§ passing through vsv; and
v3vy, respectively. By Lemma 4.3(iii), we have x(vsv1) + z(v1vs) = x(vsvs) + x(v4vs). Thus
x(v1vs5) = z(v4v5) also holds.

Similarly, we can prove that z(uvy) = x(uvs) for each vertex u € V(T1)\{b, a1}, where b is
the hub of the 1-sum. Let 7" = (V/, A’) be the digraph obtained from T by identifying v; and
vy; the resulting vertex is still denoted by vy. Let w’ be the restriction of w to A’. Then x
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corresponds to a feasible solution @’ to P(7”,w’) with 2/(vivs) = x(v4v1) + 2(v1v5) = z(V405)
by Lemma 4.3(iii), and y corresponds to a feasible solution y’ to D(T”,w’); both having the
same objective value v} (T) as P(T,w) and D(T,w). By the LP-duality theorem, &’ and y’
are optimal solutions to P(T”, w’) and D(T”, w'), respectively. By Lemma 4.5, D(T’, w') has an
integral optimal solution. So v} (T") is an integer. This proves (19).

Case 2.9. K = {v3v1,v304}.

In this case, by Lemma 4.3(iii), we have w(e) = y(Ca(e)) for each e € K, which together
with (14) yields the following two equations:

w(v3vy) = y(vivavzvr) + y(v1vsv3v1) + y(vivsvevsv); and

w(vgv4) = y(U203U41}2) + y(v3v4v5v3) + y(U10203U4U1) + y(v2v3v4v5v2) + y(U1U5U3U4Ul)-

Since each e € K is saturated by y in Fy, we have w(uv;) = z(uv;) = 0 for ¢ = 2,3 and all
u € V(T1)\{b, a1}, where b is the hub of the 1-sum. Depending on the values of y(vivsv3vav1)
and y(v1v5v2v3v1 ), we consider three subcases.

o y(vivsvavgvy) > 0. In this subcase, from (9) and (15) we deduce that y(vsvsvsvs) =
y(v1vsvsvgvr) = 0 and that vivg and vsvs are saturated by y in Fy. So w(vive) = y(vivevzvy) +
y(vivavgvgvr) and w(vsvs) = y(vivsvsvr). If y(vivevsvavy) > 0, then both vyve and vivs are
saturated by y in Fy by (9) and (11). Thus y(vevzvsva) = w(v4ve) and y(vevzvgvsve) = w(vavs).
It follows that y(C) is integral for all C' € C3. So we assume that y(vivovsvavy) = 0. If
y(vovzvgvsvg) > 0, then vyvy is saturated by y in Fy by (12), which implies that y(vovgvivg) =
w(vgve); if y(vevsvgvsve) = 0, then y(vovsviva) = w(vsvy). So y(C) is integral for all C' € Co,
regardless of the value of y(vovgv4vs5v2).

e y(vivsvsvgwr) > 0. In this subcase, from (10) and (15) we deduce that y(vivevzvy) =
y(vivsvauzvy) = 0 and that vqvs is saturated by y in Fy. So w(vsvy) = y(vivsvgvy) and
w(vgvs) = y(v3vgvsv3) + Yy(vovsvavsva). If y(vovsvgvsvy) > 0, then vive, v4ve, and vsvs are all
saturated by y in Fy by (10) and (12). So y(vivauvsvavi) = w(viva), y(vavzvave) = w(vava),
and y(v3vgusvs) + y(vivsvsvgwy) = w(vsvy) — y(vivsvgvr). It follows that y(C) is integral
for all C' € C3. So we assume that y(vevsvsvsve) = 0. Then y(vzvavsvs) = w(vavs). If
y(vivavgvgvy) > 0, then vqve is saturated by y in Fy by (11). So y(vevzvsvy) = w(vave) and
hence y(v1vav30401) + Y(v1v5V304v1) = W(v3vs) — W(V4v5) — W(v4v2); if Y(vivavzVavL) = 0, then
y(v2v3v4v2) +y(v1V5v3V4v1 ) = w(v3v4) —w(v4v5). Since all arcs in Fy\vg except {vivs, v4v1, v405}
are outside C and y(vivsvsvavy) > 0, by (ii) we have y(viv2vsvsv1) = min{w(vive), w(vavs) —
w(vqva) } if y(vivavsvgvr) > 0 and y(vevzvave) = min{w(vive), w(vovs)} otherwise. So y(vivsvsvavy)
is integral, and hence y(C') is integral for all C' € Cy, regardless of the value of y(vjvavsvgvy).

o y(v1v5v9u3v1) = y(v1v5v3v4v1) = 0. In this subcase, depending on whether y(vovsv4v5v9)
> 0, we distinguish between two subsubcases.

(a) We first assume that y(vavsvqvsve) > 0. By (12), both vsve and vsvs are saturated
by y in Fy, which implies w(vqvs) = y(vavsvave) and w(vsvs) = y(vivsvsvy) + y(vsvgvsvs).
If y(vivsvsvr) > 0, then vive is saturated by y in Fy by (12). So w(viv2) = y(vivevsvy) +
y(v1vavsvgvy). Moreover, if y(vivovsvgvy) > 0, then vgvs is saturated by y in Fy by (11), which
yields one more equation w(vqvs) = y(vsvavsv3) + y(vevsvavsve). Hence y(C) is integral for
all C' € Co, no matter whether y(vivavsvgv1) = 0. So we assume that y(vivsvsv;) = 0. Then
y(vivovzvy) = w(vzvr), y(vavavsvs) = w(vsvz) and y(vivavzvavr) + Y(v2v3v4V5v2) = w(v3vy) —
w(vgvy) — w(vsvs). If y(vivgvsvgvy) is integral, then y(C) is integral for all C' € Ca. So we
assume that y(vivevzvavy) is integral. Similar to (18), we can prove that vqv; is saturated by y
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in Fy. Then y(vivavsvavr) = w(vgvy), a contradiction.

(b) We next assume that y(vavsvivsve) = 0. Suppose y(vivavsvgvy) = 0. Then y(vivovgvy) +
y(v1vsv3v1) = w(vzvy) and y(vavsvava) + y(vsvavsvs) = w(vsvy). If neither y(vivsvsvy) nor
y(vsvavsvs) is integral, then neither y(vivovsvy) nor y(vavsvave) is integral. Similar to (19),
we can show that v} (T') is an integer. So we may assume that y(vivsvsvy) or y(vsvavsvs)
is integral. Observe that both of them are integral, for otherwise, let y’ be obtained from y
by replacing y(vivovzv1) and y(vivsvzvy) with y(vivovzvi) + [y(vivsvavr)] and [y(vivsvsvr)],
respectively. Since v1ve, vovs, and vyvy are all outside C§, y' is an optimal solution to D(T, w),
with ¢/ (vivsv3v1) < y(vivsV301), contradicting (5).

Suppose y(vivavgvgvy) > 0. Then y(vovsvivy) = w(vgvy). If y(vivsvsvr) > 0, then vyvs is
saturated by y in Fy by (11), which implies y(vsvqvsvs) = w(v4vs), y(vivevzvsvy) = w(vzvy) —
w(vqva) — w(vgvs), and y(vivevzvy) + y(vivsv3vr) = w(vgvy). If y(vivsvzvr) is not integral, let
v’ be obtained from y by replacing y(v1v9v3v1) and y(v1v5v3v1) with y(vivevsvy) + [y(vivsvsvr )]
and |y(v1vsvsv1) ], respectively. Since both v1ve and vovs are outside Cp, ¢’ is an optimal solution
to D(T, w), with ¢/ (vivsv3v1) < y(vivsv3v1), contradicting (5). So y(vivsvsvr) is integral and
hence is zero by Lemma 4.4(iii). It follows that y(vivevsv1) = w(vsvy) and y(vivavsvavy) +
y(v3v4v5v3) = w(v3vy) — w(vgve). I y(vsvgvsvs) is integral, then y(C') is integral for all C' € Co.
So we assume that y(vsvivsvs) is not integral. Let us show that

(20) v (T) is an integer.

By Lemma 4.4(iii), we may assume that w(vsvy) = w(vqve) = 0. Recall that w(vsve) =
z(vsv2) = 0 and w(uv;) = z(uv;) = 0 for i = 2,3 and all w € V(T1)\{b,a1}. So we may assume
that z(uve) = x(uvs). Let T" = (V' A’) be the digraph obtained from 7' by identifying vo and
v3; the resulting vertex is still denoted by vz, and let w’ be the restriction of w to A’. Then
@ corresponds to a feasible solution ' to P(T",w’), and y corresponds to a feasible solution
Yy’ to D(T',w’); both having the same objective value v} (T) as P(T,w) and D(T,w). By the
LP-duality theorem, &’ and y’ are optimal solutions to P(7”,w’) and D(T”, w'), respectively. By
Lemma 4.5, D(T",w’) has an integral optimal solution. So v (7T') is an integer. This proves (20)
and hence Claim 2.

Since Ty(Fy\vg) > 0, from Claim 2, Lemma 4.4(iii) and Lemma 4.6(ii) we deduce that
D(T,w) has an integral optimal solution. This completes the proof of Lemma 5.4. |

Lemma 5.5. If Ty = Go, then D(T,w) has an integral optimal solution.

Proof. It is routine to check that

o Co = {v10204V1, V1VEV3VT, V1VEU4VT, V] VgU2V4V] , V1 UgU3V4VT, V1 UgU3V204V1 } and

° fg = {{’1)11}6, 1}11)2}, {’1}11}6, 112’04}, {1}11]6, U4’U1}, {Ugvl, ’U4’U1}, {114’01, ’1)6’1}3}, {’02’04, VU3, 1}61]4},

{vouy4, v3V1, V3V4, VeV, }, {V1V2, VeV2, VU3, Va4 }, {V1V2, VU1, U3V, V3V, VgV, VU4 |}

We also have a computer verification of these results. So |C2| = 6 and |F2| = 9. Recall that
(b2, a2) = (v4,vs5).

Let y be an optimal solution to (T, w) such that

(1) y(Ca) is maximized;

(2) subject to (1), (y(Dgq),y(Dyg-1),...,y(D3)) is minimized lexicographically;

(3) subject to (1) and (2), y(vivgvsvavy) is minimized; and

(4) subject to (1)-(3), y(vivevavy) is minimized;

Let us make some simple observations about y.
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(5) If K € F, satisfies y(C2) = w(K), then K is an MFAS. (The statement is exactly the
same as (4) in the proof of Lemma 5.3.)

The three statements below follow instantly from Lemma 4.7(v).

(6) If y(vivgvsvavgvy) > 0, then each arc in the set {vjve, v3v1, v3vy, VU2, Vev4 } 1S saturated
by y in G.

(7) If y(vivgvsvavy) > 0, then both vsv, and vgvy are saturated by y in Go.

(8) If y(vivgvavav1) > 0, then both vive and vgvy are saturated by y in Go.

Claim 1. y(C2) = 7w(G2\vs).

To justify this, observe that if both vjve and vvg are saturated by y in Ga, then y(Co) =
w(K), where K = {v1vg,v1v6}; if both vgv; and vgv; are saturated by y in Ga, then y(Cy) =
w(K), where K = {vzv1,vqv1}. By (5), K is an MFAS and hence y(C2) = 7,(G2\vs) in either
case. So we assume that

(9) at most one of v1ve and vyvg is saturated by y in Ga. The same holds for vsv; and vqv;.

As vy, is a special arc of T' and vs is a near-sink, by Lemma 4.6(iv), we may assume that
vy is saturated by y in 7. Depending on whether vovy is outside C§, we distinguish between
two cases.

Case 1.1. vgvy is contained by some cycle in C§.

In this case, we proceed by considering two subcases.

e v3v is saturated by y in Go. In this subcase, by (9), vqv; is not saturated by y in Go
and hence in T', because v4v; is outside Cy. By the hypothesis of the present case and Lemma
4.7(iil), v1vy is saturated by y in T. Observe that vivy is outside Cf, for otherwise, a cycle
C € C§ containing vivy must pass through vevs. Thus, by Lemma 4.7(iv), v4v; is saturated by
y in Ga, a contradiction. It follows that vive is saturated by y in Ga. So, by (9), vivg is not
saturated by y in Ga. If v1vg is contained in some cycle C € C§, applying Lemma 4.7(iv) to the
cycle Clvy, v4]U{vqv1} in Co, we see that vqv is saturated by y in 7', a contradiction. So vivg is
outside C' € C§. By Lemma 4.7(iii), vgvy is saturated by y in G and vgvy is outside C§. Using
Lemma 4.7(i), we further deduce that vgvy is saturated by y in Ga. If vgvs is also saturated by
y in Go, then y(C2) = w(K), where K = {v1v2, v6v2, 0603, v6vs}. By (5), K is an MFAS and
thus y(C2) = 7,(G2\vs). If vgvs is saturated by y in T but contained in some cycle C' € C§,
applying Lemma 4.7(iii) to the cycle Cluvg,v4] U {vgv1,v106} € Co, we see that vqvy or vivg is
saturated, a contradiction. If vgvs is not saturated by y in T then, by Lemma 4.7(iii), vgve is
saturated by y in G2 and and v3vy is outside C§. Using Lemma 4.7(i), we further deduce that
v3vy is saturated by y in Ga. Thus y(Ce) = w(J), where J = {vjva, v3v1, V302, U304, VU2, VgV4 } .
By (5), J is an MFAS and thus y(Ca) = 7,(G2\vs).

e v3v] is not saturated by y in G. In this subcase, we have y(vivgv3v4v1) = y(v1V6V3V2V4v1) =
0 by (6) and (7). Assume first that vjvy is saturated by y in Ga. Then vjvg is not satu-
rated by y in G2 by (9). Thus vevs is saturated by y in G2 by Lemma 4.7(iii) and (iv). If
vquy is also saturated by y in Ga, then y(C2) = w(K), where K = {vqv1,v6v3}; otherwise,
both veva and vgvs are saturated by y in G by Lemma 4.7(iii) and (iv). So y(C2) = w(K),
where K = {vjvg, vgv2, v6v3,v6v4}. By (5), K is an MFAS in either subsubcase, and thus
Y(C2) = Tw(G2\vs).

Assume next that vjvy is not saturated by y in Gy. By (8), we have y(vivgvavgvy) = 0. By
the hypothesis of the present case and by Lemma 4.7(iii) and (iv), vqv; is saturated by y in Ga.
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If vgvs is also saturated by y in Ga, then y(C2) = w(K), where K = {vqvi,v6v3}. By (5), K
is an MFAS and thus y(C2) = 7,(G2\v5). So we assume that vgvs is not saturated by y in Gs.
Thus vyv6 is saturated by y in Gy by Lemma 4.7(iii) and (iv). We propose to show that

(10) y(v1vgvavy) = 0.

Assume the contrary: y(vivgvavy) > 0. Observe that vive is outside Cg , for otherwise, let
C be a cycle in Cg containing v1ve. Then the multiset sum of vivgvsvy and C contains two
arc-disjoint cycles v1v9v4vy and Clug, v1] U {v1vg, vgva}. Set 6 = min{y(vivgvsv1), y(C)}. Let 3y’
be obtained from y by replacing y(vivgvav1), y(vivavavy), y(C), and y(C’) with y(vivvavy) — 0,
y(vivgugvr) + 0, y(C) — 0, and y(C") + 6, respectively. Then gy’ is also an optimal solution to
D(T,w). Since y'(vivgvav1) < y(vivevavy), the existence of y' contradicts the assumption (4)
on y. It follows that vsv; is also outside C§, because every cycle containing v3v; in C§ must pass
through v1v2. So neither vivs nor wywv; is saturated by y in T.

Let us show that vvs is outside C§, for otherwise, let C € C§ contain vevs. Then the
multiset sum of vivgvav1, C, and the unsaturated arc vsv; contains arc-disjoint cycles vivgvzvy
and C" = Clvg,ve] U {vgva}. Set 6 = min{y(vivgvsv1), y(C), w(vsvy) — z(vsv1)}. Let y' be
obtained from y by replacing y(vivevav1), y(vivevsvy), y(C), and y(C") with y(vivevavy) — 6,
y(vivgusvy) + 0, y(C) — 0, and y(C’) + 0, respectively. Then gy’ is also an optimal solution to
D(T,w). Since y'(vivgvav1) < y(v1vevavy), the existence of y' contradicts the assumption (4)
ony. Let D € Cg be a cycle containing vovy. Then the multiset sum of D, vivgvqvy, and the
unsaturated arcs wvgvs, vzvy, and vive contains two arc-disjoint cycles vivev v; and vivgvsvy.
Thus, by Lemma 4.7(vi), we obtain y(vjvsvav1) = 0; this contradiction proves (10).

From (10), we deduce that y(C2) = w(K), where K = {vivg,vqv1}. So, by (5), K is an
MFAS and thus y(Ca) = 7,(G2\vs).

Case 1.2. vyvy is outside Cg.

In this case, vov4 is saturated by y in G2. So vive, v3ve, and vgve are all outside Cg . Assume
first that v1vg is saturated by y in Go. Then vv9 is not saturated by y by (9). By (6) and (8),
we have y(v1vv3v20401) = y(vivevav4v1) = 0 and hence y(C2) = w(K), where K = {v1vg, v2v4 }.
It follows from (5) that K is an MFAS and thus y(C2) = 7(G2\vs). Assume next that vivg is
not saturated by y in Gs. If v4v; is not saturated by y in T, then vgvy is outside C§ by Lemma
4.7(iil). So v3vy is contained in some cycle in C§ because C§ # (0. Using Lemma 4.7(iii), we deduce
that both vgvs and vgvy are saturated by y in Ga. Using (6), we obtain y(vivgvsvavgvy) = 0.
Thus y(C2) = w(K), where K = {vovg, v6v3, vgv4}. If v4vy is saturated by y in T, then so is it
in Go because v4v1 is outside Cg. By (9), vsvy is not saturated by y in G2. By Lemma 4.7(iii),
vevs is saturated by y in Gy. By (6) and (7), we have y(vivgvsvgavy) = y(vivevzvevavy) = 0.
Hence y(C2) = w(K), where K = {v4v1,v6v3}. In either subsubcase, K is an MFAS by (5) and
thus y(C2) = 7 (G2\vs). This proves Claim 1.

Claim 2. y(C) is integral for all C' € Cy or v, (T') is an integer.

To justify this, we may assume that

(11) y(vivevsvavavy) = 0.

Otherwise, by (6), we have w(e) = y(Cz2(e)) for each e in the set {viva, v3v1, V3V4, VeV2, VU4 }-
So y(vivavgvr) = w(viva), y(vivevsvr) = w(vsvy), y(vivevsvavy) = w(vsvy), y(vivevaV4V1) =
w(vevz), and y(vivevav) = w(vgvy). By Claim 1, y(Ca) is an integer, so is y(v1v6v3v20401).
Hence y(C) is integral for all C' € Cs.
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By Claim 1, y(C2) = w(K) for some K € Fy. Depending on what K is, we distinguish among
nine cases.

Case 2.1. K = {Ulvg, V3v1, V3V2, U3V4, VU2, 7)61)4}.

In this case, by Lemma 4.3 (iii), we have w(e) = y(Cz(e)) for each e € K. It follows instantly
that y(C) is integral for all C' € Cs.

Case 2.2. K = {vjvg,v401 }.

In this case, by Lemma 4.3 (i), we have y(vivgvav1) = y(vivgvavavy) = y(v1vgv3v4v1) =
y(v1v6v3v2v4v1) = 0. By Lemma 4.3 (iii), we further obtain w(e) = y(Cz(e)) for each e € K. It
follows that y(vivevsv1) = w(vavy) and y(vivgvsvy) = w(vive). Therefore y(C) is integral for
all C € Cs.

Case 2.3. K = {v1v2, vg02, V6U3, V6U4 }.

In this case, by Lemma 4.3 (iii), we have w(e) = y(C2(e)) for each e € K, which together
with (11) yields the following equations: y(vivovgvi) = w(v1v2), y(vivevavav1) = w(VgV2),
y(v1v6v4v1) = w(veva), and y(v1v6v3v1 ) +y(v106v3v401) = w(vevz). Note that if y(vivsvsvavy) >
0, we have one more equation y(vi1vgvsv1) = w(vsvy) by (7). Hence y(C) is integral for all C' € Co,
no matter whether y(vjvgvzvavy) = 0.

Case 2.4. K = {vyvy, v6U3, UgV4 }.

In this case, by Lemma 4.3 (iii), we have w(e) = y(Cz(e)) for each e € K, which together
with (11) yields the following equations: y(vivavavy) + y(vivevevsv1) = w(vavy), y(vivevsvy) +
y(v1vgv3v4v1) = w(vevs), and y(vivevavy) = w(vgvy). Note that if y(vivgvavgvy) > 0, we have
one more equation y(vivovavy) = w(vive) by (8); if y(vivevsvgvy) > 0, we have one more
equation y(vivevzvy) = w(vsvy) by (7). Hence y(C) is integral for all C' € Cy in any subcase.

Case 2.5. K = {vgvy, v301, 0304, Vg4 }.

In this case, by Lemma 4.3 (iii), we have w(e) = y(Cz(e)) for each e € K, which together
with (11) yields the following equations: y(vivavav1) + y(vivevavav1) = w(vavs), Y(v1vev3V1) =
w(vsvy), y(vivgvsvavr) = w(vsvy), and y(vivgvavy) = w(vevy). Note that if y(vivgvavgvy) > 0,
we have one more equation y(vivavsv1) = w(viv2) by (8). Hence y(C) is integral for all C' € Ca,
no matter whether y(vjvgvavqv1) = 0.

Case 2.6. K = {v1vg,v204}.

In this case, by Lemma 4.3 (i), we have y(vivevavsv;) = 0. By Lemma 4.3 (iii), we ob-
tain w(e) = y(Ca2(e)) for each e € K, which together with (11) yields the following equa-
tions: y(v1vev4v1) = w(vevs) and y(vivevsvy) + y(vivev4v1) + Y(v1v6V3V4v1) = w(vivg). More-
over, in this case v1v2, v3ve, and vevz are all outside Cf, and w(uvy) = z(uvy) = 0 for any
u € V(T1)\{b,a1}, where b is the hub of the 1-sum. Examining the cycles in Ca, we see that
z(v3v2) = z(vev2) = 0 and so w(v;ve) = [2(viv2)] = z(vive) for i = 1,3,6. Thus D(T,w) has an
integral optimal solution by Lemma 4.6(3).

Case 2.7. K = {vqv1,v603}.

In this case, by Lemma 4.3 (i) and (iii), we have y(vivevsvavi) = 0, y(vivevsvi) = w(vevs),
and y(vivavgv1) + y(vivgv4v1) + y(v106v204v1) = w(vgvy). Lemma 4.4(iii) allows us to assume
that w(vgvs) = 0. If y(vivevavav1) > 0, then both vivg and vgvy are saturated by y in Go by (8).
So y(v1vavav1) = w(vivz) and y(vivevav1) = w(vgvy). Hence y(C) is integral for all C' € Co; the
same holds if y(v1vgvavsv1) = 0 and y(vivavavy) is integral. So we assume that y(vivgvavivy) = 0
and y(v1v2v4v1) is not integral. Observe that v1vs is outside C§, for otherwise, let C be a cycle in
C§ containing vivg, let C' = Clvg, v1] U {v1v6, v6v4}, and set § = min{y(C), y(vivevsv1)}. Let ¢
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be obtained from y by replacing y(vivgvavy), y(vivavavy), y(C), and y(C’) with y(vivvsvy) — 0,
y(vivovgvy) + 0, y(C) — 0, and y(C’) + 0, respectively. Then vy’ is also an optimal solution to
D(T,w). Since y'(vivgvav1) < y(v1vevavy), the existence of y' contradicts the assumption (4)
on y. Similarly, we can prove that vgve is outside C§. Examining cycles in Co, we see that
w(vev2) = z(vev2) = 0. Now we propose to show that

(12) v} (T) is an integer.

To justify this, let & be an optimal solution to P(T,w). Since both y(vivevsvy) and
y(v1vev4v1) are positive, we have x(viv2) + z(vavs) = x(vivg) + x(veva) by Lemma 4.3(i). Since
y(v1v2v4v1) < w(v1v2), we have z(vivy) = 0 by Lemma 4.3(ii). So z(vavs) = z(viv6) + x(vev4).
If each of vzvy and vsve is contained in some cycle in C§, then x(vsv1) = z(v3v2) by Lemma
4.3(iv). If one of vsv; and wvsvy is outside C§, say vsvi, then we may assume that w(vsvy) = 0
and x(vsv1) = z(v3ve). Similarly, we can prove that x(uv;) = x(uvs) for each v € V(T1)\{a1, b}.

Let T = (V', A’) be obtained from T by deleting vertex vy, let w’ be obtained from the
restriction of w to A’ by defining w'(uv1) = w(uvy) + w(uwvy) for v = vs or u € V(T1)\{b, a1}
and w'(v;v;) = w(vvj) + w(vavy) for (i,j) = (1,6) or (6,4). Let @’ be the restriction of = to
A" and let ¢y’ be obtained from y as follows: for each cycle C passing through the path uwvyvy
with u € (V(T1)\{a1,b}) U {vs}, let C’ be the cycle arising from C by replacing uvovy with
uvvgvg, and set ¢ (C") = y(C) 4+ y(C’) and y' (vivgvav1) = y(vivevavr) + y(vivavavy). From
the LP-duality theorem, we see that ' and ¢y’ are optimal solutions to P(7”,w’) and D(T”", w’)
respectively, both having the same value v (T) as  and y. Hence v (T) is an integer by the
hypothesis of Theorem 4.1.

Case 2.8. K = {v1vg,v102}.

In this case, by Lemma 4.3 (iii), we have w(e) = y(C2(e)) for each e € K, which together
with (11) yields the following equations: y(v1vov4v1) = w(v1v2) and y(vivevsvr) + y(vivevavy) +
y(v1v6vavav1) + y(v1v6v3V4V1) = w(v1v6). Moreover, vgvy is outside C§. Depending on whether
y(v1vgvsvgvy) = 0, we consider two subcases.

e y(vivgvgvavr) = 0. In this subcase, we first assume that y(vivgvavav;) > 0. Then
y(v1vevav1) = w(vgvy) by (8). Thus y(vivevsvr) + y(vivgvavsve) = w(vive) — w(vevy). Let us
show that y(v1vgv3v1 ) is integral. Suppose not. If vgvs is outside CY, let 4’ be obtained from y by
replacing y(v1vev3v1) and y(vivevavavr) with y(vivevsv) + [y(v1vevavave)] and [y(vivevavavy)],
respectively; if vgvs is contained in some cycle C in C§, set § = min{y(C), [y(v1vsvav4v1)]}
and C' = Clug,vg] U {vgva, vov4}, and let y’ be obtained from y by replacing y(vivgvsvr),
y(vivgvavav ), y(C), and y(C”") with y(vivsvsv) + 6, y(vivsvavave) — 6, y(C) — 0, and y(C") + 6,
respectively. In both subsubcases, ¢y’ is an optimal solution to D(T,w) with y'(vivgvevivy) <
y(v1vgvovgvy ), contradicting (2). We next assume that y(vivgvavgv;) = 0. The proof of this
subsubcase is similar to that in the preceding one (with y(vivgv4v1) in place of y(vivgvavsvy)).
Thus we reach a contradiction to (4).

e y(v1vgvzvgvr) > 0. In this subcase, by (7), both v3v; and vgvy are saturated by y in Ga. So
y(v1v6v3v1) = w(vzvr), Y(v1v6vav1) = w(veva), and y(v1veV2v4v1) + Y(V1V6V3V4VL) = w(V1V6) —
w(vgvy) —w(vevs). If y(vivgvavgvy) is integral, then y(C) is integral for all C' € Cy. So we assume
that y(v1vgvav4v1) is not integral. Then [y(vivvavav1 )]+ [y(v1vev3vavy )] = 1. Observe that vgve
is outside C{, for otherwise, let C be a cycle in C§ containing vgvz, let C" = Cluy, ve]U{vgvs, v3v4},
let 6 = min{y(C), [y(vivgvsvsv1]}, and let y' be obtained from y by replacing y(vivgvsvavy),
y(vivgvavavr ), y(C), y(C") with y(vivgvsvavr) — 0, y(vivsvavav) + 0, y(C) — 0, and y(C’) + 6,
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respectively. Then 3y’ is an optimal solution to D(T,w) with y/(vivgvsviv) < y(vivevsvavy),
contradicting (2). Similarly, we can show that vsvs is also outside C§. Thus w(vsvs) = z(vsva) =
0. By Lemma 4.4(iii), we may assume that w(vivz), w(vsvi), and w(vevs) are all 0. We propose
to show that

(13) v (T) is an integer.

To justify this, let & be an optimal solution to P(7,w). Since y(vivgvovsvy) > 0 and
y(vivgvzvgvr) > 0, from Lemma 4.3(i) we deduce that x(veva) + x(vovs) = x(vgvs) + x(v3v4).
Since y(v1vgv2v4v1) < w(vgv2), we have x(vgve) = 0 by Lemma 4.3(ii). It follows that x(vovy) =
z(vevs) + z(vsvg). Since w(vevy) = 0 and wvgve is outside C, z(uvg) = z(uve) for each u €
V(T1)\{b,a1}. Let T" = (V', A’) be the tournament obtained from 7" by deleting vertex va, let
w’ be obtained from the restriction of w to A’ by replacing w(uvg) with w(uve)+w(uve) for each
u € V(T1)\{b, a1} and replacing w(v;v;) with w(v;v;) + w(vevy) for (i,5) = (6,3) or (3,4). Let
x’ be the restriction of x to A’, and let ¢’ be obtained from y as follows: for each cycle C' passing
through wvovy with u € V(T1)\{b,a1}, let C’" be the cycle arising from C' by replacing uvavy
with uvgvsvy, and set y' (C") = y(C")+y(C) and ¥/ (vivsv3v4v1) = Y(V1VeV3V4VT) + Y (V1 VaVIV4VL ).
From the LP-duality theorem, we deduce that &’ and y’ are optimal solutions to P(7”,w’) and
D(T",w’), respectively, both having the same value v}, (T') as « and y. Hence v, (T') is an integer
by the hypothesis of Theorem 4.1.

Case 2.9. K = {v3v,v401 }.

In this case, by Lemma 4.3 (iii), we have w(e) = y(Ca(e)) for each e € K, which to-
gether with (11) yields the following equations: y(vivevsvy) = w(vsvy) and y(vivevavy) +
y(v1v6v4v1) + Y(v1vev2v4v1) + y(V1veU3V4V1) = w(vgvy). Assume first that y(vivgvevivy) = 0.
If y(vivevzvgvy) > 0, then vgvy is saturated by y in Ga. So y(vivevavi) = w(vgvy) and hence
y(vivavavr) + y(v1vsv3vavy) = w(vavr) — w(vevs); if y(vivevsvavr) = 0, then y(vivavavy) +
y(v1vev4v1) = w(vgvy). If y(vivevavr) is an integer, then y(C) is integral for all C' € Cy. So we
assume that y(vi1vav4v1) is not integral. Then we can prove that both vgvy and vivy are outside
CY and that v (T) is an integer. The proof is the same as that of (12) (with y(v1vevav1) in place
of y(v1vvzvav1) when y(vivgvzvgvy) > 0), so we omit the details here .

Assume next that y(vivgvevgvy) > 0. Then both vive and wvgvy are saturated by y in
Ga. So y(vivavavr) = w(vive), y(vivevav1) = w(vevs), and y(vivevavav1) + Y(v1vev3v4V1) =
w(vgv1) — w(vivy) — w(vevy). If y(vivgvsvavy) is an integer, then y(C) is integral for all C' € Co.
So we assume that y(vivgvsvavy) is not integral. Then we can prove that both vgve and vsvy
are outside C§ and that v, (T) is an integer. The proof is the same as that of (13), so we omit
the details here. Thus Claim 2 is established.

Since Ty (Fy\vg) > 0, from Claim 2, Lemma 4.4(iii) and Lemma 4.6(ii) we deduce that
D(T,w) has an integral optimal solution. This completes the proof of Lemma 5.5. |

Lemma 5.6. If Ty = G3, then D(T,w) has an integral optimal solution.

Proof. It is routine to check that

o(y = {01021)41)1,1)1067)3111,1121)41)61)271)31142}61)3, V1V6V20V4V1, V1VgVU3V4V1, V2V4VeV3V2, V1VeU3V2V4VT,
V12040603V } and

° .FQ = {{1}2'04, 1)61)3}, {1}1?)2, V1Ve, 1)41)6}, {Ulvg, VeV2, 1)67)3}, {1)1'06, V2V4, 1)31)4}, {7)11)6, V2V4, 1)4'06},
{v1v6, v4v1, V4v6 }, {V2v4, V3VT, V3V4 }, {V3VTL, VaVT, V4VE }, {V4V1, V4VE, VeVS T,
{1)4’[)1, VeV2, ?}61]3}, {'1}1?)2, V3v1, V3V2, V34, 1)61]2}, {'1}1?)2, V1Vg, V3V2, V34, Uﬁvg},
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{v3v1, v3V9, V3V4, V4V, VU } }
We also have a computer verification of these results. So |C2] = 9 and |Fa| = 13. Recall that
(b2, a2) = (v4,vs5).

Let y be an optimal solution to (T, w) such that

(1) y(Cz) is maximized;

(2) subject to (1), (y(Dyq),y(Dyg-1),...,y(D3)) is minimized lexicographically;

(3) subject to (1) and (2), y(vivgvsvavy) is minimized; and

(4) subject to (1)-(3), y(vivevav1) + y(v3vavevs) is minimized;

Let us make some simple observations about y.

(5) If K € F, satisfies y(C2) = w(K), then K is an MFAS. (The statement is exactly the
same as (4) in the proof of Lemma 5.3.)

(6) If y(vivavgvgvsvy) > 0, then each arc in the set {vivg, v3v2, V3v4, V4V1, VeV } is saturated
by y in G3. Furthermore, y(v1vv2v4v1) = y(v1vgv3v4v1) = y(v1v6V3V204v1) = 0.

To justify this, note that each arc in the given set is a chord of the cycle vivovgvgvsvL. SO
the first half follows instantly from Lemma 4.7(v). Once again let & stand for the multiset sum.
Then v1v9V4V6U3V1 W V1VV2V4V1 = V1VU4V1 W 01V6V3V1 W V904UV, V1U2V4VgU3V1 W V1 VgU3V4V =
V1V204U1 W1 VgU301 WU30406V3, and V1 U204 V6V301 WU UgU3Va04V1 = 11 VU4V U1 U6V3V1 WU 4 VU3 V2.
It follows from the optimality of y that y(vivevavsvi) = y(vivevsvavy) = y(vivgvzvavgvy) = 0.

(7) If y(vivgvsvavgvy) > 0, then each arc in the set {vjve, v3v1, V304, V46, VeV } is saturated
by y in G3. Furthermore, y(vovivgve) = y(vsvavgvs) = 0.

To justify this, note that each arc in the given set is a chord of the cycle vivouqvgv3v1. So
the first half follows instantly from Lemma 4.7(v). Observe that vjvgvsvevivy W v3vgvgus =
V1V6U3V4V1 W U20406U3v2 and v vgvU3U2v4v1 W U2U4VeV2 = VU624V W UoU4 VU3V, Since y satisfies
(2), it is clear that y(vevsvgva) = y(vsv4v6v3) = 0.

(8) If y(vivvzvavy) > 0, then both vsvy and vqvg are saturated by y in Gs; so is vjvg if
y(vav4vgv3v2) > 0. Furthermore, y(vovgvgve) = 0.

To justify this, note that both vsv; and vqvg are chords of the cycle vyvovqvgvsV1, SO they are
saturated by y in G5 by Lemma 4.7(v). Suppose y(vavgvgvsve) > 0. If v1vy is not saturated by y
in T, then v v6V3V4V1 WV2v4VaV3V2W{V1V2 } = V1V2V VI WU3V4VE3; if V1 vy is saturated by y in T but
contained in some cycle C' € C, then the multiset sum of C, v1vgv3v4v1, and v2v4V6V3V2 contains
arc-disjoint cycles vivavgvy, v3v406v3, and C' = Clug, v1] U {v1vs, v6v3, 302, 204 }. Thus we can
obtain an optimal solution y’ to D(T,w) that contradicts the assumption (3) on y. Moreover,
since v1vaU3V4VT W V2U4V6U2 = V3V4V6V3 W U1V6V2V4V1, it follows from (3) that y(vovsveua) = 0.

(9) If y(vivgvavgvy) > 0, then both vivy and vivg are saturated by y in Gs; so is vsv; if
y(vsv4vgv3) > 0 or y(vevqvguzve) > 0.

The first half follows instantly from Lemma 4.7(v). To prove the second half, assume the
contrary. If vsvy is not saturated by y in T, then vzv vgvs W v1vgv2v4v1 W {v3v1} = vov4V6V2 W
01060301, and VaV4VEU3Va WU Vg2V V1 W{ 301 } = vovgugue WU vgUsYT; if v3vy is saturated by y in T
but contained in some cycle C' in C§, then the multiset sum of C, v1vgvav4v1, and vsv4vgvs (Tesp.
VU UgU3V2) contains arc-disjoint cycles vovgvgua, vivgUsV1, and C' = Clvg, vs] U {vsvs} (resp.
C' = Clvg, v3) U {vgvg, vavs}). Since y satisfies (2), we have y(vsvgvgvs) = y(vavgvgvzvg) = 0, a
contradiction.

(10) If y(vevqvgvzve) > 0, then both vsvy and wvgve are saturated by y in G3 by Lemma
4.7(v).
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(11) If vvg is contained in a cycle in Cé’, then both vyv; and v4vg are saturated by y in Gj.

Since both Cfv1,v4] U {v4v1} and Clvg, v4) U {v4ve} are cycles in Co, the statement follows
instantly from Lemma 4.7(iv).

(12) If vgvs is contained in a cycle in C§, then v4qvg is saturated by y in Gs; so is vivg or
V41 .

The first half follows instantly from Lemma 4.7(iv). To prove the second half, we may
assume, by (11), that vive is outside Cj. Let C be a cycle in C§ containing vgvs. Then both
Clve,v4] U {vgvg} and Clug, v4) U {vgv1,v1v6} are cycles in Ca. Thus, by Lemma 4.7(iv), vqvg
and at least one of vivg and vqv; are saturated by y in Gs.

Claim 1. y(C2) = 7(G3\vs).

To justify this, observe that vovy is a special arc of T" and v is a near-sink. By Lemma 4.6(iv),
we may assume that vovy is saturated by y in T'. Let Go = {{v1v2, v1vg, 406}, {v1V2, Vv2, VU3 },
{vouy, v3v1, V304 }, {v3V1, v4v1, V406 }}. Then Gy C Fa. Observe that

(13) if y(vivavgvgvsvy) = 0, then for each K € Go, not all arcs in K are saturated by y in
Gs.

Suppose the contrary: all arcs in K are saturated by y in G3. Examining cycles in Co, we see
that y(C2) = w(K). By (5), K is an MFAS and hence y(C2) = 7,(G3\vs). So we may assume
that (13) holds.

Depending on whether vgvy is outside Cff, we distinguish between two cases.

Case 1.1. vovy is contained in some cycle in Cg .

We proceed by considering four subcases.

e Neither vqv1 nor vgvg is saturated by y in G3. In this subcase, by Lemma 4.7(iii) and
(iv), both vyve and vgve are saturated by y in Gs. By (6)-(9), y(v1v2v4v6v3v1), y(v1vgv3020401 ),
y(vivevsvavy), and y(vivevavgvy) are all zero. By (12) and (13), vevs is outside C§ and not
saturated by y. By Lemma 4.7(iii), both vsvy and vzv, are saturated by y in G3. By Lemma
4.7(i) and (iii), at least one of vivg and wvsv; is saturated by y in Gz. Thus y(C2) = w(K),
where K is {viva, v10g, v3V2, U3V4, Vev2} O {v1V2, V3VL, V3V, U3V, Ugv2}. By (5), K is an MFAS
and hence y(C2) = 7, (G3\vs).

e v4vg is saturated by y in G3 while v4v; is not. In this subcase, by Lemma 4.7(iii), vivg
is saturated by y in G3. By (6), we have y(vivavgvgvsvi) = 0. By (11) and (13), vjvg is
outside C§ and not saturated by y. By Lemma 4.7(i) and (iii), vgve is saturated by y in Gs.
So, by (12) and (13), vgvs is outside C§ and not saturated by y. It follows from Lemma 4.7(i)
and (iii) that vsvy, vsvg, and vszvy are all saturated by y in Gs. Thus y(C2) = w(K), where
K = {v1v2,v301, 0302, V304, v6v2 }. By (5), K is an MFAS and hence y(C2) = 7, (G3\vs).

e v4v; is saturated by y in G3 while v4vg is not. In this subcase, by Lemma 4.7(iii), vgve is
saturated by y in Gs. By (7)-(9), y(v1vevsvav4v1), y(vivevsvavy), and y(vivgvevavy) are all zero.
By (12), vgvs is outside C§. Furthermore, we may assume that vgvs is not saturated by y, for
otherwise y(C2) = w(K), where K = {vqv1,v6v2,v6v3}. Then, by Lemma 4.7(iii) and (iv), both
v3ve and vgvy are saturated by y in Gs. If vsv; is also saturated by y in G, then y(C2) = w(K),
where K = {v3v1, v3v2, V304, 401, V6v2 }; otherwise, by Lemma 4.7(i) and (iii), both vjve and
vivg are saturated by y in Gs. So y(Ce) = w(J), where J = {viva, 106, V3V2, V3V4, VU2 }.

e Both v4v; and vyvg are saturated by y in Gs. In this subcase, if y(vivovqvgvsvy) > 0, then
v1vg is saturated by y in G3 and y(v1vgvavsv1) = y(v1v6v3v4v1) = Y(v1v6V3V20401) = 0 by (6).
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Thus y(Ce) = w(K), where K = {vqv1,v4v6,v106}. So we assume that y(vivevsvevzvy) = 0.
Then v3vy is not saturated by y in Gg by (13). Thus y(vivgvsvevsvi) = y(vivgvsvavy) = 0
by (7) and (8). If y(vivevavavy) > 0, then vjvy is saturated by y in Gz and y(vsvsvevs) =
y(vavgvguzvy) = 0 by (9). By (13), vjvg is not saturated by y in Gs. Hence, by Lemma
4.7(iii), vevs is saturated by y in G3. Therefore, y(C2) = w(K), where K = {vqv1, v4v6, 603 }.
So we may assume that y(vivgvavgvy) = 0 and that vivg is not saturated by y in Gs, for
otherwise y(C2) = w(K), where K = {v4v1, v4v6,v106}. Thus, by Lemma 4.7(iii) and (iv), vgvs
is saturated by y in G3. We may further assume that vgvs is not saturated by y in Gj3, for
otherwise, y(Ca) = w(J), where J = {v4v1, vgv2,v6v3}. Then y(vevsvgvsve) = 0 by (10). We
propose to show that

(14) y(vsvqvgvs) = 0.

Assume the contrary: y(vsvqvgvs) > 0. Since neither vivg nor vsv; is saturated by y in Gs,
we distinguish among four subsubcases.

(a) Neither vivg nor vsv is saturated by y in 7. In this subsubcase, set § = min{w(vivg) —
2(v1vg), w(vzvy) — 2 (v3v1), y(v3vavevs) }. Let ¢’ be obtained from y by replacing y(vsvivgvs) and
y(vivguzvy ) with y(vsvgvgus) — 6 and y(vivgvsvy) + 0, respectively. Then y’ is also an optimal
solution to D(T,w) with y'(vsvsvgvs) < y(vsvavevs), contradicting (4).

(b) wsvy is not saturated by y in T' and vjvg is contained in some cycle C € Cg . In this
subsubcase, since vgvs is saturated by y in G3, cycle C; contains the path vgvevy. Thus the
multiset sum of C1, vzvqvgvs, and v3v; contains two arc-disjoint cycles vovqvgve and vivgv3vy.
By Lemma 4.7(iv), we have y(vsvsvgvz) = 0, a contradiction.

(c) vivg is not saturated by y in 7' and wvzv; is contained in some cycle Cy € Cé’ . In this
subsubcase, it is clear that C5 contains the path vivovs. Observe that the multiset sum of
Cs, vsvgvgvs, and the unsaturated vivg contains two arc-disjoint cycles vivgvzvy and Ch) =
Calvg, v3] U {vgva}. Set 6§ = min{y(Ca), y(vzvavevs), w(vive) — z(v1ve)}. Let ¢y’ be obtained
from y by replacing y(C2), y(v3vavevs), y(vivevsvr), and y(C3) with y(Cz) — 0, y(vsvavevs) — 0,
y(vivgvgvr) + 6, and y(C4) + 0, respectively. Then y' is also an optimal solution to D(T, w) with
¥ (v3vgvgv3) < y(vsv4vgvs), contradicting (4).

(d) vivg and wvsv; are contained in some cycles C7 and Cy in Cé’ , respectively. In this
subsubcase, if v3v is also on C4, then the multiset sum of C7 and vsv4vgvs contains arc-disjoint
cycles v1v6v3v1, VaV4V6V2, and Cf = C1[vg, v3]U{vsvs}. From the optimality of y, we deduce that
y(vsvgvgvs) = 0. If vgvy is outside Ci, then the multiset sum of Cy, Cy, and vsv4vgvs contains
arc-disjoint cycles v1vgv3v1, vaV40V6vV2, C1 = C1[vg, v1]U{v1v2, 0204}, and Ch = Ca[vy, v3]U{vsva}.
From the optimality of y, we again deduce that y(vsvsvgvs) = 0.

By (14), we have y(C2) = w(K), where K = {v4v1,v4v6,v6v3}. So K is an MFAS by (5) and
hence y(C2) = 7, (Gs\vs).

Case 1.2. vyv4 is outside Cg.

In this case, vovy is saturated by y in G3, and v1vs, v3ve, and vgve are all outside Cé’ . Since
C§ # 0, there exists a cycle C € C§ containing vsvy. From (6), (7), and (10), we see that
y(v1v204v6v301 ), Y(V1V6V3V2V4v1), and y(vevsvgvsve) are all zero. If vgvs is also saturated by y
in G3, then y(Co) = w(K), where K = {vavy, vgv3}. So we assume that vgvs is not saturated by
y in G3. By Lemma 4.7(iii) and (iv), v4vg is saturated by y in Gs.

Assume first that v4v; is not saturated by y in Gs. Then, by Lemma 4.7(iii) and (iv), vjvg
is saturated by y in G3. By (13), v1ve is not saturated by y in G3 and hence in 7. By (9),
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y(vivevavgvr) = 0. If vgus is not saturated by y in 7', then the multiset sum of C, vov4vgv2, and
the unsaturated arcs vgvs, v4v1, and v1v2 contains two arc-disjoint cycles vivav4v1 and vsv4v6V3;
if vgvs is saturated by y in T but contained in some cycle C' in Cf§, then the multiset sum of
C, vovgvgve, and the unsaturated arcs vqv; and vive contains two arc-disjoint cycles v1v9v4v1
and vsvaveus. By Lemma 4.7(vi), we have y(vavsvsv2) = 0 in either subcase. So y(Cs) = w(K),
where K = {vyvg, v4v6, U204 }.

Assume next that vqv; is saturated by y in Gs. Then, by (13), vsv; and at least one of
v1ve and vivg are not saturated by y in G3. By Lemma 4.7(iii) and (iv), both vsv; and vjvg
are outside CJ; using Lemma 4.7(i) and (iii), we further deduce that vjvg is saturated by y
in G3. Thus, by (13), vive is not saturated by y in Gs. It follows from (8) and (9) that
y(v1v6v3v401) = Yy(vivevovav1) = 0. Therefore y(Co) = w(K), where K = {vivg, v4v1,v406}. So
K is an MFAS by (5) and hence y(C2) = 7,(G3\vs). This proves Claim 1.

Claim 2. y(C) is integral for all C' € Cy or v, (T) is an integer.

To justify this, we may assume that

(15) y(v1vav4v6v3v1) = Y(v1V6V3V204v1) = 0.

Assume the contrary: y(vivavgvgvsvy) = 0. Then, from (6) we deduce that y(vivgvevivy) =
y(v1vgv3v401) = y(v1v6v3V204v1) = 0 and that each arc in the set {vivg, v3v2, V3V, V4V1, VeV } 1S
saturated by y in G3. So y(vivovsv1) = w(vavy), y(vivevsvr) = w(vive), y(v3vavevs) = w(vzvy),
y(vavaveva) = w(vgv2), and y(vavsvevsvy) = w(vsvy). By Claim 1, y(Cq) is an integer; so is
y(v1vavgvgv3vr). Thus Lemma 4.4(iii) allows us to assume that y(vivevsvgvzvy) = 0.

If y(v1vgv3vavgvy) > 0, then from (7) we deduce that y(vevsvgve) = y(vsvavevs) = 0 and that
each arc in the set {vjvy, v3v1, V3V4, V4Vg, VU2 } is saturated by y in G3. So y(vivevav) = w(v1v2),
y(v1vgv3v1) = w(v3v1), Y(V1V6V3V4V1) = W(V304), Y(V1VEV2V4V1) = W (VeV2), and Y(vavsVEVIV) =
w(vqvg). By Claim 1, y(Cq) is an integer; so is y(v1vevsvevavy). Thus Lemma 4.4(iii) allows us
to further assume that y(vivgvsvavavy) = 0.

By Claim 1, y(C2) = w(K) for some K € Fa. Depending on what K is, we distinguish among
13 cases.

Case 2.1. K = {v1vg, V204, 406 }.

In this case, by Lemma 4.3 (i), we have y(vavgvgve) = y(vivevavavi) = y(vovsveuzve) =
y(v1v6v3v20401) = y(v1v2v406v3v1) = 0. By Lemma 4.3 (iii), we obtain w(e) = y(Cz(e)) for each
e € K, which together with (15) yields the following equations: y(vivev3zvi) + y(v1v6v3v4V1) =
w(v1ve), Y(v1vavav1) = w(vevy), and y(vsvavevs) = w(vave). If y(vivevzvavr) > 0, then by (8)
we have one more equation y(vivevzvy) = w(vsvy). So y(C) is integral for any C' € Cz, no matter
whether y(vivgvsvav1) = 0.

Case 2.2. K = {vqv1,v406, 0603 }.

In this case, by Lemma 4.3 (i), we have y(vsvqvgvs) = y(vivevsvavi) = y(vevsvguzve) =
y(v1v6v3v20401) = y(v1v2v4v6v3v1) = 0. By Lemma 4.3 (iii), we obtain w(e) = y(Ca(e)) for each
e € K, which together with (15) yields the following equations: y(vjvev4v1) + y(v1v6v2v4v1) =
w(vgv1), Y(vevavgve) = w(vgve), and y(vivgvsvr) = w(vevs). If y(vivevavavy) > 0, then by (9)
we have one more equation y(vivavgv1) = w(vive). So y(C) is integral for any C' € C2, no matter
whether y(vivgvv4v1) = 0.

Case 2.3. K = {1)11)2, V301, V3V, UV3V4, U67)2}.

In this case, by Lemma 4.3 (iii), we obtain w(e) = y(Cz2(e)) for each e € K, which to-
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gether with (15) yields the following equations: y(vivavgvy) = w(viva), y(vivevsvy) = w(vzvy),
y(v2v406v3v2) = w(v3v2), Y(v3v4V6v3)+y(V1VeV3VLV1) = w(V3v4), and y(vav4vev2)+y(V1VgV2V4V1)
= w(vgvz). Observe that if y(vivevsvgavy) > 0, then by (8) we have y(vsvivevs) = w(vave) —
w(vsvy) and y(vovgvgve) = 05 if y(vivgvzvavy) = 0 and y(vivgvevgvy) > 0, then by (9) we have
y(vavav6v2) = w(vgve) — w(vsve) — w(vsve). So y(C) is integral for any C' € Cy, no matter
whether y(vivgvav4v1) or y(vivevsvavy) is zero.

Case 2.4. K = {v1v2, 0106, V3V2, U3V4, VU2 }.

In this case, by Lemma 4.3 (i), we have y(vivgvsvqvi) = y(vivgvevgvi) = 0. By Lemma
4.3 (iii), we obtain w(e) = y(Ca(e)) for each e € K, which together with (15) yields the fol-
lowing equations: y(vivavavy) = w(vive), y(vivevzv) = w(vive), Y(v2vsv6v3v2) = w(v3v2),
y(v3vgvevs) = w(vzvy), and y(vevsveve) = w(veve). Hence y(C) is integral for all C' € Cs.

Case 2.5. K = {v3v1,v3v2, U304, V4V1, UgV2 }.

In this case, by Lemma 4.3 (i), we have y(vivgvsvgvy) = 0. By Lemma 4.3 (iii), we ob-
tain w(e) = y(Ca(e)) for each e € K, which together with (15) yields the following equations:
y(v1vev3v1) = w(vsv1), Y(vavavev3v2) = w(vave), Y(v3V4v6v3) = w(v3vs), Y(V1vaVIVL) = W(V4V1),
and y(vovavgv2) + y(vivevavav1) = w(veve). Observe that if y(vivevavgavy) > 0, then by (9) we
have y(vov4vgv2) = w(vavg) — w(vsvy) — w(vzvy). So y(C) is integral for all C' € Cy, no matter
whether y(vivgvav4v1) is zero.

Case 2.6. K = {v1vg, V204, v304}.

In this case, by Lemma 4.3 (i), we have y(vivgvavsv1) = y(vivgvgvgvy) = 0. By Lemma 4.3
(iii), we obtain w(e) = y(Ca(e)) for each e € K, which together with (15) yields the following
equations: y(v1vgv3v1) = w(vivg), Y(v1v2V4v1) + Y(vavsveve) + Y(vov4veV3V2) = w(vavy), and
y(v3v4v6v3) = w(vsvy). If y(vovgvgvsvy) > 0, then y(vavgvevy) = w(vgve) by (10). Since v4v; and
v1v9 are outside C§ and y satisfies (2), it is easy to see that y(vivavsv1) = min{w(viv2), w(v4vy)}.
So y(C) is integral for all C' € Cy. Thus we may assume that y(vovsvgvsvy) = 0. Since both
v4v6 and vgvy are outside C§, by (4) we have y(vovsvv2) = min{w(vgva), w(vive) — w(vsvg)}. It
follows that y(C) is integral for all C' € Cs.

Case 2.7. K = {vovg,v3v1,v304}.

In this case, by Lemma 4.3 (iii), we obtain w(e) = y(Ca(e)) for each e € K, which to-
gether with (15) yields the following equations: y(vivevivy) + y(vavgveve) + y(vivev2V4V1) +
y(vav4v6v3v2) = w(vavy), Y(v1v6v3v1) = wW(v301), and y(vsvavevs) + y(v1vev3vav1) = w(V3V4).

Assume first that y(vivgvsvsvr) > 0. Then, by (8), we have y(vov vgv2) = 0 and y(vsvivgvs)+
y(vavgv6v3v2) = w(vavg). If y(vavsvgvzva) > 0, then, by (8) and (10), we obtain y(vivavavy) =
w(vivg) and y(v1vevavavr) = w(veve); if y(vavgvevsve) = 0 and y(vivevavgvy) > 0, then, by (9),
we get y(v1vav4v1) = w(v1v2), y(v1vev2v4v1) = w(vavy) — w(viva), and y(v3vavevs) = w(V4v6);
if y(v1vgvavav1) = y(vovgvevzve) = 0, then y(vivovgvr) = w(vavy), and y(vsvavevs) = w(v4ve).
Thus y(C) is integral for all C' € Cy in any subcase.

Assume next that y(vivgvsvavy) = 0. If y(vivgvavgvr) > 0, then, by (9), we have y(vivovavy) =
w(v1v2) and y(vavaveva) + Y(v2v4v6v3V2) = w(vavg) — Y(v3V4V6v3) = w(vave) — w(v3vy), and so
y(v1v6v2v401) = w(v2vy4) +w(v3v4) — w(V1v2) — w(v4vg). Observe that if y(vevivgvsve) > 0, then
we have one more equation y(v2v4v6v2) +y(v1v6v204v1) = w(vev2) by (10). Thus y(C) is integral
for all C' € Ca, no matter whether y(vovqvgvsve) = 0. So we assume that y(vivgvavgvy) = 0.
If y(vovgvgugve) > 0, then y(vovgvgvy) = w(veva) and y(vivavavy) + y(vevsvevzve) = w(vovy) —
w(vgve); if y(vavgvgvzvy) = 0, then y(vivevavy) + y(vavavev2) = w(vevy). Since y satisfies
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(2) and (4) and since vgv1, v4vg, v1v2, and vevy are all outside Cf, if y(vivovavy) > 0, then
y(vivavgvr) = min{w(vavy), w(viva)} or y(vevsveve) = min{w(vive) — y(vsvavevs), w(vev2)},
regardless of the value of y(vavsvgusve). Hence y(C) is integral for all C' € Cs.

Case 2.8. K = {v1v2, v6v2, 603 }.

In this case, by Lemma 4.3 (iii), we obtain w(e) = y(Ca(e)) for each e € K, which together
with (15) yields the following equations: y(v1v2v4v1) = w(v1v2), Y(vev4v6v2) + Y(V1VeVVLVL) =
w(vgve), and y(v1vevsv1) + Y(v3v406v3) + y(V1veV3V4V1) + Y(v2v4V6V3V2) = w(vev3). Depending
on the value of y(vivgvsvsv1), we consider two subcases.

e y(v1vgvsvawy) > 0. In this subcase, by (8), we have y(vavgvgva) = 0, y(vivevzv1) = w(vsvy),
and y(v3v4v6v3) + Y(v2v4v6v3v2) = W(V4v6). So Y(vivevzvsV1) = W(VeV3) — W(V3V1) — W(V4VE).
Observe that if y(vevqvgvsve) > 0, then we have one more equation y(vsvivgus) = w(vsvy) —
y(vivevsvgvr) by (10). So y(C) is integral for all C' € Cy, no matter whether y(vovqvgvsve) = 0.

e y(v1vgvsvgvy) = 0. In this subcase, assume first that y(vivgvavgvy) > 0. If y(vsvgvgvs) > 0
or y(vavavgvgva) > 0, then, by (9), we have y(vivgvsvi) = w(vsvy), y(vsv4v6v3) +y(vov4v6U3V2) =
w(vevz) — w(vsvy), and y(vavaveve) = w(vave) + w(vsvy) — w(vevs). If y(vavgvevzve) > 0,
then y(vsvgvgvs) = w(vsvg) by (10). Thus y(vevavevsva) and y(vivevavavy) are integral. If
y(v3v406v3) = y(vavavev3va) = 0, then y(vovgveve) = w(vavs) and y(vivevavav1) = w(vev2) —
w(vavg). So y(C) is integral for all C' € Cy in any subsubcase. Assume next that y(vivgvevivy) =
0. If y(vavqvevzve) > 0, then y(vsvivevs) = w(vzvy) by (10) and y(vivevsvi) + y(vavavevsva) =
w(vgvs) — w(vzvy); if y(vavgvguzve) = 0, then y(vivevzvr) + y(vsvavgvs) = w(vevs). Note that
both vsv and vivg are outside C§. As y satisfies (2) and (4), we deduce that y(vivevgvy) =
min{w(v1vg), w(vsv1)}, no matter whether y(vevqvgvsve) > 0. Hence y(C) is integral for all
C €.

Case 2.9. K = {0401,1)6’[)2,’[)6?}3}.

In this case, by Lemma 4.3 (i), we have y(v1v6v2v4v1) = y(vivevsvavy) = 0. By Lemma 4.3
(iii), we obtain w(e) = y(Cz(e)) for each e € K, which together with (15) yields the following
equations: y(vivovav1) = w(vav1), Y(vavaveva) = w(vevz), and y(vivevsvi) + y(v3vavevs) +
y(vavavgugva) = w(vevs). If y(vavavevsva) > 0, then y(vsvavevz) = w(vsva) by (10), so
y(v1v6v3v1) + y(vevgvgusva) = w(vevs) — w(vsvy); if y(vevgvgvgve) > 0, then y(vivgvsvy) +
y(vavsvgvsve) = w(vevs). Clearly, vivg is outside C§. We propose to show that

(16) y(vivevsvy) is integral.

Suppose on the contrary that y(vivgvsvr) is not integral. If vzv; is outside Cf, then from (2)
and (4) we deduce that y(vivevzv1) = min{w(vsv1), w(vive)}, a contradiction. So we assume
that v3vy is contained in some cycle C' in Cé’ . Then C contains the path vivovy. Set C' =
Clvg, v3] U {vgva, vous} if y(vovgvgusve) > 0 and C' = Clvg,vs] U {vsvs} otherwise, and set
0 = min{[y(vavavev3v2)], y(C)} if y(vavavevzve) > 0 and € = min{[y(vsvvevs)], y(C)} otherwise.
Let 4’ be obtained from y by replacing y(vovsvgvsve) (resp. y(vsvivgvs)), y(vivgvsvy), y(C),
and y(C") with y(vavsvgvsve) —0 (resp. y(vsvavgvs)—0), y(vivgvsv)+6, y(C)—6, and y(C')+0,
respectively. Then 3/ (vovgvguzve) < y(vavgv6u3v2) or Y (v3v4v6v3) < y(v3V4vV6vV3), contradicting
(2) or (4). So (16) is established.

From (16) it follows that y(C) is integral for all C' € Cs.

Case 2.10. K = {vovy,v6v3}.

In this case, by Lemma 4.3 (i), we have y(vavsvgvsve) = 0. By Lemma 4.3 (iii), we ob-
tain w(e) = y(Ca2(e)) for each e € K, which together with (15) yields the following equa-
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tions: y(vivavav1) + y(vavaveva) + Y(v1vevav4v1) = w(vavy) and y(vivevsv) + y(v3vavevs) +
y(vivvsvavy) = w(vgvs). It follows that all arcs in Gs\vs are outside C§ except possibly
vavg. If y(vivgvgvavy) > 0, then, by (8), we have y(vavsveve) = 0, y(vivevsvi) = w(vsvy),
and y(vsvgvgvs) = w(vgvg). Observe that if y(vivgvavgvy) > 0, then we have one more
equation y(vivovgvy) = w(vive). Thus y(C) is integral for all C' € Cy, no matter whether
y(v1vevavgvy) = 0. So we assume that y(vivgvsvavr) = 0.

If y(vivevavgvy) > 0, then, by (9), we obtain y(vivavsvy) = w(vive) and y(vavsveve) +
y(v3v4v6v3) = w(vgvg). Furthermore, y(vivgvsvy) = w(vsvy) if y(vsvavgvs) > 0 and y(vivgvzvy) =
w(vgvs) otherwise. Hence y(C) is integral for all C' € Cq, no matter whether y(vzvqvgvs) = 0.
So we may assume that y(vivgvevsvy) = 0.

If y(vsvgvgus) = 0, then y(vivgvsv) = w(vevs). Recall that both vyvg and vgve are outside
Cy. 1If y(vivgvavy) > 0, then from (4) we deduce that y(vevsvgve) = min{w(vive), w(veva)}.
Hence y(C) is integral for all C' € Cy, no matter whether y(vivovqv1) > 0. It remains to
consider the subcase when y(vsvsvgvs) > 0. Since both vsvy and vivg are outside Cf, from (4)
we deduce that y(vivgvzvy) = min{w(vsvy), w(vive)}. If y(vivevsvy) = 0, then y(vovgvgve) =
w(vavy); otherwise, by (4), at least one of v4vg and vgvs is saturated by y in Gs. It follows that
y(v2v4v6v2) = min{w(veva), w(v4ve) — y(vsvavgvs)}. Hence y(C) is integral for all C' € Co, no
matter whether y(vivavgvy) = 0.

Case 2.11. K = {v3v1,v4v1, v406}.

In this case, by Lemma 4.3 (iii), we obtain w(e) = y(Ca(e)) for each e € K, which together
with (15) yields the following equations: y(vivgvsvy) = w(vsvy), y(vivevsv1) + y(v1V6V2V4vV1) +
y(v1v6v3v401) = w(v4v1), and y(vavavev2) + Y(v3v406v3) + y(v2v4V6v3V2) = w(v4ve). Depending
on the value of y(vjvgvsvavy), we consider two subcases.

e y(vivgugvgvy) > 0. In this subcase, y(vovgvgvy) = 0 by (8). If y(vevsvgvszvy) > 0, then,
by (8) and (10), we have y(vivevsv1) = w(v1v2), y(vivevavav1) = w(veve), and y(vsvavevs) =
w(vsvy). Hence y(C) is integral for all C' € Co. So we assume that y(vevsvgvsve) = 0. Then
y(vsvavev3) = w(vave). Depending on the value of y(vivgvavavy), we distinguish between two
subsubcases.

(a) y(vivgvavgvy) > 0. By (9), y(vivavavr) = w(vivz) and y(vivevavavr) + y(vivevsvav:) =
w(vgvy) — w(vive). If y(vivevavavy) is integral, then y(C) is integral for all C' € Ca. So we
assume that y(vivevavavy) is not integral. By Lemma 4.4(iii), we may assume that w(vsvy),
w(vive), and w(vsvg) are all zero. Observe that vgvy is outside Cj, for otherwise, let C' be a
cycle in C§ containing vgva. Then C passes through vovs. Let €' = Cluvy,vg] U {vgvs, v3v4},
let & = min{y(C), y(vivgvsvavr)}, and let y' be obtained from y by replacing y(vivgvsvavy),
y(v1vgv2v4v1), y(C), and y(C") with y(vivgvzvavy) — 6, y(vivgvavavy ) +0, y(C)—6, and y(C')+0,
respectively. Then ¥’ is also an optimal solution to D(T, w) with ¥/ (v1vevsvav1) < y(vivev3V4V1),
contradicting (3). Similarly, we can prove that vsve is outside C§. Thus w(vsvs) = z(vsv2) = 0.
We propose to show that

(17) v} (T) is an integer.

To justify this, let & be an optimal solution to P(7,w). Since y(vivgvavavy) > 0 and
y(vivevgvgvr) > 0, by Lemma 4.3(1) we have z(vgv2) + z(vovs) = x(vevs) + z(vsvg). Since
y(v1vgvav4v1) < w(vevz), by Lemma 4.3(ii) we obtain x(vgv2) = 0, which implies z(vavy) =
z(vgv3) + z(vsvy). Since vgvg is outside Cf, for each vertex uw in V(T1)\{b,a1}, we obtain

(

x(uvg) = w(uve). Let TV = (V', A’) be obtained from T by deleting vertex ve, let w’ be
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obtained from the restriction of w to A’ by replacing w(uvg) with w(uve) + w(uwvy) for each u
in V(T1)\{b, a1 } and replacing w(v;v;) with w(v;v;) +w(vavy) for (,5) = (6,3) or (3,4). Let «’
be the restriction of & to A’ and let ¢y’ be defined from y as follows: for each cycle C passing
through wvovy with u € V(T1)\{b,a1}, let C’ be the cycle arising from C' by replacing uvovy
with uvgvsvy, and set ' (C") = y(C)+y(C") and v/ (v1vev3v4v1) = Y(vV1V6vV3V4v1) +Yy(V1V6V2V4V1 ).
Then @’ and y’ are optimal solutions to P(7”,w’) and D(T”, w'), respectively, with the same
value v} (T) as « and y. Hence v} (T) is an integer by the hypothesis of Theorem 4.1. So (17)
follows.

(b) y(vivgvavgvy) = 0. Then y(vivavgvr) + y(vivevsvavr) = w(vgvr). If y(vivevavy) is
integral, then y(C') is integral for all C' € Cs. So we assume that y(vivovav1) is not integral.
Observe that vive is outside C§, for otherwise, let C' be a cycle in C§ containing v1ve. Since
the multiset sum of C' and vjvgvsvav; contains arc-disjoint cycles vivovgvy and C' = Clog, v1] U
{v1ve, v6v3,v3v4}. By Lemma 4.7(vi), we have y(C) = 0, a contradiction. Similarly, we can
prove that vgve and vsvy are outside Cf as well. Thus w(v;v2) = z(vv2) = 0 for i = 3,6. We
propose to show that

(18) v (T) is an integer.

To justify this, let & be an optimal solution to P(7,w). Since both y(vjvevsv1) and
y(vivguzvavy) are positive, by Lemma 4.3(i) we have x(vive) + z(vovg) = x(v1v6) + z(vev3) +
x(vgva). Since y(vivavavy) < w(vive), by Lemma 4.3(ii) we obtain z(viv2) = 0, which im-
plies that x(vavs) = z(vive) + x(vevs) + z(vsvs). Since vive is outside Cf, for each vertex
u € V(T1)\{b, a1}, we obtain z(uvy) = x(uvs). Let T = (V' A’) be obtained from T by deleting
vertex ve, and let w’ be the restriction of w to A’ by replacing w(uwv1) with w(uvy) 4+ w(uwvy) for
each u € V(T1)\{b, a1} and replacing w(v;v;) with w(v;v;)+w(vavy) for (4, j) = (1,6), (6,3), and
(3,4). Let ' be the restriction of x to A’ and let 4’ be defined from y as follows: for each cycle
C passing through uvevy with w € V(T1)\{b, a1}, let C’ be obtained from C' by replacing uvovy
with uvivgvsvy, and set y' (C') = y(C) +y(C') and 3/ (v1vsv3v4v1) = Y(V1VeV3V4VT) + Y (V1 V2V4V1 ).
Then «' and y’ are optimal solutions to P(T”,w’) and D(T",w’), respectively, with the same
value v} (T') as « and y. Hence v}, (T) is an integer by the hypothesis of Theorem 4.1. This
proves (18).

e y(v1vgvzvgvy) = 0. In this subcase, y(vivovsv1) = w(vive). By (9), if y(vivevovgvy) > 0,
then y(v1vv2v4v1) = w(vgv1) —w(vive); otherwise, y(vivevavy) = w(vavy). I y(vavgvguzve) > 0,
then, by (10), we have y(vsvqvgvs) = w(vzvy), y(vovgvgve) = w(veve) — y(vivev2v4v2), and
y(vavgv6v3v2) = w(vave) — w(vsvg) — Yy(vevsvgve). Hence y(C) is integral for all C' € Cy. So
we assume that y(vovgvgvgve) = 0. Thus y(vevsveva) + y(vsvavevs) = w(vave). If y(vavgveve)
is integral, then y(C) is integral for all C' € C3. So we further assume that y(vov vgve) is not
integral. By Lemma 4.4(iii), we may assume that w(vsvi) = w(vsv1) = 0. Observe that vgvy is
outside C§, for otherwise, let C' be a cycle in C§ containing vgv2. Then C passes through vovy.
Let C" = Clvg,vg] U {vgvs, vsva}, let = min{y(C), y(vsvsvevs)}, and let ¢y’ be obtained from
y by replacing y(v3vav6vs), Y(vavavev2), y(C), and y(C’) with y(vsvavevs) — 0, y(vavaveva) + 0,
y(C) — 60, and y(C’) + 0, respectively. Then y’ is also an optimal solution to D(T,w) with
' (v3v4v6v3) < y(v3vavevs), contradicting (4). Similarly, we can show that vzve is outside C§.
So w(vgve) = z(vsva) = 0. Moreover, v (T) is an integer; the proof is the same as that of (17)
(with y(vavgveve) and y(vsvgavgvs) in place of y(vivgvavavr) and y(vivevsvavy), respectively), so
we omit the details here.
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Case 2.12. K = {v1vg,v401, 0406 }.

In this case, by Lemma 4.3 (i), we have y(vjvgvav4v1) = y(vivgv3v4v1) = 0. By Lemma 4.3
(iii), we obtain w(e) = y(Cz(e)) for each e € K, which together with (15) yields the following
equations: y(vivevzvi) = w(vive), y(vivavavy) = w(vavr), and y(vavavev2) + y(v3v4v6v3) +
y(vav4v6v3v2) = w(vave). If y(vavavgvzva) > 0, then, by (10), we have y(vavsvsv2) = w(vev2) and
y(v3v406v3) = w(v3v4), 50 Y(V2v4V6V3V2) = w(v4v6) — w(vev2) — w(vzvy). Hence y(C) is integral
for all C' € Cq, It remains to assume that y(vovsvguzve) = 0. Then y(vovgvgva) + y(v3vav6v3) =
w(vqvg). If y(vovgvgve) is integral, then y(C) is integral for all C' € C3. So we further assume
that y(vovqvgve) is not integral. Then we can prove that v (T) is an integer; the proof is the
same as that of (17), so we omit the details here.

Case 2.13. K = {v1v2,v106, 0406 }.

In this case, by Lemma 4.3 (iii), we obtain w(e) = y(Ca(e)) for each e € K, which together
with (15) yields the following equations: y(vivavavy) = w(v1v2), Y(v1v6v3v1) + Y(V1V6V2V4V1) +
y(vivevzvavy) = w(v1ve), and y(vavsveve) + y(v3v4v6v3) + Y(v2vav6v3v2) = w(v4ve). Clearly,
v3vy is outside C§. Depending on the value of y(v1vgv3v4v1), we consider two subcases.

o y(vivgvsvavy) > 0. In this subcase, y(vevaveve) = 0 and y(vivevzvi) = w(vsvy) by (8).
If y(vavgvevzva) > 0, then y(vivevavsv1) = w(veve) and y(v3vavevs) + y(vivev3vavy) = w(v3vs)
by (10). Thus y(C) is integral for all C' € Ca. So we assume that y(vovsvguzve) = 0. Then
y(v3v4v6v3) = wae and y(v1vevav4v1) + Y(v1v6v3V4v1) = w(vive) — w(v3vy). If y(vivevavsvy) is
integral, then y(C) is integral for all C' € Cy. So we further assume that y(vivgvavsv1) is not
integral. Then we can prove that v, (T") is an integer; the proof is the same as that of (17), so
we omit the details here.

e y(v1vgv3vav1) = 0. In this subcase, y(vivevsvr) +y(vivgvevsvy) = w(v1v6). If Y(voV4V6vV3V2)
> 0, then y(vsvgvgvs) = w(vsvg) and y(vavgveva) + y(v1v6v204v1) = w(vgve) by (10). Observe
that if y(vivevavavy) > 0, then we have one more equation y(vivevsvi) = w(vzv) by (9). So
y(C) is integral for all C' € Cy, no matter whether y(vivgvov4v1) = 0. Thus we may assume that
y(vavavgv3vy) = 0. We proceed by considering two subsubcases.

(a) Assume first that y(vsvgvgvs) = 0. Then y(vovgvgvy) = w(vgvg). If y(vivevsvy) is
integral, then so is y(C) for all C € Cy. Thus we assume that y(vivgvsvi) is not integral.
If vgvs is outside C§, then it follows from (4) that y(vivevzvi) = min{w(vsv1), w(vevs)}; this
contradiction implies that vgvs is contained in a cycle C' in C§. Let C' = Cluy, v] U {vgv2, v2v4},
let 0 = min{[y(vivevavsv1)],y(C)}, and let y' be obtained from y by replacing y(vivgvavsvy),
y(vivgvzvr ), y(C), and y(C") with y(vivgvavave) — 0, y(vivevzvy) + 6, y(C) — 6, and y(C') + 6,
respectively. Then y’ is also an optimal solution to D(T, w) with ¢ (vivgvavav1) < y(vivev2V4VT),
contradicting (2).

(b) Assume next that y(vsvsvgvs) > 0. If y(vivevavavy) > 0, then y(vivevsvi) = w(vzvy)
and y(v1vgvav4v1) = w(v1ve) — w(vsvy) by (9); otherwise, y(vivgvsvy) = w(vivg). If y(vsvavevs)
is integral, then so is y(C) for all C' € Co. Thus we assume that y(vsvsvevs) is not integral. Let
us prove that

(19) v (T) is an integer.

By Lemma 4.4(iii), we may assume that w(vive) = w(vivg) = 0. Let TV = (V'; A’) be
obtained from T by deleting v1, and let w be the restriction of w to A’. It is routine to check
that D(T”, w') has the same optimal value v (T') as D(T, w). Hence v (T) is an integer by the
hypothesis of Theorem 4.1. This proves (19) and hence Claim 2.
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Since Tyw(G3\vs) > 0, from Claim 2, Lemma 4.4(iii) and Lemma 4.6(ii) we deduce that
(T, w) has an integral optimal solution. This completes the proof of Lemma 5.6. |

Now we are ready to establish the main result of this section.

Proof of Theorem 5.1. By the hypothesis of this section, T is the 1-sum of two smaller
strong Mobius-free tournaments 77 and T, with 7> € To. Since Ty = {Fy, F, Fs, Fy, Fg, G2, G3},
the desired statement follows instantly from Lemmas 5.2-5.6. |

6 Composite Reductions

Throughout this section, we assume that (7, w) is an instance as described in Theorem 4.1, and
that "= (V, A) is the 1-sum of two smaller strong M&bius-free tournaments 77 and 75 over two
special arcs (a1,b1) and (b2, as), such that
(@) Tw(T2\az) > 0;
(B) there exists a vertex subset S of To\{az, ba} with |S| > 2 and with the following properties:
e T'[S] is acyclic and T5/S € T3; and
e the vertex s* arising from contracting S is a near-sink in 7'/S.

From () we see that S is actually a homogeneous set of T. The purpose of this section is
to establish the following statement.

Theorem 6.1. For the above instance (T, w), problem D(T,w) has an integral optimal solution.

Let us label T/S as in Figures 3-7. Since (bg,a2) is a special arc, ag is a near-source of Th,
and s* is a near-sink in 7'/5, we have
ba, a2) = (v1,v2) and s* = v or vy if To/S = Fy;

( ) and s* = vy if T5/S = F3;

ba, az) = (vs,v6) and s* = vy if To/S = Fy;

( )and S*:UQ ifTQ/S:FG;

(vg,v5) and s* = vy if To/S = G2 or Gf;

( ) and s* = vg if T5/S = Guy;

( ) and s* = vs if T5/S = G5; and

bg,ag) = (1)6,1)7) and s* = Vs if TQ/S = GG,

where the last three follow from Lemma 4.2(ii). Observe that if 75/S = Fj, then (b2, a2) #
(vg,v1), for otherwise, To\v; is acyclic, contradicting («).

Since T'[S] is acyclic, we can label the vertices in S as sy, s2,...,s, such that s;s; is an arc
in T for any 1 < i < j < r, where r = |S|. For convenience, we use vy to denote the only
out-neighbor of S in Th\ay (for example, vy = v3 if T5/S = F3), use f; to denote the arc s;vy,
and use R to denote the vertex subset V\(S U {vo}).

In this section, we employ the same notations as introduced in Sections 4 and 5. In particular,
given an optimal solution y to D(T, w), we use CY to denote {C € C : y(C') > 0} and use C! to
denote {C € C; : y(C) > 0} for i = 0,1,2. For each arc e of T, we use z(e) to denote y(C(e)).
Let G be a digraph with a weight on each arc and let U be a vertex subset of G. By reorienting
G[U] acyclically we mean the operation of reorienting some arcs of G[U] so that the resulting
subgraph induced by U is acyclic, where each new arc is associated with the same weight as its
reverse in G.
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Lemma 6.2. Let  and y be optimal solutions to P(T,w) and D(T,w), respectively. Then we
may assume that the following statements hold:
(1) z(sjsi) = w(sjsi) = 0 for any 1 < i < j < r (so if we reorient T[S]| acyclically, then
the resulting digraph is isomorphic to T, and the optimal value of the resulting D(T', w)
remains the same);

(1) x(fi)z(fi) >0 for any 1 <i <r;
(iii) z(f;) = w(fi) >0 forany 1 <i<r;
(iv) z(f;) # z(f;) for any 1 <i<j <r;
(v) Every cycle C € CY contains at most one vertex from S; and

(vi) z(us;)z(usj) =0 foranyu e Rand1 <i<j<r.

Proof. (i) Assume the contrary: z(s;js;) > 0 and, subject to this, j + ¢ is minimized. Then
there exists a cycle D passing through s;s;v9 with y(D) > 0.

Consider first the case when x(s;s;) = 0. If 2(f;) > 0, then x(f;) = x(sjs:) + z(fi) = z(fi)
by Lemma 4.3(iv). If z(f;) = 0, then w(f;) = 0 by Lemma 4.4(i). Since 2(C) > 1 for any C € C,
we have z(f;) > z(sjsi) + x(fi); replacing x(f;) by z(sjs;) + z(f;) if necessary, the resulting x
is also an optimal solution to P(T,w). So we may assume that z(f;) = x(s;s:) + z(fi) = z(fi).
Similarly, we may assume that z(us;) = z(us;) for any v € R. Let T’ = (V', A’) be obtained
from T by deleting s;. Note that 7" also arises from T' by identifying s; with s; and then deleting
some arcs incident with sj. Let w’ be obtained from the restriction of w to A’ by replacing
w(fi) with w(f;) +w(f;) and replacing w(us;) with w(us;) +w(us;) for every v € R. Let @’ be
the restriction of & to A’, and let 4’ be the projection of 4 into the set of all cycles in T". From
the LP-duality theorem, we see that @’ and ¥y’ are optimal solutions to P(T,w) and D(T, w),
respectively, having the same objective value v} (T) as  and y. By the hypothesis of Theorem
4.1, v} (T) is an integer. It follows from Lemma 4.6(ii) that D(T, w) has an integral optimal
solution.

Next consider the case when z(sjs;) > 0. By Lemma 4.3(iii), w(s;s;) = z(s;js;). Let w’ be
obtained from w by replacing w( f;) with w(f;)+w(s;s;) and replacing w(e) with w(e) —w(s;s;)
for e = s;s; and f;, let ' = x, and let ¢y’ be obtained from y as follows: for each cycle C' passing
through s;s; with y(C) > 0, let C’ be the cycle obtained from C by replacing the path s;s;vg
with f;, and set 3/ (C) = 0 and y/'(C") = y(C’)+y(C). From the LP-duality theorem, we see that
2’ and y' are optimal solutions to P(T, w’) and D(T, w'), respectively, having the same objective
value v (T) as  and y. Since w'(A) < w(A), by the hypothesis of Theorem 4.1, v (T) is an
integer. It follows from Lemma 4.6(ii) that D(7", w) has an integral optimal solution.

Combining the above two cases, we may assume that z(s;s;) = 0 and hence w(z;z;) = 0 by
Lemma 4.4(i) for any 1 < i < j < r. From () we see that S is a homogeneous set of T, so if
we reorient T'[S] acyclically, then the resulting digraph is isomorphic to 7. Given the weights
w(zjz;) for all 1 <i < j <r,itis clear that the optimal value of the resulting D(7’, w) remains
the same.

(ii) Assume the contrary: x(f;)z(fi) = 0 for some 4. Consider first the case z(f;) = 0. Let
T' = (V', A") be obtained from T by deleting s;, and let w’ be the restriction of w to A’. Then
D(T’,w') has an integral optimal solution by the hypothesis of Theorem 4.1. From (i) and the
value of z(f;), we deduce that s; is contained in no cycle C' with y(C) > 0, so D(7”,w’) has
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the same optimal value v} (T) as D(T”,w’). It follows from Lemma 4.6(ii) that D(T, w) has an
integral optimal solution. Thus we may assume that z(f;) > 0 for any 1 < j <.

Next consider the case when z(f;) = 0. Observe that for any v € R with uvg € A, if
z(uvg)z(us;) > 0, then x(uvg) = x(us;) + z(f;) = x(us;) by Lemma 4.3(iv), so x(uvg) = x(us;);
if z(uvo)z(us;) = 0, modifying x(uv) for v € {vo, s;} with z(uv) = 0 (thus w(uv) = 0) so that
the equality x(uvg) = z(us;) + x(f;) = x(us;) holds, the resulting « is also an optimal solution
to D(T,w). Hence we may assume that x(uvy) = z(us;).

Set U ={u € R: z(us;) >0 and uvg ¢ A}. Let T" = (V’, A’) be obtained from T'\s; by
adding an arc uvg for each u € U, and define w(uvy) = w(us;) and z(uvg) = x(us;) for each
u € U. Let w’ be obtained from w by replacing w(uvg) with w(uvg) + w(us;) for each u € R
with uvg € A, let ' = x, and let 3y’ be obtained from y as follows: for each cycle C' passing
through us; with y(C) > 0, let C" be the cycle arising from C' by replacing the path wus;vg
with uvg, and set y'(C") = y(C’") + y(C). From the LP-duality theorem, we see that ' and y’
are optimal solutions to P(7”,w’) and D(T”, w'), respectively, having the same objective value

vi(T) as « and y. In view of (i), we may assume that ¢ = 1. So f; = f1 is a special arc of T

w
By Lemma 2.4, 7" = T/ f1 is a Mobius-free digraph and thus, by Lemma 4.5, v} (T) is integral.
It follows from Lemma 4.6(ii) that D(T, w) has an integral optimal solution.

(iii) The statement follows directly from (ii), Lemma 4.4(i), and Lemma 4.3(iii).

(iv) Assume on the contrary that x(f;) = x(f;) for some 1 < i < j < r. Observe that for
any u € R, if z(us;)z(us;) > 0, then x(us;) + z(fi) = z(us;) + x(f;) by Lemma 4.3(iv), so
x(us;) = x(usj); if z(us;)z(us;) = 0, letting (k,1) be a permutation of (i,j) with z(usg) = 0,
and replacing x by x; if necessary, the resulting x is also an optimal solution to P(T, w). So we
may assume that z(us;) = x(us;). Let T" = (V’, A’) be obtained from T by deleting s;, and let
w'’ be obtained from the restriction of w to A’ by replacing w(us;) with w(us;)+w(us;) for any
u € R and replacing w(f;) with w(f;) +w(f;). Let &’ be the restriction of & to A" and let y’ be
obtained from the restriction of y to cycles in T” as follows: for each cycle C' passing through
us; with y(C) > 0, let C” be obtained from C' by replacing the path us;vy with the path wus;uvo,
and set y'(C") = y(C") + y(C). From the LP-duality theorem, we see that ' and y’ are optimal
solutions to P(T”,w’) and D(T”, w’), respectively, having the same objective value v} (T) as x
and y. By the hypothesis of Theorem 4.1, v} (T') is an integer. Thus it follows from Lemma
4.6(ii) that D(7, w) has an integral optimal solution.

(v) Suppose on the contrary that C' contains two distinct vertices s; and s; in S. Let s; be
the vertex succeeding sy as we traverse C in its direction, for k = i, j. Since y(C) > 0, from (i)
we deduce that sj and sj are two distinct vertices outside S. Thus the vertex s* arising from
contracting S would not be a near-sink in 7'/S, contradicting (53).

(vi) Assume the contrary: z(us;)z(usj) > 0 for some u € R and 1 < i < j < r. Consider
first the case when z(usg) > 1 for k =i or 5. In view of (i), we may assume that z(us;) > 1. Let
T’ be obtained from T by adding an arc uwy if it is not present in 7" and define w(uwvg) = 0, and
let w’ be obtained from w by replacing w(a) with w(a) — [2(e)] for a € {e, f;} and replacing
w(uvg) with w(uvg) + |2(e)]. Let & be an optimal solution to P(T,w), and let &’ be obtained
from x by setting x(uvg) = x(e) +x(f;). Let D be the set of all cycles C' passing through e with
y(C) > 0, let 7(C) be a constant between 0 and y(C') such that 7(D) = |z(e)], and let y’ be
obtained from y as follows: for each cycle C' € D, let C’ be obtained from C' by replacing the
path us;vg with uvg, set 3/ (C) = y(C) — w(C) and ¢/ (C") = y(C') + 7 (C). From the LP-duality

63



theorem, we see that &’ and y’ are optimal solutions to P(T”,w’) and D(T”,w’), respectively,
having the same objective value v (T) as « and y. Let 7" be the tournament obtained from T
be adding a new vertex sg, an arc spvp, and an arc uvy for each u € V\{vp}. By Lemma 2.3,
T" is Mobius-free because it is the 1-sum of two smaller Mobius-free tournaments with hub vg.
By Lemma 2.4, the digraph G obtained from T” by contracting sgvg is also Mobius-free; so is
T’ because it is a subgraph of G. As w(A") < w(A), from Lemma 4.5 we deduce that v} (T) is
integral. Therefore, D(T, w) has an integral optimal solution by Lemma 4.6(ii).

So we may assume that z(us;) < 1 for k = 4,j. Thus w(usg) = [z(usk)] =1 > z(usy) for
k =1,j. It follows instantly from Lemma 4.3(ii) that x(usx) = 0 for k = ¢, j. By Lemma 4.3(iv),
we obtain z(us;) + z(f;) = z(us;) + z(f;), and hence z(f;) = x(f;), contradicting (iv). 1

We break the proof of Theorem 6.1 into a series of lemmas.
Lemma 6.3. If Ty/S = Fg, then D(T,w) has an integral optimal solution.

Proof. Recall that (bg,as) = (vs,v6) and s* = ve. Clearly, C' = vivsvav; is the unique cycle
contained in T5\vg, which is a triangle. Since 7,(T5\vs) > 0 by (a), we have w(a) > 0 for each
arc a on C. Therefore D(7,w) has an integral optimal solution by Lemma 4.8. |

Lemma 6.4. If Ty/S = Fy, then D(T, w) has an integral optimal solution.

Proof. Recall that (be,as) = (v1,v2) and s* = vg or v4. We only consider the case when
s* = ws, as the proof in other case goes along the same line. To establish the statement, by
Lemma 4.6(ii), it suffices to prove that

(1) the optimal value v} (T") of D(T,w) is integral.

Let y be an optimal solution to D(7, w). By Lemma 4.4(i), we have w(e) = [z(e)] for each
arc e in T. By (a) and Lemma 6.2(i) and (vi), there exists precisely one vertex sj in S such that
z(visg) > 0, which implies y(visgvavy) > 0. By Lemma 6.2(i), we may assume that s, = s1, the
sink of T'[S]. Observe that T is also the 1-sum of two smaller M&bius-free tournaments 77 and
T, with the same hub b, where T} arises from T by deleting S\s;. Since visjv4v1 is the unique

cycle contained in T3 \ve, which is a triangle, (1) follows instantly from Lemma 4.8. |
Lemma 6.5. IfT5/S = F3, then D(T,w) has an integral optimal solution.

Proof. Recall that (by,a2) = (vs,v2), s* = v1, and vy = v3. To establish the statement, by
Lemma 4.6(ii), it suffices to prove that

(1) the optimal value v}, (T') of D(T,w) is integral.

Given an optimal solution y to D(T, w), set ¢(s;) = {u : z(us;) > 0 for u € V(T3)\az} for
each s; € S. By Lemma 6.2(i) and (vi), we have

(2) ¢(si) Np(s;) = 0 whenever i # j.

(3) There exist precisely two vertices s;’s in S with ¢(s;) # 0.

In view of (2) and the structure of F3, there are at most two vertices s;’s in .S with ¢(s;) # 0.
Suppose on the contrary that there exists precisely one vertex s; € S with ¢(s;) # (). By Lemma
6.2(i), we may assume that s; = s, the sink of T'[S]. Let T” be obtained from T by reversing the
direction of the arc v4v; for each j with 1 < j < 7. Define the weight of each new arc to be zero.
As w(vgvj) = 0 for each j with 1 < j < r by Lemma 4.4(i), the optimal value of D(7”, w) equals
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V*

*(T). Observe that 7" is the 1-sum of two smaller Mobius-free tournaments 7] and Tj with
the same hub b, where T arises from T by deleting S\s;. Since Ty = F3 and 7,(T4\v2) > 0,
statement (1) follows instantly from Lemma 5.3. So we may assume that (3) holds.

By (3) and Lemma 6.2(i), we may further assume that ¢(s1) = {vs} and @(s2) = {vs4} for
any optimal solution y to D(T, w).

In the remainder of our proof, we reserve y for an optimal solution to (7', w) such that

(4) y(Cz) is maximized; and

(5) subject to (4), (y(Dyq),y(Dy-1),...,y(D3)) is minimized lexicographically.

Let us make some observations about y. By Lemma 6.2(v), we have

(6) C§ C {v55103V5, U581V304V5, V4S2V3V4 }.

In view of ¢(s;) for i = 1,2 and Lemma 6.2(iii), we obtain

(7) w(vssy) > z(vss1) > 0, w(vasz) > z(vasa) > 0, and w(s;v3) = z(s;v3) > 0 for i =1, 2.
From Lemma 4.7(v) we see that

(8) if y(vssivsvavs) > 0, then vgvs is saturated by y in Ts.

(9) If w(vszvyg) > 0, then y(vysovsvy) is a positive integer.

To justify this, observe that syug is contained in some cycle C' € C§, for otherwise, sqv3
is saturated by y in T» and hence, by (6), we have y(vgs2v3v4) = w(s2v3), which is a positive
integer by (7). If C contains vysa, then it also contains vsvs. By Lemma 4.7(iv), vsvy is saturated
by y in T5. By (8), we have y(vssivsvqvs) = 0. From (6) we deduce that y(vssovzvy) = w(vsvy),
which is a positive integer. So we assume that v4ss is outside C. Furthermore, v4ss is outside
C§, because every cycle containing vysy passes through sqvs. If vysy is saturated by y in T,
then y(v4savsvg) = w(vasa) by (6), as desired. So we assume that vsss is not saturated by y in
T and that C contains vgvs. By Lemma 4.7(iii) and (iv), vsvs is saturated by y in T5. By (8),
we have y(vss1v3v4v5) = 0. From (6) we see that y(v4s9v3v4) = w(vsvy). Hence (9) holds.

By (9) and Lemma 4.4(iii), we may assume that w(vzvs) = 0. Let us show that

(10) y(vss1v3vs) is a positive integer.

If syv3 is outside Cf, then syvg is saturated by y in Tp. Thus y(vssivsvs) = w(sjvg) > 0. If
s1v3 is contained in some cycle in C§, then, by Lemma 4.7(iv), vss; is saturated by y in T5. So
y(vss103v5) = w(vssy) > 0. Hence (10) holds in either case.

Using (10) and Lemma 4.4(iii), we conclude that the optimal value v} (T") of D(T,w) is
integral, as described in (1) above. 1

Lemma 6.6. IfT5/S = Fy, then D(T,w) has an integral optimal solution.

Proof. Recall that (by,a2) = (vs,v6), s* = v, and vy = vs. To establish the statement, by
Lemma 4.6(ii), it suffices to prove that

(1) the optimal value v} (T) of D(T, w) is integral.

Given an optimal solution y to D(T', w), set ¢(s;) = {u : z(us;) > 0 for u € V(Tz)\ag} for
each s; € S. By Lemma 6.2(i) and (vi), we have

(2) ¢(s:) Np(sj) = 0 whenever i # j.

(3) There exist at least two and at most three vertices s;’s in .S with (s;) # 0.

In view of (2) and the structure of Fy, there are at most three vertices s;’s in S with ¢(s;) # 0.
Suppose on the contrary that there exists precisely one vertex s; € S with ¢(s;) # 0. Then (1)
follows immediately from Lemma 5.4; the argument can be found in that of (3) in the proof of
Lemma 6.5.
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Lemma 6.2(i) allows us to assume that

(4) if ¢(s;) # 0, then 7 € {1,2,3}.

Let ¢ be the subscript in {1,2,3} with vs € ¢(s;), if any. By (2), t is well defined. In the
remainder of our proof, we reserve y for an optimal solution to D(7, w) such that

(5) y(Cz) is maximized;

(6) subject to (5), (y(Dyq),y(Dy-1),...,y(D3)) is minimized lexicographically; and

(7) subject to (5) and (6), y(v1vssivsv1) + y(vivsv3vav1) is minimized.

Let us make a few observations about y before proceeding.

(8) If y(v1vss;vzvavy) > 0 for some i € {1,2,3}, then each arc in the set {v1s;, v3v1, v48;, V45,
vsv3} is saturated by y in T. Furthermore, y(visjvsv1) = y(vsvavsvs) = y(vivsvsvy) = 0 for
any j € {1,2,3}\{i}.

To justify this, note that each arc in the given set is a chord of the cycle vyvss;vsvav1. So
the first half follows instantly from Lemma 4.7(v). Once again let & stand for the multiset sum.
Then vqvss;v3v4v1 W V185U3V1 = V1U58;V3V1 W V18;U30V4V1, V1U58;03V4V1 W v1U5V30V1 = V1058;03V1 W
V1V5V30401, and V1V58;V30V4V1 H U304V503 = V1V5V3V4V1 W U58;V304V5. Since Yy satisfies (6), we
deduce that y(vis;vzvi) = y(vsvavsvg) = y(vivsvzvy) = 0.

(9) If y(v1vss;v3v1) > 0 for some i € {1,2,3}, then both vys; and vsvs are saturated by y in
Ty; so are vys; and vavs if y(visjvzvavr) > 0. Furthermore, y(vsvavsvs) = 0.

Since both v1s; and vsvg are chords of the cycle vivss;v3v1, the first half follows instantly
from Lemma 4.7(v). To establish the second half, observe that v1v5s;v3v1 Wuzvav5v3 = vViv5V3V1W
v58;0304v5. Hence y(vgvgvsvz) = 0 by (7). Suppose y(visjvzvavy) > 0. Since the multiset sum
of the cycles vivss;v3v1, v15;v3v4v1, and the arc vivs (resp. w4s;) contains arc-disjoint cycles
v15j03v1 and vss;v3v4v5 (resp. v4S;v3vs), from (7) we deduce that both vss; and v4vs are are
saturated by y in T5.

(10) If y(vivsvzvgvy) > 0, then both vsv; and vyvs are saturated by y in 7. Furthermore,
y(vis;vzvy) = 0 for any i € {1,2,3}.

Since both wvgvy and v4vs are chords of the cycle vivsvsvgvy, the first half follows instantly
from Lemma 4.7(v). To establish the second half, observe that vivsvsv v Wv1 80301 = V1V5V3V1W
v18;u3v4v1. Since y satisfies (7), we have y(vis;v3v1) = 0.

The following two statements can be seen from Lemma 4.7(v).

(11) If y(vis;vsvavy) > 0, then both vzv; and vys; are saturated by y in Ty, for i € {1,2,3}.

(12) If y(vss;vzvgvs) > 0, then both vys; and vsvs are saturated by y in Ts, for i € {1,2,3}.

We proceed by considering two cases, depending on whether ¢(sg) = {vs4} for some k €
{1,2,3} (see (4)).

Case 1. ¢(si) = {vs} for some k € {1,2,3}.

By Lemma 6.2(i), we may assume that k& = 1; that is, ¢(s1) = {vs4}. Let i and j be the
subscripts in {2, 3}, if any (possibly ¢ = j), such that vs € ¢(s;) and v € ¢(s;). Then

(13) Cg Q {’0481’031}4, vlsjvgvl, Ulsj’l}31}42}1, V1U58;0V3V1, U55;V3V4V5, V1 U5S5;U30V4V1, UV1UV5V3V1,

V3V4V5V3, V1U5U30V401 }.

We propose to show that

(14) if w(vsvs) > 0, then y(vasivzvy) is a positive integer.

For this purpose, note that z(s1v3) = w(s1v3) > 0 by Lemma 6.2(iii). If sqv3 is outside CJ,
then y(vasivzva) = w(sivg) > 0. So we assume that sqvs is contained in some cycle C' € C§. If C
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contains vys1, then vgvy is saturated by y in 75 by Lemma 4.7(iii). Moreover, the multiset sum of
C and each cycle in the set {vlsjvngl, V58;U3V4V5, V15 S;U3V4V1, U3V4V5U3, V1 U50U30V40] } contains
the cycle vasivsvs, a cycle in {visjvsvr, v1ivss;vzvi, vivsvsvr }, and a cycle C' € Cy that are arc-
disjoint, where C" = Cvs, v4] U {vqvs} or Clvs, v4] U {vgv1,v105}. From the optimality of y, we
thus deduce that y(vis;v3vave), y(vssivvavs), y(v1vss;v3v401), Y(v3v4v5v3), and y(vivsv3v4V1)
are all zero. Hence y(v4sivsvy) = w(vgvg) > 0. So we assume that C' does not contain v4s;.
Furthermore, vys1 is outside CJ, because every cycle using v4s1 passes through sjvs. Note that
v481 1s not saturated by y in T, for otherwise y(vys1v3v4) = w(vygsy) > 0, as desired. By Lemma
4.7(vii), vgvy is saturated by y in T and C' contains vsv;. It follows from (8), (10) and (11) that
y(v1v58;v3v4v1), Y(v1vsv3vav1) and y(visjvzvavy) are all zero. As the multiset sum of C, each of
v58;U3v4v5 and v3vavsv3, and the unsaturated arc vys; contains arc-disjoint cycles vqsiv3v4 and
one of vjvss;v3v1 and vivsv3vy, both y(vss;v3v4v5) and y(vsvavsvs) are zero by Lemma 4.7(vi).
So y(vgs1v3v4) = w(vsvg) > 0. This proves (14).

By (14) and Lemma 4.4(iii), we may assume that w(vsvs) = 0. It follows that w(vzvy) >
z(vzv1) > 0, for otherwise, 7,(T2\a2) = w(vsv1) + w(vsvy) = 0, contradicting («). Since
z(vas1) > 0 and w(vsvs) = 0, the arc vys; is contained in some cycle in C§. From the proof of
(14) we see that

(15) y(visjvsvavi), y(vssjvzvavs), y(vivss;v3v4v1), y(vavavsvs), and y(vivsvsvavy) are all
Zero.

(16) If w(vis;) > z(v1s;) > 0, then y(vis;v3v1) is a positive integer.

To justify this, note that z(s;v3) = w(s;v3) > 0 by Lemma 6.2(iii). Assume first that s;v3
is outside C§. If i # j, then y(vis;vsv1) = w(s;jvs) > 0. So we assume that ¢ = j. Then
y(visivzvy) + y(vivss;vsvr) = w(s;vs). If y(vivss;vzvy) > 0, then vys; is saturated by y in T
by (9). Thus y(visivzv1) = w(v1s;). Next assume that s;v3 is contained in some cycle C € CJ.
Since w(vszvg) = 0, cycle C' contains vzvy. It follows that vis; is saturated by y in Tp. So
y(visjuzvr) = w(vysj) > 0 and hence (16) is established.

By (16) and Lemma 4.4(iii), we may assume that w(vis;) = 0. By (3), we have z(vss;) > 0
and ¢(s;) = {vs}. By (13)-(16), we obtain

(17) Cg g {1)11)58ﬂ)3’l)1,1)1?)51)31)1}.

(18) y(v1vss;v3v1) is a positive integer.

To justify this, note that z(s;v3) = w(s;v3) > 0 by Lemma 6.2(iii). If s;v3 is outside C§,
then y(vivss;vsvi) = w(s;vg) > 0 by (17), as desired. So we assume that s;v3 is contained in
some cycle C' € C§. Applying Lemma 4.7(iii) to the cycle vivss;v3v1, we deduce that (vs, s;) is
saturated by y in T5. So y(vivss;vsv1) = w(vss;) > 0 and hence (18) holds.

By (18) and Lemma 4.4(iii), D(7", w) has an integral optimal solution, which implies (1).

Case 2. ¢(si) # {v4} for any k € {1,2,3}.

By (3), the hypothesis of the present case, and Lemma 6.2(i), we may assume that v; € ¢(s1)
and vs € p(s2). Then

(19) CY C {w151v3v1, V151V3V4V], V1V5S2V3V1, U5 S2U30V4V5, U1 V5 S2U3V4V] , U1 U5V3V1 , V3V4V5V3,

V1UV5V30V4V1,V481V3V4, 1)4821)3?}4}.
By Lemma 6.2(vi), we have

(20) if vg € @(s;), then z(v4s3—;) = 0 and y(vgs3—;v3vy) =0 for i = 1,2.

Claim 1. y(CQ) = Tw(TQ\CLg).

To justify this, observe that
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(21) if K is an FAS of T\as such that y(C2) = w(K), then K is an MFAS. (The statement
is exactly the same as (4) in the proof of Lemma 5.3.)

In view of Lemma 6.2(iii), we distinguish among three subcases, depending on whether s;vs
is contained in a cycle in CJ.

Subcase 1.1. Both syv3 and sovg are outside Cg. In this subcase, s;v3 is saturated by y in Tb
fori = 1,2. If vsvs is also saturated by y in T, then y(Co) = w(K), where K = {vsvs, s1v3, S2v3 }.
Since K is an FAS of Ty\ag, it is an MFAS by (21) and hence y(Ca) = Ty (T2\a2). So we assume
that vsv3 is not saturated by y in 75.

(22) Both v3zv; and vsvy are outside C§. Furthermore, at least one of them is not saturated
by y in T5.

Indeed, the first half follows directly from Lemma 4.7(iii). To justify the second half, assume
the contrary. Then y(C2) = w(K), where K = {vsv1,v3v4}. Thus K is an MFAS of Th\ay by
(21) and hence y(C2) = Tw(T2\a2).

By (22), (8), (9), and (12), we have

(23) y(v1v582v301), Y(v582v3v4v5), and y(vivssavzvavy) are all zero.

Since C§ # 0, some cycle C' € C§ contains v1vs or v4vs. Thus there are two possibilities to
consider.

e C contains vivs. Now by (22) and Lemma 4.7(iii), vsv; is saturated by y in T» and
hence v3vy is not saturated by y in Th. It follows from Lemma 4.7(i) and (iii) that both vqvq
and vqvs are saturated by y in To. If z(vss;) = w(vgs;) for ¢ = 1,2, then y(C2) = w(K),
where K = {v3v1,v4v1,v405,v481,v482}. Thus K is an MFAS of Tb\as by (21) and hence
y(C2) = Tw(T2\a2). So we assume that 0 < z(vgs;) < w(vys;) for i =1 or 2. Then z(v4s3—;) =
w(vg83—;) = 0 by (2). If i = 2, then y(C2) = w(K), where K = {vsv1, v4v1, V45, V451, S2v3}, and
hence y(Ca) = Tow(T2\a2). If i = 1, then y(visjvzvavy) = 0 by (11). Since the multiset sum of
the cycles v1s1v3v1, C, and the unsaturated arcs {v4s1,vsvs,v3v4} contains arc-disjoint cycles
v481v3v4 and v1v5v3v1, we have y(vi1s1v3v1) = 0 by Lemma 4.7(vi). Thus y(Ce) = w(K), where
K = {v3v1, 0401, 0405, 5103, 0482 }. It follows that y(Ca) = T (T2 \a2).

e C contains v4vs. Now by (22) and Lemma 4.7(iii), vsvy is saturated by y in T» and hence
v3vy is not saturated by y in Ty. It follows from Lemma 4.7(i) and (iii) that vjvs is saturated
by y in T5. By (10) and (11), we have y(vivsvsvavy) = y(vis1vsvgvr) = 0. If v1s; is saturated
by y in Ts, then y(C2) = w(K), where K = {vivs,v3v4,v181}. Thus y(Ca) = T (T2\az). So we
assume that v1s; is not saturated by y in 75 and hence not in 7" by (22). Since the multiset
sum of the cycles C, vys1v3v4, and the unsaturated arcs {vsvi,vsvs,v1s1} contains arc-disjoint
cycles vys1v3v1 and vsvavsvs, we have y(vgsivsvy) = 0 by Lemma 4.7(vi). So y(C2) = w(K),
where K = {vjvs,v3v4, s103}. It follows that y(Ca) = 7o (T2\a2).

Subcase 1.2. sjv3 is contained in some cycle C' € Cf; subject to this, we choose C' so that
it contains as many edges in T5\ag as possible.

Assume first that C' contains v1s;. Then C' contains the path v1sjv3v4v5. By Lemma 4.7(iii),
each arc in the set {vgv1, v4v1,v481,v503} is saturated by y in T5. By (2), (8) and (10), we have
y(v1v582v3v4v1) = y(vivsvzvgvy) = 0. Since the multiset sum of C' and one of vivsvsv; and
v1V5820301 contains arc-disjoint cycles vsvgvsvs, C' = Clvs,v1] U {vivs}, and one of vysjvzvg
and vss9v3v4v5, from the optimality of y we deduce that y(vivsvsvi) = y(vivssavgvy) = 0. If
sovg is outside C§, then spus is saturated by y in T by Lemma 6.2(iii). So y(C2) = w(K),
where K = {v3v1,v4v1, 0451, So2v3,v5v3}. Hence y(Ca) = To(T2\a2). So we assume that sgvs is
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contained in some cycle in C§. Since vsvy is saturated by y in Th, every cycle in C§ containing
s9v3 passes through vsvs. By Lemma 4.7(iii), both vgs9 and vssy are saturated by y in T5. Thus
y(Cg) = w(K), where K = {1)3111,1141}1, V481, V4892, V589, U57)3}. It follows that y(CQ) = Tw(TQ\CLQ).

Assume next that v1s1 is not on C. Then we may further assume that vis; is outside CJ.
We proceed by considering three subsubcases.

e (' contains vsv;. Now v1s; and vsvs are saturated by y in 75 by Lemma 4.7(iii). Hence
y(v1v582v3v4v1) = y(vivsvsvavy) = y(visivsvgvr) = 0 by (8), (10) and (11). If vgsy is not
saturated by y in T5, then wvgvg is saturated by y in T by Lemma 4.7(iii). Moreover, for
each D € {v3vqv5v3, v582v30405}, if vgs1 is on C, then the multiset sum of C' and D contains
arc-disjoint cycles vgs1v3v4, C' = Clvs,v4] U {vgvs}, and one of vivsvgvy and vivssaovzvy; if
v481 is not saturated by y in 7', then the multiset sum of C, D and the arc vss; contains
v451v3v4 and one of vivsvgvy and vivssovgv; that are arc-disjoint. It follows from the optimality
of y or Lemma 4.7(iv) that y(vsvsvsvs) = y(vssevzvgvs) = 0. So y(C2) = w(K) if squs is
contained in some cycle in C§ and y(C2) = w(J) otherwise, where K = {v1s1,v3v4, U503, S203}
and J = {v1s1, v304, V503, v582}. Hence y(Ca) = Ty (T2\a2). So we assume that vysy is saturated
by y in Tp. If sgus is outside C§, then y(C2) = w(K), where K = {vis1,v481,v503, S2v3},
which implies that y(C2) = Tw(T2\a2). So we further assume that ssvs is contained in some
cycle in C§. By Lemma 4.7(iii), vssg is saturated by y in Tb. If vgsy is also saturated by y in
T5, then y(Cy) = w(K), where K = {v151,v481, U503, V582, V482 }; otherwise, vzvy is saturated
by y in Tb, and w(vgs1) = z(vgs1) = 0. Similar to the case when wvys; is not saturated by
y in Ty, we can show that y(vsvsvsvs) = y(vssevzvgvs) = 0. Thus y(C2) = w(J), where
J = {v1s1,v304, V503, V552 }. Therefore y(Co) = Tw(T2\a2) in either situation.

e (' contains both wsvs and vsv;. Now vysy, v4s1 and wvsvs are saturated by y in Ty by
Lemma 4.7(iii). If sovs is outside Cf, then y(C2) = w(K), where K = {v1s1,v481,v503, S2v3};
otherwise, vssy and vgsy are saturated by y in 75 by Lemma 4.7(iii). So y(C2) = w(J), where
J = {v181, 0481, V503, U582, V482 }. Therefore y(Co) = 7o (T2 \a2) in either situation.

e (' contains both vzvy and vqvs. Now v4s; and vsvs are saturated by y in Tb by Lemma
4.7(iii) and y(v1v5v3v4v1) = y(v1v58203v401) = 0 by (8) and (10). If vy s is also saturated by y in
Ty, then y(Ca) = w(K) or w(J), where K = {v181,v481,v503, s2v3} and J = {v181,v481, V503, U582,
v4S2}; otherwise, both vsv; and wvqv; are saturated by y in Th, and every cycle in Cg con-
taining sovs traverses vzvqvs. Since the multiset sum of C, each of vivsvsvy and vivssav3vy,
and the unsaturated arc vis; contains visjvsv; and one of vsvsvsvs and vssovszvavs that are
arc-disjoint, we have y(vivsv3v1) = y(vivssavsvr) = 0 by Lemma 4.7(iv). So y(C2) = w(K)
if spug is outside C§ and y(Cs2) = w(J) otherwise, where K = {v3v1, v4v1,v451, V503, S2v3} and
J = {v1s1,v451, V503, V452, v5s2}. Therefore y(Ca) = T (T2 \a2) in either situation.

Subcase 1.3. s9v3 is contained in some cycle C' € Cg and sjvs is saturated by y in T5.
In this subcase, both vssy and vsvs are saturated by y in Ty by Lemma 4.7(iii). If vyss is
also saturated by y in T5, then y(C2) = w(K), where K = {s1v3, 0503, V452, v552}; otherwise,
z(v4s2) > 0 and w(vgs1) = z(vgs1) = 0 by Lemma 6.2(vii). In this case C' contains vzvy, SO
v3vy is saturated by y in T» by Lemma 4.7(iii). By (8) and (10)-(12), we have y(vivss2v3v4v1),
y(v1vsvsvgvy), y(visivsvgvr), and y(vssevzvgvs) are all zero. Since the multiset sum of the
cycles C, vsvqvsvs, and the unsaturated arc vgse contains arc-disjoint cycles wvysovsvy and
v1v5v3v1, by Lemma 4.7(iv), we have y(vsvgvsvg) = 0. It follows that y(C2) = w(K), where
K = {81’03,’05’03,’03@4,@582}.

69



Combining the above three subcases, we see that the equality y(C2) = Ty (T2\a2) holds. So
Claim 1 is established.

Claim 2. y(C) is a positive integer for some C € Cy or v} (T) is an integer.

To justify this, note that y(Ce) = w(K) for some MFAS K of T5\ag by Claim 1. Depending
on what K is, we distinguish among eight cases.

Subcase 2.1. K is one of {vjvs, v3v4,v181}, {v181, U304, S2U3, U5V}, {181, V3V4, V582, V5U3 },
{v1vs, v304, S103}, and {s1v3, V3V4, V5S2, V5U3 }.

In this case, by Lemma 4.3(i), we have y(C) = 0 for some cycles C listed in (19). By
Lemma 4.3(iii), we obtain w(e) = y(Ca(e)) for each e € K, which, together with (19), implies
that y(visivsvi) = w(vis1) or w(sivs), each of them is positive by Lemma 6.2(iii) and the
assumption that vy € p(s1).

Subcase 2.2. K = {v3v1,v401,0481, S203, U503 }.

In this case, by Lemma 4.3(i), we have y(C') = 0 for some cycles C listed in (19). By
Lemma 4.3(iii), we obtain w(e) = y(Cz(e)) for each e € K, which, together with (19), implies
that y(visivavr) = w(vzvr), y(visivsvavr) = w(vave), y(vasivavy) = w(vast), y(vasavzvy) +
y(vss2v3v4vs) = w(s2v3), y(vsvavsvs) = w(vsvs). If y(vssavsvgvs) = 0, then y(vysovzvy) =
w(savg) > 0 by Lemma 6.2(iii). If y(vssavsvavs) > 0, then vgsy is saturated by y in T by
Lemma 4.7(iii). So w(vgs2) = y(Ca(vasa)). It follows that y(vgisevzvy) = w(vssa), and hence
y(vss2v3v4v5) is a positive integer.

Subcase 2.3. K = {v3v1, 0401, 0481, V482, V552, U503 }.

In this case, by Lemma 4.3(i), we have y(C) = 0 for some cycles C listed in (19). By Lemma
4.3(iii), we obtain w(e) = y(Ca(e)) for each e € K, which, together with (19), implies that
y(v1s1v3) = w(vzvy), y(vis1v3v4v1) = w(v4v1), Y(v451v304) = w(v481), Y(v45203v4) = w(v452),
y(vs82v304v5) = w(vss2), and y(vsvavs) = w(vsvs). Since vs € p(s2), we have w(vssz) > 0. So
y(vss2u3v4v5) is a positive integer.

Subcase 2.4. K = {v3v1, 0401, V45, V451, SoU3} Or {301, V401, V4v5, S1U3, V4S9 }.

In this case, by Lemma 4.3(i), we have y(C) = 0 for some cycles C listed in (19). By Lemma
4.3(iii), we obtain w(e) = y(Ca(e)) for each e € K, which, together with (19), implies that
y(vasav3v4) = w(savz) > 0 or y(vgs1v3v4) = w(s1vs) > 0 by Lemma 6.2(iii).

Subcase 2.5. K = {v181,v4581, S2v3, U503} or {v181, V451, V482, V582, UsV3 }.

We only consider the subcase when K = {v;s1,v451, Sovs, v5v3}, as the other subcase can be
justified likewise.

By Lemma 4.3(i), we have y(C) = 0 for some cycles C' listed in (19). By Lemma 4.3(iii), we
obtain w(e) = y(Ca2(e)) for each e € K, which, together with (19), implies that y(visjvzvi) +
y(v18s1v3v4v1) = w(v1s1), Y(v1v5v3v1) + Y(v3v4v5v3) + Y(v1V5V3V401) = w(V5v3), Y(vas1V3VL) =
w(vys1), and y(vasavsvy) + y(v1v582v3v1) + Y(v58203v405) + Y(v1v582v3v4v1) = w(sgv3). We
may assume that y(v1vss2v3v4v1) = y(vivsvsvgvr) = 0, for otherwise, by (8) or (10), we have
y(visiv3vr) = 0 and hence y(v1sjvzvgvy) = w(visy) > 0.

If y(v1vssovsvy) = 0, then y(vssav3v4v5)+y(vasov3vy) = w(savs). Observe that y(visovsvy) >
0, for otherwise, y(vssavsvavs) = w(sqvs) > 0. By (6), we obtain y(vssovsvy) = w(sqvs) or
w(v482), which is a positive integer. So we assume that y(vivssqvsvy) > 0. Then y(vsvgvsvs) = 0
by (9). Note that y(visivsvavy) > 0, for otherwise, y(visivsv1) = w(visy) > 0. Thus, by
(9), both vgsy and vgvs are saturated by y in Tp. It follows that y(visovsvy) = w(vgs2) and
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Y(v5820304v5) = w(vavs). So y(vivsSavsv) = w(sav3) — y(vaSavsvs) — Y(vsS2v3v4v5). Since
w(sgu3) > 0, at least one of y(vys9v3vy), y(vsS2v3v4v5), and y(v1v582v3v1) is a positive integer.

Subcase 2.6. K = {81113,1)482,1}582,1}51)3} or {811)3, S9U3, U57)3}.

We only consider the subcase when K = {sjvs, sovs, vsv3}, as the other subcase can be
justified likewise.

By Lemma 4.3(iii), we obtain w(e) = y(Ca(e)) for each e € K, which, together with (19),
implies that y(v4sivsvs) + y(visivzvr) + y(visivzvavy) = w(s1vs), y(vivsvsvr) + y(vsvavsvs) +
y(v1v5v3v401) = w(vsv3), and y(vasav3vy) + y(v1v55203v1) + Y(V55203V405) + Y(V1V55203V401) =
w(sav3).

We may assume that y(vivssovsvavy) = y(vivsvsvgvy) = 0, for otherwise, by (8) or (10), we
have y(v1s1v3v1) = 0 and hence y(v4s1v3v4) +y(vis1v3v4v1) = w(visy) > 0, which together with
(6) implies that y(vgsivsvs) = w(sivs) or w(vesy), so y(visivzvavy) = w(v1s1) — y(v481v304).
Since w(sjv3) > 0, at least one of y(v4s1v3v4) and y(v1s1v3v4v1) is a positive integer.

If y(vivssavgvr) = 0, then y(vssavsvavs) + y(vasavsvg) = w(sgvs), which together with (6)
implies that y(vgs2v3vs) = w(s2v3) or w(ves2), 80 Y(vsS2v3v4v5) = w(s2v3) — y(v4S2v3v4). Since
w(savg) > 0, at least one of y(vasavsvs) and y(vssavsvavs) is a positive integer. So we assume
that y(vivssavgvy) > 0. Thus, by (9), we have y(vivsvsvy) = w(vsvs). If y(visjvsvgvy) >
0, then y(vsisovzvy) = w(vasz), y(vssavzvavs) = w(vavs), and y(vivssavzvy) = w(s2v3) —
y(vgs2v3v4) — y(vsS2v3v4v5). Since w(sgovg) > 0, at least one of y(v4savsv4), Y(vs5S2V3V4V5),
and y(v1vssavzvy) is a positive integer. So we further assume that y(visjvsvgvy) = 0. Then
y(vis1v3vr) + y(vgsivgvy) = w(sivs). If y(vgsivgvy) = 0, then y(visivgvy) = w(sivz) >
0. So we assume that y(vssivsvs) > 0. By Lemma 6.2(vii), we have y(vssovsvy) = 0, so
y(v1v5820301) + Y(v5S20304v5) = w(savs). Observe that if y(vysjvsvy) or y(vivssevsvy) is an in-
teger, then accordingly y(vss1v3v4) or y(vssovsvavs) is an integer. Since w(s;vg) > 0 for i = 1,2
by Lemma 6.2(iii), at least one of y(v1s1v3v1), y(vasivzva), y(vivssavzvr), and y(vssevzvavs) is
a positive integer, as claimed.

It remains to consider the subcase when neither y(vysjv3v1) nor y(vivssevzvy) is an integer.
We propose to show that

(24) v (T) is an integer.

To justify this, let & be an optimal solution to P(T,w). Since 0 < y(v1s1v3v1) < w(visy)
and 0 < y(vgsivsvy) < w(vgsy), by Lemma 4.3(1) and (ii), we have z(vis1) = x(vgs1) = 0
and z(visjvzvy) = x(vgsivsvy) = 1, which implies xz(vsv1) = x(vsvy). Furthermore, since
y(v1vssgvsvy) > 0 and y(vssavzvavs) > 0, we have x(viv582v3v1) = x(v5S2v3v4v5) = 1, which
implies z(v3v1)+x(vivs) = 2(v3vs) + 2 (vavs). Thus z(vivs) = x(v4vs). Similarly, for each vertex
u € V\(V(T2)\a2), we deduce that x(uvi) = z(uvy). Let T" = (V' A’) be obtained from T by
identifying v; and wvy; the resulting vertex is still denoted by v;. Let w’ be obtained from the re-
striction of w by setting w’(v1v5) = w(vivs) +w(vgvs), W' (v3v1) = w(v3v1) +w(V3Vy), W (V18;) =
w(v18;) +w(vas;) for 1 < i <7, and w'(uvy) = w(uvy) + w(uvs) for each u € V\(V(T2)\az2). By
the LP-duality theorem, & and y naturally correspond to solutions to P(7”,w’) and D(T", w')
respectively with the same optimal value v (T). From the hypothesis of Theorem 4.1, we deduce
that v (T) is an integer. This proves (24).

Subcase 2.7. K = {v3v1,v401, 0405, V451, V482 }.

In this case, by Lemma 4.3(iii), we obtain w(e) = y(Cz(e)) for each e € K, which, to-
gether with (19), implies that y(vas;vzvs) = w(vygs;) for i@ = 1,2, y(visivsvr) + y(vivsvzvr) +
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y(v1vssavsvy) = w(vzvy), y(visivzvgvy) + y(v1vsv3v4v1) + y(v1vsS2v3v4v1) = w(vavy), and
y(v3v40503) 4+ y(v5820304v5) = w(v4vs). We may assume that w(vgs;) = 0 for ¢ = 1,2, for other-
wise, y(v481v3v4) or y(v4Sav3vy) is a positive integer. Note that both sjvs and syvs are outside
CY. So s;vs is saturated by y in 1% for i = 1,2, and hence y(v1s1v3v1) + y(v1s103v4v1) = w(S1v3)
and y(vi1vss20301) + Y(vsS2030405) + y(vivssavgvavy) = w(sovs). If y(vivssavzvavy) > 0 or
y(vivsvzvavr) > 0, then y(visivsvgvy) = w(sjvs) > 0 by (8) or (10). So we assume that
y(vivssavzvav1) = y(vivsvsvgvr) = 0. Then y(visivgvavy) = w(vavr) and y(visivsvr) =
w(s1v3) — y(visivgvgvy). Since w(sivz) > 0, at least one of y(visivzvy) and y(visjvsvavy)
is a positive integer.

Subcase 2.8. K = {v3v1,v3v4}.

In this case, by Lemma 4.3(iii), we obtain w(e) = y(Ca2(e)) for each e € K, which, together
with (19), implies that y(visivsv1) + y(vivsvsvy) + y(vivssevzvy) = w(vsvy), y(vasivsvy) +
Y(va820304) + y(v3v4v503) + Y(V105v30401) + Y(v185103V401) + Y(V5S2030405) + Y(V1U55203V4V1) =
w(v3vy). Since both sjvs and sgvs are outside Cé/, we see that s;v3 is saturated by y in 75 for i =
1,2. Hence y(v181v3v1) +y(vas10304) +y(v1810304) = w(s1v3) and y(vasev3vy) +y(vivssev3vy) +
Y(v5520304U5) + Y(V1U58203V401) = w(S203).

If y(vivssgvzvgvr) > 0 or y(vivsvzvgvy) > 0, then y(vgsivgvg) + y(vis1vsvgvy) = w(sivs) by
(8) and (10). It follows from (6) that either y(vysivsvs) = w(sivs) > 0 or y(v4s1v3v4) = w(v481)
and y(visivsvavy) = w(s1vs) — y(ves1vsvg). Since w(sivz) > 0, at least one of y(v4s1v3v4)
and y(visiv3vy) is a positive integer. So we assume that y(vivssevsviv) = y(vivsvsv4v1) = 0.
If y(vivssavgv) = 0, then either y(visqvsvy) = w(sgvs) or y(vgsovsvy) = w(vgs2) by (12),
50 Y(vssav3vavs) = w(savs) — w(vgs2). Since w(sgvs) > 0, at least one of y(visovsvy) and
y(vss2u3v4v5) is a positive integer.

Suppose y(vivssov3vy) > 0. Then y(vivsvsvy) = w(vsvs) by (9). If y(visivsvgvy) > 0, then
Y(vasav3va) = w(vase), Y(v5s203v4v5) = w(vavs), and y(vasivzve) = w(vasi) by (9) and (11).
It follows that y(vivssavsvy) = w(savs) — y(vasavsvs) — y(vssavsvavs). Since w(sgvz) > 0, at
least one of y(v4s2v3v4), y(vs5S2v3v4v5), and y(vivssevzvy) is a positive integer. So we assume
that y(visivgvgvy) = 0. If y(vssovsvgvs) = 0, then y(vgsivsvg) + y(vasovsvy) = w(vsvy). By
Lemma 6.2(vii), at most one of w(vys1) and w(vssz) is nonzero. Thus either y(vysivsv4) = 0 or
y(vgsav3vg) = 0, and hence either y(visjvsv) = w(sjvg) > 0 or y(vivssavsv) = w(savsg) > 0.
So we further assume that y(vssavsvgvs) > 0. If y(v1s1v3v1) or y(vivssevsvy) is an integer, then
accordingly y(v481v3v4) or y(vss2v3v405) is an integer. Since w(s;v3) > 0 for i = 1,2, at least one
of y(visivzvr), y(vasivsvy), y(vivssevsvr ), and y(vssevsvavs) is a positive integer, as claimed.

It remains to consider the subcase when neither y(vsjv3v1) nor y(vivssevzvy) is an integer.
Now we can prove that v (T') is an integer. Since the proof is the same as that of (24), we omit
the details here.

Combining the above subcases, we see that Claim 2 holds. Hence, by Lemma 4.4(iii), the
optimal value v (T") of D(T,w) is integral, as described in (1) above. 1

Lemma 6.7. If T5/S = G2, then D(T,w) has an integral optimal solution.

Proof. Recall that (by,as) = (v4,v5), s* = ve, and vy = v4. To establish the statement, by
Lemma 4.6(ii), it suffices to prove that
(1) the optimal value v}, (T") of D(T,w) is integral.
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Given an optimal solution y to D(T, w), set ¢(s;) = {u : z(us;) > 0 for u € V(T3)\az} for
each s; € S. By Lemma 6.2 (i) and (vi), we have

(2) ¢(si) Np(s;) = 0 whenever i # j.

(3) There exist at least two and at most three vertices s;’s in S with ¢(s;) # 0.

In view of (2) and the structure of Go, there are at most three vertices s;’s in .S with ¢(s;) # 0.
Suppose on the contrary that there exists precisely one vertex s; € S with ¢(s;) # (. Then (1)
follows immediately from Lemma 5.5; the argument can be found in that of (3) in the proof of
Lemma 6.5.

Lemma 6.2(i) allows us to assume that

(4) if p(s;) # 0, then i € {1,2,3}.

In the remainder of our proof, we reserve y for an optimal solution to D(T,w) such that

(5) y(Ca) is maximized;

(6) subject to (5), (y(Dq),y(Dg=1),...,y(D3)) is minimized lexicographically;

(7) subject to (5) and (6), y(vivevzvavy) is minimized; and

(8) subject to (5)-(7), y(vivevavy) is minimized.

Let us make some observations about y before proceeding.

(9) If K is an FAS of T\ a2 such that y(Ce) = w(K), then K is an MFAS. (The statement
is exactly the same as (4) in the proof of Lemma 5.3.)

The statements below follow instantly from Lemma 4.7(v).

(10) If y(vivgvgvgvy) > 0, then both vsv; and vgvy are saturated by y in Tb.

(11) If y(vives;vavr) > 0 for some i € {1,2,3}, then both vis; and vgvy are saturated by y
in TQ.

(12) If y(v1vevssivgvy) > 0 for some ¢ € {1,2,3}, then each arc in the set {vgv1, v3vy, vev4, V184,
veS;} is saturated by y in Th.

Claim 1. y(Ca) = Ty (T2 \a2).

To justify this, we may assume that

(13) at most one of vzv; and wvqv; is saturated by y in Tb, for otherwise, y(C2) = w(K),
where K = {vsv1,vqv1}. Since K is an FAS of Ty\ag, it is an MFAS by (9) and hence y(Cs) =
Tw (Tz\ag).

We proceed by considering two cases, depending on whether v; € ¢(s;) for some i.

Case 1.1. vy ¢ ¢(s;) for any i € {1,2,3}.

By (2), (3) and Lemma 6.2(i), we may assume that ¢(s1) = {vg} and ¢(s2) = {vs}. Thus

(14) CY C {v1v6v3v1, V1V6V4V1, V1VaU3VLV], V1VGS1 V4], V1VGU3S2V4V1 }-

By Lemma 6.2(iii), z(s;v4) = w(ziva) > 0. If s;04 is outside C§ for i = 1 or 2, then s;vy is
saturated by y in Th. In view of (14), we have y(v1vgs1v4v1) = w(s1v4) > 0 or y(v1v6v3S2v4v1) =
w(savg) > 0, and hence (1) follows from Lemma 4.4(iii). Similarly, if vgs; or vsse is saturated
by y in To, then y(vivesiv4v1) = w(vgsy) > 0 or y(v1vev3savv1) = w(vgse) > 0, and hence (1)
follows from Lemma 4.4(iii). So we assume that

(15) s;vy is contained in some cycle in C§ for i = 1 and 2. Furthermore, neither vgs; nor
v3sg is saturated by y in T5.

By (15) and Lemma 4.7(iii), at least one of vivg and vqv; is saturated by y in Ts. If vivg
is saturated by y in Tb, then y(C2) = w(vivg). By (9), {v1ve} is an MFAS of Th\ay and hence
y(Co) = Tw(To\az2). If vyv; is saturated by y in Tb, then wvzv; is not saturated by y in To
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by (13). So, by Lemma 4.7(vi), vgvs is saturated by y in 75 and, by (10) and (12), we have
y(v1v6v35204v1) = y(vivevsvavy) = 0. Thus y(C2) = w(K), where K = {v4v1,v6v3}. Since K is
an FAS of Th\ag, it is an MFAS by (9) and hence y(C2) = 7w (12\a2).

Case 1.2. v; € ¢(s;) for some i € {1,2,3}.

By (2), (3) and Lemma 6.2(i), we may assume that v1 € ¢(s1), v6 € ¢(s;), and v3 € @(s;),
with {1} # {i,7} C {1,2,3}. Furthermore,

(16) Cg g {1)11)6'031)1, V1V6V4V1, V1VEV3V4V1, U181V4V1, V1V6S;V4V71, 1)11)61)38]‘1)41)1}.

We may further assume that syv4 is contained in some cycle in Cg and v1s7 is not saturated
by y in Th, for otherwise, y(v1s1v4v1) = w(s1vg) > 0 or y(vis1v4v1) = w(vysy) > 0. Hence (1)
follows instantly from Lemma 4.4(iii). It follows from Lemma 4.7(vii) that vsv; is saturated
by y in Ty and hence, by (13), vsv; is not saturated by y in To. By (10) and (12), we obtain
y(v1vev3s;vav1) = y(vivevsvavr) = 0. If vgvg is saturated by y in T5, then y(C2) = w(K),
where K = {vqv1,v6v3}. Since K is an FAS of Ts\ag, it is an MFAS by (9) and hence y(C2) =
Tw(T2\az). So we assume that vgvs is not saturated by y in T». Thus, by Lemma 4.7(vii), vivg
is saturated by y in T5. We propose to show that

(17) y(vivevav1) = y(v1v6s;v4v1) = 0.

Assume the contrary: y(vivevsvi) > 0 or y(vivesivavy) > 0. Then wvys; is outside CJ,
for otherwise, let C' be a cycle in C§ containing v1s;. Then the multiset sum of the cycles
C' and vjvgvavr (resp. v1v6S;v4v1) contains arc-disjoint cycles vysjvq4v; and C' = Clug, v1] U
{vive, v6v4} (resp. C' = Clug,v1] U {v1v6, v68i, Siva}). Set 6 = min{y(vivgvav1),y(C)} (resp.
min{y(vivgs;vav1),y(C)}). Let y' be obtained from y by replacing y(vivgvivy) (resp. y(vives;vavy)),
y(vivaugvr), y(C), and y(C’) with y(vivgvavr) — 0 (resp. y(vivgsivave) — 6), y(vivavavy) + 6,
y(C) — 0, and y(C") 4 0, respectively. It is easy to see that y’ is an optimal solution to D(T, w)
with 3/ (vivgvav1) < y(vivgvavy) or 3 (v1vesivavr) < y(vives;vavy), contradicting (8) or (6).
Since vjvg is saturated by y in T, every cycle in C containing vsvy passes through vysy. Thus
v3v1 is outside Cé’, and neither v1s1 nor wsv; is saturated by y in 7.

Observe that vgvs is outside Cf, for otherwise, let C' be a cycle in C§ containing vgvs. Then the
multiset sum of the cycles C, vivgvavy (resp. v1v68;v4v1), and the unsaturated arc vsv contain
arc-disjoint cycles vivgvgvy; and C" = Clvg, ve) U {vgva} (resp. C' = Clva, ve] U {vgsi, siva)}).
Set 0 = min{y(vivev4v1),y(C), w(vsvy) —z(v3v1)} (resp. § = min{y(vivgsivavy), y(C), w(vsvy)—
z(vsv1)}). Let y’ be obtained from y by replacing y(vivgvav1) (resp. y(v1v68iv401)), y(vivev3vy),
y(C), and y(C") with y(vivevav1) — 6 (resp. y(vivesivav) — 0), y(vivevsvr) + 6, y(C) — 0,
and y(C’) + 6, respectively. It is easy to see that y’ is an optimal solution to D(T,w) with
Y (v1vgvav1) < y(v1vgvav1) or Y (v1v68;v401) < y(v1v6S;v4v1), contradicting (8) or (6). Hence
vgU3 is not saturated by y in T

Let C be a cycle in C§ containing sjv4. Then the multiset sum of the cycles C, each of the cy-
cles vivgvav1 and v1vgS;v4v1, and the unsaturated arcs vgvs, vsvi, and v1s; contains arc-disjoint
cycles v1sjv4v; and vivgvzvr. So, by Lemma 4.7(vi), we have y(vivgvav1) = y(vives;vavy) = 0;
this contradiction establishes (17).

Using (17), we obtain y(C2) = w(K), where K = {v1vg,v4v1}. Since K is an FAS of Th\as,
it is an MFAS by (9) and hence y(Ca) = Ty (T2\a2). This proves Claim 1.

The above proof yields the following statement, which will be used later.

(18) If Case 1.1 occurs, then every MFAS comes from {{vsvi,v4v1}, {vive}, {vavi, vevs}}. If
Case 1.2 occurs, then every MFAS comes from {{vsv1,vqv1}, {vive, vav1}, {vav1, vevs}}.
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Claim 2. y(C) is a positive integer for some C € Cy or v} (T) is an integer.

To justify this, we first show that

(19) if vz € @(s;) for i € {1,2,3}, then y(vivevss;vavy) = 0.

Assume the contrary: y(vivgvszs;vgvi) > 0. Then y(vivgvsvy) = w(vavy), y(vivevsvavy) =
w(vsvy), and y(vivevav:) = w(vevs) by (12). So Lemma 4.4(iii) allows us to assume that
w(vsvy) = w(vsvy) = w(vgvy) = 0. Let j and k be subscripts in {1,2,3}, if any, such that
ve € (sj) and v1 € @(si). If both y(visgvave) and y(vives;vavy) are integral, then, by Claim 1,
y(v1vevss;vavy) is a positive integer, so Claim 2 holds. Thus we may assume that y(v;sgv4vy) or
y(v1vesjvavr) is not integral. Then, by (11) and Lemma 4.4(iii), we have j, k # i. Furthermore,
both v1s; and vgs; are outside Cj, for otherwise, we can construct an optimal solution y’ to
D(T, w) with y'(vivevss;vav1) < y(vivevssjvavi), contradicting (6).

Consider first the case when y(vives;jvsv1) is not integral. If j = k and y(visgvavi) > 0,
then y(visgvav1) = w(visg) > 0 by (11), so Claim 2 holds. Thus we may assume that j # k if
y(viskvavy) > 0. Let us show that v} (7T') is an integer.

For this purpose, let & be an optimal solution to P(T,w). Since both y(vives;v4vi) and
y(v1v6U3s;v4v1) are positive, x(vivs;jv4v1) = x(vV106V38;04v1) = 1 by Lemma 4.3(i). By Lemma
6.2(vi), z(ves;) = x(v3s;) = 0. It follows that x(s;vs) = z(vevs) + x(s;v4). If vevz is outside
CY, then z(vgvs) = 0 by Lemma 4.3(ii), because z(vgvs) = y(vivevssivavi) < w(vgvs). Thus
x(s;v4) = x(sjv4), contradicting Lemma 6.2(iv). So we assume that vgvs is contained in some
cycle in C§. Since w(vsvs) = w(vgvs) = 0 and (vg, s;) is outside Cf, for any u € V\(V(T2)\a2),
if a cycle in C§ contains uvg, then it passes through vgvszsivs. Moreover, if a cycle in Cf
contains us;, then it passes through sjvs. By Lemma 4.3(iv), we obtain z(uve) + z(vevs) +
x(v3si) + x(s;va) = x(usj) + x(s;v4). Hence x(uvs) = x(us;). Clearly, we may assume that
this equality holds in any other situation. Let 77 = (V' A’) be obtained from T by delet-
ing vertex s;j, and let w’ be obtained from the restriction of w to A’ by replacing w(e) with
w(e)+w(sjvy) for each e € {vgvs, v3s;, siva} and replacing w(uve) with w(uve) +w(us;) for each
u € V\(V(Ts)\az). Let ' be the restriction of & to A" and let ¢y’ be obtained from y as follows:
set 3/ (v1vev3sivavy) = y(v1ves;vav1) + y(vivevssivavy); for each C € Cf passing through us;vs
for any u € V\(V(T2)\a2), let C’" be the cycle arising from C' by replacing the path us;vs with
the path uvgvss;va, and set y'(C") = y(C') +y(C). From the LP-duality theorem, we see that =’
and y’ are optimal solutions to P(T”, w’) and D(T”, w’), respectively, with the same value v (T)
as « and y. By the hypothesis of Theorem 4.1, v (T') is an integer.

In the other case when y(vives;vavi) = 0 and y(visEvave) is not integral, the proof goes
along the same line, so we omit the details here.

By Claim 1, y(C2) = w(K) for some FAS K of T5\as as described in (18). Recall that

(20) in Case 1.1, we have v ¢ ¢(s;) for any i € {1,2,3}, ¢(s1) = {vs}, and ¢(s2) = {v3}; in
Case 1.2, we have v1 € ¢(s1), v € ¢(s;), and v3 € ¢(s;), with {1} # {7,5} C {1,2,3}.

Depending on what K is, we distinguish among four cases.

Case 2.1. K = {vqv1,v6v3} in Case 1.1 or K = {vvg,v4v1} in Case 1.2.

Consider first the subcase when K = {vqv1,v6v3} in Case 1.1. Now y(v1vgv3v1) = w(vevs)
and y(v1vv401) + y(v1v6510401) = w(vgv1) (see (20)). If y(vivgsivavy) = 0, then y(vivevavy) =
w(vgvy). I y(vivgsivgvr) > 0, then y(vivgvavr) = w(vevy) by (11), and hence y(vivgs1v4v1) =
w(vqv1) —w(vgvy). By the hypothesis of the present section, w(K) = 7,(T2\a2) > 0. So at least
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one of y(vivgvsvy), y(vivevavs), and y(vivesivavy) is a positive integer.

Next consider the subcase when K = {vjvg,v4v1} in Case 1.2. Now y(vi1s1v4v1) = w(vqv1)
and y(v1vv3v1) = w(v1ve). So at least one of y(visivavr) and y(vivevszvy) is a positive integer.

Case 2.2. K = {vjvg} or {v3v1,v4v1} in Case 1.1.

We only consider the subcase when K = {v1vg}, as the proof in the other subcase goes along
the same line. Now y(vivgv3v1) + y(v1v6v401) + y(v1v6v304v1) + y(v10681v401) = w(v1v6), and
v3vy is outside C.

Observe that y(vivgvgvgvy) > 0, for otherwise, if y(vivgsivavi) > 0, then y(vivgvavy) =
w(vgvy) by (11), and hence y(v1vgv3v1 ) +y(v1ves1v4v1) = w(vive) —w(vevy); if y(vivesivavy) = 0,
then y(v1vv3v1) +y(v1vev4v1) = w(vive). Let us show that y(vivgvsvy) is integral. Assume first
that y(vivgsivav1) > 0. If vgvs is outside CF, let y’ be obtained from y by replacing y(v1vgvsv1)
and y(vivgsivavy) with y(vivevsvy) + [y(vivesivavr)] and |y(vivesivavr) |, respectively; if vgvs is
contained in a cycle C' € C§, set = min{y(C), [y(vivesi1vsv1)]} and C" = Clvy, v]U{ves1, s104},
and let ¢y’ be obtained from y by replacing y(vivevavi), y(vivesivave), y(C), and y(C’) with
y(vivgusvy) + 0, y(vivgsivgvr) — 6, y(C) — 0, and y(C’) + 6, respectively. Then y’ is also an
optimal solution to D(7T', w) with 3/ (vivgv3v1) > y(vivevsvy) while ¥ (v1v65104) < y(viveSIV4VY)
in either situation, so y’ is a better choice than y (see (6)), a contradiction. Assume next that
y(v1vgsivgvr) = 0. Imitating the above proof, with y(vivevsv1) in place of y(vivgsivgvy), we
can reach a contradiction to (8).

Since y(vivgvsvavr) > 0, by (10), we have y(vivgvsv1) = w(vsvy) and y(vivevav1) = w(vevs);
so Lemma 4.4(iii) allows us to assume that w(vzv1) = w(vgvs) = 0. Thus the previous equality
concerning w(vivg) becomes y(v1v651v4v1) + y(v1v6v3v401) = w(v1vg). So we may assume that
neither y(vivgsivavy) nor y(vivevsvgvy) is integral, for otherwise, at least one of them is a
positive integer. Observe that vgsy is outside C§, for otherwise, let C' be a cycle in C§ that
contains vgs1, let €' = Clug, vg] U {vgvs, v3v4}, and let 6 = min{y(C), y(vivevzvavy)}. Let y' be
obtained from y by replacing y(v1vgs1v4v1), y(v1v6v3v401), y(C), and y(C") with y(v1vesivavy)+
0, y(vivevzvavy) — 6, y(C) — 0, and y(C”) + 0, respectively. Then y’ is also an optimal solution
to D(T, w) with 3/ (vivevzvavr) < y(vivevsvgvy), contradicting (7).

We propose to show that v} (T') is an integer. For this purpose, let « be an optimal so-
lution to P(T,w). Since both y(vivgsivavy) and y(vivevzvavy) are positive, x(vivgsivavy) =
x(vivgvsvgvy) = 1 by Lemma 4.3(i). Since y(vivgsivavi) < w(vgsy), we have z(vgsy) = 0
by Lemma 4.3(ii). Thus z(sjvs) = z(vevs) + x(vsvs). Since w(vgvy) = 0, for any u €
VA\(V(T2)\a2), if a cycle in C§ contains uvg, then it passes through vgvsvs or vgsjvs. More-
over, if a cycle in C§ contains us, then it passes through sjvs. By Lemma 4.3(iv), we obtain
x(uvg) + x(vevs) + x(v3vy) = x(usy) + x(s1v4) or z(uve) + x(ves1) + x(s1v4) = x(us1) + x(s1v4).
Hence z(uvs) = x(us;). Clearly, we may assume that this equality holds in any other situation.
Let T" = (V', A’) be obtained from T by deleting vertex s1, and let w’ be obtained from the
restriction of w to A’ by replacing w(e) with w(e)+w(sivs) for e = vgvs and vzvs and replacing
w(uve) with w(uve) + w(usy) for any u € V\V(Ts)\az. Let &’ be the restriction of x to A" and
let y’ be obtained from y as follows: set y'(v1vgvsv4v1) = y(vivesivavy) + y(v1v6vsv407); for
each C' € C§ passing through usivs for any u € V\(V(T2)\a2), let C’ be the cycle arising from
C by replacing the path usjvy with the path uvgvsvy, and set y'(C’) = y(C') + y(C). From
the LP-duality theorem, we see that ' and y’ are optimal solutions to P(7”, w') and D(T", w’),
respectively, with the same value v (T') as  and y. By the hypothesis of Theorem 4.1, v} (T)
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is an integer.

Case 2.3. K = {v4v1,v6v3} in Case 1.2.

In this case, y(v1vv3v1) = w(vgvs) and y(vis1v4v1) + y(v1v6v4v1) + y(vV1Ve5;v4v1) = w(v4v1)
(see (20)). By Lemma 4.4(iii), we may assume that w(vgvs) = 0. Let us show that

(21) y(vivesivavy) = 0.

Assume the contrary. Then, by (11), we have y(vivgvsv1) = w(vgvy), and vy s; is saturated
by y in T». Lemma 4.4(iii) allows us to assume that w(vgvs) = 0 and that y(vives;vav1) is not
integral. It follows from (6) and Lemma 4.7(v) that i # 1 and vys; is outside C§. We propose
to prove that v (T) is an integer.

For this purpose, let & be an optimal solution to P(T,w). Since both y(visjvsvi) and
y(v1vgsivav1) are positive, by Lemma 4.3(i), we have x(visjvqv1) = z(vivgs;vqv1) = 1. Since
y(v1s1v4v1) < w(vys1), by Lemma 4.3(ii), we obtain z(v1s1) = 0, so z(s1v4) = x(vive)+x(ves;)+
z(sivg). If vivg is outside Cf, then x(vivg) = 0, because z(vivg) = y(vivesvavy) < w(vive).
By Lemma 6.2(vi), z(vis1) = z(ves;) = 0. Hence, x(s1v4) = x(s;v4), contradicting Lemma
6.2(iv). So we assume that v1vg is contained in some cycle in C§. Since w(vgvs) = w(vgvs) = 0,
for any u € V\(V(T2)\a2), if a cycle in C§ contains uvq, then it passes through vjvgs;vs.
Moreover, if a cycle in C§ contains usi, then it passes through sjvy. By Lemma 4.3(iv), we
obtain x(uv1) + z(v1ve) + x(ves;) + x(s;ve) = x(us1) + x(s1v4). Hence z(uvy) = z(usy). Clearly,
we may assume that this equality holds in any other situation. Let 77 = (V’/,; A’) be obtained from
T by deleting vertex s1, and let w’ be obtained from the restriction of w to A’ by replacing w(e)
with w(e) +w(s1v4) for e € {vivs, v6Si, siva} and replacing w(uwvy) with w(uwvy) +w(us;) for any
u € V\(V(T)\a2), Let &’ be the restriction of & to A’, and let y’ be obtained from y as follows:
set 3/ (v1vgsivav1) = y(vis1v4v1) + y(v1vesivavy); for each C' € Cf passing through usjvy, let C’
arise from C by replacing the path usivs with the path uvivgs;vs, and set /' (C") = y(C") +y(C).
From the LP-duality theorem, we see that ' and ¢’ are optimal solutions to P(7”,w’) and
D(T",w’), respectively, with the same value v (T) as  and y. By the hypothesis of Theorem
4.1, v; (T') is an integer. So we may assume that (21) holds.

By (21), the equality concerning w(v4v1) becomes y(vys1v4v1) + y(vivgvav1) = w(vgvy). As
w(vgvy) = w(K) = 7,y (T2\az2) > 0, neither y(v1s1v4v1) nor y(vivgvavy) is integral. Observe that
v181 is outside Cg, for otherwise, let C be a cycle containing vys in Cg, let C" = Clvg, 1] U
{vive,v6v4}, and let 8 = min{y(C),y(vivevav1)}. Let y’ be obtained from y by replacing
y(v1s1v4v1), y(vivevavr), y(C), and y(C’) with y(visivavr) + 0, y(vivevsvr) — 0, y(C) — 6, and
y(C’) 4+ 0, respectively. Then y’ is also an optimal solution to D(7,w) with ¢ (vivgvav1) <
y(v1vev4v1 ), contradicting (8). Moreover, i # 1, for otherwise, it can be shown similarly that
vgs1 is outside C§, which implies z(vgs1) = 0, contradicting that v € ¢(s1). Let us show that

(22) v (T) is an integer.

For this purpose, let & be an optimal solution to P(7,w). Since both y(visjvavy) and
y(v1vevqv1) are positive, we have x(visjvav1) = z(v1v6vav1) = 1 by Lemma 4.3(i). By (16)
and Lemma 4.4(iii), we have y(v1sjv4v1) < w(vis1) and hence z(vis1) = 0. So x(sjvg) =
z(v1v6) + z(veva). Note that if a cycle in C§ contains usy, then it passes through sjvs. For
any u € V\(V(Tz)\az), if there exists a cycle C' € C§ containing uv; and passing through
v1V6v4, then by Lemma 4.3(iv), we obtain z(uvy) + x(vive) + x(vevs) = z(us1) + x(s1v4), and
hence z(uvi) = x(usi). Otherwise, since w(vgvz) = 0, if a cycle in C§ contains uvq, then it
passes through vjvgs;vs. By Lemma 4.3(i) and (iv), we have z(vgvy) > x(vgs;) + x(s;v4) and
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x(uvy)+z(v1ve)+x(ves;)+x(sivg) = x(usy)+x(s1v4). Since z(vivevavr) = 1 and z(v1v6S;v401) >
1, we see that x(vgvy) < x(ves;) + x(s;v4). Hence, x(uvy) = x(usy) also holds. Clearly, we may
assume that this equality holds in any other situation. Let 77 = (V’/, A") be obtained from T
by deleting vertex s1, and let w’ be obtained from the restriction of w to A’ by replacing w(e)
with w(e) + w(sivy) for e = v1vg and vgvy and replacing w(uvy) with w(uvy) + w(usy) for any
u € V\(V(T)\az2). Let «’ be the restriction of  to A" and let ¢’ be obtained from y as follows:
set y' (vivevavi) = y(visivavr) + y(vivevavr); for each C € C§ passing through usivg for any
u € V\(V(T)\az), let C" arise from C' by replacing the path usjvs with the path uwvivgvs, and
set ¥ (C") = y(C") + y(C). From the LP-duality theorem, we see that ' and y’ are optimal
solutions to P(T",w’) and D(T’,w’), respectively, with the same value as = and y. From the
hypothesis of Theorem 4.1, (22) follows.

Case 2.4. K = {vgv1,v4v1} in Case 1.2.

In this case, y(v1vev3v1) = w(vsv1) and y(v181v401)+y(v1V6V401)+y(v1V68;V401 ) +y (V1 V6V3V4VT )
= w(v4v1) (see (20)). By Lemma 4.4(iii), we may assume that w(vzv;) = 0.

If y(vivgsivav1) = y(vivgvsvavy) = 0, then y(visivavr) + y(vivgvgvy) = w(vgvy). Since
w(vgv) = w(K) = 1,(T2\a2) > 0, we see that y(visjvavr) is not integral. Imitating the
proof of (22), it can be shown that v} (T") is an integer. So we assume that at least one of
y(v1vgvsvavr) and y(vives;vavy) is positive. By (10) or (11), vgvy is saturated by y in Tb, and
hence y(vivgvav1) = w(vevs). By Lemma 4.4(iii), we may assume that w(vevs) = 0. If neither
y(v1v68;v4v1) nor y(viveusvavy) is integral then, imitating the proof in Case 2.2, it can be shown
that v (T') is an integer. It remains to consider the subcase when precisely one of them is
positive. Now it can be shown that v} (7)) is an integer. Since the proof is the same as that
contained in the argument of (21), we omit the routine details here.

Combining the above four cases, we see that Claim 2 holds. Hence, by Lemma 4.4(iii), the
optimal value v (T') of D(T,w) is integral, as described in (1) above. 1

Lemma 6.8. If T5/S = G3, then D(T,w) has an integral optimal solution.

Proof. Recall that (by,a2) = (v4,v5), s* = ve, and vy = vg. To establish the statement, by
Lemma 4.4(iii) and Lemma 4.6(ii), it suffices to prove that

(1) y(C) is a positive integer for some C' € Ca or the optimal value v (T') of D(T,w) is an
integer.

Given an optimal solution y to D(T, w), set ¢(s;) = {u : z(us;) > 0 for u € V(T3)\az} for
each s; € S. By Lemma 6.2 (i) and (vi), we have

(2) ¢(si) Np(s;) = 0 whenever i # j.

(3) There exist at least two and at most three vertices s;’s in S with ¢(s;) # 0. (The
statement is exactly the same as (3) in the proof of Lemma 6.7.)

Lemma 6.2(i) allows us to assume that

(4) if p(s;) # 0, then i € {1,2,3}.

Let ¢t be the subscript in {1,2,3} with v; € p(s;), if any. By (2), t is well defined. In the
remainder of our proof, we reserve y for an optimal solution to D(7', w) such that

(5) y(Ca) is maximized;

(6) subject to (5), (y(Dyq),y(Dg-1), - --,y(Ds3)) is minimized lexicographically;

(7) subject to (5) and (6), y(vivevzvavy) is minimized; and

(8) subject to (5)-(7), y(visivav1) + y(vsvavgvs) is minimized.
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Let us make some observations about y before proceeding.

(9) If K is an FAS of Ty\as such that y(Ce) = w(K), then K is an MFAS. (The statement
is exactly the same as (4) in the proof of Lemma 5.3.)

The statements below follow instantly from Lemma 4.7(v) and the choice of y.

(10) If y(vivvzvgvy) > 0, then both vsv; and vyvg are saturated by y in 7. Furthermore,
for any i € {1,2,3}, we have y(vgs;vavg) = 0; if y(v3s;vgvgvs) > 0, then vys; is saturated by y
in TQ.

(11) If y(vives;vav1) > 0 for some i € {1,2,3}, then both v;s; and vyvg are saturated by y
in Ty. Furthermore, if y(vsvqvgvs) > 0, then vsv; is saturated by y in Ty; for any 1 < j # ¢ < 3,
if y(vzsjvavevz) > 0, then both vzvy and vys; are saturated by y in T5.

(12) If y(vssjvavgvs) > 0 for some i € {1,2,3}, then both vsvs and vgs; are saturated by y
in Tg.

(13) If v1 € @(s;) for some i € {1,2,3}, then y(vys;v4v6v3v1) = 0.

Assume the contrary: y(vis;vqvgvsvy) > 0. Then vvg, vsvs, and vqv; are saturated by y in
Ty by Lemma 4.7(v). Let j and k be subscripts in {1,2,3}, if any, such that vz € ¢(s;) and
ve € @(sg) (possibly j = k). As before, let W denote the multiset sum. Then v;s;v4v6v30; W
V1VgU3V4V1 = V18;V4V1 W V1060301 W V304V6V3, V18;V4VgV3V1 W V1068 V401 = V180401 Y V1060301 W
VSEU4Vg, and v18;v4v6v3vV1 U V1VV3S;V4V1 = V18;04V1 W v106U3V1 W U35;040V6V3. Thus, from the
optimality of y, we deduce that y(vivevzvav1), y(viveskvavr), and y(vivevssjvav) are all zero.
So y(v1vevsv1) = w(v1vg), Y(v18;v4v1) = w(vavy), and y(vsvavevs) = w(vzvy). Clearly, we may
assume that w(vive) = w(vav1) = w(vsvs) = 0, otherwise (1) holds. By (3), we have {j, k} # {i}.
Let us show that one of y(vesxvavs), y(v3sjvavevs), and y(vis;v4v6v3v1) is a positive integer or
vi(T) is an integer. We proceed by considering two cases.

e L exists and ¢ # k. In this case, observe first that vgsy is not saturated by y in Tb, for
otherwise, y(vesgvave) = w(vesk) > 0 and hence (1) holds. Next, vivs is not saturated by y
in Ty, for otherwise, if k # j, then y(vgsgvavg) = w(spvy) > 0; if k = j, then y(vesxvave) +
y(vsskvavevy) = w(spva) > 0, and y(vesgvave) = w(vesy) > 0 by Lemma 4.7(v) provided
y(vsspvavevs) > 0. So y(veskvave) is a positive integer, and hence (1) also holds. Moreover,
both vgsy, and vgs; are outside Cf, for otherwise, let Cy (resp. Cs) be a cycle in C§ containing vg sy
(resp. v3s;). Since C W v18;0406V3V1 = V6SkV4V6 W C1 and Co W1 8;04060301 = V35,0406V3 W Cy,
where C] = C1[vg, vg] U {vgvs, v3v1, 0184, $;v4} and Ch = Colvy, v3]W{vsv1, v18;, $;v4}, by Lemma
4.7(viii), we have y(C;) = 0 for i = 1,2, a contradiction. It follows that vgsy is not saturated by
y in T, and sjv4 is contained in some cycle in C§. By Lemma 4.7(vii), vqvg is saturated by y in
Ty, 50 y(v15;v406v301) + Y (V6SKVaV6) + y(v3Sj04v6v3) = w(vave). If j = k and y(vgsgvavevs) > 0,
then vgsy is saturated by y in Ty by Lemma 4.7(v), a contradiction. So either j # k or j = k
and y(vsskvsvevs) = 0. Since w(vgsg) > 0 and vgsy is outside Cf, we have y(vgsgpvave) > 0.
Assume y(vgSiv4ve) is not integral. Let us show that v (7") is an integer.

For this purpose, let & be an optimal solution to P(7,w). Since both y(vgsipvsve) and
y(v18;v4v6v3v1) are positive, by Lemma 4.3(i), we have x(vgsivsvg) = x(v18;v4v6v3v1) = 1. By
Lemma 4.3(ii), we obtain x(vgsx) = 0. Hence z(spvs) = z(vv3) + z(v3vy) + x(v18;) + z(si04).
Since w(vsvy) = 0 and vgsy is outside Cf, for any u € V\(V(T2)\az), if a cycle in C§ contains
uvg, then it passes through vgvszvis;vs. Moreover, if a cycle in C§ contains usg, then it passes
through sivs. By Lemma 4.3(iv), we obtain x(uve) + z(vevs) + x(vsv1) + x(vis;) + x(siva) =
x(usk)+x(skva). Hence z(uvg) = x(usy). Clearly, we may assume that this equality holds in any
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other situation. Let 7" = (V’, A’) be obtained from T by deleting s, and let w’ be obtained from
the restriction of w to A’ by replacing w(e) with w(e) + w(vssi) for e € {vgvs, v3v1, V184, S;v4}
and replacing w(uvg) with w(uve) + w(usy) for any u € V\(V(T3)\az2). Let &’ be the restriction
of  to A’, and let 3y’ be obtained from y as follows: set y'(v1s;v4v6v3v1) = y(v18;v406v3V1) +
y(veskvave); for each C' € C§ passing through usjvy, let C7 arise from C' by replacing the path
uskvy with the path uvgvsvis;vyg, and set 3/ (C') = y(C’) + y(C). From the LP-duality theorem,
we see that @’ and ¢’ are optimal solutions to P(7”,w’) and D(T”,w'), respectively, with the
same value v (T') as « and y. By the hypothesis of Theorem 4.1, v} (T') is an integer.

e Either k does not exist or ¢ = k. In this case, by (3), we see that j exists; that is, v3 € ¢(s;).
Similar to the above case, we can show that either y(vssjvivgvs) is a positive integer or v, (T)
is an integer. Since the proof goes along the same line (with vss; and y(v3s;jvsvevs) in place of
vesk and y(vesgvavg), respectively), we omit the details here. Hence we may assume that (13)
holds.

(14) If v3 € (s;) for some j € {1,2,3}, then y(vivevss;vavy) = 0.

Assume the contrary: y(vlvgvgsjvwl) > 0. Then v3v1, vsvy, and v4vg are saturated by y
in 75 by Lemma 4.7(v). Let ¢ and k be subscripts in {1,2,3}, if any, such that v; € ¢(s;)
and v € @(s) (possibly i = k). Since v1v6U35;v4V1 W V3V4V6V3 = V1VeU3V4V1 W V3S;V4V6V3,
and v106V35;V4V1 U UgSpU4V6 = V1V6S5KV4V1 W V35,0406v3, from the optimality of y, we deduce
that y(vsvavevs) = y(vesrvave) = 0. So y(vivevsv) = w(vzvy), y(vivevzvgvr) = w(vavy), and
y(vgsjvavevs) = w(vave). Clearly, we may assume that w(vsvi) = w(vsvs) = w(vave) = 0,
otherwise (1) holds. By (3), we have {i,k} # {j}. Let us show that one of y(visjviv1),
y(v1veskvavr), and y(vivevssjvavr) is a positive integer or v (7T') is an integer. We proceed by
considering two cases.

e | exists and ¢ # j. In this case, observe first that vis; is not saturated by y in Ts, for
otherwise, y(v1s;v4v1) = w(v1s;) > 0 and hence (1) holds. Next, s;v4 is not saturated by y in 7%,
for otherwise, if i # k, then y(vis;v4v1) = w(s;vg) > 0; if i = k, then y(vys;v4v1) +y(vivesivy) =
w(sjve) > 0, and y(vis;vav1) = w(vys;) > 0 by Lemma 4.7(v) provided y(vivesivavi) > 0.
So y(v1s;v4v1) is a positive integer, and hence (1) also holds. Moreover, both vis; and vgsg
are outside C§, for otherwise, let Cy (resp. C2) be a cycle in C§ containing vis; (resp. vgsk).
Since C1 W v1v6v3sjv4v1 = v15;04v1 U C] and Co W 01060350401 = 010650401 © Ch, where C =
C1[va, v1] U {v1ve, v6v3, V385, sjv4} and Ch = Calvy, vg) U {vevs, v3sj, 8504}, by Lemma 4.7(viii),
we have y(C;) = 0 for i = 1,2, a contradiction. It follows that vys; is not saturated by y in T
and s;vy is contained in some cycle in C§. By Lemma 4.7(vii), vqv; is saturated by y in Tb, so
y(visivav1) + y(v1vespvavy) + y(vivevssjvavy) = w(vavr). If @ = k and y(vivesgvavr) > 0, then
v1s; is saturated by y in T, by Lemma 4.7(v), a contradiction. So either i # k or i = k and
y(vivesgvavy) = 0. Since w(v1s;) > 0 and vys; is outside Cf, we have y(vis;v4v1) > 0. Assume
y(v18;v4v1) is not integral. Let us show that v (T") is an integer.

For this purpose, let  be an optimal solution to P(7,w). Since both y(vis;vqv1) and
y(v1vevssjvavr) are positive, by Lemma 4.3(i), we have z(visjvav1) = y(v1vsvss;vavy) = 1. By
Lemma 4.3(ii), we obtain x(vis;) = 0. Hence z(sju4) = z(vive) + x(vev3) + x(v3s;) + (s;v4).
Since w(vsv1) = w(vsvy) = 0, for any u € V\(V(T2)\az2), if a cycle in C§ contains uvq, then it
passes through vgvssjvs. Moreover, if a cycle in Cf contains us;, then it passes through s;vs.
By Lemma 4.3(iv), we obtain z(uv1) + z(v1ve) + z(vev3) + x(v3s;) + z(svs) = x(us;) + x(s;va).
Hence x(uv1) = x(us;). Clearly, we may assume that this equality holds in any other situation.
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Let 77 = (V', A’) be obtained from T by deleting s;, and let w’ be obtained from the restriction
of w to A’ by replacing w(e) with w(e) + w(vss;) for e € {vivg, vevs, v355, S;v4} and replacing
w(uvy) with w(uvy) + w(us;) for any u € V\(V(T3)\az2). Let &’ be the restriction of  to A’
and let y’ be obtained from y as follows: set 3 (vivsv3sjvav1) = y(v1vev3sjvavt) + y(visivavi);
for each C € C§ passing through us;v4, let C' be obtained from C' by replacing the path wus;vs
with the path uwvivevzs;jvg, and set y'(C’) = y(C’) + y(C). From the LP-duality theorem, we
see that @’ and ¢ are optimal solutions to P(7”,w') and D(T”,w’), respectively, with the same
value v (T') as « and y. By the hypothesis of Theorem 4.1, v} (T') is an integer.

e Either i does not exist or 7 = j. In this case, by (3), we see that k exists; that is, vg € p(sk).
Similar to the above case, we can show that either y(vivgsivavy) is a positive integer or v (1)
is an integer. Since the proof goes along the same line (with vgsy; and y(vivgsgvavy) in place of
v1s; and y(v1s;v4v1), respectively), we omit the details here. Hence we may assume that (14)
holds.

We proceed by considering two cases, depending on whether ¢(s;) = {v1} for some i.

Case 1. ¢(s;) = {v1} for some i € {1,2,3}.

By Lemma 6.2(i), we may assume that ¢(s1) = {v1}. Let j and k be subscripts in {1, 2, 3},
if any, such that vz € p(s;) and ve € @(si) (possibly j = k). By (13) and (14), we have

(15) Cg g {1)11)61)37)41)1, V1V6SEV4V1, UgSjU4U6U3, V181U4V1, VgSEU4V6, V1VeV3V1, ?)31)41)61)3}.

Observe that neither sjvq nor vys; is saturated by y in T5, for otherwise, y(visjvqvy) =
w(s1v4) or w(v1s1); both of them are positive, so (1) holds. By Lemma 6.2(iii), z(sjv4) =
w(z1v4) > 0. Thus there exists a cycle C' € Cg containing siv4; subject to this, C' is chosen to
contain vys; if possible. If vis; is outside C, then v1s; is not saturated by y in T. By Lemma
4.7(vii), vqvy is saturated by y in Ty and hence y(v1s1v4v1) + y(v1VeSKV4V1) + Y(V1V6U3V4V]) =
w(vqvy).

(16) If w(vavy) > 0, then either y(visjv4vy) is a positive integer or v, (T") is an integer.

To justify this, assume y(v1s1v4v1) is not a positive integer. Then at least one of y(vivgsiv4v1)
and y(vivgvsvavy) is positive. Observe that vis; is outside Cg , for otherwise, let D be a cycle
in C§ containing vys1. If y(vivgvsvavy) > 0 then, using D W v1vgvgvav; = visivgvr W D', where
D' = Dlvg,v1] U {v1vg, v6v3, v304}, and applying Lemma 4.7(viii), we deduce that y(D) = 0,
a contradiction. If y(vivgsgvavi) > 0, then a contradiction can be reached similarly. Since
w(v1s1) > 0, we obtain y(visivqvr) > 0. As y(visivqvy) is not integral, at least one of
y(v1veskvav1) and y(vivgvsvavy) is not integral. Let us show that v (7)) is an integer.

We only consider the case when y(v1vgvsvgvr) is not integral, as the proof in the other case
when y(v1vgvgvgavy) = 0 and y(vivesgvavr) > 0 goes along the same line.

Let & be an optimal solution to P(T,w). Since both y(visjv4v1) and y(vivgvzvavy) are
positive, by Lemma 4.3(i), we have z(visiv4v1) = x(vivevsvavy) = 1. By Lemma 4.3(ii), we
obtain x(v1s1) = 0, because v1s1 is not saturated by y. It follows that x(sjvs) = x(vive) +
z(vev3) + x(vsvs). Observe that there is no cycle D in C§ that contains the path vivgskva,
for otherwise, let # = min{y(D), y(vivevzvav1)}, let D' = Dluvg,v1] U {v1vg, vgvs, v304}, and
let 4y’ be obtained from y by replacing y(D), y(D'), y(v1vgvsvgvy), and y(vivgsgvavy) with
y(D) — 0, y(D') + 0, y(v1vgvsvavy) — 0, and y(vivesgvavr) + 6, respectively. Then y' is also an
optimal solution to D(T,w) with ' (v1vgvsv4v1) < y(v1vevsv4v1), contradicting (7). For any
u € V\(V(Tz)\az), if a cycle in C§ contains uvy, then it passes through vjvgvzvs. Moreover, if
a cycle in C§ contains usy, then it passes through sjvs. By Lemma 4.3(iv), we obtain z(uvy) +
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z(vive) + x(vevs) + x(vsvs) = x(usi) + x(s1va). Hence x(uvi) = z(usi). Clearly, we may
assume that this equality holds in any other situation. Let T = (V/, A’) be obtained from
T by deleting s1, and let w’ be obtained from the restriction of w to A’ by replacing w(e)
with w(e) + w(syvyq) for e € {vyvg, vev3, v3v4} and replacing w(uvy) with w(uvy) + w(usy) for
any u € V\(V(T2)\a2). Let @’ be the restriction of  to A’, and let 3y’ be obtained from y
as follows: set y/(vivgvzvav1) = y(vivevsvavy) + y(visivavy); for each C € C passing through
usivy, let C’ be obtained from C by replacing the path usjvs with the path uvivgvzvy, and
set ¥/(C") = y(C") + y(C). From the LP-duality theorem, we see that @’ and y’ are optimal
solutions to P(7”,w’) and D(T",w’), respectively, with the same value v} (T) as  and y. By
the hypothesis of Theorem 4.1, v (T) is an integer. So (16) follows.

By (16) and Lemma 4.4(iii), we may assume that w(vsv1) = 0 hereafter.

(17) If k exists (so vg € ¢(sg)) and w(vave) > 0, then either y(vesivave) is a positive integer
or v} (T) is an integer.

To justify this, observe first that vgsy, is not saturated by y in 75, for otherwise, y(vgsxv4ve) =
w(vesg) > 0, so (17) holds. Next, sxv4 is not saturated by y in Ts, for otherwise, if j # k,
then y(vesgvave) = w(sgve) > 0; if j = k, then y(vesgvave) + y(v3skvavevs) = w(skvy), and
y(vespvave) = w(vgsg) > 0 by Lemma 4.7(v) provided y(vssivsvgvs) > 0, so (17) also holds.
By Lemma 6.2(iii), syvy is saturated by y in T, so sgv4 is contained in some cycle C' € CJ;
subject to this, C' is chosen to contain wvgsy if possible. Clearly, if vgsi is not on C, then
veSk is not saturated by y in 7. By Lemma 4.7(vii), v4vg is saturated by y in T, and hence
Y(veskvave) + Y(v30406v3) + Y(v35;v4v6v3) = w(V4Vs).

Assume y(veskv4v6) is not a positive integer. Then at least one of y(vzvsvevs) and y(v3s;vavevs)
is positive, say the former. Note that vgsy is outside C§, for otherwise, let D be a cycle in Cf
containing vgsk. Set D' = Dluvg, vg] U {vgvs, v3v4} and 6 = min{y(vsvsvevs), y(C)}. Let y’ be
obtained from y by replacing y(vsvavevs), y(vesivave), y(C), and y(C’) with y(vsvsvevs) — 6,
y(veskvavg) + 6, y(C) — 0, and y(C') + 6, respectively. Then gy’ is also an optimal solution
to D(T,w) with 3/ (vsvsvevs) < y(vsvavevs), contradicting (8). Since w(vgsk) > 0, we have
y(veskvave) > 0. As y(veskvave) is not integral, y(vsvavevs) or y(vssjvavevs) is not integral. If
y(vgsjvavevs) > 0, then vgvy is saturated by y in 75 by Lemma 4.7(v), so y(v3vavev3) = w(v3vya).
Hence we may assume that exactly one of y(v3vsvgvs) and y(vss;vavevs) is positive. Let us show
that v (T) is an integer.

We only consider the case when y(vsvivgvs) is not integral, because the proof in the other
case when y(v3vavsv3) = 0 and y(v3s;vivevs) > 0 goes along the same line.

Let & be an optimal solution to P(T', w). Since both y(vesgv4vs) and y(vsvsvevs) are positive,
we have z(vgspvavg) = x(v3vgvgvs) = 1 by Lemma 4.3(i). Since vgsy is not saturated by y in T,
we obtain x(vesy) = 0 by Lemma 4.3(ii). It follows that x(syvs) = z(vev3) + x(vsvs). For any
u € V\(V(Ty)\az), if a cycle in C contains uvg, then it passes through vgvsvs. Moreover, if a
cycle in C§ contains usy, then it passes through sigvs. By Lemma 4.3(iv), we obtain z(uve) +
x(vevs) + x(v3vg) = x(usk) + x(skvy). Hence z(uvg) = w(usy). Clearly, we may assume that
this equality holds in any other situation. Let 7" = (V’/, A’) be obtained from T by deleting s,
and let w’ be obtained from the restriction of w to A’ by replacing w(e) with w(e) + w(skvs)
for e = vgvs and wvzvy and replacing w(uvg) with w(uve) + w(usy) for any u € V\(V(T2)\az).
Let ' be the restriction of x to A" and let ¢’ be obtained from y as follows: set y/(vsvqvgvs) =
y(v3vavevs) + y(veskvave); for each C' € C§ passing through us;vy, let C” be the cycle arising
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from C' by replacing the path usivs with the path uvgvsvy, and set y' (C") = y(C’) +y(C). From
the LP-duality theorem, we see that ' and y’ are optimal solutions to P(7”, w') and D(T”, w’),
respectively, with the same value v (T") as @ and y. By the hypothesis of Theorem 4.1, v} (T)
is an integer. So (17) holds.

By (17) and Lemma 4.4(iii), we may assume that if w(vqve) > 0, then k does no exist, and
hence j exists (so v3 € ¢(s;)) by (3).

(18) If w(vaveg) > 0, then at least one of y(vivevsvi), y(v3vavevs), and y(v3s;jvivevs) is a
positive integer.

To justify this, note that neither s;vs nor wzs; is saturated by y in Ty, for otherwise,
y(v3sjvavevs) = w(s;va) or w(vssj); both of them are positive, so (18) holds. By Lemma
6.2(iii), sjvy is saturated by y in T, so sjvs is contained in a cycle C' € C§; subject to this,
C is chosen to contain wzs; if possible. Clearly, if vss; is not on C, then wv3s; is not satu-
rated by y in T. By Lemma 4.7(iii), at least one of vjvg and vgvs is saturated by y in Tb.
Furthermore, by Lemma 4.7(iv), if vgvs is contained in some cycle in C§, then vquvg is satu-
rated by y in Ty. If vave is saturated by y in Tb, then y(vsvavevs) + y(v3s;vavev3) = w(v4vs),
and y(v3vavevs) = w(vsvs) by Lemma 4.7(v) provided y(vssjvsvevz) > 0. So at least one of
y(v3vavev3) and y(v3s;vavev3) is a positive integer, and hence (18) holds. Thus we may assume
that vqvg is not saturated by y in 75, which implies that vgvs saturated by y in T5. It follows that
y(v1v6v301 ) +y(v3v406v3) +y(v35jV406v3) = w(vev3). If w(vevs) = 0, then K = {v4v1, v6v3, V65, }
is an FAS of T with total weight zero, so 7,(T2\a2) = 0, contradicting the hypothesis («) of this
section. Therefore w(vsvs) > 0. If y(vzsjvavgvz) > 0, then y(vsvivevs) = w(vzvs) by (15) and
Lemma 4.7(v). So we may further assume that exactly one of y(vsvivgvs) and y(vssjvavevs) is
positive, and thus y(vjvgvzvy) > 0.

Let us show that y(vivevsvi) is an integer. Suppose not. Then y(v3vivevs) or y(vss;v4vevs)
is not integral, say the former (the proof in the other case goes along the same line). Since vgvs is
saturated by y in Tb and w(vgs;) = 0, the arc vivg is outside C§. If vgv; is also outside Cf, let y' be
obtained from y by replacing y(vsv4vgvs) and y(vivevsvy) with y(vsvsvevs) —6 and y(vivevzvy) +
0, respectively, where § = min{w(vivg) — z(v1vg), w(v3v1) — z(v3v1), y(vsvavevs)}; if vavy is
contained in some cycle C' € C{, let y' be obtained from y by replacing y(vsvavevs), y(vivevsvr),
y(C), and y(C") with y(vsvavevs) — o, y(vivevsvr) + o, y(C) — o, y(C’) + o, respectively, where
C" = Clvyg, v3]U{vsvs} and o = min{w(v1vg) — z(v1v6), y(C), y(vsvavgvs) }. Tt is easy to see that
in either situation gy’ is also an optimal solution to D(T,w) with y/(vsvsvvs) < y(vsvivevs),
contradicting (8). This proves (18).

By (16)-(18), we may assume that w(v4v1) = w(vavg) = 0. Since each of {v4v1,v4v6, v1U6},
{v4v1, V406, v6v3}, and {v4v1, v4ve, v301} is a minimal FAS of Th\ag,

e = min{w(v1vg), w(vevs), w(vsvy)} > 0

by the hypothesis («) of this section. By Lemma 4.7(vii), we obtain y(vivgvsvi) = € > 0. Thus
(1) is established in the present case.

Case 2. ¢(s;) # {v1} for any ¢ € {1,2,3}.

By the hypothesis of the present case, we may assume that vg € ©(s1), v3s € (s2), and
v € @(s;) for i =1 or 2. By (13) and (14), we have

(19) CY C {v1v6v31, U3V4V6V3, V1VEU3VLV1, VgS1 U4V, V1V6S1 VAV, U3S2V4VEUS, U1 S1U4V1, V1 S2U4V1 }
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and y(v1sjvqvy) =0 for i =1 or 2.

Claim 1. y(C2) = 7y(T2\a2).

To justify this, note that z(s;v4) = w(s;v4) > 0 for ¢ = 1 and 2 by Lemma 6.2(iii). Depending
on the saturation of sjv4 and ssv4, we distinguish among three subcases.

Subcase 1.1. sjv4 is contained in some cycle C € Cé/ . In this subcase, v4vg is saturated
by y in Ty, for otherwise, v4vg is not saturated by y in 7', because it is outside C§. By Lemma
4.7(iii), vgsy is saturated by y in Ts. By (11), we have y(vivgsivav1) = 0, which together with
(19) implies y(ves1v4v6) = w(vgs1) > 0, so (1) holds. Clearly, v4v; is outside Cj. We proceed
by considering two subsubcases.

Assume first that vqv; is not saturated by y in 75 (and hence in T"). Then, by Lemma 4.7(iii),
v181 and at least one of v1sy and savy are saturated by y in Th. Furthermore, vs9 is outside Cg .
If vy s9 is not saturated by y in T, then y(vssavqvgvs) = 0, for otherwise, let y’ be obtained from
y by replacing y(v1s2v4v1) and y(vssavgvgvs) with y(visavsvy) + 6 and y(vssqvgvgvs) — 6, where
0 = min{w(vqvy) — z(vqv1), w(v182) — z(v182), y(v3savavevs)} > 0. Then y' is also an optimal
solution to D(T', w), contradicting (6). It follows from (19) that y(visqviv1) = w(sgvy) > 0, s0
(1) holds. Thus we may assume that visy is saturated by y in Ts. If vjvg is saturated by y
in Ty, then y(C2) = w(K), where K = {vjvg, v4vg,v181,v182}. By (9), K is an MFAS of Th\as
and hence y(C2) = 7, (T2\az). By Lemma 4.7(iii), vivs is outside Cf, for otherwise, vqv; would
be saturated by y in 75, a contradiction. So we may assume that vivg is not saturated by y
in T. By Lemma 4.7(iii), vgs; is saturated by y in Ts. If vgvs is also saturated by y in T,
then y(Ca) = w(K), where K = {vgvs, vgs1,v151,v152}. So we assume that vgvs is not saturated
by y in T5. By Lemma 4.7(iii), vgvs is outside C. Furthermore, vsv1, vss, and vzvy are all
saturated by y in T. So y(C2) = w(J), where J = {v3v1, v3v4, V651, V151, V152, v352}. By (9), J
is an MFAS of Ts\ag and hence y(C2) = 7(T2\a2).

Next assume that v4v; is saturated by y in T5. We may assume that vsv; is not saturated by y
in Ty, for otherwise, y(Co) = w(K), where K = {vsv1,v4v1, v4v6}. By (9), K is an MFAS of Th\as
and hence y(C2) = 7,(T2\a2). Thus, by (10), we have y(vivguzvav) = 0. If y(vivgsivav) =0
and vjvg is saturated by y in Th, then y(Co) = w(K), where K = {vjvg,v4v1,v406}. So we
may assume that y(vivgsivav1) > 0 or vivg is not saturated by y in T». Consider the situation
when y(vivgsivavy) > 0. Now, by (11), v1s; is saturated by y in T», and y(vsvivgvs) =
y(v3savgvgus) = 0. Moreover, at least one of vise and squy is saturated by y in T (otherwise,
y(v1s2v4v1) can be made larger). If vivg is saturated by y in T5, then y(Cs) = w(K), where K =
{v1v6, v4v6, V151, V152 } Or {V1VE, V4VE, V181, S2v4}; if v1vg IS not saturated by y in Tb, then vgvs is
saturated by y in 75 by Lemma 4.7(iiv). So y(C2) = w(K), where K = {v4v1, v4v6,v6v3}. By (9),
K is an MFAS of T5\as and hence y(C2) = 7, (T2\a2). So we may assume that y(vivgsivqvy) =0
and vjvg is not saturated by y in 75. By Lemma 4.7(vii), vgvs is saturated by y in T5. If vgsy
is also saturated by y in Ts, then y(Co) = w(K), where K = {v4v1,v651,v6v3}. So we further
assume that vgs; is not saturated by y in T». We propose to show that

(20) y(vsv4vevs) = y(vssavavevs) = 0.

We only prove that y(vssavsvgvs) = 0, as the proof of the other equality y(vsvivgvs) = 0
goes along the same line. Assume the contrary: y(vssevqvgvs) > 0. Depending on the saturation
of v1vg and v3vy, we consider several possibilities.

e Both vjvg and v3v; are not saturated by y in T'. Define § = min{w(vivg)—z(vivs), w(vsvy)—
z(v3v1), y(v3savavgvs) . Then 6 > 0. Let y’ be obtained from y by replacing y(vssqvsvgvs) and
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y(v1vgvsvy) with y(vssgvgvgvs) — 0 and y(vivgvsvr) + 6, respectively. Then y' is also an optimal
solution to D(7, w) with y'(vssavsvevs) < y(vzsavavevs), contradicting (6).

e v3vy is not saturated by y in 7' and v1vg is contained in some cycle C' € C§. Since vgus
is saturated by y in 75, cycle C passes through vgsjvs. Thus the multiset sum of the cycles
C, v3s9v4v6v3 and the unsaturated arc vsv; contains arc-disjoint cycles vgsivqvg and vivgvsvy.
From Lemma 4.7(vi) we deduce that y(vssqvsvgvs) = 0, a contradiction.

e vyug s is not saturated by y in 7" and vsv; is contained in some cycle D € C§. It is clear
that D passes through vys;v4 for ¢ = 1 or 2. Furthermore, the multiset sum of D, vgsovvgvs, and
the unsaturated arc v1vg contains arc-disjoint cycles vivgvsvy and D' = Dlvg, v3] U {v3sa, Sov4}.
Define 6 = min{y(D), y(vssevivevs), w(vive) — z(vive) }. Let y' be obtained from y by replacing
y(D), y(D’), y(vssovsvgvs), and y(vivgvsvr) with y(D) — 6, y(D') + 0, y(vssavsvgvs) — 6, and
y(v1vgvsv1 )+0, respectively. Then gy is also an optimal solution to D(T', w) with 3/ (v3savavevs) <
y(v3s2v4v6v3), contradicting (6).

e v1vg and v3v; are contained in some cycles C' and D in Cg , respectively. If vzv; is on
C, then the multiset sum of C' and v3ssv4v6vs contains arc-disjoint cycles vivgusvy, V6510406,
and C' = Clug,v3] U {vssa, sovs}; if vgvy is outside C, then the multiset sum of C, D, and
V382040603 contains arc-disjoint cycles v1vgvsvy, vs1v4v6, C' = Clug, v1] U {v18;, s;u4} for i =1
or 2, and D' = Dlvy,vs] U {v3sa, sov4}. In either situation from the optimality of y we deduce
that y(vssqvqvgvs) = 0.

Combining the above observations, we see that (20) holds. Thus y(C2) = w(K), where
K = {v4v1,v4v6,v6v3}. By (9), K is an MFAS of T5\ay and hence y(Co) = 7, (T2\a2).

Subcase 1.2. sjv4 is saturated by y in T and ssvy4 is contained in some cycle C' € Cg ;
subject to this, C' is chosen to contain wsso if possible. In this subcase, observe first that
both v1s1 and vgs; are outside Cg. Next, vgsq is not saturated by y in Th, for otherwise,
y(vgsavgvevs) = w(vgse) > 0, so (1) holds. If both vgvs and vise are saturated by y in b,
then y(Co) = w(K), where K = {sjv4,v182,v6v3}. By (9), K is an MFAS of T5\as and hence
y(C2) = (T2 \a2). We proceed by considering two subsubcases.

(a) vevs is not saturated by y in Tp. Now wv4vg is saturated by y in 7o by Lemma 4.7(iii).

Assume first that vqv; is not saturated by y in 1. Then both vivg and vise are saturated
by y in Tb by Lemma 4.7(iii). If v1s; is also saturated by y in 75, then y(C3) = w(K), where
K = {vivg,v4v6,v151,v182}; otherwise, v1s; is not saturated by y in 7. By (11), we have
y(vivesivgavy) = 0. Let us show that

(21) y(vesivavg) = 0.

Indeed, if vgvs is not saturated by y in T, then the multiset sum of the cycles C', vgsiv4vs,
and the unsaturated arcs vqv1, v181, and vgvs (or vsse if it is outside C') contains arc-disjoint
cycles vis1v4v1 and v3sqvgvgvs. Thus, by Lemma 4.7(vi), we have y(vgsivavg) = 0. If vgus is
contained in some cycle C' € C§, then C contains vsvs or v3se. Thus the multiset sum of cycles
C, vgsivavg, and the unsaturated arcs vqv; and vys; contains arc-disjoint cycles vysjvqv; and
one of v3v vgvs and v3sov vgvs. Thus, by Lemma 4.7(vi), we have y(vgsivqvg) = 0. This proves
(21).

It follows from (19) and (21) that y(visivsv1) = w(sjve) > 0, so (1) holds. Thus we may
assume that vqv; is saturated by y in T (and hence in T3). Then we may further assume that
v3v1 is not saturated by y in Ty, for otherwise, y(Co) = w(K), where K = {v4v1, v4v6, v301 }.
Thus y(Ca) = 7w (T2\a2). By Lemma 4.7(vii), v1vg is saturated by y in T and hence, by (10),
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we have y(vivgvgvgvr) = 0. Let us show that

(22) y(vivgsivgvy) = 0.

To justify this, we consider four possibilities, depending on the saturation of vgvs and v3v;.

e Both vgvs and vsvy are saturated by y in T'. Now define = min{w(vgv3)—z(vev3), w(vsvy)—
z(vsv1),y(vivesivavr)}. Then 0 > 0. Let y’ be obtained from y by replacing y(vivsvsvy) and
y(v1vgs104v1) With y(vivgvzvr )46 and y(vivgsivavy ) — 0, respectively. Then y' is also an optimal
solution to D(7T, w) with y'(v1vgs1v4v1) < y(vives1v4v1), contradicting (6).

e v3v; is not saturated by y in 7" and vgvs is contained in some cycle C' € C§. Now the multiset
sum of the cycles C, vivgsivqvy and the unsaturated arc vsvy contains arc-disjoint cycles v vgv3vy
and C' = Clvy, vg) U{vgs1, s1v4}. Define § = min{w(vsv1) — z(vsv1), y(C), y(vivgsivavy) }. Then
6 > 0. Let y’ be obtained from y by replacing y(v1vgs1v4v1), y(v1v6v3v1), y(C), and y(C’) with
y(vivgsivgvy) — 0, y(vivgvsvr) + 6, y(C) — 0, and y(C’) + 6, respectively. Then y’ is also an
optimal solution to D(T,w) with ¢ (vivgs1v4v1) < y(vivesiv4v1), contradicting (6).

e ugvs3 is not saturated by y in 7' and vsv; is contained in some cycle D € CJ. Now D passes
through v1s9v4. Since the multiset sum of the cycles D, vivgsivgv1, and the unsaturated arc vgus
contains arc-disjoint cycles vjvgvzvy and vy sav4v1, by Lemma 4.7(vi), we have y(vivgsivavr) = 0,
a contradiction.

e vgus and v3v; are contained in some cycles C' and D in C, respectively. Now if v3v; is on
C, then the multiset sum of the cycles C' and vivgsiv4v1 contains arc-disjoint cycles vyvgvsvy,
v1savgvy, and C' = Clug, vg] U {vgs1, s1v4}; otherwise, the multiset sum of the cycles C, D,
and vyvgs1v4v1 contains arc-disjoint cycles v1vgvsvy, V1820401, and C' = Clug, vg] U {vgs1, $104},
and D' = Dlvy,v3] U Clvs,v4]. In each situation from the optimality of y we deduce that
y(vivesivgvy) = 0.

Combining the above observations, we see that (22) holds. Thus y(C3) = w(K), where
K = {U41)1,1)4U6,1}11}6}. By (9), K is an MFAS of TQ\CLQ and hence y(CQ) = Tw(TQ\ag).

(b) vgvs is saturated by y in T. Now v1s2 is not saturated by y in T5. By Lemma 4.7(vii),
vqv1 is saturated by y in Th. Since z(v1se) > 0, by Lemma 6.2(vii), we have z(v1s1) = 0.
Furthermore, we may assume that y(vivgvsvsvy) = 0, for otherwise, both v3vy and v4vg saturated
by y in Ty by (10). Hence y(C2) = w(K), where K = {vqv1, v4vg,v301}. If y(vivgsivgvy) = 0,
then y(C2) = w(K), where K = {vqv1,v6v3, s1v4}; if y(vivgsivgvr) > 0 then, by (11), vqvg is
saturated by y in T5, and either v3v; is saturated by y in Ts or y(vsvavevs) = y(vssavavgvs) = 0.
Thus y(C2) = w(J), where J = {vqv1,v4v6,v301} or {v4v1,v4v6, v6v3}. Therefore y(Co) =
Tw(T2\a2).

Subcase 1.3. s;v4 is saturated by y in 15 for ¢ = 1 and 2. In this subcase, since Cg # 0,
v3vy4 is contained in some cycle in C§. By (12), we have y(vssovsvgvs) = 0. Thus y(visovgvr) =
w(s2v4) > 0 and (1) holds. This completes the proof of Claim 1.

Claim 2. y(C) is a positive integer for some C' € CY or v};(T) is an integer.

To justify this, note that y(C2) = w(K) for some MFAS K of Tb\az by Claim 1. From
the proof of Claim 1, we see that K has ten possibilities. So we proceed by considering them
accordingly.

Subcase 2.1. K is one of {v1vg, v4v6, V151, S2v4}, {v4v1, V63, V6S1}, and {vav1, VU3, S1V4}.

In this subcase, by (15) and (19), we have y(visav4v1) = w(sgvg) > 0 if K = {vyvg, v4vg, v151,
sou4}, Y(vgsivavg) = w(vgsy) > 0 if K = {vgv1, v6v3,v651}, and y(vesivavg) = w(sivg) > 0 if
K = {v4v1,v6v3, 5104}, as desired.
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Subcase 2.2. K = {v3v1,v3v4, V651, V151, V152, V352 }.

In this subcase, by (15) and (19), we have y(vgsiv4vs) + y(vivesivavi) = w(vgsy) > 0 and
y(v3v40603) +y(v106v3V4v1 ) = w(v3vy). So we may assume that y(vivgsivavy) > 0, for otherwise,
y(vesivavg) = w(vgsy) > 0. It follows from Lemma 4.7(v) that vyvg is saturated by y in Tb.
If y(vivevgvavy) > 0, then y(vgsivavg) = 0 by (10), and hence y(vivgsivivi) = w(vesy) > 0;
if y(vivevsvavr) = 0, then y(vsvavevs) = w(vsve) and so y(ves1vavs) = w(vavs) — Y(V3V4V6V3).
Since w(vgs1) > 0, at least one of y(vesivavs) and y(vivgsivavy) is a positive integer.

Subcase 2.3. K = {vgv3, vgs1,v151, 0182} or {vgvs, S104,0V182}.

In this subcase, we only consider the situation when K = {vgvs, s1v4,v152}, as the proof in
the other situation goes along the same line.

Given the arcs in K, we have y(v1s2v4v1) = w(v152), y(v1510401)+y(ve510406 ) +y(v106S1V401)
= w(s1vg) > 0, and y(v1vevzv1) + y(v3v4v6v3) + y(v1v6v3V4V1) + Y(v3520406v3) = w(vevs). If
y(vivevsvgvy) > 0, then y(vgsivavg) = 0 by (10). Thus y(visiv4v1) + y(v1ves1v4) = w(S104).
If y(vivesivavy) > 0, then one more equality y(visjvavi) = w(vysy) holds by (11). Since
w(s1vg) > 0, at least one of y(vis1v4v1) and y(vivgsivavy) is a positive integer. So we assume
that y(vivgvsvavr) = 0 in the following discussion.

Assume first that y(vivgsivqvy) > 0. Then y(visivgvr) = w(visy) and y(vesivave) +
y(vsvgveus) + y(vssavgvgus) = w(vgvg) by (11). If y(vsvavgvs) = y(vssavavgvs) = 0, then
y(ves1v4ve) = w(vave), and hence y(vivesivavi) = w(s1v4) — y(vis1v4v1) — y(ves1v4ve). Since
w(s1vg) > 0, at least one of y(vy1s1v4v1), y(ves1v4ve), and y(vivesivavy) is a positive integer. So
we assume that y(vsvsvevs) or y(v3sqvavgvs) is positive. By (11), we have y(vivgvzvy) = w(vsvy);
by (12), one more equality y(v3vivevs) = w(vzvy) holds if y(vssevivgvs) > 0. Thus y(vesiv4ve),
y(v1vS10401 ), Y(v3v4v6v3), and y(vssavavevs) are all integers.

Assume next that y(vivgsivgvy) = 0. Then y(visivgvr) + y(vesivavg) = w(sivg). If
y(v3sgvgvgvs) > 0, then y(vevsvave) = w(vzvy) by (12), so y(vivevszvi) + y(v3savavers) =
w(vevs) — w(vzvy); if y(vssavgvevs) = 0, then y(vivgvsvr) + y(vevsvave) = w(vgvs). Since both
v1v6 and vzv; are outside C§, from the choice of y, we deduce that y(vivgvzv1) = min{w(vsvy),
w(vivg)}. This implies that in either situation y(vssqvavgvs) and y(vgvsvavg) are integers. On
the other hand, since both wvsvs and wvgsy are outside C§, by (8), we obtain y(vesivive) =
min{w(vgsy), w(vive) —y(vev3vave) —y(v3S2v4v6v3) }, which is also an integer. Since w(s1v4) > 0,
at least one of y(v1s1v4v1) and y(ves1v4vg) is a positive integer.

Subcase 2.4. K = {vjvg, v4v6, 401 }.

In this subcase, we have y(vivgvsvy) = w(v1ve), y(vis1v4v1) + y(v1s2v4v1) = w(vgvy), and
y(v3vgvevs) + y(ves1v4v6) + Y(v3820406v3) = w(vavg). By Lemma 4.4(iii) and Lemma 6.2(vi),
we may assume that w(vivg) = w(vqv1) = 0 and thus w(vgvg) = w(K) > 0. If y(vssqvgvgvs) >
0, then y(vsvivevs) = w(vsva) by (12), and thus we may assume that w(vsvs) = 0. Hence
Y(v3v4v6v3) + Y(ves1v4v6) = w(vave) or y(ves1v4ve) + y(v3savavevs) = w(vave). If y(vesivive)
is an integer, then one of y(vsvivevs), y(ves1v4v6), and y(vesevavevs) is a positive integer. So
we assume that y(vesivave) is not integral. Then we can prove that v (T) is an integer; for a
proof, see the argument of the same statement contained in the proof of (17) (with y(vgsiv4ve)
in place of y(vgs;v4vg)).

Subcase 2.5. K = {vjvg, v406, V151, V152}.

In this subcase, we have y(visjvqv1) = w(vis1), y(visovavy) = w(vise), y(vivevsvy) +
y(v1vgv3v4v1) + y(v1ivesivav1) = w(vive), and y(vsvavevs) + y(ves1vave) + y(v3savaveus) =
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w(v4vs). By Lemma 4.4(iii), we may assume that w(vis1) = w(vis2) = 0.

Assume first that y(vivgvsvgvr) > 0. Then y(vgsivavg) = 0 and y(vivgvsv) = w(vsvy) by
(10). So y(vsvaveus) + y(vssavavevs) = w(vave). By (12), one more equality y(vzvivevs) =
w(vsvy) holds if y(vssavgvgvs) > 0. So both y(vzvgvgvs) and y(vssavsvgvs) are integers. By
Lemma 4.4(iii), we may assume that w(vsvi) and w(vqvg) are both zero. Thus y(vivevzvavy) +
y(v1ves1v4v1) = w(vivg) > 0. By Lemma 4.4(iii), we may assume that neither y(vivgvsvivy)
nor y(vivesivavr) is integral. Observe that vgsy is outside Cf, for otherwise, let C' € C§ be
a cycle containing vgs;. Then C contains sjvy. Let C' = Cloy, vg] U {vgvs, v3v4} and 6 =
min{y(C), y(v1vgvsvav1)}. Let y’ be obtained from y by replacing y(vivgvzvavy ), y(v1ves10v401),
y(C), and y(C") with y(vivevzvavy) — 0, y(vivesivavy) + 6, y(C) — 0, and y(C”") + 0, respectively.
Then y’ is also an optimal solution to D(7, w) with ¢ (v1vgv3v4v1) < y(v1vev3V4v1), contradicting
(7). Let us show that v (T) is an integer.

For this purpose, let & be an optimal solution to P(7T,w). Since both y(vivgsivsv1) and
y(vivevgvgavy) are positive, we have z(vivgs1v4v1) = x(vivgv3vgvy) = 1 by Lemma 4.3(i). So
x(ves1)+x(s1v4) = x(vgv3)+x(v3v4). Since y(v1vs1v4v1) < w(ves1), by Lemma 4.3(ii), we have
x(vgs1) = 0, which implies x(s1v4) = z(vev3) + x(vsvy). For any u € V\(V(T2)\a2), if a cycle in
C§ contains uvg, then it passes through vgvsvs. Moreover, if a cycle in C§ contains us, then it
passes through sjvs. By Lemma 4.3(iv), we obtain x(uvg) +x(vevs) +x(vsvg) = x(usy)+x(s1v4).
Hence z(uvg) = z(usy). Clearly, we may assume that this equality holds in any other situation.
Let 77 = (V', A’) be obtained from T by deleting vertex s1, and let w’ be obtained from the
restriction of w to A’ by setting w'(uvg) = w(uve) + w(usy) for any u € V\(V(Tz)\az). Let
be the restriction of  to A’ and let 4’ be obtained from y as follows: for each cycle C passing
through usjvy with u € V\(V(T2)\az), let C’ arise from C by replacing the path usjvy with
uvgusvy, and set 3 (C7) = y(C) + y(C") and y' (vivevzvavy) = y(vivev3vav1) + Yy(vives1vavy). Tt
is easy to see that @’ and ¢’ are optimal solutions to P(7”,w') and D(T”, w’), respectively, with
the same value v (T") as @ and y. By the hypothesis of Theorem 4.1, v (T) is an integer.

Assume next that y(vivgvsvavi) = 0. Then both y(vivevsvr) and y(vivesivavy) are inte-
gers, for otherwise, neither of them is integral, because their sum is w(vyvg). If y(vsvgvgvs) or
y(v3sav4v6v3) is positive, then y(vivguzvr) = w(vsvy) by (11), a contradiction. So y(vsvavevs) =
y(vgsavgvevs) = 0. Since vyvg is saturated by y in To, the arc vsv; is outside Cg. If vgvy is is
saturated by y in Th, then y(vivgvsvi) = w(vsvy); this contradiction implies that vsvy is not
saturated by y in 75 (and hence in T'). If vgvs is outside C§, then from the choice of y we
see that y(vivgvsvr) = min{w(vevs), w(vsv1)}, a contradiction again. So we assume that vgvs
is contained in some cycle C' € C§. Define § = min{w(vsv1) — z(vsv1),y(C), y(vivesivave)}.
Let C" = Clvg,v6] U {vgs1,s1v4}, and let y’ be obtained from y by replacing y(vivgvsvy),
y(vivesivavr), y(C), and y(C') with y(vivgvsvr) + 0, y(vivesivgvr) — 0, y(C) — 0, y(C') + 0,
respectively. Then y is also an optimal solution to D(T', w) with 3/ (v1vgs1v4v1) < y(v1ve81V401),
contradicting (6). By Lemma 4.4(iii), we may assume w(v1vg) = 0. Thus z(v4v1) = w(vgvy) = 0;
the remainder of the proof is exactly the same as that in the preceding subcase.

Subcase 2.6. K = {vqv1,v406, v6U3}.

In this subcase, we have y(vivgvsvy) = w(vgvs), y(vesi1vave) = w(vavg), and y(visivavy) +
y(v1820401) + y(vivesivav1) = w(vgvy). Since w(K) = 7,(To\a2) > 0, we have w(vqvy) > 0.
By Lemma 6.2(vi), y(visivav1) or y(visgvavy) is zero. By Lemma 4.4(iii), we may assume
that w(vevs) = w(vavg) = 0 and y(vivgsivavy) > 0. So y(visivavy) = w(visy) by (11). By
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Lemma 4.4(iii), we may further assume that w(vis;) = 0. Thus y(visav4v1) + y(vives1v4v1) =
w(vqv1), and hence neither y(visqvgvy) nor y(vivesivavr) is integral. Observe that wvysg is
outside Cé’ , for otherwise, let C' € Cg be a cycle containing v1s3. Then C' contains sovy. Let
C" = Clug, 1] U{v1v6, 0651, s1v4} and 6 = min{y(C), y(vivesivsv1)}. Let y' be obtained from y
by replacing y(vis2v4v1), y(vivesivavi), y(C), and y(C”) with y(visavav) +0, y(vivesivav) —0,
y(C) — 0, and y(C") + 0, respectively. Then gy’ is also an optimal solution to D(T,w) with
Y (11v6510401) < y(v1ves1v4v1 ), contradicting (6). Furthermore, since w(vys1) = 0, the arc vsv;
is also outside C§. Thus w(vsvi) = z(vsv1) = 0. Let us show that v%(T) is an integer.

For this purpose, let & be an optimal solution to P(T,w). Since both y(visqvsv1) and
y(v1ves1v4v1) are positive, we have z(v1sav4v1) = x(v1vgs1v4v1) = 1 by Lemma 4.3(i). Since
y(v1savgv1) < w(v1s2), we have x(vise) = 0 by Lemma 4.3(ii). It follows that z(sqvs) =
z(v1v6) + 2 (v651) +x(s1v4). Since w(v1s1) = 0 and vysy is outside C§, for any u € V\(V(T2)\az),
if a cycle in C§ contains wwvy, then it passes through v1vgsivs. Moreover, if a cycle in C§ contains
usg, then it passes through spvs. By Lemma 4.3(iv), we obtain z(uvi) + x(vive) + x(ve, s1) +
x(s1v4) = x(usa) + x(sovy). Hence x(uvi) = x(usz). Clearly, we may assume that this equality
holds in any other situation. Let 7" = (V’/, A’) be obtained from T by deleting s5, and let w’
be the restriction of w to A’ by replacing w(e) with w(e) + w(sqvy) for e € {vivg, v6s1, 5104},
replacing w(uvy) with w(uvy) + w(usg) for any u € V\(V(T2)\az2), and replacing w(vsv;) with
w(vzvy) + w(vsse). Let @’ be obtained from @ by setting z(vsvi) = x(v3s2). Since w(vsvy) =0
and w'(v3v1) = w(vzsy), we have (w')Tx’ = wlx. Let y’ be obtained from y as follows: set
Y (v1v65104v1) = y(v1v6s104v1 ) +y(v1520401); for each C' € Cf passing through usavy, let C” arise
from C' by replacing the path usovs with the path wwvivgsivg, and set /' (C') = y(C') + y(C).
From the LP-duality theorem, we see that ' and vy’ are optimal solutions to P(7”,w’) and
D(T",w’), respectively, with the same value v (T) as  and y. By the hypothesis of Theorem
4.1, v} (T) is an integer.

Subcase 2.7. K = {vqv1,v4v6,v301 }.

In this subcase, we have y(vivgv3v1) = w(vsvy), y(visivavr) + y(visavav) + y(vivesivavy) +
y(vivevzvavy) = w(vgvr), and y(ves1v4ve) + y(v3v4v6v3) + Y(v3S204v6v3) = w(v4v6). By Lemma
4.4(iii), we may assume that w(vsvy) = 0.

Assume first that y(vivevgvgvy) > 0. Then y(vgsivavg) = 0 by (10). If y(vssavgvgvs) > 0,
then y(vsvgvgvs) = w(vsvy) by (12); otherwise, y(vsvivgvs) = w(vavg). So both y(vsvivevs)
and y(v3sevavgvs) are integers in either situation. Thus we may assume that w(vqvg) = 0. The
remainder of the proof is exactly the same as that of (16).

Assume next that y(vivgvsvgv;) = 0. Consider first the subsubcase when w(vqv1) = 0.
Then w(vqvg) = w(K) > 0. If y(vssavgvgus) > 0, then y(vsvgvgvs) = w(vsvg) by (12), so
y(ves1v4v6) + y(v3sovavevs) = w(vgve) — w(vsvy); if y(vssavgvevs) = 0, then y(vesivave) +
y(v3vgvev3) = w(vavg). It can be shown that v (T') is an integer; for a proof, see the argument
of the same statement contained in the proof of (17).

Consider next the subsubcase when w(vqv;) > 0. Observe that y(vivgsivavy) > 0 and
y(v3savgvgus) = 0, for otherwise, since w(visy)w(vise) = 0 by Lemma 6.2(vi), at most one of
y(v1s1v4v1) and y(v1sev4v1) is positive. Hence, if y(vivgsivgavy) = 0, then either y(visivqv1) =
w(vgvy) or y(visavgvr) = w(vgvy); if y(vivesivavr) > 0 and y(vssevgvgvs) > 0, then, by (11),
we have y(v1s1v4v1) = w(v181), Y(v1S2v4v1) = w(v182). So Y(v1ves1v4v1) = w(v4v1) —w(v181) —
w(v1s2). By Lemma 4.4(iii), we see that v (T") is an integer. The preceding observation together
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with (11) implies that y(visivav1) = w(vys1), y(vis2v4v1) + y(v1veS$104v1) = w(vavy) — w(V151),
and y(vgs1v4v6) + y(v3vav6v3) = w(v4vg). Lemma 4.4(iii) allows us to assume that w(vis1) =0
and that neither y(v1s2vsv1) nor y(vivesivavy) is integral.

It can then be shown that v1sq is outside C§ and v};(T) is an integer; for a proof, see the
argument of the same statement contained in the preceding case.

Combining the above seven subcases, we see that Claim 2 holds. Hence, by Lemma 4.4(iii),
the optimal value v (T') of D(T,w) is integral, as described in (1) above. 1

To establish the corresponding lemmas for the cases when T»/S € {G4,G5,Gg}, we need
some further preparations.

Lemma 6.9. IfT>/S € {G5,Gs}, then we may assume that min{w(vivs), w(vavy), w(vavy)} =
0.

Proof. Let § = min{w(viv3), w(vsvy), w(vgv1)} and Cy = vivgvgv;. Assume the contrary:
6 > 0. Let y be an optimal solution to D(7T,w) such that

(1) y(C2) is maximized; and

(2) subject to (1), (y(Dyq),y(Dy-1),...,y(D3)) is minimized lexicographically.

Let C4 = C2\{Cp}. Note that every cycle in C) passes through b. By Lemma 4.7(vii), at least
one of v1v3, v3vy, and vqvy is saturated by y in Tb, say vivs (by symmetry). Thus w(vivs) = 6.
We propose to show that

(3) there is no cycle C' € C4 with y(C) > 0 passing through vvs.

Assume the contrary: vjvs is contained in some cycle Cy € C) with y(Cy) > 0. Clearly, |C1| >
4. If neither vsvy nor vqv is saturated by y in T, then 0; = min{w(vsvy) — z(vsv4), w(v4vy) —
z(vqv1)} > 0. Let y’ be obtained from y by replacing y(C1) and y(Cp) with y(C1) — 61 and
y(Co) + 61, respectively. Then gy’ is an optimal solution to D(T,w) with /'(C1) < y(C1),
contradicting (2). Thus at least one of vsvy and wvqvq is saturated by y in T. We proceed by
considering two cases.

e Both vszvy and vyvy are saturated by y in 7. In this case, let Cy € C§ UCh be a cycle
containing vsvs with y(Cs) > 0; subject to this, Cy is chosen to contain wvsv;, if possible.
If vqv1 is on Cy, then the multiset sum of C'y and C9 contains three arc-disjoint cycles Cy,
Cf = {bv1} U Caluy,b], and C) = Cylb, vs] U C1[vs, b]. Define € = min{y(C1),y(Cs)}. Let y’ be
obtained from y by replacing y(Cp) with y(Cp) + €, and replacing y(C;) and y(C}) with y(C;) —e
and y(C!) +¢, respectively, for i = 1,2. Then y’ is an optimal solution to D(T, w) with (y")7'1 =
yT'1 + €, a contradiction. If vyv; is outside Cy, then there exists a cycle C3 € C§ UCh containing
vqv with y(C3) > 0. Observe that the multiset sum of C1, Cs, and Cs contains four arc-disjoint
cycles Cy, Ci = {bv1} U 03[1)1, b], Cé = Cg[b, U3] uCh [Ug, b], and Cé = Cg[b,md @] CQ[U4, b] Define
€ = minj<;<3y(C;). Let y’ be obtained from y by replacing y(Cp) with y(Cp) + €, and replacing
y(C;) and y(C!) with y(C;) — e and y(C) + ¢, respectively, for 1 <i < 3. Then ¥y’ is an optimal
solution to D(T, w) with (y’)71 = y’1 + ¢, a contradiction again.

e Exactly one of vgvy and vqv; is saturated by y in 7. In this case, by symmetry, we may
assume that vsvy is saturated while vqv is not. Let Cy € Cg U C) be a cycle containing vsvy
with y(C2) > 0. Then the multiset sum of Cy, Co, and the unsaturated arc vqv; contains two
arc-disjoint cycles Cy and C% = Ca[b, v3] U C1[vs,b]. Clearly, C4 € Ch if Cy € C5. Define € =
min{y(C1), y(Ca), w(v4vy)—z(v4v1)}. Let y' be obtained from y by replacing y(Cp) with y(Cp)+
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¢, replacing y(C1) with y(C1) — €, and replacing y(C2) and y(C5) with y(C2) — € and y(CY) + €,
respectively. Then vy’ is an optimal solution to D(7, w) with ¢'(C1) < y(C1), contradicting (2).

Combining the above two cases, we see that (3) holds. So y(Cp) = 6 > 0, and hence D(T', w)
has an integral optimal solution by Lemma 4.4(iii). This proves the lemma. |

Let Q = V(TQ)\(SU{bQ,GQ}). Then Q = {’Ug,’Ug} ing/S = G4, Q = {’Ul, ’U3,’U4} ing/S = G5,
and Q = {v1,v2,v3,v4} if To/S = Gg. Moreover, vivsvavy is the unique cycle in T[Q] when
T2/S = G5 or Gg. Let T = T if Ty /S = Gy, and let T be obtained from T be reversing precisely
one arc e on v1v3v4v; with w(e) = 0 (see Lemma 6.9) so that T'[Q)] is acyclic if T5/S = G5 and Gé.
From Lemma 2.3 we see that T” is also Mobius-free. Note that every integral optimal solution to
D(T,w) naturally corresponds to an integral optimal solution to D(7”, w) with the same value,
and vice versa. So we shall not make effort to distinguish between D(7', w) and D(T”, w). Let
us label the vertices in Q as ¢1, g2, - .., g: such that g;jg; is an arc in 7" for 1 < i < j < ¢, where

t=1Ql.

Lemma 6.10. Suppose T»/S € {G4,G5,Gs}. Let © and y be optimal solutions to P(T,w) and
D(T, w), respectively. Then we may assume that the following statements hold:

(i) For each q; € Q, there exists exactly one s, € S such that z(q;s;) > 0;
(ii) 2(q5q:) = w(qjq:) =0 for 1 <i < j <t, where t =|Q);
(i) If z(qisk)z(gjsk) > 0 for some 1 <i < j<tandsy €S, then x(qisi) # x(qg;sk).

Proof. As remarked above the lemma, we may simply treat T, P(T,w), and D(T,w) as T’
and P(T",w), and D(T', w), respectively, in our proof.

(i) By Lemma 6.2(vi), for each vertex g; € @, there exists at most one s; € S with z(g;si) > 0.
Assume on the contrary that z(g;si) = 0 for all s € S. Then no cycle in CY passes through ¢;.
Let G = T\¢; and let w’ be the restriction of w to the arcs of G. By the hypothesis of Theorem
4.1, D(G,w') has an integral optimal solution, and so does D(7”,w). Hence we assume that (i)
holds.

(ii) Assume the contrary: z(gjg;) > 0; subject to this, j + ¢ is minimized. If there exists
exactly one s, € S such that z(g;si)z(gjsk) > 0, then the proof is the same as that of Lemma
6.2(i) (with sy, ¢;, and ¢; in place of vy, s;, and sj, respectively), so we omit the details here. In
view of Lemma 6.2(i), we may assume that z(g;s1)z(gjs2) > 0. We proceed by considering two
cases.

Case 1. x(gj¢;) = 0. In this case, we may assume that z(ug;) = z(ug;) for any u € V\(SUQ).
Indeed, if z(ug;)z(ug;) > 0, then Lemma 4.3(iv) implies z(ug;) = z(ug;); if z(ug;)z(ug;) = 0,
then w(us;)w(us}) = 0 by Lemma 4.4(i). Thus we may modify x(ug;) and x(ug;) so that they
become equal. Let 77 = (V’, A’) be obtained from T by identifying ¢; with ¢;; we still use g
to denote the resulting vertex. Let w’ be obtained from the restriction of w to A’ by replacing
w(ug;) with w(ug;) + w(ug;) for any u € V\(SU Q). Let ' and y' be the projections of x
and y onto T”, respectively. From the LP-duality theorem, it is easy to see that ' and vy’ are
optimal solutions to P(T,w’) and D(T,w’), respectively, with the same value as « and y. By
the hypothesis of Theorem 4.1, v (T) is an integer. It follows from Lemma 4.6(ii) that D(T, w)
has an integral optimal solution.

Case 2. x(qjq;) > 0. In this case, 2(qj¢;) = w(gjq;) > 0 by Lemma 4.3(iii). Let C; and Cs
be two cycles in C¥ that passes through ¢;¢; and g;s2, respectively. Clearly, both C1 and C5 pass
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through b. By Lemma 4.3(iv), we have x(q;q;) + z(gis1) + z(s1b) = z(g;s2) + x(s2b). Let w’ be
obtained from w by replacing w(e;) with w(e1) + w(g;q;) for e1 = gjs2 and s2b and replacing
w(ez) with w(ez) — w(g;q;) for ea = q;qi, gis1, and s1b. Let &’ = x, and let y’ be obtained from
y as follows: for each cycle passing through g¢;¢;, let C’ be the cycle arising from C by replacing
the path ¢;jg;s1b with gjs2b. From the LP-duality theorem, we see that ' and y’ are optimal
solutions to P(T,w’) and D(T,w’), respectively, with the same value v (T) as « and y. Since
w'(A) < w(A), by the hypothesis of Theorem 4.1, v} (T') is an integer. It follows from Lemma
4.6(ii) that D(T,w) has an integral optimal solution.

Combining the above two cases, we may assume that z(g;g;) = 0.

(iii) Since the proof is the same as that of Lemma 6.2(iv) (with s, ¢;, and ¢; in place of vy,
si, and sj, respectively), we omit the routine details here. |

Lemma 6.11. If T5/S = G4, then D(T,w) has an integral optimal solution.

Proof. Recall that (b, a2) = (v1,v5), s* = v4, and Q = {ve,v3}. Given an optimal solution
y to D(T,w), set p(s;) = {u: z(us;) > 0 for u € V(T3)\az} for each s; € S. By Lemma 6.2(i)
and (vi), we have

(1) ¢(s:) Np(sj) = 0 whenever i # j.

From (1) and Lemma 6.10(i), we see that

(2) there exists at least one and at most two vertices s;’s in S with o(s;) # 0.
Lemma 6.2(i) allows us to assume that

(3) if ¢(s;) # 0, then i € {1,2}.

By Lemma 6.10(ii), we obtain

(4) w(vavz) = z(vav3) = 0.

In the remainder of our proof, we reserve y for an optimal solution to D(T,w) such that

(5) y(C2) is maximized; and

(6) subject to (5), (y(Dy),y(Dg-1),--.,y(D3)) is minimized lexicographically.

Claim. y(C) is integral for some C € C§.

To justify this, we distinguish between two cases.

Case 1. ¢(s;) = {ve} for i =1 or 2.

In this case, by Lemma 6.2(i) and Lemma 6.10(i), we may assume that ¢(s;) = {v2} and
©(s2) = {vs}. By (4), we obtain

(7) Cg g {011)281’01,111113821}1}.

From Lemma 4.7(vii), we deduce that y(vivasiv1) = min{w(viva), w(vesy),w(siv1)} and
y(v1v3sovy) = min{w(vivs), w(vsse), w(sevy)}. If both y(vivesivy) and y(vivssevr) are zero,
then 7, (T5\az2) = min{w(viva), w(vas1), w(s1v1)} + min{w(vivs), w(vsss), w(sev1)} = 0, contra-
dicting («). Therefore, y(vivesivy) or y(vivssavy) is a positive integer.

Case 2. ¢(s;) # {v2}.

In this case, Lemma 6.10(i), (2) and (3) allow us to assume that ¢(s1) = {v2,v3}. By (4),
we have

(8) C§ C {wv1ves1v1, v1U38101 }

By Lemma 6.2(iii), we also obtain z(s1v1) = w(s1v1) > 0. Assume first that sjv; is outside C§.
Then both v9s; and vgs; are outside Cg, and sjvp is saturated by y in Tb. So y(vivesivi) +
y(vivzsiv1) = w(sivy) > 0. Observe that both y(vivesiv1) and y(vivgsivy) are integral, for
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otherwise, 0 < y(vivisiv1) < w(v;sy) for ¢ = 2,3, by Lemma 4.3(i) and (ii), we have x(vas1) =
x(v3s1) = 0, contradicting Lemma 6.9(iii). Hence y(vivas1v1) or y(vivssivy) is a positive integer.

Assume next that sjv is contained in some cycle C' € C§. From Lemma 4.7(vii), we see that
y(v1vis1v1) = min{w(v1v;), w(visy)} fori = 2,3. If y(viv;s1v1) = 0 fori = 2,3, then 7, (T \ag) =
S22 min{w(v1v;), w(vss1)} = 0, contradicting («). Therefore y(vivesivy) or y(vivzsivy) is a
positive integer. So the above Claim is established.

From the above Claim and Lemma 4.4(iii), we conclude that ID(7, w) has an integral optimal
solution. |

Lemma 6.12. If T5/S = G5, then D(T, w) has an integral optimal solution.

Proof. Recall that (be,a2) = (va,v6), s* = vs, and Q = {v1,v3,v4}. Given an optimal
solution y to D(T, w), set p(s;) = {u: z(us;) > 0 for u € V(T3)\az} for each s; € S. By Lemma
6.2(i) and (vi), we have

(1) ¢(si) Np(s;) = 0 whenever i # j.

From (1) and Lemma 6.10(i), we see that

(2) there exists at least one and at most three vertices s;’s in S with ¢(s;) # 0.
Lemma 6.2(i) allows us to assume that

(3) if p(si) # 0, then i € {1,2,3}.

By Lemma 6.10(ii), we obtain

(4) w(e) = z(e) = 0 for e € {viv3, v3V4, V4v] }.

In the remainder of our proof, we reserve y for an optimal solution to (7', w) such that

(5) y(C2) is maximized; and

(6) subject to (5), (y(Dyq),y(Dy-1),...,y(D3)) is minimized lexicographically.

Claim. y(C) is integral for some C € C3.

To justify this, we consider three possible cases (see the structure of Gs), depending on the
size of ¢(s;) for 1 < i < 3.

Case 1. |p(s;)| =1 for each 1 <37 < 3.

In this case, by Lemma 6.10(i), (2) and (3), we may assume that p(s1) = {v1}, p(s2) = {vs},
and ¢(s3) = {v4}. By (4), we obtain

(7) Cg g {02’0181’1}2,’021}3821}2, U2’U483’L)2}.

From Lemma 4.7(vii), we deduce that y(vav151v2) = min{w(vav1), w(vis1), w(s1v2)}, y(vavssavs)

= min{w(vovs), w(vss2), w(sov2)}, and y(vavyszvy) = min{w(vovy), w(vyess), w(ssve)}. If y(vovisiva),
y(vavsgsevs), and y(vevgszvg) are all zero, then 7,(T\a2) = min{w(vovy), w(visi), w(siva)} +
min{w(vovs), w(vsse), w(save) } +min{w(vevy), w(vess), w(ssvz)} = 0, contradicting (). There-
fore, at least one of y(vov1s1v2), y(vavsseve), and y(vavsssve) is a positive integer.

Case 2. |p(s;)| =1 for exactly one i € {1,2,3}.

In this case, by Lemma 6.10(i), (2) and (3), we may assume that ¢(s1) = {vi}, ¢(s2) =
{vs,v4}. By (4), we have

(8) C?QJ g {112’0181’1)2,’1)21}3821]2, U2U432'U2}.

From Lemma 4.7(vii), we see that y(vav1s1v2) = min{w(vavy ), w(vis1), w(s1v2)}. fy(vavisive) >
0, we are done. So we assume that y(vovisivy) = 0. Since w(visy)w(sivz) > 0, we ob-
tain w(vevy) = min{w(vevy),w(v1s1), w(s1v2)} = 0. By Lemma 6.2(iii), we have z(sqv2) =
w(sav2) > 0.
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Assume first that sqovg is outside C§. Then both vgsy and vsse are outside C§, and sqvo
is saturated by y in Ty. Hence y(vov3sov2) + y(vavgs2v2) = w(save) > 0. Observe that both
y(vou3save) and y(vevsasave) are integral, for otherwise, since 0 < y(vov;sav2) < w(v;se) for
i = 3,4, by Lemma 4.3(i) and (ii), we have x(v3s2) = z(v4s2) = 0, contradicting Lemma 6.9(iii).
Hence both y(vavssave) and y(vavaseva) are positive integers.

Assume next that spvs is contained in some cycle C € C§. From Lemma 4.7(vii), we
see that y(vovisove) = min{w(vev;), w(v;se)} for i = 3,4. If y(vev;savy) = 0 for i = 3,4,
then 7,(Th\a2) = w(vovy) + St min{w(vov;), w(vis2)} = 0, contradicting (a). Therefore
y(vav3sov2) or y(vavaseve) is a positive integer.

Case 3. |p(s;)| # 1 for any i € {1,2,3}.

In this case, by Lemma 6.10(i), (2), and (3), we may assume that ¢(s1) = {v1,v3,v4} (see
the structure of G5). By (4), we obtain

(9) Cg g {02’0181’02,’021}3811}2,U2U481’U2}.

By Lemma 6.2(iii), we have z(sjv2) = w(s1v2) > 0.

Assume first that sjvs is outside Cg. Then v;s1 is outside Cg for each i € {1,3,4}, and s1vs
is saturated by y in T5. So 3 icq1,3.4) y(vau;s1v2) = w(sjve) > 0. Observe that y(vav;siva) is
integral for each i € {1,3,4}, for otherwise, symmetry allows us to assume that y(vovisive)
is not integral. Then y(vovgsive) or y(vavasive) is not integral, say y(vovssiva). Since 0 <
y(vavis1v2) < w(v;sy) for ¢ = 1,3, by Lemma 4.3(i) and (ii), we have z(vis1) = z(v3s1) = 0,
contradicting Lemma 6.9(iii). It follows that y(vov;s1v2) is a positive integer for each i € {1,3,4}.

Assume next that sjvg is contained in some cycle C' € C§. From Lemma 4.7(vii), we de-
duce that y(vev;siva) = min{w(vav;), w(v;s1)} for i € {1,3,4}. If y(vov;siv2) = 0 for each
i € {1,3,4}, then 7,(T2\a2) = Y icq1,3,4) min{w(vav;), w(v;s1)} = 0, contradicting (a). Hence
y(vav;s1v2) is a positive integer for some i € {1,3,4}. This proves the Claim.

From the Claim and Lemma 4.4(iii), we conclude that D(7,w) has an integral optimal
solution. |

Lemma 6.13. If T5/S = Gg, then D(T, w) has an integral optimal solution.

Proof. Recall that (be,as) = (vg,v7), s* = vs, and Q = {v1,v2,v3,v4}. Given an optimal
solution y to D(T, w), set p(s;) = {u: z(us;) > 0 for u € V(T)\az} for each s; € S. By Lemma
6.2(i) and (vi), we have

(1) ¢(si) Np(s;) = 0 whenever i # j.

From (1) and Lemma 6.10(i), we see that

(2) there exists at least one and at most four vertices s;’s in S with ¢(s;) # 0.
Lemma 6.2(i) allows us to assume that

(3) if p(s;) # 0, then 1 < i < 4.

By Lemma 6.10(ii), we obtain

(4) w(e) = z(e) = 0 for e € {viv3, V304, V4V1, V1V2, V3V, V4V }.

In the remainder of our proof, we reserve y for an optimal solution to (7', w) such that

(5) y(C2) is maximized; and

(6) subject to (5), (y(Dyq),y(Dy-1),...,y(D3)) is minimized lexicographically.

Claim. y(C) is integral for some C € C3.

To justify this, we consider five possible cases (see the structure of Gg), depending on the
size of ¢(s;) for 1 < i < 4.

94



Case 1. |p(s;)] =1 for each 1 <i < 4.

In this case, by Lemma 6.10(i), (2) and (3), we may assume that ¢(s;) = {v;} for each
1 <i<4. By (4), we obtain

(7) Cg - {126’0181’06, VeUV252V6, V6U3S53V6, U6U4$4U6}.

From Lemma 4.7(vii), we deduce that y(vev;sive) = min{w(vev;), w(v;s;), w(s;ve)} for each 1 <
i < 4. If y(vevisivg) = 0 for 1 < i < 4, then 7, (Th\az) = Y2t min{w(vev;), w(v;s;), w(s;ve)} =
0, contradicting («). Hence y(vgv;s;vg) is a positive integer for some ¢ € {1,2,3,4}.

Case 2. |p(s;)| =1 for exactly one i € {1,2,3,4}.

In this case, by Lemma 6.10(i), (2) and (3), we may assume that ¢(s1) = {vi}, ¢(s2) =
{v2,v3,v4}. By (4), we have

(8) Cg g {UGUISIUG; VeV252V6, VeU3S2V6, ’1)61}4821]6}.

From Lemma 4.7(vii), we see that y(vev151v6) = min{w(vev1), w(visi), w(sive)}. If y(vevisive)
> 0, we are done. So we assume that y(vgvisivg) > 0. Since w(vis1)w(sivg) > 0, we obtain
w(vevr) = min{w(vevy ), w(visy),w(s1vs)} = 0. By Lemma 6.2(iii), we have z(sav6) = w(s2vg) >
0.

Assume first that soug is outside C§. Then v;s is outside C§ for i € {2,3,4}, and spv
is saturated by y in Tp. So Y., y(vevisavg) = w(savg) > 0. Observe that y(vev;sque) is
integral for each i € {2,3,4}, for otherwise, symmetry allows us to assume that y(vgvesavg) is
not integral. Then one of y(vgvssavg) and y(vevasavg) is not integral, say y(vgvssavg). Since
0 < y(vevisave) < w(v;s2) for i = 2,3, by Lemma 4.3(i) and (ii), we have z(vase) = x(v3sa) = 0,
contradicting Lemma 6.9(iii). It follows that y(vev;save) is a positive integer for each i € {2,3,4}.

Assume next that sovg is contained in some cycle C' € C§. By Lemma 4.7(vii), we obtain
y(vevisave) = min{w(vev;), w(v;se)} for i € {2,3,4}. If y(vevisavg) = 0 for i € {2,3,4}, then
Tw(To\a2) = w(vev1) + Yo min{w(vev;), w(v;se)} = 0, contradicting («). Hence y(vgv;save) is
a positive integer for some i € {2,3,4}.

Case 3. |p(s;)| = 1 for exactly two ¢’s in {1,2,3,4}.

In this case, by Lemma 6.10(i), (2) and (3), we may assume that ¢(s;) = {v;} for i = 1,2
and ¢(s3) = {vs,v4}. By (4), we obtain

(9) Cg g {7)61)1311)6, VeV252V6, VgVU3S3V6, 1)61)4837)6}.

From Lemma 4.7(vii), we see that y(vevisivg) = min{w(vev;), w(visi), w(s;ve)} for i = 1,2. If
y(vvisivg) > 0, we are done. So we assume that y(vgv;s;vg) = 0. Since w(v;s;)w(s;ve) > 0, we
obtain w(vev;) = min{w(vev;), w(vis;), w(s;ve)} = 0 for i = 1,2. By Lemma 6.2(iii), we have
z(s3v6) = w(szvg) > 0.

Assume first that sgvg is outside Cg . Then v;s3 is outside Cé’ for i = 3,4, and s3vg is saturated
by y in Ts. So y(vevsssve) + y(vevas3vs) = w(ssvg) > 0. Observe that both y(vgvszssvg) and
y(vevaS3ve) are integral, for otherwise, since 0 < y(vev;s3v6) < w(v;s3) for i = 3,4, by Lemma
4.3(i) and (ii), we have z(vss3) = x(vss3) = 0, contradicting Lemma 6.9(iii). It follows that
y(vev;S3v6) is a positive integer for ¢ = 3, 4.

Assume next that ssvg is contained in some cycle C' € C§. By Lemma 4.7(vii), we obtain
y(vevis3vg) = min{w(vev;), w(v;se)} fori = 3,4. If y(vgv;ssvg) = 0 for i = 3,4, then 7,(To\az) =
S22 w(vew;) + ks min{w(vev; ), w(vis3)} = 0, contradicting (). Hence y(vev;s3vg) is a posi-
tive integer for ¢ = 3 or 4.

Case 4. 1 < |p(s;)| < 4if ¢(s;) #0, for i € {1,2,3,4}.
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In this case, by Lemma 6.10(i), (2) and (3), we may assume that ¢(s;) = {vi,v2} and
©(s2) = {vs,v4}. By (4), we obtain

(10) Cg - {1)61)181116, VeV251V6, VeU3S2V6, UGU4SQUG}.

By Lemma 6.2(iii), we have z(s;v6) = w(s;vg) > 0 for i = 1, 2.

Assume first that sjvg is outside Cé’ . Then both vis; and wesy are outside Cg , and s1vg
is saturated by y in Tb. So y(vevisi1vg) + y(vevasivg) = w(sjvg) > 0. Observe that both
y(vev1s1vg) and y(vevasivg) are integral, for otherwise, since 0 < y(vgv;sivg) < w(v;s1) for
i =1,2, by Lemma 4.3(i) and (ii), we have z(v1s1) = x(v2s1) = 0, contradicting Lemma 6.9(iii).
It follows that y(vev;s1vg) is a positive integer for ¢ = 1,2. Similarly, we can show that if sovg
is outside Cf, then y(vev;s2vs) is a positive integer for i = 3, 4.

Assume next that s;vg is contained in some cycle in C§ for i = 1,2. By Lemma 4.7(vii), we
have y(vgv;s1vs) = min{w(vev;), w(v;s1)} for i = 1,2, and y(vev;save) = min{w(vev;), w(v;s2)}
fori = 3,4. If y(vev151v6), y(vev251V6), Y(vev3S2v6) and y(vevasavs) are all zero, then 7, (T2 \az) =
2 min{w(vev;), w(vis1)}+ s min{w(vev;), w(vis2)} = 0, contradicting (). So at least one
of y(vgv181v6), y(vev251v6), Y(vev3s2s), and y(vev4S2v6) is a positive integer.

Case 5. |p(s;)] > 2 if ¢(s;) # 0, for i € {1,2,3,4}.

In this case, by Lemma 6.10(i), (2) and (3), we may assume that ¢(s1) = {v1,v2,v3,v4}. By
(4), we obtain

(11) CY C {wgv151v6, V6v251V6, VgU3S1V6, VgU4S1V6 }-

By Lemma 6.2(iii), we have z(s1vg) = w(sivg) > 0.

Assume first that sjvg is outside C§. Then Z;L:l y(vevisivg) = w(sive). If y(vev;sivg) is a
positive integer for some i € {1,2,3,4}, we are done. So we assume the contrary. Thus at least
two of y(vev151v6), Y(vev251v6), Y(vev351v6), and y(vevasive) are not integral, say y(vgv1sive)
and y(vgvasivg). Since 0 < y(vgvis1ve) < w(v;s1) for i = 1,2, by Lemma 4.3 (i) and (ii), we
have z(v1s1) = x(ves1) = 0, contradicting Lemma 6.9(iii).

Assume next that sjvg is contained in some cycle of C§. By Lemma 4.7(vii), we have
y(vevis1vg) = min{w(vev;), w(v;s1)} for 1 < i < 4. If y(vgvisivg) is zero for 1 < i < 4, then
Tw(To\a2) = i min{w(vev;), w(v;s1)} = 0, contradicting (). So y(vev;s1ve) is a positive
integer for some ¢ € {1,2,3,4}. This proves the Claim.

From the above Claim and Lemma 4.4(iii), we conclude that D(7", w) has an integral optimal
solution. |

With the aid of the above lemmas, we can now derive the desired total-dual integrality.

Proof of Theorem 6.1. By the hypothesis of this section, T is the 1-sum of two smaller
strong Mdbius-free tournaments 77 and T5 with properties («) and (f). Since T>/S € T3, the
statement follows instantly from Lemmas 6.3-6.8 and Lemmas 6.11-6.13. |

7 Proof: Last Step

In the preceding two sections we have carried out a series of reduction operations, and finished
the main body of the proof of Theorem 4.1. To complete the proof, we still need to consider
two more cases.
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Lemma 7.1. Let G = (V, A) be a digraph with a nonnegative integral weight c(e) on each arc e,
and let v be a vertex of G. If each positive cycle in G contains v, then D(G, ¢) has an integral
optimal solution.

Proof. Construct a flow network N = (V’/, A") with vertex set V' = (V\v)U{s,t} as follows:
e for each arc ab € A with a # v # b, there is an arc ab € A’ with capacity c(ab);
e for each arc va € A, there is an arc sa € A’ with capacity c¢(va); and
e for each arc av € A, there is an arc at € A’ with capacity c(av).
Then there is a one-to-one correspondence between cycles containing v in G and s-t paths in N.
So, by the max-flow min-cut theorem, D(G, ¢) has an integral optimal solution. |

Lemma 7.2. Tournament G1 is cycle Mengerian.
For a computer-assisted proof of this lemma, see Appendix [11].

Proof of Theorem 4.1. Clearly, we may assume that 7" is strong, T' # Cs, and 7,(T") > 0.
Since F) can be obtained from G by deleting vertex vg (see the labeling in Figure 4), from
Lemma 7.2 we deduce that Fj is also cycle Mengerian. So we may further assume that F; #
T # Gj.

By Theorems 3.1 and 3.2 and Lemma 3.4, {Cs, Fy, F1, Fa, F3, Fy, G1, G2, G3} is the list of all
12s Mobius-free tournaments. Hence

(1) if T is i2s, then T € {Fo,FQ,Fg, Fy, Go, Gg} = 7-2\{F6}

We claim that T' can be expressed as a 1-sum of two strong Mobius-free tournaments 77 and
T over two special arcs (a1, b1) and (be, az), such that one of the following three cases occurs:

(2) Tw(TQ\ag) >0and Ty € 75;

(3) Tw(T2\az) > 0 and there exists a vertex subset S of To\{az, ba} with |S| > 2, such that
T[S] is acyclic, T5/S € T3, and the vertex s* arising from contracting S is a near-sink in 7'/.S;
and

(4) every positive cycle in T' crosses the hub b of the 1-sum.

Indeed, if T is not i2s, then the statement follows from Lemma 4.2. It remains to consider
the case when T is i2s. By (1), we have T' € To\{Fs}. Since each tournament in 73\{Fs} has a
special arc, we may view 7" as a 1-sum of 7T} and T» over two special arcs (a1, b) and (ba, a2),
where Ty is a triangle and T = T. If 7,(T2\a2) > 0, then (2) holds. If 7,(T2\a2) = 0, then
every positive cycle in 7" contains the hub of the 1-sum. So (4) occurs.

Applying Theorem 5.1, Theorem 6.1, and Lemma 7.1 to (2), (3), and (4), respectively, we
conclude that D(7, w) has an integral optimal solution in any case. |

Proof of Theorem 1.1. Implication (i7i) = (i7) holds, because total-dual integrality
implies primal integrality (see Edmonds-Giles theorem [18] stated in Section 1). Implication
(79) = (4) is established in Lemma 2.1. Implication (i) = (7i¢) follows instantly from Theorem
4.1. ]

8 Concluding Remarks

In this paper we have characterized all tournaments with the min-max relation on packing
and covering cycles. Our characterization yields a polynomial-time algorithm for the minimum-
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weight feedback arc set problem on cycle Mengerian tournaments. But this algorithm is based on
the ellipsoid method for linear programming, and therefore very much unlike the typical combi-
natorial optimization procedures. It would be interesting to know whether it can be replaced by
a strongly polynomial-time algorithm of a transparent combinatorial nature. In combinatorial
optimization, there are some other min-max results that are obtained using the “structure-
driven” approach. Despite availability of structural descriptions, combinatorial polynomial-time
algorithms for the corresponding optimization problems have yet to be found, for instance, those
on matroids with the max-flow min-cut property; see Seymour [31] for a characterization and
Truemper [35] for efficient algorithms once again based on the ellipsoid method. Certainly, these
types of problems deserve more research efforts.
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