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1 Introduction

This is a follow-up of the paper by the same authors [5]. Let us first present the main results of
our previous work.

Let G = (V,A) be a digraph with a nonnegative integral weight w(e) on each arc e. A subset
F of arcs is called a feedback arc set (FAS) of G if G\F contains no cycles (directed). The
FAS problem is to find an FAS in G with minimum total weight. A collection C of cycles (with
repetition allowed) in G is called a cycle packing of G if each arc e is used at most w(e) times
by members of C. The cycle packing problem consists in finding a cycle packing with maximum
size. These two problems form a primal-dual pair. Let τw(G) be the minimum total weight
of an FAS, and let νw(G) be the maximum size of a cycle packing. Clearly, νw(G) ≤ τw(G).
We call G cycle Mengerian (CM) if νw(G) = τw(G) for every nonnegative integral function w
defined on A. As stated in [5], the study of CM digraphs has both great theoretical interest and
practical value. Despite tremendous research efforts, only some special classes of CM digraphs
[1, 2, 14, 16, 17] have been identified to date, and a complete characterization seems extremely
hard to obtain. The interested reader is referred to [3, 4, 9, 10, 12, 14, 15, 16, 20, 21] for some
related minimax theorems.

The purpose of this series of two papers is to give a complete characterization of all CM
tournaments. We call a tournament Möbius-free if it contains none of K3,3, K

′
3,3, M5, and M∗

5

depicted in Figure 1 as a subgraph. (Actually, M∗
5 arises from M5 by reversing the direction

of each arc.) This class of tournaments is so named because the forbidden structures are all
Möbius ladders.

Figure 1. Forbidden Structures

Theorem 1.1. A tournament is CM iff it is Möbius-free.

In [5], we have demonstrated that every CM tournament is Möbius-free. The proof of the
converse relies heavily on a structural description of Möbius-free tournaments.
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Let us recall some terminology and notations introduced in [5]. Let G = (V,A) be a digraph.
For each v ∈ V , we use d+G(v) and d−G(v) to denote the out-degree and in-degree of v, respectively.
We call v a near-sink of G if its out-degree is one, and call v a near-source if its in-degree is one.
For simplicity, an arc e = (u, v) of G is also denoted by uv. Arc e is called special if either u is a
near-sink or v is a near-source of G. For each U ⊆ V , we use G[U ] to denote the subgraph of G
induced by U , and use G/U to denote the digraph obtained from G by contracting U . We say
that U is a homogeneous set of G if |U | ≥ 2 and the arcs between U and any vertex v outside U
are either all directed to U or all directed to v. A dicut of G is a partition (X,Y ) of V (G) such
that all arcs between X and Y are directed to Y . A dicut (X,Y ) is trivial if |X| = 1 or |Y | = 1.
Recall that G is called weakly connected if its underlying undirected graph is connected, and is
called strongly connected or strong if each vertex is reachable from each other vertex. Clearly,
a weakly connected digraph G is strong iff G has no dicut. Furthermore, a weakly connected
digraph G is called internally strong if every dicut of G is trivial, and is called internally 2-strong
(i2s) if G is strong and G\v is internally strong for every vertex v.

Let Ti = (Vi, Ai) be a strong tournament, with |Vi| ≥ 3 for i = 1, 2. Suppose that (a1, b1)
is a special arc of T1 with d+T1

(a1) = 1 and (b2, a2) is a special arc of T2 with d−T2
(a2) = 1. The

1-sum of T1 and T2 over (a1, b1) and (b2, a2) is the tournament arising from the disjoint union
of T1\a1 and T2\a2 by identifying b1 with b2 (the resulting vertex is denoted by b) and adding
all arcs from T1\{a1, b1} to T2\{a2, b2}. We call b the hub of the 1-sum. See Figure 2 for an
illustration. Note that if |Vi| = 3 for i = 1 or 2, then Ti is a triangle (a directed cycle of length
three), and thus T = T3−i.

Figure 2. 1-sum of T1 and T2.

Let C3 (resp. F0) denote the strong tournament with three (resp. four) vertices (see Figure
3), let F1, F2, F3, F4, F5 be the five tournaments depicted in Figure 4, and let G1, G2, G3 be the
three tournaments shown in Figure 5. In these two papers, we reserve the symbols

T0 = {C3, F0, F1, F2, F3, F4, G1, G2, G3}

and
T1 = {C3, F0, F2, F3, F4, G2, G3} = T0\{F1, G1}.

The following are the structural theorems proved in [5].

Theorem 1.2. Let T = (V,A) be an i2s tournament with |V | ≥ 3. Then T is Möbius-free iff
T ∈ T0.
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Theorem 1.3. Let T = (V,A) be a strong Möbius-free tournament with |V | ≥ 3. Then either
T ∈ {F1, G1} or T can be obtained by repeatedly taking 1-sums starting from the tournaments
in T1.

While the proof methods of these two theorems are purely combinatorial, to show that every
Möbius-free tournament is CM, we shall appeal to various optimization techniques.

Figure 3. Strong tournaments with three or four vertices.

Figure 4. v1v2, v5v1 ∈ F1; v2v1, v1v5 ∈ F2; v2v1, v5v1 ∈ F3; v6v2 ∈ F4; v2v6 ∈ F5.

Figure 5. v6v4 ∈ G2 and v4v6 ∈ G3.

Let Cx ≥ d, x ≥ 0 be a rational linear system and let P denote the polyhedron {x : Cx ≥
d, x ≥ 0}. We call P integral if it is the convex hull of all integral vectors contained in P . As
shown by Edmonds and Giles [11], P is integral iff the minimum in the LP-duality equation
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min{wTx : Cx ≥ d, x ≥ 0} = max{yTd : yTC ≤ wT, y ≥ 0}
has an integral optimal solution, for every integral vector w for which the optimum is finite. If,
instead, the maximum in the equation enjoys this property, then the system Cx ≥ d, x ≥ 0 is
called totally dual integral (TDI). It is well known that many combinatorial optimization prob-
lems can be naturally formulated as integer programs of the form min{wTx : x ∈ P, integral};
if P is integral, then such a problem reduces to its LP-relaxation. Edmonds and Giles [11]
proved that total dual integrality implies primal integrality: if Cx ≥ d, x ≥ 0 is TDI and d is
integer-valued, then P is integral. Thus the model of TDI systems serves as a general framework
for establishing many combinatorial min-max theorems. Over the past six decades, these two
integrality properties have been the subjects of extensive research and the major concern of
polyhedral combinatorics (see Schrijver [18, 19] for comprehensive accounts).

Let us return to the FAS problem. Let M be the cycle-arc incidence matrix of the input
digraph G, and let π(G) denote the linear system Mx ≥ 1, x ≥ 0. We call G cycle ideal (CI)
if π(G) defines an integral polyhedron. From the above Edmonds-Giles theorem, we see that
every CM digraph is CI. Furthermore, G is cycle Mengerian (CM) iff π(G) is a TDI system,
which gives an equivalent definition of CM digraphs. To facilitate better understanding, we give
an intuitive interpretation of these concepts. Let P(G,w) stand for the linear program

Minimize wTx

Subject to Mx ≥ 1

x ≥ 0,

and let D(G,w) denote its dual

Maximize yT1

Subject to yTM ≤ wT

y ≥ 0,

where w = (w(e) : e ∈ A). Then P(G,w) (resp. D(G,w)) is exactly the LP-relaxation of the
FAS problem (resp. cycle packing problem), and thus is called the fractional FAS problem (resp.
fractional cycle packing problem). Let τ∗w(G) be the optimal value of P(G,w), and let ν∗w(G) be
the optimal value of D(G,w). Clearly,

νw(G) ≤ ν∗w(G) = τ∗w(G) ≤ τw(G);

these two inequalities, however, need not hold with equalities in general (as we shall see in Section
2). As is well known, G is CI iff P(G,w) has an integral optimal solution for any nonnegative
integral w iff τ∗w(G) = τw(G) for any nonnegative integral w. Since the separation problem of
P(G,w) is the minimum-weight cycle problem, which admits a polynomial-time algorithm, it
follows from a theorem of Grötschel, Lovász, and Schrijver [13] that P(G,w) is always solvable
in polynomial time. Therefore, the FAS problem can be solved in polynomial time for any
nonnegative integral w, provided its input digraph G is CI.

We shall actually establish the following strengthening of Theorem 1.1 in this paper.
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Theorem 1.4. For a tournament T = (V,A), the following statements are equivalent:

(i) T is Möbius-free;

(ii) T is cycle ideal; and

(iii) T is cycle Mengerian.

Throughout we shall repeatedly use the following notations and terminology. As usual, R+

and Z+ stand for the sets of nonnegative real numbers and nonnegative integers, respectively.
For any two sets Ω and K, where Ω is always a set of numbers and K is always finite, we use
ΩK to denote the set of vectors x = (x(k) : k ∈ K) whose coordinates are members of Ω. If f
is a function defined on a finite set S and R ⊆ S, then f(R) denotes

∑
s∈R f(s). An instance

(T,w) consists of a Möbius-free tournament T = (V,A) together with a weight function w ∈ ZA
+.

We say that another instance (T ′,w′) is smaller than (T,w) if |V ′| < |V | or if |V ′| = |V | but
w(A′) < w(A), where T ′ = (V ′, A′). As introduced in our first paper, we also say that a
tournament T1 = (V1, A1) is smaller than another tournament T2 = (V2, A2) if |V1| < |V2|.

Recall the fractional problems introduced above. In view of the equivalent definition, to
show that every Möbius-free tournament is CM, we shall turn to proving that D(T,w) has an
integral optimal solution for every instance (T,w). To this end, we apply the double induction
on V and w(A), where T = (V,A). Since the desired statement holds trivially when |V | = 1, we
proceed to the induction step, and propose to establish the following statement.

Theorem 1.5. Let (T,w) be an instance, such that D(T ′,w′) has an integral optimal solution for
any smaller instance (T ′,w′) than (T,w). Then D(T,w) also has an integral optimal solution.

It is clear that C3 is CM. We shall present a computer-assisted proof that G1 is CM. Thus
F1 is also CM, as it is an induced subgraph of G1. For T /∈ {C3, F1, G1}, the proof strategy of
Theorem 1.5 is described below.

Obviously, we may assume that T is strong and τw(T ) > 0. We shall prove that T can be
expressed as a 1-sum of two strong Möbius-free tournaments T1 and T2 over two special arcs
(a1, b1) and (b2, a2), such that one of the following three cases occurs:

• τw(T2\a2) > 0 and T2 ∈ T2, where T2 = (T1\{C3}) ∪ {F6} for some tournament F6 to be
introduced in Section 2;

• τw(T2\a2) > 0 and there exists a vertex subset S of T2\{a2, b2} with |S| ≥ 2, such that
T [S] is acyclic, T2/S ∈ T3, and the vertex s∗ arising from contracting S is a near-sink in T/S,
where T3 = (T2\F2)∪{G4, G5, G6} for some tournaments G4, G5, G6 to be introduced in Section
2; and

• every positive cycle in T contains arcs in both T1 and T2, where a cycle C in T is called
positive if w(e) > 0 for each arc e on C.

In the first two cases, we shall prove that D(T,w) has an optimal solution y such that y(C)
is a positive integer for some cycle C contained in T2\a2. Define w′(e) = w(e) if e /∈ C and
w′(e) = w(e) − y(C) for each e ∈ C. By the induction hypothesis, D(T ′,w′) has an integral
optimal solution y′. We can thus obtain an integral optimal solution to D(T,w) by combining y′

with y(C) (the details can be found in Lemma 3.2(iii)). As we shall see, this strategy is carried
out by performing various reductions.
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In the third case, the desired statement can be established directly by using the max-flow
min-cut theorem.

The remainder of this paper is organized as follows. In Section 2, we show that every cycle
ideal tournament is Möbius-free. We also prove that one of the three cases described in the
above proof strategy of Theorem 1.5 occurs (see Lemma 2.5). In Section 3, we make technical
preparations for the proof of Theorem 1.5, and derive properties enjoyed by optimal solutions
to P(T,w) and D(T,w). In Section 4, we prove Theorem 1.5, in the case of (i) exhibited in
Lemma 2.5, by preforming a series of basic reduction operations. In Section 5, we prove Theorem
1.5, in the case of (ii) exhibited in Lemma 2.5, by preforming a series of composite reduction
operations. In Section 6, we accomplish the last step of our proof of Theorem 1.5 and hence of
Theorem 1.4. In Section 7, we conclude this paper with some remarks.

2 Preliminaries

In this section, we first verify that each Möbius ladder displayed in Figure 1 is a forbidden
structure of cycle ideal (CI) tournaments. We then show that one of the three cases described in
the proof strategy of Theorem 1.5 occurs. Finally, we prove that being Möbius-free is preserved
under 1-sum operation and under contracting two vertices in some circumstances.

Lemma 2.1. Every cycle ideal tournament is Möbius-free.

Proof. Assume the contrary: Some CI tournament T = (V,A) contains a member D of
{K3,3,K

′
3,3,M5,M

∗
5 }. Let B be the arc set of D and let C be the family of all cycles in T . Define

w(e) = 1 if e ∈ B and w(e) = 0 if e ∈ A\B. We propose to show that, for this weight function
w, the optimal value of P(T,w), denoted by τ∗w(T ), is not integral. Depending on the structure
of D, we consider four cases.

Case 1. D = K3,3.
Define x ∈ RA

+ and y ∈ RC
+ as follows:

• x(e) = 1 if e ∈ A\B, x(e) = 1/2 if e ∈ {u1u2, u3u4, u5u6}, and x(e) = 0 otherwise; and
• y(C) = 1/2 if C ∈ {u1u2u3u4u1, u3u4u5u6u3, u1u2u5u6u1} and y(C) = 0 otherwise.

It is easy to see that x and y are feasible solutions to P(T,w) and D(T,w), respectively. Since
both of their objective values are 3/2, by the LP-duality theorem, x and y are actually optimal
solutions to P(T,w) and D(T,w), respectively. Thus τ∗w(T ) = 3/2.

Case 2. D = K ′
3,3.

Define x ∈ RA
+ and y ∈ RC

+ as follows:
• x(e) = 1 if e ∈ A\B, x(e) = 1/2 if e ∈ {u1u2, u3u4, u5u6}, and x(e) = 0 otherwise; and
• y(C) = 1/2 if C ∈ {u1u2u3u4u1, u3u4u5u6u7u3, u1u2u5u6u1} and y(C) = 0 otherwise.

Similar to Case 1, we can show that x and y are optimal solutions to P(T,w) and D(T,w),
respectively, and τ∗w(T ) = 3/2.

Case 3. D = M5.
Define x ∈ RA

+ and y ∈ RC
+ as follows:

• x(e) = 1 if e ∈ A\B, x(e) = 1/2 if e ∈ {u1u2, u2u3, u3u4, u5u3, u6u5}, and x(e) = 0
otherwise; and

• y(C) = 1/2 if C ∈ {u1u2u3u1, u2u3u4u2, u3u4u5u3, u3u6u5u3, u1u2u6u5u1} and y(C) = 0
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otherwise.
Similar to Case 1, we can show that x and y are optimal solutions to P(T,w) and D(T,w),
respectively, and τ∗w(T ) = 5/2.

Case 4. D = M∗
5 .

Consider the reverse T ∗. In view of the 1− 1 correspondence between cycles in T and those
in T ∗ and using the statement established in Case 3, we obtain τ∗w(T ) = 5/2 in this case as well.

Combining the above cases, we conclude that τ∗w(T ) is not integral. So P(T,w) has no inte-
gral optimal solution and hence T is not CI, a contradiction.

The following two lemmas have played an important role in our structural description of
Möbius-free tournaments (see Lemmas 2.1 and 2.2 in [5]).

Lemma 2.2. Let T = (V,A) be a strong tournament. If T is not i2s, then T is the 1-sum of
two smaller strong tournaments.

Lemma 2.3. Let T = (V,A) be the 1-sum of two tournaments T1 and T2. Then T is Möbius-free
iff both T1 and T2 are Möbius-free.

Let T be a strong Möbius-free tournament. If T is i2s, then it comes from a finite set T0 by
Theorem 1.2. In the opposite case, although the statement of Theorem 1.3 is not so strong as
this, T can be expressed as the 1-sum of two smaller strong Möbius-free tournaments T1 and T2

by Lemmas 2.2 and 2.3; we can completely determine T2 if we impose minimality constraint on
|V (T2)|, as our next lemma shows.

Let F6 be the tournament depicted in Figure 6. Observe that it is not i2s because F6\v6 has
a nontrivial dicut. We reserve the symbol

T2 = {F0, F2, F3, F4, F6, G2, G3}.

Notice that T2 = (T1\{C3}) ∪ {F6}.

Figure 6. A minimal tournament involved in 1-sum

Lemma 2.4. Let T = (V,A) be a strong Möbius-free tournament. Suppose T is the 1-sum of
two smaller strong Möbius-free tournaments T1 and T2 such that |V (T2)| is as small as possible.
Then T2 ∈ T2.
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Proof. Since T is the 1-sum of two smaller strong Möbius-free tournaments T1 and T2, we
have |V (Ti)| ≥ 4 for i = 1, 2. If T2 is i2s, then T2 ∈ T1\{C3} by Theorem 1.3, and hence T2 ∈ T2.
It remains to consider the case when T2 is not i2s.

Recall the definition of the 1-sum operation in Section 2. There exist a special arc (a1, b1)
in T1 and a special arc (b2, a2) in T2, with d+T1

(a1) = d−T2
(a2) = 1, such that T is obtained from

the disjoint union of T1\a1 and T2\a2 by identifying b1 with b2 (the resulting vertex is denoted
by b) and adding all arcs from T1\{a1, b1} to T2\{a2, b2}. We propose to show that

(1) T2\v is internally strong for any v ∈ V (T2)\a2.
Assume the contrary: T2\v has a nontrivial dicut (X,Y ) for some v ∈ V (T2)\a2. Since a2 is

a near-source in T2, we have a2 ∈ X and Y ⊆ V (T2)\{a2, b2}. Let x be a vertex in X and y be a
vertex in Y such that both (v, x) and (y, v) are arcs in T2. Set T

′
1 = T\(Y \y) and T ′

2 = T2\(X\x).
Then T is the 1-sum of T ′

1 and T ′
2 over (v, x) and (y, v), with 3 < |V (T ′

2)| < |V (T2)|, contradicting
the minimality hypothesis on T2. So (1) is justified.

Since T2 is not i2s, T\a2 has a nontrivial dicut (X,Y ) by (1). Since T2 is strong, b2 ∈ Y .
Observe that

(2) |Y | = 2, for otherwise, (X∪{a2}, Y \b2) would be a nontrivial dicut in T2\b2, contradicting
(1).

Let c2 be the vertex in Y \b2. Since T2 contains no sink, (c2, b2) is an arc in T2. Let S be the
sub-tournament induced by X. Then

(3) S is strong, for otherwise, let (A1, A2, ..., Ap) be the strong partition of S. Then p ≥ 2.
Thus (A1 ∪ {a2},∪p

i=2Ai ∪ {c2}) would be a nontrivial dicut in T\b2, contradicting (1).
(4) |X| = 3.
Suppose not. Then |X| ≥ 4. Since S is strong by (3), it has a 4-cycle d1d2d3d4d1. Note

that both (a2, di) and (di, b2) are arcs in T2 for 1 ≤ i ≤ 4. Thus the cycle d1d2d3d4d1 together
with the five arcs (b2, a2), (a2, d2), (a2, d4), (d1, b2), and (d3, b2) would form a K3,3 in T2, a
contradiction.

Combining (1)-(4), we see that T2 is isomorphic to F6.

Based on this technical lemma, we can prove that one of the three cases described in our
proof strategy (succeeding Theorem 1.5) occurs. In the next lemma, s∗ is the vertex in T/S
arising from contracting S, the tournaments G4, G5, G6 are shown in Figure 7, and

T3 = {F0, F3, F4, F6, G2, G3, G4, G5, G6} = (T2\F2) ∪ {G4, G5, G6}.

Recall that a cycle C in T is called positive if w(e) > 0 for each arc e on C. We say that C
crosses b (the hub of the 1-sum) if it contains an arc between T1\{b, a1} and T2\{b, a2}.

Lemma 2.5. Let T = (V,A) be a strong Möbius-free tournament with a nonnegative integral
weight w(e) on each arc e. Suppose τw(T ) > 0 and T is not i2s. Then T is the 1-sum of two
smaller strong Möbius-free tournaments T1 and T2 over two special arcs (a1, b1) and (b2, a2),
such that one of the following three cases occurs:

(i) τw(T2\a2) > 0 and T2 ∈ T2;
(ii) τw(T2\a2) > 0 and there exists a vertex subset S of T2\{a2, b2} with |S| ≥ 2, such that

T [S] is acyclic, T2/S ∈ T3, and s∗ is a near-sink in T/S. Furthermore,
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Figure 7. Three more tournaments involved in 1-sum

• (b2, a2) = (v1, v5) and s∗ = v4 if T2/S = G4;

• (b2, a2) = (v2, v6) and s∗ = v5 if T2/S = G5;

• (b2, a2) = (v6, v7) and s∗ = v5 if T2/S = G6; and

(iii) every positive cycle in T crosses b.

Proof. To establish the statement, we shall construct a sequence of 1-sums of T until one
of the three desired cases occurs.

By Lemmas 2.2 and 2.3, T can be expressed as the 1-sum of two smaller strong Möbius-free
tournaments T11 and T12; subject to this, |V (T12)| is as small as possible. Let (a11, b11) in T11

and (b12, a12) in T12 be the two special arcs involved in the definition of the 1-sum, and let b1
denote the hub of the 1-sum. By Lemma 2.4, we have T12 ∈ T2. If τw(T12\a12) > 0, then (i)
occurs, with T1 = T11 and T2 = T12. So we may assume that τw(T12\a12) = 0. Furthermore,

(1) T12\a12 is an acyclic tournament in which b1 is the sink.
To justify this, let K be an MFAS in T12\a12. Then w(K) = 0 and T12\K is acyclic. Let J

be the set of all arcs leaving b1 in T12\a12. Note that no arc in J is contained in any positive
cycle in T that crosses b1. Let T ′

12 be obtained from T12 by reversing the directions of all arcs
in J and some arcs in K so that T ′

12\a12 is acyclic, and define the weight of each reversed arc in
T ′
12 to be zero. Let T ′ = (V,A′) denote the resulting tournament and let w′ denote the resulting

weight function defined on A′. Then T ′ remains strong. Since no arc in K ∪ J is contained
in any positive cycle in T , it is clear that every optimal solution to D(T,w) corresponds to a
feasible solution to D(T ′,w′) with the same objective value, and vice versa. So we may assume
that T is T ′ and that w is w′. Thus (1) holds.

At a general step i, suppose T is the 1-sum of two smaller strong Möbius-free tournaments Ti1

and Ti2 over two special arcs (ai1, bi1) and (bi2, ai2), such that Ti2\ai2 is an acyclic tournament
in which bi (the hub of the 1-sum) is the sink. Let Si be the vertex set of Ti2\{ai2, bi}, and let
Ti be the tournament obtained from T by contracting Si into a single vertex s∗i . Clearly, Ti is
isomorphic to Ti1, in which s∗i corresponds to ai1 and is a near-sink. If τw(Ti\s∗i ) = 0, then every
positive cycle in T crosses bi. So (iii) occurs, with T1 = Ti1, T2 = Ti2, and b = bi. Thus we may
assume that τw(Ti\s∗i ) > 0. We construct a new 1-sum of T as follows.

Assume first that Ti is i2s. In this case, Ti and hence Ti1 is a member of T2 by Lemma 2.4.
Furthermore, Ti1 ̸= F6. Let T

′, T ′
i1, and T ′

i2 be the reverses of T , Ti1, and Ti2, respectively. Then
T ′ is the 1-sum of two smaller strong Möbius-free tournaments T ′

i2 and T ′
i1, with T ′

i1 ∈ T2\F6.
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Since there is a one-to-one correspondence between cycles in T and those in T ′, D(T,w) has an
integral optimal solution iff so does D(T ′,w′). Thus we may assume that T is T ′ and hence (i)
occurs.

Assume next that Ti is not i2s. By Lemmas 2.2 and 2.3, Ti can be expressed as the 1-sum
of two smaller strong Möbius-free tournaments T ′

i1 and T ′
i2; subject to this, |V (T ′

i2)| is as small
as possible. By Lemma 2.4, we have T ′

i2 ∈ T2. Let (a′i1, b′i1) in T ′
i1 and (b′i2, a

′
i2) in T ′

i2 be the two
special arcs involved in the definition of the 1-sum, and let b′i denote the hub of this 1-sum. We
proceed by considering two subcases.

• b′i ̸= s∗i . In this subcase, s∗i is contained in T ′
i2\{a′i2, b′i}, because it is a near-sink in Ti.

Hence bi is contained in T ′
i2\a′i2. Observe that T is the 1-sum of two smaller strong Möbius-

free tournaments T(i+1)1 and T(i+1)2, such that the hub bi+1 of this 1-sum is exactly b′i and
that T(i+1)1 = T ′

i1. Let (a(i+1)1, b(i+1)1) in T(i+1)1 and (b(i+1)2, a(i+1)2) in T(i+1)2 be the two
special arcs involved in the definition of this 1-sum. Then Ti2\ai2 is a proper subtournament
of T(i+1)2\a(i+1)2. If τw(T(i+1)2\a(i+1)2) > 0, then (ii) occurs, with T1 = T(i+1)1, T2 = T(i+1)2,
S = Si, and s∗ = s∗i . Furthermore, T2/S ̸= F2, because no vertex in {v1, v3, v4} (see the
labeling in Figure 3) is a near-sink in F2\v2 and hence corresponds to s∗. So we assume that
τw(T(i+1)2\a(i+1)2) = 0. Furthermore,

(2) T(i+1)2\a(i+2)2 is an acyclic tournament in which bi+1 is the sink.
Since the proof goes along the same line as that of (1), the details are omitted here. In view of
(2), we can repeat the construction process by replacing i with i+ 1.

• b′i = s∗i . In this subcase, bi is contained in T ′
i1\{a′i1, b′i}, because it is the only out-neighbor

of s∗i in Ti. Since T ′
i2 ∈ T2 (see the labeling in Figures 3-6) and since (b′i2, a

′
i2) is a special arc of

T ′
i2, and b′i2 = b′i = s∗i is a sink of T ′

i2\a′i2, it is routine to check that one of (3)-(5) occurs:
(3) T ′

i2 = F0, (b
′
i2, a

′
i2) = (v4, v1), and s∗i = v4;

(4) T ′
i2 = F2, (b

′
i2, a

′
i2) = (v5, v2), and s∗i = v5; and

(5) T ′
i2 = F6, (b

′
i2, a

′
i2) = (v5, v6), and s∗i = v5.

Observe that T is the 1-sum of two smaller strong Möbius-free tournaments T(i+1)1 and T(i+1)2

along two special arcs (a(i+1)1, b(i+1)1) in T(i+1)1 and (b(i+1)2, a(i+1)2), such that the hub bi+1

of this 1-sum is exactly bi and that T(i+1)1\a(i+1)1 = T ′
i1\{s∗i , a′i1}. Clearly, Ti2\ai2 is a proper

subtournament of T(i+1)2\a(i+1)2. It is a simple matter to check that T(i+1)2/Si is isomorphic to
Gt+1 when (t) holds for t = 3, 4, 5. If τw(T(i+1)2\a(i+1)2) > 0, then (ii) occurs, with T1 = T(i+1)1,
T2 = T(i+1)2, S = Si, and s∗ = s∗i . So we assume that τw(T(i+1)2\a(i+1)2) = 0. Furthermore,
T(i+1)2\a(i+2)2 is an acyclic tournament in which bi+1 is the sink. Since the proof is exactly the
same as that of (2), we omit the details here. Thus we can repeat the construction process by
replacing i with i+ 1.

Since Ti2\ai2 is a proper subtournament of T(i+1)2\a(i+1)2 for each step i, the construction
process terminates in a finite number of steps. Therefore one of (i)-(iii) holds.

In our proof we occasionally need to contract two vertices. The following two lemmas assert
that being Möbius-free is preserved under this operation in some circumstances, and the first is
taken from our previous paper (see Lemma 2.3 in [5]).

Lemma 2.6. Let T = (V,A) be a Möbius-free tournament with a special arc a = (x, y). Then
T/a is also Möbius-free.

11



Lemma 2.7. Let T = (V,A) be the 1-sum of two smaller strong Möbius-free tournaments T1

and T2 over the special arcs (a1, b1) and (b2, a2) such that T2 ∈ T2, and let T ′ be the digraph
obtained from T by contracting two vertices x and y in T2\{a2, b2}. Then T ′ is also Möbius-free.

Proof. Let T ′
2 be the digraph obtained from T2 by contracting x and y. Notice that T ′

2 may
contain opposite arcs. Since T2 ∈ T , we have |V (T ′

2)| ≤ 5, so T ′
2 is Möbius-free. Let T ′′

2 be an
arbitrary spanning tournament contained in T ′

2, and let T ′′ be the 1-sum of T1 and T ′′
2 . Then T ′′

is a spanning tournament contained in T ′. By Lemma 2.3, T ′′ is Möbius-free. It follows that T ′

is also Möbius-free, because none of K3,3, K
′
3,3, M5, and M∗

5 contains a pair of opposite arcs.

3 Reductions: Getting Started

Throughout this section, we assume that (T,w) is an instance as described in Theorem 1.5, and
that T = (V,A) is the 1-sum of two strong Möbius-free tournaments T1 and T2 over two special
arcs (a1, b1) and (b2, a2) (see Figure 2).

Let C be the set of all cycles in T , let Ci be the set of all cycles in Ti\ai for i = 1, 2, and let
C0 = C\(C1 ∪ C2). Note that each cycle in C0 crosses b, the hub of the 1-sum. For each arc e of
T , let C(e) = {C ∈ C : e ∈ C} and Ci(e) = {C ∈ Ci : e ∈ C} for i = 0, 1, 2.

Let y be an optimal solution to D(T,w), and let ν∗w(T ) denote the optimal value of D(T,w).
Then ν∗w(T ) = yT1. Set Cy = {C ∈ C : y(C) > 0} and Cy

i = {C ∈ Ci : y(C) > 0} for i = 0, 1, 2.
For each arc e of T , set z(e) = y(C(e)). We say that e is saturated by y if w(e) = z(e) and
unsaturated otherwise, and say that e is saturated by y in Ti if w(e) = y(Ci(e)) for i = 1, 2. For
each D ⊆ Cy, we say that arc e is outside D if e is not contained in any cycle in D.

Let us exhibit some properties enjoyed by optimal solutions to P(T,w) and D(T,w), and
make further technical preparations for the proof of Theorem 1.5.

Lemma 3.1. Let T = (V,A) be a tournament with a nonnegative integral weight w(e) on each
arc, and let x (resp. y) be an optimal solution to P(T,w) (resp. D(T,w)). Then the following
statements hold:

(i) x(C) = 1 for any cycle C of T with y(C) > 0;

(ii) x(e) = 0 for all e ∈ A with z(e) < w(e);

(iii) w(e) = z(e) for all e ∈ A with x(e) > 0; and

(iv) Let C1 and C2 be two cycles of T with y(Ci) > 0 for i = 1, 2. Suppose a and b are
two common vertices of C1 and C2 such that Ci(a, b) is vertex-disjoint from C3−i(b, a) for
i = 1, 2. Then

∑
e∈C1[a,b] x(e) =

∑
e∈C2[a,b] x(e).

Proof. Statements (i)-(iii) follow directly from the complementary slackness conditions. To
justify (iv), let θ = min{y(C1), y(C2)}, let C ′

i = C3−i[a, b] ∪ Ci[b, a] for i = 1, 2, and let y′ be
obtained from y by replacing y(Ci) with y(Ci)−θ and replacing y(C ′

i) with y(C ′
i)+θ for i = 1, 2.

Clearly, y′ is also an optimal solution to D(T,w). Using (i), we obtain x(Ci) = x(C ′
i) = 1 for

i = 1, 2, which implies
∑

e∈C1[a,b] x(e) =
∑

e∈C2[a,b] x(e).

Lemma 3.2. Let y be an optimal solution to D(T,w). Then D(T,w) has an integral optimal
solution if one of the following conditions is satisfied:
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(i) w(e) > ⌈z(e)⌉ for some e ∈ A;

(ii) Cy
0 = ∅; and

(iii) y(C) is integral for some C ∈ Cy.

Proof. (i) Define w′ ∈ ZA
+ by w′(e) = ⌈z(e)⌉ and w′(a) = w(a) for all a ∈ A\e. Then

w(A) > w′(A). By the hypothesis of Theorem 1.5, D(T,w′) has an integral optimal solution
y′. Since y is also a feasible solution to D(T,w′), we have (y′)T1 ≥ yT1. So y′ is an integral
optimal solution to D(T,w) as well.

(ii) Since Cy
0 = ∅, each cycle in Cy is contained in Ti\ai for i = 1 or 2. Let wi be the

restriction of w to Ti\ai. Then the hypothesis of Theorem 1.5 guarantees the existence of an
integral optimal solution yi to D(Ti\ai,wi). Clearly, the union of y1 and y2 yields an integral
optimal solution to D(T,w).

(iii) Define w′ ∈ ZA
+ by w′(e) = w(e) − y(C) for each arc e on C and w′(a) = w(a) for all

other arcs a. Then w(A) > w′(A). By the hypothesis of Theorem 1.5, D(T,w′) has an integral
optimal solution y′. Clearly, y yields a feasible solution to D(T,w′) with value yT1 − y(C).
So (y′)T1 ≥ yT1 − y(C). Let y∗ ∈ ZC

+ be defined by y∗(C) = y(C) + y′(C) and y∗(D) =
y′(D) for all D ∈ C\C. Then y∗ is an integral feasible solution to D(T,w) with value at least
(y′)T1+ y(C) ≥ yT1. Hence y∗ is an integral optimal solution to to D(T,w).

Lemma 3.3. Let G = (U,E) be a Möbius-free digraph obtained from a tournament by adding
some arcs, and let c(e) be a nonnegative integral weight associated with each arc e ∈ E. If
|U | < |V | or if |U | = |V | but c(E) < w(A), where V and w(A) are as defined in Theorem 1.5,
then D(G, c) has an integral optimal solution.

Proof. The proof technique employed below is due to Barahona, Fonlupt, and Mahjoub [2].
Let us repeatedly apply the following operations on G whenever possible: For each pair of

opposite arcs e and f , replace c(g) by c(g)−θ for g = e, f , where θ = min{c(e), c(f)}, and delete
exactly one arc g ∈ {e, f} with c(g) = 0 from G. Let G′ = (V ′, A′) be the resulting digraph and
let c′ be the resulting weight function. Clearly, G′ is a tournament. Hence, by the hypothesis of
Theorem 1.5, G′ is CM. Let F ′ be a minimum FAS of G′ and let y′ be a maximum cycle packing
in G′. Then c′(F ′) = (y′)T1.

Define y(C) = y′(C) for all cycles C in G′. For each 2-cycle C formed by arcs e and f in G,
define y(C) = θ, where θ = min{c(e), c(f)}, and place g and all arcs in F ′ into F , where g is the
arc in {e, f}\A′. Repeat the process until all 2-cycles in G are exhausted. Clearly, F is an FAS
of G, y is a cycle packing of G, and c(F ) = yT1. By the LP-duality theorem, y is an integral
optimal solution to D(G, c).

Lemma 3.4. Suppose a = (s, t) is a special arc of T = (V,A), where s is a near-sink. Then
D(T,w) has an integral optimal solution if one of the following conditions is satisfied:

(i) w(e) = z(e) for all arcs e ∈ δ−(s);

(ii) ν∗w(T ) is an integer;

(iii) x(a) = 0 for some optimal solution x of P(T,w);

(iv) a is unsaturated by y; that is, z(a) < w(a).
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Proof. (i) By Lemma 3.2(i), we may assume that w(a) = ⌈z(a)⌉. Since w(e) = z(e) for all
e ∈ δ−(s) and z(a) =

∑
e∈δ−(s) z(e), we obtain w(a) =

∑
e∈δ−(s)w(e). Let T ′ = (V ′, A′) be the

digraph obtained from T by contracting the arc a; we still use t to denote the resulting vertex.
By Lemma 2.6, T ′ is also Möbius-free. Define w′ ∈ ZA′

+ as follows: w′(e) = w(e) if e is not
directed to t, w′(e) = w(f) +w(e) if f = (r, s) and e = (r, t) are both in A, and w′(e) = w(f) if
f = (r, s) is in A while e = (r, t) is not. It is easy to see that every integral feasible solution of
D(T,w) yields an integral feasible solution to D(T ′,w′) with the same objective value, and vice
versa. As D(T ′,w′) has an integral optimal solution by Lemma 3.3, so does D(T,w).

(ii) By (i), we may assume that w(e) ̸= z(e) for some arc e = (r, s) in A. By Lemma 3.2(i),
we may assume that w(e) = ⌈z(e)⌉. So ⌈z(e)⌉ ̸= z(e). Set θ = z(e) − ⌊z(e)⌋. Then 0 < θ < 1.
Let w′ be obtained from w by replacing w(e) with w(e) − 1. Then any optimal solution y of
D(T,w) yields a feasible solution of D(T,w′) with value at least ν∗w(T )− θ. By the hypothesis
of Theorem 1.5, D(T,w′) has an integral optimal solution y′ with value at least ν∗w(T )− θ and
hence at least ν∗w(T ). So y′ is also an integral optimal solution to D(T,w).

(iii) For each r ∈ V \{s, t} with e = (r, t) ∈ A, we claim that x(e) = x(f), where f = (r, s).
If w(e) = 0 or w(f) = 0, clearly we may assume that x(e) = x(f) (modifying one of them if
necessary, the resulting solution remains optimal). Next, consider the case when w(e) > 0 and
w(f) > 0. Let C1 and C2 be two cycles passing through e and f , respectively, with y(Ci) > 0
for i = 1, 2. By Lemma 3.1(iv), x(e) = x(a) + x(f) = x(f). So the claim is justified.

Let T ′ = (V ′, A′) be the digraph obtained from T by contracting the arc a. By Lemma
2.6, T ′ is also Möbius-free. Define w′ ∈ ZA′

+ as follows: w′(e) = w(e) if e is not directed to t,
w′(e) = w(f) + w(e) if f = (r, s) and e = (r, t) are both in A, and w′(e) = w(f) if f = (r, s) is
in A while e = (r, t) is not. Let x′ ∈ RA′

+ be the projection of x, and let y′ be obtained from
y as follows: for each cycle C passing through (r, s) in T with y(C) > 0, let C ′ be the cycle in
T ′ arising from C by replacing the path rst with (r, t) and set y′(C ′) = y(C) + y(C ′). By the
LP-duality theorem, x′ and y′ are optimal solutions to P(T ′,w′) and D(T ′,w′), respectively,
with the same objective value as x and y. By the hypothesis of Theorem 1.5, D(T ′,w′) has an
integral optimal solution. So ν∗w(T ) is an integer. Thus (iii) follows from (ii).

(iv) Since z(a) < w(a), we have x(a) = 0 by Lemma 3.1(ii). Therefore (iv) can be deduced
from (iii).

Recall that C2 is the set of all cycles in T2\a2. In the following lemma, Dk is the set of all
cycles of length k in T2\a2, and q is the length of a longest cycle in T2\a2. Thus C2 = ∪q

k=3Dk.
Let Hi = (Vi, Ei) be a digraph for i = 1, 2, . . . , k. A digraph H = (V,E) is called a multiset sum
of these k digraphs if V = ∪k

i=1Vi and E is the multiset sum of all these Ei’s; that is, if an arc
(u, v) is contained in t of these Hi’s, then there are precisely t parallel arcs from u to v in H.

Lemma 3.5. Let y be an optimal solution to D(T,w) such that y(C2) is maximized and, subject
to this, (y(Dq), y(Dq−1), . . . , y(D3)) is minimized lexicographically. Then the following state-
ments hold:

(i) Every C ∈ C contains an arc e that is saturated by y;

(ii) Every C ∈ C2 contains an arc that is outside Cy
0 ;

(iii) If C1 ∈ Cy
0 and C2 ∈ C2 share arcs, then some arc on C2 but outside C1 is saturated by y;

(iv) If exactly one arc on C ∈ C2 is outside Cy
0 , then it is saturated by y in T2;
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(v) Every chord of C ∈ Cy
2 is saturated by y in T2;

(vi) If the multiset sum of C1 ∈ C0, C2 ∈ C2, and unsaturated arcs in T2\a2 contains two
arc-disjoint cycles in T2\a2, then y(C1) or y(C2) is 0;

(vii) Every triangle C ∈ C2 contains an arc that is saturated by y in T2;

(viii) If the multiset sum of C1 ∈ C0 and C2 ∈ C2 contains two arc-disjoint cycles C ′
1 ∈ C0 and

C ′
2 ∈ C2, with |C ′

2| < |C2|, then y(C1) or y(C2) is 0.

Proof. (i) Assume the contrary: w(e) > z(e) for each arc e on C. Set θ = min{w(e)− z(e) :
e ∈ C}. Let y′ be obtained from y by replacing y(C) with y(C) + θ. Then y′ is a feasible
solution to D(T,w), with (y′)T1 = yT1+ θ > yT1, contradicting the optimality on y.

(ii) Assume the contrary: each arc ei on C is contained in some Ci ∈ Cy
0 . Observe that b,

the hub of the 1-sum, is not on C, for otherwise, let ej be the arc on C that leaves b. From
the definition of the 1-sum, we see that ej is contained in no cycle in C0, contradicting the
definition of Cj . Let k = |C| and let H be the multiset sum of C1, C2, ..., Ck. Then H is an
even digraph and d+H(b) = d−H(b) = k. Let H ′ be obtained from H by deleting all arcs on
C. Then H ′ remains even and d+H′(b) = d−H′(b) = k because b is outside C. So H ′ contains k
arc-disjoint cycles C ′

1, C
′
2, ..., C

′
k passing through b and hence in C0. Set θ = min1≤i≤k y(Ci).

Let y′ be obtained from y by replacing y(C) with y(C) + θ, replacing y(Ci) with y(Ci)− θ, and
replacing y(C ′

i) with y(C ′
i) + θ for 1 ≤ i ≤ k. Clearly, y′ is a feasible solution to D(T,w) with

(y′)T1 = yT1+ θ > yT1, a contradiction.
(iii) Assume the contrary: w(e) > z(e) for each arc e in B, the set of all arcs on C2 but outside

C1. Set θ = min{y(C1), w(e)−z(e) : e ∈ B}. Let y′ be obtained from y by replacing y(C1) with
y(C1)− θ and replacing y(C2) with y(C2) + θ. Then y′ is also optimal, with y′(C2) = y(C2) + θ,
so the existence of y′ contradicts the maximality assumption on y(C2) in the choice of y.

(iv) Assume the contrary: the only arc e0 = (u, v) on C outside Cy
0 is not unsaturated by y in

T2. Then w(e0) > z(e0). Let Ci a cycle in Cy
0 that passes through each ei on C\e0. Let k = |C|−1

and let H be the multiset sum of C0, C1, C2, ..., Ck, where C0 is the 2-cycle formed by (u, v) and
(v, u). Then H is an even digraph, and d+H(b) = d−H(b) = k if b ̸= u and d+H(b) = d−H(b) = k + 1
otherwise, where b is the hub of the 1-sum. Let H ′ be obtained from H by deleting all arcs
on C. Then H ′ remains even and contains k arc-disjoint cycles C ′

1, C
′
2, ..., C

′
k passing through b

(and hence in C0). Clearly, at most one of C ′
1, C

′
2, ..., C

′
k, say C ′

k if any, contains the arc (v, u).
Then C ′

1, C
′
2, ..., C

′
k−1 are all in C0. Set θ = min{w(e0) − z(e0), y(Ci) : 1 ≤ i ≤ k}. Let y′ be

obtained from y by replacing y(C) with y(C) + θ, replacing y(Ci) with y(Ci)− θ for 1 ≤ i ≤ k,
and replacing y(C ′

j) with y(C ′
j)+θ for 1 ≤ j ≤ k−1. Then y′ is an optimal solution to D(T,w).

Since y(C) < y′(C), the existence of y′ contradicts the maximality assumption on y(C2) in the
choice of y.

(v) Assume the contrary: some chord e = (u, v) of C is not saturated by y in T2. Let
C ′ = C[v, u] ∪ {(u, v)}. Note that C ′ ∈ C2 and |C ′| < |C|.

We first consider the case when e is outside Cy
0 . Then w(e)−z(e) > 0. Set θ = min{y(C), w(e)−

z(e)}. Let y′ be obtained from y by replacing y(C) with y(C) − θ and replacing y(C ′) with
y(C ′) + θ. Then y′ is an optimal solution to D(T,w). Since y′(C) < y(C), the existence of y′

contradicts the minimality assumption on (y(Dq), y(Dq−1), . . . , y(D3)) in the choice of y.
We next consider the case when e is contained in some cycle D in Cy

0 . Then the multiset sum
of C and D contains a cycle D′ in C0 that is disjoint from C ′. Set σ = min{y(C), y(D)}. Let y′
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be obtained from y by replacing y(C), y(D), y(C ′), and y(D′) with y(C)−σ, y(D)−σ, y(C ′)+σ,
and y(D′) + σ, respectively. Then y′ is an optimal solution to D(T,w). Since y′(C) < y(C),
the existence of y′ contradicts the minimality assumption on (y(Dq), y(Dq−1), . . . , y(D3)) in the
choice of y.

(vi) Assume the contrary: y(C1)y(C2) > 0. Let B be the set of unsaturated arcs in T2\a2,
and let C ′

1 and C ′
2 be two arc-disjoint cycles in C2 that are contained in the multiset sum of

C1, C2, and B. Set θ = min{y(C1), y(C2), w(e) − z(e) : e ∈ B}. Let y′ be obtained from y by
replacing y(C1), y(C2), y(C

′
1), and y(C ′

2) with y(C1) − θ, y(C2) − θ, y(C ′
1) + θ, and y(C ′

2) + θ,
respectively. Then y′ is an optimal solution to D(T,w). Since y′(C2) = y(C2) + θ, the existence
of y′ contradicts the maximality assumption on y.

(vii) Let C = ijki be a triangle in T2\u2. By (ii), at least one arc on C is outside Cy
0 , say

(i, j). If all arcs on C are outside Cy
0 , then by (i) one of the three arcs is saturated by y in T

and hence in T2. If (i, j) is the only arc on C that is outside Cy
0 , then (i, j) is saturated by y in

T2 by (iv). If exactly one arc on C, say (j, k), is contained in some cycle in Cy
0 , then by (iii) one

of (i, j) and (k, i) is saturated by y in T and hence in T2.
(viii) Assume the contrary: y(C1)y(C2) > 0. Set θ = min{y(C1), y(C2)}. Let y′ be obtained

from y by replacing y(C1), y(C2), y(C
′
1), and y(C ′

2) with y(C1) − θ, y(C2) − θ, y(C ′
1) + θ, and

y(C ′
2)+θ, respectively. Then y′ is an optimal solution to D(T,w). Since |C ′

2| < |C2| and y′(C2) <
y(C2), the existence of y

′ contradicts the minimality assumption on (y(Dq), y(Dq−1), . . . , y(D3))
in the choice of y.

Lemma 3.6. Suppose T2\a2 contains a unique cycle C, which is a triangle. If w(a) > 0 for
each arc a on C, then D(T,w) has an integral optimal solution.

Proof. Let y be an optimal solution to D(T,w) such that y(C) is maximized. By Lemma
3.5(vii), some arc e on C is saturated by y in T2. Since C is the unique cycle in T2\a2, we have
y(C) = w(e). Thus D(T,w) has an integral optimal solution by Lemma 3.2(iii).

4 Basic Reductions

This section is devoted to the analysis of case (i) exhibited in Lemma 2.5. Throughout this
section, we assume that (T,w) is an instance as described in Theorem 1.5, and that T = (V,A)
is the 1-sum of two strong Möbius-free tournaments T1 and T2 over the two special arcs (a1, b1)
and (b2, a2), with τw(T2\a2) > 0 and T2 ∈ T2. (Possibly T1 is a triangle and thus T = T2.) Let
us label T2 as in Figures 3-6. Since (b2, a2) is a special arc and a2 is a near-source of T2,

• (b2, a2) = (v1, v2) or (v4, v1) if T2 = F0;
• (b2, a2) = (v5, v2) if T2 = F2 or F3;
• (b2, a2) = (v5, v6) if T2 = F4;
• (b2, a2) = (v5, v6) if T2 = F6; and
• (b2, a2) = (v4, v5) if T2 = G2 or G3.

Note that T2\a2 is a transitive triangle when T2 = F0 and (b2, a2) = (v4, v1); in this case,
unfortunately, no reduction on T2\a2 is available, and the information on T2\a2 alone does not
lead to a proof of the desired statement; that is, D(T,w) has an integral optimal solution. In
fact, the same problem occurs when τw(T2\a2) = 0, no matter what T2 is. That partly explains
why the assumption of this section is so made and Lemma 2.5 is so stated.
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Theorem 4.1. For the above instance (T,w), problem D(T,w) has an integral optimal solution.

We shall carry out a proof by performing reductions on T2\a2. We employ the same notations
as introduced before. In particular, ν∗w(T ) stands for the common optimal value of P(T,w) and
D(T,w), and τw(T ) stands for the minimum total weight of an FAS in T . An FAS K of T is
called minimal if no proper subset of K is an FAS of T . A minimum-weight FAS is denoted by
MFAS. We use F2 to denote the family of all minimal FAS’s in T2\a2. Recall that C2 stands for
the set of all cycles in T2\a2, and Dk is the set of all cycles of length k in T2\a2. For every real
number r, set [r] = r − ⌊r⌋.

We break the proof of Theorem 4.1 into a series of lemmas.

Lemma 4.2. If T2 ∈ {F0, F2, F6}, then D(T,w) has an integral optimal solution.

Proof. By the hypothesis of Theorem 4.1, τw(T2\a2) > 0. So if T2 = F0, then (b2, a2) =
(v1, v2) and hence T2\a2 is a triangle. It is then routine to check that, for each T2 ∈ {F0, F2, F6},
there is a unique cycle contained in T2\a2, which is a triangle. Therefore D(T,w) has an integral
optimal solution by Lemma 3.6.

Lemma 4.3. If T2 = F3, then D(T,w) has an integral optimal solution.

Proof. It is routine to check that
• C2 = {v1v3v4v1, v1v3v5v1, v1v3v4v5v1} and
• F2 = {{v1v3}, {v3v4, v3v5}, {v3v4, v5v1}, {v4v1, v5v1}, {v3v5, v4v1, v4v5}}.

We also have a computer verification of these results. So |C2| = 3 and |F2| = 5. Recall that
(b2, a2) = (v5, v2).

Let y be an optimal solution to D(T,w) such that
(1) y(C2) is maximized;
(2) subject to (1), (y(Dq), y(Dq−1), . . . , y(D3)) is minimized lexicographically; and
(3) subject to (1) and (2), y(v1v3v5v1) is minimized.

Observe that
(4) if K ∈ F2 satisfies y(C2) = w(K), then K is an MFAS.
Indeed, since y(C2) = ν∗w(F3\v2), we have w(K) = ν∗w(F3\v2) ≤ τw(F3\v2) ≤ w(K). So

w(K) = τw(F3\v2).

Claim 1. y(C2) = τw(F3\v2).
To justify this, observe that v1v3 is a special arc of T and v1 is a near-sink. By Lemma 3.4(iv),

we may assume that v1v3 is saturated by y in T . If v1v3 is outside Cy
0 , then v1v3 is saturated by

y in F3. Thus y(C2) = w(v1v3). By (4), {v1v3} is an MFAS and hence y(C2) = τw(F3\v2). So
we assume that v1v3 is contained in some cycle C ∈ Cy

0 ; subject to this, C is chosen to have the
maximum number of arcs in F3\v2. Depending on whether C passes through v4v1, we consider
two cases.

• C contains v4v1. In this case, C contains the path v4v1v3v5. Applying Lemma 3.5(ii) to the
triangles v1v3v4v1 and v1v3v5v1 respectively, we see that both v3v4 and v5v1 are outside Cy

0 . By
Lemma 3.5(iv), both v3v4 and v5v1 are saturated by y in F3. Moreover, y(v1v3v4v5v1) = 0, for
otherwise, by Lemma 3.5(v), v3v5 is saturated by y in F3, contradicting the fact that v3v5 ∈ C.
So y(v1v3v4v1) = w(v3v4), y(v1v3v5v1) = w(v5v1), and y(C2) = w(K), where K = {v3v4, v5v1}.
By (4), K is an MFAS and hence y(C2) = τw(F3\v2).
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• C does not contain v4v1. In this case, we may assume that v4v1 is outside Cy
0 , for otherwise,

let D be a cycle in Cy
0 passing through v4v1. Then D contains the path v1v3v5. Replacing C by

D, we see that the previous case occurs. Since C contains v1v3, it also contains v3v4 or v3v5.
If C contains v3v4, then it contains the path v1v3v4v5. Using Lemma 3.5(ii) and (iv) and the
cycles v1v3v4v1 and v1v3v4v5v1, we see that both v4v1 and v5v1 are saturated by y in F3. So
y(C2) = w(K), where K = {v4v1, v5v1}. Using (4), we obtain y(C2) = τw(F3\v2). If C contains
v3v5, then v5v1 is saturated by y in F3 by Lemma 3.5(ii) and (iv). Thus we may assume that
v4v1 is not saturated by y in F3, otherwise we are done (as shown above). It follows from Lemma
3.5(v) that y(v1v3v4v5v1) = 0, and from Lemma 3.5(ii) and (iv) (using the triangle v1v3v4v1)
that v3v4 is outside Cy

0 . So, by Lemma 3.5(iii), v3v4 is saturated by y in F3. Since y(C2) = w(J),
where J = {v3v4, v5v1}, Claim 1 is justified by (4).

Claim 2. y(C) is an integer for each C ∈ C2.
To justify this, observe that y(v1v3v4v5v1) = 0, for otherwise, by Lemma 3.5(v), both v4v1

and v3v5 are saturated by y in F3. So y(v1v3v4v1) = w(v4v1) and y(v1v3v5v1) = w(v3v5); both
of them are integers. By Claim 1, y(v1v3v4v5v1) is also integral, as desired.

From the proof of Claim 1, we see that one of the following three cases occurs:
• y(v1v3v4v1) + y(v1v3v5v1) = w(v1v3);
• y(v1v3v4v1) = w(v3v4) and y(v1v3v5v1) = w(v5v1); and
• y(v1v3v4v1) = w(v4v1) and y(v1v3v5v1) = w(v5v1).

Thus the desired statement holds trivially in the second and third cases. It remains to consider
the first case.

Suppose on the contrary that neither y(v1v3v4v1) nor y(v1v3v5v1) is an integer. Then
[y(v1v3v4v1)] + [y(v1v3v5v1)] = 1. By the hypothesis of the present case, v1v3 is saturated
by y in F3, so v4v1 is outside Cy

0 . Thus

w(v4v1) ≥ ⌈y(v1v3v4v1)⌉ = ⌊y(v1v3v4v1)⌋+ 1 = y(v1v3v4v1) + [y(v1v3v5v1)].

We propose to show that
(5) v3v4 is saturated by y in F3.
Suppose not. If v3v4 is unsaturated in T , set θ = min{w(v3v4) − z(v3v4), [y(v1v3v5v1)]},

and let y′ be obtained from y by replacing y(v1v3v4v1) and y(v1v3v5v1) with y(v1v3v4v1) + θ
and y(v1v3v5v1) − θ, respectively; if v3v4 is saturated in T and contained in some C ∈ Cy

0 ,
set θ = min{y(C), [y(v1v3v5v1)]} and C ′ = C[v5, v3] ∪ {v3v5}, and let y′ be obtained from y by
replacing y(v1v3v4v1), y(v1v3v5v1), y(C), and y(C ′) with y(v1v3v4v1)+θ, y(v1v3v5v1)−θ, y(C)−θ,
and y(C ′) + θ, respectively. Then y′ is an optimal solution to D(T,w). Since y′(v1v3v5v1) <
y(v1v3v5v1), the existence of y′ contradicts the assumption (3) on y. So (5) is established.

By (5), we have y(v1v3v4v1) = w(v3v4) and y(v1v3v5v1) = w(v1v3)− w(v3v4); both of them
are integers. This contradiction proves Claim 2.

Since τw(F3\v2) > 0, by Claims 1 and 2, y(C) is a positive integer for some C ∈ C2. Thus,
by Lemma 3.2(iii), D(T,w) has an integral optimal solution.

Lemma 4.4. If T2 ∈ {F4, G2, G3}, then D(T,w) has an integral optimal solution.

Given the length of the whole paper, we omit the proof of this lemma here, and refer the
reader to the online appendix [6] (see Lemmas 4.5-4.7). Nevertheless, the proof ideas are all
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included in the verification of Lemma 4.3. (We hope that this paper could be handled in the
same way as Ding and Iverson [7] and Ding, Tan, and Zang [8]; each of these published versions
contains only parts of our lengthy proof, and the rest is given in an online appendix at the
website of the respective journal.)

Now we are ready to establish the main result of this section.
Proof of Theorem 4.1. By the hypothesis of this section, T is the 1-sum of two smaller

strong Möbius-free tournaments T1 and T2, with T2 ∈ T2. Since T2 = {F0, F2, F3, F4, F6, G2, G3},
the desired statement follows instantly from Lemmas 4.2-4.4.

5 Composite Reductions

This section is devoted to the analysis of case (ii) exhibited in Lemma 2.5. Throughout this
section, we assume that (T,w) is an instance as described in Theorem 1.5, and that T = (V,A)
is the 1-sum of two smaller strong Möbius-free tournaments T1 and T2 over two special arcs
(a1, b1) and (b2, a2), such that

(α) τw(T2\a2) > 0;

(β) there exists a vertex subset S of T2\{a2, b2} with |S| ≥ 2 and with the following properties:

• T [S] is acyclic and T2/S ∈ T3; and
• the vertex s∗ arising from contracting S is a near-sink in T/S.

From (β) we see that S is actually a homogeneous set of T . The purpose of this section is
to establish the following statement.

Theorem 5.1. For the above instance (T,w), problem D(T,w) has an integral optimal solution.

Let us label T2/S as in Figures 3-7. Since (b2, a2) is a special arc, a2 is a near-source of T2,
and s∗ is a near-sink in T/S, we have

• (b2, a2) = (v1, v2) and s∗ = v3 or v4 if T2/S = F0;
• (b2, a2) = (v5, v2) and s∗ = v1 if T2/S = F3;
• (b2, a2) = (v5, v6) and s∗ = v2 if T2/S = F4;
• (b2, a2) = (v5, v6) and s∗ = v2 if T2/S = F6;
• (b2, a2) = (v4, v5) and s∗ = v2 if T2/S = G2 or G3;
• (b2, a2) = (v1, v5) and s∗ = v4 if T2/S = G4;
• (b2, a2) = (v2, v6) and s∗ = v5 if T2/S = G5; and
• (b2, a2) = (v6, v7) and s∗ = v5 if T2/S = G6,

where the last three follow from Lemma 2.5(ii). Observe that if T2/S = F0, then (b2, a2) ̸=
(v4, v1), for otherwise, T2\v1 is acyclic, contradicting (α).

Since T [S] is acyclic, we can label the vertices in S as s1, s2, . . . , sr such that sjsi is an arc
in T for any 1 ≤ i < j ≤ r, where r = |S|. For convenience, we use v0 to denote the only
out-neighbor of S in T2\a2 (for example, v0 = v3 if T2/S = F3), use fi to denote the arc siv0,
and use R to denote the vertex subset V \(S ∪ {v0}).

In this section, we employ the same notations as introduced in Sections 3 and 4. In particular,
given an optimal solution y to D(T,w), we use Cy to denote {C ∈ C : y(C) > 0} and use Cy

i to
denote {C ∈ Ci : y(C) > 0} for i = 0, 1, 2. For each arc e of T , we use z(e) to denote y(C(e)).
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Let G be a digraph with a weight on each arc and let U be a vertex subset of G. By reorienting
G[U ] acyclically we mean the operation of reorienting some arcs of G[U ] so that the resulting
subgraph induced by U is acyclic, where each new arc is associated with the same weight as its
reverse in G.

Lemma 5.2. Let x and y be optimal solutions to P(T,w) and D(T,w), respectively. Then we
may assume that the following statements hold:

(i) z(sjsi) = w(sjsi) = 0 for any 1 ≤ i < j ≤ r (so if we reorient T [S] acyclically, then
the resulting digraph is isomorphic to T , and the optimal value of the resulting D(T,w)
remains the same);

(ii) x(fi)z(fi) > 0 for any 1 ≤ i ≤ r;

(iii) z(fi) = w(fi) > 0 for any 1 ≤ i ≤ r;

(iv) x(fi) ̸= x(fj) for any 1 ≤ i < j ≤ r;

(v) Every cycle C ∈ Cy contains at most one vertex from S; and

(vi) z(usi)z(usj) = 0 for any u ∈ R and 1 ≤ i < j ≤ r.

Proof. (i) Assume the contrary: z(sjsi) > 0 and, subject to this, j + i is minimized. Then
there exists a cycle D passing through sjsiv0 with y(D) > 0.

Consider first the case when x(sjsi) = 0. If z(fj) > 0, then x(fj) = x(sjsi) + x(fi) = x(fi)
by Lemma 3.1(iv). If z(fj) = 0, then w(fj) = 0 by Lemma 3.2(i). Since x(C) ≥ 1 for any C ∈ C,
we have x(fj) ≥ x(sjsi) + x(fi); replacing x(fj) by x(sjsi) + x(fi) if necessary, the resulting x
is also an optimal solution to P(T,w). So we may assume that x(fj) = x(sjsi) + x(fi) = x(fi).
Similarly, we may assume that x(usj) = x(usi) for any u ∈ R. Let T ′ = (V ′, A′) be obtained
from T by deleting sj . Note that T

′ also arises from T by identifying si with sj and then deleting
some arcs incident with sj . Let w′ be obtained from the restriction of w to A′ by replacing
w(fi) with w(fi) +w(fj) and replacing w(usi) with w(usi) +w(usj) for every u ∈ R. Let x′ be
the restriction of x to A′, and let y′ be the projection of y into the set of all cycles in T ′. From
the LP-duality theorem, we see that x′ and y′ are optimal solutions to P(T,w) and D(T,w),
respectively, having the same objective value ν∗w(T ) as x and y. By the hypothesis of Theorem
1.5, ν∗w(T ) is an integer. It follows from Lemma 3.4(ii) that D(T,w) has an integral optimal
solution.

Next consider the case when x(sjsi) > 0. By Lemma 3.1(iii), w(sjsi) = z(sjsi). Let w′ be
obtained from w by replacing w(fj) with w(fj)+w(sjsi) and replacing w(e) with w(e)−w(sjsi)
for e = sjsi and fi, let x

′ = x, and let y′ be obtained from y as follows: for each cycle C passing
through sjsi with y(C) > 0, let C ′ be the cycle obtained from C by replacing the path sjsiv0
with fj , and set y′(C) = 0 and y′(C ′) = y(C ′)+y(C). From the LP-duality theorem, we see that
x′ and y′ are optimal solutions to P(T,w′) and D(T,w′), respectively, having the same objective
value ν∗w(T ) as x and y. Since w′(A) < w(A), by the hypothesis of Theorem 1.5, ν∗w(T ) is an
integer. It follows from Lemma 3.4(ii) that D(T,w) has an integral optimal solution.

Combining the above two cases, we may assume that z(sjsi) = 0 and hence w(zjzi) = 0 by
Lemma 3.2(i) for any 1 ≤ i < j ≤ r. From (β) we see that S is a homogeneous set of T , so if
we reorient T [S] acyclically, then the resulting digraph is isomorphic to T . Given the weights
w(zjzi) for all 1 ≤ i < j ≤ r, it is clear that the optimal value of the resulting D(T,w) remains
the same.
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(ii) Assume the contrary: x(fi)z(fi) = 0 for some i. Consider first the case z(fi) = 0. Let
T ′ = (V ′, A′) be obtained from T by deleting si, and let w′ be the restriction of w to A′. Then
D(T ′,w′) has an integral optimal solution by the hypothesis of Theorem 1.5. From (i) and the
value of z(fi), we deduce that si is contained in no cycle C with y(C) > 0, so D(T ′,w′) has
the same optimal value ν∗w(T ) as D(T ′,w′). It follows from Lemma 3.4(ii) that D(T,w) has an
integral optimal solution. Thus we may assume that z(fj) > 0 for any 1 ≤ j ≤ r.

Next consider the case when x(fi) = 0. Observe that for any u ∈ R with uv0 ∈ A, if
z(uv0)z(usi) > 0, then x(uv0) = x(usi) + x(fi) = x(usi) by Lemma 3.1(iv), so x(uv0) = x(usi);
if z(uv0)z(usi) = 0, modifying x(uv) for v ∈ {v0, si} with z(uv) = 0 (thus w(uv) = 0) so that
the equality x(uv0) = x(usi) + x(fi) = x(usi) holds, the resulting x is also an optimal solution
to D(T,w). Hence we may assume that x(uv0) = x(usi).

Set U = {u ∈ R : z(usi) > 0 and uv0 /∈ A}. Let T ′ = (V ′, A′) be obtained from T\si by
adding an arc uv0 for each u ∈ U , and define w(uv0) = w(usi) and x(uv0) = x(usi) for each
u ∈ U . Let w′ be obtained from w by replacing w(uv0) with w(uv0) + w(usi) for each u ∈ R
with uv0 ∈ A, let x′ = x, and let y′ be obtained from y as follows: for each cycle C passing
through usi with y(C) > 0, let C ′ be the cycle arising from C by replacing the path usiv0
with uv0, and set y′(C ′) = y(C ′) + y(C). From the LP-duality theorem, we see that x′ and y′

are optimal solutions to P(T ′,w′) and D(T ′,w′), respectively, having the same objective value
ν∗w(T ) as x and y. In view of (i), we may assume that i = 1. So fi = f1 is a special arc of T .
By Lemma 2.6, T ′ = T/f1 is a Möbius-free digraph and thus, by Lemma 3.3, ν∗w(T ) is integral.
It follows from Lemma 3.4(ii) that D(T,w) has an integral optimal solution.

(iii) The statement follows directly from (ii), Lemma 3.2(i), and Lemma 3.1(iii).
(iv) Assume on the contrary that x(fi) = x(fj) for some 1 ≤ i < j ≤ r. Observe that for

any u ∈ R, if z(usi)z(usj) > 0, then x(usi) + x(fi) = x(usj) + x(fj) by Lemma 3.1(iv), so
x(usi) = x(usj); if z(usi)z(usj) = 0, letting (k, l) be a permutation of (i, j) with z(usk) = 0,
and replacing xk by xl if necessary, the resulting x is also an optimal solution to P(T,w). So we
may assume that x(usi) = x(usj). Let T

′ = (V ′, A′) be obtained from T by deleting si, and let
w′ be obtained from the restriction of w to A′ by replacing w(usj) with w(usj)+w(usi) for any
u ∈ R and replacing w(fj) with w(fj) +w(fi). Let x

′ be the restriction of x to A′ and let y′ be
obtained from the restriction of y to cycles in T ′ as follows: for each cycle C passing through
usi with y(C) > 0, let C ′ be obtained from C by replacing the path usiv0 with the path usjv0,
and set y′(C ′) = y(C ′)+ y(C). From the LP-duality theorem, we see that x′ and y′ are optimal
solutions to P(T ′,w′) and D(T ′,w′), respectively, having the same objective value ν∗w(T ) as x
and y. By the hypothesis of Theorem 1.5, ν∗w(T ) is an integer. Thus it follows from Lemma
3.4(ii) that D(T,w) has an integral optimal solution.

(v) Suppose on the contrary that C contains two distinct vertices si and sj in S. Let s+k be
the vertex succeeding sk as we traverse C in its direction, for k = i, j. Since y(C) > 0, from (i)
we deduce that s+i and s+j are two distinct vertices outside S. Thus the vertex s∗ arising from
contracting S would not be a near-sink in T/S, contradicting (β).

(vi) Assume the contrary: z(usi)z(usj) > 0 for some u ∈ R and 1 ≤ i < j ≤ r. Consider
first the case when z(usk) ≥ 1 for k = i or j. In view of (i), we may assume that z(usi) ≥ 1. Let
T ′ be obtained from T by adding an arc uv0 if it is not present in T and define w(uv0) = 0, and
let w′ be obtained from w by replacing w(a) with w(a) − ⌊z(e)⌋ for a ∈ {e, fi} and replacing
w(uv0) with w(uv0) + ⌊z(e)⌋. Let x be an optimal solution to P(T,w), and let x′ be obtained
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from x by setting x(uv0) = x(e)+x(fi). Let D be the set of all cycles C passing through e with
y(C) > 0, let π(C) be a constant between 0 and y(C) such that π(D) = ⌊z(e)⌋, and let y′ be
obtained from y as follows: for each cycle C ∈ D, let C ′ be obtained from C by replacing the
path usiv0 with uv0, set y

′(C) = y(C)− π(C) and y′(C ′) = y(C ′) + π(C). From the LP-duality
theorem, we see that x′ and y′ are optimal solutions to P(T ′,w′) and D(T ′,w′), respectively,
having the same objective value ν∗w(T ) as x and y. Let T ′′ be the tournament obtained from T
be adding a new vertex s0, an arc s0v0, and an arc uv0 for each u ∈ V \{v0}. By Lemma 2.3,
T ′′ is Möbius-free because it is the 1-sum of two smaller Möbius-free tournaments with hub v0.
By Lemma 2.6, the digraph G obtained from T ′′ by contracting s0v0 is also Möbius-free; so is
T ′ because it is a subgraph of G. As w(A′) < w(A), from Lemma 3.3 we deduce that ν∗w(T ) is
integral. Therefore, D(T,w) has an integral optimal solution by Lemma 3.4(ii).

So we may assume that z(usk) < 1 for k = i, j. Thus w(usk) = ⌈z(usk)⌉ = 1 > z(usk) for
k = i, j. It follows instantly from Lemma 3.1(ii) that x(usk) = 0 for k = i, j. By Lemma 3.1(iv),
we obtain x(usi) + x(fi) = x(usj) + x(fj), and hence x(fi) = x(fj), contradicting (iv).

We break the proof of Theorem 5.1 into a series of lemmas.

Lemma 5.3. If T2/S = F6, then D(T,w) has an integral optimal solution.

Proof. Recall that (b2, a2) = (v5, v6) and s∗ = v2. Clearly, C = v1v3v4v1 is the unique cycle
contained in T2\v6, which is a triangle. Since τw(T2\v6) > 0 by (α), we have w(a) > 0 for each
arc a on C. Therefore D(T,w) has an integral optimal solution by Lemma 3.6.

Lemma 5.4. If T2/S = F0, then D(T,w) has an integral optimal solution.

Proof. Recall that (b2, a2) = (v1, v2) and s∗ = v3 or v4. We only consider the case when
s∗ = v3, as the proof in other case goes along the same line. To establish the statement, by
Lemma 3.4(ii), it suffices to prove that

(1) the optimal value ν∗w(T ) of D(T,w) is integral.
Let y be an optimal solution to D(T,w). By Lemma 3.2(i), we have w(e) = ⌈z(e)⌉ for each

arc e in T . By (α) and Lemma 5.2(i) and (vi), there exists precisely one vertex sk in S such that
z(v1sk) > 0, which implies y(v1skv4v1) > 0. By Lemma 5.2(i), we may assume that sk = s1, the
sink of T [S]. Observe that T is also the 1-sum of two smaller Möbius-free tournaments T ′

1 and
T ′
2 with the same hub b, where T ′

2 arises from T2 by deleting S\s1. Since v1s1v4v1 is the unique
cycle contained in T ′

2\v2, which is a triangle, (1) follows instantly from Lemma 3.6.

Lemma 5.5. If T2/S = F3, then D(T,w) has an integral optimal solution.

Proof. Recall that (b2, a2) = (v5, v2), s
∗ = v1, and v0 = v3. To establish the statement, by

Lemma 3.4(ii), it suffices to prove that
(1) the optimal value ν∗w(T ) of D(T,w) is integral.
Given an optimal solution y to D(T,w), set φ(si) = {u : z(usi) > 0 for u ∈ V (T2)\a2} for

each si ∈ S. By Lemma 5.2(i) and (vi), we have
(2) φ(si) ∩ φ(sj) = ∅ whenever i ̸= j.
(3) There exist precisely two vertices si’s in S with φ(si) ̸= ∅.
In view of (2) and the structure of F3, there are at most two vertices si’s in S with φ(si) ̸= ∅.

Suppose on the contrary that there exists precisely one vertex si ∈ S with φ(si) ̸= ∅. By Lemma
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5.2(i), we may assume that si = s1, the sink of T [S]. Let T ′ be obtained from T by reversing the
direction of the arc v4vj for each j with 1 < j ≤ r. Define the weight of each new arc to be zero.
As w(v4vj) = 0 for each j with 1 < j ≤ r by Lemma 3.2(i), the optimal value of D(T ′,w) equals
ν∗w(T ). Observe that T ′ is the 1-sum of two smaller Möbius-free tournaments T ′

1 and T ′
2 with

the same hub b, where T ′
2 arises from T2 by deleting S\s1. Since T ′

2 = F3 and τw(T
′
2\v2) > 0,

statement (1) follows instantly from Lemma 4.3. So we may assume that (3) holds.
By (3) and Lemma 5.2(i), we may further assume that φ(s1) = {v5} and φ(s2) = {v4} for

any optimal solution y to D(T,w).
In the remainder of our proof, we reserve y for an optimal solution to D(T,w) such that
(4) y(C2) is maximized; and
(5) subject to (4), (y(Dq), y(Dq−1), . . . , y(D3)) is minimized lexicographically.
Let us make some observations about y. By Lemma 5.2(v), we have
(6) Cy

2 ⊆ {v5s1v3v5, v5s1v3v4v5, v4s2v3v4}.
In view of φ(si) for i = 1, 2 and Lemma 5.2(iii), we obtain

(7) w(v5s1) ≥ z(v5s1) > 0, w(v4s2) ≥ z(v4s2) > 0, and w(siv3) = z(siv3) > 0 for i = 1, 2.
From Lemma 3.5(v) we see that

(8) if y(v5s1v3v4v5) > 0, then v3v5 is saturated by y in T2.
(9) If w(v3v4) > 0, then y(v4s2v3v4) is a positive integer.
To justify this, observe that s2v3 is contained in some cycle C ∈ Cy

0 , for otherwise, s2v3
is saturated by y in T2 and hence, by (6), we have y(v4s2v3v4) = w(s2v3), which is a positive
integer by (7). If C contains v4s2, then it also contains v3v5. By Lemma 3.5(iv), v3v4 is saturated
by y in T2. By (8), we have y(v5s1v3v4v5) = 0. From (6) we deduce that y(v4s2v3v4) = w(v3v4),
which is a positive integer. So we assume that v4s2 is outside C. Furthermore, v4s2 is outside
Cy
0 , because every cycle containing v4s2 passes through s2v3. If v4s2 is saturated by y in T2,

then y(v4s2v3v4) = w(v4s2) by (6), as desired. So we assume that v4s2 is not saturated by y in
T and that C contains v3v5. By Lemma 3.5(iii) and (iv), v3v4 is saturated by y in T2. By (8),
we have y(v5s1v3v4v5) = 0. From (6) we see that y(v4s2v3v4) = w(v3v4). Hence (9) holds.

By (9) and Lemma 3.2(iii), we may assume that w(v3v4) = 0. Let us show that
(10) y(v5s1v3v5) is a positive integer.
If s1v3 is outside Cy

0 , then s1v3 is saturated by y in T2. Thus y(v5s1v3v5) = w(s1v3) > 0. If
s1v3 is contained in some cycle in Cy

0 , then, by Lemma 3.5(iv), v5s1 is saturated by y in T2. So
y(v5s1v3v5) = w(v5s1) > 0. Hence (10) holds in either case.

Using (10) and Lemma 3.2(iii), we conclude that the optimal value ν∗w(T ) of D(T,w) is
integral, as described in (1) above.

Lemma 5.6. If T2/S ∈ {F4, G2, G3, G4, G5, G6}, then D(T,w) has an integral optimal solution.

The proof of this lemma goes along the same line as that of Lemma 5.5. To save space, we
omit it here and refer the reader to the online appendix to our paper [6] (see Lemmas 5.7-5.9
and Lemmas 5.12-5.14).

With the aid of the above lemmas, we can now derive the desired total-dual integrality.
Proof of Theorem 5.1. By the hypothesis of this section, T is the 1-sum of two smaller

strong Möbius-free tournaments T1 and T2 with properties (α) and (β). Since T2/S ∈ T3, the
statement follows instantly from Lemmas 5.3-5.6.
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6 Proof: Last Step

In the preceding two sections we have carried out a series of reduction operations, and finished
the main body of the proof of Theorem 1.5. To complete the proof, we still need to consider
two more cases. The following lemma is intended for case (iii) exhibited in Lemma 2.5.

Lemma 6.1. Let G = (V,A) be a digraph with a nonnegative integral weight c(e) on each arc e,
and let v be a vertex of G. If each positive cycle in G contains v, then D(G, c) has an integral
optimal solution.

Proof. Construct a flow network N = (V ′, A′) with vertex set V ′ = (V \v)∪{s, t} as follows:
• for each arc ab ∈ A with a ̸= v ̸= b, there is an arc ab ∈ A′ with capacity c(ab);
• for each arc va ∈ A, there is an arc sa ∈ A′ with capacity c(va); and
• for each arc av ∈ A, there is an arc at ∈ A′ with capacity c(av).

Then there is a one-to-one correspondence between cycles containing v in G and s-t paths in N .
So, by the max-flow min-cut theorem, D(G, c) has an integral optimal solution.

Lemma 6.2. Tournament G1 is cycle Mengerian.

For a computer-assisted proof of this lemma, see Appendix [6].

Proof of Theorem 1.5. Clearly, we may assume that T is strong, T ̸= C3, and τw(T ) > 0.
Since F1 can be obtained from G1 by deleting vertex v6 (see the labeling in Figure 4), from
Lemma 6.2 we deduce that F1 is also cycle Mengerian. So we may further assume that F1 ̸=
T ̸= G1.

By Theorem 1.2, T0 = {C3, F0, F1, F2, F3, F4, G1, G2, G3} is the list of all i2s Möbius-free
tournaments. Hence

(1) if T is i2s, then T ∈ {F0, F2, F3, F4, G2, G3} = T2\{F6}.
We claim that T can be expressed as a 1-sum of two strong Möbius-free tournaments T1 and

T2 over two special arcs (a1, b1) and (b2, a2), such that one of the following three cases occurs:
(2) τw(T2\a2) > 0 and T2 ∈ T2;
(3) τw(T2\a2) > 0 and there exists a vertex subset S of T2\{a2, b2} with |S| ≥ 2, such that

T [S] is acyclic, T2/S ∈ T3, and the vertex s∗ arising from contracting S is a near-sink in T/S;
and

(4) every positive cycle in T crosses the hub b of the 1-sum.
Indeed, if T is not i2s, then the statement follows from Lemma 2.5. It remains to consider

the case when T is i2s. By (1), we have T ∈ T2\{F6}. Since each tournament in T2\{F6} has a
special arc, we may view T as a 1-sum of T1 and T2 over two special arcs (a1, b1) and (b2, a2),
where T1 is a triangle and T2 = T . If τw(T2\a2) > 0, then (2) holds. If τw(T2\a2) = 0, then
every positive cycle in T contains the hub of the 1-sum. So (4) occurs.

Applying Theorem 4.1, Theorem 5.1, and Lemma 6.1 to (2), (3), and (4), respectively, we
conclude that D(T,w) has an integral optimal solution in any case.

Proof of Theorem 1.4. Implication (iii) ⇒ (ii) holds, because total-dual integrality
implies primal integrality (see Edmonds-Giles theorem [11] stated in Section 1). Implication
(ii) ⇒ (i) is established in Lemma 2.1. Implication (i) ⇒ (iii) follows instantly from Theorem
1.5.
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7 Concluding Remarks

In this paper we have characterized all tournaments with the min-max relation on packing
and covering cycles. Our characterization yields a polynomial-time algorithm for the minimum-
weight feedback arc set problem on cycle Mengerian tournaments. But this algorithm is based on
the ellipsoid method for linear programming, and therefore very much unlike the typical combi-
natorial optimization procedures. It would be interesting to know whether it can be replaced by
a strongly polynomial-time algorithm of a transparent combinatorial nature. In combinatorial
optimization, there are some other min-max results that are obtained using the “structure-
driven” approach. Despite availability of structural descriptions, combinatorial polynomial-time
algorithms for the corresponding optimization problems have yet to be found, for instance, those
on matroids with the max-flow min-cut property; see Seymour [20] for a characterization and
Truemper [22] for efficient algorithms once again based on the ellipsoid method. Certainly, these
types of problems deserve more research efforts.
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