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Abstract

In this series of two papers we examine the classical problem of ranking a set of players
on the basis of a set of pairwise comparisons arising from a sports tournament, with the
objective of minimizing the total number of upsets, where an upset occurs if a higher ranked
player was actually defeated by a lower ranked player. This problem can be rephrased as the
so-called minimum feedback arc set problem on tournaments, which arises in a rich variety
of applications and has been a subject of extensive research. In this series we study this NP -
hard problem using structure-driven and linear programming approaches. Let T = (V,A)
be a tournament with a nonnegative integral weight w(e) on each arc e. A subset F of arcs
is called a feedback arc set if T\F contains no cycles (directed). A collection C of cycles
(with repetition allowed) is called a cycle packing if each arc e is used at most w(e) times by
members of C. We call T cycle Mengerian (CM) if, for every nonnegative integral function
w defined on A, the minimum total weight of a feedback arc set is equal to the maximum
size of a cycle packing. The purpose of these two papers is to show that a tournament is
CM iff it contains none of four Möbius ladders as a subgraph; such a tournament is referred
to as Möbius-free. In this first paper we present a structural description of all Möbius-free
tournaments.
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1 Introduction

Consider a sports tournament in which each of n players is required to play precisely one game
with each other player, and assume that each game ends in a win or a loss. After completion of
the tournament, it is desirable to find a ranking of all n players that minimizes the number of
upsets, where an upset occurs if a higher ranked player was actually defeated by a lower ranked
player. This problem can be rephrased as the so-called minimum feedback arc set problem on
tournaments, and will be investigated in the more general weighted setting in this series of two
papers.

Let G = (V,A) be a digraph with a nonnegative integral weight w(e) on each arc e. A subset
F of arcs is called a feedback arc set (FAS) of G if G\F contains no cycles (directed). The
minimum-weight FAS problem (or simply FAS problem) is to find an FAS in G with minimum
total weight. Digraph G is called a tournament if there is precisely one arc between any two
vertices in G. The FAS problem on tournaments, abbreviated FAST, dates back to as early
as the 1780s when Borda [7] and Condorcet [11] each proposed voting systems for elections
with more than two candidates. Since the FAST arises in a rich variety of applications in
sports, databases, and statistics, where it is necessary to effectively combine rankings from
different sources, FAS’s in tournaments have been studied extensively from the combinatorial
[17, 18, 31, 35], statistical [30], and algorithmic [1, 2, 12, 26, 33, 34] points of view, and thus have
produced a vast body of literature. In [1], Ailon, Charikar, and Newman proved that the FAST
is NP -hard under randomized reductions even in the unweighted case. In [3], Alon showed that
this unweighted version is in fact NP -hard; in [10], Charbit, Thomassé, and Yeo established this
result independently. In [26], Mathieu and Schudy devised a polynomial time approximation
scheme (PTAS) for the FAST. Given these results, it is natural to ask the following question:
When can the FAST be solved exactly in polynomial time? Inspired by the title of Mathieu and
Schudy’s paper [26], this is equivalent to asking: Which tournaments can be ranked with no
errors? The purpose of this series of two papers is to resolve this problem using structure-driven
and linear programming approaches.

We introduce some terminology before proceeding. Let G = (V,A) be a weighted digraph
as described above. A collection C of cycles (with repetition allowed) in G is called a cycle
packing of G if each arc e is used at most w(e) times by members of C. The cycle packing
problem consists in finding a cycle packing with maximum size, which can be viewed as the
dual version of the FAS problem. Let νw(G) be the maximum size of a cycle packing, and
let τw(G) be the minimum total weight of an FAS. Clearly, νw(G) ≤ τw(G); this inequality,
however, need not hold with equality in general (as we shall see in a moment). We call G cycle
Mengerian (CM) if νw(G) = τw(G) for every nonnegative integral function w defined on A. It is
worthwhile pointing out that a characterization of CM digraphs can yield not only a beautiful
minimax theorem but also a polynomial-time algorithm for the FAS problem on such digraphs,
by a general theorem of Grötschel, Lovász, and Schrijver [20]. So the study of CM digraphs has
both great theoretical interest and practical value. Initiated in the early 1960s [13, 35], it has
inspired many minimax theorems in combinatorial optimization, such as Lucchesi and Younger
[25], Seymour [28, 29], Geelen and Guenin [19], Guenin [21, 22], Guenin and Thomas [23], Cai,
Deng, and Zang [8, 9], and Ding, Xu, and Zang [15, 16]. Interestingly, such minimax theorems
have also found applications in the design of approximation algorithm; see, for instance, Mnich,
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Williams, and Végh [27]. Despite tremendous research efforts, only some special classes of CM
digraphs [4, 5, 21, 23, 25] have been identified to date, and a complete characterization seems
extremely hard to obtain.

Let D5 be the digraph obtained from K5 (the complete graph with five vertices) by replacing
each edge ij with a pair of opposite arcs (i, j) and (j, i). Applegate, Cook, and McCormick [4] and
Barahona, Fonlupt, and Mahjoub [5] independently proved that D5 is CM, thereby confirming a
conjecture posed in both Barahona and Mahjoub [6] and Jünger [24]. This theorem is equivalent
to saying that every tournament with five vertices is CM.

In this series of two papers we shall give a complete characterization of all CM tournaments.
We call a tournament Möbius-free if it contains none of K3,3, K

′
3,3, M5, and M∗

5 depicted in
Figure 1 as a subgraph. (Actually, M∗

5 arises from M5 by reversing the direction of each arc.)
This class of tournaments is so named because the forbidden structures are all Möbius ladders.

Figure 1. Forbidden Structures

Theorem 1.1. A tournament is CM iff it is Möbius-free.

Observe that every CM tournament is Möbius-free: Let T = (V,A) be a tournament con-
taining a member D = (U,B) of {K3,3,K

′
3,3,M5,M

∗
5 }. Define w(e) = 1 if e ∈ B and w(e) = 0

if e ∈ A\B. It is a routine matter to check that
• νw(T ) = 1 while τw(T ) = 2 if D is K3,3 or K ′

3,3, and
• νw(T ) = 2 while τw(T ) = 3 if D is M5 or M∗

5 .
So T does not satisfy the desired minimax relation. Our theorem asserts that actually these
four Möbius ladders are the only obstructions to CM tournaments. Since the whole proof takes
about 100 pages, we split this work into two papers. In this first paper we give a structural
description of all Möbius-free tournaments.

Let us define a few more terms before presenting our structural theorems. Let G = (V,A)
be a digraph. For each v ∈ V , we use d+G(v) and d−G(v) to denote the out-degree and in-degree
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of v, respectively. We call v a near-sink of G if its out-degree is one, and call v a near-source
if its in-degree is one. For simplicity, an arc e = (u, v) of G is also denoted by uv. Arc e is
called special if either u is a near-sink or v is a near-source of G. A dicut of G is a partition
(X,Y ) of V (G) such that all arcs between X and Y are directed to Y . A dicut (X,Y ) is trivial
if |X| = 1 or |Y | = 1. Recall that G is called weakly connected if its underlying undirected graph
is connected, and is called strongly connected or strong if each vertex is reachable from each
other vertex. Clearly, a weakly connected digraph G is strong iff G has no dicut. Furthermore,
a weakly connected digraph G is called internally strong if every dicut of G is trivial, and is
called internally 2-strong (i2s) if G is strong and G\v is internally strong for every vertex v. By
definition, a strong digraph is internally strong.

Let T1 = (V1, A1) and T2 = (V2, A2) be two tournaments. We say that T1 is smaller than T2

if |V1| < |V2|. Suppose that both T1 and T2 are strong, with |Vi| ≥ 3 for i = 1, 2, and suppose
further that (a1, b1) is a special arc of T1 with d+T1

(a1) = 1 and (b2, a2) is a special arc of T2 with

d−T2
(a2) = 1. The 1-sum of T1 and T2 over (a1, b1) and (b2, a2) is the tournament arising from

the disjoint union of T1\a1 and T2\a2 by identifying b1 with b2 (the resulting vertex is denoted
by b) and adding all arcs from T1\{a1, b1} to T2\{a2, b2}. We call b the hub of the 1-sum. See
Figure 2 for an illustration. Note that if |Vi| = 3 for i = 1 or 2, then Ti is a triangle (a directed
cycle of length three), and thus T = T3−i.

Figure 2. 1-sum of T1 and T2.

Let C3 (resp. F0) denote the strong tournament with three (resp. four) vertices (see Figure
3), let F1, F2, F3, F4, F5 be the five tournaments depicted in Figure 4, and let G1, G2, G3 be the
three tournaments shown in Figure 5. In these two papers, we reserve the symbols

T0 = {C3, F0, F1, F2, F3, F4, G1, G2, G3}

and
T1 = {C3, F0, F2, F3, F4, G2, G3} = T0\{F1, G1}.

Now we are ready to present the main results of this paper. (Obviously, to verify that a
tournament T is CM, we may restrict our attention to the case when T is strong.)

Theorem 1.2. Let T = (V,A) be an i2s tournament with |V | ≥ 3. Then T is Möbius-free iff
T ∈ T0.
Theorem 1.3. Let T = (V,A) be a strong Möbius-free tournament with |V | ≥ 3. Then either
T ∈ {F1, G1} or T can be obtained by repeatedly taking 1-sums starting from the tournaments
in T1.
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Throughout this paper we shall repeatedly use the following notations and terminology.

Figure 3. Strong tournaments with three or four vertices.

Figure 4. v1v2, v5v1 ∈ F1; v2v1, v1v5 ∈ F2; v2v1, v5v1 ∈ F3; v6v2 ∈ F4; v2v6 ∈ F5.

Figure 5. v6v4 ∈ G2 and v4v6 ∈ G3.

For a digraph G, we use V (G) and A(G) to denote its vertex set and arc set, respectively, if
they are not specified. For each U ⊆ V (G), we use G[U ] to denote the subgraph of G induced
by U , and use δ+(U) (resp. δ−(U)) to denote the set of all arcs from U to V (G)\U (resp. from
V (G)\U to U); we write δ+(U) = δ+(u) and δ−(U) = δ−(u) if U = {u}. Moreover, we use
G/U to denote the digraph obtained from G by first deleting arcs between any two vertices in
U , then identifying all vertices in U , and finally deleting the parallel arcs except one from each
vertex to each other vertex; we say that G/U is obtained from G by contracting U . Note that
G/U may contain pairs of opposite arcs but contains no parallel arcs. For each arc e = (u, v)
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of G, the digraph obtained from G by contracting e, denoted by G/e, is exactly G/{u, v}. A
strong component of G is a maximal strong subgraph, where the adjective maximal is meant
with respect to set-inclusion rather than size. Note that each vertex of G belongs to exactly one
strong component. Thus the strong components of G can be ordered as A1, A2, . . . , Ap, such
that the arcs between Ai and Aj are all directed from Ai to Aj for any 1 ≤ i < j ≤ p; we refer to
(A1, A2, . . . , Ap) as a strong partition of G. The reverse of G, denoted by G∗, is obtained from
G be reversing the direction of each arc.

By a cycle or a path in a digraph we always mean a directed one. Let P be a directed path
from a to b and let c and d be two vertices on P such that a, b, c, d (not necessarily distinct)
occur on P in order as we traverse P in its direction from a. Then P [c, d] denotes the subpath
of P from c to d, and P (c, d) = P [c, d]\{c, d}. Let C be a directed cycle. For each vertex a on
C, we use a− (resp. a+) to denote the vertex precedes (resp. succeeds) a as we traverse C in
its direction. For each pair of vertices a and b on C, we use C[a, b] to denote the segment of C
from a to b.

The remainder of this paper is organized as follows. In Section 2, we exhibit some important
properties enjoyed by the 1-sum operation. In Section 3, we prove a chain theorem, which
says that every i2s tournament can be constructed from some small tournaments by repeatedly
adding vertices so that all the intermediate tournaments are also i2s. In Section 4, we give a
structural description of all strong Möbius-free tournaments based on this chain theorem.

2 Preliminaries

In this section, we show that if a strong tournament is not i2s, then it can be expressed as
the 1-sum of two smaller strong tournaments (so the connectivity can be lifted by using this
operation). We also prove that being Möbius-free is preserved under 1-sum operation and under
contracting special arcs.

Lemma 2.1. Let T = (V,A) be a strong tournament. If T is not i2s, then T is the 1-sum of
two smaller strong tournaments.

Proof. Since T is not i2s, it contains a vertex b such that T\b has a nontrivial dicut
(X,Y ). As T is strong, there exist a1 ∈ Y and a2 ∈ X such that {(a1, b), (b, a2)} ⊆ A. Set
T1 = T\(Y \a1), T2 = T\(X\a2), and rename b as bi in Ti for i = 1, 2. Clearly, a1 has out-degree
one in T1 and a2 has in-degree one in T2. From the definition we see that T is the 1-sum of T1 and
T2 over (a1, b1) and (b2, a2). Furthermore, Ti is strong and has fewer vertices than T for i = 1, 2.

Let us show that being Möbius-free is maintained under the 1-sum operation.

Lemma 2.2. Let T = (V,A) be the 1-sum of two tournaments T1 and T2. Then T is Möbius-free
iff both T1 and T2 are Möbius-free.

Proof. Since both T1 and T2 are sub-tournaments of T , the “only if” part holds trivially. To
establish the “if” part, assume the contrary: T contains a member D of {K3,3,K

′
3,3,M5,M

∗
5 };

subject to this, the number of vertices in D is minimum. Let b be the hub of the 1-sum. Then
b is contained in D. Observe that
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(1) if D = K ′
3,3, then (u3, u6) ∈ A (see the labeling in Figure 1), for otherwise T would

contain K3,3, contradicting the minimality assumption on D.
Set D′ = D ∪ {(u3, u6)} if D = K ′

3,3 and set D′ = D otherwise. It it a routine matter to
check that D′ is i2s (while K ′

3,3 is not). Since T is the 1-sum of T1 and T2 and since T contains
D′ by (1), either T1\b or T2\b contains precisely one vertex from D′\b. Therefore, either T1 or
T2 contains a subgraph isomorphic to D′ and hence is not Möbius-free.

In the remainder of this section, we show that being Möbius-free is also preserved under the
operation of contracting a special arc. (Recall that the resulting digraph may contain pairs of
opposite arcs.) This lemma will not be used in subsequent sections but will be employed in our
second paper.

Lemma 2.3. Let T = (V,A) be a Möbius-free tournament with a special arc a = (x, y). Then
T/a is also Möbius-free.

Proof. Replacing T by its reverse T ∗ if necessary, we may assume that x is a near-sink of T .
Thus y is the only out-neighbor of x. Let z be the vertex obtained by identifying x and y in T/a
and let F = {K3,3,K

′
3,3,M5,M

∗
5 }. Assume the contrary: T/a contains a subdigraph D ∈ F .

Then z is in D. We use D′ to denote the digraph obtained from D\z by adding two vertices x
and y and adding all arcs in {(x, y)} ∪ {(y, u) : (z, u) ∈ A(D)} ∪ {(u, x) : u ∈ V (D)\z}. Clearly,
D′ is a subgraph of T . We propose to prove that

(1) T contains a member of F .
We have a computer-assisted verification of (1). Nevertheless, the proof given below is

computer-free.
Let us label the vertices of D as in Figure 1. Depending on the structure of D, we distinguish

among four cases.

Case 1. D = K3,3. In this case, symmetry allows us to assume that z = u4 or u5.
• z = u4. Then u1 and u5 are the only out-neighbors of y in D′. Thus the union of the three

cycles u1u2u5u6u1, xyu1u2x, and xyu5u6x forms a K3,3 in T .
• z = u5. Then u6 is the only out-neighbor of y in D′. If (u4, y) ∈ A, then the union of the

three cycles u1u2u3u4u1, u4yu6u3u4, and u1u2xyu6u1 forms a K ′
3,3 in T . Similarly, if (u2, y) ∈ A,

then the union of the three cycles u1u2u3u4u1, u1u2yu6u1, and u4xyu6u3u4 also forms a K ′
3,3

in T . So we assume that {(y, u4), (y, u2)} ⊆ A. Thus the union of the three cycles u4u1xyu4,
u1u2u3u4u1, and u2u3xyu2 forms a K3,3 in T .

Case 2. D = K ′
3,3. In this case, we may assume that (u3, u6) ∈ A, for otherwise the present

case reduces to Case 1.
• z = u2. Then u5 and u3 are the only out-neighbors of y in D′. It follows that the union of

the three cycles u3u4u5u6u7u3, xyu3u4x, and xyu5u6x forms a K ′
3,3 in T .

• z = u3. Then u4 is the only out-neighbor of y in D′. If (u6, y) ∈ A, then the union of
the three cycles u1u2u5u6u1, yu4u5u6y, and xyu4u1u2x forms a K ′

3,3 in T ; if (u2, y) ∈ A, then
the union of the three cycles u1u2u5u6u1, yu4u1u2y, and xyu4u5u6x also forms a K ′

3,3 in T . So
we assume that {(y, u6), (y, u2)} ⊆ A. It follows that a K3,3 is formed in T by the three cycles
xyu6u1x, xyu2u5x, and u1u2u5u6u1.
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• z = u4. Then u1 and u5 are the only out-neighbors of y in D′. Thus the union of the three
cycles u1u2u5u6u1, xyu5u6x, and xyu1u2x forms a K3,3 in T .

• z = u6. Then u1 and u7 are the only out-neighbors of y in D′. It follows that the union of
the three cycles u1u2u3u4u1, xyu7u3u4x, and xyu1u2x forms a K ′

3,3 in T .
• z = u1. Then u2 is the only out-neighbor of y in D′. If {(u4, y), (u6, y)} ⊆ A, then the

union of the three cycles yu2u3u4y, yu2u5u6y, and u3u4u5u6u7u3 forms a K ′
3,3 in T . So we

assume that at least one of (y, u4) and (y, u6) is in A.
Consider the first subcase when (y, u4) ∈ A. If (u6, u2) ∈ A, then the union of the three

cycles xyu2u3x, xyu4u5x, and u2u3u4u5u6u2 forms a K ′
3,3 in T ; if (y, u7) ∈ A, then the union

of the three cycles xyu7u3x, xyu4u5x, and u3u4u5u6u7u3 forms a K ′
3,3 in T . So we assume that

{(u2, u6), (u7, y)} ⊆ A. If (u4, u6) ∈ A, then a K ′
3,3 is formed by the three cycles yu2u6u7y,

u3u4u6u7u3, and xyu2u3u4x; if (u3, u5) ∈ A, then a K ′
3,3 is formed by the three cycles yu2u6u7y,

u3u5u6u7u3, and xyu2u3u5x. So we further assume that {(u6, u4), (u5, u3)} ⊆ A. It follows that
the union of the three cycles u3u6u4u5u3, xyu4u5x, and xyu2u3u6x forms a K ′

3,3.
Consider the second subcase when (y, u6) ∈ A. If (u7, u2) ∈ A, then the union of the

three cycles xyu2u3x, u2u3u6u7u2, and xyu6u7x forms a K3,3; if (y, u3) ∈ A, then a K ′
3,3

is formed by the three cycles xyu6u7x, xyu3u4x, and u3u4u5u6u7u3; if (u4, u6) ∈ A, then a
K ′

3,3 is formed by the three cycles xyu6u7x, u3u4u6u7, and xyu2u3u4x. So we assume that
{(u2, u7), (u3, y), (u6, u4)} ⊆ A. If (u5, u3) ∈ A, then a K ′

3,3 is formed by the three cycles
u3u6u4u5u3, xyu6u4x, and xyu2u5u3x; if (u4, u2) ∈ A, then a K3,3 is formed by the three cycles
xyu2u3x, xyu6u4x, and u2u3u6u4u2. So we further assume that {(u3, u5), (u2, u4)} ⊆ A. Now
if (y, u5) ∈ A, then the union of the three cycles u3u5u6u7u3, xyu5u6x, and xyu2u7u3x forms a
K ′

3,3; if (u5, y) ∈ A, then the union of the three cycles yu2u7u3y, yu2u4u5y, and u3u4u5u6u7u3
also forms a K ′

3,3.
• z = u5. Then u6 is the only out-neighbor of y in D′. If (y, u2) ∈ A, then the union of the

three cycles u1u2u3u6u1, xyu2u3x, and xyu6u1x forms a K3,3 in T . So we assume that (u2, y) ∈
A. If (u4, y) ∈ A, then the union of the three cycles yu6u1u2y, u1u2u3u4u1, and yu6u7u3u4y
forms a K ′

3,3 in T . So we also assume that (y, u4) ∈ A. If (u1, u7) ∈ A, then a K ′
3,3 is formed by

the three cycles u1u7u3u4u1, xyu4u1x, and xyu6u7u3x. So we further assume that (u7, u1) ∈ A.
If (y, u7) ∈ A, then a K ′

3,3 is formed by the three cycles u1u2u3u4u1, u1u2yu7u1, and xyu7u3u4x.
Similarly, if (y, u3) ∈ A, then a K ′

3,3 is formed by the three cycles u1u2u3u4u1, xyu3u4x, and
xyu6u1u2x; if (y, u1) ∈ A, then a K ′

3,3 is formed by the three cycles xyu1u2x, xyu6u7x, and
u1u2u3u6u7u1. Thus it remains to consider the subcase when {(u7, y), (u3, y), (u1, y)} ⊆ A. If
(u2, u7) ∈ A, then a K ′

3,3 is formed by the three cycles u1u2yu6u1, yu6u7u3y, and u1u2u7u3u4u1.
So we assume that (u7, u2) ∈ A. If (u6, u4) ∈ A, then a K ′

3,3 is formed by the three cycles
yu6u4u1y, u1u2u3u4u1, and yu6u7u2u3y. So we also assume that (u4, u6) ∈ A. If (u4, u7) ∈ A,
then a K ′

3,3 is formed by the three cycles yu4u6u1y, u1u2u3u6u1, and yu4u7u2u3y. So we further
assume that (u7, u4) ∈ A.

From the above observations, we conclude that u7 has a unique in-neighbor u6 in the sub-
tournament T ′ of T induced by V (D′). If {(u6, u2), (u2, u4)} ⊆ A, then an M∗

5 is formed by the
five cycles yu4u1y, u1u2u4u1, u2u4u6u2, u4u6u7u4, and yu6u7u1y. If (u2, u6) ∈ A, then a K3,3

is formed by u1u2u3u4u1, u3u4u6u7u3, and u1u2u6u7u1; if (u4, u2) ∈ A, then the union of the
three cycles u1u2u3u6u1, yu4u2u3y, and yu4u6u1y also forms a K3,3 in T .

• z = u7. Then u3 is the only out-neighbor of y in D′. If (u6, y) ∈ A, then the union of
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the three cycles u1u2u5u6u1, u1u2u3u4u1, and yu3u4u5u6y forms a K ′
3,3 in T ; if (y, u1) ∈ A,

then a K3,3 is formed in T by the three cycles u1u2u3u4u1, xyu1u2x, and xyu3u4x. So we
assume that {(y, u6), (u1, y)} ⊆ A. If (u1, u3) ∈ A, then a K ′

3,3 is formed by xyu6u1x, xyu3u4x,
and u1u3u4u5u6u1; if (u4, u6) ∈ A, then the union of the three cycles xyu6u1x, xyu3u4x, and
u1u2u3u4u6u1 forms a K ′

3,3 in T ; if (y, u2) ∈ A, then the union of the three cycles u1u2u5u6u1,
xyu6u1x, and xyu2u5x forms aK3,3 in T . So we further assume that {(u3, u1), (u6, u4), (u2, y)} ⊆
A. Depending on whether (u5, y) ∈ A, we distinguish between two subcases.

Consider the first subcase when (u5, y) ∈ A. If (u4, u2) ∈ A, then a K ′
3,3 is formed in T by

the three cycles u1u2u5u6u1, yu3u6u1y, and yu3u4u2u5y. So we assume that (u2, u4) ∈ A. If
(u6, u2) ∈ A, then a K3,3 is formed by the three cycles u2u4u5u6u2, yu3u6u2y, and yu3u4u5y.
So we further assume that (u2, u6) ∈ A. If (u4, y) ∈ A, then a K3,3 is formed in T by the three
cycles u1u2u6u4u1, yu3u6u4y, and yu3u1u2y in T ; if (y, u4) ∈ A, then a K ′

3,3 is formed in T by
the three cycles xyu6u1x, xyu4u5x, and u1u2u4u5u6u1.

Consider the second subcase when (y, u5) ∈ A. If (y, u4) ∈ A, then a K ′
3,3 is formed by

the three cycles xyu5u6x, xyu4u1x, and u1u2u5u6u4u1. So we assume that (u4, y) ∈ A. If
(u2, u6) ∈ A, then a K3,3 is formed by the three cycles u1u2u6u4u1, yu3u6u4y, and yu3u1u2y. So
we also assume that (u6, u2) ∈ A. If (u2, u4) ∈ A, then a K ′

3,3 is formed in T by the three cycles
u2u4u5u6u2, xyu6u2x, and xyu3u4u5x; if (u5, u3) ∈ A, then a K3,3 is formed in T by the three
cycles xyu6u2x, xyu5u3x, and u2u5u3u6u2. Thus we further assume that {(u4, u2), (u3, u5)} ⊆ A.
It follows that a K ′

3,3 is formed in T by the three cycles u2u5u6u4u2, yu3u4u2y, and yu3u5u6u1y.

Case 3. D = M5. In this case, u1 and u6 are symmetric, so are u2 and u5.
• z = u4. Then vertices u2 and u5 are the only out-neighbors of y in D′. If (u3, y) ∈ A, then

an M5 is formed in T by the five cycles u3u6u5u3, yu5u3y, yu2u3y, u1u2u3u1, and u1u2u6u5u1. If
(y, u3) ∈ A, then a K ′

3,3 is formed in T by the three cycles xyu5u1x, xyu3u6x, and u1u2u3u6u5u1.
• z = u5. Then u1 and u3 are the only out-neighbors of y in D′. If (u4, u1) ∈ A, then

a K3,3 is formed by the three cycles u1u2u3u4u1, xyu1u2x, and xyu3u4x. So we assume that
(u1, u4) ∈ A. If (y, u4) ∈ A, then a K3,3 is formed by the three cycles u1u4u2u3u1, xyu4u2x, and
xyu3u1x. Thus we further assume that (u4, y) ∈ A. It follows that an M5 is formed in T by the
five cycles u1u2u3u1, u2u3u4u2, yu3u4y, xyu3x, and xyu1u2x.

• z = u6. Then u5 is the only out-neighbor of y in D′. If {(u2, y), (u3, y)} ⊆ A, then an
M5 is formed in T by the five cycles u3u4u5u3, yu5u3y, u2u3u4u2, u1u2u3u1, and yu5u1u2y.
Otherwise, if (y, u2) ∈ A, then a K ′

3,3 is formed in T by the three cycles xyu5u1x, xyu2u3x, and
u1u2u3u4u5u1; if (y, u3) ∈ A, then a K ′

3,3 is formed in T by the three cycles xyu5u1x, xyu3u4x,
and u1u2u3u4u5u1.

• z = u3. Then u1, u4, and u6 are the only out-neighbors of y in D′. If {(u5, y), (u2, y)} ⊆ A,
then an M5 is formed in T by the five cycles yu6u5y, yu4u5y, yu4u2y, yu1u2y, and u1u2u6u5u1.
Suppose at least one of (y, u5) and (y, u2) is in T . If both (y, u5) and (y, u2) are in T , then a
K3,3 is formed by the three cycles u1u2u6u5u1, xyu5u1x, and xyu2u6x. So we assume that either
{(y, u5)(u2, y)} ⊆ A or {(y, u2), (u5, y)} ⊆ A.

Consider the first subcase when {(y, u5), (u2, y)} ⊆ A. If (u6, u4) ∈ A, then a K ′
3,3 is

formed in T by the three cycles xyu5u1x, xyu6u4x, and u1u2u6u4u5u1. So we may assume
that (u4, u6) ∈ A. If (u1, u4) ∈ A, then a K3,3 is formed in T by the three cycles u1u4u6u5u1,
xyu5u1x, and xyu4u6x. If (u4, u1) ∈ A, then a K ′

3,3 is formed in T by the the three cycles
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u1u2u6u5u1, yu4u1u2y, and xyu4u6u5x.
Consider the second subcase when {(y, u2), (u5, y)} ⊆ A. If (u6, u4) ∈ A, then a K ′

3,3 is
formed in T by the three cycles xyu4u5x, xyu2u6x, and u1u2u6u4u5u1. If (u1, u4) ∈ A, then a
K ′

3,3 is formed in T by the three cycles xyu2u6x, xyu1u4x, and u1u4u2u6u5u1. So we assume that
{(u4, u6), (u4, u1)} ⊆ A. Then a K ′

3,3 is formed in T by the three cycles u1u2u6u5u1, yu4u6u5y,
and xyu4u1u2x.

Case 4. D = M∗
5 . In this case, u1 and u6 are symmetric, so are u2 and u5.

• z = u3. Then u5 and u2 are the only out-neighbors of y in D′. Thus a K3,3 is formed in T
by the three cycle u1u5u6u2u1, xyu2u1x, and xyu5u6x.

• z = u4. Then u3 is the only out-neighbor of y in D′. If both {(u2, y), (u5, y)} ⊆ A, then an
M∗

5 is formed by the five cycles u1u3u2u1, yu3u2y, yu3u5y, u3u5u6u3, and u1u5u6u2u1. So we
assume that at most one of (u2, y) and (u5, y) is in T . If (y, u2) ∈ A, then a K ′

3,3 is formed in T
by the three cycles u1u3u5u6u2u1, xyu2u1x, and xyu3u5x; if (y, u5) ∈ T , then a K ′

3,3 is formed
in T by the three cycles xyu3u2x, xyu5u6x, and u1u5u6u3u2u1.

• z = u6. Then u2 and u3 are the only out-neighbors of y in D′. If (u5, y) ∈ A, then an
M∗

5 is formed in T by the five cycles u1u3u2u1, u2u4u3u2, u3u5u4u3, yu3u5y, and yu2u1u5y. If
(y, u5) ∈ A, then a K ′

3,3 is formed in T by the three cycles xyu5u4x, xyu2u1x, and u1u5u4u3u2u1.
• z = u5. Then u4 and u6 are the only out-neighbors of y in D′. Observe that if both (u3, y)

and (u1, y) are arcs in T , then an M∗
5 is formed in T by the five cycles u1u3u2u1, u2u4u3u2,

yu4u3y, yu6u3y, and yu6u2u1y. So we assume that at least one of (y, u3) and (y, u1) is in T .
Suppose (u4, u1) ∈ A. If (u1, u6) ∈ A, then a K3,3 is formed in T by the three cycles

u1u6u2u4u1, xyu4u1x, and xyu6u2x; if (y, u3) ∈ A, then a K3,3 is formed in T by the three
cycles u1u3u2u4u1, xyu4u1x, and xyu3u2x. So we assume that {(u6, u1), (u3, y)} ⊆ A. Then a
K ′

3,3 is formed in T by the three cycles u1u3u2u4u1, yu6u1u3y, and xyu6u2u4x.
Suppose (u1, u4) ∈ A. If (y, u2) ∈ A, then a K3,3 is formed by the three cycles u1u4u3u2u1,

xyu2u1x, and xyu4u3x. So we assume that (u2, y) ∈ A. Consider the subcase when (u1, y) ∈ A.
Now (y, u3) ∈ A. If (u4, u6) ∈ A, then the union of the three cycles u2u4u6u3u2, xyu4u6x,
and xyu3u2x forms a K3,3 in T ; if (u6, u4) ∈ A, then the union of the three cycles u1u4u3u2u1,
yu6u2u1y, and xyu6u4u3x forms a K ′

3,3 in T . Next, consider the subcase when (y, u1) ∈ A. If
(y, u3) ∈ A, then the union of the three cycles u1u4u3u2u1, xyu1u4x, and xyu3u2x forms a K3,3

in T ; if (u4, u6) ∈ A, then the union of the three cycles u2u4u6u3u2, yu1u3u2y, and xyu1u4u6x
forms a K ′

3,3 in T . Suppose {(u3, y), (u6, u4)} ⊆ A. Then a K ′
3,3 is formed in T by the three

cycles u1u4u3u2u1, yu6u4u3y, and xyu6u2u1x.
Combining the above four cases, we establish (1). Therefore T is not Möbius-free, a contra-

diction.

3 A Chain Theorem

In this section we show that every i2s tournament T = (V,A) with |V | ≥ 5 can be constructed
from {F1, F2, F3, F4, F5} (see Figure 4) by repeatedly adding vertices such that all the interme-
diate tournaments are also i2s.

Theorem 3.1. Let T = (V,A) be an i2s tournament with |V | ≥ 3. Then the following state-
ments hold:
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(i) If |V | = 3, then T = C3; if |V | = 4, then T = F0;

(ii) If |V | = 5, then T ∈ {F1, F2, F3};
(iii) If |V | = 6, then either T has a vertex z with T\z ∈ {F1, F2, F3} or T ∈ {F4, F5};
(iv) If |V | ≥ 7, then T has a vertex z such that T\z remains to be i2s.

We break the proofs of this theorem into a series of lemmas.

Lemma 3.2. Let T = (V,A) be a strong tournament. If |V | = 3, then T is C3; if |V | = 4, then
T is F0. (So T is strong iff it is i2s when |V | = 3 or 4.)

Proof. Since every strong tournament has a Hamilton cycle, it is clear that T = C3 if
|V | = 3 and T = F0 if |V | = 4. Note that both C3 and F0 are i2s, so T is strong iff it is i2s
when |V | = 3 or 4.

Lemma 3.3. Let T = (V,A) be an i2s tournament. If |V | = 5, then T ∈ {F1, F2, F3}.

Proof. If T\u is strong for each u ∈ V , then both the in-degree and out-degree of each
vertex equal two, and hence T is isomorphic to F1.

So we assume that T\u has a trivial dicut (X,Y ) for some u ∈ V . Since each Fi is isomorphic
to its reverse for i = 1, 2, 3, replacing T by its reverse if necessary, we may assume that |X| = 1
and |Y | = 3. Let X = {x} and Y = {y1, y2, y3}. Since T\u is internally strong, Y induces a C3.
Since T is strong, (u, x) ∈ A, and u has at most two out-neighbors in Y . If u has exactly two
out-neighbors in Y , say y1 and y2 (by symmetry), then ({u, x}, {y1, y2}) would be a nontrivial
dicut of T\y3, a contradiction. So u has at most one out-neighbor in Y . If u has no out-neighbors
in Y , then all arcs between Y and u are directed to u, so T is isomorphic to F2. If u has only
one out-neighbor in Y , then T is isomorphic to F3.

Combining the above observations, we conclude that T ∈ {F1, F2, F3}.

The following lemma strengthens a classical theorem, asserting that every strong tournament
contains a Hamilton cycle.

Lemma 3.4. Let T = (V,A) be a strong tournament and let x and y be two distinct vertices
of T . Then T has a third vertex z such that T\z is still strong, unless T has a Hamilton path
between x and y such that the remaining arcs are all backward.

Proof. Since T is strong, it has a Hamilton cycle C. Let us first consider the case when
(1) T has a strong subgraph S containing both x and y with |V (S)| < |V |.

For notational simplicity, we assume that, subject to (1), S is chosen so that |V (S)| is as large
as possible. Then the vertices of S are consecutive on C. Let P = C\V (S). If P has only
one vertex, then we are done. So we assume that P has two or more vertices. Let s and t be
the initial and terminal vertices of P , respectively. Using the maximality assumption on S, we
see that {(v, s), (t, v)} ⊆ A for any vertex v in S. We claim that P contains no vertex other
than s and t, for otherwise, let z be an internal vertex of P and let v be a vertex in S. Then
either S ∪C[s−, z]∪ {(z, v)} or S ∪C[z, t+]∪ {(v, z)} would be a strong subgraph of T properly
containing S; this contradiction to (1) justifies the claim. Since {(v, s), (t, v)} ⊆ A for all vertices
v in S, we deduce that T\z is strong for any vertex z in S\{x, y}.
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Next, let us consider the case when (1) does not occur. Renaming x and y if necessary, we
may assume that (x, y) ∈ A. From the hypothesis of the present case, we deduce that (x, y) is
an arc on C, {(x, y+), (x−, y)} ⊆ A, and {(x, v), (v, y)} ⊆ A for any v ∈ V \{x, y, x−, y+}. Thus
C\(x, y) is a Hamilton path from y to x such that the remaining arcs are all backward.

Corollary 3.5. Let T = (V,A) be a strong tournament with |V | ≥ 4 and let x be a vertex in T .
Then there exists a vertex z ̸= x such that T\z is strong.

Proof. Let y be a vertex of T with y ̸= x. By Lemma 2.3,
• either T has a vertex z ̸= x, y such that T\z is strong
• or T has a Hamilton path between x and y such that the remaining arcs are all backward.

In the former case z is a desired vertex, and in the latter case y is as desired.

A digraph is called trivial if it contains only one vertex. The following lemma on strong
partitions of tournaments (see Section 1) is straightforward, so we omit its proof here.

Lemma 3.6. Let T = (V,A) be an internally strong tournament and let (A1, A2, . . . , Ap) be the
strong partition of T . If |V | ≥ 3, then one of the following statements holds:

(i) p = 1; A1 is nontrivial;

(ii) p = 2; exactly one of A1 and A2 is nontrivial;

(iii) p = 3; both A1 and A3 are trivial.

The lemma below follows instantly from the preceding one.

Lemma 3.7. Let T = (V,A) be an i2s tournament, let x be a vertex in T , and let (A1, A2, . . . , Ap)
be the strong partition of T\x. Then 1 ≤ p ≤ 3. (The value of p is called the type of x in T ).

For convenience, we shall not distinguish each Ai from its vertex set V (Ai) in subsequent
proofs, if there is no risk of confusion. Thus |Ai| = |V (Ai)|.

The following two lemmas guarantee the existence of a vertex z in an i2s tournament T with
at least six vertices such that T\z remains to be i2s.

Lemma 3.8. Let T = (V,A) be an i2s tournament with |V | ≥ 6. If T contains a vertex x of
type 3 (see Lemma 3.7), then it contains a vertex z such that T\z remains to be i2s.

Proof. Let (A1, A2, A3) be the strong partition of T\x. Since x is of type 3, |A1| = |A3| = 1
by Lemma 3.6. So |A2| ≥ 3. Let zi be the only vertex in Ai for i = 1, 3. Since T is i2s, both
(x, z1) and (z3, x) are arcs in T . Furthermore, x has at least one in-neighbor x1 and at least one
out-neighbor x2 in A2. If there exists z ∈ A2\{x1, x2} such that A2\z is strong, then T\z is i2s.
Otherwise, by Lemma 3.4, A2 has a Hamilton path between x1 and x2 such that the remaining
arcs of A2 are all backward. Let z = x2 if x1 is the only in-neighbor of x in A2 and let z = x1
otherwise. Then A2\z is strong and has at least one in-neighbor and at least one out-neighbor
of x. Therefore T\z is i2s.

Lemma 3.9. Let T = (V,A) be an i2s tournament with |V | ≥ 6 and T /∈ {F4, F5} (see Figure
4). Then T contains a vertex z such that T\z remains to be i2s.
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Proof. We proceed by contradiction. By a triple (T ;x, y) we mean an i2s tournament
T = (V,A) with |V | ≥ 6 and T /∈ {F4, F5} such that T\z is not i2s for any vertex z, together
with two distinguished vertices x and y in T . Choose a triple (T ;x, y) such that

(1) T\x is strong while T\{x, y} is not internally strong;
(2) subject to (1), letting (A1, A2, . . . , Ap) be the strong partition of T\{x, y}, A1 contains

an out-neighbor x′ of x; and
(3) subject to (1) and (2), the tuple (|A1|, |A2|, ..., |Ap|) is minimized lexicographically.

Let us show that such a triple is available. By Corollary 3.5, there exists a triple (T ;x, y)
satisfying (1). To verify the existence of a triple (T ;x, y) satisfying both (1) and (2), note that
if x has no out-neighbor in A1, then it must have an in-neighbor in Ap, for otherwise, y would
be of type 3, and hence T\z would be i2s for some vertex z by Lemma 3.8, a contradiction.
Since each of F4 and F5 is isomorphic to its reverse, replacing T by T ∗ if necessary, we see that
a triple (T ;x, y) with properties (1) and (2) (and hence the desired one) exists.

Let us make some simple observations about the triple (T ;x, y). Since |V | ≥ 6, by (1) we
have

(4) p ≥ 2, and y has an out-neighbor y′ in A1 and an in-neighbor y′′ in Ap.
(5) If p = 2, then x has an in-neighbor in Ap.
Otherwise, since |V | ≥ 6 and T\y is internally strong, |A2| = 1 and |A1| ≥ 3, which implies

that T\{x, y} is internally strong, this contradiction justifies (5).
Once again, since T\y is internally strong, the statement below follows instantly from Lemma

3.6.
(6) If p ≥ 3 and x has no in-neighbor in Ap, then |Ap| = 1 and x has an in-neighbor in Ap−1.

Since Ai is strong, either |Ai| = 1 or |Ai| ≥ 3 for 1 ≤ i ≤ p. Let Ai = {ai} for each i with
|Ai| = 1 hereafter. We divide the remainder of the proof into a series of claims.

Claim 1. |A1| = 1.
Assume the contrary: |A1| ≥ 3. Replacing x′ (resp. y′) by a second out-neighbor of x

(resp. y) in A1 if necessary, we may assume that x′ ̸= y′, for otherwise, x′ = y′ is the unique
out-neighbor of both x and y in A1. Since T\x′ is internally strong and A1\x′ has no incoming
arcs, |A1\x′| ≤ 1 and thus |A1| ≤ 2, contradicting the assumption on |A1|. By Lemma 3.4, one
of (7), (8), and (9) holds:

(7) A1\{x′, y′} has a vertex z such that A1\z is strong.
(8) |A1| = 3. Renaming the vertices in A1 as x

′, y′, z if necessary, we assume that both (x, x′)
and (y, y′) are arcs in T , and that if three vertices in A1 are all out-neighbors of x, then (y′, x′)
is an arc in T ; otherwise, if three vertices in A1 are all out-neighbors of y, then (x′, y′) is an arc
in T .

(9) |A1| ≥ 4 and A1 has a Hamilton path P between x′ and y′ such that the remaining arcs
in A1 are all backward. Furthermore, we may assume that both (v, x) and (v, y) are arcs in T
for any v ∈ A1\{x′, y′}, for otherwise, (7) holds true by replacing x′ or y′ (which is z) with v.

Let z be as specified in (7) or (8), whichever holds, and let z be the terminal vertex of
P\{x′, y′} if (9) holds. Clearly, T\z is strong. We propose to prove that T\z is i2s, which
amounts to saying that

(10) T\{w, z} is internally strong for each w ∈ V \z.
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From (5), (6), and the definition of z, we see that (10) holds trivially for any w ∈ ∪p−1
i=2Ai ∪

{x, y}. It remains to consider the following two cases.
Case 1.1. w ∈ Ap.
Depending on whether w = y′′ (see (4)), we distinguish between two subcases.
• w ̸= y′′. In this subcase, |Ap| ≥ 2. Thus x has at least one in-neighbor in Ap by (5) and

(6). Let (B1, B2, . . . , Bq) be the strong partition of Ap\w, let r be the largest subscript such
that Br contains an in-neighbor of x or y, and let B = ∪q

i=r+1Bi. Since B has no outgoing arcs
in T\w (which is internally strong), |B| ≤ 1. Let us show that T\{w, z} is internally strong, for
otherwise, x is a source and x′ is a near-source of T\{w, z}; in particular, (x′, y′) ∈ A. From the
descriptions of (7)-(9), we deduce that |A1| = 3 and (z, x) ∈ A. Consider the triple (T ; z, w). Let
(A′

1, A
′
2, . . . , A

′
t) be the strong partition of T\{z, w}. Then A′

1 = {x}. Since T\z is strong while
T\{z, w} is not internally strong, and |A′

1| < |A1|, the existence of the triple (T ; z, w) contradicts
the minimality assumption on (|A1|, |A2|, ..., |Ap|) in the choice of (T ;x, y) (see (1)-(3)).

• w = y′′. In this subcase, we may assume that y′′ is the only in-neighbor of y in Ap, for
otherwise, replacing y′′ by a second in-neighbor of y in Ap, we reduce the present subcase to the
preceding one. If x has an in-neighbor in Ap\w, then T\y is strong. Interchanging the roles of
x and y, we reduce the present subcase to the preceding one as well. Thus we further assume
that Ap\w contains no in-neighbors of x. Since T\w is internally strong, Ap = {w}. If w is an
in-neighbor of x, then the existence of the triple (T ∗;x, y) contradicts the minimality assumption
on (|A1|, |A2|, ..., |Ap|) in the choice of (T ;x, y) (see (1)-(3)). So w is an out-neighbor of x. By (5)
and (6), Ap−1 contains an in-neighbor of x. Let us show that T\{w, z} is internally strong, for
otherwise, y is a source and y′ is a near-source of T\{w, z}; in particular, both (y′, x′) and (y′, x)
are arcs in T . From the descriptions of (7)-(9), we deduce that |A1| = 3 and (z, y) ∈ A. Thus
the existence of the triple (T ; z, w) contradicts the minimality assumption on (|A1|, |A2|, ..., |Ap|)
in the choice of (T ;x, y) (see (1)-(3)).

Case 1.2. w ∈ A1\z.
Depending on whether (7), (8), or (9) holds, we distinguish between two subcases.
• (7) holds. In this subcase, let (B1, B2, ..., Bq) be the strong partition of A1\{w, z}, let r

be the smallest subscript such that Br contains an out-neighbor of x or y, and let B = ∪r−1
i=1Bi.

Then (T\{w, z})\B is strong. If |B| ≤ 1, then T\{w, z} is internally strong. So we assume that
|B| ≥ 2. Since T\w is internally strong and since B has no incoming arcs in T\{w, z}, T\w
contains at least one arc from z to B. Thus the triple (T ; z, w) is a better choice than (T ;x, y)
(see (1)-(3)) because |B| < |A1|, a contradiction.

• (8) or (9) holds. In this subcase, if w = x′, then T\{w, x, z} is strong, so T\{w, z} is
internally strong. If w = y′ and x has an in-neighbor contained in Ap, then T\{w, y, z} is
strong, so T\{w, z} is also internally strong; if w = y′ and x has no in-neighbor contained in
Ap, then x has an in-neighbor x′′ contained in Ap−1 by (5) and (6), and y has an out-neighbor

contained in {x}∪(A1\y′)∪(∪p−1
i=2Ai) (as T\y′ is internally strong), and hence T\{w, z} is strong.

Suppose w /∈ {x′, y′}. In view of (5) and (6), it is clear that T\{w, z} is strong.
Combining the above two cases, we establish (10) for all w ∈ Ap ∪ (A1\z) and hence for all

w ∈ V \z. So T\z is i2s; this contradiction justifies Claim 1.

Claim 2. |A2| = 1.
Assume the contrary: |A2| ≥ 3. Since T\a1 is internally strong, A2 contains a vertex a2
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which is an out-neighbor of x or y. If |A2| ≥ 4, let z be a vertex in A2\a2 such that A2\z is
strong (see Corollary 3.5); if |A2| = 3, let z be the vertex in A2 with (z, a2) ∈ A. Since T is i2s
and since x has an in-neighbor in Ap−1 ∪Ap by (5) and (6), T\z is strong. We propose to show
that T\z is i2s, which amounts to saying that

(11) T\{w, z} is internally strong for each w ∈ V \z.
From (5), (6), and the definition of z, we see that (11) holds trivially for any w ∈ {x, y} ∪

(A2\z) ∪ (∪p−1
i=3Ai). It remains to consider the following two cases.

Case 2.1. w = a1.
In this case, if a2 is an out-neighbor of y, then T\{a1, x, z} is strong and hence T\{a1, z} is

internally strong. So we assume that a2 is an out-neighbor of x. If x has an in-neighbor in Ap,
then T\{a1, y, z} is strong and hence T\{a1, z} is internally strong. So we further assume that
x has no in-neighbor in Ap. Then |Ap| = 1 and x has an in-neighbor in Ap−1 by (5) and (6).

We claim that y has an out-neighbor in {x} ∪ (A2\z) ∪ (∪p−1
i=3Ai), for otherwise, let B = {y, y′′}

and B̄ = V \{a1, y, y′′, z}. Then (B̄, B) is a nontrivial dicut in T\{a1, z}, so T\{a1, z} is not
internally strong. Therefore the existence of the triple (T ∗; z, a1) contradicts the minimality
assumption on (|A1|, |A2|, ..., |Ap|) in the choice of (T ;x, y) (see (1)-(3)). It follows instantly
from the claim that T\{a1, z} is strong.

Case 2.2. w ∈ Ap.
Depending on whether w = y′′, we distinguish between two subcases.
• w ̸= y′′. In this subcase, |Ap| ≥ 2. So x has an in-neighbor in Ap by (5) and (6). Let

(B1, B2, ..., Bq) be the strong partition of Ap\w, let r be the largest subscript such that Br

contains an in-neighbor of x or y, and let B = ∪q
i=r+1Bi. Since B has no outgoing arcs in T\w

(which is internally strong), |B| ≤ 1. Clearly, (T\{w, z})\B is strong, so T\{w, z} is internally
strong.

• w = y′′. In this subcase, we may assume that y′′ is the only in-neighbor of y in Ap, for
otherwise, replacing y′′ by a second in-neighbor of y in Ap, we reduce the present subcase to the
preceding one. If x has an in-neighbor in Ap\w, then T\y is strong. Interchanging the roles of
x and y, we reduce the present subcase to the preceding one as well. So we assume that Ap\w
contains no in-neighbors of x. Since T\w is internally strong, |Ap\w| ≤ 1, so |Ap| ≤ 2. Since Ap

is strong, we have Ap = {w}. If w is an out-neighbor of x, then x has an in-neighbor in Ap−1 by
(5) and (6). Thus T\{w, y, z} is strong and hence T\{w, z} is internally strong. So we further
assume that w is an in-neighbor of x. If Ap−1 contains an in-neighbor of x or y, then T\{w, z}
is also internally strong; if Ap−1 contains no in-neighbor of x or y, then (∪p−2

i=1Ai ∪ {x, y}, Ap−1)
is a dicut in T\w. Since T\w is internally strong, |Ap−1| = 1. Thus the existence of the triple
(T ∗;x, y) contradicts the minimality assumption on (|A1|, |A2|, ..., |Ap|) in the choice of (T ;x, y)
(see (1)-(3)).

Combining the above two cases, we establish (11) for all w ∈ {a1} ∪ Ap and hence for all
w ∈ V \z. So T\z is i2s; this contradiction justifies Claim 2.

Claim 3. At least one of (x, a2) and (y, a2) is an arc in T .
Assume the contrary: both (a2, x) and (a2, y) are arcs in T . By (5) and (6), x has an in-

neighbor in Ap−1 ∪Ap, so T\a2 is strong. We propose to show that T\a2 is i2s, which amounts
to saying that

(12) T\{w, a2} is internally strong for each w ∈ V \a2.
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Clearly, (12) holds for w ∈ ∪p−1
i=3Ai ∪ {x, y}. It remains to consider the following two cases.

Case 3.1. w = a1.
Since T\a1 is internally strong, A3 contains an out-neighbor of x or y. If A3 contains an

out-neighbor of y, then T\{a1, x, a2} is strong, and hence T\{a1, a2} is internally strong. So
we assume that A3 contains an out-neighbor of x. If Ap contains an in-neighbor of x, then
T\{a1, y, a2} is strong, so T\{a1, a2} is internally strong. If Ap contains no in-neighbor of x,
then |Ap| = 1 and x has an in-neighbor in Ap−1 by (5) and (6). Thus {x} ∪ A3 ∪ . . . ∪ Ap−1

induces a strong sub-tournament. Since T\a1 is internally strong, y has an out-neighbor in
{x} ∪A4 ∪ . . . ∪Ap−1. It follows that T\{a1, a2} is strong.

Case 3.2. w ∈ Ap.
Depending on whether w = y′′, we distinguish between two subcases.
• w ̸= y′′. In this subcase, the argument is exactly the same as the one employed in Case

2.2 when w ̸= y′′.
• w = y′′. In this subcase, we may assume that Ap = {w} and w is an in-neighbor of x (see

the proof in Case 2.2 when w = y′′). If Ap−1 contains an in-neighbor of x or y, then T\{w, a2} is

internally strong; otherwise, (∪p−2
i=1Ai ∪ {x, y}, Ap−1) is a dicut in T\w, so |Ap−1| = 1. If p = 4,

then T is isomorphic to F4 (see its labeling in Figure 3) under the mapping

(a1, a2, a3, a4, {x, y}) → (v5, v6, v2, v3, {v1, v4}),

contradicting the hypothesis. So p ≥ 5. Thus Ap−2 contains an in-neighbor of x or y, for

otherwise (∪p−3
i=1Ai∪{x, y}, Ap−1∪Ap−2) would a nontrivial dicut in T\w, contradicting the fact

that T\w is internally strong. It follows that T\{w, a2} is internally strong, in which ap−1 is a
sink and possible y is a source.

Combining the above two cases, we establish (12) for all w ∈ {a1} ∪ Ap and hence for all
w ∈ V \a2. So T\a2 is i2s; this contradiction justifies Claim 3.

Claim 4. Let k be the largest subscript such that Ak contains an in-neighbor of x. Then
k = 3.

Assume the contrary: k ̸= 3. Since |V | ≥ 6 and |A1| = |A2| = 1 by Claims 1 and 2, we have
p ≥ 3. If p = 3, then |Ap| ≥ 2, so x has an in-neighbor in Ap by (5) and (6) and hence k = 3,
this contradiction implies that p ≥ 4. We propose to show that

(13) T\z is i2s for some vertex z of T .
Depending on the size of Ap and value of p, we distinguish among three cases.
Case 4.1. |Ap| ≥ 3.
In this case, x has an in-neighbor x′′ in Ap by (5) and (6). Let z be an arbitrary vertex in

A3. Clearly, T\z is strong. We aim to show that (13) holds for this z. By Claim 3, at least one
of (x, a2) and (y, a2) is in T . Thus T\{w, z} is internally strong for w ∈ ∪p−1

i=3Ai ∪ {x, y, a1, a2}.
To establish this statement for w ∈ Ap, we consider two subcases.

• w ̸= y′′. In this subcase, the argument is exactly the same as that employed in Case 2.2
when w ̸= y′′.

• w = y′′. In this subcase, we may assume that w is the only in-neighbor of y in Ap. Observe
that x has an in-neighbor in Ap\w, for otherwise, since T\w is internally strong, |Ap\w| ≤ 1, so
|Ap| ≤ 2, a contradiction. Interchanging the roles of x and y, we reduce the present subcase to
the preceding one.
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Case 4.2. |Ap| = 1 and p ≥ 5.
In this case, x has an in-neighbor in Ap−1 ∪ Ap by (5) and (6). To prove (13), we proceed

by considering two subcases.
• A3 contains an out-neighbor of y. In this subcase, let us show that T\a2 is i2s. Clearly,

T\a2 is strong, and T\{a2, w} is internally strong for any w ∈ ∪p−1
i=3Ai ∪ {a1, x, y}. If Ap−1

contains an in-neighbor of x or y, then T\{a2, ap} is internally strong. So we assume that Ap−1

contains no in-neighbor of x or y. Note that (∪p−2
i=1Ai ∪ {x, y}, Ap−1) is a dicut in T\ap. Since

T\ap is internally strong, |Ap−1| = 1. Since p ≥ 5, Ap−2 contains an in-neighbor of x or y, for

otherwise (∪p−3
i=1Ai ∪ {x, y}, Ap−1 ∪ Ap−2) would be a nontrivial dicut in T\ap, a contradiction.

It follows that T\{a2, ap} is internally strong, in which ap−1 is a sink and possible one of x and
y is a source.

• All vertices in A3 are in-neighbors of y. In this subcase, let z be an arbitrary vertex in
A3; let us show that T\z is i2s. Clearly, T\z is strong. Observe that if ap is an out-neighbor of

x, then ∪p−1
i=4Ai ∪ {a2, x} contains an out-neighbor of y, for otherwise (∪p−1

i=3Ai ∪ {a2, x}, {y, ap})
would be an nontrivial dicut in T\a1, a contradiction. It follows that T\{w, z} is internally
strong for any w ∈ ∪p−1

i=3Ai ∪ {x, y, a2} no matter whether (x, ap) is an arc in T . Let us make
two more observations.

(14) T\{a1, z} is internally strong. To justify this, note that if (y, a2) is an arc in T , then
T\{a1, x, z} is strong, so T\{a1, z} is internally strong. Thus we may assume that (a2, y) is an
arc in T . By Claim 3, (x, a2) is also in T . If ap is an in-neighbor of x, then T\{a1, y, z} is
strong and hence T\{a1, z} is internally strong; if ap is an out-neighbor of x, then x contains an

in-neighbor in Ap−1 by (6), and ∪p−1
i=4Ai ∪ {a2, x} contains an out-neighbor of y as observed in

the preceding paragraph. Thus (14) follows.
(15) T\{ap, z} is internally strong. To justify this, note that if Ap−1 contains an in-neighbor

of x or y, then T\{ap, z} is internally strong. If Ap−1 contains no in-neighbor of x or y, then

(∪p−2
i=1Ai ∪ {x, y}, Ap−1) is a dicut in T\ap, which implies that |Ap−1| = 1. Since p ≥ 5, Ap−2

contains an in-neighbor of x or y, for otherwise (∪p−3
i=1Ai ∪ {x, y}, Ap−1 ∪ Ap−2) is a nontrivial

dicut in T\ap, a contradiction. Thus (15) holds.
Case 4.3. |Ap| = 1 and p = 4.
In this case, (a4, x) is an arc in T by (5), (6), and the assumption k ̸= 3. Depending on the

size of A3, we consider two subcases.
• |A3| ≥ 3. In this subcase, A3 contains a vertex a3 which is an in-neighbor of x or y, because

T\a4 is internally strong. If |A3| = 3, let z be the vertex such that (a3, z) ∈ A3; if |A3| ≥ 4,
Corollary 3.5 guarantees the existence of a vertex z ∈ A3\a3 such that A3\z is strong. Let us
show that T\z is i2s. Clearly, T\z is strong, and T\{w, z} is internally strong for any w ̸= a1.
If (y, a2) is an arc in T , then T\{a1, x, z} is strong and hence T\{a1, z} is internally strong. If
(a2, y) is an arc in T , then so is (x, a2) by Claim 3. Since T\{a1, y, z} is strong, T\{a1, z} is
internally strong.

• |A3| = 1. In this subcase, if exactly one of (y, a3) and (x, a3) is an arc in T , then T\a2
is i2s. So we assume that either both (a3, y) and (a3, x) are in T or both (y, a3) and (x, a3)
are in T . If exactly one of (x, a2) and (y, a2) is in T , then T\a3 is i2s. So we further assume
that both (x, a2) and (y, a2) are in T by Claim 3. Thus both (a3, y) and (a3, x) are in T , for
otherwise, ({x, y}, {a1, a2, a3}) would be a dicut in T\a4, a contradiction. Now we can see that
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T is isomorphic to F5 (see its labeling in Figure 3) under the mapping

(a1, a2, a3, a4, {x, y}) → (v5, v2, v6, v3, {v1, v4}),

contradicting the hypothesis of the present lemma.
Combining the above three cases, we have proved (13); this contradiction justifies Claim 4.

Claim 5. p = 4.
Assume the contrary: p ̸= 4. Since |V | ≥ 6 and |Ai| = 1 for i = 1, 2, we have p ≥ 3. By

Claim 4, (5), and (6), we also have p ≤ 4. So p = 3 = k. Let x′′ be an in-neighbor of x in A3.
Replacing x′′ (resp. y′′) by a second in-neighbor of x (resp. y) in A3 if necessary, we may assume
that x′′ ̸= y′′, for otherwise, x′′ is the only in-neighbor of x and y in A3. Since T\x′′ is internally
strong, |A3\x′′| ≤ 1, so |A3| ≤ 2 and hence |A3| = 1, contradicting the hypothesis that |V | ≥ 6.
If all vertices in A3 are in-neighbors of both x and y, then T\z is i2s for any z ∈ A3 by Claim 3.

So we assume that A3 contains an out-neighbor of x or y. We propose to show that T\a2
is i2s. Clearly, T\a2, T\{x, a2}, and T\{y, a2} are all strong. By the hypothesis of the present
case, A3 ∪ {x} or A3 ∪ {y} induces a strong sub-tournament of T , so T\{a1, a2} is internally
strong. Let w be an arbitrary vertex in A3. Since x′′ ̸= y′′, symmetry allows us to assume that
w ̸= x′′. If A3\w is strong, then T\{w, a2} is internally strong; otherwise, let (B1, B2, ..., Bq) be
the strong partition of A3\w. Then q ≥ 2. Let r be the largest subscript such that Br contains
an in-neighbor of x or y and let B = ∪q

i=r+1Bi. Since (∪r
i=1Bi ∪ {a1, a2, x, y}, B) is a dicut in

T\w, we have |B| ≤ 1. If T\(B ∪ {a2, w}) = ∪r
i=1Bi ∪ {a1, x, y} is strong, then T\{w, a2} is

internally strong; otherwise, w is the only in-neighbor of y in A3 ∪ {x}. Since ∪r
i=1Bi ∪ {a1, x}

is strong, T\{w, a2} is also internally strong.
Combining the above observations, we see that T\z is i2s for some vertex z of T ; this

contradiction justifies Claim 5.

From (6) and Claims 4 and 5, we deduce that |A4| = 1 and (x, a4) is an arc in T . Depending
on the size of A3, we distinguish between two cases.

• |A3| ≥ 3. In this case, let x′′ be an in-neighbor of x in A3 (see Claim 4). If |A3| = 3, let z
be the vertex in A3 such that (x′′, z) is an arc; otherwise, let z be a vertex in A3\x′′ such that
A3\z is strong (see Corollary 3.5). Clearly, T\z is i2s. Let us show it is actually i2s; that is,
T\{w, z} is internally strong for any w ∈ V \z. This statement holds trivially when w ̸= a1. So
we assume that w = a1. If (y, a2) is an arc in T , then T\{a1, z} is strong; otherwise, by Claim
3, (x, a2) is an arc in T . So (A3\z) ∪ {a2, x} induces a strong sub-tournament of T . Since T\a1
is internally, (A3\z) ∪ {a2, x} contains an out-neighbor of y. Thus T\{a1, z} is strong.

• |A3| = 1. In this subcase, (a3, x) is an arc in T by Claim 4. If (y, a3) or (y, x) is an arc
in T , then T\a2 is i2s. So we assume that both (a3, y) and (x, y) are arcs in T . Since T\a1 is
internally strong, (y, a2) is an arc in T . Note that (a2, x) is an arc of T , for otherwise T would
be isomorphic to F4 (see its labeling in Figure 3) under the mapping

(a1, a2, a3, a4, x, y) → (v4, v1, v5, v2, v6, v3),

contradicting the hypothesis of the present lemma. It follows that T\a3 is i2s.
Combining the above two cases, we conclude that T contains a vertex z such that T\z re-

mains to be i2s; this contradiction proves the lemma.
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With the above preparations, we can establish the main result of this section now.

Proof of Theorem 3.1. The desired statements follow instantly from Lemmas 3.2, 3.3 and
3.9.

4 Structural Description

In this section we show that every i2s Möbius-free tournament comes from the list T0 of nine
sporadic tournaments, and every strong Möbius-free tournament different from F1 and G1 can
be obtained by repeatedly taking 1-sums starting from the seven tournaments in T1.

Proof of Theorem 1.2. Our proof is based on the chain theorem (Theorem 3.1), so it
consists in handling tournaments with at most seven vertices; in principle it can be carried
out by computer, and we indeed have such a proof. Nevertheless, the proof given below is
computer-free.

By Lemmas 3.2 and 3.3, we may assume that |V | ≥ 6. For convenience, we say that an i2s
Möbius-free tournament T ′ is an extension of T if T ′\v is isomorphic to T for some vertex v of
T ′.

Claim 1. G1 is the only extension of F1.
To justify this, let T be an extension of F1, let v6 be a vertex of T such that T\v6 is

isomorphic to F1, and label the vertices of T\v6 as in Figure 3 for F1. We propose to show
that T is isomorphic to G1. Since the in-degree and out-degree of each vertex in F1 are two, F1

enjoys a high degree of symmetry in which all vertices behave likewise.
Since T is strong, symmetry allows us to assume that v1 is an in-neighbor of v6. Then at

most one of (v6, v2) and (v6, v5) is in T , for otherwise, the union of the five cycles v1v6v5v1,
v1v3v5v1, v2v3v5v2, v2v4v5v2, and v1v6v2v4v1 would form an M∗

5 in T , a contradiction. Thus we
may proceed by considering the following three cases.

• Both (v2, v6) and (v5, v6) are in T . In this case, since T is strong, at most one of (v3, v6)
and (v4, v6) is contained in T . If both (v6, v3) and (v4, v6) are in T , then the five cycles v1v2v4v1,
v5v2v4v5, v1v3v4v1, v6v3v4v6, and v2v6v3v5v2 would form an M5. Similarly, if both (v3, v6) and
(v6, v4) are in T , then the five cycles v1v3v5v1, v2v3v5v2, v2v4v5v2, v6v4v5v6, and v1v3v6v4v1
would form an M5 in T as well. So both (v6, v3) and (v6, v4) are in T . Thus T is isomorphic
to G1, where (v1, v2, v3, v4, v5, v6) in T corresponds to (v2, v6, v4, v5, v1, v3) in G1 as labeled in
Figure 4.

• Both (v6, v2) and (v5, v6) are in T . In this case, (v6, v3) is in T , for otherwise, the five
cycles v1v3v4v1, v1v3v5v1, v2v3v5v2, v2v3v6v2, and v1v6v2v4v1 would form an M5, a contradiction.
If (v6, v4) is in T , then T is isomorphic to G1, where (v1, v2, v3, v4, v5, v6) in T corresponds to
(v2, v3, v4, v5, v1, v6) in G1 as labeled in Figure 3. If (v4, v6) is in T , then T is also isomorphic
to G1, where (v1, v2, v3, v4, v5, v6) in T corresponds to (v6, v4, v5, v1, v2, v3) in G1 as labeled in
Figure 4.

• Both (v2, v6) and (v6, v5) are in T . In this case, (v6, v4) is in T , for otherwise, the five
cycles v1v2v4v1, v1v3v4v1, v1v3v5v1, v1v6v5v1, and v2v4v6v5v2 would form an M5, a contradiction.
If (v6, v3) is in T , then T is isomorphic to G1, where (v1, v2, v3, v4, v5, v6) in T corresponds to
(v1, v2, v3, v4, v5, v6) in G1 as labeled in Figure 3. If (v3, v6) is in T , then T is also isomorphic
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to G1, where (v1, v2, v3, v4, v5, v6) in T corresponds to (v1, v2, v6, v4, v5, v3) in G1 as labeled in
Figure 4.

Combining the above observations, we see that G1 is the only extension of F1.

Claim 2. F2 has no extension.
Assume the contrary: T is an extension of F2 such that T\v6 is isomorphic to F2 for some

vertex v6 of T . Let us label the vertices of T\v6 as in Figure 3 for F2. Since T is i2s, v6 has
an in-neighbor in {v1, v3, v4}, for otherwise, ({v2, v6}, {v1, v3, v4}) would be a nontrivial dicut in
T\v5, a contradiction. By symmetry, we may assume that (v1, v6) is an arc in T . Next, v3 or
v4 is an out-neighbor of v6, for otherwise ({v1, v3, v4}, {v5, v6}) would be a nontrivial dicut in
T\v2. Depending on the direction of the arc between v6 and v3, we consider two cases.

• (v6, v3) is in T . In this case, if (v6, v5) is an arc in T , then the union of the three cycles
v1v6v3v4v1, v2v3v4v5v2, and v1v6v5v2v1 is a K3,3. So (v5, v6) is an arc in T . If (v4, v6) is an arc
in T , then the union of the five cycles v2v3v5v2, v6v3v5v6, v6v3v4v6, v1v3v4v1, and v1v5v2v4v1
would form an M∗

5 ; if (v6, v4) is an arc in T , then the union of the five cycles v2v4v5v2, v6v4v5v6,
v6v4v1v6, v3v4v1v3, and v1v3v5v2v1 would form an M∗

5 as well. Thus we reach a contradiction in
either subcase.

• (v3, v6) is in T . In this case, (v6, v4) is in T . If (v6, v5) is in T , then the union of the three
cycles v1v3v6v4v1, v2v3v6v5v2, and v1v5v2v4v1 would form a K3,3. Thus (v5, v6) is in T . But
then the union of the five cycles v2v4v5v2, v6v4v5v6, v6v4v1v6, v3v4v1v3, and v1v3v5v2v1 would
form an M∗

5 , a contradiction.
Combining the above observations, we see that F2 has no extension.

Claim 3. G2 and G3 are the only extensions of F3.
To justify this, let T be an extension of F3 such that T\v6 is isomorphic to F3 for some

vertex v6 of T . Let us label the vertices of T\v6 as in Figure 3 for F3. Since T is i2s, v6 has
at least one in-neighbor in {v1, v3, v4}, for otherwise ({v2, v6}, {v1, v3, v4}) would be a nontrivial
dicut in T\v5, a contradiction.

• (v6, v1) is in T . In this case, at most one of (v6, v3) and (v6, v4) is in T . Let us first consider
the subcase when (v4, v6) is in T . Now at most one of (v2, v6) and (v5, v6) is in T , for otherwise,
({v2, v4, v5}, {v1, v6}) would be a nontrivial dicut in T\v3. Next, (v5, v6) is in T , for otherwise,
the three cycles v1v3v4v6v1, v2v4v6v5v2, and v1v3v5v2v1 would form aK3,3. It follows that (v6, v2)
is also in T . If (v6, v3) is in T , then the five cycles v1v3v4v1, v6v3v4v6, v2v4v6v2, v2v4v5v2, and
v1v3v5v2v1 would form anM5; if (v3, v6) is in T , then the three cycles v1v3v6v2v1, v1v3v4v5v1, and
v6v2v4v5v6 would form a K3,3, a contradiction. It remains to consider the subcase when (v6, v4)
is in T . Thus (v3, v6) is also in T . If (v5, v6) is in T , then the five cycles v1v3v5v1, v2v3v5v2,
v2v4v5v2, v6v4v5v6, and v1v3v6v4v1 would form an M5, this contradiction implies that (v6, v5)
is an arc of T . If (v2, v6) is in T , then the three cycles v1v3v6v4v1, v2v6v4v5v2, and v1v3v5v2v1
would form a K3,3. So (v6, v2) is in T and thus T is isomorphic to G3, where (v1, v2, v3, v4, v5, v6)
in T corresponds to (v2, v3, v4, v1, v6, v5) in G3 as labeled in Figure 4.

• (v1, v6) is in T . Let us first consider the subcase when (v6, v3) is in T . Now (v5, v6) is in
T , for otherwise, the three cycles v1v6v3v4v1, v1v6v5v2v1, and v2v3v4v5v2 would form a K3,3. It
follows that (v4, v6) is in T , for otherwise the five cycles v2v4v5v2, v6v4v5v6, v1v6v4v1, v1v3v4v1,
and v1v3v5v2v1 would form an M∗

5 . Thus (v4, v6) is in T , which in turn implies that (v6, v2) is
in T , for otherwise ({v2, v4, v5}, {v1, v6}) would be a nontrivial dicut in T\v3. But then the five
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cycles v2v3v5v2, v2v4v5v2, v2v4v6v2, v2v1v6v2, and v1v6v3v5v1 would form an M5, a contradiction.
It remains to consider the subcase when (v3, v6) is in T . If (v6, v2) is in T , then the five cycles
v1v3v4v1, v1v3v5v1, v2v3v5v2, v2v3v6v2, and v1v6v2v4v1 would form an M5. Thus (v2, v6) is in
T . If (v6, v4) is in T , then the three cycles v1v3v6v4v1, v1v3v5v2v1, and v2v6v4v5v2 would form a
K3,3. Thus (v4, v6) is in T . Since T is strong, (v6, v5) must be in T . Therefore, T is isomorphic
to G2, where (v1, v2, v3, v4, v5, v6) in T corresponds to (v1, v5, v6, v3, v4, v2) in G2 as labeled in
Figure 4.

Combining the above observations, we see that G2 and G3 are the only extensions of F3.

Claim 4. F4 is Möbius-free while F5 is not.
It is routine to check that F4 contains none of the digraphs displayed in Figure 1, so F4 is

Möbius-free. Let us label F5 as in Figure 3. Then the union of the three cycles v1v5v3v4v1,
v2v6v3v4v2, and v1v5v2v6v1 forms a K3,3. Thus F5 is not Möbius-free.

Claim 5. G1 has no extension.
Assume the contrary: T is an extension of G1 such that T\v7 is isomorphic to G1 for some

vertex v7 of T . Let us label the vertices of T\v7 as in Figure 4 for G1. Depending on the
direction of the arc between v7 and v1, we distinguish between two cases.

• (v1, v7) is in T . In this case, (v5, v7) is in T , for otherwise, the union of the three cycles
v1v7v5v2v4v1, v2v6v3v5v2, and v1v6v3v4v1 would form a K ′

3,3. If (v7, v6) is in T , then the union
of the three cycles v1v7v6v4v1, v7v6v3v5v7, and v1v3v5v2v4v1 would form a K ′

3,3. Thus (v6, v7)
is in T , which in turn implies that (v2, v7) is in T , for otherwise, the union of the three cycles
v3v5v7v2v3, v1v6v7v2v4v1, and v1v6v3v5v1 would form a K ′

3,3. If (v7, v4) is in T , then the union
of the three cycles v2v6v3v5v2, v1v3v5v7v4v1, and v1v2v6v4v1 would form a K ′

3,3. Thus (v4, v7)
is in T . Since T is strong, (v7, v3) is in T . It follows that the union of the five cycles v1v2v4v1,
v5v2v4v5, v1v3v4v1, v7v3v4v7, and v2v7v3v5v2 would form an M5, a contradiction. Therefore G1

has no extension.
• (v7, v1) is in T . Note that G1 is isomorphic to its reverse under the mapping

(v1, v2, v3, v4, v5, v6) → (v5, v4, v6, v2, v1, v3).

So if T is an extension of G1, then T ∗ is also an extension of G1. If (v7, v5) appears in T , then
(v1, v7) is in T ∗ and hence the present case reduces to the preceding one. So we may assume that
(v5, v7) is in T , which implies that (v7, v3) is in T , for otherwise the union of the three cycles
v2v3v4v5v2, v1v2v3v7v1, and v1v6v4v5v7v1 would form a K ′

3,3. Thus (v7, v2) is in T , for otherwise,
the union of the five cycles v1v2v7v1, v1v2v4v1, v1v3v4v1, v1v3v5v1, and v2v7v3v5v2 would form
an M∗

5 . But then the union of the three cycles v2v6v5v7v2, v3v4v5v7v3, and v1v2v6v3v4v1 would
form a K ′

3,3, a contradiction.
Combining the above observations, we see that G1 has no extension.

Claim 6. Neither G2 nor G3 has an extension.
To justify this, observe that G3 is isomorphic to G∗

2 under the mapping

(v1, v2, v3, v4, v5, v6) → (v3, v5, v1, v4, v2, v6).

So if T is an extension of G2, then T ∗ is an extension of G3. Hence it suffices to show that G2

has no extension. Assume the contrary: T is an extension of G2 such that T\v7 is isomorphic to
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G2 for some vertex v7 of T . Let us label the vertices of T\v7 as in Figure 4 for G2. Depending
the direction of the arc between v7 and v1, we distinguish between two cases.

• (v7, v1) is in T . Let us first consider the subcase when (v3, v7) is in T . Now (v4, v7) is
in T , for otherwise, the union of the three cycles v1v6v4v5v1, v1v6v3v7v1, and v3v7v4v5v3 would
form a K3,3. Next, (v7, v5) is in T , for otherwise, the union of the three cycles v1v6v3v7v1,
v3v4v5v6v3, and v1v2v4v5v7v1 would form a K ′

3,3. If (v7, v6) is in T , then the union of the five
cycles v1v6v3v1, v7v6v3v7, v3v7v5v3, v3v4v5v3, and v1v6v4v5v1 would form an M5; if (v6, v7) is in
T , the the union of the three cycles v1v6v7v5v1, v1v6v3v4v1, and v7v5v3v4v7 would form a K3,3,
a contradiction. It remains to consider the subcase when (v7, v3) is in T . Now (v7, v2) is in
T , for otherwise, the union of the three cycles v1v6v3v4v1, v1v6v2v7v1, and v2v7v3v4v5v2 would
form a K ′

3,3. Since T is i2s, (v6, v7) must be in T , for otherwise ({v5, v7}, {v1, v6, v3, v2}) would
be a nontrivial dicut in T\v4. Thus (v7, v4) is in T , for otherwise the union of the three cycles
v1v6v7v3v1, v2v4v7v3v2, and v1v6v2v4v5v1 would form a K ′

3,3. But then the union of the three
cycles v1v6v7v3v1, v4v5v6v7v4, and v1v2v4v5v3v1 also forms a K ′

3,3, a contradiction.
• (v1, v7) is in T . Let us first consider the subcase when (v7, v6) is in T . If (v7, v4) is in T ,

then the union of the three cycles v1v7v6v3v1, v1v7v4v5v1, and v3v4v5v6v3 would form a K3,3;
if (v4, v7) is in T , then the union of the three cycles v1v7v6v3v1, v2v4v7v6v2, and v1v2v4v5v3v1
would form a K ′

3,3, a contradiction. It remains to consider the subcase when (v6, v7) is in T .
Now (v5, v7) is in T , for otherwise the union of the five cycles v1v6v3v1, v1v6v4v1, v4v5v6v4,
v7v5v6v7, and v1v7v5v3v1 would form an M5. Since T is i2s, (v7, v3) is in T , for otherwise
({v1, v3, v5, v6}, {v2, v7}) would be a nontrivial dicut in T\v4. But then the union of the three
cycles v1v6v7v3v1, v1v6v4v5v1, and v3v4v5v7v3 forms a K3,3, a contradiction.

Combining the above observations, we see that G2 has no extension.

Claim 7. F4 has no extension.
Assume the contrary: T is an extension of F4 such that T\v7 is isomorphic to F4 for some

vertex v7 of T . Let us label the vertices of T\v7 as in Figure 3 for F4. Depending on the direction
of the arc between v2 and v7, we distinguish between two cases.

• (v2, v7) is in T . In this case, (v5, v7) appears in T , for otherwise, the union of the three
cycles v1v2v3v4v1, v3v4v5v6v3, and v1v2v7v5v6v1 would form a K ′

3,3. Next, (v6, v7) is in T , for
otherwise, if (v3, v7) is in T , then the union of the three cycles v1v5v2v3v1, v1v5v6v4v1, and
v2v3v7v6v4v2 would form a K ′

3,3; if (v7, v3) is in T , then the union of the three cycles v1v5v3v4,
v2v7v3v4v2, and v1v5v2v7v6v1 would also form a K ′

3,3, a contradiction. Since T is i2s, at least
one of (v7, v1) and (v7, v4) is in T , for otherwise ({v6, v5, v1, v4}, {v2, v7}) would be a nontrivial
dicut in T\v3. Assume that (v7, v1) is in T . If (v7, v3) is in T , then the union of the three cycles
v1v5v3v4v1, v2v7v3v4v2, and v1v5v2v7v1 would form aK3,3; if (v3, v7) is in T , then the union of the
three cycles v1v5v6v7v1, v1v2v3v7v1, and v2v3v4v5v6v2 would form a K ′

3,3, a contradiction. Thus
(v1, v7) is in T and hence so is (v7, v4). Consequently, the union of the three cycles v1v5v6v3v1,
v7v4v5v6v7, and v1v7v4v2v3v1 forms a K ′

3,3, a contradiction.
• (v7, v2) is in T . Observe that F4 is isomorphic to its reverse under the mapping

(v1, v2, v3, v4, v5, v6) → (v4, v6, v5, v1, v3, v2).

If T is an extension of F4, then T ∗ is also an extension of F4. If (v7, v6) occurs in T , then (v2, v7)
occurs in T ∗, and hence the present case reduces to the preceding case. So we may assume
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(v6, v7) is in T .
Let us first consider the subcase when (v3, v7) is in T . Then (v5, v7) is in T , for otherwise,

the union of the five cycles v1v5v6v4v1, v1v2v3v4v1, and v2v3v7v5v6v2 would form a K ′
3,3, a

contradiction. If (v7, v4) is in T , then the union of the three cycles v1v5v7v4v1, v2v3v7v4v2, and
v1v5v2v3v1 would form a K3,3. So (v4, v7) is in T . Since T is i2s, (v7, v1) is in T , for otherwise
({v6, v5, v1, v4}, {v2, v7}) would be a nontrivial dicut in T\v3. Thus the union of the three cycles
v1v2v3v7v1, v1v5v6v7v1, and v2v3v4v5v6v2 would form a K ′

3,3, a contradiction.
It remains to consider the second subcase when (v7, v3) is in T . Assume that (v1, v7) is in

T . Then (v4, v7) is in T , for otherwise, the union of the three cycles v1v5v6v3v1, v7v4v5v6v7, and
v1v7v4v2v3v1 would form a K ′

3,3, a contradiction. Since T is i2s, (v7, v5) is in T , for otherwise
({v6, v5, v1, v4}, {v2, v7}) would be a nontrivial dicut in T\v3. But then the union of the three
cycles v2v3v4v7v2, v4v7v5v6v4, and v1v5v6v2v3v1 would form a K ′

3,3, a contradiction. So (v7, v1)
must appear in T . Since T is i2s, (v4, v7) is in T , for otherwise ({v6, v7}, {v1, v2, v3, v4}) would
be a nontrivial dicut in T\v5. But then the union of the three cycles v1v5v2v3v1, v7v2v3v4v7,
and v1v5v6v4v7v1 would form a K ′

3,3, a contradiction again. So Claim 7 is justified.

From Claims 1-4, we conclude that G1, G2, G3, and F4 are the only i2s Möbius-free tourna-
ments on six vertices. By Claims 5-7 and Theorem 3.1(iv), there is no i2s Möbius-free tourna-
ment on seven or more vertices. This completes the proof of Theorem 1.2.

Proof of Theorem 1.3. We apply induction on |V |. By Lemma 3.2, T = C3 if |V | = 3
and T = F0 if |V | = 4, so T ∈ T1 if |V | ≤ 4. Let us proceed to the induction step.

If T is i2s, then T ∈ T1 by Theorem 1.2. So we assume that T is not i2s. Thus T can be
expressed as the 1-sum of two smaller strong Möbius-free tournaments T1 and T2 by Lemmas
2.1 and 2.2. Note that Ti /∈ {F1, G1} because neither F1 nor G1 contains a special arc for
i = 1, 2. By induction hypothesis, both T1 and T2 can be constructed by repeatedly taking
1-sums starting from tournaments in T1, and hence so can T .
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