Online Appendix to

Ranking Tournaments with No Errors II: Minimax Relation

by Xujin Chen, Guoli Ding, Wenan Zang, and Qiulan Zhao

The purpose of this online appendix is to present proofs of Lemma 4.4 and Lemma 5.6 in the submitted version of this paper.

4 Basic Reductions

Lemma 4.5. If $T_2 = F_4$, then $\mathbb{D}(T, w)$ has an integral optimal solution.

Proof. It is routine to check that

- $C_2 = \{v_1v_2v_3v_1, v_2v_3v_4v_2, v_1v_5v_3v_1, v_3v_4v_5v_3, v_1v_2v_3v_4v_1, v_1v_5v_2v_3v_1, v_1v_5v_3v_4v_1, v_2v_3v_4v_5v_2, v_1v_5v_2v_3v_4v_1\}$ and
- $\mathcal{F}_2 = \{ \{v_2v_3, v_5v_3\}, \{v_3v_1, v_3v_4\}, \{v_1v_2, v_1v_5, v_3v_4\}, \{v_1v_5, v_2v_3, v_3v_4\}, \{v_1v_5, v_2v_3, v_4v_5\}, \{v_1v_2, v_1v_5, v_4v_2, v_4v_5\}, \{v_1v_2, v_3v_4, v_5v_2, v_5v_3\}, \{v_1v_2, v_4v_2, v_5v_2, v_5v_3\},$
 - $\{v_2v_3, v_3v_1, v_4v_1, v_4v_5\}, \{v_3v_1, v_4v_1, v_4v_2, v_4v_5\}, \{v_3v_1, v_4v_1, v_4v_2, v_5v_2, v_5v_3\}\}.$

We also have a computer verification of these results. So $|\mathcal{C}_2| = 9$ and $|\mathcal{F}_2| = 11$. Recall that $(b_2, a_2) = (v_5, v_6)$.

Let \boldsymbol{y} be an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$ such that

(1) $y(\mathcal{C}_2)$ is maximized;

(2) subject to (1), $(y(\mathcal{D}_q), y(\mathcal{D}_{q-1}), \ldots, y(\mathcal{D}_3))$ is minimized lexicographically;

(3) subject to (1) and (2), $y(v_1v_5v_2v_3v_1) + y(v_1v_5v_3v_4v_1)$ is minimized;

(4) subject to (1)-(3), $y(v_2v_3v_4v_5v_2)$ is minimized;

(5) subject to (1)-(4), $y(v_1v_5v_3v_1) + y(v_3v_4v_5v_3)$ is minimized; and

(6) subject to (1)-(5), $y(v_1v_5v_3v_1)$ is minimized.

Let us make some simple observations about y.

(7) If $K \in \mathcal{F}_2$ satisfies $y(\mathcal{C}_2) = w(K)$, then K is an MFAS. (The statement is exactly the same as (4) in the proof of Lemma 4.3.)

(8) If $y(v_1v_5v_2v_3v_4v_1) > 0$, then each arc in the set $\{v_1v_2, v_3v_1, v_4v_2, v_4v_5, v_5v_3\}$ is saturated by \boldsymbol{y} in F_4 . Furthermore, $y(v_1v_2v_3v_1) = y(v_3v_4v_5v_3) = y(v_1v_5v_3v_1) = 0$.

To justify this, note that each arc in the given set is a chord of the cycle $v_1v_5v_2v_3v_4v_1$. So the first half follows instantly from Lemma 3.5(v). Let \uplus stand for the multiset sum. Then $v_1v_5v_2v_3v_4v_1 \uplus v_1v_2v_3v_1 = v_1v_5v_2v_3v_1 \amalg v_1v_2v_3v_4v_1, v_1v_5v_2v_3v_4v_1 \amalg v_1v_5v_3v_1 = v_1v_5v_2v_3v_1 \amalg$ $v_1v_5v_3v_4v_1$, and $v_1v_5v_2v_3v_4v_1 \amalg v_3v_4v_5v_3 = v_1v_5v_3v_4v_1 \amalg v_2v_3v_4v_5v_2$. Suppose on the contrary that $y(v_1v_2v_3v_1) > 0$. Let $\theta = \min\{y(v_1v_5v_2v_3v_4v_1), y(v_1v_2v_3v_1)\}$ and let \mathbf{y}' be obtained from \mathbf{y} by replacing $y(v_1v_5v_2v_3v_4v_1), y(v_1v_2v_3v_1), y(v_1v_5v_2v_3v_4v_1)$ with $y(v_1v_5v_2v_3v_4v_1) - \theta$, $y(v_1v_2v_3v_1) - \theta, y(v_1v_5v_2v_3v_1) + \theta$, and $y(v_1v_2v_3v_4v_1) + \theta$. Then \mathbf{y}' is also an optimal solution to $\mathbb{D}(T, \mathbf{w})$. Since $\mathbf{y}'(v_1v_5v_2v_3v_4v_1) < y(v_1v_5v_2v_3v_4v_1)$, the existence of \mathbf{y}' contradicts the assumption (2) on \mathbf{y} . So $y(v_1v_2v_3v_1) = 0$. Similarly, $y(v_3v_4v_5v_3) = y(v_1v_5v_3v_1) = 0$.

(9) If $y(v_1v_5v_2v_3v_1) > 0$, then v_1v_2 and v_5v_3 are saturated by \boldsymbol{y} in F_4 ; so is v_4v_5 provided $y(v_1v_2v_3v_4v_1) > 0$. Furthermore, $y(v_3v_4v_5v_3) = 0$.

To justify this, note that both v_1v_2 and v_5v_3 are chords of the cycle $v_1v_5v_2v_3v_1$, so they are saturated by \boldsymbol{y} in F_4 by Lemma 3.5(v). Since $v_1v_5v_2v_3v_1 \oplus v_3v_4v_5v_3 = v_1v_5v_3v_1 \oplus v_2v_3v_4v_5v_2$, from (3) we deduce that $y(v_3v_4v_5v_3) = 0$ (for a proof, see that of (8)).

Consider the case when $y(v_1v_2v_3v_4v_1) > 0$. If v_4v_5 is not saturated by \boldsymbol{y} in T, then the multiset sum of the cycles $v_1v_5v_2v_3v_1$, $v_1v_2v_3v_4v_1$, and the arc v_4v_5 contains two arc-disjoint cycles $v_1v_2v_3v_1$ and $v_2v_3v_4v_5v_2$; if v_4v_5 is saturated by \boldsymbol{y} in T but contained in some cycle $C \in \mathcal{C}_0^{\boldsymbol{y}}$, then the multiset sum of $v_1v_5v_2v_3v_1$, $v_1v_2v_3v_4v_1$, and C contains three arc-disjoint cycles $v_1v_2v_3v_1$, $v_2v_3v_4v_5v_2$, and $C' = C[v_5, v_4] \cup \{v_4v_1, v_1v_5\}$. In either subcase we can obtain from \boldsymbol{y} an optimal solution \boldsymbol{y}' to $\mathbb{D}(T, \boldsymbol{w})$ that is better than \boldsymbol{y} by (2). So v_4v_5 is saturated by \boldsymbol{y} in F_4 .

(10) If $y(v_1v_5v_3v_4v_1) > 0$, then both v_3v_1 and v_4v_5 are saturated by \boldsymbol{y} in F_4 ; so is v_4v_2 provided $y(v_1v_5v_2v_3v_1) > 0$, and so is v_1v_2 provided $y(v_2v_3v_4v_5v_2) > 0$. Furthermore, $y(v_1v_2v_3v_1) = 0$.

To justify this, note that both v_3v_1 and v_4v_5 are chords of the cycle $v_1v_5v_3v_4v_1$, so they are saturated by \boldsymbol{y} in F_4 by Lemma 3.5(v). Since $v_1v_5v_3v_4v_1 \uplus v_1v_2v_3v_1 = v_1v_5v_3v_1 \uplus v_1v_2v_3v_4v_1$, from (3) we deduce that $y(v_1v_2v_3v_1) = 0$ (for a proof, see that of (8)).

Consider the case when $y(v_1v_5v_2v_3v_1) > 0$. If v_4v_2 is not saturated by \boldsymbol{y} in T, then the multiset sum of the cycles $v_1v_5v_2v_3v_1$, $v_1v_5v_3v_4v_1$, and the arc v_4v_2 contains arc-disjoint cycles $v_1v_5v_3v_4v_2$; if v_4v_2 ; is saturated by \boldsymbol{y} in T but contained in some cycle $C_1 \in \mathcal{C}_0^y$, then the multiset sum of C_1 , $v_1v_5v_2v_3v_1$, and $v_1v_5v_3v_4v_1$ contains three arc-disjoint cycles $v_1v_5v_3v_1$, $v_2v_3v_4v_2$, and $C'_1 = C_1[v_5, v_4] \cup \{v_4v_1, v_1v_5\}$. In either subcase we can obtain from \boldsymbol{y} an optimal solution \boldsymbol{y}' to $\mathbb{D}(T, \boldsymbol{w})$ that is better than \boldsymbol{y} by (2). So v_4v_5 is saturated by \boldsymbol{y} in F_4 .

Next, consider the case when $y(v_2v_3v_4v_5v_2) > 0$. If v_1v_2 is not saturated by \boldsymbol{y} in T, then the multiset sum of the cycles $v_1v_5v_3v_4v_1$, $v_2v_3v_4v_5v_2$, and the arc v_1v_2 contains arc-disjoint cycles $v_3v_4v_5v_3$ and $v_1v_2v_3v_4v_1$; if v_1v_2 is saturated by \boldsymbol{y} in T but contained in some cycle $C_2 \in \mathcal{C}_0^y$, then the multiset sum of C_2 , $v_2v_3v_4v_5v_2$, and $v_1v_5v_3v_4v_1$ contains three arc-disjoint cycles $v_3v_4v_5v_3$, $v_1v_2v_3v_4v_1$, and $C'_2 = C_2[v_5, v_1] \cup \{v_1v_5\}$. In either subcase we can obtain from \boldsymbol{y} an optimal solution \boldsymbol{y}' to $\mathbb{D}(T, \boldsymbol{w})$ that is better than \boldsymbol{y} by (2). So v_1v_2 is saturated by \boldsymbol{y} in F_4 .

(11) If $y(v_1v_2v_3v_4v_1) > 0$, then both v_3v_1 and v_4v_2 are saturated by y in F_4 ; so is v_4v_5 provided $y(v_1v_5v_3v_1) > 0$.

The first half follows instantly from Lemma 3.5(v). Suppose $y(v_1v_5v_3v_1) > 0$. If v_4v_5 is not saturated by \boldsymbol{y} in T, then the multiset sum of the cycles $v_1v_5v_3v_1$, $v_1v_2v_3v_4v_1$, and the arc v_4v_5 contains arc-disjoint cycles $v_1v_2v_3v_1$ and $v_3v_4v_5v_3$; if v_4v_5 is saturated by \boldsymbol{y} in T but contained in some cycle $C \in \mathcal{C}_0^{\boldsymbol{y}}$, then the multiset sum of $v_1v_2v_3v_4v_1$, $v_1v_5v_3v_1$, and C contains three arc-disjoint cycles $v_1v_2v_3v_1$, $v_3v_4v_5v_3$, and $C' = C[v_5, v_4] \cup \{v_4v_1, v_1v_5\}$. In either subcase we can obtain from \boldsymbol{y} an optimal solution \boldsymbol{y}' to $\mathbb{D}(T, \boldsymbol{w})$ that is better than \boldsymbol{y} by (2). So v_4v_5 is saturated by \boldsymbol{y} in F_4 .

(12) If $y(v_2v_3v_4v_5v_2) > 0$, then both v_4v_2 and v_5v_3 are saturated by \boldsymbol{y} in F_4 ; so is v_1v_2 provided $y(v_1v_5v_3v_1) > 0$.

The first half follows instantly from Lemma 3.5(v). Suppose $y(v_1v_5v_3v_1) > 0$. If v_1v_2 is not saturated by \boldsymbol{y} in T, then the multiset sum of the cycles $v_1v_5v_3v_1$, $v_2v_3v_4v_5v_2$, and the arc v_1v_2 contains arc-disjoint cycles $v_1v_2v_3v_1$ and $v_3v_4v_5v_3$; if v_1v_2 is saturated by \boldsymbol{y} in T but contained in some cycle $C \in \mathcal{C}_0^{\boldsymbol{y}}$, then the multiset sum of C, $v_2v_3v_4v_5v_2$, and $v_1v_5v_3v_1$ contains three arcdisjoint cycles $v_3v_4v_5v_3$, $v_1v_2v_3v_1$, and $C' = C[v_5, v_1] \cup \{v_1v_5\}$. In either subcase we can obtain from \boldsymbol{y} an optimal solution \boldsymbol{y}' to $\mathbb{D}(T, \boldsymbol{w})$ that is better than \boldsymbol{y} by (2). So v_1v_2 is saturated by \boldsymbol{y} in F_4 .

Claim 1. $y(\mathcal{C}_2) = \tau_w(F_4 \setminus v_6).$

To justify this, observe that v_2v_3 is a special arc of T and v_2 is a near-sink. By Lemma 3.4(iv), we may assume that v_2v_3 is saturated by \boldsymbol{y} in T. Depending on whether v_2v_3 is outside \mathcal{C}_0^y , we distinguish between two cases.

Case 1.1. v_2v_3 is contained in some cycle in \mathcal{C}_0^y .

Choose $C \in \mathcal{C}_0^y$ that contains v_2v_3 and, subject to this, has the maximum number of arcs in $F_4 \setminus v_6$. We proceed by considering three subcases.

• C contains v_1v_2 . In this subcase, C contains the path $P = v_1v_2v_3v_4v_5$. By Lemma 3.5(ii) and (iv), each arc in the set $K = \{v_3v_1, v_4v_1, v_4v_2, v_5v_2, v_5v_3\}$ is saturated by \boldsymbol{y} in F_4 . Since no arc on C (and hence on P) is saturated by \boldsymbol{y} in F_4 , we have $y(v_1v_5v_2v_3v_4v_1) = y(v_1v_5v_2v_3v_4v_1) = 0$ by (8) – (10). Since the multiset sum of $v_1v_5v_3v_4v_1$ and C contains three arc-disjoint cycles $v_1v_2v_3v_1$, $v_3v_4v_5v_3$, and $C' = C[v_5, v_1] \cup \{v_1v_5\}$, from the optimality of \boldsymbol{y} , we deduce that $y(v_1v_5v_3v_1) = 0$. So $y(\mathcal{C}_2) = w(K)$. By (7), K is an MFAS and hence $y(\mathcal{C}_2) = \tau_w(F_3\backslash v_2)$.

• C contains v_4v_2 . In this subcase, C contains the path $P = v_4v_2v_3v_1v_5$. By Lemma 3.5(ii) and (iv), each arc in the set $K = \{v_1v_2, v_3v_4, v_5v_2, v_5v_3\}$ is saturated by \boldsymbol{y} in F_4 . Since no arc on C (and hence on P) is saturated by \boldsymbol{y} in F_4 , $y(v_1v_5v_2v_3v_4v_1)$, $y(v_1v_5v_3v_4v_1)$, $y(v_1v_2v_3v_4v_1)$, and $y(v_2v_3v_4v_5v_2)$ are all 0 by (8) and (10)-(12). Since the multiset sum of $v_3v_4v_5v_3$ and C contains three arc-disjoint cycles $v_1v_5v_3v_1$, $v_2v_3v_4v_2$, and $C' = C[v_5, v_4] \cup \{v_4v_5\}$, from the optimality of \boldsymbol{y} , we deduce that $y(v_3v_4v_5v_3) = 0$. So $y(\mathcal{C}_2) = w(K)$. By (7), K is an MFAS and hence $y(\mathcal{C}_2) = \tau_w(F_3 \backslash v_2)$.

• C contains neither v_1v_2 nor v_4v_2 . In this subcase, we may assume that both v_1v_2 and v_4v_2 are outside \mathcal{C}_0^y , for otherwise, each cycle containing v_1v_2 or v_4v_2 passes through v_2v_3 , and thus one of the preceding subcases occurs. Clearly, C contains v_3v_4 or v_3v_1 .

Assume first that C contains v_3v_4 . If C contains v_4v_1 , then it also contains v_1v_5 . By Lemma 3.5(ii) and (iv), each arc in the set $K = \{v_1v_2, v_4v_2, v_5v_2, v_5v_3\}$ is saturated by \boldsymbol{y} in F_4 . So $y(\mathcal{C}_2) = w(K)$. By (7), K is an MFAS and hence $y(\mathcal{C}_2) = \tau_w(F_3 \setminus v_2)$. If C does not contain v_4v_1 , then C contains v_4v_5 . By Lemma 3.5(ii) and (iv), each arc in the set $\{v_4v_2, v_5v_2, v_5v_3\}$ is saturated by \boldsymbol{y} in F_4 . If v_1v_2 is also saturated by \boldsymbol{y} in F_4 , then $y(\mathcal{C}_2) = w(K)$, where K is as defined above. Again, K is an MFAS and hence $y(\mathcal{C}_2) = \tau_w(F_3 \setminus v_2)$. So we assume that v_1v_2 is not saturated by \boldsymbol{y} in T. Since v_1v_2 is outside \mathcal{C}_0^y , so are v_4v_1 and v_3v_1 . By Lemma 3.5(ii), both v_4v_1 and v_3v_1 are saturated by \boldsymbol{y} in T and hence in F_4 . Moreover, by (8)-(10), $y(v_1v_5v_2v_3v_4v_1)$, $y(v_1v_5v_2v_3v_1)$, and $y(v_1v_5v_3v_4v_1)$ are all 0. Since the multiset sum of the cycles $v_1v_5v_3v_1$, C, and the unsaturated arc v_1v_2 contains two arc-disjoint cycles $v_1v_2v_3v_1$ and $v_3v_4v_5v_3$. By Lemma 3.5(ii), we have $y(v_1v_5v_3v_1) = 0$. So $y(\mathcal{C}_2) = w(J)$, where $J = \{v_3v_1, v_4v_1, v_4v_2, v_5v_2, v_5v_3\}$. By (7), J is an MFAS and hence $y(\mathcal{C}_2) = \tau_w(F_3 \setminus v_2)$.

Assume next that C contains v_3v_1 . Then C contains v_1v_5 . By Lemma 3.5(ii) and (iv), each arc in the set $\{v_1v_2, v_5v_2, v_5v_3\}$ is saturated by \boldsymbol{y} in F_4 . If v_4v_2 is also saturated by \boldsymbol{y} in F_4 , then $y(\mathcal{C}_2) = w(K)$, where $K = \{v_1v_2, v_4v_2, v_5v_2, v_5v_3\}$. By (7), K is an MFAS and hence $y(\mathcal{C}_2) = \tau_w(F_3 \setminus v_2)$. So we assume that v_4v_2 is not saturated by \boldsymbol{y} in F_4 and hence in T (recall that v_4v_2 is outside \mathcal{C}_0^y). By Lemma 3.5(iv), v_3v_4 is outside \mathcal{C}_0^y . By Lemma 3.5(iii), v_3v_4 is saturated by \boldsymbol{y} in T and hence in F_4 . By (8) and (10)-(12), $y(v_1v_5v_2v_3v_4v_1)$, $y(v_1v_5v_3v_4v_1)$, $y(v_1v_2v_3v_4v_1)$, and $y(v_2v_3v_4v_5v_2)$ are all 0. Since the multiset sum of the cycles $v_3v_4v_5v_3$, C, and the unsaturated arc v_4v_2 contains two arc-disjoint cycles $v_1v_5v_3v_1$ and $v_2v_3v_4v_2$, we have $y(v_3v_4v_5v_3) = 0$ by Lemma 3.5(vi). So $y(\mathcal{C}_2) = w(J)$, where $J = \{v_1v_2, v_3v_4, v_5v_2, v_5v_3\}$. By (7), K is an MFAS and hence $y(\mathcal{C}_2) = \tau_w(F_3 \backslash v_2)$.

Case 1.2. v_2v_3 is outside \mathcal{C}_0^y .

By the previous observation, v_2v_3 is saturated by \boldsymbol{y} in F_4 now. Note also that v_5v_3 is outside \mathcal{C}_0 . If v_5v_3 is saturated by \boldsymbol{y} in T, so is it in F_4 , and hence $y(\mathcal{C}_2) = w(K)$, where $K = \{v_2v_3, v_5v_3\}$. By (7), K is an MFAS and hence $y(\mathcal{C}_2) = \tau_w(F_3 \setminus v_2)$. So we assume that v_5v_3 is unsaturated. By (8), (9), and (12), $y(v_1v_5v_2v_3v_4v_1)$, $y(v_1v_5v_2v_3v_1)$, and $y(v_2v_3v_4v_5v_2)$ are all 0. Observe that both v_3v_1 and v_3v_4 are outside \mathcal{C}_0^y , for otherwise, since each cycle passing through v_3v_1 or v_3v_4 contains v_1v_5 or v_4v_5 , from Lemma 3.5(iv) we deduce that v_5v_3 is saturated, a contradiction. If both v_3v_1 and v_3v_4 are saturated by \boldsymbol{y} in F_4 , then $y(\mathcal{C}_2) = w(J)$, where $J = \{v_3v_1, v_3v_4\}$. By (7), J is an MFAS and hence $y(\mathcal{C}_2) = \tau_w(F_3 \setminus v_2)$. So we assume that

(13) at most one of v_3v_1 and v_3v_4 is saturated by \boldsymbol{y} in F_4 . Since $\mathcal{C}_0^y \neq \emptyset$, there is a cycle $C \in \mathcal{C}_0^y$ passing through v_4v_1 , or v_1v_5 , or v_4v_5 ; subject to this, let C be chosen to have the maximum number of arcs in $F_4 \setminus v_6$. We proceed by considering three subcases.

• C contains both v_4v_1 and v_1v_5 . In this subcase, since v_5v_3 is unsaturated, by Lemma 3.5(iii), v_3v_1 and v_3v_4 are both saturated by \boldsymbol{y} in F_4 , a contradiction.

• C contains v_1v_5 but not v_4v_1 . In this subcase, from the choice of C, we see that v_4v_1 is outside C_0^y , because every cycle containing v_4v_1 passes through v_1v_5 . Since v_5v_3 is unsaturated, Lemma 3.5(iii) implies that v_3v_1 is saturated by \boldsymbol{y} in F_4 , and thus v_3v_4 is not saturated by \boldsymbol{y} in F_4 and hence in T by (13). Once again, by Lemma 3.5(iii), v_4v_1 is saturated by \boldsymbol{y} in F_4 , and v_4v_5 is outside C_0^y . Since both v_5v_3 and v_3v_4 are unsaturated, it follows from Lemma 3.5(i) that v_4v_5 is saturated by \boldsymbol{y} in F_4 . If v_4v_2 is also saturated by \boldsymbol{y} in F_4 , then $y(\mathcal{C}_2) = w(K)$, where $K = \{v_3v_1, v_4v_1, v_4v_2, v_4v_5\}$. By (7), K is an MFAS and hence $y(\mathcal{C}_2) = \tau_w(F_4 \setminus v_6)$. If v_4v_2 is not saturated by \boldsymbol{y} in F_4 , then $y(v_1v_2v_3v_4v_1) = 0$ by (11). Moreover, since the multiset sum of the cycles $v_1v_2v_3v_1$, C, and the unsaturated arcs v_5v_3 , v_3v_4 , and v_4v_2 contains two arc-disjoint cycles $v_2v_3v_4v_2$ and $v_1v_5v_3v_1$, we have $y(v_1v_2v_3v_1) = 0$ by Lemma 3.5(vi). Therefore, $y(\mathcal{C}_2) = w(J)$, where $J = \{v_2v_3, v_3v_1, v_4v_1, v_4v_5\}$. By (7), J is an MFAS and hence $y(\mathcal{C}_2) = \tau_w(F_3 \setminus v_2)$.

• C contains v_4v_5 . In this subcase, we may assume that both v_4v_1 and v_1v_5 are outside C_0^0 , otherwise one of the preceding subcases occurs. By Lemma 3.5(iii), v_3v_4 is saturated by \boldsymbol{y} in Tand hence in F_4 , which together with (13) implies that v_3v_1 is not saturated by \boldsymbol{y} in F_4 . Using (10) and (11), we deduce that $y(v_1v_5v_3v_4v_1) = y(v_1v_2v_3v_4v_1) = 0$. Using Lemma 3.5(ii) and the triangle $v_1v_5v_3v_1$, we see that v_1v_5 is outside C_0^y . Using Lemma 3.5(i) and the triangle $v_1v_5v_3v_1$, we also deduce that v_1v_5 is saturated by \boldsymbol{y} in T and hence in F_4 . If v_1v_2 is also saturated by \boldsymbol{y} in F_4 , then $y(\mathcal{C}_2) = w(K)$, where $K = \{v_1v_2, v_1v_5, v_3v_4\}$. By (7), K is an MFAS and hence $y(\mathcal{C}_2) = \tau_w(F_4 \setminus v_6)$. So we assume that v_1v_2 is not saturated by \boldsymbol{y} in F_4 and hence in T, because v_1v_2 is outside C_0^y , by the hypothesis of the present case. Since the multiset sum of the cycles C, $v_2v_3v_4v_2$, and unsaturated arcs v_5v_3 , v_3v_1 , and v_1v_2 contains two arc-disjoint cycles $v_1v_2v_3v_1$ and $v_3v_4v_5v_3$, we have $y(v_2v_3v_4v_2) = 0$ by Lemma 3.5(vi). It follows that $y(\mathcal{C}_2) = w(J)$, where $J = \{v_1v_5, v_2v_3, v_3v_4\}$. By (7), J is an MFAS and hence $y(\mathcal{C}_2) = \tau_w(F_4 \setminus v_6)$. This completes the proof of Claim 1. **Claim 2.** y(C) is integral for all $C \in \mathcal{C}_2$ or $\nu_w^*(T)$ is an integer.

To justify this, let $\mathcal{G}_2 = \mathcal{F}_2 \setminus \{\{v_1v_5, v_2v_3, v_4v_5\}, \{v_1v_2, v_1v_5, v_4v_2, v_4v_5\}\}$. From the proof of Claim 1, we see that $y(\mathcal{C}_2) = w(K)$ for some $K \in \mathcal{G}_2$. Observe that if $y(\mathcal{C}_2) = w(J)$ for $J = \{v_1v_5, v_2v_3, v_4v_5\}$ or $\{v_1v_2, v_1v_5, v_4v_2, v_4v_5\}$, then both v_1v_5 and v_4v_5 are saturated by \boldsymbol{y} in F_4 , so $\mathcal{C}_0^y = \emptyset$ in this case, which has been excluded by Lemma 3.2(ii).

Let us make some further observations about \boldsymbol{y} .

 $(14) \ y(v_1v_5v_2v_3v_4v_1) = 0.$

Suppose on the contrary that $y(v_1v_5v_2v_3v_4v_1) > 0$. By (8), we have $y(v_1v_2v_3v_1) = y(v_3v_4v_5v_3) = y(v_1v_5v_3v_1) = 0$, and each arc in the set $\{v_1v_2, v_3v_1, v_4v_2, v_4v_5, v_5v_3\}$ is saturated by \boldsymbol{y} in F_4 . So $y(\mathcal{C}_2(v_1v_2)) = w(v_1v_2), y(\mathcal{C}_2(v_3v_1)) = w(v_3v_1), y(\mathcal{C}_2(v_4v_2)) = w(v_4v_2), y(\mathcal{C}_2(v_4v_5)) = w(v_4v_5),$ and $y(\mathcal{C}_2(v_5v_3)) = w(v_5v_3)$. It follows that $y(v_1v_2v_3v_4v_1) = w(v_1v_2), y(v_1v_5v_2v_3v_1) = w(v_3v_1),$ $y(v_2v_3v_4v_2) = w(v_4v_2), y(v_2v_3v_4v_5v_2) = w(v_4v_5),$ and $y(v_1v_5v_3v_4v_1) = w(v_5v_3)$. From Claim 1 we deduce that $y(v_1v_5v_2v_3v_4v_1)$ is also integral, and hence $\nu_w^*(T)$ is an integer by Lemma 3.2(iii).

(15) $y(v_1v_5v_2v_3v_1)$ or $y(v_1v_5v_3v_4v_1)$ is 0.

Assume the contrary: both $y(v_1v_5v_2v_3v_1)$ and $y(v_1v_5v_3v_4v_1)$ are positive. By (9) and (10), we have $y(v_1v_2v_3v_1) = y(v_3v_4v_5v_3) = 0$, and each arc in the set $\{v_1v_2, v_5v_3, v_3v_1, v_4v_2, v_4v_5\}$ is saturated by \boldsymbol{y} in F_4 . So $y(\mathcal{C}_2(v_1v_2)) = w(v_1v_2)$, $y(\mathcal{C}_2(v_5v_3)) = w(v_5v_3)$, $y(\mathcal{C}_2(v_3v_1)) = w(v_3v_1)$, $y(\mathcal{C}_2(v_4v_2)) = w(v_4v_2)$, and $y(\mathcal{C}_2(v_4v_5)) = w(v_4v_5)$. It follows that $y(v_1v_2v_3v_4v_1) = w(v_1v_2)$, $y(v_2v_3v_4v_2) = w(v_4v_2)$, $y(v_2v_3v_4v_5v_2) = w(v_4v_5)$, $y(v_1v_5v_3v_1) + y(v_1v_5v_2v_3v_1) = w(v_3v_1)$, and $y(v_1v_5v_3v_1) + y(v_1v_5v_3v_4v_1) = w(v_5v_3)$. Given the above equations and (14), to prove that y(C) is integral for all $C \in \mathcal{C}_2$, it suffices to show that one of $y(v_1v_5v_3v_4v_1)$, $y(v_1v_5v_2v_3v_1)$, and $y(v_1v_5v_3v_1)$ is integral.

By Lemma 3.1 and Claim 1, each arc $e \in K$ satisfies $w(e) = z(e) = y(\mathcal{C}_2(e))$. Let us proceed by considering four subcases.

If $v_2v_3 \in K$, then $w(v_2v_3) = y(\mathcal{C}_2(v_2v_3)) = y(v_2v_3v_4v_2) + y(v_1v_2v_3v_4v_1) + y(v_1v_5v_2v_3v_1) + y(v_2v_3v_4v_5v_2)$, which implies that $y(v_1v_5v_2v_3v_1)$ is integral.

If $v_3v_4 \in K$, then $w(v_3v_4) = y(\mathcal{C}_2(v_3v_4)) = y(v_2v_3v_4v_2) + y(v_1v_2v_3v_4v_1) + y(v_2v_3v_4v_5v_2) + y(v_1v_5v_3v_4v_1)$, which implies that $y(v_1v_5v_3v_4v_1)$ is integral.

If $v_4v_1 \in K$, then $w(v_4v_1) = y(\mathcal{C}_2(v_4v_1)) = y(v_1v_2v_3v_4v_1) + y(v_1v_5v_3v_4v_1)$, which implies that $y(v_1v_5v_3v_4v_1)$ is integral.

If $v_5v_2 \in K$, then $w(v_5v_2) = y(\mathcal{C}_2(v_5v_2)) = y(v_1v_5v_2v_3v_1) + y(v_2v_3v_4v_5v_2)$, which implies that $y(v_1v_5v_2v_3v_1)$ is integral.

Since each $K \in \mathcal{G}_2$ contains at least one arc in the set $\{v_2v_3, v_3v_4, v_4v_1, v_5v_2\}$, it follows that y(C) is integral for all $C \in \mathcal{C}_2$. So $y(v_1v_5v_2v_3v_1)$ is a positive integer, and hence $\nu_w^*(T)$ is an integer by Lemma 3.2(iii). Therefore we may assume that (15) holds.

Depending on what $K \in \mathcal{G}_2$ is, we distinguish among nine cases.

Case 2.1. $K = \{v_1v_5, v_2v_3, v_3v_4\}.$

In this case, by Lemma 3.1(i) and (iii), we have $y(v_2v_3v_4v_2) = y(v_1v_2v_3v_4v_1) = y(v_2v_3v_4v_5v_2) = y(v_1v_5v_2v_3v_1) = y(v_1v_5v_3v_4v_1) = 0$ and $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which together with (14) yields $w(v_1v_5) = y(\mathcal{C}_2(v_1v_5)) = y(v_1v_5v_3v_1)$, $w(v_2v_3) = y(\mathcal{C}_2(v_2v_3)) = y(v_1v_2v_3v_1)$, and $w(v_3v_4) = y(\mathcal{C}_2(v_3v_4)) = y(v_3v_4v_5v_3)$. So y(C) is integral for all $C \in \mathcal{C}_2$.

Case 2.2. $K = \{v_1v_2, v_3v_4, v_5v_2, v_5v_3\}.$

In this case, by Lemma 3.1(i) and (iii), we have $y(v_1v_5v_3v_4v_1) = y(v_3v_4v_5v_3) = y(v_1v_2v_3v_4v_1) = y(v_2v_3v_4v_5v_2) = 0$, which together with (14) yields $w(v_1v_2) = y(\mathcal{C}_2(v_1v_2)) = y(v_1v_2v_3v_1)$,

 $w(v_3v_4) = y(\mathcal{C}_2(v_3v_4)) = y(v_2v_3v_4v_2), \ w(v_5v_2) = y(\mathcal{C}_2(v_5v_2)) = y(v_1v_5v_2v_3v_1), \ \text{and} \ w(v_5v_3) = y(\mathcal{C}_2(v_5v_3)) = y(v_1v_5v_3v_1).$ So y(C) is integral for all $C \in \mathcal{C}_2$.

Case 2.3. $K = \{v_2v_3, v_3v_1, v_4v_1, v_4v_5\}.$

In this case, by Lemma 3.1(i) and (iii), we have $y(v_1v_2v_3v_1) = y(v_1v_5v_2v_3v_1) = y(v_1v_2v_3v_4v_1)$ = $y(v_2v_3v_4v_5v_2) = 0$, which together with (14) yields $w(v_2v_3) = y(\mathcal{C}_2(v_2v_3)) = y(v_2v_3v_4v_2)$, $w(v_3v_1) = y(\mathcal{C}_2(v_3v_1)) = y(v_1v_5v_3v_1)$, $w(v_4v_1) = y(\mathcal{C}_2(v_4v_1)) = y(v_1v_5v_3v_4v_1)$, and $w(v_4v_5) = y(\mathcal{C}_2(v_4v_5)) = y(v_3v_4v_5v_3)$. So y(C) is integral for all $C \in \mathcal{C}_2$.

Case 2.4. $K = \{v_3v_1, v_4v_1, v_4v_2, v_5v_2, v_5v_3\}.$

In this case, by Lemma 3.1(i) and (iii), we have $y(v_1v_5v_3v_1) = y(v_1v_5v_2v_3v_1) = y(v_1v_5v_3v_4v_1) = 0$, which together with (14) yields $w(v_3v_1) = y(\mathcal{C}_2(v_3v_1)) = y(v_1v_2v_3v_1)$, $w(v_4v_1) = y(\mathcal{C}_2(v_4v_1)) = y(v_1v_2v_3v_4v_1)$, $w(v_4v_2) = y(\mathcal{C}_2(v_4v_2)) = y(v_2v_3v_4v_2)$, $w(v_5v_2) = y(\mathcal{C}_2(v_5v_2)) = y(v_2v_3v_4v_5v_2)$, and $w(v_5v_3) = y(\mathcal{C}_2(v_5v_3)) = y(v_3v_4v_5v_3)$. So y(C) is integral for all $C \in \mathcal{C}_2$.

Case 2.5. $K = \{v_1v_2, v_1v_5, v_3v_4\}.$

In this case, by Lemma 3.1(i) and (iii), we have $y(v_1v_2v_3v_4v_1) = y(v_1v_5v_3v_4v_1) = 0$ and $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which together with (14) yields the following three equations:

 $w(v_1v_2) = y(\mathcal{C}_2(v_1v_2)) = y(v_1v_2v_3v_1);$

 $w(v_1v_5) = y(\mathcal{C}_2(v_1v_5)) = y(v_1v_5v_3v_1) + y(v_1v_5v_2v_3v_1);$ and

 $w(v_3v_4) = y(\mathcal{C}_2(v_3v_4)) = y(v_2v_3v_4v_2) + y(v_3v_4v_5v_3) + y(v_2v_3v_4v_5v_2).$

Depending on the value of $y(v_1v_5v_2v_3v_1)$, we consider two subcases.

• $y(v_1v_5v_2v_3v_1) = 0$. In this subcase, $y(v_1v_5v_3v_1) = w(v_1v_5)$. If $y(v_2v_3v_4v_5v_2) > 0$, then $w(v_5v_3) = y(\mathcal{C}_2(v_5v_3)) = y(v_1v_5v_3v_1) + y(v_3v_4v_5v_3)$ and $w(v_4v_2) = y(\mathcal{C}_2(v_4v_2)) = y(v_2v_3v_4v_2)$ by (12). Thus both $y(v_3v_4v_5v_3)$ and $y(v_2v_3v_4v_5v_2)$ are integral, and hence y(C) is integral for all $C \in \mathcal{C}_2$. So we assume that $y(v_2v_3v_4v_5v_2) = 0$. Then $w(v_3v_4) = y(v_2v_3v_4v_2) + y(v_3v_4v_5v_3)$. If $y(v_2v_3v_4v_2)$ is an integer, then y(C) is integral for all $C \in \mathcal{C}_2$. So we further assume that $y(v_2v_3v_4v_2)$ is not integral. Thus $[y(v_2v_3v_4v_2)] + [y(v_3v_4v_5v_3)] = 1$. Since each arc in K is saturated by \boldsymbol{y} in F_4 , both v_2v_3 and v_4v_2 are outside \mathcal{C}_0^y . Let \boldsymbol{y}' be obtained from \boldsymbol{y} by replacing $y(v_2v_3v_4v_2)$ and $y(v_3v_4v_5v_3)$ with $y(v_2v_3v_4v_2) + [y(v_3v_4v_5v_3)]$ and $[y(v_3v_4v_5v_3)]$ respectively. Then \boldsymbol{y}' is also an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$. Since $y'(v_3v_4v_5v_3) < y(v_3v_4v_5v_3)$, the existence of \boldsymbol{y}' contradicts the assumption (5) on \boldsymbol{y} .

• $y(v_1v_5v_2v_3v_1) > 0$. In this subcase, $y(v_3v_4v_5v_3) = 0$ and v_5v_3 is saturated by \boldsymbol{y} in F_4 by (9). So $w(v_3v_4) = y(v_2v_3v_4v_2) + y(v_2v_3v_4v_5v_2)$ and $w(v_5v_3) = y(v_1v_5v_3v_1)$. It follows that $y(v_1v_5v_2v_3v_1) = w(v_1v_5) - w(v_5v_3)$. If $y(v_2v_3v_4v_5v_2) = 0$, then $y(v_2v_3v_4v_2) = w(v_3v_4)$; otherwise, by (12), both v_1v_5 and v_4v_2 are saturated by \boldsymbol{y} in F_4 . Thus $y(v_2v_3v_4) = w(v_4v_2)$ and $y(v_2v_3v_4v_5v_2) = w(v_3v_4) - w(v_4v_2)$. So y(C) is integral for all $C \in \mathcal{C}_2$.

Case 2.6. $K = \{v_3v_1, v_4v_1, v_4v_2, v_4v_5\}.$

In this case, by Lemma 3.1 (iii), we have $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which together with (14) yields the following four equations:

 $w(v_3v_1) = y(\mathcal{C}_2(v_3v_1)) = y(v_1v_2v_3v_1) + y(v_1v_5v_3v_1) + y(v_1v_5v_2v_3v_1);$

 $w(v_4v_1) = y(\mathcal{C}_2(v_4v_1)) = y(v_1v_2v_3v_4v_1) + y(v_1v_5v_3v_4v_1);$

 $w(v_4v_2) = y(\mathcal{C}_2(v_4v_2)) = y(v_2v_3v_4v_2);$ and

 $w(v_4v_5) = y(\mathcal{C}_2(v_4v_5)) = y(v_3v_4v_5v_3) + y(v_2v_3v_4v_5v_2).$

Depending on the values of $y(v_1v_5v_3v_4v_1)$ and $y(v_1v_5v_2v_3v_1)$, we consider three subcases.

• $y(v_1v_5v_3v_4v_1) > 0$. In this subcase, by (10) and (15), we have $y(v_1v_2v_3v_1) = y(v_1v_5v_2v_3v_1) = 0$. So $y(v_1v_5v_3v_1) = w(v_3v_1)$. If $y(v_2v_3v_4v_5v_2) > 0$, then both v_1v_2 and v_5v_3 are saturated by \boldsymbol{y}

in F_4 by (10) and (12). So $w(v_1v_2) = y(\mathcal{C}_2(v_1v_2)) = y(v_1v_2v_3v_4v_1)$ and $w(v_5v_3) = y(\mathcal{C}_2(v_5v_3)) = y(v_1v_5v_3v_1) + y(v_3v_4v_5v_3) + y(v_1v_5v_3v_4v_1)$. Since $y(v_1v_5v_3v_4v_1) = w(v_4v_1) - y(v_1v_2v_3v_4v_1)$ and $y(v_2v_3v_4v_5v_2) = w(v_4v_5) - y(v_3v_4v_5v_3)$, it follows that $y(v_1v_5v_3v_4v_1)$, $y(v_3v_4v_5v_3)$, and $y(v_2v_3v_4v_5v_2)$ are all integral. So we assume that $y(v_2v_3v_4v_5v_2) = 0$. Then $y(v_3v_4v_5v_3) = w(v_4v_5)$. Since each arc in K is saturated by \boldsymbol{y} in F_4 , both v_1v_2 and v_2v_3 are outside \mathcal{C}_0^y . By Lemma 3.2(i), we may assume that $w(e) = \lceil z(e) \rceil$ for all arcs e in T. Thus, from (3) we deduce that $y(v_1v_2v_3v_4v_1) = \min\{w(v_1v_2), w(v_2v_3) - w(v_4v_2)\}$ and $y(v_1v_5v_3v_4v_1) = w(v_4v_1) - y(v_1v_2v_3v_4v_1)$. Therefore y(C) is integral for all $C \in \mathcal{C}_2$.

• $y(v_1v_5v_2v_3v_1) > 0$. In this subcase, from (9) and (15), we deduce that $y(v_3v_4v_5v_3) = y(v_1v_5v_3v_4v_1) = 0$, and that both v_1v_2 and v_5v_3 are saturated by \boldsymbol{y} in F_4 . So $y(v_1v_2v_3v_4v_1) = w(v_4v_1) \ y(v_2v_3v_4v_5v_2) = w(v_4v_5), \ w(v_1v_2) = y(\mathcal{C}_2(v_1v_2)) = y(v_1v_2v_3v_1) + y(v_1v_2v_3v_4v_1)$, and $w(v_5v_3) = y(\mathcal{C}_2(v_5v_3)) = y(v_1v_5v_3v_1)$. Thus $y(v_1v_2v_3v_1) = w(v_1v_2) - w(v_4v_1)$ is integral, so is $y(v_1v_5v_2v_3v_1)$. Therefore y(C) is integral for all $C \in \mathcal{C}_2$.

• $y(v_1v_5v_3v_4v_1) = y(v_1v_5v_2v_3v_1) = 0$. In this subcase, $y(v_1v_2v_3v_4v_1) = w(v_4v_1)$. Suppose $y(v_2v_3v_4v_5v_2) > 0$. Then v_5v_3 is saturated by \boldsymbol{y} in F_4 by (12). So $w(v_5v_3) = y(\mathcal{C}_2(v_5v_3)) = y(v_1v_5v_3v_1) + y(v_3v_4v_5v_3)$. If $y(v_1v_5v_3v_1) > 0$, then v_1v_2 is saturated by \boldsymbol{y} in F_4 by (12). So $w(v_1v_2) = y(\mathcal{C}_2(v_1v_2)) = y(v_1v_2v_3v_1) + y(v_1v_2v_3v_4v_1)$, It follows that $y(v_1v_2v_3v_1)$ and hence y(C) is integral for any $C \in \mathcal{C}_2$. If $y(v_1v_5v_3v_1) = 0$, then $y(v_1v_2v_3v_1) = w(v_3v_1)$, which implies that y(C) is integral for any $C \in \mathcal{C}_2$. So we assume that $y(v_2v_3v_4v_5v_2) = 0$. Then $y(v_3v_4v_5v_3) = w(v_4v_5)$. Observe that $y(v_1v_2v_3v_1)$ is integral, for otherwise, let \boldsymbol{y}' be obtained from \boldsymbol{y} by replacing $y(v_1v_2v_3v_1)$ and $y(v_1v_5v_3v_1)$ with $y(v_1v_2v_3v_1) + [y(v_1v_5v_3v_1)]$ and $[y(v_1v_5v_3v_1)]$, respectively. Since v_1v_2 and v_2v_3 are outside \mathcal{C}_0^v , we see \boldsymbol{y}' is also an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$. Since $y'(v_1v_5v_3v_1) < y(v_1v_5v_3v_1)$, the existence of \boldsymbol{y}' contradicts the assumption (5) on \boldsymbol{y} . From the above observation, it is easy to see that y(C) is integral for any $C \in \mathcal{C}_2$.

Case 2.7. $K = \{v_1v_2, v_4v_2, v_5v_2, v_5v_3\}.$

In this case, by Lemma 3.1(iii), we have $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which together with (14) yields the following four equations:

 $w(v_1v_2) = y(\mathcal{C}_2(v_1v_2)) = y(v_1v_2v_3v_1) + y(v_1v_2v_3v_4v_1);$

 $w(v_4v_2) = y(\mathcal{C}_2(v_4v_2)) = y(v_2v_3v_4v_2);$

 $w(v_5v_2) = y(\mathcal{C}_2(v_5v_2)) = y(v_1v_5v_2v_3v_1) + y(v_2v_3v_4v_5v_2);$ and

 $w(v_5v_3) = y(\mathcal{C}_2(v_5v_3)) = y(v_1v_5v_3v_1) + y(v_3v_4v_5v_3) + y(v_1v_5v_3v_4v_1).$

Depending on the values of $y(v_1v_5v_3v_4v_1)$ and $y(v_1v_5v_2v_3v_1)$, we consider three subcases.

• $y(v_1v_5v_3v_4v_1) > 0$. In this subcase, by (10) and (15), $y(v_1v_2v_3v_1) = y(v_1v_5v_2v_3v_1) = 0$ and both v_3v_1 and v_4v_5 are saturated by y in F_4 . So $y(v_2v_3v_4v_2) = w(v_4v_2)$, $y(v_1v_2v_3v_4v_1) = w(v_1v_2)$, $y(v_2v_3v_4v_5v_2) = y(\mathcal{C}_2(v_5v_2)) = w(v_5v_2)$, and $y(v_1v_5v_3v_1) = y(\mathcal{C}_2(v_3v_1)) = w(v_3v_1)$. Thus $y(v_3v_4v_5v_3)$ and $y(v_1v_5v_3v_4v_1)$ are also integral.

• $y(v_1v_5v_2v_3v_1) > 0$. In this subcase, by (9) and (15), we have $y(v_3v_4v_5v_3) = y(v_1v_5v_3v_4v_1) = 0$. So $y(v_1v_5v_3v_1) = w(v_5v_3)$. If $y(v_1v_2v_3v_4v_1) > 0$, then both v_3v_1 and v_4v_5 are saturated by \boldsymbol{y} in F_4 by (9) and (11). So $w(v_3v_1) = y(\mathcal{C}_2(v_3v_1)) = y(v_1v_2v_3v_1) + y(v_1v_5v_3v_1) + y(v_1v_5v_2v_3v_1)$ and $w(v_4v_5) = y(\mathcal{C}_2(v_4v_5)) = y(v_2v_3v_4v_5v_2)$. It follows that y(C) is integral for all $C \in \mathcal{C}_2$. So we assume that $y(v_1v_2v_3v_4v_1) = 0$. Then $y(v_1v_2v_3v_4v_5v_2)$, and $y(v_1v_5v_3v_1)$ are integral, and $y(v_1v_5v_2v_3v_1) + y(v_2v_3v_4v_5v_2) = w(v_5v_2)$. If $y(v_2v_3v_4v_5v_2)$ is an integer, then y(C) is integral for any $C \in \mathcal{C}_2$. So we assume that $y(v_2v_3v_4v_5v_2) = w(v_5v_2)$ is not integral. We propose to show that

(16) $\nu_w^*(T)$ is an integer.

To justify this, let \boldsymbol{x} be an optimal solution to $\mathbb{P}(T, \boldsymbol{w})$. By Lemma 3.2(iii), we may assume that $w(v_1v_2) = w(v_4v_2) = w(v_5v_3) = 0$. Thus y(C) = 0 for all $C \in \mathcal{C}_2 \setminus \{v_1v_5v_2v_3v_1, v_2v_3v_4v_5v_2\}$. Observe that v_3v_4 is outside \mathcal{C}_0^y , for otherwise, let D be a cycle in \mathcal{C}_0^y that contains v_3v_4 . It is then easy to see that an optimal solution \boldsymbol{y}' to $\mathbb{D}(T, \boldsymbol{w})$ can be obtained from \boldsymbol{y} by modifying $y(D), y(v_1v_5v_2v_3v_1), \text{ and } y(v_2v_3v_4v_5v_2)$ and by possibly rerouting D, so that $y'(v_1v_5v_2v_3v_1) < y(v_1v_5v_2v_3v_1)$, contradicting (3). Since $y(v_2v_3v_4v_5v_2) < w(v_3v_4)$, we have $x(v_3v_4) = 0$ by Lemma 3.1(ii). Since both $y(v_1v_5v_2v_3v_1)$ and $y(v_2v_3v_4v_5v_2)$ are positive, $x(v_3v_1) + x(v_1v_5) = x(v_3v_4) + x(v_4v_5)$ by Lemma 3.1(i). So $x(v_4v_5) = x(v_3v_1) + x(v_1v_5)$.

Let us show that if $w(v_4v_1) > 0$, then $x(v_4v_1) = x(v_3v_1)$. For this purpose, note that both v_4v_1 and v_4v_5 are contained in some cycles in \mathcal{C}_0^y , for otherwise, we can obtain a new optimal solution \boldsymbol{y}' from \boldsymbol{y} satisfying (1) and (2), but $y'(v_1v_5v_2v_3v_1) = \lfloor y(v_1v_5v_2v_3v_1) \rfloor$ and $y'(v_2v_3v_4v_5v_2) = y(v_2v_3v_4v_5v_2) + \lfloor y(v_1v_5v_2v_3v_1) \rfloor$, which again contradicts (3). Thus $x(v_4v_5) = x(v_1v_5) + x(v_4v_1)$ by Lemma 3.1(iii). Combining it with the equality established in the preceding paragraph, we obtain the $x(v_4v_1) = x(v_3v_1)$. If $w(v_4v_1) = 0$, then we may assume that $x(v_4v_1) = x(v_3v_1)$ (replacing the smaller of these two with the larger if necessary).

Similarly, we can prove that $x(uv_3) = x(uv_4)$ for each $u \in V(T_1) \setminus \{b, a_1\}$, where b is the hub of the 1-sum. Let T' be the the digraph obtained from T by identifying v_3 and v_4 ; the resulting vertex is still denoted by v_4 . Let w' be obtained from the restriction of w to A(T') by replacing $w(uv_4)$ with $w(uv_3) + w(uv_4)$ for each $u \in V(T_1) \setminus \{b, a_1\}$. Note that T' is Möbius-free by Lemma 2.7, x corresponds to a feasible solution x' to $\mathbb{P}(T', w')$, and y corresponds to a feasible solution y' to $\mathbb{P}(T', w')$ with $y'(v_4v_5v_4) = y'(v_4v_2v_4) = 0$, both having the same objective value $\nu_w^*(T)$ as x and y. So x' and y' are optimal solutions to $\mathbb{P}(T, w)$ and $\mathbb{D}(T, w)$, respectively. By Lemma 3.3, the optimal value $\nu_w^*(T)$ of $\mathbb{P}(T', w')$ is integral. So (16) is established.

• $y(v_1v_5v_3v_4v_1) = y(v_1v_5v_2v_3v_1) = 0$. In this subcase, $y(v_2v_3v_4v_2)$ and $y(v_2v_3v_4v_5v_2)$ are integral. Assume first that $y(v_1v_2v_3v_4v_1) > 0$. Then, by (11), the arc v_3v_1 is saturated by \boldsymbol{y} in F_4 . So $w(v_3v_1) = y(\mathcal{C}_2(v_3v_1)) = y(v_1v_2v_3v_1) + y(v_1v_5v_3v_1)$. If $y(v_1v_5v_3v_1) = 0$, then $y(v_3v_4v_5v_3) = w(v_5v_3)$. So y(C) is integral for any $C \in \mathcal{C}_2$. If $y(v_1v_5v_3v_1) > 0$, then v_4v_5 is is saturated by \boldsymbol{y} in F_4 by (11). Thus $w(v_4v_5) = y(\mathcal{C}_2(v_4v_5)) = y(v_3v_4v_5v_3) + y(v_2v_3v_4v_5v_2)$, which is integral. It follows that $y(v_3v_4v_5v_3) = w(v_4v_5) - w(v_5v_2)$. So y(C) is integral for any $C \in \mathcal{C}_2$. Assume next that $y(v_1v_2v_3v_4v_1) = 0$. Then $y(v_1v_2v_3v_1)$ is integral and $y(v_1v_5v_3v_1) + y(v_3v_4v_5v_3) = w(v_5v_3)$. Clearly, we may assume that neither $y(v_1v_5v_3v_1)$ nor $y(v_3v_4v_5v_3)$ is integral, otherwise we are done. Similar to (16), we can show that

(17) $\nu_w^*(T)$ is an integer.

The proof goes along the same line as that of (16). In fact, we only need to replace $y(v_1v_5v_2v_3v_1)$ and $y(v_2v_3v_4v_5v_2)$ with $y(v_1v_5v_3)$ and $y(v_3v_4v_5v_3)$, respectively. So we omit the details here.

Case 2.8. $K = \{v_2v_3, v_5v_3\}.$

In this case, by Lemma 3.1(iii), we have $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which together with (14) yields the following two equations:

 $w(v_2v_3) = y(v_1v_2v_3v_1) + y(v_2v_3v_4v_2) + y(v_1v_2v_3v_4v_1) + y(v_2v_3v_4v_5v_2) + y(v_1v_5v_2v_3v_1); \text{ and } w(v_5v_3) = y(v_1v_5v_3v_1) + y(v_3v_4v_5v_3) + y(v_1v_5v_3v_4v_1).$

Since v_2v_3 is saturated by \boldsymbol{y} in F_4 , we have $w(uv_2) = z(uv_2) = 0$ for any $u \in V(T_1) \setminus \{b, a_1\}$ in this case. Depending on the values of $y(v_1v_5v_3v_4v_1)$ and $y(v_1v_5v_2v_3v_1)$, we consider three subcases.

• $y(v_1v_5v_3v_4v_1) > 0$. In this subcase, from (10) and (15) we deduce that $y(v_1v_2v_3v_1) = y(v_1v_5v_2v_3v_1) = 0$ and that both v_3v_1 and v_4v_5 are saturated by \boldsymbol{y} in F_4 . So $y(v_3v_4v_5v_3) + y(v_2v_3v_4v_5v_2) = w(v_4v_5)$ and $y(v_1v_5v_3v_1) = w(v_3v_1)$. If $y(v_2v_3v_4v_5v_2) > 0$, then both v_1v_2 and v_4v_2 are saturated by \boldsymbol{y} in F_4 by (10) and (12). Thus $y(v_2v_3v_4v_2) = w(v_4v_2)$ and $y(v_1v_2v_3v_4v_1) = w(v_1v_2)$. It follows that $y(v_3v_4v_5v_3)$, $y(v_2v_3v_4v_5v_2)$, and $y(v_1v_5v_3v_4v_1)$ are all integral. So we assume that $y(v_2v_3v_4v_5v_2) = 0$. Then $y(v_3v_4v_5v_3) = w(v_4v_5)$, and $y(v_1v_5v_3v_4v_1) = w(v_5v_3) - w(v_3v_1) - w(v_4v_5)$. Moreover, $y(v_2v_3v_4v_2) = w(v_4v_2)$ and $y(v_1v_2v_3v_4v_1) = w(v_2v_3) - w(v_4v_2)$ if $y(v_1v_2v_3v_4v_1) > 0$, and $y(v_2v_3v_4v_2) = w(v_2v_3)$ otherwise. Therefore y(C) is integral for all $C \in \mathcal{C}_2$, no matter whether if $y(v_2v_3v_4v_5v_2) > 0$.

• $y(v_1v_5v_2v_3v_1) > 0$. In this subcase, by (9) and (15) we deduce that $y(v_3v_4v_5v_3) = y(v_1v_5v_3v_4v_1) = 0$ and that v_1v_2 is saturated by y in F_4 . So $y(v_1v_2v_3v_1) + y(v_1v_2v_3v_4v_1) = w(v_1v_2)$. If $y(v_1v_2v_3v_4v_1) > 0$, then v_3v_1 , v_4v_2 , and v_4v_5 are saturated by y in F_4 by (9) and (11). So $y(v_2v_3v_4v_2) = w(v_4v_2)$, $y(v_2v_3v_4v_5v_2) = w(v_4v_5)$, and $y(v_2v_3v_4v_2) + y(v_1v_5v_3v_1) + y(v_1v_5v_2v_3v_1) = w(v_3v_1)$. It follows that $y(v_1v_2v_3v_1)$, $y(v_1v_2v_3v_4v_1)$, and $y(v_1v_5v_2v_3v_1) = w(v_2v_3) + y(v_1v_5v_2v_3v_1) = w(v_3v_1)$. It follows that $y(v_1v_2v_3v_4v_2) + y(v_1v_5v_2v_3v_1) = 0$. Then $y(v_1v_2v_3v_1) = w(v_1v_2)$. If $y(v_2v_3v_4v_5v_2) = 0$, then $y(v_2v_3v_4v_2) + y(v_1v_5v_2v_3v_1) = w(v_2v_3) - w(v_1v_2)$. Since $y(v_1v_5v_2v_3v_1) > 0$, we see that v_3v_4 is outside C_0^0 , for otherwise, we can obtain an optimal solution y' to $\mathbb{D}(T, w)$ with $y'(v_1v_5v_2v_3v_1) < y(v_1v_5v_2v_3v_1)$, contradicting (3). It follows that $y(v_2v_3v_4v_5v_2) > 0$, then $y(v_2v_3v_4v_2) = w(v_2v_3) - w(v_1v_2) - y(v_2v_3v_4v_2) = w(v_4v_2)$ by (12) and $y(v_1v_5v_2v_3v_1) + y(v_2v_3v_4v_5v_2) = w(v_2v_3) - w(v_1v_2) - w(v_4v_2)$. Thus we always have $w(v_iv_2) = [z(v_iv_2)] = z(v_iv_2)$ for i = 1, 4, 5. Since v_2 is a near-sink, $\mathbb{D}(T, w)$ has an integral optimal solution by Lemma 3.4(i).

• $y(v_1v_5v_2v_3v_1) = y(v_1v_5v_3v_4v_1) = 0$. In this subcase, depending on whether $y(v_2v_3v_4v_5v_2) > 0$, we distinguish between two subsubcases.

(a) We first assume that $y(v_2v_3v_4v_5v_2) > 0$. Now, in view of (12), v_4v_2 is saturated by \boldsymbol{y} in F_4 , which yields $w(v_4v_2) = y(v_2v_3v_4v_2)$. If $y(v_1v_5v_3v_1) > 0$, then v_1v_2 is saturated by \boldsymbol{y} in F_4 . So $y(v_1v_2v_3v_1) + y(v_1v_2v_3v_4v_1) = w(v_1v_2)$ and $y(v_2v_3v_4v_5v_2) = w(v_2v_3) - w(v_1v_2) - w(v_4v_2)$. Thus $w(v_iv_2) = \lfloor z(v_iv_2) \rfloor = z(v_iv_2)$ for i = 1, 4, 5. By Lemma 3.4(i), $\mathbb{D}(T, \boldsymbol{w})$ has an integral optimal solution. So we assume that $y(v_1v_5v_3v_1) = 0$. If $y(v_1v_2v_3v_4v_1) = 0$, then $y(v_1v_2v_3v_1) + y(v_2v_3v_4v_5v_2) = w(v_2v_3) - w(v_4v_2)$. Since \boldsymbol{y} satisfies (1), we have $y(v_1v_2v_3v_4v_1) = 0$ min $\{w(v_1v_2), w(v_3v_1)\}$ and $y(v_2v_3v_4v_5v_2) = w(v_2v_3) - w(v_4v_2) - y(v_1v_2v_3v_4v_1)$. If $y(v_1v_2v_3v_4v_1) > 0$, then $y(v_1v_2v_3v_4v_1) = w(v_3v_1)$ by (11) and $y(v_1v_2v_3v_4v_1) + y(v_2v_3v_4v_5v_2) = w(v_2v_3) - w(v_3v_1) - w(v_4v_2)$. Assume $y(v_1v_2v_3v_4v_1)$ is not integral. Then $[y(v_1v_2v_3v_4v_1)] + [y(v_2v_3v_4v_5v_2)] = 1$. We propose to show that

(18) v_4v_1 is saturated by \boldsymbol{y} in F_4 .

Suppose the contrary. If v_4v_1 is not saturated by \boldsymbol{y} in T, we set $\theta = \min\{w(v_4v_1) - z(v_4v_1), [y(v_2v_3v_4v_5v_2)]\}$, and let \boldsymbol{y}' arise from \boldsymbol{y} by replacing $y(v_1v_2v_3v_4v_1)$ and $y(v_2v_3v_4v_5v_2)$ with $y(v_1v_2v_3v_4v_1) + \theta$ and $y(v_2v_3v_4v_5v_2) - \theta$, respectively. Since v_1v_2 is outside $\mathcal{C}_0^y, \boldsymbol{y}'$ is also an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$, contradicting (4). If v_4v_1 is saturated by \boldsymbol{y} in T but contained in a cycle $C \in \mathcal{C}_0^y$, let $C' = C[v_5, v_4] \cup \{v_4v_5\}$ and $\sigma = \min\{y(C), [y(v_2v_3v_4v_5v_2)]\}$, and let \boldsymbol{y}' be obtained from \boldsymbol{y} by replacing $y(v_1v_2v_3v_4v_1), y(v_2v_3v_4v_5v_2), y(C)$, and y(C') with $y(v_1v_2v_3v_4v_1) + \sigma$, $y(v_2v_3v_4v_5v_2) - \sigma$, $y(C) - \sigma$, and $y(C') + \sigma$, respectively. Then \boldsymbol{y}' is also an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$, contradicting (4) again. So (18) is established.

By (18), we have $y(v_1v_2v_3v_4v_1) = w(v_4v_1)$. It follows that y(C) is integral for all $C \in \mathcal{C}_2$.

(b) We next assume that $y(v_2v_3v_4v_5v_2) = 0$. If $y(v_1v_2v_3v_4v_1) > 0$, then v_4v_2 is saturated by y in F_4 by (11). So $y(v_2v_3v_4v_2) = w(v_4v_2)$ and $y(v_1v_2v_3v_1) + y(v_1v_2v_3v_4v_1) = w(v_2v_3) - w(v_4v_2)$. Thus $w(v_iv_2) = \lceil z(v_iv_2) \rceil = z(v_iv_2)$ for i = 1, 4, 5. By Lemma 3.4(i), $\mathbb{D}(T, w)$ has an integral optimal solution. So we assume that $y(v_1v_2v_3v_4v_1) = 0$. Then $y(v_1v_2v_3v_1) + y(v_2v_3v_4v_2) = w(v_2v_3)$ and $y(v_1v_5v_3v_1) + y(v_3v_4v_5v_3) = w(v_5v_3)$. If $y(v_1v_2v_3v_1)$ is integral, then $w(v_iv_2) = \lceil z(v_iv_2) \rceil = z(v_iv_2)$ for i = 1, 4, 5. Hence, by Lemma 3.4(i), $\mathbb{D}(T, w)$ has an integral optimal solution. So we assume that $y(v_1v_2v_3v_1)$ is not integral. We propose to show that

(19) $\nu_w^*(T)$ is an integer.

To justify this, let \boldsymbol{x} be an optimal solution to $\mathbb{P}(T, \boldsymbol{w})$. Since $0 < y(v_1v_2v_3v_1) < w(v_1v_2)$ and $0 < y(v_2v_3v_4v_2) < w(v_4v_2)$, by Lemma 3.1(i) and (ii), we have $x(v_1v_2) = x(v_4v_2) = 0$ and $x(v_3v_1) = x(v_3v_4)$.

Let us show that $x(v_1v_5) = x(v_4v_5)$. If both $y(v_1v_5v_3v_1)$ and $y(v_3v_4v_5v_3)$ are positive, then, by Lemma 3.1(i), we have $x(v_1v_5v_3v_1) = x(v_3v_4v_5v_3) = 1$, which implies $x(v_1v_5) = x(v_4v_5)$, as desired. If one of $y(v_1v_5v_3v_1)$ and $y(v_3v_4v_5v_3)$ is zero, then the other equals $w(v_5v_3)$. By Lemma 3.2(iii), we may assume that $w(v_5v_3) = 0$. Since v_2v_3 is saturated by \boldsymbol{y} in F_4 , both v_1v_2 and v_4v_2 are outside $\mathcal{C}_0^{\boldsymbol{y}}$. If v_3v_4 is also outside $\mathcal{C}_0^{\boldsymbol{y}}$, let \boldsymbol{y}' be obtained from \boldsymbol{y} by replacing $y(v_3v_4v_5v_3)$ and $y(v_1v_5v_3v_1)$ with $y(v_3v_4v_5v_3) + [y(v_1v_5v_3v_1)]$ and $[y(v_1v_5v_3v_1)]$, respectively, then \boldsymbol{y}' is an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$. Since $y'(v_3v_4v_5v_3)$ is a positive integer, $\mathbb{D}(T, \boldsymbol{w})$ has an integral optimal solution by Lemma 3.2(iii). So we may assume that v_3v_4 is contained in some cycle in $\mathcal{C}_0^{\boldsymbol{y}}$; the same holds for v_3v_1 . Let C_1 and C_2 be two cycles in $\mathcal{C}_0^{\boldsymbol{y}}$ passing through v_3v_1 and v_3v_4 , respectively. By Lemma 3.1(iii), we have $x(v_3v_1) + x(v_1v_5) = x(v_3v_4) + x(v_4v_5)$. Thus $x(v_1v_5) = x(v_4v_5)$ also holds.

Similarly, we can prove that $x(uv_1) = x(uv_4)$ for each vertex $u \in V(T_1) \setminus \{b, a_1\}$, where b is the hub of the 1-sum. Let T' = (V', A') be the digraph obtained from T by identifying v_1 and v_4 ; the resulting vertex is still denoted by v_1 . Let w' be the restriction of w to A'. Then xcorresponds to a feasible solution x' to $\mathbb{P}(T', w')$ with $x'(v_1v_5) = x(v_4v_1) + x(v_1v_5) = x(v_4v_5)$ by Lemma 3.1(iii), and y corresponds to a feasible solution y' to $\mathbb{D}(T', w')$; both having the same objective value $\nu_w^*(T)$ as $\mathbb{P}(T, w)$ and $\mathbb{D}(T, w)$. By the LP-duality theorem, x' and y'are optimal solutions to $\mathbb{P}(T', w')$ and $\mathbb{D}(T', w')$, respectively. By Lemma 3.3, $\mathbb{D}(T', w')$ has an integral optimal solution. So $\nu_w^*(T)$ is an integer. This proves (19).

Case 2.9. $K = \{v_3v_1, v_3v_4\}.$

In this case, by Lemma 3.1(iii), we have $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which together with (14) yields the following two equations:

 $w(v_3v_1) = y(v_1v_2v_3v_1) + y(v_1v_5v_3v_1) + y(v_1v_5v_2v_3v_1);$ and

 $w(v_3v_4) = y(v_2v_3v_4v_2) + y(v_3v_4v_5v_3) + y(v_1v_2v_3v_4v_1) + y(v_2v_3v_4v_5v_2) + y(v_1v_5v_3v_4v_1).$ Since each $e \in K$ is saturated by \boldsymbol{y} in F_4 , we have $w(uv_i) = z(uv_i) = 0$ for i = 2, 3 and all

 $u \in V(T_1) \setminus \{b, a_1\}$, where b is the hub of the 1-sum. Depending on the values of $y(v_1v_5v_3v_4v_1)$ and $y(v_1v_5v_2v_3v_1)$, we consider three subcases.

• $y(v_1v_5v_2v_3v_1) > 0$. In this subcase, from (9) and (15) we deduce that $y(v_3v_4v_5v_3) = y(v_1v_5v_3v_4v_1) = 0$ and that v_1v_2 and v_5v_3 are saturated by \boldsymbol{y} in F_4 . So $w(v_1v_2) = y(v_1v_2v_3v_1) + y(v_1v_2v_3v_4v_1)$ and $w(v_5v_3) = y(v_1v_5v_3v_1)$. If $y(v_1v_2v_3v_4v_1) > 0$, then both v_4v_2 and v_4v_5 are saturated by \boldsymbol{y} in F_4 by (9) and (11). Thus $y(v_2v_3v_4v_2) = w(v_4v_2)$ and $y(v_2v_3v_4v_5v_2) = w(v_4v_5)$. It follows that y(C) is integral for all $C \in \mathcal{C}_2$. So we assume that $y(v_1v_2v_3v_4v_1) = 0$. If

 $y(v_2v_3v_4v_5v_2) > 0$, then v_4v_2 is saturated by \boldsymbol{y} in F_4 by (12), which implies that $y(v_2v_3v_4v_2) = w(v_4v_2)$; if $y(v_2v_3v_4v_5v_2) = 0$, then $y(v_2v_3v_4v_2) = w(v_3v_4)$. So y(C) is integral for all $C \in \mathcal{C}_2$, regardless of the value of $y(v_2v_3v_4v_5v_2)$.

• $y(v_1v_5v_3v_4v_1) > 0$. In this subcase, from (10) and (15) we deduce that $y(v_1v_2v_3v_1) = y(v_1v_5v_2v_3v_1) = 0$ and that v_4v_5 is saturated by y in F_4 . So $w(v_3v_1) = y(v_1v_5v_3v_1)$ and $w(v_4v_5) = y(v_3v_4v_5v_3) + y(v_2v_3v_4v_5v_2)$. If $y(v_2v_3v_4v_5v_2) > 0$, then v_1v_2 , v_4v_2 , and v_5v_3 are all saturated by y in F_4 by (10) and (12). So $y(v_1v_2v_3v_4v_1) = w(v_1v_2)$, $y(v_2v_3v_4v_2) = w(v_4v_2)$, and $y(v_3v_4v_5v_3) + y(v_1v_5v_3v_4v_1) = w(v_5v_3) - y(v_1v_5v_3v_1)$. It follows that y(C) is integral for all $C \in C_2$. So we assume that $y(v_2v_3v_4v_5v_2) = 0$. Then $y(v_3v_4v_5v_3) = w(v_4v_5)$. If $y(v_1v_2v_3v_4v_1) > 0$, then v_4v_2 is saturated by y in F_4 by (11). So $y(v_2v_3v_4v_2) = w(v_4v_2)$ and hence $y(v_1v_2v_3v_4v_1) + y(v_1v_5v_3v_4v_1) = w(v_3v_4) - w(v_4v_5) - w(v_4v_2)$; if $y(v_1v_2v_3v_4v_1) = 0$, then $y(v_2v_3v_4v_2) + y(v_1v_5v_3v_4v_1) = w(v_3v_4) - w(v_4v_5)$. Since all arcs in $F_4 \setminus v_6$ except $\{v_1v_5, v_4v_1, v_4v_5\}$ are outside C_0^y and $y(v_1v_5v_3v_4v_1) > 0$, by (ii) we have $y(v_1v_2v_3v_4v_1) = \min\{w(v_1v_2), w(v_2v_3) - w(v_4v_2)\}$ if $y(v_1v_2v_3v_4v_1) > 0$ and $y(v_2v_3v_4v_2) = \min\{w(v_4v_2), w(v_2v_3)\}$ otherwise. So $y(v_1v_5v_3v_4v_1)$ is integral, and hence y(C) is integral for all $C \in C_2$, regardless of the value of $y(v_1v_2v_3v_4v_1)$.

• $y(v_1v_5v_2v_3v_1) = y(v_1v_5v_3v_4v_1) = 0$. In this subcase, depending on whether $y(v_2v_3v_4v_5v_2) > 0$, we distinguish between two subsubcases.

(a) We first assume that $y(v_2v_3v_4v_5v_2) > 0$. By (12), both v_4v_2 and v_5v_3 are saturated by \boldsymbol{y} in F_4 , which implies $w(v_4v_2) = y(v_2v_3v_4v_2)$ and $w(v_5v_3) = y(v_1v_5v_3v_1) + y(v_3v_4v_5v_3)$. If $y(v_1v_5v_3v_1) > 0$, then v_1v_2 is saturated by \boldsymbol{y} in F_4 by (12). So $w(v_1v_2) = y(v_1v_2v_3v_1) + y(v_1v_2v_3v_4v_1)$. Moreover, if $y(v_1v_2v_3v_4v_1) > 0$, then v_4v_5 is saturated by \boldsymbol{y} in F_4 by (11), which yields one more equation $w(v_4v_5) = y(v_3v_4v_5v_3) + y(v_2v_3v_4v_5v_2)$. Hence y(C) is integral for all $C \in \mathcal{C}_2$, no matter whether $y(v_1v_2v_3v_4v_1) = 0$. So we assume that $y(v_1v_5v_3v_1) = 0$. Then $y(v_1v_2v_3v_1) = w(v_3v_1), y(v_3v_4v_5v_3) = w(v_5v_3)$ and $y(v_1v_2v_3v_4v_1) + y(v_2v_3v_4v_5v_2) = w(v_3v_4) - w(v_4v_2) - w(v_5v_3)$. If $y(v_1v_2v_3v_4v_1)$ is integral, then y(C) is integral for all $C \in \mathcal{C}_2$. So we assume that $y(v_1v_2v_3v_4v_1)$ is integral. Similar to (18), we can prove that v_4v_1 is saturated by \boldsymbol{y} in F_4 . Then $y(v_1v_2v_3v_4v_1) = w(v_4v_1)$, a contradiction.

(b) We next assume that $y(v_2v_3v_4v_5v_2) = 0$. Suppose $y(v_1v_2v_3v_4v_1) = 0$. Then $y(v_1v_2v_3v_1) + y(v_1v_5v_3v_1) = w(v_3v_1)$ and $y(v_2v_3v_4v_2) + y(v_3v_4v_5v_3) = w(v_3v_4)$. If neither $y(v_1v_5v_3v_1)$ nor $y(v_3v_4v_5v_3)$ is integral, then neither $y(v_1v_2v_3v_1)$ nor $y(v_2v_3v_4v_2)$ is integral. Similar to (19), we can show that $\nu_w^*(T)$ is an integer. So we may assume that $y(v_1v_5v_3v_1)$ or $y(v_3v_4v_5v_3)$ is integral. Observe that both of them are integral, for otherwise, let \mathbf{y}' be obtained from \mathbf{y} by replacing $y(v_1v_2v_3v_1)$ and $y(v_1v_5v_3v_1)$ with $y(v_1v_2v_3v_1) + [y(v_1v_5v_3v_1)]$ and $[y(v_1v_5v_3v_1)]$, respectively. Since v_1v_2 , v_2v_3 , and v_4v_2 are all outside $\mathcal{C}_0^y, \mathbf{y}'$ is an optimal solution to $\mathbb{D}(T, \mathbf{w})$, with $y'(v_1v_5v_3v_1) < y(v_1v_5v_3v_1)$, contradicting (5).

Suppose $y(v_1v_2v_3v_4v_1) > 0$. Then $y(v_2v_3v_4v_2) = w(v_4v_2)$. If $y(v_1v_5v_3v_1) > 0$, then v_4v_5 is saturated by \boldsymbol{y} in F_4 by (11), which implies $y(v_3v_4v_5v_3) = w(v_4v_5)$, $y(v_1v_2v_3v_4v_1) = w(v_3v_4) - w(v_4v_2) - w(v_4v_5)$, and $y(v_1v_2v_3v_1) + y(v_1v_5v_3v_1) = w(v_3v_1)$. If $y(v_1v_5v_3v_1)$ is not integral, let \boldsymbol{y}' be obtained from \boldsymbol{y} by replacing $y(v_1v_2v_3v_1)$ and $y(v_1v_5v_3v_1)$ with $y(v_1v_2v_3v_1) + [y(v_1v_5v_3v_1)]$ and $\lfloor y(v_1v_5v_3v_1) \rfloor$, respectively. Since both v_1v_2 and v_2v_3 are outside \mathcal{C}_0 , \boldsymbol{y}' is an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$, with $y'(v_1v_5v_3v_1) < y(v_1v_5v_3v_1)$, contradicting (5). So $y(v_1v_5v_3v_1)$ is integral and hence is zero by Lemma 3.2(iii). It follows that $y(v_1v_2v_3v_1) = w(v_3v_1)$ and $y(v_1v_2v_3v_4v_1) + y(v_3v_4v_5v_3) = w(v_3v_4) - w(v_4v_2)$. If $y(v_3v_4v_5v_3)$ is integral, then y(C) is integral for all $C \in \mathcal{C}_2$. So we assume that $y(v_3v_4v_5v_3)$ is not integral. Let us show that (20) $\nu_w^*(T)$ is an integer.

By Lemma 3.2(iii), we may assume that $w(v_3v_1) = w(v_4v_2) = 0$. Recall that $w(v_5v_2) = z(v_5v_2) = 0$ and $w(uv_i) = z(uv_i) = 0$ for i = 2, 3 and all $u \in V(T_1) \setminus \{b, a_1\}$. So we may assume that $x(uv_2) = x(uv_3)$. Let T' = (V', A') be the digraph obtained from T by identifying v_2 and v_3 ; the resulting vertex is still denoted by v_3 , and let w' be the restriction of w to A'. Then x corresponds to a feasible solution x' to $\mathbb{P}(T', w')$, and y corresponds to a feasible solution y' to $\mathbb{D}(T', w')$; both having the same objective value $\nu_w^*(T)$ as $\mathbb{P}(T, w)$ and $\mathbb{D}(T, w)$. By the LP-duality theorem, x' and y' are optimal solutions to $\mathbb{P}(T', w')$ and $\mathbb{D}(T', w')$, respectively. By Lemma 3.3, $\mathbb{D}(T', w')$ has an integral optimal solution. So $\nu_w^*(T)$ is an integer. This proves (20) and hence Claim 2.

Since $\tau_{\boldsymbol{w}}(F_4 \setminus v_6) > 0$, from Claim 2, Lemma 3.2(iii) and Lemma 3.4(ii) we deduce that $\mathbb{D}(T, \boldsymbol{w})$ has an integral optimal solution. This completes the proof of Lemma 4.4.

Lemma 4.6. If $T_2 = G_2$, then $\mathbb{D}(T, w)$ has an integral optimal solution.

Proof. It is routine to check that

• $C_2 = \{v_1v_2v_4v_1, v_1v_6v_3v_1, v_1v_6v_4v_1, v_1v_6v_2v_4v_1, v_1v_6v_3v_4v_1, v_1v_6v_3v_2v_4v_1\}$ and

• $\mathcal{F}_2 = \{\{v_1v_6, v_1v_2\}, \{v_1v_6, v_2v_4\}, \{v_1v_6, v_4v_1\}, \{v_3v_1, v_4v_1\}, \{v_4v_1, v_6v_3\}, \{v_2v_4, v_6v_3, v_6v_4\}, \{v_4v_1, v_6v_3\}, \{v_2v_4, v_6v_3, v_6v_4\}, \{v_4v_1, v_6v_3\}, \{v_4v_1, v_6v_3, v_6v_4\}, \{v_4v_1, v_6v_3, v_6v_4\}, \{v_4v_1, v_6v_3, v_6v_4, v_6v_3, v_6v_4\}, \{v_4v_1, v_6v_3, v_6v_4, v_6v_3, v_6v_4\}, \{v_4v_1, v_6v_4, v_6v_3, v_6v_4, v_6v_$

 $\{v_2v_4, v_3v_1, v_3v_4, v_6v_4\}, \{v_1v_2, v_6v_2, v_6v_3, v_6v_4\}, \{v_1v_2, v_3v_1, v_3v_2, v_3v_4, v_6v_2, v_6v_4\}\}.$ We also have a computer verification of these results. So $|\mathcal{C}_2| = 6$ and $|\mathcal{F}_2| = 9$. Recall that $(b_2, a_2) = (v_4, v_5).$

Let \boldsymbol{y} be an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$ such that

(1) $y(\mathcal{C}_2)$ is maximized;

(2) subject to (1), $(y(\mathcal{D}_q), y(\mathcal{D}_{q-1}), \ldots, y(\mathcal{D}_3))$ is minimized lexicographically;

(3) subject to (1) and (2), $y(v_1v_6v_3v_4v_1)$ is minimized; and

(4) subject to (1)-(3), $y(v_1v_6v_4v_1)$ is minimized;

Let us make some simple observations about y.

(5) If $K \in \mathcal{F}_2$ satisfies $y(\mathcal{C}_2) = w(K)$, then K is an MFAS. (The statement is exactly the same as (4) in the proof of Lemma 4.3.)

The three statements below follow instantly from Lemma 3.5(v).

(6) If $y(v_1v_6v_3v_2v_4v_1) > 0$, then each arc in the set $\{v_1v_2, v_3v_1, v_3v_4, v_6v_2, v_6v_4\}$ is saturated by \boldsymbol{y} in G_2 .

(7) If $y(v_1v_6v_3v_4v_1) > 0$, then both v_3v_1 and v_6v_4 are saturated by \boldsymbol{y} in G_2 .

(8) If $y(v_1v_6v_2v_4v_1) > 0$, then both v_1v_2 and v_6v_4 are saturated by \boldsymbol{y} in G_2 .

Claim 1. $y(\mathcal{C}_2) = \tau_w(G_2 \setminus v_5).$

To justify this, observe that if both v_1v_2 and v_1v_6 are saturated by \boldsymbol{y} in G_2 , then $y(\mathcal{C}_2) = w(K)$, where $K = \{v_1v_2, v_1v_6\}$; if both v_3v_1 and v_4v_1 are saturated by \boldsymbol{y} in G_2 , then $y(\mathcal{C}_2) = w(K)$, where $K = \{v_3v_1, v_4v_1\}$. By (5), K is an MFAS and hence $y(\mathcal{C}_2) = \tau_w(G_2 \setminus v_5)$ in either case. So we assume that

(9) at most one of v_1v_2 and v_1v_6 is saturated by \boldsymbol{y} in G_2 . The same holds for v_3v_1 and v_4v_1 .

As v_2v_4 is a special arc of T and v_2 is a near-sink, by Lemma 3.4(iv), we may assume that v_2v_4 is saturated by \boldsymbol{y} in T. Depending on whether v_2v_4 is outside $\mathcal{C}_0^{\boldsymbol{y}}$, we distinguish between two cases.

Case 1.1. v_2v_4 is contained by some cycle in \mathcal{C}_0^y .

In this case, we proceed by considering two subcases.

• v_3v_1 is saturated by y in G_2 . In this subcase, by (9), v_4v_1 is not saturated by y in G_2 and hence in T, because v_4v_1 is outside \mathcal{C}_0 . By the hypothesis of the present case and Lemma 3.5(iii), v_1v_2 is saturated by **y** in T. Observe that v_1v_2 is outside \mathcal{C}_0^y , for otherwise, a cycle $C \in \mathcal{C}_0^y$ containing $v_1 v_2$ must pass through $v_2 v_4$. Thus, by Lemma 3.5(iv), $v_4 v_1$ is saturated by \boldsymbol{y} in G_2 , a contradiction. It follows that v_1v_2 is saturated by \boldsymbol{y} in G_2 . So, by (9), v_1v_6 is not saturated by \boldsymbol{y} in G_2 . If v_1v_6 is contained in some cycle $C \in \mathcal{C}_0^y$, applying Lemma 3.5(iv) to the cycle $C[v_1, v_4] \cup \{v_4v_1\}$ in \mathcal{C}_2 , we see that v_4v_1 is saturated by \boldsymbol{y} in T, a contradiction. So v_1v_6 is outside $C \in \mathcal{C}_0^y$. By Lemma 3.5(iii), v_6v_2 is saturated by \boldsymbol{y} in G_2 and v_6v_4 is outside \mathcal{C}_0^y . Using Lemma 3.5(i), we further deduce that v_6v_4 is saturated by \boldsymbol{y} in G_2 . If v_6v_3 is also saturated by y in G_2 , then $y(\mathcal{C}_2) = w(K)$, where $K = \{v_1v_2, v_6v_2, v_6v_3, v_6v_4\}$. By (5), K is an MFAS and thus $y(\mathcal{C}_2) = \tau_w(G_2 \setminus v_5)$. If $v_6 v_3$ is saturated by \boldsymbol{y} in T but contained in some cycle $C \in \mathcal{C}_0^y$, applying Lemma 3.5(iii) to the cycle $C[v_6, v_4] \cup \{v_4v_1, v_1v_6\} \in \mathcal{C}_2$, we see that v_4v_1 or v_1v_6 is saturated, a contradiction. If v_6v_3 is not saturated by y in T then, by Lemma 3.5(iii), v_3v_2 is saturated by \boldsymbol{y} in G_2 and and v_3v_4 is outside $\mathcal{C}_0^{\boldsymbol{y}}$. Using Lemma 3.5(i), we further deduce that v_3v_4 is saturated by **y** in G_2 . Thus $y(\mathcal{C}_2) = w(J)$, where $J = \{v_1v_2, v_3v_1, v_3v_2, v_3v_4, v_6v_2, v_6v_4\}$. By (5), J is an MFAS and thus $y(\mathcal{C}_2) = \tau_w(G_2 \setminus v_5)$.

• v_3v_1 is not saturated by \boldsymbol{y} in G_2 . In this subcase, we have $y(v_1v_6v_3v_4v_1) = y(v_1v_6v_3v_2v_4v_1) = 0$ by (6) and (7). Assume first that v_1v_2 is saturated by \boldsymbol{y} in G_2 . Then v_1v_6 is not saturated by \boldsymbol{y} in G_2 by (9). Thus v_6v_3 is saturated by \boldsymbol{y} in G_2 by Lemma 3.5(iii) and (iv). If v_4v_1 is also saturated by \boldsymbol{y} in G_2 , then $y(\mathcal{C}_2) = w(K)$, where $K = \{v_4v_1, v_6v_3\}$; otherwise, both v_6v_2 and v_6v_4 are saturated by \boldsymbol{y} in G_2 by Lemma 3.5(iii) and (iv). So $y(\mathcal{C}_2) = w(K)$, where $K = \{v_1v_2, v_6v_2, v_6v_3, v_6v_4\}$. By (5), K is an MFAS in either subsubcase, and thus $y(\mathcal{C}_2) = \tau_w(G_2 \setminus v_5)$.

Assume next that v_1v_2 is not saturated by \boldsymbol{y} in G_2 . By (8), we have $y(v_1v_6v_2v_4v_1) = 0$. By the hypothesis of the present case and by Lemma 3.5(iii) and (iv), v_4v_1 is saturated by \boldsymbol{y} in G_2 . If v_6v_3 is also saturated by \boldsymbol{y} in G_2 , then $y(\mathcal{C}_2) = w(K)$, where $K = \{v_4v_1, v_6v_3\}$. By (5), Kis an MFAS and thus $y(\mathcal{C}_2) = \tau_w(G_2 \setminus v_5)$. So we assume that v_6v_3 is not saturated by \boldsymbol{y} in G_2 . Thus v_1v_6 is saturated by \boldsymbol{y} in G_2 by Lemma 3.5(iii) and (iv). We propose to show that

 $(10) \ y(v_1v_6v_4v_1) = 0.$

Assume the contrary: $y(v_1v_6v_4v_1) > 0$. Observe that v_1v_2 is outside C_0^y , for otherwise, let C be a cycle in C_0^y containing v_1v_2 . Then the multiset sum of $v_1v_6v_4v_1$ and C contains two arc-disjoint cycles $v_1v_2v_4v_1$ and $C[v_4, v_1] \cup \{v_1v_6, v_6v_4\}$. Set $\theta = \min\{y(v_1v_6v_4v_1), y(C)\}$. Let \mathbf{y}' be obtained from \mathbf{y} by replacing $y(v_1v_6v_4v_1), y(v_1v_2v_4v_1), y(C)$, and y(C') with $y(v_1v_6v_4v_1) - \theta$, $y(v_1v_2v_4v_1) + \theta$, $y(C) - \theta$, and $y(C') + \theta$, respectively. Then \mathbf{y}' is also an optimal solution to $\mathbb{D}(T, \mathbf{w})$. Since $y'(v_1v_6v_4v_1) < y(v_1v_6v_4v_1)$, the existence of \mathbf{y}' contradicts the assumption (4) on \mathbf{y} . It follows that v_3v_1 is also outside C_0^y , because every cycle containing v_3v_1 in C_0^y must pass through v_1v_2 . So neither v_1v_2 nor v_3v_1 is saturated by \mathbf{y} in T.

Let us show that v_6v_3 is outside C_0^y , for otherwise, let $C \in C_0^y$ contain v_6v_3 . Then the multiset sum of $v_1v_6v_4v_1$, C, and the unsaturated arc v_3v_1 contains arc-disjoint cycles $v_1v_6v_3v_1$ and $C' = C[v_4, v_6] \cup \{v_6v_4\}$. Set $\theta = \min\{y(v_1v_6v_4v_1), y(C), w(v_3v_1) - z(v_3v_1)\}$. Let \mathbf{y}' be obtained from \mathbf{y} by replacing $y(v_1v_6v_4v_1), y(v_1v_6v_3v_1), y(C)$, and y(C') with $y(v_1v_6v_4v_1) - \theta$, $y(v_1v_6v_3v_1) + \theta$, $y(C) - \theta$, and $y(C') + \theta$, respectively. Then \mathbf{y}' is also an optimal solution to $\mathbb{D}(T, \mathbf{w})$. Since $y'(v_1v_6v_4v_1) < y(v_1v_6v_4v_1)$, the existence of \mathbf{y}' contradicts the assumption (4)

on \boldsymbol{y} . Let $D \in \mathcal{C}_0^y$ be a cycle containing v_2v_4 . Then the multiset sum of D, $v_1v_6v_4v_1$, and the unsaturated arcs v_6v_3 , v_3v_1 , and v_1v_2 contains two arc-disjoint cycles $v_1v_2v_4v_1$ and $v_1v_6v_3v_1$. Thus, by Lemma 3.5(vi), we obtain $y(v_1v_6v_4v_1) = 0$; this contradiction proves (10).

From (10), we deduce that $y(\mathcal{C}_2) = w(K)$, where $K = \{v_1v_6, v_4v_1\}$. So, by (5), K is an MFAS and thus $y(\mathcal{C}_2) = \tau_w(G_2 \setminus v_5)$.

Case 1.2. v_2v_4 is outside \mathcal{C}_0^y .

In this case, v_2v_4 is saturated by \boldsymbol{y} in G_2 . So v_1v_2 , v_3v_2 , and v_6v_2 are all outside \mathcal{C}_0^y . Assume first that v_1v_6 is saturated by \boldsymbol{y} in G_2 . Then v_1v_2 is not saturated by \boldsymbol{y} by (9). By (6) and (8), we have $y(v_1v_6v_3v_2v_4v_1) = y(v_1v_6v_2v_4v_1) = 0$ and hence $y(\mathcal{C}_2) = w(K)$, where $K = \{v_1v_6, v_2v_4\}$. It follows from (5) that K is an MFAS and thus $y(\mathcal{C}_2) = \tau_w(G_2 \setminus v_5)$. Assume next that v_1v_6 is not saturated by \boldsymbol{y} in G_2 . If v_4v_1 is not saturated by \boldsymbol{y} in T, then v_6v_4 is outside \mathcal{C}_0^y by Lemma 3.5(iii). So v_3v_4 is contained in some cycle in \mathcal{C}_0^y because $\mathcal{C}_0^y \neq \emptyset$. Using Lemma 3.5(iii), we deduce that both v_6v_3 and v_6v_4 are saturated by \boldsymbol{y} in G_2 . Using (6), we obtain $y(v_1v_6v_3v_2v_4v_1) = 0$. Thus $y(\mathcal{C}_2) = w(K)$, where $K = \{v_2v_4, v_6v_3, v_6v_4\}$. If v_4v_1 is saturated by \boldsymbol{y} in T, then so is it in G_2 because v_4v_1 is outside \mathcal{C}_0^y . By (9), v_3v_1 is not saturated by \boldsymbol{y} in G_2 . By Lemma 3.5(iii), v_6v_3 is saturated by \boldsymbol{y} in G_2 . By (6) and (7), we have $y(v_1v_6v_3v_4v_1) = y(v_1v_6v_3v_2v_4v_1) = 0$. Hence $y(\mathcal{C}_2) = w(K)$, where $K = \{v_4v_1, v_6v_3\}$. In either subsubcase, K is an MFAS by (5) and thus $y(\mathcal{C}_2) = \tau_w(G_2 \setminus v_5)$. This proves Claim 1.

Claim 2. y(C) is integral for all $C \in \mathcal{C}_2$ or $\nu_w^*(T)$ is an integer.

To justify this, we may assume that

 $(11) \ y(v_1v_6v_3v_2v_4v_1) = 0.$

Otherwise, by (6), we have $w(e) = y(\mathcal{C}_2(e))$ for each e in the set $\{v_1v_2, v_3v_1, v_3v_4, v_6v_2, v_6v_4\}$. So $y(v_1v_2v_4v_1) = w(v_1v_2)$, $y(v_1v_6v_3v_1) = w(v_3v_1)$, $y(v_1v_6v_3v_4v_1) = w(v_3v_4)$, $y(v_1v_6v_2v_4v_1) = w(v_6v_2)$, and $y(v_1v_6v_4v_1) = w(v_6v_4)$. By Claim 1, $y(\mathcal{C}_2)$ is an integer, so is $y(v_1v_6v_3v_2v_4v_1)$. Hence y(C) is integral for all $C \in \mathcal{C}_2$.

By Claim 1, $y(\mathcal{C}_2) = w(K)$ for some $K \in \mathcal{F}_2$. Depending on what K is, we distinguish among nine cases.

Case 2.1. $K = \{v_1v_2, v_3v_1, v_3v_2, v_3v_4, v_6v_2, v_6v_4\}.$

In this case, by Lemma 3.1 (iii), we have $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$. It follows instantly that y(C) is integral for all $C \in \mathcal{C}_2$.

Case 2.2. $K = \{v_1v_6, v_4v_1\}.$

In this case, by Lemma 3.1 (i), we have $y(v_1v_6v_4v_1) = y(v_1v_6v_2v_4v_1) = y(v_1v_6v_3v_4v_1) = y(v_1v_6v_3v_2v_4v_1) = 0$. By Lemma 3.1 (iii), we further obtain $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$. It follows that $y(v_1v_2v_4v_1) = w(v_4v_1)$ and $y(v_1v_6v_3v_1) = w(v_1v_6)$. Therefore y(C) is integral for all $C \in \mathcal{C}_2$.

Case 2.3. $K = \{v_1v_2, v_6v_2, v_6v_3, v_6v_4\}.$

In this case, by Lemma 3.1 (iii), we have $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which together with (11) yields the following equations: $y(v_1v_2v_4v_1) = w(v_1v_2)$, $y(v_1v_6v_2v_4v_1) = w(v_6v_2)$, $y(v_1v_6v_4v_1) = w(v_6v_4)$, and $y(v_1v_6v_3v_1) + y(v_1v_6v_3v_4v_1) = w(v_6v_3)$. Note that if $y(v_1v_6v_3v_4v_1) > 0$, we have one more equation $y(v_1v_6v_3v_1) = w(v_3v_1)$ by (7). Hence y(C) is integral for all $C \in \mathcal{C}_2$, no matter whether $y(v_1v_6v_3v_4v_1) = 0$.

Case 2.4. $K = \{v_2v_4, v_6v_3, v_6v_4\}.$

In this case, by Lemma 3.1 (iii), we have $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which together

with (11) yields the following equations: $y(v_1v_2v_4v_1) + y(v_1v_6v_2v_4v_1) = w(v_2v_4), y(v_1v_6v_3v_1) + y(v_1v_6v_3v_4v_1) = w(v_6v_3), \text{ and } y(v_1v_6v_4v_1) = w(v_6v_4).$ Note that if $y(v_1v_6v_2v_4v_1) > 0$, we have one more equation $y(v_1v_2v_4v_1) = w(v_1v_2)$ by (8); if $y(v_1v_6v_3v_4v_1) > 0$, we have one more equation $y(v_1v_6v_3v_1) = w(v_3v_1)$ by (7). Hence y(C) is integral for all $C \in \mathcal{C}_2$ in any subcase.

Case 2.5. $K = \{v_2v_4, v_3v_1, v_3v_4, v_6v_4\}.$

In this case, by Lemma 3.1 (iii), we have $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which together with (11) yields the following equations: $y(v_1v_2v_4v_1) + y(v_1v_6v_2v_4v_1) = w(v_2v_4)$, $y(v_1v_6v_3v_1) = w(v_3v_1)$, $y(v_1v_6v_3v_4v_1) = w(v_3v_4)$, and $y(v_1v_6v_4v_1) = w(v_6v_4)$. Note that if $y(v_1v_6v_2v_4v_1) > 0$, we have one more equation $y(v_1v_2v_4v_1) = w(v_1v_2)$ by (8). Hence y(C) is integral for all $C \in \mathcal{C}_2$, no matter whether $y(v_1v_6v_2v_4v_1) = 0$.

Case 2.6. $K = \{v_1v_6, v_2v_4\}.$

In this case, by Lemma 3.1 (i), we have $y(v_1v_6v_2v_4v_1) = 0$. By Lemma 3.1 (iii), we obtain $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which together with (11) yields the following equations: $y(v_1v_2v_4v_1) = w(v_2v_4)$ and $y(v_1v_6v_3v_1) + y(v_1v_6v_4v_1) + y(v_1v_6v_3v_4v_1) = w(v_1v_6)$. Moreover, in this case v_1v_2 , v_3v_2 , and v_6v_2 are all outside \mathcal{C}_0^y , and $w(uv_2) = z(uv_2) = 0$ for any $u \in V(T_1) \setminus \{b, a_1\}$, where b is the hub of the 1-sum. Examining the cycles in \mathcal{C}_2 , we see that $z(v_3v_2) = z(v_6v_2) = 0$ and so $w(v_iv_2) = \lceil z(v_iv_2) \rceil = z(v_iv_2)$ for i = 1, 3, 6. Thus $\mathbb{D}(T, w)$ has an integral optimal solution by Lemma 3.4(i).

Case 2.7. $K = \{v_4v_1, v_6v_3\}.$

In this case, by Lemma 3.1 (i) and (iii), we have $y(v_1v_6v_3v_4v_1) = 0$, $y(v_1v_6v_3v_1) = w(v_6v_3)$, and $y(v_1v_2v_4v_1) + y(v_1v_6v_4v_1) + y(v_1v_6v_2v_4v_1) = w(v_4v_1)$. Lemma 3.2(iii) allows us to assume that $w(v_6v_3) = 0$. If $y(v_1v_6v_2v_4v_1) > 0$, then both v_1v_2 and v_6v_4 are saturated by \boldsymbol{y} in G_2 by (8). So $y(v_1v_2v_4v_1) = w(v_1v_2)$ and $y(v_1v_6v_4v_1) = w(v_6v_4)$. Hence y(C) is integral for all $C \in C_2$; the same holds if $y(v_1v_6v_2v_4v_1) = 0$ and $y(v_1v_2v_4v_1)$ is integral. So we assume that $y(v_1v_6v_2v_4v_1) = 0$ and $y(v_1v_2v_4v_1)$ is not integral. Observe that v_1v_2 is outside \mathcal{C}_0^y , for otherwise, let C be a cycle in \mathcal{C}_0^y containing v_1v_2 , let $C' = C[v_4, v_1] \cup \{v_1v_6, v_6v_4\}$, and set $\theta = \min\{y(C), y(v_1v_6v_4v_1)\}$. Let \boldsymbol{y}' be obtained from \boldsymbol{y} by replacing $y(v_1v_6v_4v_1), y(v_1v_2v_4v_1), y(C)$, and y(C') with $y(v_1v_6v_4v_1) - \theta$, $y(v_1v_2v_4v_1) + \theta$, $y(C) - \theta$, and $y(C') + \theta$, respectively. Then \boldsymbol{y}' is also an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$. Since $y'(v_1v_6v_4v_1) < y(v_1v_6v_4v_1)$, the existence of \boldsymbol{y}' contradicts the assumption (4) on \boldsymbol{y} . Similarly, we can prove that v_6v_2 is outside \mathcal{C}_0^y . Examining cycles in \mathcal{C}_2 , we see that $w(v_6v_2) = z(v_6v_2) = 0$. Now we propose to show that

(12) $\nu_w^*(T)$ is an integer.

To justify this, let \boldsymbol{x} be an optimal solution to $\mathbb{P}(T, \boldsymbol{w})$. Since both $y(v_1v_2v_4v_1)$ and $y(v_1v_6v_4v_1)$ are positive, we have $x(v_1v_2) + x(v_2v_4) = x(v_1v_6) + x(v_6v_4)$ by Lemma 3.1(i). Since $y(v_1v_2v_4v_1) < w(v_1v_2)$, we have $x(v_1v_2) = 0$ by Lemma 3.1(ii). So $x(v_2v_4) = x(v_1v_6) + x(v_6v_4)$. If each of v_3v_1 and v_3v_2 is contained in some cycle in \mathcal{C}_0^y , then $x(v_3v_1) = x(v_3v_2)$ by Lemma 3.1(iv). If one of v_3v_1 and v_3v_2 is outside \mathcal{C}_0^y , say v_3v_1 , then we may assume that $w(v_3v_1) = 0$ and $x(v_3v_1) = x(v_3v_2)$. Similarly, we can prove that $x(uv_1) = x(uv_2)$ for each $u \in V(T_1) \setminus \{a_1, b\}$.

Let T' = (V', A') be obtained from T by deleting vertex v_2 , let w' be obtained from the restriction of w to A' by defining $w'(uv_1) = w(uv_1) + w(uv_2)$ for $u = v_3$ or $u \in V(T_1) \setminus \{b, a_1\}$ and $w'(v_iv_j) = w(v_iv_j) + w(v_2v_4)$ for (i, j) = (1, 6) or (6, 4). Let x' be the restriction of x to A' and let y' be obtained from y as follows: for each cycle C passing through the path uv_2v_4 with $u \in (V(T_1) \setminus \{a_1, b\}) \cup \{v_3\}$, let C' be the cycle arising from C by replacing uv_2v_4 with $uv_1v_6v_4$, and set y'(C') = y(C) + y(C') and $y'(v_1v_6v_4v_1) = y(v_1v_6v_4v_1) + y(v_1v_2v_4v_1)$. From the LP-duality theorem, we see that \mathbf{x}' and \mathbf{y}' are optimal solutions to $\mathbb{P}(T', \mathbf{w}')$ and $\mathbb{D}(T', \mathbf{w}')$ respectively, both having the same value $\nu_w^*(T)$ as \mathbf{x} and \mathbf{y} . Hence $\nu_w^*(T)$ is an integer by the hypothesis of Theorem 1.5.

Case 2.8. $K = \{v_1v_6, v_1v_2\}.$

In this case, by Lemma 3.1 (iii), we have $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which together with (11) yields the following equations: $y(v_1v_2v_4v_1) = w(v_1v_2)$ and $y(v_1v_6v_3v_1) + y(v_1v_6v_4v_1) + y(v_1v_6v_2v_4v_1) + y(v_1v_6v_3v_4v_1) = w(v_1v_6)$. Moreover, v_3v_1 is outside \mathcal{C}_0^y . Depending on whether $y(v_1v_6v_3v_4v_1) = 0$, we consider two subcases.

• $y(v_1v_6v_3v_4v_1) = 0$. In this subcase, we first assume that $y(v_1v_6v_2v_4v_1) > 0$. Then $y(v_1v_6v_4v_1) = w(v_6v_4)$ by (8). Thus $y(v_1v_6v_3v_1) + y(v_1v_6v_2v_4v_2) = w(v_1v_6) - w(v_6v_4)$. Let us show that $y(v_1v_6v_3v_1)$ is integral. Suppose not. If v_6v_3 is outside \mathcal{C}_0^y , let \mathbf{y}' be obtained from \mathbf{y} by replacing $y(v_1v_6v_3v_1)$ and $y(v_1v_6v_2v_4v_1)$ with $y(v_1v_6v_3v_1) + [y(v_1v_6v_2v_4v_1)]$ and $[y(v_1v_6v_2v_4v_1)]$, respectively; if v_6v_3 is contained in some cycle C in \mathcal{C}_0^y , set $\theta = \min\{y(C), [y(v_1v_6v_2v_4v_1)]\}$ and $C' = C[v_4, v_6] \cup \{v_6v_2, v_2v_4\}$, and let \mathbf{y}' be obtained from \mathbf{y} by replacing $y(v_1v_6v_3v_1)$, $y(v_1v_6v_2v_4v_1), y(C)$, and y(C') with $y(v_1v_6v_3v_1) + \theta, y(v_1v_6v_2v_4v_1) - \theta, y(C) - \theta$, and $y(C') + \theta$, respectively. In both subsubcases, \mathbf{y}' is an optimal solution to $\mathbb{D}(T, \mathbf{w})$ with $y'(v_1v_6v_2v_4v_1) < y(v_1v_6v_2v_4v_1)$, contradicting (2). We next assume that $y(v_1v_6v_2v_4v_1) = 0$. The proof of this subsubcase is similar to that in the preceding one (with $y(v_1v_6v_4v_1)$ in place of $y(v_1v_6v_2v_4v_1)$). Thus we reach a contradiction to (4).

• $y(v_1v_6v_3v_4v_1) > 0$. In this subcase, by (7), both v_3v_1 and v_6v_4 are saturated by \boldsymbol{y} in G_2 . So $y(v_1v_6v_3v_1) = w(v_3v_1), y(v_1v_6v_4v_1) = w(v_6v_4), \text{ and } y(v_1v_6v_2v_4v_1) + y(v_1v_6v_3v_4v_1) = w(v_1v_6) - w(v_3v_1) - w(v_6v_4)$. If $y(v_1v_6v_2v_4v_1)$ is integral, then y(C) is integral for all $C \in C_2$. So we assume that $y(v_1v_6v_2v_4v_1)$ is not integral. Then $[y(v_1v_6v_2v_4v_1)] + [y(v_1v_6v_3v_4v_1)] = 1$. Observe that v_6v_2 is outside C_0^y , for otherwise, let C be a cycle in C_0^y containing v_6v_2 , let $C' = C[v_4, v_6] \cup \{v_6v_3, v_3v_4\}$, let $\theta = \min\{y(C), [y(v_1v_6v_3v_4v_1)]\}$, and let \boldsymbol{y}' be obtained from \boldsymbol{y} by replacing $y(v_1v_6v_3v_4v_1)$, $y(v_1v_6v_3v_4v_1)$, $y(v_1v_6v_3v_4v_1) - \theta, y(v_1v_6v_2v_4v_1) + \theta, y(C) - \theta, \text{ and } y(C') + \theta$, respectively. Then \boldsymbol{y}' is an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$ with $y'(v_1v_6v_3v_4v_1) < y(v_1v_6v_3v_4v_1)$, contradicting (2). Similarly, we can show that v_3v_2 is also outside C_0^y . Thus $w(v_3v_2) = z(v_3v_2) = 0$. By Lemma 3.2(iii), we may assume that $w(v_1v_2), w(v_3v_1)$, and $w(v_6v_4)$ are all 0. We propose to show that

(13) $\nu_w^*(T)$ is an integer.

To justify this, let \boldsymbol{x} be an optimal solution to $\mathbb{P}(T, \boldsymbol{w})$. Since $y(v_1v_6v_2v_4v_1) > 0$ and $y(v_1v_6v_3v_4v_1) > 0$, from Lemma 3.1(i) we deduce that $x(v_6v_2) + x(v_2v_4) = x(v_6v_3) + x(v_3v_4)$. Since $y(v_1v_6v_2v_4v_1) < w(v_6v_2)$, we have $x(v_6v_2) = 0$ by Lemma 3.1(ii). It follows that $x(v_2v_4) = x(v_6v_3) + x(v_3v_4)$. Since $w(v_6v_4) = 0$ and v_6v_2 is outside \mathcal{C}_0^y , $x(uv_6) = x(uv_2)$ for each $u \in V(T_1) \setminus \{b, a_1\}$. Let T' = (V', A') be the tournament obtained from T by deleting vertex v_2 , let \boldsymbol{w}' be obtained from the restriction of \boldsymbol{w} to A' by replacing $w(uv_6)$ with $w(uv_6) + w(uv_2)$ for each $u \in V(T_1) \setminus \{b, a_1\}$ and replacing $w(v_iv_j)$ with $w(v_iv_j) + w(v_2v_4)$ for (i, j) = (6, 3) or (3, 4). Let \boldsymbol{x}' be the restriction of \boldsymbol{x} to A', and let \boldsymbol{y}' be obtained from \boldsymbol{y} as follows: for each cycle C passing through uv_2v_4 with $u \in V(T_1) \setminus \{b, a_1\}$, let C' be the cycle arising from C by replacing uv_2v_4 with $uv_6v_3v_4$, and set $\boldsymbol{y}'(C') = \boldsymbol{y}(C') + \boldsymbol{y}(C)$ and $\boldsymbol{y}'(v_1v_6v_3v_4v_1) = \boldsymbol{y}(v_1v_6v_3v_4v_1) + \boldsymbol{y}(v_1v_6v_2v_4v_1)$. From the LP-duality theorem, we deduce that \boldsymbol{x}' and \boldsymbol{y}' are optimal solutions to $\mathbb{P}(T', \boldsymbol{w}')$ and $\mathbb{D}(T', \boldsymbol{w}')$, respectively, both having the same value $\nu_w^*(T)$ as \boldsymbol{x} and \boldsymbol{y} . Hence $\nu_w^*(T)$ is an integer by the hypothesis of Theorem 1.5. Case 2.9. $K = \{v_3v_1, v_4v_1\}.$

In this case, by Lemma 3.1 (iii), we have $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which together with (11) yields the following equations: $y(v_1v_6v_3v_1) = w(v_3v_1)$ and $y(v_1v_2v_4v_1) + y(v_1v_6v_2v_4v_1) + y(v_1v_6v_2v_4v_1) = w(v_4v_1)$. Assume first that $y(v_1v_6v_2v_4v_1) = 0$. If $y(v_1v_6v_3v_4v_1) > 0$, then v_6v_4 is saturated by \boldsymbol{y} in G_2 . So $y(v_1v_6v_4v_1) = w(v_6v_4)$ and hence $y(v_1v_2v_4v_1) + y(v_1v_6v_3v_4v_1) = w(v_4v_1) - w(v_6v_4)$; if $y(v_1v_6v_3v_4v_1) = 0$, then $y(v_1v_2v_4v_1) + y(v_1v_6v_3v_4v_1) = w(v_4v_1)$ is an integer, then y(C) is integral for all $C \in \mathcal{C}_2$. So we assume that $y(v_1v_2v_4v_1)$ is not integral. Then we can prove that both v_6v_2 and v_1v_2 are outside \mathcal{C}_0^y and that $\nu_w^*(T)$ is an integer. The proof is the same as that of (12) (with $y(v_1v_6v_4v_1)$ in place of $y(v_1v_6v_3v_4v_1)$ when $y(v_1v_6v_3v_4v_1) > 0$), so we omit the details here .

Assume next that $y(v_1v_6v_2v_4v_1) > 0$. Then both v_1v_2 and v_6v_4 are saturated by \boldsymbol{y} in G_2 . So $y(v_1v_2v_4v_1) = w(v_1v_2)$, $y(v_1v_6v_4v_1) = w(v_6v_4)$, and $y(v_1v_6v_2v_4v_1) + y(v_1v_6v_3v_4v_1) = w(v_4v_1) - w(v_1v_2) - w(v_6v_4)$. If $y(v_1v_6v_3v_4v_1)$ is an integer, then y(C) is integral for all $C \in \mathcal{C}_2$. So we assume that $y(v_1v_6v_3v_4v_1)$ is not integral. Then we can prove that both v_6v_2 and v_3v_2 are outside \mathcal{C}_0^y and that $\nu_w^*(T)$ is an integer. The proof is the same as that of (13), so we omit the details here. Thus Claim 2 is established.

Since $\tau_{\boldsymbol{w}}(F_4 \setminus v_6) > 0$, from Claim 2, Lemma 3.2(iii) and Lemma 3.4(ii) we deduce that $\mathbb{D}(T, \boldsymbol{w})$ has an integral optimal solution. This completes the proof of Lemma 4.5.

Lemma 4.7. If $T_2 = G_3$, then $\mathbb{D}(T, w)$ has an integral optimal solution.

Proof. It is routine to check that

- $C_2 = \{v_1v_2v_4v_1, v_1v_6v_3v_1, v_2v_4v_6v_2, v_3v_4v_6v_3, v_1v_6v_2v_4v_1, v_1v_6v_3v_4v_1, v_2v_4v_6v_3v_2, v_1v_6v_3v_2v_4v_1, v_1v_2v_4v_6v_3v_1, v_2v_4v_6v_3v_1\}$ and
- $\mathcal{F}_2 = \{ \{v_2v_4, v_6v_3\}, \{v_1v_2, v_1v_6, v_4v_6\}, \{v_1v_2, v_6v_2, v_6v_3\}, \{v_1v_6, v_2v_4, v_3v_4\}, \{v_1v_6, v_2v_4, v_4v_6\}, \{v_1v_6, v_4v_1, v_4v_6\}, \{v_2v_4, v_3v_1, v_3v_4\}, \{v_3v_1, v_4v_1, v_4v_6\}, \{v_4v_1, v_4v_6, v_6v_3\}, \{v_4v_1, v_6v_2, v_6v_3\}, \{v_1v_2, v_3v_1, v_3v_2, v_3v_4, v_6v_2\}, \{v_1v_2, v_1v_6, v_3v_2, v_3v_4, v_6v_2\}, \{v_3v_1, v_3v_2, v_3v_4, v_4v_1, v_6v_2\} \}.$

We also have a computer verification of these results. So $|\mathcal{C}_2| = 9$ and $|\mathcal{F}_2| = 13$. Recall that $(b_2, a_2) = (v_4, v_5)$.

Let \boldsymbol{y} be an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$ such that

- (1) $y(\mathcal{C}_2)$ is maximized;
- (2) subject to (1), $(y(\mathcal{D}_q), y(\mathcal{D}_{q-1}), \ldots, y(\mathcal{D}_3))$ is minimized lexicographically;
- (3) subject to (1) and (2), $y(v_1v_6v_3v_4v_1)$ is minimized; and
- (4) subject to (1)-(3), $y(v_1v_2v_4v_1) + y(v_3v_4v_6v_3)$ is minimized;
- Let us make some simple observations about y.

(5) If $K \in \mathcal{F}_2$ satisfies $y(\mathcal{C}_2) = w(K)$, then K is an MFAS. (The statement is exactly the same as (4) in the proof of Lemma 4.3.)

(6) If $y(v_1v_2v_4v_6v_3v_1) > 0$, then each arc in the set $\{v_1v_6, v_3v_2, v_3v_4, v_4v_1, v_6v_2\}$ is saturated by \boldsymbol{y} in G_3 . Furthermore, $y(v_1v_6v_2v_4v_1) = y(v_1v_6v_3v_4v_1) = y(v_1v_6v_3v_2v_4v_1) = 0$.

To justify this, note that each arc in the given set is a chord of the cycle $v_1v_2v_4v_6v_3v_1$. So the first half follows instantly from Lemma 3.5(v). Once again let \exists stand for the multiset sum. Then $v_1v_2v_4v_6v_3v_1 \exists v_1v_6v_2v_4v_1 = v_1v_2v_4v_1 \exists v_1v_6v_3v_1 \exists v_2v_4v_6v_2, v_1v_2v_4v_6v_3v_1 \exists v_1v_6v_3v_4v_1 = v_1v_2v_4v_1 \exists v_1v_6v_3v_1 \exists v_1v_2v_4v_6v_3, \text{ and } v_1v_2v_4v_6v_3v_1 \exists v_1v_6v_3v_2v_4v_1 = v_1v_2v_4v_1 \exists v_1v_6v_3v_2v_4v_1 = v_1v_2v_4v_1 \exists v_1v_6v_3v_1 \exists v_2v_4v_6v_3v_1 \exists v_1v_6v_3v_2v_4v_1 = v_1v_2v_4v_1 \exists v_1v_6v_3v_1 dv_1v_6v_3v_1 dv_1v_6v_3v_1 dv_1v_6v_3v_1 dv_1v_6v_3v_1 dv_1v_6v_3v_4v_1 = v_1v_2v_4v_1 dv_1v_6v_3v_1 dv_1v_6v_3v_1 dv_1v_6v_3v_1 dv_1v_6v_3v_4v_1 = v_1v_2v_4v_1 dv_1v_6v_3v_4v_1 dv_1v_6v_3v_1 dv_1v_6v_3v_4v_1 dv_1v_6v_3v_4v_1v$ (7) If $y(v_1v_6v_3v_2v_4v_1) > 0$, then each arc in the set $\{v_1v_2, v_3v_1, v_3v_4, v_4v_6, v_6v_2\}$ is saturated by \boldsymbol{y} in G_3 . Furthermore, $y(v_2v_4v_6v_2) = y(v_3v_4v_6v_3) = 0$.

To justify this, note that each arc in the given set is a chord of the cycle $v_1v_2v_4v_6v_3v_1$. So the first half follows instantly from Lemma 3.5(v). Observe that $v_1v_6v_3v_2v_4v_1 \ \ v_3v_4v_6v_3 = v_1v_6v_3v_4v_1 \ \ v_2v_4v_6v_3v_2$ and $v_1v_6v_3v_2v_4v_1 \ \ v_2v_4v_6v_2 = v_1v_6v_2v_4v_1 \ \ v_2v_4v_6v_3v_2$. Since \boldsymbol{y} satisfies (2), it is clear that $y(v_2v_4v_6v_2) = y(v_3v_4v_6v_3) = 0$.

(8) If $y(v_1v_6v_3v_4v_1) > 0$, then both v_3v_1 and v_4v_6 are saturated by \boldsymbol{y} in G_3 ; so is v_1v_2 if $y(v_2v_4v_6v_3v_2) > 0$. Furthermore, $y(v_2v_4v_6v_2) = 0$.

To justify this, note that both v_3v_1 and v_4v_6 are chords of the cycle $v_1v_2v_4v_6v_3v_1$, so they are saturated by \boldsymbol{y} in G_3 by Lemma 3.5(v). Suppose $y(v_2v_4v_6v_3v_2) > 0$. If v_1v_2 is not saturated by \boldsymbol{y} in T, then $v_1v_6v_3v_4v_1 \oplus v_2v_4v_6v_3v_2 \oplus \{v_1v_2\} = v_1v_2v_4v_1 \oplus v_3v_4v_6v_3$; if v_1v_2 is saturated by \boldsymbol{y} in T but contained in some cycle $C \in \mathcal{C}_0^y$, then the multiset sum of C, $v_1v_6v_3v_4v_1$, and $v_2v_4v_6v_3v_2$ contains arc-disjoint cycles $v_1v_2v_4v_1$, $v_3v_4v_6v_3$, and $C' = C[v_4, v_1] \cup \{v_1v_6, v_6v_3, v_3v_2, v_2v_4\}$. Thus we can obtain an optimal solution $\boldsymbol{y'}$ to $\mathbb{D}(T, \boldsymbol{w})$ that contradicts the assumption (3) on \boldsymbol{y} . Moreover, since $v_1v_6v_3v_4v_1 \oplus v_2v_4v_6v_2 = v_3v_4v_6v_3 \oplus v_1v_6v_2v_4v_1$, it follows from (3) that $y(v_2v_4v_6v_2) = 0$.

(9) If $y(v_1v_6v_2v_4v_1) > 0$, then both v_1v_2 and v_4v_6 are saturated by \boldsymbol{y} in G_3 ; so is v_3v_1 if $y(v_3v_4v_6v_3) > 0$ or $y(v_2v_4v_6v_3v_2) > 0$.

The first half follows instantly from Lemma 3.5(v). To prove the second half, assume the contrary. If v_3v_1 is not saturated by \boldsymbol{y} in T, then $v_3v_4v_6v_3 \uplus v_1v_6v_2v_4v_1 \uplus \{v_3v_1\} = v_2v_4v_6v_2 \uplus v_1v_6v_3v_1$, and $v_2v_4v_6v_3v_2 \boxminus v_1v_6v_2v_4v_1 \bowtie \{v_3v_1\} = v_2v_4v_6v_2 \oiint v_1v_6v_3v_1$; if v_3v_1 is saturated by \boldsymbol{y} in T but contained in some cycle C in \mathcal{C}_0^y , then the multiset sum of C, $v_1v_6v_2v_4v_1$, and $v_3v_4v_6v_3$ (resp. $v_2v_4v_6v_3v_2$) contains arc-disjoint cycles $v_2v_4v_6v_2$, $v_1v_6v_3v_1$, and $C' = C[v_4, v_3] \cup \{v_3v_4\}$ (resp. $C' = C[v_4, v_3] \cup \{v_3v_2, v_2v_4\}$). Since \boldsymbol{y} satisfies (2), we have $y(v_3v_4v_6v_3) = y(v_2v_4v_6v_3v_2) = 0$, a contradiction.

(10) If $y(v_2v_4v_6v_3v_2) > 0$, then both v_3v_4 and v_6v_2 are saturated by \boldsymbol{y} in G_3 by Lemma 3.5(v).

(11) If v_1v_6 is contained in a cycle in \mathcal{C}_0^y , then both v_4v_1 and v_4v_6 are saturated by \boldsymbol{y} in G_3 .

Since both $C[v_1, v_4] \cup \{v_4v_1\}$ and $C[v_6, v_4] \cup \{v_4v_6\}$ are cycles in C_2 , the statement follows instantly from Lemma 3.5(iv).

(12) If v_6v_3 is contained in a cycle in \mathcal{C}_0^y , then v_4v_6 is saturated by \boldsymbol{y} in G_3 ; so is v_1v_6 or v_4v_1 .

The first half follows instantly from Lemma 3.5(iv). To prove the second half, we may assume, by (11), that v_1v_6 is outside C_0^y . Let C be a cycle in C_0^y containing v_6v_3 . Then both $C[v_6, v_4] \cup \{v_4v_6\}$ and $C[v_6, v_4] \cup \{v_4v_1, v_1v_6\}$ are cycles in C_2 . Thus, by Lemma 3.5(iv), v_4v_6 and at least one of v_1v_6 and v_4v_1 are saturated by \boldsymbol{y} in G_3 .

Claim 1. $y(\mathcal{C}_2) = \tau_w(G_3 \setminus v_5).$

To justify this, observe that v_2v_4 is a special arc of T and v_2 is a near-sink. By Lemma 3.4(iv), we may assume that v_2v_4 is saturated by \boldsymbol{y} in T. Let $\mathcal{G}_2 = \{\{v_1v_2, v_1v_6, v_4v_6\}, \{v_1v_2, v_6v_2, v_6v_3\}, \{v_2v_4, v_3v_1, v_3v_4\}, \{v_3v_1, v_4v_1, v_4v_6\}\}$. Then $\mathcal{G}_2 \subset \mathcal{F}_2$. Observe that

(13) if $y(v_1v_2v_4v_6v_3v_1) = 0$, then for each $K \in \mathcal{G}_2$, not all arcs in K are saturated by \boldsymbol{y} in G_3 .

Suppose the contrary: all arcs in K are saturated by \boldsymbol{y} in G_3 . Examining cycles in \mathcal{C}_2 , we see that $y(\mathcal{C}_2) = w(K)$. By (5), K is an MFAS and hence $y(\mathcal{C}_2) = \tau_w(G_3 \setminus v_5)$. So we may assume

that (13) holds.

Depending on whether v_2v_4 is outside \mathcal{C}_0^y , we distinguish between two cases.

Case 1.1. v_2v_4 is contained in some cycle in \mathcal{C}_0^y .

We proceed by considering four subcases.

• Neither v_4v_1 nor v_4v_6 is saturated by \boldsymbol{y} in G_3 . In this subcase, by Lemma 3.5(iii) and (iv), both v_1v_2 and v_6v_2 are saturated by \boldsymbol{y} in G_3 . By (6)-(9), $y(v_1v_2v_4v_6v_3v_1)$, $y(v_1v_6v_3v_2v_4v_1)$, $y(v_1v_6v_3v_4v_1)$, and $y(v_1v_6v_2v_4v_1)$ are all zero. By (12) and (13), v_6v_3 is outside $\mathcal{C}_0^{\boldsymbol{y}}$ and not saturated by \boldsymbol{y} . By Lemma 3.5(iii), both v_3v_2 and v_3v_4 are saturated by \boldsymbol{y} in G_3 . By Lemma 3.5(i) and (iii), at least one of v_1v_6 and v_3v_1 is saturated by \boldsymbol{y} in G_3 . Thus $y(\mathcal{C}_2) = w(K)$, where K is $\{v_1v_2, v_1v_6, v_3v_2, v_3v_4, v_6v_2\}$ or $\{v_1v_2, v_3v_1, v_3v_2, v_3v_4, v_6v_2\}$. By (5), K is an MFAS and hence $y(\mathcal{C}_2) = \tau_w(G_3 \setminus v_5)$.

• v_4v_6 is saturated by \boldsymbol{y} in G_3 while v_4v_1 is not. In this subcase, by Lemma 3.5(iii), v_1v_2 is saturated by \boldsymbol{y} in G_3 . By (6), we have $y(v_1v_2v_4v_6v_3v_1) = 0$. By (11) and (13), v_1v_6 is outside $\mathcal{C}_0^{\boldsymbol{y}}$ and not saturated by \boldsymbol{y} . By Lemma 3.5(i) and (iii), v_6v_2 is saturated by \boldsymbol{y} in G_3 . So, by (12) and (13), v_6v_3 is outside $\mathcal{C}_0^{\boldsymbol{y}}$ and not saturated by \boldsymbol{y} . It follows from Lemma 3.5(i) and (iii) that v_3v_1 , v_3v_2 , and v_3v_4 are all saturated by \boldsymbol{y} in G_3 . Thus $y(\mathcal{C}_2) = w(K)$, where $K = \{v_1v_2, v_3v_1, v_3v_2, v_3v_4, v_6v_2\}$. By (5), K is an MFAS and hence $y(\mathcal{C}_2) = \tau_w(G_3 \setminus v_5)$.

• v_4v_1 is saturated by \boldsymbol{y} in G_3 while v_4v_6 is not. In this subcase, by Lemma 3.5(iii), v_6v_2 is saturated by \boldsymbol{y} in G_3 . By (7)-(9), $y(v_1v_6v_3v_2v_4v_1)$, $y(v_1v_6v_3v_4v_1)$, and $y(v_1v_6v_2v_4v_1)$ are all zero. By (12), v_6v_3 is outside $\mathcal{C}_0^{\boldsymbol{y}}$. Furthermore, we may assume that v_6v_3 is not saturated by \boldsymbol{y} , for otherwise $y(\mathcal{C}_2) = w(K)$, where $K = \{v_4v_1, v_6v_2, v_6v_3\}$. Then, by Lemma 3.5(iii) and (iv), both v_3v_2 and v_3v_4 are saturated by \boldsymbol{y} in G_3 . If v_3v_1 is also saturated by \boldsymbol{y} in G_3 , then $y(\mathcal{C}_2) = w(K)$, where $K = \{v_3v_1, v_3v_2, v_3v_4, v_4v_1, v_6v_2\}$; otherwise, by Lemma 3.5(i) and (iii), both v_1v_2 and v_1v_6 are saturated by \boldsymbol{y} in G_3 . So $y(\mathcal{C}_2) = w(J)$, where $J = \{v_1v_2, v_1v_6, v_3v_2, v_3v_4, v_6v_2\}$.

• Both v_4v_1 and v_4v_6 are saturated by \boldsymbol{y} in G_3 . In this subcase, if $y(v_1v_2v_4v_6v_3v_1) > 0$, then v_1v_6 is saturated by \boldsymbol{y} in G_3 and $y(v_1v_6v_2v_4v_1) = y(v_1v_6v_3v_4v_1) = y(v_1v_6v_3v_2v_4v_1) = 0$ by (6). Thus $y(\mathcal{C}_2) = w(K)$, where $K = \{v_4v_1, v_4v_6, v_1v_6\}$. So we assume that $y(v_1v_2v_4v_6v_3v_1) = 0$. Then v_3v_1 is not saturated by \boldsymbol{y} in G_3 by (13). Thus $y(v_1v_6v_3v_2v_4v_1) = y(v_1v_6v_3v_4v_1) = 0$ by (7) and (8). If $y(v_1v_6v_2v_4v_1) > 0$, then v_1v_2 is saturated by \boldsymbol{y} in G_3 and $y(v_3v_4v_6v_3) = y(v_2v_4v_6v_3v_2) = 0$ by (9). By (13), v_1v_6 is not saturated by \boldsymbol{y} in G_3 . Hence, by Lemma 3.5(iii), v_6v_3 is saturated by \boldsymbol{y} in G_3 . Therefore, $y(\mathcal{C}_2) = w(K)$, where $K = \{v_4v_1, v_4v_6, v_6v_3\}$. So we may assume that $y(v_1v_6v_2v_4v_1) = 0$ and that v_1v_6 is not saturated by \boldsymbol{y} in G_3 , for otherwise $y(\mathcal{C}_2) = w(K)$, where $K = \{v_4v_1, v_4v_6, v_1v_6\}$. Thus, by Lemma 3.5(iii) and (iv), v_6v_3 is saturated by \boldsymbol{y} in G_3 . We may further assume that v_6v_2 is not saturated by \boldsymbol{y} in G_3 , for otherwise, $y(\mathcal{C}_2) = w(J)$, where $J = \{v_4v_1, v_6v_2, v_6v_3\}$. Then $y(v_2v_4v_6v_3v_2) = 0$ by (10). We propose to show that

 $(14) \ y(v_3v_4v_6v_3) = 0.$

Assume the contrary: $y(v_3v_4v_6v_3) > 0$. Since neither v_1v_6 nor v_3v_1 is saturated by \boldsymbol{y} in G_3 , we distinguish among four subsubcases.

(a) Neither v_1v_6 nor v_3v_1 is saturated by \boldsymbol{y} in T. In this subsubcase, set $\theta = \min\{w(v_1v_6) - z(v_1v_6), w(v_3v_1) - z(v_3v_1), y(v_3v_4v_6v_3)\}$. Let \boldsymbol{y}' be obtained from \boldsymbol{y} by replacing $y(v_3v_4v_6v_3)$ and $y(v_1v_6v_3v_1)$ with $y(v_3v_4v_6v_3) - \theta$ and $y(v_1v_6v_3v_1) + \theta$, respectively. Then \boldsymbol{y}' is also an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$ with $y'(v_3v_4v_6v_3) < y(v_3v_4v_6v_3)$, contradicting (4).

(b) v_3v_1 is not saturated by \boldsymbol{y} in T and v_1v_6 is contained in some cycle $C_1 \in \mathcal{C}_0^y$. In this

subsubcase, since v_6v_3 is saturated by \boldsymbol{y} in G_3 , cycle C_1 contains the path $v_6v_2v_4$. Thus the multiset sum of C_1 , $v_3v_4v_6v_3$, and v_3v_1 contains two arc-disjoint cycles $v_2v_4v_6v_2$ and $v_1v_6v_3v_1$. By Lemma 3.5(iv), we have $y(v_3v_4v_6v_3) = 0$, a contradiction.

(c) v_1v_6 is not saturated by \boldsymbol{y} in T and v_3v_1 is contained in some cycle $C_2 \in \mathcal{C}_0^y$. In this subsubcase, it is clear that C_2 contains the path $v_1v_2v_4$. Observe that the multiset sum of C_2 , $v_3v_4v_6v_3$, and the unsaturated v_1v_6 contains two arc-disjoint cycles $v_1v_6v_3v_1$ and $C'_2 = C_2[v_4, v_3] \cup \{v_3v_4\}$. Set $\theta = \min\{y(C_2), y(v_3v_4v_6v_3), w(v_1v_6) - z(v_1v_6)\}$. Let \boldsymbol{y}' be obtained from \boldsymbol{y} by replacing $y(C_2), y(v_3v_4v_6v_3), y(v_1v_6v_3v_1)$, and $y(C'_2) - \theta, y(v_3v_4v_6v_3) - \theta, y(v_1v_6v_3v_1) + \theta$, and $y(C'_2) + \theta$, respectively. Then \boldsymbol{y}' is also an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$ with $y'(v_3v_4v_6v_3) < y(v_3v_4v_6v_3)$, contradicting (4).

(d) v_1v_6 and v_3v_1 are contained in some cycles C_1 and C_2 in \mathcal{C}_0^y , respectively. In this subsubcase, if v_3v_1 is also on C_1 , then the multiset sum of C_1 and $v_3v_4v_6v_3$ contains arc-disjoint cycles $v_1v_6v_3v_1$, $v_2v_4v_6v_2$, and $C'_1 = C_1[v_4, v_3] \cup \{v_3v_4\}$. From the optimality of \boldsymbol{y} , we deduce that $y(v_3v_4v_6v_3) = 0$. If v_3v_1 is outside C_1 , then the multiset sum of C_1 , C_2 , and $v_3v_4v_6v_3$ contains arc-disjoint cycles $v_1v_6v_3v_1$, $v_2v_4v_6v_2$, $C'_1 = C_1[v_4, v_1] \cup \{v_1v_2, v_2v_4\}$, and $C'_2 = C_2[v_4, v_3] \cup \{v_3v_4\}$. From the optimality of \boldsymbol{y} , we again deduce that $y(v_3v_4v_6v_3) = 0$.

By (14), we have $y(\mathcal{C}_2) = w(K)$, where $K = \{v_4v_1, v_4v_6, v_6v_3\}$. So K is an MFAS by (5) and hence $y(\mathcal{C}_2) = \tau_w(G_3 \setminus v_5)$.

Case 1.2. v_2v_4 is outside \mathcal{C}_0^y .

In this case, v_2v_4 is saturated by \boldsymbol{y} in G_3 , and v_1v_2 , v_3v_2 , and v_6v_2 are all outside \mathcal{C}_0^y . Since $\mathcal{C}_0^y \neq \emptyset$, there exists a cycle $C \in \mathcal{C}_0^y$ containing v_3v_4 . From (6), (7), and (10), we see that $y(v_1v_2v_4v_6v_3v_1)$, $y(v_1v_6v_3v_2v_4v_1)$, and $y(v_2v_4v_6v_3v_2)$ are all zero. If v_6v_3 is also saturated by \boldsymbol{y} in G_3 , then $y(\mathcal{C}_2) = w(K)$, where $K = \{v_2v_4, v_6v_3\}$. So we assume that v_6v_3 is not saturated by \boldsymbol{y} in G_3 . By Lemma 3.5(iii) and (iv), v_4v_6 is saturated by \boldsymbol{y} in G_3 .

Assume first that v_4v_1 is not saturated by \boldsymbol{y} in G_3 . Then, by Lemma 3.5(iii) and (iv), v_1v_6 is saturated by \boldsymbol{y} in G_3 . By (13), v_1v_2 is not saturated by \boldsymbol{y} in G_3 and hence in T. By (9), $y(v_1v_6v_2v_4v_1) = 0$. If v_6v_3 is not saturated by \boldsymbol{y} in T, then the multiset sum of C, $v_2v_4v_6v_2$, and the unsaturated arcs v_6v_3 , v_4v_1 , and v_1v_2 contains two arc-disjoint cycles $v_1v_2v_4v_1$ and $v_3v_4v_6v_3$; if v_6v_3 is saturated by \boldsymbol{y} in T but contained in some cycle C in $\mathcal{C}_0^{\boldsymbol{y}}$, then the multiset sum of C, $v_2v_4v_6v_2$, and the unsaturated arcs v_4v_1 and v_1v_2 contains two arc-disjoint cycles $v_1v_2v_4v_1$ and $v_3v_4v_6v_3$. By Lemma 3.5(vi), we have $y(v_2v_4v_6v_2) = 0$ in either subcase. So $y(\mathcal{C}_2) = w(K)$, where $K = \{v_1v_6, v_4v_6, v_2v_4\}$.

Assume next that v_4v_1 is saturated by \boldsymbol{y} in G_3 . Then, by (13), v_3v_1 and at least one of v_1v_2 and v_1v_6 are not saturated by \boldsymbol{y} in G_3 . By Lemma 3.5(ii) and (iv), both v_3v_1 and v_1v_6 are outside $\mathcal{C}_0^{\boldsymbol{y}}$; using Lemma 3.5(i) and (iii), we further deduce that v_1v_6 is saturated by \boldsymbol{y} in G_3 . Thus, by (13), v_1v_2 is not saturated by \boldsymbol{y} in G_3 . It follows from (8) and (9) that $y(v_1v_6v_3v_4v_1) = y(v_1v_6v_2v_4v_1) = 0$. Therefore $y(\mathcal{C}_2) = w(K)$, where $K = \{v_1v_6, v_4v_1, v_4v_6\}$. So K is an MFAS by (5) and hence $y(\mathcal{C}_2) = \tau_w(G_3 \setminus v_5)$. This proves Claim 1.

Claim 2. y(C) is integral for all $C \in \mathcal{C}_2$ or $\nu_w^*(T)$ is an integer.

To justify this, we may assume that

(15) $y(v_1v_2v_4v_6v_3v_1) = y(v_1v_6v_3v_2v_4v_1) = 0.$

Assume the contrary: $y(v_1v_2v_4v_6v_3v_1) = 0$. Then, from (6) we deduce that $y(v_1v_6v_2v_4v_1) = y(v_1v_6v_3v_4v_1) = y(v_1v_6v_3v_2v_4v_1) = 0$ and that each arc in the set $\{v_1v_6, v_3v_2, v_3v_4, v_4v_1, v_6v_2\}$ is

saturated by \boldsymbol{y} in G_3 . So $y(v_1v_2v_4v_1) = w(v_4v_1)$, $y(v_1v_6v_3v_1) = w(v_1v_6)$, $y(v_3v_4v_6v_3) = w(v_3v_4)$, $y(v_2v_4v_6v_2) = w(v_6v_2)$, and $y(v_2v_4v_6v_3v_1) = w(v_3v_2)$. By Claim 1, $y(\mathcal{C}_2)$ is an integer; so is $y(v_1v_2v_4v_6v_3v_1)$. Thus Lemma 3.2(iii) allows us to assume that $y(v_1v_2v_4v_6v_3v_1) = 0$.

If $y(v_1v_6v_3v_2v_4v_1) > 0$, then from (7) we deduce that $y(v_2v_4v_6v_2) = y(v_3v_4v_6v_3) = 0$ and that each arc in the set $\{v_1v_2, v_3v_1, v_3v_4, v_4v_6, v_6v_2\}$ is saturated by \boldsymbol{y} in G_3 . So $y(v_1v_2v_4v_1) = w(v_1v_2)$, $y(v_1v_6v_3v_1) = w(v_3v_1), y(v_1v_6v_3v_4v_1) = w(v_3v_4), y(v_1v_6v_2v_4v_1) = w(v_6v_2), \text{ and } y(v_2v_4v_6v_3v_2) = w(v_4v_6)$. By Claim 1, $y(\mathcal{C}_2)$ is an integer; so is $y(v_1v_6v_3v_2v_4v_1)$. Thus Lemma 3.2(iii) allows us to further assume that $y(v_1v_6v_3v_2v_4v_1) = 0$.

By Claim 1, $y(\mathcal{C}_2) = w(K)$ for some $K \in \mathcal{F}_2$. Depending on what K is, we distinguish among 13 cases.

Case 2.1. $K = \{v_1v_6, v_2v_4, v_4v_6\}.$

In this case, by Lemma 3.1 (i), we have $y(v_2v_4v_6v_2) = y(v_1v_6v_2v_4v_1) = y(v_2v_4v_6v_3v_2) = y(v_1v_6v_3v_2v_4v_1) = y(v_1v_2v_4v_6v_3v_1) = 0$. By Lemma 3.1 (iii), we obtain $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which together with (15) yields the following equations: $y(v_1v_6v_3v_1) + y(v_1v_6v_3v_4v_1) = w(v_1v_6)$, $y(v_1v_2v_4v_1) = w(v_2v_4)$, and $y(v_3v_4v_6v_3) = w(v_4v_6)$. If $y(v_1v_6v_3v_4v_1) > 0$, then by (8) we have one more equation $y(v_1v_6v_3v_1) = w(v_3v_1)$. So y(C) is integral for any $C \in \mathcal{C}_2$, no matter whether $y(v_1v_6v_3v_4v_1) = 0$.

Case 2.2. $K = \{v_4v_1, v_4v_6, v_6v_3\}.$

In this case, by Lemma 3.1 (i), we have $y(v_3v_4v_6v_3) = y(v_1v_6v_3v_4v_1) = y(v_2v_4v_6v_3v_2) = y(v_1v_6v_3v_2v_4v_1) = y(v_1v_2v_4v_6v_3v_1) = 0$. By Lemma 3.1 (iii), we obtain $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which together with (15) yields the following equations: $y(v_1v_2v_4v_1) + y(v_1v_6v_2v_4v_1) = w(v_4v_1)$, $y(v_2v_4v_6v_2) = w(v_4v_6)$, and $y(v_1v_6v_3v_1) = w(v_6v_3)$. If $y(v_1v_6v_2v_4v_1) > 0$, then by (9) we have one more equation $y(v_1v_2v_4v_1) = w(v_1v_2)$. So y(C) is integral for any $C \in \mathcal{C}_2$, no matter whether $y(v_1v_6v_2v_4v_1) = 0$.

Case 2.3. $K = \{v_1v_2, v_3v_1, v_3v_2, v_3v_4, v_6v_2\}.$

In this case, by Lemma 3.1 (iii), we obtain $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which together with (15) yields the following equations: $y(v_1v_2v_4v_1) = w(v_1v_2)$, $y(v_1v_6v_3v_1) = w(v_3v_1)$, $y(v_2v_4v_6v_3v_2) = w(v_3v_2)$, $y(v_3v_4v_6v_3) + y(v_1v_6v_3v_4v_1) = w(v_3v_4)$, and $y(v_2v_4v_6v_2) + y(v_1v_6v_2v_4v_1) = w(v_6v_2)$. Observe that if $y(v_1v_6v_3v_4v_1) > 0$, then by (8) we have $y(v_3v_4v_6v_3) = w(v_4v_6) - w(v_3v_2)$ and $y(v_2v_4v_6v_2) = 0$; if $y(v_1v_6v_3v_4v_1) = 0$ and $y(v_1v_6v_2v_4v_1) > 0$, then by (9) we have $y(v_2v_4v_6v_2) = w(v_4v_6) - w(v_3v_2) - w(v_3v_4)$. So y(C) is integral for any $C \in \mathcal{C}_2$, no matter whether $y(v_1v_6v_2v_4v_1)$ or $y(v_1v_6v_3v_4v_1)$ is zero.

Case 2.4. $K = \{v_1v_2, v_1v_6, v_3v_2, v_3v_4, v_6v_2\}.$

In this case, by Lemma 3.1 (i), we have $y(v_1v_6v_3v_4v_1) = y(v_1v_6v_2v_4v_1) = 0$. By Lemma 3.1 (iii), we obtain $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which together with (15) yields the following equations: $y(v_1v_2v_4v_1) = w(v_1v_2)$, $y(v_1v_6v_3v_1) = w(v_1v_6)$, $y(v_2v_4v_6v_3v_2) = w(v_3v_2)$, $y(v_3v_4v_6v_3) = w(v_3v_4)$, and $y(v_2v_4v_6v_2) = w(v_6v_2)$. Hence y(C) is integral for all $C \in \mathcal{C}_2$.

Case 2.5. $K = \{v_3v_1, v_3v_2, v_3v_4, v_4v_1, v_6v_2\}.$

In this case, by Lemma 3.1 (i), we have $y(v_1v_6v_3v_4v_1) = 0$. By Lemma 3.1 (iii), we obtain $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which together with (15) yields the following equations: $y(v_1v_6v_3v_1) = w(v_3v_1), y(v_2v_4v_6v_3v_2) = w(v_3v_2), y(v_3v_4v_6v_3) = w(v_3v_4), y(v_1v_2v_4v_1) = w(v_4v_1),$ and $y(v_2v_4v_6v_2) + y(v_1v_6v_2v_4v_1) = w(v_6v_2)$. Observe that if $y(v_1v_6v_2v_4v_1) > 0$, then by (9) we have $y(v_2v_4v_6v_2) = w(v_4v_6) - w(v_3v_2) - w(v_3v_4)$. So y(C) is integral for all $C \in \mathcal{C}_2$, no matter whether $y(v_1v_6v_2v_4v_1)$ is zero.

Case 2.6. $K = \{v_1v_6, v_2v_4, v_3v_4\}.$

In this case, by Lemma 3.1 (i), we have $y(v_1v_6v_2v_4v_1) = y(v_1v_6v_3v_4v_1) = 0$. By Lemma 3.1 (iii), we obtain $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which together with (15) yields the following equations: $y(v_1v_6v_3v_1) = w(v_1v_6)$, $y(v_1v_2v_4v_1) + y(v_2v_4v_6v_2) + y(v_2v_4v_6v_3v_2) = w(v_2v_4)$, and $y(v_3v_4v_6v_3) = w(v_3v_4)$. If $y(v_2v_4v_6v_3v_2) > 0$, then $y(v_2v_4v_6v_2) = w(v_6v_2)$ by (10). Since v_4v_1 and v_1v_2 are outside \mathcal{C}_0^y and \boldsymbol{y} satisfies (2), it is easy to see that $y(v_1v_2v_4v_1) = \min\{w(v_1v_2), w(v_4v_1)\}$. So y(C) is integral for all $C \in \mathcal{C}_2$. Thus we may assume that $y(v_2v_4v_6v_3v_2) = 0$. Since both v_4v_6 and v_6v_2 are outside \mathcal{C}_0^y , by (4) we have $y(v_2v_4v_6v_2) = \min\{w(v_6v_2), w(v_4v_6) - w(v_3v_4)\}$. It follows that y(C) is integral for all $C \in \mathcal{C}_2$.

Case 2.7. $K = \{v_2v_4, v_3v_1, v_3v_4\}.$

In this case, by Lemma 3.1 (iii), we obtain $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which together with (15) yields the following equations: $y(v_1v_2v_4v_1) + y(v_2v_4v_6v_2) + y(v_1v_6v_2v_4v_1) + y(v_2v_4v_6v_3v_2) = w(v_2v_4), y(v_1v_6v_3v_1) = w(v_3v_1), \text{ and } y(v_3v_4v_6v_3) + y(v_1v_6v_3v_4v_1) = w(v_3v_4).$

Assume first that $y(v_1v_6v_3v_4v_1) > 0$. Then, by (8), we have $y(v_2v_4v_6v_2) = 0$ and $y(v_3v_4v_6v_3) + y(v_2v_4v_6v_3v_2) = w(v_4v_6)$. If $y(v_2v_4v_6v_3v_2) > 0$, then, by (8) and (10), we obtain $y(v_1v_2v_4v_1) = w(v_1v_2)$ and $y(v_1v_6v_2v_4v_1) = w(v_6v_2)$; if $y(v_2v_4v_6v_3v_2) = 0$ and $y(v_1v_6v_2v_4v_1) > 0$, then, by (9), we get $y(v_1v_2v_4v_1) = w(v_1v_2)$, $y(v_1v_6v_2v_4v_1) = w(v_2v_4) - w(v_1v_2)$, and $y(v_3v_4v_6v_3) = w(v_4v_6)$; if $y(v_1v_6v_2v_4v_1) = y(v_2v_4v_6v_3v_2) = 0$, then $y(v_1v_2v_4v_1) = w(v_2v_4)$, and $y(v_3v_4v_6v_3) = w(v_4v_6)$. Thus y(C) is integral for all $C \in \mathcal{C}_2$ in any subcase.

Assume next that $y(v_1v_6v_3v_4v_1) = 0$. If $y(v_1v_6v_2v_4v_1) > 0$, then, by (9), we have $y(v_1v_2v_4v_1) = w(v_1v_2)$ and $y(v_2v_4v_6v_2) + y(v_2v_4v_6v_3v_2) = w(v_4v_6) - y(v_3v_4v_6v_3) = w(v_4v_6) - w(v_3v_4)$, and so $y(v_1v_6v_2v_4v_1) = w(v_2v_4) + w(v_3v_4) - w(v_1v_2) - w(v_4v_6)$. Observe that if $y(v_2v_4v_6v_3v_2) > 0$, then we have one more equation $y(v_2v_4v_6v_2) + y(v_1v_6v_2v_4v_1) = w(v_6v_2)$ by (10). Thus y(C) is integral for all $C \in \mathcal{C}_2$, no matter whether $y(v_2v_4v_6v_3v_2) = 0$. So we assume that $y(v_1v_6v_2v_4v_1) = 0$. If $y(v_2v_4v_6v_3v_2) > 0$, then $y(v_2v_4v_6v_2) = w(v_6v_2)$ and $y(v_1v_2v_4v_1) + y(v_2v_4v_6v_3v_2) = w(v_2v_4) - w(v_6v_2)$; if $y(v_2v_4v_6v_3v_2) = 0$, then $y(v_1v_2v_4v_1) + y(v_2v_4v_6v_2) = w(v_2v_4)$. Since \boldsymbol{y} satisfies (2) and (4) and since v_4v_1 , v_4v_6 , v_1v_2 , and v_6v_2 are all outside \mathcal{C}_0^{y} , if $y(v_1v_2v_4v_1) > 0$, then $y(v_1v_2v_4v_1) = \min\{w(v_4v_1), w(v_1v_2)\}$ or $y(v_2v_4v_6v_2) = \min\{w(v_4v_6) - y(v_3v_4v_6v_3), w(v_6v_2)\}$, regardless of the value of $y(v_2v_4v_6v_3v_2)$. Hence y(C) is integral for all $C \in \mathcal{C}_2$.

Case 2.8. $K = \{v_1v_2, v_6v_2, v_6v_3\}.$

In this case, by Lemma 3.1 (iii), we obtain $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which together with (15) yields the following equations: $y(v_1v_2v_4v_1) = w(v_1v_2)$, $y(v_2v_4v_6v_2) + y(v_1v_6v_2v_4v_1) = w(v_6v_2)$, and $y(v_1v_6v_3v_1) + y(v_3v_4v_6v_3) + y(v_1v_6v_3v_4v_1) + y(v_2v_4v_6v_3v_2) = w(v_6v_3)$. Depending on the value of $y(v_1v_6v_3v_4v_1)$, we consider two subcases.

• $y(v_1v_6v_3v_4v_1) > 0$. In this subcase, by (8), we have $y(v_2v_4v_6v_2) = 0$, $y(v_1v_6v_3v_1) = w(v_3v_1)$, and $y(v_3v_4v_6v_3) + y(v_2v_4v_6v_3v_2) = w(v_4v_6)$. So $y(v_1v_6v_3v_4v_1) = w(v_6v_3) - w(v_3v_1) - w(v_4v_6)$. Observe that if $y(v_2v_4v_6v_3v_2) > 0$, then we have one more equation $y(v_3v_4v_6v_3) = w(v_3v_4) - y(v_1v_6v_3v_4v_1)$ by (10). So y(C) is integral for all $C \in C_2$, no matter whether $y(v_2v_4v_6v_3v_2) = 0$.

• $y(v_1v_6v_3v_4v_1) = 0$. In this subcase, assume first that $y(v_1v_6v_2v_4v_1) > 0$. If $y(v_3v_4v_6v_3) > 0$ or $y(v_2v_4v_6v_3v_2) > 0$, then, by (9), we have $y(v_1v_6v_3v_1) = w(v_3v_1)$, $y(v_3v_4v_6v_3) + y(v_2v_4v_6v_3v_2) = w(v_6v_3) - w(v_3v_1)$, and $y(v_2v_4v_6v_2) = w(v_4v_6) + w(v_3v_1) - w(v_6v_3)$. If $y(v_2v_4v_6v_3v_2) > 0$, then $y(v_3v_4v_6v_3) = w(v_3v_4)$ by (10). Thus $y(v_2v_4v_6v_3v_2)$ and $y(v_1v_6v_2v_4v_1)$ are integral. If $y(v_3v_4v_6v_3) = y(v_2v_4v_6v_3v_2) = 0$, then $y(v_2v_4v_6v_2) = w(v_4v_6)$ and $y(v_1v_6v_2v_4v_1) = w(v_6v_2) - w(v_6v_3)$. $w(v_4v_6)$. So y(C) is integral for all $C \in \mathcal{C}_2$ in any subsubcase. Assume next that $y(v_1v_6v_2v_4v_1) = 0$. If $y(v_2v_4v_6v_3v_2) > 0$, then $y(v_3v_4v_6v_3) = w(v_3v_4)$ by (10) and $y(v_1v_6v_3v_1) + y(v_2v_4v_6v_3v_2) = w(v_6v_3) - w(v_3v_4)$; if $y(v_2v_4v_6v_3v_2) = 0$, then $y(v_1v_6v_3v_1) + y(v_3v_4v_6v_3) = w(v_6v_3)$. Note that both v_3v_1 and v_1v_6 are outside \mathcal{C}_0^y . As \boldsymbol{y} satisfies (2) and (4), we deduce that $y(v_1v_6v_3v_1) = \min\{w(v_1v_6), w(v_3v_1)\}$, no matter whether $y(v_2v_4v_6v_3v_2) > 0$. Hence y(C) is integral for all $C \in \mathcal{C}_2$.

Case 2.9. $K = \{v_4v_1, v_6v_2, v_6v_3\}.$

In this case, by Lemma 3.1 (i), we have $y(v_1v_6v_2v_4v_1) = y(v_1v_6v_3v_4v_1) = 0$. By Lemma 3.1 (iii), we obtain $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which together with (15) yields the following equations: $y(v_1v_2v_4v_1) = w(v_4v_1)$, $y(v_2v_4v_6v_2) = w(v_6v_2)$, and $y(v_1v_6v_3v_1) + y(v_3v_4v_6v_3) + y(v_2v_4v_6v_3v_2) = w(v_6v_3)$. If $y(v_2v_4v_6v_3v_2) > 0$, then $y(v_3v_4v_6v_3) = w(v_3v_4)$ by (10), so $y(v_1v_6v_3v_1) + y(v_2v_4v_6v_3v_2) = w(v_6v_3) - w(v_3v_4)$; if $y(v_2v_4v_6v_3v_2) > 0$, then $y(v_1v_6v_3v_1) + y(v_2v_4v_6v_3v_2) = w(v_6v_3)$. Clearly, v_1v_6 is outside \mathcal{C}_0^y . We propose to show that

(16) $y(v_1v_6v_3v_1)$ is integral.

Suppose on the contrary that $y(v_1v_6v_3v_1)$ is not integral. If v_3v_1 is outside C_0^y , then from (2) and (4) we deduce that $y(v_1v_6v_3v_1) = \min\{w(v_3v_1), w(v_1v_6)\}$, a contradiction. So we assume that v_3v_1 is contained in some cycle C in C_0^y . Then C contains the path $v_1v_2v_4$. Set $C' = C[v_4, v_3] \cup \{v_3v_2, v_2v_4\}$ if $y(v_2v_4v_6v_3v_2) > 0$ and $C' = C[v_4, v_3] \cup \{v_3v_4\}$ otherwise, and set $\theta = \min\{[y(v_2v_4v_6v_3v_2)], y(C)\}$ if $y(v_2v_4v_6v_3v_2) > 0$ and $\theta = \min\{[y(v_3v_4v_6v_3)], y(C)\}$ otherwise. Let \mathbf{y}' be obtained from \mathbf{y} by replacing $y(v_2v_4v_6v_3v_2)$ (resp. $y(v_3v_4v_6v_3)), y(v_1v_6v_3v_1), y(C)$, and y(C') with $y(v_2v_4v_6v_3v_2) - \theta$ (resp. $y(v_3v_4v_6v_3) - \theta$), $y(v_1v_6v_3v_1) + \theta$, $y(C) - \theta$, and $y(C') + \theta$, respectively. Then $y'(v_2v_4v_6v_3v_2) < y(v_2v_4v_6v_3v_2)$ or $y'(v_3v_4v_6v_3) < y(v_3v_4v_6v_3)$, contradicting (2) or (4). So (16) is established.

From (16) it follows that y(C) is integral for all $C \in \mathcal{C}_2$.

Case 2.10. $K = \{v_2v_4, v_6v_3\}.$

In this case, by Lemma 3.1 (i), we have $y(v_2v_4v_6v_3v_2) = 0$. By Lemma 3.1 (iii), we obtain $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which together with (15) yields the following equations: $y(v_1v_2v_4v_1) + y(v_2v_4v_6v_2) + y(v_1v_6v_2v_4v_1) = w(v_2v_4)$ and $y(v_1v_6v_3v_1) + y(v_3v_4v_6v_3) + y(v_1v_6v_3v_4v_1) = w(v_6v_3)$. It follows that all arcs in $G_3 \setminus v_5$ are outside \mathcal{C}_0^y except possibly v_3v_4 . If $y(v_1v_6v_3v_4v_1) > 0$, then, by (8), we have $y(v_2v_4v_6v_2) = 0$, $y(v_1v_6v_3v_1) = w(v_3v_1)$, and $y(v_3v_4v_6v_3) = w(v_4v_6)$. Observe that if $y(v_1v_6v_2v_4v_1) > 0$, then we have one more equation $y(v_1v_2v_4v_1) = w(v_1v_2)$. Thus y(C) is integral for all $C \in \mathcal{C}_2$, no matter whether $y(v_1v_6v_2v_4v_1) = 0$.

If $y(v_1v_6v_2v_4v_1) > 0$, then, by (9), we obtain $y(v_1v_2v_4v_1) = w(v_1v_2)$ and $y(v_2v_4v_6v_2) + y(v_3v_4v_6v_3) = w(v_4v_6)$. Furthermore, $y(v_1v_6v_3v_1) = w(v_3v_1)$ if $y(v_3v_4v_6v_3) > 0$ and $y(v_1v_6v_3v_1) = w(v_6v_3)$ otherwise. Hence y(C) is integral for all $C \in C_2$, no matter whether $y(v_3v_4v_6v_3) = 0$. So we may assume that $y(v_1v_6v_2v_4v_1) = 0$.

If $y(v_3v_4v_6v_3) = 0$, then $y(v_1v_6v_3v_1) = w(v_6v_3)$. Recall that both v_4v_6 and v_6v_2 are outside C_0^y . If $y(v_1v_2v_4v_1) > 0$, then from (4) we deduce that $y(v_2v_4v_6v_2) = \min\{w(v_4v_6), w(v_6v_2)\}$. Hence y(C) is integral for all $C \in C_2$, no matter whether $y(v_1v_2v_4v_1) > 0$. It remains to consider the subcase when $y(v_3v_4v_6v_3) > 0$. Since both v_3v_1 and v_1v_6 are outside C_0^y , from (4) we deduce that $y(v_1v_6v_3v_1) = \min\{w(v_3v_1), w(v_1v_6)\}$. If $y(v_1v_2v_4v_1) = 0$, then $y(v_2v_4v_6v_2) = w(v_2v_4)$; otherwise, by (4), at least one of v_4v_6 and v_6v_2 is saturated by \boldsymbol{y} in G_3 . It follows that $y(v_2v_4v_6v_2) = \min\{w(v_6v_2), w(v_4v_6) - y(v_3v_4v_6v_3)\}$. Hence y(C) is integral for all $C \in C_2$, no matter whether $y(v_1v_2v_4v_1) = 0$.

Case 2.11. $K = \{v_3v_1, v_4v_1, v_4v_6\}.$

In this case, by Lemma 3.1 (iii), we obtain $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which together with (15) yields the following equations: $y(v_1v_6v_3v_1) = w(v_3v_1)$, $y(v_1v_2v_4v_1) + y(v_1v_6v_2v_4v_1) + y(v_1v_6v_3v_4v_1) = w(v_4v_1)$, and $y(v_2v_4v_6v_2) + y(v_3v_4v_6v_3) + y(v_2v_4v_6v_3v_2) = w(v_4v_6)$. Depending on the value of $y(v_1v_6v_3v_4v_1)$, we consider two subcases.

• $y(v_1v_6v_3v_4v_1) > 0$. In this subcase, $y(v_2v_4v_6v_2) = 0$ by (8). If $y(v_2v_4v_6v_3v_2) > 0$, then, by (8) and (10), we have $y(v_1v_2v_4v_1) = w(v_1v_2)$, $y(v_1v_6v_2v_4v_1) = w(v_6v_2)$, and $y(v_3v_4v_6v_3) = w(v_3v_4)$. Hence y(C) is integral for all $C \in \mathcal{C}_2$. So we assume that $y(v_2v_4v_6v_3v_2) = 0$. Then $y(v_3v_4v_6v_3) = w(v_4v_6)$. Depending on the value of $y(v_1v_6v_2v_4v_1)$, we distinguish between two subsubcases.

(a) $y(v_1v_6v_2v_4v_1) > 0$. By (9), $y(v_1v_2v_4v_1) = w(v_1v_2)$ and $y(v_1v_6v_2v_4v_1) + y(v_1v_6v_3v_4v_1) = w(v_4v_1) - w(v_1v_2)$. If $y(v_1v_6v_2v_4v_1)$ is integral, then y(C) is integral for all $C \in C_2$. So we assume that $y(v_1v_6v_2v_4v_1)$ is not integral. By Lemma 3.2(iii), we may assume that $w(v_3v_1)$, $w(v_1v_2)$, and $w(v_4v_6)$ are all zero. Observe that v_6v_2 is outside C_0^y , for otherwise, let C be a cycle in C_0^y containing v_6v_2 . Then C passes through v_2v_4 . Let $C' = C[v_4, v_6] \cup \{v_6v_3, v_3v_4\}$, let $\theta = \min\{y(C), y(v_1v_6v_3v_4v_1)\}$, and let y' be obtained from y by replacing $y(v_1v_6v_3v_4v_1)$, $y(v_1v_6v_2v_4v_1), y(C)$, and y(C') with $y(v_1v_6v_3v_4v_1) - \theta$, $y(v_1v_6v_2v_4v_1) + \theta$, $y(C) - \theta$, and $y(C') + \theta$, respectively. Then y' is also an optimal solution to $\mathbb{D}(T, w)$ with $y'(v_1v_6v_3v_4v_1) < y(v_1v_6v_3v_4v_1)$, contradicting (3). Similarly, we can prove that v_3v_2 is outside C_0^y . Thus $w(v_3v_2) = z(v_3v_2) = 0$. We propose to show that

(17) $\nu_w^*(T)$ is an integer.

To justify this, let \boldsymbol{x} be an optimal solution to $\mathbb{P}(T, \boldsymbol{w})$. Since $y(v_1v_6v_2v_4v_1) > 0$ and $y(v_1v_6v_3v_4v_1) > 0$, by Lemma 3.1(i) we have $x(v_6v_2) + x(v_2v_4) = x(v_6v_3) + x(v_3v_4)$. Since $y(v_1v_6v_2v_4v_1) < w(v_6v_2)$, by Lemma 3.1(ii) we obtain $x(v_6v_2) = 0$, which implies $x(v_2v_4) = x(v_6v_3) + x(v_3v_4)$. Since v_6v_2 is outside C_0^y , for each vertex u in $V(T_1) \setminus \{b, a_1\}$, we obtain $x(uv_6) = x(uv_2)$. Let T' = (V', A') be obtained from T by deleting vertex v_2 , let \boldsymbol{w}' be obtained from the restriction of \boldsymbol{w} to A' by replacing $w(uv_6)$ with $w(uv_6) + w(uv_2)$ for each u in $V(T_1) \setminus \{b, a_1\}$ and replacing $w(v_iv_j)$ with $w(v_iv_j) + w(v_2v_4)$ for (i, j) = (6, 3) or (3, 4). Let \boldsymbol{x}' be the restriction of \boldsymbol{x} to A' and let \boldsymbol{y}' be defined from \boldsymbol{y} as follows: for each cycle C passing through uv_2v_4 with $u \in V(T_1) \setminus \{b, a_1\}$, let C' be the cycle arising from C by replacing uv_2v_4 with $uv_6v_3v_4$, and set $\boldsymbol{y}'(C') = \boldsymbol{y}(C) + \boldsymbol{y}(C')$ and $\boldsymbol{y}'(v_1v_6v_3v_4v_1) = \boldsymbol{y}(v_1v_6v_3v_4v_1) + \boldsymbol{y}(v_1v_6v_2v_4v_1)$. Then \boldsymbol{x}' and \boldsymbol{y}' are optimal solutions to $\mathbb{P}(T', \boldsymbol{w}')$ and $\mathbb{D}(T', \boldsymbol{w}')$, respectively, with the same value $\nu_w^w(T)$ as \boldsymbol{x} and \boldsymbol{y} . Hence $\nu_w^w(T)$ is an integer by the hypothesis of Theorem 1.5. So (17) follows.

(b) $y(v_1v_6v_2v_4v_1) = 0$. Then $y(v_1v_2v_4v_1) + y(v_1v_6v_3v_4v_1) = w(v_4v_1)$. If $y(v_1v_2v_4v_1)$ is integral, then y(C) is integral for all $C \in C_2$. So we assume that $y(v_1v_2v_4v_1)$ is not integral. Observe that v_1v_2 is outside C_0^y , for otherwise, let C be a cycle in C_0^y containing v_1v_2 . Since the multiset sum of C and $v_1v_6v_3v_4v_1$ contains arc-disjoint cycles $v_1v_2v_4v_1$ and $C' = C[v_4, v_1] \cup$ $\{v_1v_6, v_6v_3, v_3v_4\}$. By Lemma 3.5(vi), we have y(C) = 0, a contradiction. Similarly, we can prove that v_6v_2 and v_3v_2 are outside C_0^y as well. Thus $w(v_iv_2) = z(v_iv_2) = 0$ for i = 3, 6. We propose to show that

(18) $\nu_w^*(T)$ is an integer.

To justify this, let \boldsymbol{x} be an optimal solution to $\mathbb{P}(T, \boldsymbol{w})$. Since both $y(v_1v_2v_4v_1)$ and

 $y(v_1v_6v_3v_4v_1)$ are positive, by Lemma 3.1(i) we have $x(v_1v_2) + x(v_2v_4) = x(v_1v_6) + x(v_6v_3) + x(v_3v_4)$. Since $y(v_1v_2v_4v_1) < w(v_1v_2)$, by Lemma 3.1(ii) we obtain $x(v_1v_2) = 0$, which implies that $x(v_2v_4) = x(v_1v_6) + x(v_6v_3) + x(v_3v_4)$. Since v_1v_2 is outside C_0^y , for each vertex $u \in V(T_1) \setminus \{b, a_1\}$, we obtain $x(uv_1) = x(uv_2)$. Let T' = (V', A') be obtained from T by deleting vertex v_2 , and let w' be the restriction of w to A' by replacing $w(uv_1)$ with $w(uv_1) + w(uv_2)$ for each $u \in V(T_1) \setminus \{b, a_1\}$ and replacing $w(v_iv_j)$ with $w(v_iv_j) + w(v_2v_4)$ for (i, j) = (1, 6), (6, 3), and (3, 4). Let x' be the restriction of x to A' and let y' be defined from y as follows: for each cycle C passing through uv_2v_4 with $u \in V(T_1) \setminus \{b, a_1\}$, let C' be obtained from C by replacing uv_2v_4 with $uv_1v_6v_3v_4$, and set y'(C') = y(C) + y(C') and $y'(v_1v_6v_3v_4v_1) = y(v_1v_6v_3v_4v_1) + y(v_1v_2v_4v_1)$. Then x' and y' are optimal solutions to $\mathbb{P}(T', w')$ and $\mathbb{D}(T', w')$, respectively, with the same value $\nu_w^*(T)$ as x and y. Hence $\nu_w^*(T)$ is an integer by the hypothesis of Theorem 1.5. This proves (18).

• $y(v_1v_6v_3v_4v_1) = 0$. In this subcase, $y(v_1v_2v_4v_1) = w(v_1v_2)$. By (9), if $y(v_1v_6v_2v_4v_1) > 0$, then $y(v_1v_6v_2v_4v_1) = w(v_4v_1) - w(v_1v_2)$; otherwise, $y(v_1v_2v_4v_1) = w(v_4v_1)$. If $y(v_2v_4v_6v_3v_2) > 0$, then, by (10), we have $y(v_3v_4v_6v_3) = w(v_3v_4)$, $y(v_2v_4v_6v_2) = w(v_6v_2) - y(v_1v_6v_2v_4v_2)$, and $y(v_2v_4v_6v_3v_2) = w(v_4v_6) - w(v_3v_4) - y(v_2v_4v_6v_2)$. Hence y(C) is integral for all $C \in C_2$. So we assume that $y(v_2v_4v_6v_3v_2) = 0$. Thus $y(v_2v_4v_6v_2) + y(v_3v_4v_6v_3) = w(v_4v_6)$. If $y(v_2v_4v_6v_2)$ is integral, then y(C) is integral for all $C \in C_2$. So we further assume that $y(v_2v_4v_6v_2)$ is not integral. By Lemma 3.2(iii), we may assume that $w(v_3v_1) = w(v_4v_1) = 0$. Observe that v_6v_2 is outside C_0^y , for otherwise, let C be a cycle in C_0^y containing v_6v_2 . Then C passes through v_2v_4 . Let $C' = C[v_4, v_6] \cup \{v_6v_3, v_3v_4\}$, let $\theta = \min\{y(C), y(v_3v_4v_6v_3)\}$, and let y' be obtained from y by replacing $y(v_3v_4v_6v_3)$, $y(v_2v_4v_6v_2)$, y(C), and y(C') with $y(v_3v_4v_6v_3) - \theta$, $y(v_2v_4v_6v_2) + \theta$, $y(C) - \theta$, and $y(C') + \theta$, respectively. Then y' is also an optimal solution to $\mathbb{D}(T, w)$ with $y'(v_3v_4v_6v_3) < y(v_3v_4v_6v_3)$, contradicting (4). Similarly, we can show that v_3v_2 is outside C_0^y . So $w(v_3v_2) = z(v_3v_2) = 0$. Moreover, $\nu_w^*(T)$ is an integer; the proof is the same as that of (17) (with $y(v_2v_4v_6v_2)$ and $y(v_3v_4v_6v_3)$ in place of $y(v_1v_6v_2v_4v_1)$ and $y(v_1v_6v_3v_4v_1)$, respectively), so we omit the details here.

Case 2.12. $K = \{v_1v_6, v_4v_1, v_4v_6\}.$

In this case, by Lemma 3.1 (i), we have $y(v_1v_6v_2v_4v_1) = y(v_1v_6v_3v_4v_1) = 0$. By Lemma 3.1 (iii), we obtain $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which together with (15) yields the following equations: $y(v_1v_6v_3v_1) = w(v_1v_6)$, $y(v_1v_2v_4v_1) = w(v_4v_1)$, and $y(v_2v_4v_6v_2) + y(v_3v_4v_6v_3) + y(v_2v_4v_6v_3v_2) = w(v_4v_6)$. If $y(v_2v_4v_6v_3v_2) > 0$, then, by (10), we have $y(v_2v_4v_6v_2) = w(v_6v_2)$ and $y(v_3v_4v_6v_3) = w(v_3v_4)$, so $y(v_2v_4v_6v_3v_2) = w(v_4v_6) - w(v_6v_2) - w(v_3v_4)$. Hence y(C) is integral for all $C \in \mathcal{C}_2$. It remains to assume that $y(v_2v_4v_6v_3v_2) = 0$. Then $y(v_2v_4v_6v_2) + y(v_3v_4v_6v_3) = w(v_4v_6)$. If $y(v_2v_4v_6v_2)$ is integral, then y(C) is integral for all $C \in \mathcal{C}_2$. So we further assume that $y(v_2v_4v_6v_2)$ is not integral. Then we can prove that $\nu_w^*(T)$ is an integer; the proof is the same as that of (17), so we omit the details here.

Case 2.13. $K = \{v_1v_2, v_1v_6, v_4v_6\}.$

In this case, by Lemma 3.1 (iii), we obtain $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which together with (15) yields the following equations: $y(v_1v_2v_4v_1) = w(v_1v_2)$, $y(v_1v_6v_3v_1) + y(v_1v_6v_2v_4v_1) + y(v_1v_6v_3v_4v_1) = w(v_1v_6)$, and $y(v_2v_4v_6v_2) + y(v_3v_4v_6v_3) + y(v_2v_4v_6v_3v_2) = w(v_4v_6)$. Clearly, v_3v_1 is outside \mathcal{C}_0^y . Depending on the value of $y(v_1v_6v_3v_4v_1)$, we consider two subcases.

• $y(v_1v_6v_3v_4v_1) > 0$. In this subcase, $y(v_2v_4v_6v_2) = 0$ and $y(v_1v_6v_3v_1) = w(v_3v_1)$ by (8). If $y(v_2v_4v_6v_3v_2) > 0$, then $y(v_1v_6v_2v_4v_1) = w(v_6v_2)$ and $y(v_3v_4v_6v_3) + y(v_1v_6v_3v_4v_1) = w(v_3v_4)$ by (10). Thus y(C) is integral for all $C \in C_2$. So we assume that $y(v_2v_4v_6v_3v_2) = 0$. Then $y(v_3v_4v_6v_3) = w_{46}$ and $y(v_1v_6v_2v_4v_1) + y(v_1v_6v_3v_4v_1) = w(v_1v_6) - w(v_3v_1)$. If $y(v_1v_6v_2v_4v_1)$ is integral, then y(C) is integral for all $C \in C_2$. So we further assume that $y(v_1v_6v_2v_4v_1)$ is not integral. Then we can prove that $\nu_w^*(T)$ is an integer; the proof is the same as that of (17), so we omit the details here.

• $y(v_1v_6v_3v_4v_1) = 0$. In this subcase, $y(v_1v_6v_3v_1) + y(v_1v_6v_2v_4v_1) = w(v_1v_6)$. If $y(v_2v_4v_6v_3v_2) > 0$, then $y(v_3v_4v_6v_3) = w(v_3v_4)$ and $y(v_2v_4v_6v_2) + y(v_1v_6v_2v_4v_1) = w(v_6v_2)$ by (10). Observe that if $y(v_1v_6v_2v_4v_1) > 0$, then we have one more equation $y(v_1v_6v_3v_1) = w(v_3v_1)$ by (9). So y(C) is integral for all $C \in \mathcal{C}_2$, no matter whether $y(v_1v_6v_2v_4v_1) = 0$. Thus we may assume that $y(v_2v_4v_6v_3v_2) = 0$. We proceed by considering two subsubcases.

(a) Assume first that $y(v_3v_4v_6v_3) = 0$. Then $y(v_2v_4v_6v_2) = w(v_4v_6)$. If $y(v_1v_6v_3v_1)$ is integral, then so is y(C) for all $C \in C_2$. Thus we assume that $y(v_1v_6v_3v_1)$ is not integral. If v_6v_3 is outside C_0^y , then it follows from (4) that $y(v_1v_6v_3v_1) = \min\{w(v_3v_1), w(v_6v_3)\}$; this contradiction implies that v_6v_3 is contained in a cycle C in C_0^y . Let $C' = C[v_4, v_6] \cup \{v_6v_2, v_2v_4\}$, let $\theta = \min\{[y(v_1v_6v_2v_4v_1)], y(C)\}$, and let \mathbf{y}' be obtained from \mathbf{y} by replacing $y(v_1v_6v_2v_4v_1)$, $y(v_1v_6v_3v_1), y(C)$, and y(C') with $y(v_1v_6v_2v_4v_1) - \theta$, $y(v_1v_6v_3v_1) + \theta$, $y(C) - \theta$, and $y(C') + \theta$, respectively. Then \mathbf{y}' is also an optimal solution to $\mathbb{D}(T, \mathbf{w})$ with $y'(v_1v_6v_2v_4v_1) < y(v_1v_6v_2v_4v_1)$, contradicting (2).

(b) Assume next that $y(v_3v_4v_6v_3) > 0$. If $y(v_1v_6v_2v_4v_1) > 0$, then $y(v_1v_6v_3v_1) = w(v_3v_1)$ and $y(v_1v_6v_2v_4v_1) = w(v_1v_6) - w(v_3v_1)$ by (9); otherwise, $y(v_1v_6v_3v_1) = w(v_1v_6)$. If $y(v_3v_4v_6v_3)$ is integral, then so is y(C) for all $C \in \mathcal{C}_2$. Thus we assume that $y(v_3v_4v_6v_3)$ is not integral. Let us prove that

(19) $\nu_w^*(T)$ is an integer.

By Lemma 3.2(iii), we may assume that $w(v_1v_2) = w(v_1v_6) = 0$. Let T' = (V', A') be obtained from T by deleting v_1 , and let \boldsymbol{w} be the restriction of \boldsymbol{w} to A'. It is routine to check that $\mathbb{D}(T', \boldsymbol{w}')$ has the same optimal value $\nu_w^*(T)$ as $\mathbb{D}(T, \boldsymbol{w})$. Hence $\nu_w^*(T)$ is an integer by the hypothesis of Theorem 1.5. This proves (19) and hence Claim 2.

Since $\tau_{\boldsymbol{w}}(G_3 \setminus v_5) > 0$, from Claim 2, Lemma 3.2(iii) and Lemma 3.4(ii) we deduce that $\mathbb{D}(T, \boldsymbol{w})$ has an integral optimal solution. This completes the proof of Lemma 4.6.

5 Composite Reductions

Lemma 5.7. If $T_2/S = F_4$, then $\mathbb{D}(T, w)$ has an integral optimal solution.

Proof. Recall that $(b_2, a_2) = (v_5, v_6)$, $s^* = v_2$, and $v_0 = v_3$. To establish the statement, by Lemma 3.4(ii), it suffices to prove that

(1) the optimal value $\nu_w^*(T)$ of $\mathbb{D}(T, w)$ is integral.

Given an optimal solution \boldsymbol{y} to $\mathbb{D}(T, \boldsymbol{w})$, set $\varphi(s_i) = \{u : z(us_i) > 0 \text{ for } u \in V(T_2) \setminus a_2\}$ for each $s_i \in S$. By Lemma 5.2(i) and (vi), we have

(2) $\varphi(s_i) \cap \varphi(s_j) = \emptyset$ whenever $i \neq j$.

(3) There exist at least two and at most three vertices s_i 's in S with $\varphi(s_i) \neq \emptyset$.

In view of (2) and the structure of F_4 , there are at most three vertices s_i 's in S with $\varphi(s_i) \neq \emptyset$. Suppose on the contrary that there exists precisely one vertex $s_i \in S$ with $\varphi(s_i) \neq \emptyset$. Then (1) follows immediately from Lemma 4.4; the argument can be found in that of (3) in the proof of Lemma 5.5.

Lemma 5.2(i) allows us to assume that

(4) if $\varphi(s_i) \neq \emptyset$, then $i \in \{1, 2, 3\}$.

Let t be the subscript in $\{1, 2, 3\}$ with $v_5 \in \varphi(s_t)$, if any. By (2), t is well defined. In the remainder of our proof, we reserve \boldsymbol{y} for an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$ such that

(5) $y(\mathcal{C}_2)$ is maximized;

(6) subject to (5), $(y(\mathcal{D}_q), y(\mathcal{D}_{q-1}), \ldots, y(\mathcal{D}_3))$ is minimized lexicographically; and

(7) subject to (5) and (6), $y(v_1v_5s_tv_3v_1) + y(v_1v_5v_3v_4v_1)$ is minimized.

Let us make a few observations about y before proceeding.

(8) If $y(v_1v_5s_iv_3v_4v_1) > 0$ for some $i \in \{1, 2, 3\}$, then each arc in the set $\{v_1s_i, v_3v_1, v_4s_i, v_4v_5, v_5v_3\}$ is saturated by \boldsymbol{y} in T_2 . Furthermore, $y(v_1s_jv_3v_1) = y(v_3v_4v_5v_3) = y(v_1v_5v_3v_1) = 0$ for any $j \in \{1, 2, 3\} \setminus \{i\}$.

To justify this, note that each arc in the given set is a chord of the cycle $v_1v_5s_iv_3v_4v_1$. So the first half follows instantly from Lemma 3.5(v). Once again let \exists stand for the multiset sum. Then $v_1v_5s_iv_3v_4v_1 \exists v_1s_jv_3v_1 = v_1v_5s_iv_3v_1 \exists v_1s_jv_3v_4v_1, v_1v_5s_iv_3v_4v_1 \exists v_1v_5v_3v_1 = v_1v_5s_iv_3v_1 \exists v_1v_5v_3v_4v_1, and v_1v_5s_iv_3v_4v_1 \exists v_3v_4v_5v_3 = v_1v_5v_3v_4v_1 \exists v_5s_iv_3v_4v_5$. Since \boldsymbol{y} satisfies (6), we deduce that $y(v_1s_jv_3v_1) = y(v_3v_4v_5v_3) = y(v_1v_5v_3v_1) = 0$.

(9) If $y(v_1v_5s_iv_3v_1) > 0$ for some $i \in \{1, 2, 3\}$, then both v_1s_i and v_5v_3 are saturated by \boldsymbol{y} in T_2 ; so are v_4s_i and v_4v_5 if $y(v_1s_jv_3v_4v_1) > 0$. Furthermore, $y(v_3v_4v_5v_3) = 0$.

Since both v_1s_i and v_5v_3 are chords of the cycle $v_1v_5s_iv_3v_1$, the first half follows instantly from Lemma 3.5(v). To establish the second half, observe that $v_1v_5s_iv_3v_1 \oplus v_3v_4v_5v_3 = v_1v_5v_3v_1 \oplus v_5s_iv_3v_4v_5$. Hence $y(v_3v_4v_5v_3) = 0$ by (7). Suppose $y(v_1s_jv_3v_4v_1) > 0$. Since the multiset sum of the cycles $v_1v_5s_iv_3v_1$, $v_1s_jv_3v_4v_1$, and the arc v_4v_5 (resp. v_4s_i) contains arc-disjoint cycles $v_1s_jv_3v_1$ and $v_5s_iv_3v_4v_5$ (resp. $v_4s_iv_3v_4$), from (7) we deduce that both v_4s_i and v_4v_5 are are saturated by y in T_2 .

(10) If $y(v_1v_5v_3v_4v_1) > 0$, then both v_3v_1 and v_4v_5 are saturated by \boldsymbol{y} in T_2 . Furthermore, $y(v_1s_iv_3v_1) = 0$ for any $i \in \{1, 2, 3\}$.

Since both v_3v_1 and v_4v_5 are chords of the cycle $v_1v_5v_3v_4v_1$, the first half follows instantly from Lemma 3.5(v). To establish the second half, observe that $v_1v_5v_3v_4v_1 \uplus v_1s_iv_3v_1 = v_1v_5v_3v_1 \uplus v_1s_iv_3v_4v_1$. Since \boldsymbol{y} satisfies (7), we have $y(v_1s_iv_3v_1) = 0$.

The following two statements can be seen from Lemma 3.5(v).

(11) If $y(v_1s_iv_3v_4v_1) > 0$, then both v_3v_1 and v_4s_i are saturated by \boldsymbol{y} in T_2 , for $i \in \{1, 2, 3\}$.

(12) If $y(v_5s_iv_3v_4v_5) > 0$, then both v_4s_i and v_5v_3 are saturated by **y** in T_2 , for $i \in \{1, 2, 3\}$.

We proceed by considering two cases, depending on whether $\varphi(s_k) = \{v_4\}$ for some $k \in \{1, 2, 3\}$ (see (4)).

Case 1. $\varphi(s_k) = \{v_4\}$ for some $k \in \{1, 2, 3\}$.

By Lemma 5.2(i), we may assume that k = 1; that is, $\varphi(s_1) = \{v_4\}$. Let *i* and *j* be the subscripts in $\{2, 3\}$, if any (possibly i = j), such that $v_5 \in \varphi(s_i)$ and $v_1 \in \varphi(s_j)$. Then

 $v_3v_4v_5v_3, v_1v_5v_3v_4v_1\}.$

We propose to show that

(14) if $w(v_3v_4) > 0$, then $y(v_4s_1v_3v_4)$ is a positive integer.

For this purpose, note that $z(s_1v_3) = w(s_1v_3) > 0$ by Lemma 5.2(iii). If s_1v_3 is outside C_0^y , then $y(v_4s_1v_3v_4) = w(s_1v_3) > 0$. So we assume that s_1v_3 is contained in some cycle $C \in C_0^y$. If Ccontains v_4s_1 , then v_3v_4 is saturated by \boldsymbol{y} in T_2 by Lemma 3.5(iii). Moreover, the multiset sum of C and each cycle in the set $\{v_1s_jv_3v_4v_1, v_5s_iv_3v_4v_5, v_1v_5s_iv_3v_4v_1, v_3v_4v_5v_3, v_1v_5v_3v_4v_1\}$ contains the cycle $v_4s_1v_3v_4$, a cycle in $\{v_1s_jv_3v_1, v_1v_5s_iv_3v_1, v_1v_5v_3v_1\}$, and a cycle $C' \in C_0$ that are arcdisjoint, where $C' = C[v_5, v_4] \cup \{v_4v_5\}$ or $C[v_5, v_4] \cup \{v_4v_1, v_1v_5\}$. From the optimality of \boldsymbol{y} , we thus deduce that $y(v_1s_jv_3v_4v_1)$, $y(v_5s_iv_3v_4v_5)$, $y(v_1v_5s_iv_3v_4v_1)$, $y(v_3v_4v_5v_3)$, and $y(v_1v_5v_3v_4v_1)$ are all zero. Hence $y(v_4s_1v_3v_4) = w(v_3v_4) > 0$. So we assume that C does not contain v_4s_1 . Furthermore, v_4s_1 is outside C_0^y , because every cycle using v_4s_1 passes through s_1v_3 . Note that v_4s_1 is not saturated by \boldsymbol{y} in T_2 and C contains v_3v_1 . It follows from (8), (10) and (11) that $y(v_1v_5s_iv_3v_4v_1)$, $y(v_1v_5v_3v_4v_1)$ and $y(v_1s_jv_3v_4v_1)$ are all zero. As the multiset sum of C, each of $v_5s_iv_3v_4v_5$ and $v_3v_4v_5v_3$, and the unsaturated arc v_4s_1 contains arc-disjoint cycles $v_4s_1v_3v_4$ and one of $v_1v_5s_iv_3v_1$ and $v_1v_5v_3v_1$, both $y(v_5s_iv_3v_4v_5)$ and $y(v_3v_4v_5v_3)$ are zero by Lemma 3.5(vi). So $y(v_4s_1v_3v_4) = w(v_3v_4) > 0$. This proves (14).

By (14) and Lemma 3.2(iii), we may assume that $w(v_3v_4) = 0$. It follows that $w(v_3v_1) \ge z(v_3v_1) > 0$, for otherwise, $\tau_w(T_2 \setminus a_2) = w(v_3v_1) + w(v_3v_4) = 0$, contradicting (α). Since $z(v_4s_1) > 0$ and $w(v_3v_4) = 0$, the arc v_4s_1 is contained in some cycle in \mathcal{C}_0^y . From the proof of (14) we see that

(15) $y(v_1s_jv_3v_4v_1)$, $y(v_5s_iv_3v_4v_5)$, $y(v_1v_5s_iv_3v_4v_1)$, $y(v_3v_4v_5v_3)$, and $y(v_1v_5v_3v_4v_1)$ are all zero.

(16) If $w(v_1s_j) \ge z(v_1s_j) > 0$, then $y(v_1s_jv_3v_1)$ is a positive integer.

To justify this, note that $z(s_jv_3) = w(s_jv_3) > 0$ by Lemma 5.2(iii). Assume first that s_jv_3 is outside C_0^y . If $i \neq j$, then $y(v_1s_jv_3v_1) = w(s_jv_3) > 0$. So we assume that i = j. Then $y(v_1s_iv_3v_1) + y(v_1v_5s_iv_3v_1) = w(s_iv_3)$. If $y(v_1v_5s_iv_3v_1) > 0$, then v_1s_i is saturated by \boldsymbol{y} in T_2 by (9). Thus $y(v_1s_iv_3v_1) = w(v_1s_i)$. Next assume that s_jv_3 is contained in some cycle $C \in C_0^y$. Since $w(v_3v_4) = 0$, cycle C contains v_3v_1 . It follows that v_1s_j is saturated by \boldsymbol{y} in T_2 . So $y(v_1s_jv_3v_1) = w(v_1s_j) > 0$ and hence (16) is established.

By (16) and Lemma 3.2(iii), we may assume that $w(v_1s_j) = 0$. By (3), we have $z(v_5s_i) > 0$ and $\varphi(s_i) = \{v_5\}$. By (13)-(16), we obtain

(17) $\mathcal{C}_2^y \subseteq \{v_1v_5s_iv_3v_1, v_1v_5v_3v_1\}.$

(18) $y(v_1v_5s_iv_3v_1)$ is a positive integer.

To justify this, note that $z(s_iv_3) = w(s_iv_3) > 0$ by Lemma 5.2(iii). If s_iv_3 is outside C_0^y , then $y(v_1v_5s_iv_3v_1) = w(s_iv_3) > 0$ by (17), as desired. So we assume that s_iv_3 is contained in some cycle $C \in C_0^y$. Applying Lemma 3.5(iii) to the cycle $v_1v_5s_iv_3v_1$, we deduce that (v_5, s_i) is saturated by \boldsymbol{y} in T_2 . So $y(v_1v_5s_iv_3v_1) = w(v_5s_i) > 0$ and hence (18) holds.

By (18) and Lemma 3.2(iii), $\mathbb{D}(T, w)$ has an integral optimal solution, which implies (1). **Case 2**. $\varphi(s_k) \neq \{v_4\}$ for any $k \in \{1, 2, 3\}$.

By (3), the hypothesis of the present case, and Lemma 5.2(i), we may assume that $v_1 \in \varphi(s_1)$ and $v_5 \in \varphi(s_2)$. Then

(19) $C_2^y \subseteq \{v_1s_1v_3v_1, v_1s_1v_3v_4v_1, v_1v_5s_2v_3v_1, v_5s_2v_3v_4v_5, v_1v_5s_2v_3v_4v_1, v_1v_5v_3v_1, v_3v_4v_5v_3, v_1v_5v_3v_4v_1, v_4s_1v_3v_4, v_4s_2v_3v_4\}.$

By Lemma 5.2(vi), we have

(20) if $v_4 \in \varphi(s_i)$, then $z(v_4s_{3-i}) = 0$ and $y(v_4s_{3-i}v_3v_4) = 0$ for i = 1, 2.

Claim 1. $y(\mathcal{C}_2) = \tau_{\boldsymbol{w}}(T_2 \setminus a_2).$

To justify this, observe that

(21) if K is an FAS of $T_2 \setminus a_2$ such that $y(\mathcal{C}_2) = w(K)$, then K is an MFAS. (The statement is exactly the same as (4) in the proof of Lemma 4.3.)

In view of Lemma 5.2(iii), we distinguish among three subcases, depending on whether $s_i v_3$ is contained in a cycle in C_0^y .

Subcase 1.1. Both s_1v_3 and s_2v_3 are outside \mathcal{C}_0^y . In this subcase, s_iv_3 is saturated by \boldsymbol{y} in T_2 for i = 1, 2. If v_5v_3 is also saturated by \boldsymbol{y} in T_2 , then $y(\mathcal{C}_2) = w(K)$, where $K = \{v_5v_3, s_1v_3, s_2v_3\}$. Since K is an FAS of $T_2 \setminus a_2$, it is an MFAS by (21) and hence $y(\mathcal{C}_2) = \tau_{\boldsymbol{w}}(T_2 \setminus a_2)$. So we assume that v_5v_3 is not saturated by \boldsymbol{y} in T_2 .

(22) Both v_3v_1 and v_3v_4 are outside \mathcal{C}_0^y . Furthermore, at least one of them is not saturated by \boldsymbol{y} in T_2 .

Indeed, the first half follows directly from Lemma 3.5(iii). To justify the second half, assume the contrary. Then $y(\mathcal{C}_2) = w(K)$, where $K = \{v_3v_1, v_3v_4\}$. Thus K is an MFAS of $T_2 \setminus a_2$ by (21) and hence $y(\mathcal{C}_2) = \tau_w(T_2 \setminus a_2)$.

By (22), (8), (9), and (12), we have

(23) $y(v_1v_5s_2v_3v_1)$, $y(v_5s_2v_3v_4v_5)$, and $y(v_1v_5s_2v_3v_4v_1)$ are all zero.

Since $C_0^y \neq \emptyset$, some cycle $C \in C_0^y$ contains v_1v_5 or v_4v_5 . Thus there are two possibilities to consider.

• C contains v_1v_5 . Now by (22) and Lemma 3.5(iii), v_3v_1 is saturated by \boldsymbol{y} in T_2 and hence v_3v_4 is not saturated by \boldsymbol{y} in T_2 . It follows from Lemma 3.5(i) and (iii) that both v_4v_1 and v_4v_5 are saturated by \boldsymbol{y} in T_2 . If $z(v_4s_i) = w(v_4s_i)$ for i = 1, 2, then $y(\mathcal{C}_2) = w(K)$, where $K = \{v_3v_1, v_4v_1, v_4v_5, v_4s_1, v_4s_2\}$. Thus K is an MFAS of $T_2 \setminus a_2$ by (21) and hence $y(\mathcal{C}_2) = \tau_{\boldsymbol{w}}(T_2 \setminus a_2)$. So we assume that $0 < z(v_4s_i) < w(v_4s_i)$ for i = 1 or 2. Then $z(v_4s_{3-i}) =$ $w(v_4s_{3-i}) = 0$ by (2). If i = 2, then $y(\mathcal{C}_2) = w(K)$, where $K = \{v_3v_1, v_4v_1, v_4v_5, v_4s_1, s_2v_3\}$, and hence $y(\mathcal{C}_2) = \tau_{\boldsymbol{w}}(T_2 \setminus a_2)$. If i = 1, then $y(v_1s_1v_3v_4v_1) = 0$ by (11). Since the multiset sum of the cycles $v_1s_1v_3v_1$, C, and the unsaturated arcs $\{v_4s_1, v_5v_3, v_3v_4\}$ contains arc-disjoint cycles $v_4s_1v_3v_4$ and $v_1v_5v_3v_1$, we have $y(v_1s_1v_3v_1) = 0$ by Lemma 3.5(vi). Thus $y(\mathcal{C}_2) = w(K)$, where $K = \{v_3v_1, v_4v_1, v_4v_5, s_1v_3, v_4s_2\}$. It follows that $y(\mathcal{C}_2) = \tau_{\boldsymbol{w}}(T_2 \setminus a_2)$.

• C contains v_4v_5 . Now by (22) and Lemma 3.5(iii), v_3v_4 is saturated by \boldsymbol{y} in T_2 and hence v_3v_1 is not saturated by \boldsymbol{y} in T_2 . It follows from Lemma 3.5(i) and (iii) that v_1v_5 is saturated by \boldsymbol{y} in T_2 . By (10) and (11), we have $y(v_1v_5v_3v_4v_1) = y(v_1s_1v_3v_4v_1) = 0$. If v_1s_1 is saturated by \boldsymbol{y} in T_2 , then $y(\mathcal{C}_2) = w(K)$, where $K = \{v_1v_5, v_3v_4, v_1s_1\}$. Thus $y(\mathcal{C}_2) = \tau_{\boldsymbol{w}}(T_2 \setminus a_2)$. So we assume that v_1s_1 is not saturated by \boldsymbol{y} in T_2 and hence not in T by (22). Since the multiset sum of the cycles C, $v_4s_1v_3v_4$, and the unsaturated arcs $\{v_3v_1, v_5v_3, v_1s_1\}$ contains arc-disjoint cycles $v_1s_1v_3v_1$ and $v_3v_4v_5v_3$, we have $y(v_4s_1v_3v_4) = 0$ by Lemma 3.5(vi). So $y(\mathcal{C}_2) = w(K)$, where $K = \{v_1v_5, v_3v_4, s_1v_3\}$. It follows that $y(\mathcal{C}_2) = \tau_{\boldsymbol{w}}(T_2 \setminus a_2)$.

Subcase 1.2. s_1v_3 is contained in some cycle $C \in \mathcal{C}_0^y$; subject to this, we choose C so that it contains as many edges in $T_2 \setminus a_2$ as possible.

Assume first that C contains v_1s_1 . Then C contains the path $v_1s_1v_3v_4v_5$. By Lemma 3.5(iii), each arc in the set $\{v_3v_1, v_4v_1, v_4s_1, v_5v_3\}$ is saturated by \boldsymbol{y} in T_2 . By (2), (8) and (10), we have $y(v_1v_5s_2v_3v_4v_1) = y(v_1v_5v_3v_4v_1) = 0$. Since the multiset sum of C and one of $v_1v_5v_3v_1$ and $v_1v_5s_2v_3v_1$ contains arc-disjoint cycles $v_3v_4v_5v_3$, $C' = C[v_5, v_1] \cup \{v_1v_5\}$, and one of $v_1s_1v_3v_1$ and $v_5s_2v_3v_4v_5$, from the optimality of \boldsymbol{y} we deduce that $y(v_1v_5v_3v_1) = y(v_1v_5s_2v_3v_1) = 0$. If s_2v_3 is outside \mathcal{C}_0^y , then s_2v_3 is saturated by \boldsymbol{y} in T_2 by Lemma 5.2(iii). So $y(\mathcal{C}_2) = w(K)$, where $K = \{v_3v_1, v_4v_1, v_4s_1, s_2v_3, v_5v_3\}$. Hence $y(\mathcal{C}_2) = \tau_{\boldsymbol{w}}(T_2 \setminus a_2)$. So we assume that s_2v_3 is contained in some cycle in \mathcal{C}_0^y . Since v_3v_1 is saturated by \boldsymbol{y} in T_2 , every cycle in \mathcal{C}_0^y containing s_2v_3 passes through v_3v_4 . By Lemma 3.5(iii), both v_4s_2 and v_5s_2 are saturated by \boldsymbol{y} in T_2 . Thus $y(\mathcal{C}_2) = w(K)$, where $K = \{v_3v_1, v_4v_1, v_4s_1, v_4s_2, v_5s_2, v_5v_3\}$. It follows that $y(\mathcal{C}_2) = \tau_{\boldsymbol{w}}(T_2 \setminus a_2)$.

Assume next that v_1s_1 is not on C. Then we may further assume that v_1s_1 is outside C_0^y . We proceed by considering three subsubcases.

• C contains v_3v_1 . Now v_1s_1 and v_5v_3 are saturated by \boldsymbol{y} in T_2 by Lemma 3.5(iii). Hence $y(v_1v_5s_2v_3v_4v_1) = y(v_1v_5v_3v_4v_1) = y(v_1s_1v_3v_4v_1) = 0$ by (8), (10) and (11). If v_4s_1 is not saturated by y in T_2 , then v_3v_4 is saturated by y in T_2 by Lemma 3.5(iii). Moreover, for each $D \in \{v_3v_4v_5v_3, v_5s_2v_3v_4v_5\}$, if v_4s_1 is on C, then the multiset sum of C and D contains arc-disjoint cycles $v_4 s_1 v_3 v_4$, $C' = C[v_5, v_4] \cup \{v_4 v_5\}$, and one of $v_1 v_5 v_3 v_1$ and $v_1 v_5 s_2 v_3 v_1$; if v_4s_1 is not saturated by **y** in T, then the multiset sum of C, D and the arc v_4s_1 contains $v_4s_1v_3v_4$ and one of $v_1v_5v_3v_1$ and $v_1v_5s_2v_3v_1$ that are arc-disjoint. It follows from the optimality of y or Lemma 3.5(iv) that $y(v_3v_4v_5v_3) = y(v_5s_2v_3v_4v_5) = 0$. So $y(\mathcal{C}_2) = w(K)$ if s_2v_3 is contained in some cycle in \mathcal{C}_0^y and $y(\mathcal{C}_2) = w(J)$ otherwise, where $K = \{v_1s_1, v_3v_4, v_5v_3, s_2v_3\}$ and $J = \{v_1s_1, v_3v_4, v_5v_3, v_5s_2\}$. Hence $y(\mathcal{C}_2) = \tau_w(T_2 \setminus a_2)$. So we assume that v_4s_1 is saturated by y in T_2 . If s_2v_3 is outside \mathcal{C}_0^y , then $y(\mathcal{C}_2) = w(K)$, where $K = \{v_1s_1, v_4s_1, v_5v_3, s_2v_3\}$, which implies that $y(\mathcal{C}_2) = \tau_w(T_2 \setminus a_2)$. So we further assume that $s_2 v_3$ is contained in some cycle in \mathcal{C}_0^y . By Lemma 3.5(iii), $v_5 s_2$ is saturated by \boldsymbol{y} in T_2 . If $v_4 s_2$ is also saturated by \boldsymbol{y} in T_2 , then $y(\mathcal{C}_2) = w(K)$, where $K = \{v_1s_1, v_4s_1, v_5v_3, v_5s_2, v_4s_2\}$; otherwise, v_3v_4 is saturated by y in T_2 , and $w(v_4s_1) = z(v_4s_1) = 0$. Similar to the case when v_4s_1 is not saturated by y in T_2 , we can show that $y(v_3v_4v_5v_3) = y(v_5s_2v_3v_4v_5) = 0$. Thus $y(\mathcal{C}_2) = w(J)$, where $J = \{v_1s_1, v_3v_4, v_5v_3, v_5s_2\}$. Therefore $y(\mathcal{C}_2) = \tau_w(T_2 \setminus a_2)$ in either situation.

• C contains both v_3v_4 and v_4v_1 . Now v_1s_1 , v_4s_1 and v_5v_3 are saturated by \boldsymbol{y} in T_2 by Lemma 3.5(iii). If s_2v_3 is outside \mathcal{C}_0^y , then $y(\mathcal{C}_2) = w(K)$, where $K = \{v_1s_1, v_4s_1, v_5v_3, s_2v_3\}$; otherwise, v_5s_2 and v_4s_2 are saturated by \boldsymbol{y} in T_2 by Lemma 3.5(iii). So $y(\mathcal{C}_2) = w(J)$, where $J = \{v_1s_1, v_4s_1, v_5v_3, v_5s_2, v_4s_2\}$. Therefore $y(\mathcal{C}_2) = \tau_{\boldsymbol{w}}(T_2 \setminus a_2)$ in either situation.

• C contains both v_3v_4 and v_4v_5 . Now v_4s_1 and v_5v_3 are saturated by \boldsymbol{y} in T_2 by Lemma 3.5(iii) and $y(v_1v_5v_3v_4v_1) = y(v_1v_5s_2v_3v_4v_1) = 0$ by (8) and (10). If v_1s_1 is also saturated by \boldsymbol{y} in T_2 , then $y(\mathcal{C}_2) = w(K)$ or w(J), where $K = \{v_1s_1, v_4s_1, v_5v_3, s_2v_3\}$ and $J = \{v_1s_1, v_4s_1, v_5v_3, v_5s_2, v_4s_2\}$; otherwise, both v_3v_1 and v_4v_1 are saturated by \boldsymbol{y} in T_2 , and every cycle in $\mathcal{C}_0^{\boldsymbol{y}}$ containing s_2v_3 traverses $v_3v_4v_5$. Since the multiset sum of C, each of $v_1v_5v_3v_1$ and $v_1v_5s_2v_3v_1$, and the unsaturated arc v_1s_1 contains $v_1s_1v_3v_1$ and one of $v_3v_4v_5v_3$ and $v_5s_2v_3v_4v_5$ that are arc-disjoint, we have $y(v_1v_5v_3v_1) = y(v_1v_5s_2v_3v_1) = 0$ by Lemma 3.5(iv). So $y(\mathcal{C}_2) = w(K)$ if s_2v_3 is outside $\mathcal{C}_0^{\boldsymbol{y}}$ and $y(\mathcal{C}_2) = w(J)$ otherwise, where $K = \{v_3v_1, v_4v_1, v_4s_1, v_5v_3, s_2v_3\}$ and $J = \{v_1s_1, v_4s_1, v_5v_3, v_4s_2, v_5s_2\}$. Therefore $y(\mathcal{C}_2) = \tau_{\boldsymbol{w}}(T_2 \backslash a_2)$ in either situation.

Subcase 1.3. s_2v_3 is contained in some cycle $C \in C_0^y$ and s_1v_3 is saturated by \boldsymbol{y} in T_2 . In this subcase, both v_5s_2 and v_5v_3 are saturated by \boldsymbol{y} in T_2 by Lemma 3.5(iii). If v_4s_2 is also saturated by \boldsymbol{y} in T_2 , then $y(\mathcal{C}_2) = w(K)$, where $K = \{s_1v_3, v_5v_3, v_4s_2, v_5s_2\}$; otherwise, $z(v_4s_2) > 0$ and $w(v_4s_1) = z(v_4s_1) = 0$ by Lemma 5.2(vii). In this case C contains v_3v_1 , so v_3v_4 is saturated by \boldsymbol{y} in T_2 by Lemma 3.5(iii). By (8) and (10)-(12), we have $y(v_1v_5s_2v_3v_4v_1)$, $y(v_1v_5v_3v_4v_1)$, $y(v_1s_1v_3v_4v_1)$, and $y(v_5s_2v_3v_4v_5)$ are all zero. Since the multiset sum of the cycles C, $v_3v_4v_5v_3$, and the unsaturated arc v_4s_2 contains arc-disjoint cycles $v_4s_2v_3v_4$ and $v_1v_5v_3v_1$, by Lemma 3.5(iv), we have $y(v_3v_4v_5v_3) = 0$. It follows that $y(\mathcal{C}_2) = w(K)$, where $K = \{s_1v_3, v_5v_3, v_3v_4, v_5s_2\}$.

Combining the above three subcases, we see that the equality $y(\mathcal{C}_2) = \tau_{\boldsymbol{w}}(T_2 \setminus a_2)$ holds. So Claim 1 is established.

Claim 2. y(C) is a positive integer for some $C \in \mathcal{C}_2$ or $\nu_w^*(T)$ is an integer.

To justify this, note that $y(\mathcal{C}_2) = w(K)$ for some MFAS K of $T_2 \setminus a_2$ by Claim 1. Depending on what K is, we distinguish among eight cases.

Subcase 2.1. K is one of $\{v_1v_5, v_3v_4, v_1s_1\}$, $\{v_1s_1, v_3v_4, s_2v_3, v_5v_3\}$, $\{v_1s_1, v_3v_4, v_5s_2, v_5v_3\}$, $\{v_1v_5, v_3v_4, s_1v_3\}$, and $\{s_1v_3, v_3v_4, v_5s_2, v_5v_3\}$.

In this case, by Lemma 3.1(i), we have y(C) = 0 for some cycles C listed in (19). By Lemma 3.1(iii), we obtain $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which, together with (19), implies that $y(v_1s_1v_3v_1) = w(v_1s_1)$ or $w(s_1v_3)$, each of them is positive by Lemma 5.2(iii) and the assumption that $v_1 \in \varphi(s_1)$.

Subcase 2.2. $K = \{v_3v_1, v_4v_1, v_4s_1, s_2v_3, v_5v_3\}.$

In this case, by Lemma 3.1(i), we have y(C) = 0 for some cycles C listed in (19). By Lemma 3.1(iii), we obtain $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which, together with (19), implies that $y(v_1s_1v_3v_1) = w(v_3v_1)$, $y(v_1s_1v_3v_4v_1) = w(v_4v_1)$, $y(v_4s_1v_3v_4) = w(v_4s_1)$, $y(v_4s_2v_3v_4) + y(v_5s_2v_3v_4v_5) = w(s_2v_3)$, $y(v_3v_4v_5v_3) = w(v_5v_3)$. If $y(v_5s_2v_3v_4v_5) = 0$, then $y(v_4s_2v_3v_4) = w(s_2v_3) > 0$ by Lemma 5.2(iii). If $y(v_5s_2v_3v_4v_5) > 0$, then v_4s_2 is saturated by \boldsymbol{y} in T_2 by Lemma 3.5(iii). So $w(v_4s_2) = y(\mathcal{C}_2(v_4s_2))$. It follows that $y(v_4s_2v_3v_4) = w(v_4s_2)$, and hence $y(v_5s_2v_3v_4v_5)$ is a positive integer.

Subcase 2.3. $K = \{v_3v_1, v_4v_1, v_4s_1, v_4s_2, v_5s_2, v_5v_3\}.$

In this case, by Lemma 3.1(i), we have y(C) = 0 for some cycles C listed in (19). By Lemma 3.1(ii), we obtain $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which, together with (19), implies that $y(v_1s_1v_3) = w(v_3v_1), y(v_1s_1v_3v_4v_1) = w(v_4v_1), y(v_4s_1v_3v_4) = w(v_4s_1), y(v_4s_2v_3v_4) = w(v_4s_2), y(v_5s_2v_3v_4v_5) = w(v_5s_2), \text{ and } y(v_3v_4v_5) = w(v_5v_3).$ Since $v_5 \in \varphi(s_2)$, we have $w(v_5s_2) > 0$. So $y(v_5s_2v_3v_4v_5)$ is a positive integer.

Subcase 2.4. $K = \{v_3v_1, v_4v_1, v_4v_5, v_4s_1, s_2v_3\}$ or $\{v_3v_1, v_4v_1, v_4v_5, s_1v_3, v_4s_2\}$.

In this case, by Lemma 3.1(i), we have y(C) = 0 for some cycles C listed in (19). By Lemma 3.1(iii), we obtain $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which, together with (19), implies that $y(v_4s_2v_3v_4) = w(s_2v_3) > 0$ or $y(v_4s_1v_3v_4) = w(s_1v_3) > 0$ by Lemma 5.2(iii).

Subcase 2.5. $K = \{v_1s_1, v_4s_1, s_2v_3, v_5v_3\}$ or $\{v_1s_1, v_4s_1, v_4s_2, v_5s_2, v_5v_3\}$.

We only consider the subcase when $K = \{v_1s_1, v_4s_1, s_2v_3, v_5v_3\}$, as the other subcase can be justified likewise.

By Lemma 3.1(i), we have y(C) = 0 for some cycles C listed in (19). By Lemma 3.1(ii), we obtain $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which, together with (19), implies that $y(v_1s_1v_3v_1) + y(v_1s_1v_3v_4v_1) = w(v_1s_1), y(v_1v_5v_3v_1) + y(v_3v_4v_5v_3) + y(v_1v_5v_3v_4v_1) = w(v_5v_3), y(v_4s_1v_3v_4) = w(v_4s_1),$ and $y(v_4s_2v_3v_4) + y(v_1v_5s_2v_3v_1) + y(v_5s_2v_3v_4v_5) + y(v_1v_5s_2v_3v_4v_1) = w(s_2v_3)$. We may assume that $y(v_1v_5s_2v_3v_4v_1) = y(v_1v_5v_3v_4v_1) = 0$, for otherwise, by (8) or (10), we have $y(v_1s_1v_3v_1) = 0$ and hence $y(v_1s_1v_3v_4v_1) = w(v_1s_1) > 0$.

If $y(v_1v_5s_2v_3v_1) = 0$, then $y(v_5s_2v_3v_4v_5) + y(v_4s_2v_3v_4) = w(s_2v_3)$. Observe that $y(v_4s_2v_3v_4) > 0$, for otherwise, $y(v_5s_2v_3v_4v_5) = w(s_2v_3) > 0$. By (6), we obtain $y(v_4s_2v_3v_4) = w(s_2v_3)$ or $w(v_4s_2)$, which is a positive integer. So we assume that $y(v_1v_5s_2v_3v_1) > 0$. Then $y(v_3v_4v_5v_3) = 0$ by (9). Note that $y(v_1s_1v_3v_4v_1) > 0$, for otherwise, $y(v_1s_1v_3v_1) = w(v_1s_1) > 0$. Thus, by

(9), both v_4s_2 and v_4v_5 are saturated by \boldsymbol{y} in T_2 . It follows that $y(v_4s_2v_3v_4) = w(v_4s_2)$ and $y(v_5s_2v_3v_4v_5) = w(v_4v_5)$. So $y(v_1v_5s_2v_3v_1) = w(s_2v_3) - y(v_4s_2v_3v_4) - y(v_5s_2v_3v_4v_5)$. Since $w(s_2v_3) > 0$, at least one of $y(v_4s_2v_3v_4)$, $y(v_5s_2v_3v_4v_5)$, and $y(v_1v_5s_2v_3v_1)$ is a positive integer.

Subcase 2.6. $K = \{s_1v_3, v_4s_2, v_5s_2, v_5v_3\}$ or $\{s_1v_3, s_2v_3, v_5v_3\}$.

We only consider the subcase when $K = \{s_1v_3, s_2v_3, v_5v_3\}$, as the other subcase can be justified likewise.

By Lemma 3.1(iii), we obtain $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which, together with (19), implies that $y(v_4s_1v_3v_4) + y(v_1s_1v_3v_1) + y(v_1s_1v_3v_4v_1) = w(s_1v_3)$, $y(v_1v_5v_3v_1) + y(v_3v_4v_5v_3) + y(v_1v_5v_3v_4v_1) = w(v_5v_3)$, and $y(v_4s_2v_3v_4) + y(v_1v_5s_2v_3v_1) + y(v_5s_2v_3v_4v_5) + y(v_1v_5s_2v_3v_4v_1) = w(s_2v_3)$.

We may assume that $y(v_1v_5s_2v_3v_4v_1) = y(v_1v_5v_3v_4v_1) = 0$, for otherwise, by (8) or (10), we have $y(v_1s_1v_3v_1) = 0$ and hence $y(v_4s_1v_3v_4) + y(v_1s_1v_3v_4v_1) = w(v_1s_1) > 0$, which together with (6) implies that $y(v_4s_1v_3v_4) = w(s_1v_3)$ or $w(v_4s_1)$, so $y(v_1s_1v_3v_4v_1) = w(v_1s_1) - y(v_4s_1v_3v_4)$. Since $w(s_1v_3) > 0$, at least one of $y(v_4s_1v_3v_4)$ and $y(v_1s_1v_3v_4v_1)$ is a positive integer.

If $y(v_1v_5s_2v_3v_1) = 0$, then $y(v_5s_2v_3v_4v_5) + y(v_4s_2v_3v_4) = w(s_2v_3)$, which together with (6) implies that $y(v_4s_2v_3v_4) = w(s_2v_3)$ or $w(v_4s_2)$, so $y(v_5s_2v_3v_4v_5) = w(s_2v_3) - y(v_4s_2v_3v_4)$. Since $w(s_2v_3) > 0$, at least one of $y(v_4s_2v_3v_4)$ and $y(v_5s_2v_3v_4v_5)$ is a positive integer. So we assume that $y(v_1v_5s_2v_3v_1) > 0$. Thus, by (9), we have $y(v_1v_5v_3v_1) = w(v_5v_3)$. If $y(v_1s_1v_3v_4v_1) >$ 0, then $y(v_4s_2v_3v_4) = w(v_4s_2)$, $y(v_5s_2v_3v_4v_5) = w(v_4v_5)$, and $y(v_1v_5s_2v_3v_1) = w(s_2v_3)$ $y(v_4s_2v_3v_4) - y(v_5s_2v_3v_4v_5)$. Since $w(s_2v_3) > 0$, at least one of $y(v_4s_2v_3v_4)$, $y(v_5s_2v_3v_4v_5)$, and $y(v_1v_5s_2v_3v_1)$ is a positive integer. So we further assume that $y(v_1s_1v_3v_4v_1) = 0$. Then $y(v_1s_1v_3v_1) + y(v_4s_1v_3v_4) = w(s_1v_3)$. If $y(v_4s_1v_3v_4) = 0$, then $y(v_1s_1v_3v_1) = w(s_1v_3) >$ 0. So we assume that $y(v_4s_1v_3v_4) > 0$. By Lemma 5.2(vii), we have $y(v_4s_2v_3v_4) = 0$, so $y(v_1v_5s_2v_3v_1) + y(v_5s_2v_3v_4v_5) = w(s_2v_3)$. Observe that if $y(v_1s_1v_3v_1)$ or $y(v_1v_5s_2v_3v_1)$ is an integer, then accordingly $y(v_4s_1v_3v_4)$ or $y(v_5s_2v_3v_4v_5)$ is an integer. Since $w(s_iv_3) > 0$ for i = 1, 2by Lemma 5.2(iii), at least one of $y(v_1s_1v_3v_1)$, $y(v_4s_1v_3v_4)$, $y(v_1v_5s_2v_3v_1)$, and $y(v_5s_2v_3v_4v_5)$ is a positive integer, as claimed.

It remains to consider the subcase when neither $y(v_1s_1v_3v_1)$ nor $y(v_1v_5s_2v_3v_1)$ is an integer. We propose to show that

(24) $\nu_w^*(T)$ is an integer.

To justify this, let \boldsymbol{x} be an optimal solution to $\mathbb{P}(T, \boldsymbol{w})$. Since $0 < y(v_1s_1v_3v_1) < w(v_1s_1)$ and $0 < y(v_4s_1v_3v_4) < w(v_4s_1)$, by Lemma 3.1(i) and (ii), we have $x(v_1s_1) = x(v_4s_1) = 0$ and $x(v_1s_1v_3v_1) = x(v_4s_1v_3v_4) = 1$, which implies $x(v_3v_1) = x(v_3v_4)$. Furthermore, since $y(v_1v_5s_2v_3v_1) > 0$ and $y(v_5s_2v_3v_4v_5) > 0$, we have $x(v_1v_5s_2v_3v_1) = x(v_5s_2v_3v_4v_5) = 1$, which implies $x(v_3v_1) + x(v_1v_5) = x(v_3v_4) + x(v_4v_5)$. Thus $x(v_1v_5) = x(v_4v_5)$. Similarly, for each vertex $u \in V \setminus (V(T_2) \setminus a_2)$, we deduce that $x(uv_1) = x(uv_4)$. Let T' = (V', A') be obtained from T by identifying v_1 and v_4 ; the resulting vertex is still denoted by v_1 . Let \boldsymbol{w}' be obtained from the restriction of \boldsymbol{w} by setting $w'(v_1v_5) = w(v_1v_5) + w(v_4v_5)$, $w'(v_3v_1) = w(v_3v_1) + w(v_3v_4)$, $w'(v_1s_i) =$ $w(v_1s_i) + w(v_4s_i)$ for $1 \le i \le r$, and $w'(uv_1) = w(uv_1) + w(uv_4)$ for each $u \in V \setminus (V(T_2) \setminus a_2)$. By the LP-duality theorem, \boldsymbol{x} and \boldsymbol{y} naturally correspond to solutions to $\mathbb{P}(T', \boldsymbol{w}')$ and $\mathbb{D}(T', \boldsymbol{w}')$ respectively with the same optimal value $\nu_w^*(T)$. From the hypothesis of Theorem 1.5, we deduce that $\nu_w^*(T)$ is an integer. This proves (24).

Subcase 2.7. $K = \{v_3v_1, v_4v_1, v_4v_5, v_4s_1, v_4s_2\}.$

In this case, by Lemma 3.1(iii), we obtain $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which, to-

gether with (19), implies that $y(v_4s_iv_3v_4) = w(v_4s_i)$ for $i = 1, 2, y(v_1s_1v_3v_1) + y(v_1v_5v_3v_1) + y(v_1v_5s_2v_3v_1) = w(v_4v_1)$, $y(v_1s_1v_3v_4v_1) + y(v_1v_5v_3v_4v_1) + y(v_1v_5s_2v_3v_4v_1) = w(v_4v_1)$, and $y(v_3v_4v_5v_3) + y(v_5s_2v_3v_4v_5) = w(v_4v_5)$. We may assume that $w(v_4s_i) = 0$ for i = 1, 2, for otherwise, $y(v_4s_1v_3v_4)$ or $y(v_4s_2v_3v_4)$ is a positive integer. Note that both s_1v_3 and s_2v_3 are outside C_0^y . So s_iv_3 is saturated by \boldsymbol{y} in T_2 for i = 1, 2, and hence $y(v_1s_1v_3v_1) + y(v_1s_1v_3v_4v_1) = w(s_1v_3)$ and $y(v_1v_5s_2v_3v_4v_1) + y(v_5s_2v_3v_4v_5) + y(v_1v_5s_2v_3v_4v_1) = w(s_2v_3)$. If $y(v_1v_5s_2v_3v_4v_1) > 0$ or $y(v_1v_5v_3v_4v_1) > 0$, then $y(v_1s_1v_3v_4v_1) = w(s_1v_3) > 0$ by (8) or (10). So we assume that $y(v_1v_5s_2v_3v_4v_1) = y(v_1v_5v_3v_4v_1) = 0$. Then $y(v_1s_1v_3v_4v_1) = w(v_4v_1)$ and $y(v_1s_1v_3v_4v_1) = w(s_1v_3) - y(v_1s_1v_3v_4v_1)$. Since $w(s_1v_3) > 0$, at least one of $y(v_1s_1v_3v_1)$ and $y(v_1s_1v_3v_4v_1)$ is a positive integer.

Subcase 2.8. $K = \{v_3v_1, v_3v_4\}.$

In this case, by Lemma 3.1(iii), we obtain $w(e) = y(\mathcal{C}_2(e))$ for each $e \in K$, which, together with (19), implies that $y(v_1s_1v_3v_1) + y(v_1v_5v_3v_1) + y(v_1v_5s_2v_3v_1) = w(v_3v_1)$, $y(v_4s_1v_3v_4) + y(v_4s_2v_3v_4) + y(v_3v_4v_5v_3) + y(v_1v_5v_3v_4v_1) + y(v_1s_1v_3v_4v_1) + y(v_5s_2v_3v_4v_5) + y(v_1v_5s_2v_3v_4v_1) = w(v_3v_4)$. Since both s_1v_3 and s_2v_3 are outside \mathcal{C}_0^y , we see that s_iv_3 is saturated by \boldsymbol{y} in T_2 for i = 1, 2. Hence $y(v_1s_1v_3v_1) + y(v_4s_1v_3v_4) + y(v_1s_1v_3v_4) = w(s_1v_3)$ and $y(v_4s_2v_3v_4) + y(v_1v_5s_2v_3v_4v_1) + y(v_5s_2v_3v_4v_5) + y(v_1v_5s_2v_3v_4v_1) = w(s_2v_3)$.

If $y(v_1v_5s_2v_3v_4v_1) > 0$ or $y(v_1v_5v_3v_4v_1) > 0$, then $y(v_4s_1v_3v_4) + y(v_1s_1v_3v_4v_1) = w(s_1v_3)$ by (8) and (10). It follows from (6) that either $y(v_4s_1v_3v_4) = w(s_1v_3) > 0$ or $y(v_4s_1v_3v_4) = w(v_4s_1)$ and $y(v_1s_1v_3v_4v_1) = w(s_1v_3) - y(v_4s_1v_3v_4)$. Since $w(s_1v_3) > 0$, at least one of $y(v_4s_1v_3v_4)$ and $y(v_1s_1v_3v_4)$ is a positive integer. So we assume that $y(v_1v_5s_2v_3v_4v_1) = y(v_1v_5v_3v_4v_1) = 0$. If $y(v_1v_5s_2v_3v_1) = 0$, then either $y(v_4s_2v_3v_4) = w(s_2v_3)$ or $y(v_4s_2v_3v_4) = w(v_4s_2)$ by (12), so $y(v_5s_2v_3v_4v_5) = w(s_2v_3) - w(v_4s_2)$. Since $w(s_2v_3) > 0$, at least one of $y(v_4s_2v_3v_4)$ and $y(v_5s_2v_3v_4v_5) = w(s_2v_3) - w(v_4s_2)$.

Suppose $y(v_1v_5s_2v_3v_1) > 0$. Then $y(v_1v_5v_3v_1) = w(v_5v_3)$ by (9). If $y(v_1s_1v_3v_4v_1) > 0$, then $y(v_4s_2v_3v_4) = w(v_4s_2)$, $y(v_5s_2v_3v_4v_5) = w(v_4v_5)$, and $y(v_4s_1v_3v_4) = w(v_4s_1)$ by (9) and (11). It follows that $y(v_1v_5s_2v_3v_1) = w(s_2v_3) - y(v_4s_2v_3v_4) - y(v_5s_2v_3v_4v_5)$. Since $w(s_2v_3) > 0$, at least one of $y(v_4s_2v_3v_4)$, $y(v_5s_2v_3v_4v_5)$, and $y(v_1v_5s_2v_3v_4) + y(v_4s_2v_3v_4) = w(v_3v_4)$. By Lemma 5.2(vii), at most one of $w(v_4s_1)$ and $w(v_4s_2)$ is nonzero. Thus either $y(v_4s_1v_3v_4) = 0$ or $y(v_4s_2v_3v_4) = 0$, and hence either $y(v_1s_1v_3v_1) = w(s_1v_3) > 0$ or $y(v_1v_5s_2v_3v_1) = w(s_2v_3) > 0$. So we further assume that $y(v_5s_2v_3v_4v_5) > 0$. If $y(v_1s_1v_3v_1)$ or $y(v_1v_5s_2v_3v_1)$ is an integer, then accordingly $y(v_4s_1v_3v_4)$ or $y(v_5s_2v_3v_4v_5)$ is an integer. Since $w(s_iv_3) > 0$ for i = 1, 2, at least one of $y(v_1s_1v_3v_1)$, $y(v_4s_1v_3v_4)$, $y(v_1v_5s_2v_3v_1)$, and $y(v_5s_2v_3v_4v_5)$ is a positive integer, as claimed.

It remains to consider the subcase when neither $y(v_1s_1v_3v_1)$ nor $y(v_1v_5s_2v_3v_1)$ is an integer. Now we can prove that $\nu_w^*(T)$ is an integer. Since the proof is the same as that of (24), we omit the details here.

Combining the above subcases, we see that Claim 2 holds. Hence, by Lemma 3.2(iii), the optimal value $\nu_w^*(T)$ of $\mathbb{D}(T, w)$ is integral, as described in (1) above.

Lemma 5.8. If $T_2/S = G_2$, then $\mathbb{D}(T, w)$ has an integral optimal solution.

Proof. Recall that $(b_2, a_2) = (v_4, v_5)$, $s^* = v_2$, and $v_0 = v_4$. To establish the statement, by Lemma 3.4(ii), it suffices to prove that

(1) the optimal value $\nu_w^*(T)$ of $\mathbb{D}(T, w)$ is integral.

Given an optimal solution \boldsymbol{y} to $\mathbb{D}(T, \boldsymbol{w})$, set $\varphi(s_i) = \{u : z(us_i) > 0 \text{ for } u \in V(T_2) \setminus a_2\}$ for each $s_i \in S$. By Lemma 5.2 (i) and (vi), we have

(2) $\varphi(s_i) \cap \varphi(s_j) = \emptyset$ whenever $i \neq j$.

(3) There exist at least two and at most three vertices s_i 's in S with $\varphi(s_i) \neq \emptyset$.

In view of (2) and the structure of G_2 , there are at most three vertices s_i 's in S with $\varphi(s_i) \neq \emptyset$. Suppose on the contrary that there exists precisely one vertex $s_i \in S$ with $\varphi(s_i) \neq \emptyset$. Then (1) follows immediately from Lemma 4.5; the argument can be found in that of (3) in the proof of Lemma 5.5.

Lemma 5.2(i) allows us to assume that

(4) if $\varphi(s_i) \neq \emptyset$, then $i \in \{1, 2, 3\}$.

In the remainder of our proof, we reserve \boldsymbol{y} for an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$ such that (5) $y(\mathcal{C}_2)$ is maximized;

(6) subject to (5), $(y(\mathcal{D}_q), y(\mathcal{D}_{q-1}), \ldots, y(\mathcal{D}_3))$ is minimized lexicographically;

(7) subject to (5) and (6), $y(v_1v_6v_3v_4v_1)$ is minimized; and

(8) subject to (5)-(7), $y(v_1v_6v_4v_1)$ is minimized.

Let us make some observations about y before proceeding.

(9) If K is an FAS of $T_2 \setminus a_2$ such that $y(\mathcal{C}_2) = w(K)$, then K is an MFAS. (The statement is exactly the same as (4) in the proof of Lemma 4.3.)

The statements below follow instantly from Lemma 3.5(v).

(10) If $y(v_1v_6v_3v_4v_1) > 0$, then both v_3v_1 and v_6v_4 are saturated by \boldsymbol{y} in T_2 .

(11) If $y(v_1v_6s_iv_4v_1) > 0$ for some $i \in \{1, 2, 3\}$, then both v_1s_i and v_6v_4 are saturated by \boldsymbol{y} in T_2 .

(12) If $y(v_1v_6v_3s_iv_4v_1) > 0$ for some $i \in \{1, 2, 3\}$, then each arc in the set $\{v_3v_1, v_3v_4, v_6v_4, v_1s_i, v_6s_i\}$ is saturated by y in T_2 .

Claim 1. $y(\mathcal{C}_2) = \tau_{\boldsymbol{w}}(T_2 \setminus a_2).$

To justify this, we may assume that

(13) at most one of v_3v_1 and v_4v_1 is saturated by \boldsymbol{y} in T_2 , for otherwise, $y(\mathcal{C}_2) = w(K)$, where $K = \{v_3v_1, v_4v_1\}$. Since K is an FAS of $T_2 \setminus a_2$, it is an MFAS by (9) and hence $y(\mathcal{C}_2) = \tau_{\boldsymbol{w}}(T_2 \setminus a_2)$.

We proceed by considering two cases, depending on whether $v_1 \in \varphi(s_i)$ for some *i*.

Case 1.1. $v_1 \notin \varphi(s_i)$ for any $i \in \{1, 2, 3\}$.

By (2), (3) and Lemma 5.2(i), we may assume that $\varphi(s_1) = \{v_6\}$ and $\varphi(s_2) = \{v_3\}$. Thus (14) $\mathcal{C}_2^y \subseteq \{v_1v_6v_3v_1, v_1v_6v_4v_1, v_1v_6v_3v_4v_1, v_1v_6s_1v_4v_1, v_1v_6v_3s_2v_4v_1\}.$

By Lemma 5.2(iii), $z(s_iv_4) = w(z_iv_4) > 0$. If s_iv_4 is outside C_0^y for i = 1 or 2, then s_iv_4 is saturated by \boldsymbol{y} in T_2 . In view of (14), we have $y(v_1v_6s_1v_4v_1) = w(s_1v_4) > 0$ or $y(v_1v_6v_3s_2v_4v_1) = w(s_2v_4) > 0$, and hence (1) follows from Lemma 3.2(iii). Similarly, if v_6s_1 or v_3s_2 is saturated by \boldsymbol{y} in T_2 , then $y(v_1v_6s_1v_4v_1) = w(v_6s_1) > 0$ or $y(v_1v_6v_3s_2v_4v_1) = w(v_3s_2) > 0$, and hence (1) follows from Lemma 3.2(iii). So we assume that

(15) $s_i v_4$ is contained in some cycle in \mathcal{C}_0^y for i = 1 and 2. Furthermore, neither $v_6 s_1$ nor $v_3 s_2$ is saturated by \boldsymbol{y} in T_2 .

By (15) and Lemma 3.5(iii), at least one of v_1v_6 and v_4v_1 is saturated by \boldsymbol{y} in T_2 . If v_1v_6 is saturated by \boldsymbol{y} in T_2 , then $y(\mathcal{C}_2) = w(v_1v_6)$. By (9), $\{v_1v_6\}$ is an MFAS of $T_2 \setminus a_2$ and hence $y(\mathcal{C}_2) = \tau_{\boldsymbol{w}}(T_2 \setminus a_2)$. If v_4v_1 is saturated by \boldsymbol{y} in T_2 , then v_3v_1 is not saturated by \boldsymbol{y} in T_2

by (13). So, by Lemma 3.5(vi), v_6v_3 is saturated by \boldsymbol{y} in T_2 and, by (10) and (12), we have $y(v_1v_6v_3s_2v_4v_1) = y(v_1v_6v_3v_4v_1) = 0$. Thus $y(\mathcal{C}_2) = w(K)$, where $K = \{v_4v_1, v_6v_3\}$. Since K is an FAS of $T_2 \setminus a_2$, it is an MFAS by (9) and hence $y(\mathcal{C}_2) = \tau_{\boldsymbol{w}}(T_2 \setminus a_2)$.

Case 1.2. $v_1 \in \varphi(s_i)$ for some $i \in \{1, 2, 3\}$.

By (2), (3) and Lemma 5.2(i), we may assume that $v_1 \in \varphi(s_1)$, $v_6 \in \varphi(s_i)$, and $v_3 \in \varphi(s_j)$, with $\{1\} \neq \{i, j\} \subseteq \{1, 2, 3\}$. Furthermore,

 $(16) \ \mathcal{C}_2^y \subseteq \{v_1v_6v_3v_1, v_1v_6v_4v_1, v_1v_6v_3v_4v_1, v_1s_1v_4v_1, v_1v_6s_iv_4v_1, v_1v_6v_3s_jv_4v_1\}.$

We may further assume that s_1v_4 is contained in some cycle in \mathcal{C}_0^y and v_1s_1 is not saturated by \boldsymbol{y} in T_2 , for otherwise, $y(v_1s_1v_4v_1) = w(s_1v_4) > 0$ or $y(v_1s_1v_4v_1) = w(v_1s_1) > 0$. Hence (1) follows instantly from Lemma 3.2(iii). It follows from Lemma 3.5(vii) that v_4v_1 is saturated by \boldsymbol{y} in T_2 and hence, by (13), v_3v_1 is not saturated by \boldsymbol{y} in T_2 . By (10) and (12), we obtain $y(v_1v_6v_3s_jv_4v_1) = y(v_1v_6v_3v_4v_1) = 0$. If v_6v_3 is saturated by \boldsymbol{y} in T_2 , then $y(\mathcal{C}_2) = w(K)$, where $K = \{v_4v_1, v_6v_3\}$. Since K is an FAS of $T_2 \setminus a_2$, it is an MFAS by (9) and hence $y(\mathcal{C}_2) =$ $\tau_{\boldsymbol{w}}(T_2 \setminus a_2)$. So we assume that v_6v_3 is not saturated by \boldsymbol{y} in T_2 . Thus, by Lemma 3.5(vii), v_1v_6 is saturated by \boldsymbol{y} in T_2 . We propose to show that

(17) $y(v_1v_6v_4v_1) = y(v_1v_6s_iv_4v_1) = 0.$

Assume the contrary: $y(v_1v_6v_4v_1) > 0$ or $y(v_1v_6s_iv_4v_1) > 0$. Then v_1s_1 is outside C_0^y , for otherwise, let C be a cycle in C_0^y containing v_1s_1 . Then the multiset sum of the cycles C and $v_1v_6v_4v_1$ (resp. $v_1v_6s_iv_4v_1$) contains arc-disjoint cycles $v_1s_1v_4v_1$ and $C' = C[v_4, v_1] \cup$ $\{v_1v_6, v_6v_4\}$ (resp. $C' = C[v_4, v_1] \cup \{v_1v_6, v_6s_i, s_iv_4\}$). Set $\theta = \min\{y(v_1v_6v_4v_1), y(C)\}$ (resp. $\min\{y(v_1v_6s_iv_4v_1), y(C)\}$). Let \mathbf{y}' be obtained from \mathbf{y} by replacing $y(v_1v_6v_4v_1)$ (resp. $y(v_1v_6s_iv_4v_1))$, $y(v_1v_2v_4v_1), y(C)$, and y(C') with $y(v_1v_6v_4v_1) - \theta$ (resp. $y(v_1v_6s_iv_4v_1) - \theta$), $y(v_1v_2v_4v_1) + \theta$, $y(C) - \theta$, and $y(C') + \theta$, respectively. It is easy to see that \mathbf{y}' is an optimal solution to $\mathbb{D}(T, \mathbf{w})$ with $y'(v_1v_6v_4v_1) < y(v_1v_6v_4v_1)$ or $y'(v_1v_6s_iv_4v_1) < y(v_1v_6s_iv_4v_1)$, contradicting (8) or (6). Since v_1v_6 is saturated by \mathbf{y} in T_2 , every cycle in C_0^y containing v_3v_1 passes through v_1s_1 . Thus v_3v_1 is outside C_0^y , and neither v_1s_1 nor v_3v_1 is saturated by \mathbf{y} in T.

Observe that v_6v_3 is outside C_0^y , for otherwise, let C be a cycle in C_0^y containing v_6v_3 . Then the multiset sum of the cycles C, $v_1v_6v_4v_1$ (resp. $v_1v_6s_iv_4v_1$), and the unsaturated arc v_3v_1 contain arc-disjoint cycles $v_1v_6v_3v_1$ and $C' = C[v_4, v_6] \cup \{v_6v_4\}$ (resp. $C' = C[v_4, v_6] \cup \{v_6s_i, s_iv_4\}$). Set $\theta = \min\{y(v_1v_6v_4v_1), y(C), w(v_3v_1) - z(v_3v_1)\}$ (resp. $\theta = \min\{y(v_1v_6s_iv_4v_1), y(C), w(v_3v_1) - z(v_3v_1)\}$). Let \mathbf{y}' be obtained from \mathbf{y} by replacing $y(v_1v_6v_4v_1)$ (resp. $y(v_1v_6s_iv_4v_1), y(C), w(v_3v_1) - z(v_3v_1)\}$). Let \mathbf{y}' be obtained from \mathbf{y} by replacing $y(v_1v_6v_4v_1)$ (resp. $y(v_1v_6s_iv_4v_1), y(C), w(v_3v_1), y(C), w(v_3v_1), y(C), and <math>y(C')$ with $y(v_1v_6v_4v_1) - \theta$ (resp. $y(v_1v_6s_iv_4v_1) - \theta$), $y(v_1v_6v_3v_1) + \theta$, $y(C) - \theta$, and $y(C') + \theta$, respectively. It is easy to see that \mathbf{y}' is an optimal solution to $\mathbb{D}(T, \mathbf{w})$ with $y'(v_1v_6v_4v_1) < y(v_1v_6s_iv_4v_1), contradicting (8)$ or (6). Hence v_6v_3 is not saturated by \mathbf{y} in T.

Let C be a cycle in C_0^y containing s_1v_4 . Then the multiset sum of the cycles C, each of the cycles $v_1v_6v_4v_1$ and $v_1v_6s_iv_4v_1$, and the unsaturated arcs v_6v_3 , v_3v_1 , and v_1s_1 contains arc-disjoint cycles $v_1s_1v_4v_1$ and $v_1v_6v_3v_1$. So, by Lemma 3.5(vi), we have $y(v_1v_6v_4v_1) = y(v_1v_6s_iv_4v_1) = 0$; this contradiction establishes (17).

Using (17), we obtain $y(\mathcal{C}_2) = w(K)$, where $K = \{v_1v_6, v_4v_1\}$. Since K is an FAS of $T_2 \setminus a_2$, it is an MFAS by (9) and hence $y(\mathcal{C}_2) = \tau_w(T_2 \setminus a_2)$. This proves Claim 1.

The above proof yields the following statement, which will be used later.

(18) If Case 1.1 occurs, then every MFAS comes from $\{\{v_3v_1, v_4v_1\}, \{v_1v_6\}, \{v_4v_1, v_6v_3\}\}$. If Case 1.2 occurs, then every MFAS comes from $\{\{v_3v_1, v_4v_1\}, \{v_1v_6, v_4v_1\}, \{v_4v_1, v_6v_3\}\}$.

Claim 2. y(C) is a positive integer for some $C \in \mathcal{C}_2$ or $\nu_w^*(T)$ is an integer.

To justify this, we first show that

(19) if $v_3 \in \varphi(s_i)$ for $i \in \{1, 2, 3\}$, then $y(v_1v_6v_3s_iv_4v_1) = 0$.

Assume the contrary: $y(v_1v_6v_3s_iv_4v_1) > 0$. Then $y(v_1v_6v_3v_1) = w(v_3v_1)$, $y(v_1v_6v_3v_4v_1) = w(v_3v_4)$, and $y(v_1v_6v_4v_1) = w(v_6v_4)$ by (12). So Lemma 3.2(iii) allows us to assume that $w(v_3v_1) = w(v_3v_4) = w(v_6v_4) = 0$. Let j and k be subscripts in $\{1, 2, 3\}$, if any, such that $v_6 \in \varphi(s_j)$ and $v_1 \in \varphi(s_k)$. If both $y(v_1s_kv_4v_1)$ and $y(v_1v_6s_jv_4v_1)$ are integral, then, by Claim 1, $y(v_1v_6v_3s_iv_4v_1)$ is a positive integer, so Claim 2 holds. Thus we may assume that $y(v_1s_kv_4v_1)$ or $y(v_1v_6s_jv_4v_1)$ is not integral. Then, by (11) and Lemma 3.2(iii), we have $j, k \neq i$. Furthermore, both v_1s_k and v_6s_j are outside \mathcal{C}_0^y , for otherwise, we can construct an optimal solution y' to $\mathbb{D}(T, w)$ with $y'(v_1v_6v_3s_jv_4v_1) < y(v_1v_6v_3s_jv_4v_1)$, contradicting (6).

Consider first the case when $y(v_1v_6s_jv_4v_1)$ is not integral. If j = k and $y(v_1s_kv_4v_1) > 0$, then $y(v_1s_kv_4v_1) = w(v_1s_k) > 0$ by (11), so Claim 2 holds. Thus we may assume that $j \neq k$ if $y(v_1s_kv_4v_1) > 0$. Let us show that $\nu_w^*(T)$ is an integer.

For this purpose, let \boldsymbol{x} be an optimal solution to $\mathbb{P}(T, \boldsymbol{w})$. Since both $y(v_1v_6s_jv_4v_1)$ and $y(v_1v_6v_3s_iv_4v_1)$ are positive, $x(v_1v_6s_iv_4v_1) = x(v_1v_6v_3s_iv_4v_1) = 1$ by Lemma 3.1(i). By Lemma 5.2(vi), $x(v_6s_i) = x(v_3s_i) = 0$. It follows that $x(s_iv_4) = x(v_6v_3) + x(s_iv_4)$. If v_6v_3 is outside \mathcal{C}_0^y , then $x(v_6v_3) = 0$ by Lemma 3.1(ii), because $z(v_6v_3) = y(v_1v_6v_3s_iv_4v_1) < w(v_6v_3)$. Thus $x(s_iv_4) = x(s_jv_4)$, contradicting Lemma 5.2(iv). So we assume that v_6v_3 is contained in some cycle in \mathcal{C}_0^y . Since $w(v_3v_4) = w(v_6v_4) = 0$ and (v_6, s_j) is outside \mathcal{C}_0^y , for any $u \in V \setminus (V(T_2) \setminus a_2)$, if a cycle in \mathcal{C}_0^y contains uv_6 , then it passes through $v_6v_3s_iv_4$. Moreover, if a cycle in \mathcal{C}_0^y contains us_j , then it passes through $s_j v_4$. By Lemma 3.1(iv), we obtain $x(uv_6) + x(v_6v_3) + v_6v_6v_6$ $x(v_3s_i) + x(s_iv_4) = x(us_i) + x(s_iv_4)$. Hence $x(uv_6) = x(us_i)$. Clearly, we may assume that this equality holds in any other situation. Let T' = (V', A') be obtained from T by deleting vertex s_i , and let w' be obtained from the restriction of w to A' by replacing w(e) with $w(e) + w(s_iv_4)$ for each $e \in \{v_6v_3, v_3s_i, s_iv_4\}$ and replacing $w(uv_6)$ with $w(uv_6) + w(us_i)$ for each $u \in V \setminus (V(T_2) \setminus a_2)$. Let \mathbf{x}' be the restriction of \mathbf{x} to A' and let \mathbf{y}' be obtained from \mathbf{y} as follows: set $y'(v_1v_6v_3s_iv_4v_1) = y(v_1v_6s_jv_4v_1) + y(v_1v_6v_3s_iv_4v_1)$; for each $C \in \mathcal{C}_0^y$ passing through us_jv_4 for any $u \in V \setminus (V(T_2) \setminus a_2)$, let C' be the cycle arising from C by replacing the path $us_j v_4$ with the path $uv_6v_3s_iv_4$, and set y'(C') = y(C') + y(C). From the LP-duality theorem, we see that x'and y' are optimal solutions to $\mathbb{P}(T', w')$ and $\mathbb{D}(T', w')$, respectively, with the same value $\nu_w^*(T)$ as \boldsymbol{x} and \boldsymbol{y} . By the hypothesis of Theorem 1.5, $\nu_w^*(T)$ is an integer.

In the other case when $y(v_1v_6s_jv_4v_1) = 0$ and $y(v_1s_kv_4v_1)$ is not integral, the proof goes along the same line, so we omit the details here.

By Claim 1, $y(\mathcal{C}_2) = w(K)$ for some FAS K of $T_2 \setminus a_2$ as described in (18). Recall that

(20) in Case 1.1, we have $v_1 \notin \varphi(s_i)$ for any $i \in \{1, 2, 3\}$, $\varphi(s_1) = \{v_6\}$, and $\varphi(s_2) = \{v_3\}$; in Case 1.2, we have $v_1 \in \varphi(s_1)$, $v_6 \in \varphi(s_i)$, and $v_3 \in \varphi(s_j)$, with $\{1\} \neq \{i, j\} \subseteq \{1, 2, 3\}$.

Depending on what K is, we distinguish among four cases.

Case 2.1. $K = \{v_4v_1, v_6v_3\}$ in Case 1.1 or $K = \{v_1v_6, v_4v_1\}$ in Case 1.2.

Consider first the subcase when $K = \{v_4v_1, v_6v_3\}$ in Case 1.1. Now $y(v_1v_6v_3v_1) = w(v_6v_3)$ and $y(v_1v_6v_4v_1) + y(v_1v_6s_1v_4v_1) = w(v_4v_1)$ (see (20)). If $y(v_1v_6s_1v_4v_1) = 0$, then $y(v_1v_6v_4v_1) = w(v_4v_1)$. If $y(v_1v_6s_1v_4v_1) > 0$, then $y(v_1v_6v_4v_1) = w(v_6v_4)$ by (11), and hence $y(v_1v_6s_1v_4v_1) = w(v_4v_1) - w(v_6v_4)$. By the hypothesis of the present section, $w(K) = \tau_w(T_2\backslash a_2) > 0$. So at least one of $y(v_1v_6v_3v_1)$, $y(v_1v_6v_4v_1)$, and $y(v_1v_6s_1v_4v_1)$ is a positive integer.

Next consider the subcase when $K = \{v_1v_6, v_4v_1\}$ in Case 1.2. Now $y(v_1s_1v_4v_1) = w(v_4v_1)$ and $y(v_1v_6v_3v_1) = w(v_1v_6)$. So at least one of $y(v_1s_1v_4v_1)$ and $y(v_1v_6v_3v_1)$ is a positive integer. **Case 2.2.** $K = \{v_1v_6\}$ or $\{v_3v_1, v_4v_1\}$ in Case 1.1.

We only consider the subcase when $K = \{v_1v_6\}$, as the proof in the other subcase goes along the same line. Now $y(v_1v_6v_3v_1) + y(v_1v_6v_4v_1) + y(v_1v_6v_3v_4v_1) + y(v_1v_6s_1v_4v_1) = w(v_1v_6)$, and v_3v_1 is outside \mathcal{C}_0^y .

Observe that $y(v_1v_6v_3v_4v_1) > 0$, for otherwise, if $y(v_1v_6s_1v_4v_1) > 0$, then $y(v_1v_6v_4v_1) = w(v_6v_4)$ by (11), and hence $y(v_1v_6v_3v_1) + y(v_1v_6s_1v_4v_1) = w(v_1v_6) - w(v_6v_4)$; if $y(v_1v_6s_1v_4v_1) = 0$, then $y(v_1v_6v_3v_1) + y(v_1v_6v_4v_1) = w(v_1v_6)$. Let us show that $y(v_1v_6v_3v_1)$ is integral. Assume first that $y(v_1v_6s_1v_4v_1) > 0$. If v_6v_3 is outside C_0^y , let \mathbf{y}' be obtained from \mathbf{y} by replacing $y(v_1v_6v_3v_1)$ and $y(v_1v_6s_1v_4v_1)$ with $y(v_1v_6v_3v_1) + [y(v_1v_6s_1v_4v_1)]$ and $[y(v_1v_6s_1v_4v_1)]$, respectively; if v_6v_3 is contained in a cycle $C \in C_0^y$, set $\theta = \min\{y(C), [y(v_1v_6s_1v_4v_1)]\}$ and $C' = C[v_4, v_6] \cup \{v_6s_1, s_1v_4\}$, and let \mathbf{y}' be obtained from \mathbf{y} by replacing $y(v_1v_6v_3v_1)$, $y(v_1v_6s_1v_4v_1)$, y(C), and y(C') with $y(v_1v_6v_3v_1) + \theta$, $y(v_1v_6s_1v_4v_1) - \theta$, $y(C) - \theta$, and $y(C') + \theta$, respectively. Then \mathbf{y}' is also an optimal solution to $\mathbb{D}(T, \mathbf{w})$ with $y'(v_1v_6v_3v_1) > y(v_1v_6v_3v_1)$ while $y'(v_1v_6s_1v_4v_1)$ in place of $y(v_1v_6s_1v_4v_1)$, we can reach a contradiction to (8).

Since $y(v_1v_6v_3v_4v_1) > 0$, by (10), we have $y(v_1v_6v_3v_1) = w(v_3v_1)$ and $y(v_1v_6v_4v_1) = w(v_6v_4)$; so Lemma 3.2(iii) allows us to assume that $w(v_3v_1) = w(v_6v_4) = 0$. Thus the previous equality concerning $w(v_1v_6)$ becomes $y(v_1v_6s_1v_4v_1) + y(v_1v_6v_3v_4v_1) = w(v_1v_6)$. So we may assume that neither $y(v_1v_6s_1v_4v_1)$ nor $y(v_1v_6v_3v_4v_1)$ is integral, for otherwise, at least one of them is a positive integer. Observe that v_6s_1 is outside C_0^y , for otherwise, let C be a cycle in C_0^y that contains v_6s_1 , let $C' = C[v_4, v_6] \cup \{v_6v_3, v_3v_4\}$, and let $\theta = \min\{y(C), y(v_1v_6v_3v_4v_1)\}$. Let \mathbf{y}' be obtained from \mathbf{y} by replacing $y(v_1v_6s_1v_4v_1), y(v_1v_6v_3v_4v_1), y(C)$, and y(C') with $y(v_1v_6s_1v_4v_1) + \theta$, $y(v_1v_6v_3v_4v_1) - \theta$, $y(C) - \theta$, and $y(C') + \theta$, respectively. Then \mathbf{y}' is also an optimal solution to $\mathbb{D}(T, \mathbf{w})$ with $y'(v_1v_6v_3v_4v_1) < y(v_1v_6v_3v_4v_1)$, contradicting (7).

We propose to show that $\nu_w^*(T)$ is an integer. For this purpose, let x be an optimal solution to $\mathbb{P}(T, \boldsymbol{w})$. Since both $y(v_1v_6s_1v_4v_1)$ and $y(v_1v_6v_3v_4v_1)$ are positive, $x(v_1v_6s_1v_4v_1) =$ $x(v_1v_6v_3v_4v_1) = 1$ by Lemma 3.1(i). Since $y(v_1v_6s_1v_4v_1) < w(v_6s_1)$, we have $x(v_6s_1) = 0$ by Lemma 3.1(ii). Thus $x(s_1v_4) = x(v_6v_3) + x(v_3v_4)$. Since $w(v_6v_4) = 0$, for any $u \in u$ $V \setminus (V(T_2) \setminus a_2)$, if a cycle in \mathcal{C}_0^y contains uv_6 , then it passes through $v_6 v_3 v_4$ or $v_6 s_1 v_4$. Moreover, if a cycle in \mathcal{C}_0^y contains us_1 , then it passes through s_1v_4 . By Lemma 3.1(iv), we obtain $x(uv_6) + x(v_6v_3) + x(v_3v_4) = x(us_1) + x(s_1v_4)$ or $x(uv_6) + x(v_6s_1) + x(s_1v_4) = x(us_1) + x(s_1v_4)$. Hence $x(uv_6) = x(us_i)$. Clearly, we may assume that this equality holds in any other situation. Let T' = (V', A') be obtained from T by deleting vertex s_1 , and let w' be obtained from the restriction of \boldsymbol{w} to A' by replacing w(e) with $w(e) + w(s_1v_4)$ for $e = v_6v_3$ and v_3v_4 and replacing $w(uv_6)$ with $w(uv_6) + w(us_1)$ for any $u \in V \setminus V(T_2) \setminus a_2$. Let \mathbf{x}' be the restriction of \mathbf{x} to A' and let y' be obtained from y as follows: set $y'(v_1v_6v_3v_4v_1) = y(v_1v_6s_1v_4v_1) + y(v_1v_6v_3v_4v_1)$; for each $C \in \mathcal{C}_0^y$ passing through us_1v_4 for any $u \in V \setminus (V(T_2) \setminus a_2)$, let C' be the cycle arising from C by replacing the path us_1v_4 with the path $uv_6v_3v_4$, and set y'(C') = y(C') + y(C). From the LP-duality theorem, we see that x' and y' are optimal solutions to $\mathbb{P}(T', w')$ and $\mathbb{D}(T', w')$, respectively, with the same value $\nu_w^*(T)$ as \boldsymbol{x} and \boldsymbol{y} . By the hypothesis of Theorem 1.5, $\nu_w^*(T)$

is an integer.

Case 2.3. $K = \{v_4v_1, v_6v_3\}$ in Case 1.2.

In this case, $y(v_1v_6v_3v_1) = w(v_6v_3)$ and $y(v_1s_1v_4v_1) + y(v_1v_6v_4v_1) + y(v_1v_6s_iv_4v_1) = w(v_4v_1)$ (see (20)). By Lemma 3.2(iii), we may assume that $w(v_6v_3) = 0$. Let us show that

 $(21) \ y(v_1v_6s_iv_4v_1) = 0.$

Assume the contrary. Then, by (11), we have $y(v_1v_6v_4v_1) = w(v_6v_4)$, and v_1s_i is saturated by \boldsymbol{y} in T_2 . Lemma 3.2(iii) allows us to assume that $w(v_6v_4) = 0$ and that $y(v_1v_6s_iv_4v_1)$ is not integral. It follows from (6) and Lemma 3.5(v) that $i \neq 1$ and v_1s_1 is outside \mathcal{C}_0^y . We propose to prove that $\nu_w^*(T)$ is an integer.

For this purpose, let x be an optimal solution to $\mathbb{P}(T, w)$. Since both $y(v_1s_1v_4v_1)$ and $y(v_1v_6s_iv_4v_1)$ are positive, by Lemma 3.1(i), we have $x(v_1s_1v_4v_1) = x(v_1v_6s_iv_4v_1) = 1$. Since $y(v_1s_1v_4v_1) < w(v_1s_1)$, by Lemma 3.1(ii), we obtain $x(v_1s_1) = 0$, so $x(s_1v_4) = x(v_1v_6) + x(v_6s_i) + x(v_6s_i)$ $x(s_iv_4)$. If v_1v_6 is outside \mathcal{C}_0^y , then $x(v_1v_6) = 0$, because $z(v_1v_6) = y(v_1v_6s_iv_4v_1) < w(v_1v_6)$. By Lemma 5.2(vi), $x(v_1s_1) = x(v_6s_i) = 0$. Hence, $x(s_1v_4) = x(s_iv_4)$, contradicting Lemma 5.2(iv). So we assume that v_1v_6 is contained in some cycle in \mathcal{C}_0^y . Since $w(v_6v_3) = w(v_6v_4) = 0$, for any $u \in V \setminus (V(T_2) \setminus a_2)$, if a cycle in \mathcal{C}_0^y contains uv_1 , then it passes through $v_1v_6s_iv_4$. Moreover, if a cycle in \mathcal{C}_0^y contains us_1 , then it passes through s_1v_4 . By Lemma 3.1(iv), we obtain $x(uv_1) + x(v_1v_6) + x(v_6s_i) + x(s_iv_4) = x(us_1) + x(s_1v_4)$. Hence $x(uv_1) = x(us_1)$. Clearly, we may assume that this equality holds in any other situation. Let T' = (V', A') be obtained from T by deleting vertex s_1 , and let w' be obtained from the restriction of w to A' by replacing w(e)with $w(e) + w(s_1v_4)$ for $e \in \{v_1v_6, v_6s_i, s_iv_4\}$ and replacing $w(uv_1)$ with $w(uv_1) + w(us_1)$ for any $u \in V \setminus (V(T_2) \setminus a_2)$, Let \mathbf{x}' be the restriction of \mathbf{x} to A', and let \mathbf{y}' be obtained from \mathbf{y} as follows: set $y'(v_1v_6s_iv_4v_1) = y(v_1s_1v_4v_1) + y(v_1v_6s_iv_4v_1)$; for each $C \in \mathcal{C}_0^y$ passing through us_1v_4 , let C'arise from C by replacing the path us_1v_4 with the path $uv_1v_6s_iv_4$, and set y'(C') = y(C') + y(C). From the LP-duality theorem, we see that x' and y' are optimal solutions to $\mathbb{P}(T', w')$ and $\mathbb{D}(T', w')$, respectively, with the same value $\nu_w^*(T)$ as x and y. By the hypothesis of Theorem 1.5, $\nu_w^*(T)$ is an integer. So we may assume that (21) holds.

By (21), the equality concerning $w(v_4v_1)$ becomes $y(v_1s_1v_4v_1) + y(v_1v_6v_4v_1) = w(v_4v_1)$. As $w(v_4v_1) = w(K) = \tau_w(T_2 \setminus a_2) > 0$, neither $y(v_1s_1v_4v_1)$ nor $y(v_1v_6v_4v_1)$ is integral. Observe that v_1s_1 is outside \mathcal{C}_0^y , for otherwise, let C be a cycle containing v_1s_1 in \mathcal{C}_0^y , let $C' = C[v_4, v_1] \cup \{v_1v_6, v_6v_4\}$, and let $\theta = \min\{y(C), y(v_1v_6v_4v_1)\}$. Let \mathbf{y}' be obtained from \mathbf{y} by replacing $y(v_1s_1v_4v_1), y(v_1v_6v_4v_1), y(C)$, and y(C') with $y(v_1s_1v_4v_1) + \theta, y(v_1v_6v_4v_1) - \theta, y(C) - \theta$, and $y(C') + \theta$, respectively. Then \mathbf{y}' is also an optimal solution to $\mathbb{D}(T, \mathbf{w})$ with $y'(v_1v_6v_4v_1) < y(v_1v_6v_4v_1)$, contradicting (8). Moreover, $i \neq 1$, for otherwise, it can be shown similarly that v_6s_1 is outside \mathcal{C}_0^y , which implies $z(v_6s_1) = 0$, contradicting that $v_6 \in \varphi(s_1)$. Let us show that

(22) $\nu_w^*(T)$ is an integer.

For this purpose, let x be an optimal solution to $\mathbb{P}(T, w)$. Since both $y(v_1s_1v_4v_1)$ and $y(v_1v_6v_4v_1)$ are positive, we have $x(v_1s_1v_4v_1) = x(v_1v_6v_4v_1) = 1$ by Lemma 3.1(i). By (16) and Lemma 3.2(iii), we have $y(v_1s_1v_4v_1) < w(v_1s_1)$ and hence $x(v_1s_1) = 0$. So $x(s_1v_4) = x(v_1v_6) + x(v_6v_4)$. Note that if a cycle in \mathcal{C}_0^y contains us_1 , then it passes through s_1v_4 . For any $u \in V \setminus (V(T_2) \setminus a_2)$, if there exists a cycle $C \in \mathcal{C}_0^y$ containing uv_1 and passing through $v_1v_6v_4$, then by Lemma 3.1(iv), we obtain $x(uv_1) + x(v_1v_6) + x(v_6v_4) = x(us_1) + x(s_1v_4)$, and hence $x(uv_1) = x(us_1)$. Otherwise, since $w(v_6v_3) = 0$, if a cycle in \mathcal{C}_0^y contains uv_1 , then it passes through $v_1v_6s_iv_4$. By Lemma 3.1(i) and (iv), we have $x(v_6v_4) \ge x(v_6s_i) + x(s_iv_4)$ and

 $x(uv_1)+x(v_1v_6)+x(v_6s_i)+x(s_iv_4) = x(us_1)+x(s_1v_4)$. Since $x(v_1v_6v_4v_1) = 1$ and $x(v_1v_6s_iv_4v_1) \ge 1$, we see that $x(v_6v_4) \le x(v_6s_i) + x(s_iv_4)$. Hence, $x(uv_1) = x(us_1)$ also holds. Clearly, we may assume that this equality holds in any other situation. Let T' = (V', A') be obtained from T by deleting vertex s_1 , and let \boldsymbol{w}' be obtained from the restriction of \boldsymbol{w} to A' by replacing w(e) with $w(e) + w(s_1v_4)$ for $e = v_1v_6$ and v_6v_4 and replacing $w(uv_1)$ with $w(uv_1) + w(us_1)$ for any $u \in V \setminus (V(T_2) \setminus a_2)$. Let \boldsymbol{x}' be the restriction of \boldsymbol{x} to A' and let \boldsymbol{y}' be obtained from \boldsymbol{y} as follows: set $y'(v_1v_6v_4v_1) = y(v_1s_1v_4v_1) + y(v_1v_6v_4v_1)$; for each $C \in \mathcal{C}_0^{\boldsymbol{y}}$ passing through us_1v_4 for any $u \in V \setminus (V(T_2) \setminus a_2)$, let C' arise from C by replacing the path us_1v_4 with the path $uv_1v_6v_4$, and set $\boldsymbol{y}'(C') = \boldsymbol{y}(C') + \boldsymbol{y}(C)$. From the LP-duality theorem, we see that \boldsymbol{x}' and \boldsymbol{y}' are optimal solutions to $\mathbb{P}(T', \boldsymbol{w}')$ and $\mathbb{D}(T', \boldsymbol{w}')$, respectively, with the same value as \boldsymbol{x} and \boldsymbol{y} . From the hypothesis of Theorem 1.5, (22) follows.

Case 2.4. $K = \{v_3v_1, v_4v_1\}$ in Case 1.2.

In this case, $y(v_1v_6v_3v_1) = w(v_3v_1)$ and $y(v_1s_1v_4v_1) + y(v_1v_6v_4v_1) + y(v_1v_6s_iv_4v_1) + y(v_1v_6v_3v_4v_1) = w(v_4v_1)$ (see (20)). By Lemma 3.2(iii), we may assume that $w(v_3v_1) = 0$.

If $y(v_1v_6s_iv_4v_1) = y(v_1v_6v_3v_4v_1) = 0$, then $y(v_1s_1v_4v_1) + y(v_1v_6v_4v_1) = w(v_4v_1)$. Since $w(v_4v_1) = w(K) = \tau_w(T_2\backslash a_2) > 0$, we see that $y(v_1s_1v_4v_1)$ is not integral. Imitating the proof of (22), it can be shown that $\nu_w^*(T)$ is an integer. So we assume that at least one of $y(v_1v_6v_3v_4v_1)$ and $y(v_1v_6s_iv_4v_1)$ is positive. By (10) or (11), v_6v_4 is saturated by \boldsymbol{y} in T_2 , and hence $y(v_1v_6v_4v_1) = w(v_6v_4)$. By Lemma 3.2(iii), we may assume that $w(v_6v_4) = 0$. If neither $y(v_1v_6s_iv_4v_1)$ nor $y(v_1v_6v_3v_4v_1)$ is integral then, imitating the proof in Case 2.2, it can be shown that $\nu_w^*(T)$ is an integer. It remains to consider the subcase when precisely one of them is positive. Now it can be shown that $\nu_w^*(T)$ is an integer. Since the proof is the same as that contained in the argument of (21), we omit the routine details here.

Combining the above four cases, we see that Claim 2 holds. Hence, by Lemma 3.2(iii), the optimal value $\nu_w^*(T)$ of $\mathbb{D}(T, w)$ is integral, as described in (1) above.

Lemma 5.9. If $T_2/S = G_3$, then $\mathbb{D}(T, w)$ has an integral optimal solution.

Proof. Recall that $(b_2, a_2) = (v_4, v_5)$, $s^* = v_2$, and $v_0 = v_4$. To establish the statement, by Lemma 3.2(iii) and Lemma 3.4(ii), it suffices to prove that

(1) y(C) is a positive integer for some $C \in \mathcal{C}_2$ or the optimal value $\nu_w^*(T)$ of $\mathbb{D}(T, w)$ is an integer.

Given an optimal solution \boldsymbol{y} to $\mathbb{D}(T, \boldsymbol{w})$, set $\varphi(s_i) = \{u : z(us_i) > 0 \text{ for } u \in V(T_2) \setminus a_2\}$ for each $s_i \in S$. By Lemma 5.2 (i) and (vi), we have

(2) $\varphi(s_i) \cap \varphi(s_j) = \emptyset$ whenever $i \neq j$.

(3) There exist at least two and at most three vertices s_i 's in S with $\varphi(s_i) \neq \emptyset$. (The statement is exactly the same as (3) in the proof of Lemma 5.7.)

Lemma 5.2(i) allows us to assume that

(4) if $\varphi(s_i) \neq \emptyset$, then $i \in \{1, 2, 3\}$.

Let t be the subscript in $\{1, 2, 3\}$ with $v_1 \in \varphi(s_t)$, if any. By (2), t is well defined. In the remainder of our proof, we reserve \boldsymbol{y} for an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$ such that

(5) $y(\mathcal{C}_2)$ is maximized;

(6) subject to (5), $(y(\mathcal{D}_q), y(\mathcal{D}_{q-1}), \ldots, y(\mathcal{D}_3))$ is minimized lexicographically;

(7) subject to (5) and (6), $y(v_1v_6v_3v_4v_1)$ is minimized; and

(8) subject to (5)-(7), $y(v_1s_tv_4v_1) + y(v_3v_4v_6v_3)$ is minimized.

Let us make some observations about \boldsymbol{y} before proceeding.

(9) If K is an FAS of $T_2 \setminus a_2$ such that $y(\mathcal{C}_2) = w(K)$, then K is an MFAS. (The statement is exactly the same as (4) in the proof of Lemma 4.3.)

The statements below follow instantly from Lemma 3.5(v) and the choice of y.

(10) If $y(v_1v_6v_3v_4v_1) > 0$, then both v_3v_1 and v_4v_6 are saturated by \boldsymbol{y} in T_2 . Furthermore, for any $i \in \{1, 2, 3\}$, we have $y(v_6s_iv_4v_6) = 0$; if $y(v_3s_iv_4v_6v_3) > 0$, then v_1s_i is saturated by \boldsymbol{y} in T_2 .

(11) If $y(v_1v_6s_iv_4v_1) > 0$ for some $i \in \{1, 2, 3\}$, then both v_1s_i and v_4v_6 are saturated by \boldsymbol{y} in T_2 . Furthermore, if $y(v_3v_4v_6v_3) > 0$, then v_3v_1 is saturated by \boldsymbol{y} in T_2 ; for any $1 \le j \ne i \le 3$, if $y(v_3s_jv_4v_6v_3) > 0$, then both v_3v_1 and v_1s_j are saturated by \boldsymbol{y} in T_2 .

(12) If $y(v_3s_iv_4v_6v_3) > 0$ for some $i \in \{1, 2, 3\}$, then both v_3v_4 and v_6s_i are saturated by \boldsymbol{y} in T_2 .

(13) If $v_1 \in \varphi(s_i)$ for some $i \in \{1, 2, 3\}$, then $y(v_1 s_i v_4 v_6 v_3 v_1) = 0$.

Assume the contrary: $y(v_1s_iv_4v_6v_3v_1) > 0$. Then v_1v_6 , v_3v_4 , and v_4v_1 are saturated by \boldsymbol{y} in T_2 by Lemma 3.5(v). Let j and k be subscripts in $\{1, 2, 3\}$, if any, such that $v_3 \in \varphi(s_j)$ and $v_6 \in \varphi(s_k)$ (possibly j = k). As before, let \exists denote the multiset sum. Then $v_1s_iv_4v_6v_3v_1 \exists v_1v_6v_3v_4v_1 = v_1s_iv_4v_1 \exists v_1v_6v_3v_1 \exists v_3v_4v_6v_3, v_1s_iv_4v_6v_3v_1 \exists v_1v_6s_kv_4v_1 = v_1s_iv_4v_1 \exists v_1v_6v_3s_jv_4v_1 = v_1s_iv_4v_1 \exists v_1v_6v_3s_jv_4v_1 = v_1s_iv_4v_1 \exists v_1v_6v_3s_jv_4v_1 = v_1s_iv_4v_1 \exists v_1v_6v_3v_1 \exists v_1v_6v_3v_1 \exists v_1v_6v_3v_1 \exists v_1v_6v_3v_1 \exists v_1v_6v_3v_1 dv_1 = v_1s_iv_4v_1 \exists v_1v_6v_3v_1 dv_1 dv_1v_6v_3v_1 dv_1 dv_1v_6v_3v_1 dv_1 dv_1v_6v_3v_1 dv_1 dv_1v_6v_3v_1 dv_1)$, we deduce that $y(v_1v_6v_3v_4v_1)$, $y(v_1v_6s_kv_4v_1)$, and $y(v_1v_6v_3s_jv_4v_1)$ are all zero. So $y(v_1v_6v_3v_1) = w(v_1v_6)$, $y(v_1s_iv_4v_1) = w(v_4v_1)$, and $y(v_3v_4v_6v_3) = w(v_3v_4)$. Clearly, we may assume that $w(v_1v_6) = w(v_4v_1) = w(v_3v_4) = 0$, otherwise (1) holds. By (3), we have $\{j, k\} \neq \{i\}$. Let us show that one of $y(v_6s_kv_4v_6)$, $y(v_3s_jv_4v_6v_3)$, and $y(v_1s_iv_4v_6v_3v_1)$ is a positive integer or $\nu_w^*(T)$ is an integer. We proceed by considering two cases.

• k exists and $i \neq k$. In this case, observe first that v_6s_k is not saturated by \boldsymbol{y} in T_2 , for otherwise, $y(v_6s_kv_4v_6) = w(v_6s_k) > 0$ and hence (1) holds. Next, v_kv_4 is not saturated by \boldsymbol{y} in T_2 , for otherwise, if $k \neq j$, then $y(v_6s_kv_4v_6) = w(s_kv_4) > 0$; if k = j, then $y(v_6s_kv_4v_6) + y(v_3s_kv_4v_6v_3) = w(s_kv_4) > 0$, and $y(v_6s_kv_4v_6) = w(v_6s_k) > 0$ by Lemma 3.5(v) provided $y(v_3s_kv_4v_6v_3) > 0$. So $y(v_6s_kv_4v_6)$ is a positive integer, and hence (1) also holds. Moreover, both v_6s_k and v_3s_j are outside C_0^y , for otherwise, let C_1 (resp. C_2) be a cycle in C_0^y containing v_6s_k (resp. v_3s_j). Since $C_1 \uplus v_1s_iv_4v_6v_3v_1 = v_6s_kv_4v_6 \uplus C_1'$ and $C_2 \uplus v_1s_iv_4v_6v_3v_1 = v_3s_jv_4v_6v_3 \uplus C_2'$, where $C_1' = C_1[v_4, v_6] \cup \{v_6v_3, v_3v_1, v_1s_i, s_iv_4\}$ and $C_2' = C_2[v_4, v_3] \uplus \{v_3v_1, v_1s_i, s_iv_4\}$, by Lemma 3.5(viii), we have $y(C_i) = 0$ for i = 1, 2, a contradiction. It follows that v_6s_k is not saturated by \boldsymbol{y} in T_2 , so $y(v_1s_iv_4v_6v_3v_1) + y(v_6s_kv_4v_6) + y(v_3s_jv_4v_6v_3) = w(v_4v_6)$. If j = k and $y(v_3s_kv_4v_6v_3) > 0$, then v_6s_k is saturated by \boldsymbol{y} in T_2 by Lemma 3.5(v), a contradiction. So either $j \neq k$ or j = kand $y(v_3s_kv_4v_6v_3) = 0$. Since $w(v_6s_k) > 0$ and v_6s_k is outside C_0^y , we have $y(v_6s_kv_4v_6) > 0$. Assume $y(v_6s_kv_4v_6)$ is not integral. Let us show that $v_w^*(T)$ is an integer.

For this purpose, let \boldsymbol{x} be an optimal solution to $\mathbb{P}(T, \boldsymbol{w})$. Since both $y(v_6s_kv_4v_6)$ and $y(v_1s_iv_4v_6v_3v_1)$ are positive, by Lemma 3.1(i), we have $x(v_6s_kv_4v_6) = x(v_1s_iv_4v_6v_3v_1) = 1$. By Lemma 3.1(ii), we obtain $x(v_6s_k) = 0$. Hence $x(s_kv_4) = x(v_6v_3) + x(v_3v_1) + x(v_1s_i) + x(s_iv_4)$. Since $w(v_3v_4) = 0$ and v_6s_k is outside \mathcal{C}_0^y , for any $u \in V \setminus (V(T_2) \setminus a_2)$, if a cycle in \mathcal{C}_0^y contains uv_6 , then it passes through $v_6v_3v_1s_iv_4$. Moreover, if a cycle in \mathcal{C}_0^y contains us_k , then it passes through s_kv_4 . By Lemma 3.1(iv), we obtain $x(uv_6) + x(v_6v_3) + x(v_3v_1) + x(v_1s_i) + x(s_iv_4) = x(us_k) + x(s_kv_4)$. Hence $x(uv_6) = x(us_k)$. Clearly, we may assume that this equality holds in any

other situation. Let T' = (V', A') be obtained from T by deleting s_k , and let w' be obtained from the restriction of w to A' by replacing w(e) with $w(e) + w(v_4s_k)$ for $e \in \{v_6v_3, v_3v_1, v_1s_i, s_iv_4\}$ and replacing $w(uv_6)$ with $w(uv_6) + w(us_k)$ for any $u \in V \setminus (V(T_2) \setminus a_2)$. Let x' be the restriction of x to A', and let y' be obtained from y as follows: set $y'(v_1s_iv_4v_6v_3v_1) = y(v_1s_iv_4v_6v_3v_1) +$ $y(v_6s_kv_4v_6)$; for each $C \in \mathcal{C}_0^y$ passing through us_kv_4 , let C' arise from C by replacing the path us_kv_4 with the path $uv_6v_3v_1s_iv_4$, and set y'(C') = y(C') + y(C). From the LP-duality theorem, we see that x' and y' are optimal solutions to $\mathbb{P}(T', w')$ and $\mathbb{D}(T', w')$, respectively, with the same value $\nu_w^*(T)$ as x and y. By the hypothesis of Theorem 1.5, $\nu_w^*(T)$ is an integer.

• Either k does not exist or i = k. In this case, by (3), we see that j exists; that is, $v_3 \in \varphi(s_j)$. Similar to the above case, we can show that either $y(v_3s_jv_4v_6v_3)$ is a positive integer or $\nu_w^*(T)$ is an integer. Since the proof goes along the same line (with v_3s_j and $y(v_3s_jv_4v_6v_3)$ in place of v_6s_k and $y(v_6s_kv_4v_6)$, respectively), we omit the details here. Hence we may assume that (13) holds.

(14) If $v_3 \in \varphi(s_j)$ for some $j \in \{1, 2, 3\}$, then $y(v_1v_6v_3s_jv_4v_1) = 0$.

Assume the contrary: $y(v_1v_6v_3s_jv_4v_1) > 0$. Then v_3v_1 , v_3v_4 , and v_4v_6 are saturated by \boldsymbol{y} in T_2 by Lemma 3.5(v). Let i and k be subscripts in $\{1, 2, 3\}$, if any, such that $v_1 \in \varphi(s_i)$ and $v_6 \in \varphi(s_k)$ (possibly i = k). Since $v_1v_6v_3s_jv_4v_1 \uplus v_3v_4v_6v_3 = v_1v_6v_3v_4v_1 \amalg v_3s_jv_4v_6v_3$, and $v_1v_6v_3s_jv_4v_1 \cup v_6s_kv_4v_6 = v_1v_6s_kv_4v_1 \amalg v_3s_jv_4v_6v_3$, from the optimality of \boldsymbol{y} , we deduce that $y(v_3v_4v_6v_3) = y(v_6s_kv_4v_6) = 0$. So $y(v_1v_6v_3v_1) = w(v_3v_1)$, $y(v_1v_6v_3v_4v_1) = w(v_3v_4)$, and $y(v_3s_jv_4v_6v_3) = w(v_4v_6)$. Clearly, we may assume that $w(v_3v_1) = w(v_3v_4) = w(v_4v_6) = 0$, otherwise (1) holds. By (3), we have $\{i,k\} \neq \{j\}$. Let us show that one of $y(v_1s_iv_4v_1)$, $y(v_1v_6s_kv_4v_1)$, and $y(v_1v_6v_3s_jv_4v_1)$ is a positive integer or $\nu_w^*(T)$ is an integer. We proceed by considering two cases.

• *i* exists and $i \neq j$. In this case, observe first that v_1s_i is not saturated by \boldsymbol{y} in T_2 , for otherwise, $y(v_1s_iv_4v_1) = w(v_1s_i) > 0$ and hence (1) holds. Next, s_iv_4 is not saturated by \boldsymbol{y} in T_2 , for otherwise, if $i \neq k$, then $y(v_1s_iv_4v_1) = w(s_iv_4) > 0$; if i = k, then $y(v_1s_iv_4v_1) + y(v_1v_6s_iv_4) = w(s_iv_4) > 0$, and $y(v_1s_iv_4v_1) = w(v_1s_i) > 0$ by Lemma 3.5(v) provided $y(v_1v_6s_iv_4v_1) > 0$. So $y(v_1s_iv_4v_1)$ is a positive integer, and hence (1) also holds. Moreover, both v_1s_i and v_6s_k are outside C_0^y , for otherwise, let C_1 (resp. C_2) be a cycle in C_0^y containing v_1s_i (resp. v_6s_k). Since $C_1 \uplus v_1v_6v_3s_jv_4v_1 = v_1s_iv_4v_1 \cup C_1'$ and $C_2 \uplus v_1v_6v_3s_jv_4v_1 = v_1v_6s_kv_4v_1 \uplus C_2'$, where $C_1' = C_1[v_4, v_1] \cup \{v_1v_6, v_6v_3, v_3s_j, s_jv_4\}$ and $C_2' = C_2[v_4, v_6] \cup \{v_6v_3, v_3s_j, s_jv_4\}$, by Lemma 3.5(vii), we have $y(C_i) = 0$ for i = 1, 2, a contradiction. It follows that v_1s_i is not saturated by \boldsymbol{y} in T_2 , so $y(v_1s_iv_4v_1) + y(v_1v_6s_kv_4v_1) + y(v_1v_6v_3s_jv_4v_1) = w(v_4v_1)$. If i = k and $y(v_1v_6s_kv_4v_1) > 0$, then v_1s_i is saturated by \boldsymbol{y} in T_2 by Lemma 3.5(v), a contradiction. So either $i \neq k$ or i = k and $y(v_1v_6s_kv_4v_1) = 0$. Since $w(v_1s_i) > 0$ and v_1s_i is outside C_0^y , we have $y(v_1s_iv_4v_1) > 0$. Assume $y(v_1v_6s_kv_4v_1) = 0$. Since $w(v_1s_i) > 0$ and v_1s_i is outside C_0^y , we have $y(v_1s_iv_4v_1) > 0$. Assume $y(v_1s_iv_4v_1) = 0$. Since $w(v_1s_i) > 0$ and v_1s_i is outside C_0^y , we have $y(v_1s_iv_4v_1) > 0$. Assume $y(v_1v_6s_kv_4v_1) = 0$. Since $w(v_1s_i) > 0$ and v_1s_i is outside C_0^y , we have $y(v_1s_iv_4v_1) > 0$. Assume $y(v_1s_iv_4v_1)$ is not integral. Let us show that $v_w^w(T)$ is an integer.

For this purpose, let \boldsymbol{x} be an optimal solution to $\mathbb{P}(T, \boldsymbol{w})$. Since both $y(v_1s_iv_4v_1)$ and $y(v_1v_6v_3s_jv_4v_1)$ are positive, by Lemma 3.1(i), we have $x(v_1s_iv_4v_1) = y(v_1v_6v_3s_jv_4v_1) = 1$. By Lemma 3.1(ii), we obtain $x(v_1s_i) = 0$. Hence $x(s_iv_4) = x(v_1v_6) + x(v_6v_3) + x(v_3s_j) + x(s_jv_4)$. Since $w(v_3v_1) = w(v_3v_4) = 0$, for any $u \in V \setminus (V(T_2) \setminus a_2)$, if a cycle in \mathcal{C}_0^y contains uv_1 , then it passes through $v_6v_3s_jv_4$. Moreover, if a cycle in \mathcal{C}_0^y contains us_i , then it passes through s_iv_4 . By Lemma 3.1(iv), we obtain $x(uv_1) + x(v_1v_6) + x(v_6v_3) + x(v_3s_j) + x(s_jv_4) = x(us_i) + x(s_iv_4)$. Hence $x(uv_1) = x(us_i)$. Clearly, we may assume that this equality holds in any other situation.

Let T' = (V', A') be obtained from T by deleting s_i , and let w' be obtained from the restriction of w to A' by replacing w(e) with $w(e) + w(v_4s_i)$ for $e \in \{v_1v_6, v_6v_3, v_3s_j, s_jv_4\}$ and replacing $w(uv_1)$ with $w(uv_1) + w(us_i)$ for any $u \in V \setminus (V(T_2) \setminus a_2)$. Let x' be the restriction of x to A'and let y' be obtained from y as follows: set $y'(v_1v_6v_3s_jv_4v_1) = y(v_1v_6v_3s_jv_4v_1) + y(v_1s_iv_4v_1)$; for each $C \in \mathcal{C}_0^y$ passing through us_iv_4 , let C' be obtained from C by replacing the path us_iv_4 with the path $uv_1v_6v_3s_jv_4$, and set y'(C') = y(C') + y(C). From the LP-duality theorem, we see that x' and y' are optimal solutions to $\mathbb{P}(T', w')$ and $\mathbb{D}(T', w')$, respectively, with the same value $\nu_w^*(T)$ as x and y. By the hypothesis of Theorem 1.5, $\nu_w^*(T)$ is an integer.

• Either *i* does not exist or i = j. In this case, by (3), we see that *k* exists; that is, $v_6 \in \varphi(s_k)$. Similar to the above case, we can show that either $y(v_1v_6s_kv_4v_1)$ is a positive integer or $\nu_w^*(T)$ is an integer. Since the proof goes along the same line (with v_6s_k and $y(v_1v_6s_kv_4v_1)$ in place of v_1s_i and $y(v_1s_iv_4v_1)$, respectively), we omit the details here. Hence we may assume that (14) holds.

We proceed by considering two cases, depending on whether $\varphi(s_i) = \{v_1\}$ for some *i*. Case 1. $\varphi(s_i) = \{v_1\}$ for some $i \in \{1, 2, 3\}$.

By Lemma 5.2(i), we may assume that $\varphi(s_1) = \{v_1\}$. Let j and k be subscripts in $\{1, 2, 3\}$, if any, such that $v_3 \in \varphi(s_j)$ and $v_6 \in \varphi(s_k)$ (possibly j = k). By (13) and (14), we have

 $(15) \ \mathcal{C}_2^y \subseteq \{v_1v_6v_3v_4v_1, v_1v_6s_kv_4v_1, v_3s_jv_4v_6v_3, v_1s_1v_4v_1, v_6s_kv_4v_6, v_1v_6v_3v_1, v_3v_4v_6v_3\}.$

Observe that neither s_1v_4 nor v_1s_1 is saturated by \boldsymbol{y} in T_2 , for otherwise, $y(v_1s_1v_4v_1) = w(s_1v_4)$ or $w(v_1s_1)$; both of them are positive, so (1) holds. By Lemma 5.2(iii), $z(s_1v_4) = w(z_1v_4) > 0$. Thus there exists a cycle $C \in \mathcal{C}_0^y$ containing s_1v_4 ; subject to this, C is chosen to contain v_1s_1 if possible. If v_1s_1 is outside C, then v_1s_1 is not saturated by \boldsymbol{y} in T. By Lemma 3.5(vii), v_4v_1 is saturated by \boldsymbol{y} in T_2 and hence $y(v_1s_1v_4v_1) + y(v_1v_6s_kv_4v_1) + y(v_1v_6v_3v_4v_1) = w(v_4v_1)$.

(16) If $w(v_4v_1) > 0$, then either $y(v_1s_1v_4v_1)$ is a positive integer or $\nu_w^*(T)$ is an integer.

To justify this, assume $y(v_1s_1v_4v_1)$ is not a positive integer. Then at least one of $y(v_1v_6s_kv_4v_1)$ and $y(v_1v_6v_3v_4v_1)$ is positive. Observe that v_1s_1 is outside C_0^y , for otherwise, let D be a cycle in C_0^y containing v_1s_1 . If $y(v_1v_6v_3v_4v_1) > 0$ then, using $D \uplus v_1v_6v_3v_4v_1 = v_1s_1v_4v_1 \uplus D'$, where $D' = D[v_4, v_1] \cup \{v_1v_6, v_6v_3, v_3v_4\}$, and applying Lemma 3.5(viii), we deduce that y(D) = 0, a contradiction. If $y(v_1v_6s_kv_4v_1) > 0$, then a contradiction can be reached similarly. Since $w(v_1s_1) > 0$, we obtain $y(v_1s_1v_4v_1) > 0$. As $y(v_1s_1v_4v_1)$ is not integral, at least one of $y(v_1v_6s_kv_4v_1)$ and $y(v_1v_6v_3v_4v_1)$ is not integral. Let us show that $\nu_w^*(T)$ is an integer.

We only consider the case when $y(v_1v_6v_3v_4v_1)$ is not integral, as the proof in the other case when $y(v_1v_6v_3v_4v_1) = 0$ and $y(v_1v_6s_kv_4v_1) > 0$ goes along the same line.

Let \boldsymbol{x} be an optimal solution to $\mathbb{P}(T, \boldsymbol{w})$. Since both $y(v_1s_1v_4v_1)$ and $y(v_1v_6v_3v_4v_1)$ are positive, by Lemma 3.1(i), we have $x(v_1s_1v_4v_1) = x(v_1v_6v_3v_4v_1) = 1$. By Lemma 3.1(ii), we obtain $x(v_1s_1) = 0$, because v_1s_1 is not saturated by \boldsymbol{y} . It follows that $x(s_1v_4) = x(v_1v_6) + x(v_6v_3) + x(v_3v_4)$. Observe that there is no cycle D in \mathcal{C}_0^y that contains the path $v_1v_6s_kv_4$, for otherwise, let $\theta = \min\{y(D), y(v_1v_6v_3v_4v_1)\}$, let $D' = D[v_4, v_1] \cup \{v_1v_6, v_6v_3, v_3v_4\}$, and let \boldsymbol{y}' be obtained from \boldsymbol{y} by replacing $y(D), y(D'), y(v_1v_6v_3v_4v_1)$, and $y(v_1v_6s_kv_4v_1)$ with $y(D) - \theta, y(D') + \theta, y(v_1v_6v_3v_4v_1) - \theta$, and $y(v_1v_6s_kv_4v_1) + \theta$, respectively. Then \boldsymbol{y}' is also an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$ with $y'(v_1v_6v_3v_4v_1) < y(v_1v_6v_3v_4v_1)$, contradicting (7). For any $u \in V \setminus (V(T_2) \setminus a_2)$, if a cycle in \mathcal{C}_0^y contains uv_1 , then it passes through $v_1v_6v_3v_4$. Moreover, if a cycle in \mathcal{C}_0^y contains us_1 , then it passes through s_1v_4 . By Lemma 3.1(iv), we obtain $x(uv_1) + y(v_1v_1v_1v_2v_2v_1v_2v_1v_3v_4)$. $x(v_1v_6) + x(v_6v_3) + x(v_3v_4) = x(us_1) + x(s_1v_4)$. Hence $x(uv_1) = x(us_1)$. Clearly, we may assume that this equality holds in any other situation. Let T' = (V', A') be obtained from T by deleting s_1 , and let w' be obtained from the restriction of w to A' by replacing w(e)with $w(e) + w(s_1v_4)$ for $e \in \{v_1v_6, v_6v_3, v_3v_4\}$ and replacing $w(uv_1)$ with $w(uv_1) + w(us_1)$ for any $u \in V \setminus (V(T_2) \setminus a_2)$. Let x' be the restriction of x to A', and let y' be obtained from yas follows: set $y'(v_1v_6v_3v_4v_1) = y(v_1v_6v_3v_4v_1) + y(v_1s_1v_4v_1)$; for each $C \in C_0^y$ passing through us_1v_4 , let C' be obtained from C by replacing the path us_1v_4 with the path $uv_1v_6v_3v_4$, and set y'(C') = y(C') + y(C). From the LP-duality theorem, we see that x' and y' are optimal solutions to $\mathbb{P}(T', w')$ and $\mathbb{D}(T', w')$, respectively, with the same value $\nu_w^*(T)$ as x and y. By the hypothesis of Theorem 1.5, $\nu_w^*(T)$ is an integer. So (16) follows.

By (16) and Lemma 3.2(iii), we may assume that $w(v_4v_1) = 0$ hereafter.

(17) If k exists (so $v_6 \in \varphi(s_k)$) and $w(v_4v_6) > 0$, then either $y(v_6s_kv_4v_6)$ is a positive integer or $\nu_w^*(T)$ is an integer.

To justify this, observe first that v_6s_k is not saturated by \boldsymbol{y} in T_2 , for otherwise, $y(v_6s_kv_4v_6) = w(v_6s_k) > 0$, so (17) holds. Next, s_kv_4 is not saturated by \boldsymbol{y} in T_2 , for otherwise, if $j \neq k$, then $y(v_6s_kv_4v_6) = w(s_kv_4) > 0$; if j = k, then $y(v_6s_kv_4v_6) + y(v_3s_kv_4v_6v_3) = w(s_kv_4)$, and $y(v_6s_kv_4v_6) = w(v_6s_k) > 0$ by Lemma 3.5(v) provided $y(v_3s_kv_4v_6v_3) > 0$, so (17) also holds. By Lemma 5.2(iii), s_kv_4 is saturated by \boldsymbol{y} in T, so s_kv_4 is contained in some cycle $C \in \mathcal{C}_0^y$; subject to this, C is chosen to contain v_6s_k if possible. Clearly, if v_6s_k is not on C, then v_6s_k is not saturated by \boldsymbol{y} in T. By Lemma 3.5(vii), v_4v_6 is saturated by \boldsymbol{y} in T_2 , and hence $y(v_6s_kv_4v_6) + y(v_3v_4v_6v_3) + y(v_3s_jv_4v_6v_3) = w(v_4v_6)$.

Assume $y(v_6s_kv_4v_6)$ is not a positive integer. Then at least one of $y(v_3v_4v_6v_3)$ and $y(v_3s_jv_4v_6v_3)$ is positive, say the former. Note that v_6s_k is outside C_0^y , for otherwise, let D be a cycle in C_0^y containing v_6s_k . Set $D' = D[v_4, v_6] \cup \{v_6v_3, v_3v_4\}$ and $\theta = \min\{y(v_3v_4v_6v_3), y(C)\}$. Let \mathbf{y}' be obtained from \mathbf{y} by replacing $y(v_3v_4v_6v_3), y(v_6s_kv_4v_6), y(C)$, and y(C') with $y(v_3v_4v_6v_3) - \theta$, $y(v_6s_kv_4v_6) + \theta, y(C) - \theta$, and $y(C') + \theta$, respectively. Then \mathbf{y}' is also an optimal solution to $\mathbb{D}(T, \mathbf{w})$ with $y'(v_3v_4v_6v_3) < y(v_3v_4v_6v_3)$, contradicting (8). Since $w(v_6s_k) > 0$, we have $y(v_6s_kv_4v_6) > 0$. As $y(v_6s_kv_4v_6)$ is not integral, $y(v_3v_4v_6v_3)$ or $y(v_3s_jv_4v_6v_3)$ is not integral. If $y(v_3s_jv_4v_6v_3) > 0$, then v_3v_4 is saturated by \mathbf{y} in T_2 by Lemma 3.5(v), so $y(v_3v_4v_6v_3) = w(v_3v_4)$. Hence we may assume that exactly one of $y(v_3v_4v_6v_3)$ and $y(v_3s_jv_4v_6v_3)$ is positive. Let us show that $\nu_w^*(T)$ is an integer.

We only consider the case when $y(v_3v_4v_6v_3)$ is not integral, because the proof in the other case when $y(v_3v_4v_6v_3) = 0$ and $y(v_3s_jv_4v_6v_3) > 0$ goes along the same line.

Let \boldsymbol{x} be an optimal solution to $\mathbb{P}(T, \boldsymbol{w})$. Since both $y(v_6s_kv_4v_6)$ and $y(v_3v_4v_6v_3)$ are positive, we have $x(v_6s_kv_4v_6) = x(v_3v_4v_6v_3) = 1$ by Lemma 3.1(i). Since v_6s_k is not saturated by \boldsymbol{y} in T, we obtain $x(v_6s_k) = 0$ by Lemma 3.1(ii). It follows that $x(s_kv_4) = x(v_6v_3) + x(v_3v_4)$. For any $u \in V \setminus (V(T_2) \setminus a_2)$, if a cycle in \mathcal{C}_0^y contains uv_6 , then it passes through $v_6v_3v_4$. Moreover, if a cycle in \mathcal{C}_0^y contains us_k , then it passes through s_kv_4 . By Lemma 3.1(iv), we obtain $x(uv_6) + x(v_6v_3) + x(v_3v_4) = x(us_k) + x(s_kv_4)$. Hence $x(uv_6) = x(us_k)$. Clearly, we may assume that this equality holds in any other situation. Let T' = (V', A') be obtained from T by deleting s_k , and let \boldsymbol{w}' be obtained from the restriction of \boldsymbol{w} to A' by replacing w(e) with $w(e) + w(s_kv_4)$ for $e = v_6v_3$ and v_3v_4 and replacing $w(uv_6)$ with $w(uv_6) + w(us_k)$ for any $u \in V \setminus (V(T_2) \setminus a_2)$. Let \boldsymbol{x}' be the restriction of \boldsymbol{x} to A' and let \boldsymbol{y}' be obtained from \boldsymbol{y} as follows: set $y'(v_3v_4v_6v_3) = y(v_3v_4v_6v_3) + y(v_6s_kv_4v_6)$; for each $C \in \mathcal{C}_0^y$ passing through us_iv_4 , let C' be the cycle arising from C by replacing the path $us_k v_4$ with the path $uv_6 v_3 v_4$, and set y'(C') = y(C') + y(C). From the LP-duality theorem, we see that \mathbf{x}' and \mathbf{y}' are optimal solutions to $\mathbb{P}(T', \mathbf{w}')$ and $\mathbb{D}(T', \mathbf{w}')$, respectively, with the same value $\nu_w^*(T)$ as \mathbf{x} and \mathbf{y} . By the hypothesis of Theorem 1.5, $\nu_w^*(T)$ is an integer. So (17) holds.

By (17) and Lemma 3.2(iii), we may assume that if $w(v_4v_6) > 0$, then k does no exist, and hence j exists (so $v_3 \in \varphi(s_j)$) by (3).

(18) If $w(v_4v_6) > 0$, then at least one of $y(v_1v_6v_3v_1)$, $y(v_3v_4v_6v_3)$, and $y(v_3s_jv_4v_6v_3)$ is a positive integer.

To justify this, note that neither s_jv_4 nor v_3s_j is saturated by \boldsymbol{y} in T_2 , for otherwise, $y(v_3s_jv_4v_6v_3) = w(s_jv_4)$ or $w(v_3s_j)$; both of them are positive, so (18) holds. By Lemma 5.2(iii), s_jv_4 is saturated by \boldsymbol{y} in T, so s_jv_4 is contained in a cycle $C \in \mathcal{C}_0^y$; subject to this, C is chosen to contain v_3s_j if possible. Clearly, if v_3s_j is not on C, then v_3s_j is not saturated by \boldsymbol{y} in T. By Lemma 3.5(iii), at least one of v_4v_6 and v_6v_3 is saturated by \boldsymbol{y} in T_2 . Furthermore, by Lemma 3.5(iv), if v_6v_3 is contained in some cycle in \mathcal{C}_0^y , then v_4v_6 is saturated by \boldsymbol{y} in T_2 . If v_4v_6 is saturated by \boldsymbol{y} in T_2 , then $y(v_3v_4v_6v_3) + y(v_3s_jv_4v_6v_3) = w(v_4v_6)$, and $y(v_3v_4v_6v_3) = w(v_3v_4)$ by Lemma 3.5(v) provided $y(v_3s_jv_4v_6v_3) > 0$. So at least one of $y(v_3v_4v_6v_3)$ and $y(v_3s_jv_4v_6v_3)$ is a positive integer, and hence (18) holds. Thus we may assume that v_4v_6 is not saturated by \boldsymbol{y} in T_2 , which implies that v_6v_3 saturated by \boldsymbol{y} in T_2 . It follows that $y(v_1v_6v_3v_1) + y(v_3v_4v_6v_3) + y(v_3s_jv_4v_6v_3) = w(v_6v_3)$. If $w(v_6v_3) = 0$, then $K = \{v_4v_1, v_6v_3, v_6s_j\}$ is an FAS of T with total weight zero, so $\tau_w(T_2\backslash a_2) = 0$, contradicting the hypothesis (α) of this section. Therefore $w(v_6v_3) > 0$. If $y(v_3s_jv_4v_6v_3) > 0$, then $y(v_3v_4v_6v_3) = w(v_3v_4)$ by (15) and Lemma 3.5(v). So we may further assume that exactly one of $y(v_3v_4v_6v_3)$ and $y(v_3s_jv_4v_6v_3)$ is positive, and thus $y(v_1v_6v_3v_1) > 0$.

Let us show that $y(v_1v_6v_3v_1)$ is an integer. Suppose not. Then $y(v_3v_4v_6v_3)$ or $y(v_3s_jv_4v_6v_3)$ is not integral, say the former (the proof in the other case goes along the same line). Since v_6v_3 is saturated by \boldsymbol{y} in T_2 and $w(v_6s_j) = 0$, the arc v_1v_6 is outside C_0^y . If v_3v_1 is also outside C_0^y , let \boldsymbol{y}' be obtained from \boldsymbol{y} by replacing $y(v_3v_4v_6v_3)$ and $y(v_1v_6v_3v_1)$ with $y(v_3v_4v_6v_3) - \theta$ and $y(v_1v_6v_3v_1) + \theta$, respectively, where $\theta = \min\{w(v_1v_6) - z(v_1v_6), w(v_3v_1) - z(v_3v_1), y(v_3v_4v_6v_3)\}$; if v_3v_1 is contained in some cycle $C \in C_0^y$, let \boldsymbol{y}' be obtained from \boldsymbol{y} by replacing $y(v_3v_4v_6v_3), y(v_1v_6v_3v_1),$ y(C), and y(C') with $y(v_3v_4v_6v_3) - \sigma$, $y(v_1v_6v_3v_1) + \sigma$, $y(C) - \sigma$, $y(C') + \sigma$, respectively, where $C' = C[v_4, v_3] \cup \{v_3v_4\}$ and $\sigma = \min\{w(v_1v_6) - z(v_1v_6), y(C), y(v_3v_4v_6v_3)\}$. It is easy to see that in either situation \boldsymbol{y}' is also an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$ with $y'(v_3v_4v_6v_3) < y(v_3v_4v_6v_3)$, contradicting (8). This proves (18).

By (16)-(18), we may assume that $w(v_4v_1) = w(v_4v_6) = 0$. Since each of $\{v_4v_1, v_4v_6, v_1v_6\}$, $\{v_4v_1, v_4v_6, v_6v_3\}$, and $\{v_4v_1, v_4v_6, v_3v_1\}$ is a minimal FAS of $T_2 \setminus a_2$,

$$\epsilon = \min\{w(v_1v_6), w(v_6v_3), w(v_3v_1)\} > 0$$

by the hypothesis (α) of this section. By Lemma 3.5(vii), we obtain $y(v_1v_6v_3v_1) = \epsilon > 0$. Thus (1) is established in the present case.

Case 2. $\varphi(s_i) \neq \{v_1\}$ for any $i \in \{1, 2, 3\}$.

By the hypothesis of the present case, we may assume that $v_6 \in \varphi(s_1)$, $v_3 \in \varphi(s_2)$, and $v_1 \in \varphi(s_i)$ for i = 1 or 2. By (13) and (14), we have

 $(19) \mathcal{C}_2^y \subseteq \{v_1 v_6 v_3 v_1, v_3 v_4 v_6 v_3, v_1 v_6 v_3 v_4 v_1, v_6 s_1 v_4 v_6, v_1 v_6 s_1 v_4 v_1, v_3 s_2 v_4 v_6 v_3, v_1 s_1 v_4 v_1, v_1 s_2 v_4 v_1\}$

and $y(v_1s_iv_4v_1) = 0$ for i = 1 or 2.

Claim 1. $y(\mathcal{C}_2) = \tau_w(T_2 \setminus a_2).$

To justify this, note that $z(s_iv_4) = w(s_iv_4) > 0$ for i = 1 and 2 by Lemma 5.2(iii). Depending on the saturation of s_1v_4 and s_2v_4 , we distinguish among three subcases.

Subcase 1.1. s_1v_4 is contained in some cycle $C \in C_0^y$. In this subcase, v_4v_6 is saturated by \boldsymbol{y} in T_2 , for otherwise, v_4v_6 is not saturated by \boldsymbol{y} in T, because it is outside C_0^y . By Lemma 3.5(iii), v_6s_1 is saturated by \boldsymbol{y} in T_2 . By (11), we have $y(v_1v_6s_1v_4v_1) = 0$, which together with (19) implies $y(v_6s_1v_4v_6) = w(v_6s_1) > 0$, so (1) holds. Clearly, v_4v_1 is outside C_0^y . We proceed by considering two subsubcases.

Assume first that v_4v_1 is not saturated by \boldsymbol{y} in T_2 (and hence in T). Then, by Lemma 3.5(iii), v_1s_1 and at least one of v_1s_2 and s_2v_4 are saturated by \boldsymbol{y} in T_2 . Furthermore, v_1s_2 is outside $C_0^{\boldsymbol{y}}$. If v_1s_2 is not saturated by \boldsymbol{y} in T, then $y(v_3s_2v_4v_6v_3) = 0$, for otherwise, let \boldsymbol{y}' be obtained from \boldsymbol{y} by replacing $y(v_1s_2v_4v_1)$ and $y(v_3s_2v_4v_6v_3)$ with $y(v_1s_2v_4v_1) + \theta$ and $y(v_3s_2v_4v_6v_3) - \theta$, where $\theta = \min\{w(v_4v_1) - z(v_4v_1), w(v_1s_2) - z(v_1s_2), y(v_3s_2v_4v_6v_3)\} > 0$. Then \boldsymbol{y}' is also an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$, contradicting (6). It follows from (19) that $y(v_1s_2v_4v_1) = w(s_2v_4) > 0$, so (1) holds. Thus we may assume that v_1s_2 is saturated by \boldsymbol{y} in T_2 . If v_1v_6 is saturated by \boldsymbol{y} in T_2 , then $y(\mathcal{C}_2) = w(K)$, where $K = \{v_1v_6, v_4v_6, v_1s_1, v_1s_2\}$. By (9), K is an MFAS of $T_2\backslash a_2$ and hence $y(\mathcal{C}_2) = \tau_w(T_2\backslash a_2)$. By Lemma 3.5(iii), v_1v_6 is outside $C_0^{\boldsymbol{y}}$, for otherwise, v_4v_1 would be saturated by \boldsymbol{y} in T_2 , a contradiction. So we may assume that v_1v_6 is not saturated by \boldsymbol{y} in T. By Lemma 3.5(iii), v_6s_1 is saturated by \boldsymbol{y} in T_2 . If v_6v_3 is also saturated by \boldsymbol{y} in T_2 , then $y(\mathcal{C}_2) = w(K)$, where $K = \{v_6v_3, v_6s_1, v_1s_1, v_1s_2\}$. So we assume that v_6v_3 is not saturated by \boldsymbol{y} in T_2 . By Lemma 3.5(iii), v_6v_3 is outside $C_0^{\boldsymbol{y}}$. Furthermore, v_3v_1, v_3s_2 , and v_3v_4 are all saturated by \boldsymbol{y} in T_2 . So $y(\mathcal{C}_2) = w(J)$, where $J = \{v_3v_1, v_3v_4, v_6s_1, v_1s_1, v_1s_2, v_3s_2\}$. By (9), Jis an MFAS of $T_2\backslash a_2$ and hence $y(\mathcal{C}_2) = \tau_w(T_2\backslash a_2)$.

Next assume that v_4v_1 is saturated by \boldsymbol{y} in T_2 . We may assume that v_3v_1 is not saturated by \boldsymbol{y} in T_2 , for otherwise, $y(\mathcal{C}_2) = w(K)$, where $K = \{v_3v_1, v_4v_1, v_4v_6\}$. By (9), K is an MFAS of $T_2 \setminus a_2$ and hence $y(\mathcal{C}_2) = \tau_w(T_2 \setminus a_2)$. Thus, by (10), we have $y(v_1v_6v_3v_4v_1) = 0$. If $y(v_1v_6s_1v_4v_1) = 0$ and v_1v_6 is saturated by \boldsymbol{y} in T_2 , then $y(\mathcal{C}_2) = w(K)$, where $K = \{v_1v_6, v_4v_1, v_4v_6\}$. So we may assume that $y(v_1v_6s_1v_4v_1) > 0$ or v_1v_6 is not saturated by \boldsymbol{y} in T_2 , consider the situation when $y(v_1v_6s_1v_4v_1) > 0$. Now, by (11), v_1s_1 is saturated by \boldsymbol{y} in T_2 , and $y(v_3v_4v_6v_3) =$ $y(v_3s_2v_4v_6v_3) = 0$. Moreover, at least one of v_1s_2 and s_2v_4 is saturated by \boldsymbol{y} in T_2 (otherwise, $y(v_1s_2v_4v_1)$ can be made larger). If v_1v_6 is saturated by \boldsymbol{y} in T_2 , then $y(\mathcal{C}_2) = w(K)$, where K = $\{v_1v_6, v_4v_6, v_1s_1, v_1s_2\}$ or $\{v_1v_6, v_4v_6, v_1s_1, s_2v_4\}$; if v_1v_6 is not saturated by \boldsymbol{y} in T_2 , then v_6v_3 is saturated by \boldsymbol{y} in T_2 by Lemma 3.5(iiv). So $y(\mathcal{C}_2) = w(K)$, where $K = \{v_4v_1, v_4v_6, v_6v_3\}$. By (9), K is an MFAS of $T_2 \setminus a_2$ and hence $y(\mathcal{C}_2) = \tau_w(T_2 \setminus a_2)$. So we may assume that $y(v_1v_6s_1v_4v_1) = 0$ and v_1v_6 is not saturated by \boldsymbol{y} in T_2 . Then $y(\mathcal{C}_2) = w(K)$, where $K = \{v_4v_1, v_6s_1, v_6v_3\}$. So we further assume that v_6s_1 is not saturated by \boldsymbol{y} in T_2 . We propose to show that

 $(20) \ y(v_3v_4v_6v_3) = y(v_3s_2v_4v_6v_3) = 0.$

We only prove that $y(v_3s_2v_4v_6v_3) = 0$, as the proof of the other equality $y(v_3v_4v_6v_3) = 0$ goes along the same line. Assume the contrary: $y(v_3s_2v_4v_6v_3) > 0$. Depending on the saturation of v_1v_6 and v_3v_1 , we consider several possibilities.

• Both v_1v_6 and v_3v_1 are not saturated by \boldsymbol{y} in T. Define $\theta = \min\{w(v_1v_6) - z(v_1v_6), w(v_3v_1) - z(v_3v_1), y(v_3s_2v_4v_6v_3)\}$. Then $\theta > 0$. Let \boldsymbol{y}' be obtained from \boldsymbol{y} by replacing $y(v_3s_2v_4v_6v_3)$ and

 $y(v_1v_6v_3v_1)$ with $y(v_3s_2v_4v_6v_3) - \theta$ and $y(v_1v_6v_3v_1) + \theta$, respectively. Then \mathbf{y}' is also an optimal solution to $\mathbb{D}(T, \mathbf{w})$ with $y'(v_3s_2v_4v_6v_3) < y(v_3s_2v_4v_6v_3)$, contradicting (6).

• v_3v_1 is not saturated by \boldsymbol{y} in T and v_1v_6 is contained in some cycle $C \in \mathcal{C}_0^y$. Since v_6v_3 is saturated by \boldsymbol{y} in T_2 , cycle C passes through $v_6s_1v_4$. Thus the multiset sum of the cycles C, $v_3s_2v_4v_6v_3$ and the unsaturated arc v_3v_1 contains arc-disjoint cycles $v_6s_1v_4v_6$ and $v_1v_6v_3v_1$. From Lemma 3.5(vi) we deduce that $y(v_3s_2v_4v_6v_3) = 0$, a contradiction.

• v_1v_6 is is not saturated by \boldsymbol{y} in T and v_3v_1 is contained in some cycle $D \in \mathcal{C}_0^0$. It is clear that D passes through $v_1s_iv_4$ for i = 1 or 2. Furthermore, the multiset sum of D, $v_3s_2v_4v_6v_3$, and the unsaturated arc v_1v_6 contains arc-disjoint cycles $v_1v_6v_3v_1$ and $D' = D[v_4, v_3] \cup \{v_3s_2, s_2v_4\}$. Define $\theta = \min\{y(D), y(v_3s_2v_4v_6v_3), w(v_1v_6) - z(v_1v_6)\}$. Let \boldsymbol{y}' be obtained from \boldsymbol{y} by replacing $y(D), y(D'), y(v_3s_2v_4v_6v_3)$, and $y(v_1v_6v_3v_1)$ with $y(D) - \theta, y(D') + \theta, y(v_3s_2v_4v_6v_3) - \theta$, and $y(v_1v_6v_3v_1) + \theta$, respectively. Then \boldsymbol{y}' is also an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$ with $y'(v_3s_2v_4v_6v_3) < y(v_3s_2v_4v_6v_3)$, contradicting (6).

• v_1v_6 and v_3v_1 are contained in some cycles C and D in \mathcal{C}_0^y , respectively. If v_3v_1 is on C, then the multiset sum of C and $v_3s_2v_4v_6v_3$ contains arc-disjoint cycles $v_1v_6v_3v_1$, $v_6s_1v_4v_6$, and $C' = C[v_4, v_3] \cup \{v_3s_2, s_2v_4\}$; if v_3v_1 is outside C, then the multiset sum of C, D, and $v_3s_2v_4v_6v_3$ contains arc-disjoint cycles $v_1v_6v_3v_1$, $v_6s_1v_4v_6$, $C' = C[v_4, v_1] \cup \{v_1s_i, s_iv_4\}$ for i = 1 or 2, and $D' = D[v_4, v_3] \cup \{v_3s_2, s_2v_4\}$. In either situation from the optimality of \boldsymbol{y} we deduce that $y(v_3s_2v_4v_6v_3) = 0$.

Combining the above observations, we see that (20) holds. Thus $y(\mathcal{C}_2) = w(K)$, where $K = \{v_4v_1, v_4v_6, v_6v_3\}$. By (9), K is an MFAS of $T_2 \setminus a_2$ and hence $y(\mathcal{C}_2) = \tau_w(T_2 \setminus a_2)$.

Subcase 1.2. s_1v_4 is saturated by \boldsymbol{y} in T_2 and s_2v_4 is contained in some cycle $C \in \mathcal{C}_0^y$; subject to this, C is chosen to contain v_3s_2 if possible. In this subcase, observe first that both v_1s_1 and v_6s_1 are outside \mathcal{C}_0^y . Next, v_3s_2 is not saturated by \boldsymbol{y} in T_2 , for otherwise, $y(v_3s_2v_4v_6v_3) = w(v_3s_2) > 0$, so (1) holds. If both v_6v_3 and v_1s_2 are saturated by \boldsymbol{y} in T_2 , then $y(\mathcal{C}_2) = w(K)$, where $K = \{s_1v_4, v_1s_2, v_6v_3\}$. By (9), K is an MFAS of $T_2 \setminus a_2$ and hence $y(\mathcal{C}_2) = \tau_w(T_2 \setminus a_2)$. We proceed by considering two subsubcases.

(a) v_6v_3 is not saturated by \boldsymbol{y} in T_2 . Now v_4v_6 is saturated by \boldsymbol{y} in T_2 by Lemma 3.5(iii).

Assume first that v_4v_1 is not saturated by \boldsymbol{y} in T. Then both v_1v_6 and v_1s_2 are saturated by \boldsymbol{y} in T_2 by Lemma 3.5(iii). If v_1s_1 is also saturated by \boldsymbol{y} in T_2 , then $y(\mathcal{C}_2) = w(K)$, where $K = \{v_1v_6, v_4v_6, v_1s_1, v_1s_2\}$; otherwise, v_1s_1 is not saturated by \boldsymbol{y} in T. By (11), we have $y(v_1v_6s_1v_4v_1) = 0$. Let us show that

 $(21) \ y(v_6s_1v_4v_6) = 0.$

Indeed, if v_6v_3 is not saturated by \boldsymbol{y} in T, then the multiset sum of the cycles C, $v_6s_1v_4v_6$, and the unsaturated arcs v_4v_1 , v_1s_1 , and v_6v_3 (or v_3s_2 if it is outside C) contains arc-disjoint cycles $v_1s_1v_4v_1$ and $v_3s_2v_4v_6v_3$. Thus, by Lemma 3.5(vi), we have $y(v_6s_1v_4v_6) = 0$. If v_6v_3 is contained in some cycle $C \in C_0^y$, then C contains v_3v_4 or v_3s_2 . Thus the multiset sum of cycles C, $v_6s_1v_4v_6$, and the unsaturated arcs v_4v_1 and v_1s_1 contains arc-disjoint cycles $v_1s_1v_4v_1$ and one of $v_3v_4v_6v_3$ and $v_3s_2v_4v_6v_3$. Thus, by Lemma 3.5(vi), we have $y(v_6s_1v_4v_6) = 0$. This proves (21).

It follows from (19) and (21) that $y(v_1s_1v_4v_1) = w(s_1v_4) > 0$, so (1) holds. Thus we may assume that v_4v_1 is saturated by \boldsymbol{y} in T (and hence in T_2). Then we may further assume that v_3v_1 is not saturated by \boldsymbol{y} in T_2 , for otherwise, $y(\mathcal{C}_2) = w(K)$, where $K = \{v_4v_1, v_4v_6, v_3v_1\}$. Thus $y(\mathcal{C}_2) = \tau_w(T_2 \setminus a_2)$. By Lemma 3.5(vii), v_1v_6 is saturated by \boldsymbol{y} in T_2 and hence, by (10), we have $y(v_1v_6v_3v_4v_1) = 0$. Let us show that

 $(22) \ y(v_1v_6s_1v_4v_1) = 0.$

To justify this, we consider four possibilities, depending on the saturation of v_6v_3 and v_3v_1 .

• Both v_6v_3 and v_3v_1 are saturated by \boldsymbol{y} in T. Now define $\theta = \min\{w(v_6v_3) - z(v_6v_3), w(v_3v_1) - z(v_3v_1), y(v_1v_6s_1v_4v_1)\}$. Then $\theta > 0$. Let \boldsymbol{y}' be obtained from \boldsymbol{y} by replacing $y(v_1v_6v_3v_1)$ and $y(v_1v_6s_1v_4v_1)$ with $y(v_1v_6v_3v_1) + \theta$ and $y(v_1v_6s_1v_4v_1) - \theta$, respectively. Then \boldsymbol{y}' is also an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$ with $y'(v_1v_6s_1v_4v_1) < y(v_1v_6s_1v_4v_1)$, contradicting (6).

• v_3v_1 is not saturated by \boldsymbol{y} in T and v_6v_3 is contained in some cycle $C \in \mathcal{C}_0^y$. Now the multiset sum of the cycles C, $v_1v_6s_1v_4v_1$ and the unsaturated arc v_3v_1 contains arc-disjoint cycles $v_1v_6v_3v_1$ and $C' = C[v_4, v_6] \cup \{v_6s_1, s_1v_4\}$. Define $\theta = \min\{w(v_3v_1) - z(v_3v_1), y(C), y(v_1v_6s_1v_4v_1)\}$. Then $\theta > 0$. Let \boldsymbol{y}' be obtained from \boldsymbol{y} by replacing $y(v_1v_6s_1v_4v_1), y(v_1v_6v_3v_1), y(C)$, and y(C') with $y(v_1v_6s_1v_4v_1) - \theta, y(v_1v_6v_3v_1) + \theta, y(C) - \theta$, and $y(C') + \theta$, respectively. Then \boldsymbol{y}' is also an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$ with $y'(v_1v_6s_1v_4v_1) < y(v_1v_6s_1v_4v_1)$, contradicting (6).

• v_6v_3 is not saturated by \boldsymbol{y} in T and v_3v_1 is contained in some cycle $D \in \mathcal{C}_0^y$. Now D passes through $v_1s_2v_4$. Since the multiset sum of the cycles D, $v_1v_6s_1v_4v_1$, and the unsaturated arc v_6v_3 contains arc-disjoint cycles $v_1v_6v_3v_1$ and $v_1s_2v_4v_1$, by Lemma 3.5(vi), we have $y(v_1v_6s_1v_4v_1) = 0$, a contradiction.

• v_6v_3 and v_3v_1 are contained in some cycles C and D in C_0^y , respectively. Now if v_3v_1 is on C, then the multiset sum of the cycles C and $v_1v_6s_1v_4v_1$ contains arc-disjoint cycles $v_1v_6v_3v_1$, $v_1s_2v_4v_1$, and $C' = C[v_4, v_6] \cup \{v_6s_1, s_1v_4\}$; otherwise, the multiset sum of the cycles C, D, and $v_1v_6s_1v_4v_1$ contains arc-disjoint cycles $v_1v_6v_3v_1$, $v_1s_2v_4v_1$, and $C' = C[v_4, v_6] \cup \{v_6s_1, s_1v_4\}$; otherwise, the multiset sum of the cycles C, D, and $v_1v_6s_1v_4v_1$ contains arc-disjoint cycles $v_1v_6v_3v_1$, $v_1s_2v_4v_1$, and $C' = C[v_4, v_6] \cup \{v_6s_1, s_1v_4\}$, and $D' = D[v_4, v_3] \cup C[v_3, v_4]$. In each situation from the optimality of \boldsymbol{y} we deduce that $y(v_1v_6s_1v_4v_1) = 0$.

Combining the above observations, we see that (22) holds. Thus $y(\mathcal{C}_2) = w(K)$, where $K = \{v_4v_1, v_4v_6, v_1v_6\}$. By (9), K is an MFAS of $T_2 \setminus a_2$ and hence $y(\mathcal{C}_2) = \tau_w(T_2 \setminus a_2)$.

(b) v_6v_3 is saturated by \boldsymbol{y} in T_2 . Now v_1s_2 is not saturated by \boldsymbol{y} in T_2 . By Lemma 3.5(vii), v_4v_1 is saturated by \boldsymbol{y} in T_2 . Since $z(v_1s_2) > 0$, by Lemma 5.2(vii), we have $z(v_1s_1) = 0$. Furthermore, we may assume that $y(v_1v_6v_3v_4v_1) = 0$, for otherwise, both v_3v_1 and v_4v_6 saturated by \boldsymbol{y} in T_2 by (10). Hence $y(\mathcal{C}_2) = w(K)$, where $K = \{v_4v_1, v_4v_6, v_3v_1\}$. If $y(v_1v_6s_1v_4v_1) = 0$, then $y(\mathcal{C}_2) = w(K)$, where $K = \{v_4v_1, v_6v_3, s_1v_4\}$; if $y(v_1v_6s_1v_4v_1) > 0$ then, by (11), v_4v_6 is saturated by \boldsymbol{y} in T_2 , and either v_3v_1 is saturated by \boldsymbol{y} in T_2 or $y(v_3v_4v_6v_3) = y(v_3s_2v_4v_6v_3) = 0$. Thus $y(\mathcal{C}_2) = w(J)$, where $J = \{v_4v_1, v_4v_6, v_3v_1\}$ or $\{v_4v_1, v_4v_6, v_6v_3\}$. Therefore $y(\mathcal{C}_2) = \tau_w(T_2 \setminus a_2)$.

Subcase 1.3. $s_i v_4$ is saturated by \boldsymbol{y} in T_2 for i = 1 and 2. In this subcase, since $\mathcal{C}_0^y \neq \emptyset$, $v_3 v_4$ is contained in some cycle in \mathcal{C}_0^y . By (12), we have $y(v_3 s_2 v_4 v_6 v_3) = 0$. Thus $y(v_1 s_2 v_4 v_1) = w(s_2 v_4) > 0$ and (1) holds. This completes the proof of Claim 1.

Claim 2. y(C) is a positive integer for some $C \in \mathcal{C}_2^y$ or $\nu_w^*(T)$ is an integer.

To justify this, note that $y(\mathcal{C}_2) = w(K)$ for some MFAS K of $T_2 \setminus a_2$ by Claim 1. From the proof of Claim 1, we see that K has ten possibilities. So we proceed by considering them accordingly.

Subcase 2.1. K is one of $\{v_1v_6, v_4v_6, v_1s_1, s_2v_4\}, \{v_4v_1, v_6v_3, v_6s_1\}, \text{ and } \{v_4v_1, v_6v_3, s_1v_4\}.$

In this subcase, by (15) and (19), we have $y(v_1s_2v_4v_1) = w(s_2v_4) > 0$ if $K = \{v_1v_6, v_4v_6, v_1s_1, s_2v_4\}$, $y(v_6s_1v_4v_6) = w(v_6s_1) > 0$ if $K = \{v_4v_1, v_6v_3, v_6s_1\}$, and $y(v_6s_1v_4v_6) = w(s_1v_4) > 0$ if $K = \{v_4v_1, v_6v_3, s_1s_4\}$, as desired.

Subcase 2.2. $K = \{v_3v_1, v_3v_4, v_6s_1, v_1s_1, v_1s_2, v_3s_2\}.$

In this subcase, by (15) and (19), we have $y(v_6s_1v_4v_6) + y(v_1v_6s_1v_4v_1) = w(v_6s_1) > 0$ and $y(v_3v_4v_6v_3) + y(v_1v_6v_3v_4v_1) = w(v_3v_4)$. So we may assume that $y(v_1v_6s_1v_4v_1) > 0$, for otherwise, $y(v_6s_1v_4v_6) = w(v_6s_1) > 0$. It follows from Lemma 3.5(v) that v_4v_6 is saturated by \boldsymbol{y} in T_2 . If $y(v_1v_6v_3v_4v_1) > 0$, then $y(v_6s_1v_4v_6) = 0$ by (10), and hence $y(v_1v_6s_1v_4v_1) = w(v_6s_1) > 0$; if $y(v_1v_6v_3v_4v_1) = 0$, then $y(v_3v_4v_6v_3) = w(v_3v_4)$ and so $y(v_6s_1v_4v_6) = w(v_4v_6) - y(v_3v_4v_6v_3)$. Since $w(v_6s_1) > 0$, at least one of $y(v_6s_1v_4v_6)$ and $y(v_1v_6s_1v_4v_1)$ is a positive integer.

Subcase 2.3. $K = \{v_6v_3, v_6s_1, v_1s_1, v_1s_2\}$ or $\{v_6v_3, s_1v_4, v_1s_2\}$.

In this subcase, we only consider the situation when $K = \{v_6v_3, s_1v_4, v_1s_2\}$, as the proof in the other situation goes along the same line.

Given the arcs in K, we have $y(v_1s_2v_4v_1) = w(v_1s_2)$, $y(v_1s_1v_4v_1) + y(v_6s_1v_4v_6) + y(v_1v_6s_1v_4v_1)$ $= w(s_1v_4) > 0$, and $y(v_1v_6v_3v_1) + y(v_3v_4v_6v_3) + y(v_1v_6v_3v_4v_1) + y(v_3s_2v_4v_6v_3) = w(v_6v_3)$. If $y(v_1v_6v_3v_4v_1) > 0$, then $y(v_6s_1v_4v_6) = 0$ by (10). Thus $y(v_1s_1v_4v_1) + y(v_1v_6s_1v_4) = w(s_1v_4)$. If $y(v_1v_6s_1v_4v_1) > 0$, then one more equality $y(v_1s_1v_4v_1) = w(v_1s_1)$ holds by (11). Since $w(s_1v_4) > 0$, at least one of $y(v_1s_1v_4v_1)$ and $y(v_1v_6s_1v_4v_1)$ is a positive integer. So we assume that $y(v_1v_6v_3v_4v_1) = 0$ in the following discussion.

Assume first that $y(v_1v_6s_1v_4v_1) > 0$. Then $y(v_1s_1v_4v_1) = w(v_1s_1)$ and $y(v_6s_1v_4v_6) + y(v_3v_4v_6v_3) + y(v_3s_2v_4v_6v_3) = w(v_4v_6)$ by (11). If $y(v_3v_4v_6v_3) = y(v_3s_2v_4v_6v_3) = 0$, then $y(v_6s_1v_4v_6) = w(v_4v_6)$, and hence $y(v_1v_6s_1v_4v_1) = w(s_1v_4) - y(v_1s_1v_4v_1) - y(v_6s_1v_4v_6)$. Since $w(s_1v_4) > 0$, at least one of $y(v_1s_1v_4v_1)$, $y(v_6s_1v_4v_6)$, and $y(v_1v_6s_1v_4v_1)$ is a positive integer. So we assume that $y(v_3v_4v_6v_3)$ or $y(v_3s_2v_4v_6v_3) = w(v_3v_4)$ holds if $y(v_3s_2v_4v_6v_3) > 0$. Thus $y(v_6s_1v_4v_6)$, $y(v_1v_6s_1v_4v_1)$, $y(v_3v_4v_6v_3)$ are all integers.

Assume next that $y(v_1v_6s_1v_4v_1) = 0$. Then $y(v_1s_1v_4v_1) + y(v_6s_1v_4v_6) = w(s_1v_4)$. If $y(v_3s_2v_4v_6v_3) > 0$, then $y(v_6v_3v_4v_6) = w(v_3v_4)$ by (12), so $y(v_1v_6v_3v_1) + y(v_3s_2v_4v_6v_3) = w(v_6v_3) - w(v_3v_4)$; if $y(v_3s_2v_4v_6v_3) = 0$, then $y(v_1v_6v_3v_1) + y(v_6v_3v_4v_6) = w(v_6v_3)$. Since both v_1v_6 and v_3v_1 are outside C_0^y , from the choice of \boldsymbol{y} , we deduce that $y(v_1v_6v_3v_1) = \min\{w(v_3v_1), w(v_1v_6)\}$. This implies that in either situation $y(v_3s_2v_4v_6v_3)$ and $y(v_6v_3v_4v_6)$ are integers. On the other hand, since both v_4v_6 and v_6s_1 are outside C_0^y , by (8), we obtain $y(v_6s_1v_4v_6) = \min\{w(v_6s_1), w(v_4v_6) - y(v_6v_3v_4v_6) - y(v_3s_2v_4v_6v_3)\}$, which is also an integer. Since $w(s_1v_4) > 0$, at least one of $y(v_1s_1v_4v_1)$ and $y(v_6s_1v_4v_6)$ is a positive integer.

Subcase 2.4. $K = \{v_1v_6, v_4v_6, v_4v_1\}.$

In this subcase, we have $y(v_1v_6v_3v_1) = w(v_1v_6)$, $y(v_1s_1v_4v_1) + y(v_1s_2v_4v_1) = w(v_4v_1)$, and $y(v_3v_4v_6v_3) + y(v_6s_1v_4v_6) + y(v_3s_2v_4v_6v_3) = w(v_4v_6)$. By Lemma 3.2(iii) and Lemma 5.2(vi), we may assume that $w(v_1v_6) = w(v_4v_1) = 0$ and thus $w(v_4v_6) = w(K) > 0$. If $y(v_3s_2v_4v_6v_3) > 0$, then $y(v_3v_4v_6v_3) = w(v_3v_4)$ by (12), and thus we may assume that $w(v_3v_4) = 0$. Hence $y(v_3v_4v_6v_3) + y(v_6s_1v_4v_6) = w(v_4v_6)$ or $y(v_6s_1v_4v_6) + y(v_3s_2v_4v_6v_3) = w(v_4v_6)$. If $y(v_6s_1v_4v_6)$ is an integer, then one of $y(v_3v_4v_6v_3)$, $y(v_6s_1v_4v_6)$, and $y(v_6s_2v_4v_6v_3)$ is a positive integer. So we assume that $y(v_6s_1v_4v_6)$ is not integral. Then we can prove that $\nu_w^*(T)$ is an integer; for a proof, see the argument of the same statement contained in the proof of (17) (with $y(v_6s_1v_4v_6)$ in place of $y(v_6s_iv_4v_6)$).

Subcase 2.5. $K = \{v_1v_6, v_4v_6, v_1s_1, v_1s_2\}.$

In this subcase, we have $y(v_1s_1v_4v_1) = w(v_1s_1)$, $y(v_1s_2v_4v_1) = w(v_1s_2)$, $y(v_1v_6v_3v_1) + y(v_1v_6v_3v_4v_1) + y(v_1v_6s_1v_4v_1) = w(v_1v_6)$, and $y(v_3v_4v_6v_3) + y(v_6s_1v_4v_6) + y(v_3s_2v_4v_6v_3) = y(v_1v_6v_3v_4v_6)$

 $w(v_4v_6)$. By Lemma 3.2(iii), we may assume that $w(v_1s_1) = w(v_1s_2) = 0$.

Assume first that $y(v_1v_6v_3v_4v_1) > 0$. Then $y(v_6s_1v_4v_6) = 0$ and $y(v_1v_6v_3v_1) = w(v_3v_1)$ by (10). So $y(v_3v_4v_6v_3) + y(v_3s_2v_4v_6v_3) = w(v_4v_6)$. By (12), one more equality $y(v_3v_4v_6v_3) = w(v_3v_4)$ holds if $y(v_3s_2v_4v_6v_3) > 0$. So both $y(v_3v_4v_6v_3)$ and $y(v_3s_2v_4v_6v_3)$ are integers. By Lemma 3.2(iii), we may assume that $w(v_3v_1)$ and $w(v_4v_6)$ are both zero. Thus $y(v_1v_6v_3v_4v_1) + y(v_1v_6s_1v_4v_1) = w(v_1v_6) > 0$. By Lemma 3.2(iii), we may assume that neither $y(v_1v_6v_3v_4v_1)$ nor $y(v_1v_6s_1v_4v_1)$ is integral. Observe that v_6s_1 is outside \mathcal{C}_0^y , for otherwise, let $C \in \mathcal{C}_0^y$ be a cycle containing v_6s_1 . Then C contains s_1v_4 . Let $C' = C[v_4, v_6] \cup \{v_6v_3, v_3v_4\}$ and $\theta = \min\{y(C), y(v_1v_6v_3v_4v_1)\}$. Let \mathbf{y}' be obtained from \mathbf{y} by replacing $y(v_1v_6v_3v_4v_1), y(v_1v_6s_1v_4v_1), y(v_1v_6s_1v_4v_1) = \theta, y(v_1v_6v_3v_4v_1) - \theta, y(v_1v_6s_1v_4v_1) + \theta, y(C) - \theta, \text{ and } y(C') + \theta, \text{ respectively}.$ Then \mathbf{y}' is also an optimal solution to $\mathbb{D}(T, \mathbf{w})$ with $y'(v_1v_6v_3v_4v_1) < y(v_1v_6v_3v_4v_1)$, contradicting (7). Let us show that $\nu_w^*(T)$ is an integer.

For this purpose, let \boldsymbol{x} be an optimal solution to $\mathbb{P}(T, \boldsymbol{w})$. Since both $y(v_1v_6s_1v_4v_1)$ and $y(v_1v_6v_3v_4v_1)$ are positive, we have $x(v_1v_6s_1v_4v_1) = x(v_1v_6v_3v_4v_1) = 1$ by Lemma 3.1(i). So $x(v_6s_1) + x(s_1v_4) = x(v_6v_3) + x(v_3v_4)$. Since $y(v_1v_6s_1v_4v_1) < w(v_6s_1)$, by Lemma 3.1(ii), we have $x(v_6s_1) = 0$, which implies $x(s_1v_4) = x(v_6v_3) + x(v_3v_4)$. For any $u \in V \setminus (V(T_2) \setminus a_2)$, if a cycle in $\mathcal{C}_0^{\boldsymbol{y}}$ contains uv_6 , then it passes through $v_6v_3v_4$. Moreover, if a cycle in $\mathcal{C}_0^{\boldsymbol{y}}$ contains us_1 , then it passes through s_1v_4 . By Lemma 3.1(iv), we obtain $x(uv_6) + x(v_6v_3) + x(v_3v_4) = x(us_1) + x(s_1v_4)$. Hence $x(uv_6) = x(us_1)$. Clearly, we may assume that this equality holds in any other situation. Let T' = (V', A') be obtained from T by deleting vertex s_1 , and let \boldsymbol{w}' be obtained from the restriction of \boldsymbol{w} to A' by setting $w'(uv_6) = w(uv_6) + w(us_1)$ for any $u \in V \setminus (V(T_2) \setminus a_2)$. Let \boldsymbol{x}' be the restriction of \boldsymbol{x} to A' and let \boldsymbol{y}' be obtained from T by replacing the path us_1v_4 with $u \in V \setminus (V(T_2) \setminus a_2)$, let C' arise from C by replacing the path us_1v_4 with $uv_6v_3v_4$, and set y'(C') = y(C) + y(C') and $y'(v_1v_6v_3v_4v_1) = y(v_1v_6v_3v_4v_1) + y(v_1v_6s_1v_4v_1)$. It is easy to see that \boldsymbol{x}' and \boldsymbol{y}' are optimal solutions to $\mathbb{P}(T', \boldsymbol{w}')$ and $\mathbb{D}(T', \boldsymbol{w}')$ is an integer.

Assume next that $y(v_1v_6v_3v_4v_1) = 0$. Then both $y(v_1v_6v_3v_1)$ and $y(v_1v_6s_1v_4v_1)$ are integers, for otherwise, neither of them is integral, because their sum is $w(v_1v_6)$. If $y(v_3v_4v_6v_3)$ or $y(v_3s_2v_4v_6v_3)$ is positive, then $y(v_1v_6v_3v_1) = w(v_3v_1)$ by (11), a contradiction. So $y(v_3v_4v_6v_3) = y(v_3s_2v_4v_6v_3) = 0$. Since v_1v_6 is saturated by \boldsymbol{y} in T_2 , the arc v_3v_1 is outside C_0^y . If v_3v_1 is is saturated by \boldsymbol{y} in T_2 , then $y(v_1v_6v_3v_1) = w(v_3v_1)$; this contradiction implies that v_3v_1 is not saturated by \boldsymbol{y} in T_2 (and hence in T). If v_6v_3 is outside C_0^y , then from the choice of \boldsymbol{y} we see that $y(v_1v_6v_3v_1) = \min\{w(v_6v_3), w(v_3v_1)\}$, a contradiction again. So we assume that v_6v_3 is contained in some cycle $C \in C_0^y$. Define $\theta = \min\{w(v_3v_1) - z(v_3v_1), y(C), y(v_1v_6s_1v_4v_1)\}$. Let $C' = C[v_4, v_6] \cup \{v_6s_1, s_1v_4\}$, and let \boldsymbol{y}' be obtained from \boldsymbol{y} by replacing $y(v_1v_6v_3v_1)$, $y(v_1v_6s_1v_4v_1), y(C)$, and y(C') with $y(v_1v_6v_3v_1) + \theta$, $y(v_1v_6s_1v_4v_1) - \theta$, $y(c') - \theta$, $y(c') + \theta$, respectively. Then \boldsymbol{y}' is also an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$ with $y'(v_1v_6s_1v_4v_1) < y(v_1v_6s_1v_4v_1)$, eontradicting (6). By Lemma 3.2(iii), we may assume $w(v_1v_6) = 0$. Thus $z(v_4v_1) = w(v_4v_1) = 0$; the remainder of the proof is exactly the same as that in the preceding subcase.

Subcase 2.6. $K = \{v_4v_1, v_4v_6, v_6v_3\}.$

In this subcase, we have $y(v_1v_6v_3v_1) = w(v_6v_3)$, $y(v_6s_1v_4v_6) = w(v_4v_6)$, and $y(v_1s_1v_4v_1) + y(v_1s_2v_4v_1) + y(v_1v_6s_1v_4v_1) = w(v_4v_1)$. Since $w(K) = \tau_w(T_2 \setminus a_2) > 0$, we have $w(v_4v_1) > 0$. By Lemma 5.2(vi), $y(v_1s_1v_4v_1)$ or $y(v_1s_2v_4v_1)$ is zero. By Lemma 3.2(iii), we may assume that $w(v_6v_3) = w(v_4v_6) = 0$ and $y(v_1v_6s_1v_4v_1) > 0$. So $y(v_1s_1v_4v_1) = w(v_1s_1)$ by (11). By Lemma 3.2(iii), we may further assume that $w(v_1s_1) = 0$. Thus $y(v_1s_2v_4v_1) + y(v_1v_6s_1v_4v_1) = w(v_4v_1)$, and hence neither $y(v_1s_2v_4v_1)$ nor $y(v_1v_6s_1v_4v_1)$ is integral. Observe that v_1s_2 is outside \mathcal{C}_0^y , for otherwise, let $C \in \mathcal{C}_0^y$ be a cycle containing v_1s_2 . Then C contains s_2v_4 . Let $C' = C[v_4, v_1] \cup \{v_1v_6, v_6s_1, s_1v_4\}$ and $\theta = \min\{y(C), y(v_1v_6s_1v_4v_1)\}$. Let \mathbf{y}' be obtained from \mathbf{y} by replacing $y(v_1s_2v_4v_1), y(v_1v_6s_1v_4v_1), y(C)$, and y(C') with $y(v_1s_2v_4v_1) + \theta, y(v_1v_6s_1v_4v_1) - \theta$, $y(C) - \theta$, and $y(C') + \theta$, respectively. Then \mathbf{y}' is also an optimal solution to $\mathbb{D}(T, \mathbf{w})$ with $y'(v_1v_6s_1v_4v_1) < y(v_1v_6s_1v_4v_1)$, contradicting (6). Furthermore, since $w(v_1s_1) = 0$, the arc v_3v_1 is also outside \mathcal{C}_0^y . Thus $w(v_3v_1) = z(v_3v_1) = 0$. Let us show that $\nu_w^*(T)$ is an integer.

For this purpose, let \boldsymbol{x} be an optimal solution to $\mathbb{P}(T, \boldsymbol{w})$. Since both $y(v_1s_2v_4v_1)$ and $y(v_1v_6s_1v_4v_1)$ are positive, we have $x(v_1s_2v_4v_1) = x(v_1v_6s_1v_4v_1) = 1$ by Lemma 3.1(i). Since $y(v_1s_2v_4v_1) < w(v_1s_2)$, we have $x(v_1s_2) = 0$ by Lemma 3.1(ii). It follows that $x(s_2v_4) = 0$ $x(v_1v_6) + x(v_6s_1) + x(s_1v_4)$. Since $w(v_1s_1) = 0$ and v_1s_2 is outside \mathcal{C}_0^y , for any $u \in V \setminus (V(T_2) \setminus a_2)$, if a cycle in \mathcal{C}_0^y contains uv_1 , then it passes through $v_1v_6s_1v_4$. Moreover, if a cycle in \mathcal{C}_0^y contains us_2 , then it passes through s_2v_4 . By Lemma 3.1(iv), we obtain $x(uv_1) + x(v_1v_6) + x(v_6, s_1) + x(v_6, s_2) + x(v_6, s_1) + x(v_6,$ $x(s_1v_4) = x(us_2) + x(s_2v_4)$. Hence $x(uv_1) = x(us_2)$. Clearly, we may assume that this equality holds in any other situation. Let T' = (V', A') be obtained from T by deleting s_2 , and let w'be the restriction of w to A' by replacing w(e) with $w(e) + w(s_2v_4)$ for $e \in \{v_1v_6, v_6s_1, s_1v_4\}$, replacing $w(uv_1)$ with $w(uv_1) + w(us_2)$ for any $u \in V \setminus (V(T_2) \setminus a_2)$, and replacing $w(v_3v_1)$ with $w(v_3v_1) + w(v_3s_2)$. Let \mathbf{x}' be obtained from \mathbf{x} by setting $x(v_3v_1) = x(v_3s_2)$. Since $w(v_3v_1) = 0$ and $w'(v_3v_1) = w(v_3s_2)$, we have $(\boldsymbol{w}')^T \boldsymbol{x}' = \boldsymbol{w}^T \boldsymbol{x}$. Let \boldsymbol{y}' be obtained from \boldsymbol{y} as follows: set $y'(v_1v_6s_1v_4v_1) = y(v_1v_6s_1v_4v_1) + y(v_1s_2v_4v_1)$; for each $C \in \mathcal{C}_0^y$ passing through us_2v_4 , let C' arise from C by replacing the path us_2v_4 with the path $uv_1v_6s_1v_4$, and set y'(C') = y(C') + y(C). From the LP-duality theorem, we see that x' and y' are optimal solutions to $\mathbb{P}(T', w')$ and $\mathbb{D}(T', w')$, respectively, with the same value $\nu_w^*(T)$ as x and y. By the hypothesis of Theorem 1.5, $\nu_w^*(T)$ is an integer.

Subcase 2.7. $K = \{v_4v_1, v_4v_6, v_3v_1\}.$

In this subcase, we have $y(v_1v_6v_3v_1) = w(v_3v_1)$, $y(v_1s_1v_4v_1) + y(v_1s_2v_4v_1) + y(v_1v_6s_1v_4v_1) + y(v_1v_6v_3v_4v_1) = w(v_4v_1)$, and $y(v_6s_1v_4v_6) + y(v_3v_4v_6v_3) + y(v_3s_2v_4v_6v_3) = w(v_4v_6)$. By Lemma 3.2(iii), we may assume that $w(v_3v_1) = 0$.

Assume first that $y(v_1v_6v_3v_4v_1) > 0$. Then $y(v_6s_1v_4v_6) = 0$ by (10). If $y(v_3s_2v_4v_6v_3) > 0$, then $y(v_3v_4v_6v_3) = w(v_3v_4)$ by (12); otherwise, $y(v_3v_4v_6v_3) = w(v_4v_6)$. So both $y(v_3v_4v_6v_3)$ and $y(v_3s_2v_4v_6v_3)$ are integers in either situation. Thus we may assume that $w(v_4v_6) = 0$. The remainder of the proof is exactly the same as that of (16).

Assume next that $y(v_1v_6v_3v_4v_1) = 0$. Consider first the subsubcase when $w(v_4v_1) = 0$. Then $w(v_4v_6) = w(K) > 0$. If $y(v_3s_2v_4v_6v_3) > 0$, then $y(v_3v_4v_6v_3) = w(v_3v_4)$ by (12), so $y(v_6s_1v_4v_6) + y(v_3s_2v_4v_6v_3) = w(v_4v_6) - w(v_3v_4)$; if $y(v_3s_2v_4v_6v_3) = 0$, then $y(v_6s_1v_4v_6) + y(v_3v_4v_6v_3) = w(v_4v_6)$. It can be shown that $\nu_w^*(T)$ is an integer; for a proof, see the argument of the same statement contained in the proof of (17).

Consider next the subsubcase when $w(v_4v_1) > 0$. Observe that $y(v_1v_6s_1v_4v_1) > 0$ and $y(v_3s_2v_4v_6v_3) = 0$, for otherwise, since $w(v_1s_1)w(v_1s_2) = 0$ by Lemma 5.2(vi), at most one of $y(v_1s_1v_4v_1)$ and $y(v_1s_2v_4v_1)$ is positive. Hence, if $y(v_1v_6s_1v_4v_1) = 0$, then either $y(v_1s_1v_4v_1) = w(v_4v_1)$ or $y(v_1s_2v_4v_1) = w(v_4v_1)$; if $y(v_1v_6s_1v_4v_1) > 0$ and $y(v_3s_2v_4v_6v_3) > 0$, then, by (11), we have $y(v_1s_1v_4v_1) = w(v_1s_1), y(v_1s_2v_4v_1) = w(v_1s_2)$. So $y(v_1v_6s_1v_4v_1) = w(v_4v_1) - w(v_1s_1) - w(v_1s_2)$. By Lemma 3.2(iii), we see that $\nu_w^*(T)$ is an integer. The preceding observation together

with (11) implies that $y(v_1s_1v_4v_1) = w(v_1s_1)$, $y(v_1s_2v_4v_1) + y(v_1v_6s_1v_4v_1) = w(v_4v_1) - w(v_1s_1)$, and $y(v_6s_1v_4v_6) + y(v_3v_4v_6v_3) = w(v_4v_6)$. Lemma 3.2(iii) allows us to assume that $w(v_1s_1) = 0$ and that neither $y(v_1s_2v_4v_1)$ nor $y(v_1v_6s_1v_4v_1)$ is integral.

It can then be shown that v_1s_2 is outside \mathcal{C}_0^y and $\nu_w^*(T)$ is an integer; for a proof, see the argument of the same statement contained in the preceding case.

Combining the above seven subcases, we see that Claim 2 holds. Hence, by Lemma 3.2(iii), the optimal value $\nu_w^*(T)$ of $\mathbb{D}(T, w)$ is integral, as described in (1) above.

To establish the corresponding lemmas for the cases when $T_2/S \in \{G_4, G_5, G_6\}$, we need some further preparations.

Lemma 5.10. If $T_2/S \in \{G_5, G_6\}$, then we may assume that $\min\{w(v_1v_3), w(v_3v_4), w(v_4v_1)\} = 0$.

Proof. Let $\theta = \min\{w(v_1v_3), w(v_3v_4), w(v_4v_1)\}$ and $C_0 = v_1v_3v_4v_1$. Assume the contrary: $\theta > 0$. Let \boldsymbol{y} be an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$ such that

(1) $y(\mathcal{C}_2)$ is maximized; and

(2) subject to (1), $(y(\mathcal{D}_q), y(\mathcal{D}_{q-1}), \ldots, y(\mathcal{D}_3))$ is minimized lexicographically.

Let $C'_2 = C_2 \setminus \{C_0\}$. Note that every cycle in C'_2 passes through *b*. By Lemma 3.5(vii), at least one of v_1v_3 , v_3v_4 , and v_4v_1 is saturated by \boldsymbol{y} in T_2 , say v_1v_3 (by symmetry). Thus $w(v_1v_3) = \theta$. We propose to show that

(3) there is no cycle $C \in \mathcal{C}'_2$ with y(C) > 0 passing through v_1v_3 .

Assume the contrary: v_1v_3 is contained in some cycle $C_1 \in \mathcal{C}'_2$ with $y(C_1) > 0$. Clearly, $|C_1| \geq 4$. If neither v_3v_4 nor v_4v_1 is saturated by \boldsymbol{y} in T, then $\theta_1 = \min\{w(v_3v_4) - z(v_3v_4), w(v_4v_1) - z(v_4v_1)\} > 0$. Let \boldsymbol{y}' be obtained from \boldsymbol{y} by replacing $y(C_1)$ and $y(C_0)$ with $y(C_1) - \theta_1$ and $y(C_0) + \theta_1$, respectively. Then \boldsymbol{y}' is an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$ with $y'(C_1) < y(C_1)$, contradicting (2). Thus at least one of v_3v_4 and v_4v_1 is saturated by \boldsymbol{y} in T. We proceed by considering two cases.

• Both v_3v_4 and v_4v_1 are saturated by \boldsymbol{y} in T. In this case, let $C_2 \in \mathcal{C}_0^y \cup \mathcal{C}_2'$ be a cycle containing v_3v_4 with $y(C_2) > 0$; subject to this, C_2 is chosen to contain v_4v_1 , if possible. If v_4v_1 is on C_2 , then the multiset sum of C_1 and C_2 contains three arc-disjoint cycles C_0 , $C_1' = \{bv_1\} \cup C_2[v_1, b]$, and $C_2' = C_2[b, v_3] \cup C_1[v_3, b]$. Define $\epsilon = \min\{y(C_1), y(C_2)\}$. Let \boldsymbol{y}' be obtained from \boldsymbol{y} by replacing $y(C_0)$ with $y(C_0) + \epsilon$, and replacing $y(C_i)$ and $y(C_i')$ with $y(C_i) - \epsilon$ and $y(C_i') + \epsilon$, respectively, for i = 1, 2. Then \boldsymbol{y}' is an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$ with $(\boldsymbol{y}')^T \mathbf{1} = \boldsymbol{y}^T \mathbf{1} + \epsilon$, a contradiction. If v_4v_1 is outside C_2 , then there exists a cycle $C_3 \in \mathcal{C}_0^y \cup \mathcal{C}_2'$ containing v_4v_1 with $y(C_3) > 0$. Observe that the multiset sum of C_1, C_2 , and C_3 contains four arc-disjoint cycles $C_0, C_1' = \{bv_1\} \cup C_3[v_1, b], C_2' = C_2[b, v_3] \cup C_1[v_3, b]$, and $C_3' = C_3[b, v_4] \cup C_2[v_4, b]$. Define $\epsilon = \min_{1 \le i \le 3} y(C_i)$. Let \boldsymbol{y}' be obtained from \boldsymbol{y} by replacing $y(C_0)$ with $y(C_0) + \epsilon$, and replacing $y(C_i)$ and $y(C_i')$ with $y(C_i) - \epsilon$ and $y(C_i') + \epsilon$, respectively, for $1 \le i \le 3$. Then \boldsymbol{y}' is an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$ with $(\boldsymbol{y}')^T \mathbf{1} = \boldsymbol{y}^T \mathbf{1} + \epsilon$, a contradiction to $\mathbb{D}(T, \boldsymbol{w})$ with $y(C_i) - \epsilon$ and $y(C_i') + \epsilon$, respectively, for $1 \le i \le 3$. Then \boldsymbol{y}' is an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$ with $(\boldsymbol{y}')^T \mathbf{1} = \boldsymbol{y}^T \mathbf{1} + \epsilon$, a contradiction again.

• Exactly one of v_3v_4 and v_4v_1 is saturated by \boldsymbol{y} in T. In this case, by symmetry, we may assume that v_3v_4 is saturated while v_4v_1 is not. Let $C_2 \in \mathcal{C}_0^y \cup \mathcal{C}_2'$ be a cycle containing v_3v_4 with $y(C_2) > 0$. Then the multiset sum of C_1 , C_2 , and the unsaturated arc v_4v_1 contains two arc-disjoint cycles C_0 and $C'_2 = C_2[b, v_3] \cup C_1[v_3, b]$. Clearly, $C'_2 \in \mathcal{C}_2'$ if $C_2 \in \mathcal{C}_2'$. Define $\epsilon =$ $\min\{y(C_1), y(C_2), w(v_4v_1) - z(v_4v_1)\}$. Let \boldsymbol{y}' be obtained from \boldsymbol{y} by replacing $y(C_0)$ with $y(C_0) +$ ϵ , replacing $y(C_1)$ with $y(C_1) - \epsilon$, and replacing $y(C_2)$ and $y(C'_2)$ with $y(C_2) - \epsilon$ and $y(C'_2) + \epsilon$, respectively. Then y' is an optimal solution to $\mathbb{D}(T, w)$ with $y'(C_1) < y(C_1)$, contradicting (2).

Combining the above two cases, we see that (3) holds. So $y(C_0) = \theta > 0$, and hence $\mathbb{D}(T, w)$ has an integral optimal solution by Lemma 3.2(iii). This proves the lemma.

Let $Q = V(T_2) \setminus (S \cup \{b_2, a_2\})$. Then $Q = \{v_2, v_3\}$ if $T_2/S = G_4$, $Q = \{v_1, v_3, v_4\}$ if $T_2/S = G_5$, and $Q = \{v_1, v_2, v_3, v_4\}$ if $T_2/S = G_6$. Moreover, $v_1v_3v_4v_1$ is the unique cycle in T[Q] when $T_2/S = G_5$ or G_6 . Let T' = T if $T_2/S = G_4$, and let T' be obtained from T be reversing precisely one arc e on $v_1v_3v_4v_1$ with w(e) = 0 (see Lemma 5.9) so that T[Q] is acyclic if $T_2/S = G_5$ and G_6 . From Lemma 2.3 we see that T' is also Möbius-free. Note that every integral optimal solution to $\mathbb{D}(T, \boldsymbol{w})$ naturally corresponds to an integral optimal solution to $\mathbb{D}(T', \boldsymbol{w})$ with the same value, and vice versa. So we shall not make effort to distinguish between $\mathbb{D}(T, \boldsymbol{w})$ and $\mathbb{D}(T', \boldsymbol{w})$. Let us label the vertices in Q as q_1, q_2, \ldots, q_t such that q_jq_i is an arc in T' for $1 \leq i < j \leq t$, where t = |Q|.

Lemma 5.11. Suppose $T_2/S \in \{G_4, G_5, G_6\}$. Let \boldsymbol{x} and \boldsymbol{y} be optimal solutions to $\mathbb{P}(T, \boldsymbol{w})$ and $\mathbb{D}(T, \boldsymbol{w})$, respectively. Then we may assume that the following statements hold:

- (i) For each $q_i \in Q$, there exists exactly one $s_k \in S$ such that $z(q_i s_k) > 0$;
- (*ii*) $z(q_jq_i) = w(q_jq_i) = 0$ for $1 \le i < j \le t$, where t = |Q|;
- (iii) If $z(q_i s_k) z(q_j s_k) > 0$ for some $1 \le i < j \le t$ and $s_k \in S$, then $x(q_i s_k) \ne x(q_j s_k)$.

Proof. As remarked above the lemma, we may simply treat T, $\mathbb{P}(T, \boldsymbol{w})$, and $\mathbb{D}(T, \boldsymbol{w})$ as T' and $\mathbb{P}(T', \boldsymbol{w})$, and $\mathbb{D}(T', \boldsymbol{w})$, respectively, in our proof.

(i) By Lemma 5.2(vi), for each vertex $q_i \in Q$, there exists at most one $s_k \in S$ with $z(q_i s_k) > 0$. Assume on the contrary that $z(q_i s_k) = 0$ for all $s_k \in S$. Then no cycle in \mathcal{C}^y passes through q_i . Let $G = T \setminus q_i$ and let \boldsymbol{w}' be the restriction of \boldsymbol{w} to the arcs of G. By the hypothesis of Theorem 1.5, $\mathbb{D}(G, \boldsymbol{w}')$ has an integral optimal solution, and so does $\mathbb{D}(T', \boldsymbol{w})$. Hence we assume that (i) holds.

(ii) Assume the contrary: $z(q_jq_i) > 0$; subject to this, j + i is minimized. If there exists exactly one $s_k \in S$ such that $z(q_is_k)z(q_js_k) > 0$, then the proof is the same as that of Lemma 5.2(i) (with s_k , q_i , and q_j in place of v_0 , s_i , and s_j , respectively), so we omit the details here. In view of Lemma 5.2(i), we may assume that $z(q_is_1)z(q_js_2) > 0$. We proceed by considering two cases.

Case 1. $x(q_jq_i) = 0$. In this case, we may assume that $x(uq_j) = x(uq_i)$ for any $u \in V \setminus (S \cup Q)$. Indeed, if $z(uq_j)z(uq_i) > 0$, then Lemma 3.1(iv) implies $x(uq_j) = x(uq_i)$; if $z(uq_j)z(uq_i) = 0$, then $w(us'_i)w(us'_j) = 0$ by Lemma 3.2(i). Thus we may modify $x(uq_j)$ and $x(uq_i)$ so that they become equal. Let T' = (V', A') be obtained from T by identifying q_j with q_i ; we still use q_i to denote the resulting vertex. Let w' be obtained from the restriction of w to A' by replacing $w(uq_i)$ with $w(uq_j) + w(uq_i)$ for any $u \in V \setminus (S \cup Q)$. Let x' and y' be the projections of x and y onto T', respectively. From the LP-duality theorem, it is easy to see that x' and y' are optimal solutions to $\mathbb{P}(T, w')$ and $\mathbb{D}(T, w')$, respectively, with the same value as x and y. By the hypothesis of Theorem 1.5, $\nu_w^*(T)$ is an integer. It follows from Lemma 3.4(ii) that $\mathbb{D}(T, w)$ has an integral optimal solution.

Case 2. $x(q_jq_i) > 0$. In this case, $z(q_jq_i) = w(q_jq_i) > 0$ by Lemma 3.1(iii). Let C_1 and C_2 be two cycles in C^y that passes through q_jq_i and q_js_2 , respectively. Clearly, both C_1 and C_2 pass

through b. By Lemma 3.1(iv), we have $x(q_jq_i) + x(q_is_1) + x(s_1b) = x(q_js_2) + x(s_2b)$. Let \boldsymbol{w}' be obtained from \boldsymbol{w} by replacing $w(e_1)$ with $w(e_1) + w(q_jq_i)$ for $e_1 = q_js_2$ and s_2b and replacing $w(e_2)$ with $w(e_2) - w(q_jq_i)$ for $e_2 = q_jq_i$, q_is_1 , and s_1b . Let $\boldsymbol{x}' = \boldsymbol{x}$, and let \boldsymbol{y}' be obtained from \boldsymbol{y} as follows: for each cycle passing through q_jq_i , let C' be the cycle arising from C by replacing the path $q_jq_is_1b$ with q_js_2b . From the LP-duality theorem, we see that \boldsymbol{x}' and \boldsymbol{y}' are optimal solutions to $\mathbb{P}(T, \boldsymbol{w}')$ and $\mathbb{D}(T, \boldsymbol{w}')$, respectively, with the same value $\nu_w^*(T)$ as \boldsymbol{x} and \boldsymbol{y} . Since w'(A) < w(A), by the hypothesis of Theorem 1.5, $\nu_w^*(T)$ is an integer. It follows from Lemma 3.4(ii) that $\mathbb{D}(T, \boldsymbol{w})$ has an integral optimal solution.

Combining the above two cases, we may assume that $z(q_iq_i) = 0$.

(iii) Since the proof is the same as that of Lemma 5.2(iv) (with s_k , q_i , and q_j in place of v_0 , s_i , and s_j , respectively), we omit the routine details here.

Lemma 5.12. If $T_2/S = G_4$, then $\mathbb{D}(T, w)$ has an integral optimal solution.

Proof. Recall that $(b_2, a_2) = (v_1, v_5)$, $s^* = v_4$, and $Q = \{v_2, v_3\}$. Given an optimal solution \boldsymbol{y} to $\mathbb{D}(T, \boldsymbol{w})$, set $\varphi(s_i) = \{u : z(us_i) > 0 \text{ for } u \in V(T_2) \setminus a_2\}$ for each $s_i \in S$. By Lemma 5.2(i) and (vi), we have

(1) $\varphi(s_i) \cap \varphi(s_j) = \emptyset$ whenever $i \neq j$.

From (1) and Lemma 5.10(i), we see that

(2) there exists at least one and at most two vertices s_i 's in S with $\varphi(s_i) \neq \emptyset$.

Lemma 5.2(i) allows us to assume that

(3) if $\varphi(s_i) \neq \emptyset$, then $i \in \{1, 2\}$.

By Lemma 5.10(ii), we obtain

(4) $w(v_2v_3) = z(v_2v_3) = 0.$

In the remainder of our proof, we reserve \boldsymbol{y} for an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$ such that

(5) $y(\mathcal{C}_2)$ is maximized; and

(6) subject to (5), $(y(\mathcal{D}_q), y(\mathcal{D}_{q-1}), \ldots, y(\mathcal{D}_3))$ is minimized lexicographically.

Claim. y(C) is integral for some $C \in \mathcal{C}_2^y$.

To justify this, we distinguish between two cases.

Case 1. $\varphi(s_i) = \{v_2\}$ for i = 1 or 2.

In this case, by Lemma 5.2(i) and Lemma 5.10(i), we may assume that $\varphi(s_1) = \{v_2\}$ and $\varphi(s_2) = \{v_3\}$. By (4), we obtain

(7) $\mathcal{C}_2^y \subseteq \{v_1 v_2 s_1 v_1, v_1 v_3 s_2 v_1\}.$

From Lemma 3.5(vii), we deduce that $y(v_1v_2s_1v_1) = \min\{w(v_1v_2), w(v_2s_1), w(s_1v_1)\}$ and $y(v_1v_3s_2v_1) = \min\{w(v_1v_3), w(v_3s_2), w(s_2v_1)\}$. If both $y(v_1v_2s_1v_1)$ and $y(v_1v_3s_2v_1)$ are zero, then $\tau_w(T_2 \setminus a_2) = \min\{w(v_1v_2), w(v_2s_1), w(s_1v_1)\} + \min\{w(v_1v_3), w(v_3s_2), w(s_2v_1)\} = 0$, contradicting (α). Therefore, $y(v_1v_2s_1v_1)$ or $y(v_1v_3s_2v_1)$ is a positive integer.

Case 2. $\varphi(s_i) \neq \{v_2\}.$

In this case, Lemma 5.10(i), (2) and (3) allow us to assume that $\varphi(s_1) = \{v_2, v_3\}$. By (4), we have

(8) $C_2^y \subseteq \{v_1v_2s_1v_1, v_1v_3s_1v_1\}.$

By Lemma 5.2(iii), we also obtain $z(s_1v_1) = w(s_1v_1) > 0$. Assume first that s_1v_1 is outside C_0^y . Then both v_2s_1 and v_3s_1 are outside C_0^y , and s_1v_1 is saturated by \boldsymbol{y} in T_2 . So $y(v_1v_2s_1v_1) + y(v_1v_3s_1v_1) = w(s_1v_1) > 0$. Observe that both $y(v_1v_2s_1v_1)$ and $y(v_1v_3s_1v_1)$ are integral, for otherwise, $0 < y(v_1v_is_1v_1) < w(v_is_1)$ for i = 2, 3, by Lemma 3.1(i) and (ii), we have $x(v_2s_1) = x(v_3s_1) = 0$, contradicting Lemma 5.9(iii). Hence $y(v_1v_2s_1v_1)$ or $y(v_1v_3s_1v_1)$ is a positive integer.

Assume next that s_1v_1 is contained in some cycle $C \in C_0^y$. From Lemma 3.5(vii), we see that $y(v_1v_is_1v_1) = \min\{w(v_1v_i), w(v_is_1)\}$ for i = 2, 3. If $y(v_1v_is_1v_1) = 0$ for i = 2, 3, then $\tau_w(T_2 \setminus a_2) = \sum_{i=1}^2 \min\{w(v_1v_i), w(v_is_1)\} = 0$, contradicting (α) . Therefore $y(v_1v_2s_1v_1)$ or $y(v_1v_3s_1v_1)$ is a positive integer. So the above Claim is established.

From the above Claim and Lemma 3.2(iii), we conclude that $\mathbb{D}(T, w)$ has an integral optimal solution.

Lemma 5.13. If $T_2/S = G_5$, then $\mathbb{D}(T, w)$ has an integral optimal solution.

Proof. Recall that $(b_2, a_2) = (v_2, v_6)$, $s^* = v_5$, and $Q = \{v_1, v_3, v_4\}$. Given an optimal solution \boldsymbol{y} to $\mathbb{D}(T, \boldsymbol{w})$, set $\varphi(s_i) = \{u : z(us_i) > 0 \text{ for } u \in V(T_2) \setminus a_2\}$ for each $s_i \in S$. By Lemma 5.2(i) and (vi), we have

(1) $\varphi(s_i) \cap \varphi(s_j) = \emptyset$ whenever $i \neq j$.

From (1) and Lemma 5.10(i), we see that

(2) there exists at least one and at most three vertices s_i 's in S with $\varphi(s_i) \neq \emptyset$. Lemma 5.2(i) allows us to assume that

(3) if $\varphi(s_i) \neq \emptyset$, then $i \in \{1, 2, 3\}$.

By Lemma 5.10(ii), we obtain

(4) w(e) = z(e) = 0 for $e \in \{v_1v_3, v_3v_4, v_4v_1\}.$

In the remainder of our proof, we reserve \boldsymbol{y} for an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$ such that

(5) $y(\mathcal{C}_2)$ is maximized; and

(6) subject to (5), $(y(\mathcal{D}_q), y(\mathcal{D}_{q-1}), \ldots, y(\mathcal{D}_3))$ is minimized lexicographically.

Claim. y(C) is integral for some $C \in \mathcal{C}_2^y$.

To justify this, we consider three possible cases (see the structure of G_5), depending on the size of $\varphi(s_i)$ for $1 \le i \le 3$.

Case 1. $|\varphi(s_i)| = 1$ for each $1 \le i \le 3$.

In this case, by Lemma 5.10(i), (2) and (3), we may assume that $\varphi(s_1) = \{v_1\}, \varphi(s_2) = \{v_3\}$, and $\varphi(s_3) = \{v_4\}$. By (4), we obtain

(7) $C_2^y \subseteq \{v_2v_1s_1v_2, v_2v_3s_2v_2, v_2v_4s_3v_2\}.$

From Lemma 3.5(vii), we deduce that $y(v_2v_1s_1v_2) = \min\{w(v_2v_1), w(v_1s_1), w(s_1v_2)\}, y(v_2v_3s_2v_2) = \min\{w(v_2v_3), w(v_3s_2), w(s_2v_2)\}, \text{ and } y(v_2v_4s_3v_2) = \min\{w(v_2v_4), w(v_4s_3), w(s_3v_2)\}.$ If $y(v_2v_1s_1v_2), y(v_2v_3s_2v_2)$, and $y(v_2v_4s_3v_2)$ are all zero, then $\tau_w(T_2 \setminus a_2) = \min\{w(v_2v_1), w(v_1s_1), w(s_1v_2)\} + \min\{w(v_2v_3), w(v_3s_2), w(s_2v_2)\} + \min\{w(v_2v_4), w(v_4s_3), w(s_3v_2)\} = 0$, contradicting (α). Therefore, at least one of $y(v_2v_1s_1v_2), y(v_2v_3s_2v_2)$, and $y(v_2v_4s_3v_2)$ is a positive integer.

Case 2. $|\varphi(s_i)| = 1$ for exactly one $i \in \{1, 2, 3\}$.

In this case, by Lemma 5.10(i), (2) and (3), we may assume that $\varphi(s_1) = \{v_1\}, \varphi(s_2) = \{v_3, v_4\}$. By (4), we have

(8) $\mathcal{C}_2^y \subseteq \{v_2v_1s_1v_2, v_2v_3s_2v_2, v_2v_4s_2v_2\}.$

From Lemma 3.5(vii), we see that $y(v_2v_1s_1v_2) = \min\{w(v_2v_1), w(v_1s_1), w(s_1v_2)\}$. If $y(v_2v_1s_1v_2) > 0$, we are done. So we assume that $y(v_2v_1s_1v_2) = 0$. Since $w(v_1s_1)w(s_1v_2) > 0$, we obtain $w(v_2v_1) = \min\{w(v_2v_1), w(v_1s_1), w(s_1v_2)\} = 0$. By Lemma 5.2(iii), we have $z(s_2v_2) = w(s_2v_2) > 0$.

Assume first that s_2v_2 is outside C_0^y . Then both v_3s_2 and v_4s_2 are outside C_0^y , and s_2v_2 is saturated by \boldsymbol{y} in T_2 . Hence $y(v_2v_3s_2v_2) + y(v_2v_4s_2v_2) = w(s_2v_2) > 0$. Observe that both $y(v_2v_3s_2v_2)$ and $y(v_2v_4s_2v_2)$ are integral, for otherwise, since $0 < y(v_2v_is_2v_2) < w(v_is_2)$ for i = 3, 4, by Lemma 3.1(i) and (ii), we have $x(v_3s_2) = x(v_4s_2) = 0$, contradicting Lemma 5.9(iii). Hence both $y(v_2v_3s_2v_2)$ and $y(v_2v_4s_2v_2)$ are positive integers.

Assume next that s_2v_2 is contained in some cycle $C \in \mathcal{C}_0^y$. From Lemma 3.5(vii), we see that $y(v_2v_is_2v_2) = \min\{w(v_2v_i), w(v_is_2)\}$ for i = 3, 4. If $y(v_2v_is_2v_2) = 0$ for i = 3, 4, then $\tau_w(T_2 \setminus a_2) = w(v_2v_1) + \sum_{i=3}^4 \min\{w(v_2v_i), w(v_is_2)\} = 0$, contradicting (α). Therefore $y(v_2v_3s_2v_2)$ or $y(v_2v_4s_2v_2)$ is a positive integer.

Case 3. $|\varphi(s_i)| \neq 1$ for any $i \in \{1, 2, 3\}$.

In this case, by Lemma 5.10(i), (2), and (3), we may assume that $\varphi(s_1) = \{v_1, v_3, v_4\}$ (see the structure of G_5). By (4), we obtain

(9) $\mathcal{C}_2^y \subseteq \{v_2v_1s_1v_2, v_2v_3s_1v_2, v_2v_4s_1v_2\}.$

By Lemma 5.2(iii), we have $z(s_1v_2) = w(s_1v_2) > 0$.

Assume first that s_1v_2 is outside C_0^y . Then v_is_1 is outside C_0^y for each $i \in \{1,3,4\}$, and s_1v_2 is saturated by \boldsymbol{y} in T_2 . So $\sum_{i \in \{1,3,4\}} y(v_2v_is_1v_2) = w(s_1v_2) > 0$. Observe that $y(v_2v_is_1v_2)$ is integral for each $i \in \{1,3,4\}$, for otherwise, symmetry allows us to assume that $y(v_2v_1s_1v_2)$ is not integral. Then $y(v_2v_3s_1v_2)$ or $y(v_2v_4s_1v_2)$ is not integral, say $y(v_2v_3s_1v_2)$. Since $0 < y(v_2v_is_1v_2) < w(v_is_1)$ for i = 1, 3, by Lemma 3.1(i) and (ii), we have $x(v_1s_1) = x(v_3s_1) = 0$, contradicting Lemma 5.9(iii). It follows that $y(v_2v_is_1v_2)$ is a positive integer for each $i \in \{1,3,4\}$.

Assume next that s_1v_2 is contained in some cycle $C \in \mathcal{C}_0^y$. From Lemma 3.5(vii), we deduce that $y(v_2v_is_1v_2) = \min\{w(v_2v_i), w(v_is_1)\}$ for $i \in \{1, 3, 4\}$. If $y(v_2v_is_1v_2) = 0$ for each $i \in \{1, 3, 4\}$, then $\tau_w(T_2 \setminus a_2) = \sum_{i \in \{1, 3, 4\}} \min\{w(v_2v_i), w(v_is_1)\} = 0$, contradicting (α). Hence $y(v_2v_is_1v_2)$ is a positive integer for some $i \in \{1, 3, 4\}$. This proves the Claim.

From the Claim and Lemma 3.2(iii), we conclude that $\mathbb{D}(T, w)$ has an integral optimal solution.

Lemma 5.14. If $T_2/S = G_6$, then $\mathbb{D}(T, w)$ has an integral optimal solution.

Proof. Recall that $(b_2, a_2) = (v_6, v_7)$, $s^* = v_5$, and $Q = \{v_1, v_2, v_3, v_4\}$. Given an optimal solution \boldsymbol{y} to $\mathbb{D}(T, \boldsymbol{w})$, set $\varphi(s_i) = \{u : z(us_i) > 0 \text{ for } u \in V(T_2) \setminus a_2\}$ for each $s_i \in S$. By Lemma 5.2(i) and (vi), we have

(1) $\varphi(s_i) \cap \varphi(s_j) = \emptyset$ whenever $i \neq j$.

From (1) and Lemma 5.10(i), we see that

(2) there exists at least one and at most four vertices s_i 's in S with $\varphi(s_i) \neq \emptyset$. Lemma 5.2(i) allows us to assume that

(3) if $\varphi(s_i) \neq \emptyset$, then $1 \le i \le 4$.

By Lemma 5.10(ii), we obtain

(4) w(e) = z(e) = 0 for $e \in \{v_1v_3, v_3v_4, v_4v_1, v_1v_2, v_3v_2, v_4v_2\}.$

In the remainder of our proof, we reserve \boldsymbol{y} for an optimal solution to $\mathbb{D}(T, \boldsymbol{w})$ such that

(5) $y(\mathcal{C}_2)$ is maximized; and

(6) subject to (5), $(y(\mathcal{D}_q), y(\mathcal{D}_{q-1}), \ldots, y(\mathcal{D}_3))$ is minimized lexicographically.

Claim. y(C) is integral for some $C \in \mathcal{C}_2^y$.

To justify this, we consider five possible cases (see the structure of G_6), depending on the size of $\varphi(s_i)$ for $1 \le i \le 4$.

Case 1. $|\varphi(s_i)| = 1$ for each $1 \le i \le 4$.

In this case, by Lemma 5.10(i), (2) and (3), we may assume that $\varphi(s_i) = \{v_i\}$ for each $1 \le i \le 4$. By (4), we obtain

(7) $\mathcal{C}_2^y \subseteq \{v_6v_1s_1v_6, v_6v_2s_2v_6, v_6v_3s_3v_6, v_6v_4s_4v_6\}.$

From Lemma 3.5(vii), we deduce that $y(v_6v_is_iv_6) = \min\{w(v_6v_i), w(v_is_i), w(s_iv_6)\}$ for each $1 \le i \le 4$. If $y(v_6v_is_iv_6) = 0$ for $1 \le i \le 4$, then $\tau_w(T_2 \setminus a_2) = \sum_{i=1}^4 \min\{w(v_6v_i), w(v_is_i), w(s_iv_6)\} = 0$, contradicting (α). Hence $y(v_6v_is_iv_6)$ is a positive integer for some $i \in \{1, 2, 3, 4\}$.

Case 2. $|\varphi(s_i)| = 1$ for exactly one $i \in \{1, 2, 3, 4\}$.

In this case, by Lemma 5.10(i), (2) and (3), we may assume that $\varphi(s_1) = \{v_1\}, \varphi(s_2) = \{v_2, v_3, v_4\}$. By (4), we have

(8) $C_2^y \subseteq \{v_6v_1s_1v_6, v_6v_2s_2v_6, v_6v_3s_2v_6, v_6v_4s_2v_6\}.$

From Lemma 3.5(vii), we see that $y(v_6v_1s_1v_6) = \min\{w(v_6v_1), w(v_1s_1), w(s_1v_6)\}$. If $y(v_6v_1s_1v_6) > 0$, we are done. So we assume that $y(v_6v_1s_1v_6) > 0$. Since $w(v_1s_1)w(s_1v_6) > 0$, we obtain $w(v_6v_1) = \min\{w(v_6v_1), w(v_1s_1), w(s_1v_6)\} = 0$. By Lemma 5.2(iii), we have $z(s_2v_6) = w(s_2v_6) > 0$.

Assume first that s_2v_6 is outside C_0^y . Then v_is_2 is outside C_0^y for $i \in \{2,3,4\}$, and s_2v_6 is saturated by \boldsymbol{y} in T_2 . So $\sum_{i=2}^4 y(v_6v_is_2v_6) = w(s_2v_6) > 0$. Observe that $y(v_6v_is_2v_6)$ is integral for each $i \in \{2,3,4\}$, for otherwise, symmetry allows us to assume that $y(v_6v_2s_2v_6)$ is not integral. Then one of $y(v_6v_3s_2v_6)$ and $y(v_6v_4s_2v_6)$ is not integral, say $y(v_6v_3s_2v_6)$. Since $0 < y(v_6v_is_2v_6) < w(v_is_2)$ for i = 2, 3, by Lemma 3.1(i) and (ii), we have $x(v_2s_2) = x(v_3s_2) = 0$, contradicting Lemma 5.9(iii). It follows that $y(v_6v_is_2v_6)$ is a positive integer for each $i \in \{2,3,4\}$.

Assume next that s_2v_6 is contained in some cycle $C \in C_0^y$. By Lemma 3.5(vii), we obtain $y(v_6v_is_2v_6) = \min\{w(v_6v_i), w(v_is_2)\}$ for $i \in \{2, 3, 4\}$. If $y(v_6v_is_2v_6) = 0$ for $i \in \{2, 3, 4\}$, then $\tau_w(T_2 \setminus a_2) = w(v_6v_1) + \sum_{i=2}^4 \min\{w(v_6v_i), w(v_is_2)\} = 0$, contradicting (α) . Hence $y(v_6v_is_2v_6)$ is a positive integer for some $i \in \{2, 3, 4\}$.

Case 3. $|\varphi(s_i)| = 1$ for exactly two *i*'s in $\{1, 2, 3, 4\}$.

In this case, by Lemma 5.10(i), (2) and (3), we may assume that $\varphi(s_1) = \{v_i\}$ for i = 1, 2and $\varphi(s_3) = \{v_3, v_4\}$. By (4), we obtain

 $(9) \ \mathcal{C}_2^y \subseteq \{v_6v_1s_1v_6, v_6v_2s_2v_6, v_6v_3s_3v_6, v_6v_4s_3v_6\}.$

From Lemma 3.5(vii), we see that $y(v_6v_is_iv_6) = \min\{w(v_6v_i), w(v_is_i), w(s_iv_6)\}$ for i = 1, 2. If $y(v_6v_is_iv_6) > 0$, we are done. So we assume that $y(v_6v_is_iv_6) = 0$. Since $w(v_is_i)w(s_iv_6) > 0$, we obtain $w(v_6v_i) = \min\{w(v_6v_i), w(v_is_i), w(s_iv_6)\} = 0$ for i = 1, 2. By Lemma 5.2(iii), we have $z(s_3v_6) = w(s_3v_6) > 0$.

Assume first that s_3v_6 is outside C_0^y . Then v_is_3 is outside C_0^y for i = 3, 4, and s_3v_6 is saturated by \boldsymbol{y} in T_2 . So $y(v_6v_3s_3v_6) + y(v_6v_4s_3v_6) = w(s_3v_6) > 0$. Observe that both $y(v_6v_3s_3v_6)$ and $y(v_6v_4s_3v_6)$ are integral, for otherwise, since $0 < y(v_6v_is_3v_6) < w(v_is_3)$ for i = 3, 4, by Lemma 3.1(i) and (ii), we have $x(v_3s_3) = x(v_4s_3) = 0$, contradicting Lemma 5.9(iii). It follows that $y(v_6v_is_3v_6)$ is a positive integer for i = 3, 4.

Assume next that s_3v_6 is contained in some cycle $C \in \mathcal{C}_0^y$. By Lemma 3.5(vii), we obtain $y(v_6v_is_3v_6) = \min\{w(v_6v_i), w(v_is_2)\}$ for i = 3, 4. If $y(v_6v_is_3v_6) = 0$ for i = 3, 4, then $\tau_w(T_2 \setminus a_2) = \sum_{i=1}^2 w(v_6v_i) + \sum_{i=3}^4 \min\{w(v_6v_i), w(v_is_3)\} = 0$, contradicting (α). Hence $y(v_6v_is_3v_6)$ is a positive integer for i = 3 or 4.

Case 4. $1 < |\varphi(s_i)| < 4$ if $\varphi(s_i) \neq \emptyset$, for $i \in \{1, 2, 3, 4\}$.

In this case, by Lemma 5.10(i), (2) and (3), we may assume that $\varphi(s_1) = \{v_1, v_2\}$ and $\varphi(s_2) = \{v_3, v_4\}$. By (4), we obtain

 $(10) \ \mathcal{C}_2^y \subseteq \{v_6v_1s_1v_6, v_6v_2s_1v_6, v_6v_3s_2v_6, v_6v_4s_2v_6\}.$

By Lemma 5.2(iii), we have $z(s_iv_6) = w(s_iv_6) > 0$ for i = 1, 2.

Assume first that s_1v_6 is outside \mathcal{C}_0^y . Then both v_1s_1 and v_2s_1 are outside \mathcal{C}_0^y , and s_1v_6 is saturated by \boldsymbol{y} in T_2 . So $y(v_6v_1s_1v_6) + y(v_6v_2s_1v_6) = w(s_1v_6) > 0$. Observe that both $y(v_6v_1s_1v_6)$ and $y(v_6v_2s_1v_6)$ are integral, for otherwise, since $0 < y(v_6v_is_1v_6) < w(v_is_1)$ for i = 1, 2, by Lemma 3.1(i) and (ii), we have $x(v_1s_1) = x(v_2s_1) = 0$, contradicting Lemma 5.9(iii). It follows that $y(v_6v_is_1v_6)$ is a positive integer for i = 1, 2. Similarly, we can show that if s_2v_6 is outside \mathcal{C}_0^y , then $y(v_6v_is_2v_6)$ is a positive integer for i = 3, 4.

Assume next that s_iv_6 is contained in some cycle in \mathcal{C}_0^y for i = 1, 2. By Lemma 3.5(vii), we have $y(v_6v_is_1v_6) = \min\{w(v_6v_i), w(v_is_1)\}$ for $i = 1, 2, \text{ and } y(v_6v_is_2v_6) = \min\{w(v_6v_i), w(v_is_2)\}$ for i = 3, 4. If $y(v_6v_1s_1v_6), y(v_6v_2s_1v_6), y(v_6v_3s_2v_6)$ and $y(v_6v_4s_2v_6)$ are all zero, then $\tau_w(T_2 \setminus a_2) = \sum_{i=1}^2 \min\{w(v_6v_i), w(v_is_1)\} + \sum_{i=3}^4 \min\{w(v_6v_i), w(v_is_2)\} = 0$, contradicting (α). So at least one of $y(v_6v_1s_1v_6), y(v_6v_2s_1v_6), y(v_6v_3s_2v_6)$, and $y(v_6v_4s_2v_6)$ is a positive integer.

Case 5. $|\varphi(s_i)| > 2$ if $\varphi(s_i) \neq \emptyset$, for $i \in \{1, 2, 3, 4\}$.

In this case, by Lemma 5.10(i), (2) and (3), we may assume that $\varphi(s_1) = \{v_1, v_2, v_3, v_4\}$. By (4), we obtain

(11) $\mathcal{C}_2^y \subseteq \{v_6v_1s_1v_6, v_6v_2s_1v_6, v_6v_3s_1v_6, v_6v_4s_1v_6\}.$

By Lemma 5.2(iii), we have $z(s_1v_6) = w(s_1v_6) > 0$.

Assume first that s_1v_6 is outside C_0^y . Then $\sum_{i=1}^4 y(v_6v_is_1v_6) = w(s_1v_6)$. If $y(v_6v_is_1v_6)$ is a positive integer for some $i \in \{1, 2, 3, 4\}$, we are done. So we assume the contrary. Thus at least two of $y(v_6v_1s_1v_6)$, $y(v_6v_2s_1v_6)$, $y(v_6v_3s_1v_6)$, and $y(v_6v_4s_1v_6)$ are not integral, say $y(v_6v_1s_1v_6)$ and $y(v_6v_2s_1v_6)$. Since $0 < y(v_6v_is_1v_6) < w(v_is_1)$ for i = 1, 2, by Lemma 3.1 (i) and (ii), we have $x(v_1s_1) = x(v_2s_1) = 0$, contradicting Lemma 5.9(iii).

Assume next that s_1v_6 is contained in some cycle of C_0^y . By Lemma 3.5(vii), we have $y(v_6v_is_1v_6) = \min\{w(v_6v_i), w(v_is_1)\}$ for $1 \le i \le 4$. If $y(v_6v_is_1v_6)$ is zero for $1 \le i \le 4$, then $\tau_w(T_2 \setminus a_2) = \sum_{i=1}^4 \min\{w(v_6v_i), w(v_is_1)\} = 0$, contradicting (α) . So $y(v_6v_is_1v_6)$ is a positive integer for some $i \in \{1, 2, 3, 4\}$. This proves the Claim.

From the above Claim and Lemma 3.2(iii), we conclude that $\mathbb{D}(T, w)$ has an integral optimal solution.