ONLINE APPENDIX TO
Ranking Tournaments with No Errors II: Minimax Relation
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The purpose of this online appendix is to present proofs of Lemma 4.4 and Lemma 5.6 in
the submitted version of this paper.

4 Basic Reductions

Lemma 4.5. If Ty = Fy, then D(T,w) has an integral optimal solution.

Proof. It is routine to check that
o C2 = {v1v203V1, V2V3V4V2, V1V5V3VL, U3V4V5V3, V1V2VU3V4VL, V1U5V2V3VL, V1U5U3V4VT, U2U3VAV5V2,
V1U5V2V3V401 } and
o Fo = {{wavs, vsus}, {vsvi, v3vg}, {viva, V105, v3V4 }, {V1VU5, VoV3, V3U4 }, {V1V5, VoUS, V4VS },
{’1)1’1)2, V1Us5, V402, U4’U5}, {Ulvg, V304, U5V, U51)3}, {1}1@2, V402, U5V, '1}5?)3},
{vou3, v3V1, VU1, V4V5 }, {V3V1, V4V1, V4V, V45 }, {V3V1, V4UT, V4V, V5V, UsVS )
We also have a computer verification of these results. So |C2] = 9 and |Fa| = 11. Recall that
(b2, a2) = (vs, vg).

Let y be an optimal solution to (T, w) such that

(1) y(Ca) is maximized;

(2) subject to (1), (y(Dq),y(Dyg—1),...,y(D3)) is minimized lexicographically;

(3) subject to (1) and (2), y(vivsvavzvr) + y(v1vsv3v401) is minimized,;

(4) subject to (1)-(3), y(vevzvavsve) is minimized;

(5) subject to (1)-(4), y(vivsvsvr) + y(v3vavsvs) is minimized; and

(6) subject to (1)-(5), y(vivsvszvy) is minimized.

Let us make some simple observations about y.

(7) If K € F, satisfies y(C2) = w(K), then K is an MFAS. (The statement is exactly the
same as (4) in the proof of Lemma 4.3.)

(8) If y(vivsveuzvgvy) > 0, then each arc in the set {vive, v3v1, v4v2, V45, V5V3} is saturated
by y in Fy. Furthermore, y(vivavsv1) = y(vsvavsvs) = y(vivsvsvr) = 0.

To justify this, note that each arc in the given set is a chord of the cycle vivsvovsvgavi. So
the first half follows instantly from Lemma 3.5(v). Let W stand for the multiset sum. Then
V1V5V203V401 W V1020301 = V1U5V203V1 W V10203V4V1, V1VU5V2V3V4V1 W V1U5V3V1 = V1U5V203V1 W
V105030401, and v1U5V203V4V1 WU3V4V5V3 = V105V3V401 HU903U4U5V9. Suppose on the contrary that
y(vivauzvy) > 0. Let 6 = min{y(vivsvav3v4v1), y(vivavsv1) } and let y' be obtained from y by re-
placing y(vivsvovzvavy), y(vivav3vy), y(vivsvavzvr), and y(vivavzvavy) with y(vivsvavzvgvy) —0,
y(vivauzvy) — 0, y(vivsvevsvy) + 6, and y(v1vevsvavy) + 6. Then ¢’ is also an optimal solution to
D(T, w). Since y' (v1v5v9v3v4v1) < y(viv5V2V3V4v1 ), the existence of y' contradicts the assump-
tion (2) on y. So y(vivavgvy) = 0. Similarly, y(vsvsvsvs) = y(vivsvzvy) = 0.

(9) If y(vivsveuszvy) > 0, then vive and vsvs are saturated by y in Fjy; so is vqvs provided
y(v1vavgvgvy) > 0. Furthermore, y(vzvgvsvsg) = 0.



To justify this, note that both vive and vsvg are chords of the cycle vivsvovzvy, so they are
saturated by y in Fy by Lemma 3.5(v). Since v1v5v2v301 W 03040503 = 01050301 W 0203040502,
from (3) we deduce that y(vsvsvsvs) = 0 (for a proof, see that of (8)).

Consider the case when y(vivovgvgvy) > 0. If vgvs is not saturated by y in T, then the
multiset sum of the cycles vivsvovsvy, vivavsV4v1, and the arc vqvs contains two arc-disjoint
cycles vivougvy and wvougvavsve; if vavs is saturated by y in T but contained in some cycle
C e Cg , then the multiset sum of vivsvov3v1, vivovsvgvy, and C contains three arc-disjoint
cycles v1vav3V1, VoV3V4V5V2, and C' = Clus, v4] U {vgv1,v1v5}. In either subcase we can obtain
from y an optimal solution y’ to D(7, w) that is better than y by (2). So v4vs is saturated by
Yy in F4.

(10) If y(vivsv3vgv1) > 0, then both vsvy and vivs are saturated by y in Fy; so is vqvg pro-
vided y(vivsveusvy) > 0, and so is v1vg provided y(vovsvavsva) > 0. Furthermore, y(vivovsvy) =
0.

To justify this, note that both vsv; and vqvs are chords of the cycle vivsvsv vy, so they are
saturated by y in Fy by Lemma 3.5(v). Since v1v5v3v401 W 01020301 = 01050301 W 0102030401,
from (3) we deduce that y(vivavsv1) = 0 (for a proof, see that of (8)).

Consider the case when y(vivsvovsvy) > 0. If vqvy is not saturated by y in 7', then the
multiset sum of the cycles vivsvovsvy, vivsvsV4v1, and the arc vyve contains arc-disjoint cycles
V1050301 and vav3v4ve; if v4vy is saturated by y in T' but contained in some cycle C; € C§, then
the multiset sum of C7, v1v5v9v3v1, and vivsvsvav; contains three arc-disjoint cycles vivsv3vy,
VU340, and Cf = Cf[vs, v4) U{v4v1,v105}. In either subcase we can obtain from y an optimal
solution y’ to D(T, w) that is better than y by (2). So v4vs is saturated by y in Fj.

Next, consider the case when y(vovzvgvsvy) > 0. If vivg is not saturated by y in T, then the
multiset sum of the cycles vivsvsvavy, vovsV4V5V2, and the arc vive contains arc-disjoint cycles
v304v5v3 and v1veV3V4vy; if V1v7 is saturated by y in T but contained in some cycle Cy € Cf, then
the multiset sum of Cy, vov3v4v5v2, and vivsvsvaw; contains three arc-disjoint cycles vsvivsvs,
v1veuzvgvy, and Ch = Csvs,v1] U {vivs}. In either subcase we can obtain from y an optimal
solution y’ to D(T,w) that is better than y by (2). So vivy is saturated by y in Fy.

(11) If y(vivavsvgvy) > 0, then both vsv; and vsve are saturated by y in Fy; so is vgvs
provided y(vivsvsvy) > 0.

The first half follows instantly from Lemma 3.5(v). Suppose y(vivsvgvr) > 0. If vyvs is not
saturated by y in 7', then the multiset sum of the cycles vivsv3vy, vivov3Vv4v1, and the arc vqvs
contains arc-disjoint cycles vivovsv1 and vsvqvsvs; if v4vs is saturated by y in T but contained
in some cycle C € CE’)' , then the multiset sum of vivov3v4v1, V1v5vV3v1, and C contains three
arc-disjoint cycles v1v9v3v1, v3v4v5v3, and C' = Clvs,v4] U {vgv1,v105}. In either subcase we
can obtain from y an optimal solution y’ to D(7,w) that is better than y by (2). So vsvs is
saturated by y in Fj.

(12) If y(vavsvavsve) > 0, then both vsvy and vsvs are saturated by y in Fy; so is vivg
provided y(vivsvzvy) > 0.

The first half follows instantly from Lemma 3.5(v). Suppose y(vivsvsvr) > 0. If vjvg is not
saturated by y in 7', then the multiset sum of the cycles vivsv3v1, vov3V4V5V2, and the arc vivo
contains arc-disjoint cycles vivovsv1 and vsvavsvs; if v1vy is saturated by y in T but contained
in some cycle C' € Cg , then the multiset sum of C, vovzvqvsv9, and vivsvzv contains three arc-
disjoint cycles vsvgv5v3, v1vav3V1, and C' = Clvs, v1] U {vivs}. In either subcase we can obtain



from y an optimal solution y’ to D(7T, w) that is better than y by (2). So vjvy is saturated by
y in Fy.

Claim 1. y(Ca) = 7w (Fi\vs).

To justify this, observe that vovs is a special arc of T" and vy is a near-sink. By Lemma
3.4(iv), we may assume that vovs is saturated by y in 7. Depending on whether vyvs is outside
CY, we distinguish between two cases.

Case 1.1. vyvs is contained in some cycle in Cg .

Choose C € C§ that contains vovs and, subject to this, has the maximum number of arcs in
Fy\vg. We proceed by considering three subcases.

e (' contains vive. In this subcase, C contains the path P = wvjvsvsvsvs. By Lemma
3.5(ii) and (iv), each arc in the set K = {wv3v1, v4v1, v4v2, V502, v5v3} is saturated by y in Fy.
Since no arc on C (and hence on P) is saturated by y in Fjy, we have y(vivsvovsvgvy) =
y(vivsvuzvy) = y(vivsvsvavr) = 0 by (8) — (10). Since the multiset sum of vjvsvzv; and
C' contains three arc-disjoint cycles vivavsvy, vsvsvsvs, and C' = Clvs, v1] U {v1v5}, from the
optimality of y, we deduce that y(vivsvsvy) = 0. So y(C2) = w(K). By (7), K is an MFAS and
hence y(C2) = 7 (F5\v2).

e C contains v4ve. In this subcase, C' contains the path P = vyvovzvivs. By Lemma 3.5(ii)
and (iv), each arc in the set K = {vjvg, v3v4, V502, U503} is saturated by y in Fjy. Since no arc on
C' (and hence on P) is saturated by y in Fy, y(viv5v2030401), y(v1v5030401), y(v1v2030401), and
y(vavsvavsv2) are all 0 by (8) and (10)-(12). Since the multiset sum of vsvsvsvs and C' contains
three arc-disjoint cycles v1v5v3v1, vovzv4ve, and C' = Clus, vg] U {v4v5}, from the optimality
of y, we deduce that y(vsvsvsvsz) = 0. So y(C2) = w(K). By (7), K is an MFAS and hence
yY(C2) = Tw(F5\v2).

e (' contains neither vivy nor vqve. In this subcase, we may assume that both vive and v4ve
are outside Cé’ , for otherwise, each cycle containing vivy or v4ve passes through vevs, and thus
one of the preceding subcases occurs. Clearly, C' contains v3v4 or v3v;.

Assume first that C' contains vzvs. If C contains vqv1, then it also contains vyvs. By Lemma
3.5(ii) and (iv), each arc in the set K = {viv2,v4v2, v5v2,v5v3} is saturated by y in Fy. So
y(C2) = w(K). By (7), K is an MFAS and hence y(C2) = 7w(F3\v2). If C does not contain
vqv1, then C' contains v4vs. By Lemma 3.5(ii) and (iv), each arc in the set {vqva, v5va, v5U3} is
saturated by y in Fy. If vjve is also saturated by y in Fjy, then y(C2) = w(K), where K is as
defined above. Again, K is an MFAS and hence y(C2) = 7, (F3\v2). So we assume that vyve is
not saturated by y in T'. Since v1vs is outside Cf, so are v4v; and v3v;. By Lemma 3.5(iii), both
vqv1 and vzv; are saturated by y in 7" and hence in Fy. Moreover, by (8)-(10), y(v1vsvovsvavy),
y(v1vsv9u3vy), and y(vivsvsvavy) are all 0. Since the multiset sum of the cycles vivsvgvy, C,
and the unsaturated arc vivy contains two arc-disjoint cycles vivovsv, and vsvavsv3. By Lemma
3.5(vi), we have y(vivsvzvy) = 0. So y(C2) = w(J), where J = {v3v1,v4v1, 0402, V502, v503}. By
(7), J is an MFAS and hence y(C2) = 7 (F3\v2).

Assume next that C' contains vzv;. Then C contains vivs. By Lemma 3.5(ii) and (iv),
each arc in the set {vivy, vsve, v5v3} is saturated by y in Fy. If vyvg is also saturated by y in
Fy, then y(C2) = w(K), where K = {v1v2, v4v2,v5v2,v5v3}. By (7), K is an MFAS and hence
y(C2) = Tw(F3\v2). So we assume that v4vy is not saturated by y in Fy and hence in T (recall
that vqvs is outside C§). By Lemma 3.5(iv), vsvs is outside C§. By Lemma 3.5(iii), vsvs is



saturated by y in T and hence in Fy. By (8) and (10)-(12), y(vivsvavsvavy), y(vivsvsvavy),
y(v1vavsvgvy), and y(vavsvavsva) are all 0. Since the multiset sum of the cycles vzvqvsvs, C,
and the unsaturated arc v4ve contains two arc-disjoint cycles vivsvsv: and vevszvive, we have
y(vsv4vsv3) = 0 by Lemma 3.5(vi). So y(C2) = w(J), where J = {v1v2, v3v4, v502, v503}. By (7),
K is an MFAS and hence y(C2) = 7, (F3\v2).

Case 1.2. vyus is outside C§.

By the previous observation, vovs is saturated by y in F; now. Note also that vsvs is outside
Co. If vsvg is saturated by y in 7', so is it in F}y, and hence y(C2) = w(K), where K = {vov3, v5v3}.
By (7), K is an MFAS and hence y(C2) = 7, (F3\v2). So we assume that vsvs is unsaturated.
By (8), (9), and (12), y(v1vs5vav3v4v1), y(v1v5v20301), and y(vavsvavsva) are all 0. Observe that
both vgv, and wvgvy are outside Cé’ , for otherwise, since each cycle passing through vsv; or vzvy
contains vvs or v4vs, from Lemma 3.5(iv) we deduce that vsvs is saturated, a contradiction. If
both vsv; and vsvs are saturated by y in Fy, then y(Ca) = w(J), where J = {vsv1,v3v4}. By
(7), J is an MFAS and hence y(C2) = 7, (F3\v2). So we assume that

(13) at most one of vgv; and vsvy is saturated by y in Fj.

Since C§ # 0, there is a cycle C € C§ passing through v4vy, or vivs, or v4vs; subject to this, let
C' be chosen to have the maximum number of arcs in Fj\vg. We proceed by considering three
subcases.

e (' contains both v4v; and vivs. In this subcase, since vsvs is unsaturated, by Lemma
3.5(iii), vzv1 and vsvg are both saturated by y in Fy, a contradiction.

e (' contains v1vs but not v4v;. In this subcase, from the choice of C, we see that vavq is
outside C§, because every cycle containing v4v; passes through vyvs. Since vsvs is unsaturated,
Lemma 3.5(iii) implies that vsv; is saturated by y in Fy, and thus vsvs is not saturated by y in
Fy and hence in T by (13). Once again, by Lemma 3.5(iii), vqv; is saturated by y in Fy, and
v4v5 is outside Cg . Since both vsvs and vgvg are unsaturated, it follows from Lemma 3.5(i) that
v4vs is saturated by y in Fy. If vgve is also saturated by y in Fjy, then y(Co) = w(K), where
K = {v3v1,v4v1, 0409, 0405 }. By (7), K is an MFAS and hence y(C2) = 7 (F1\vs). If vqvs is not
saturated by y in Fy, then y(vivevsvgv) = 0 by (11). Moreover, since the multiset sum of the
cycles v1v9v3vy, C, and the unsaturated arcs vsvs, vsvy, and v4vo contains two arc-disjoint cycles
vou3v4ve and vivsv3vy, we have y(vivavsvy) = 0 by Lemma 3.5(vi). Therefore, y(C2) = w(J),
where J = {vqvs, v3v1, 401, v4v5}. By (7), J is an MFAS and hence y(C2) = 7 (F3\v2).

e (' contains v4vs. In this subcase, we may assume that both v4v; and vivs are outside Cé’ ,
otherwise one of the preceding subcases occurs. By Lemma 3.5(iii), vsvy is saturated by y in T
and hence in F, which together with (13) implies that vsv; is not saturated by y in Fy. Using
(10) and (11), we deduce that y(vivsv3v4v1) = y(v1v2v3v4v1) = 0. Using Lemma 3.5(iii) and the
triangle vyvsv3v1, we see that vyvs is outside Cg. Using Lemma 3.5(i) and the triangle vjvsv3vy,
we also deduce that vivs is saturated by y in T and hence in Fy. If vivs is also saturated by
y in Fy, then y(C2) = w(K), where K = {v1v2,v105,v304}. By (7), K is an MFAS and hence
y(C2) = Tw(Fy\vg). So we assume that vve is not saturated by y in Fy and hence in T, because
v1v2 is outside C§, by the hypothesis of the present case. Since the multiset sum of the cycles
C, vouzvave, and unsaturated arcs vsvs, vzvy, and vivg contains two arc-disjoint cycles vqvovsvy
and vsv4usv3, we have y(vavzvgve) = 0 by Lemma 3.5(vi). It follows that y(Ca) = w(J), where
J = {v1vs, vov3,v3v4}. By (7), J is an MFAS and hence y(C2) = 7, (F4\vg). This completes the
proof of Claim 1.



Claim 2. y(C) is integral for all C' € Cy or v, (T) is an integer.

To justify this, let Go = Fao\{{v1vs, vovs, v4vs}, {v1v2, V105, V4v2, v4v5}}. From the proof of
Claim 1, we see that y(C2) = w(K) for some K € Gs. Observe that if y(C2) = w(J) for
J = {v1vs5, 0903, 405} or {viva, V1Vs, V4V, V4V5 }, then both vivs and vivs are saturated by y in
Fy, so C§ = 0 in this case, which has been excluded by Lemma 3.2(ii).

Let us make some further observations about y.

(14) y(vivsvavsvgvy) = 0.

Suppose on the contrary that y(vivsvavsvsvy) > 0. By (8), we have y(vivovsv1) = y(vsv4vsv3)
= y(vivsvzv1) = 0, and each arc in the set {v1ve, v3v1, V4v2, V4v5, vV5v3} is saturated by y in Fy.
So y(Ca(viv2)) = w(v1v2), Yy(Ca(vsv1)) = w(vsvy), Y(Ca(vav2)) = w(vava), Y(Ca(vavs)) = w(vavs),
and y(Ca(vsv3)) = w(vsvs). It follows that y(vivavsvavy) = w(vive), y(vivsvavsvy) = w(vsvy),
y(v2u3vgv2) = w(vave), Y(vav3v4v5v2) = w(v4vs), and y(vivsvzvavy) = w(vsvy). From Claim 1
we deduce that y(vivsvavsvavy) is also integral, and hence v} (T') is an integer by Lemma 3.2(iii).

(15) y(vivsvavgvy) or y(vivsvgvavy) is 0.

Assume the contrary: both y(vivsvevsvy) and y(vivsvsvgvr) are positive. By (9) and (10),
we have y(viv9vsv1) = y(vsvgvsvs) = 0, and each arc in the set {v1ve, v5v3, V3V, V4V2, V4V5} 1S
saturated by y in Fy. So y(Ca(vive)) = w(vive), y(Ca(vsv3)) = w(vsv3), y(Ca(vavr)) = w(vavr),
y(Co(vqv2)) = w(vgve), and y(Co(vqvs)) = w(vavs). It follows that y(vivevsvivy) = w(vive),
y(v2v3vgv2) = w(vave), y(vevzvavsve) = w(v4vs), Y(v1v5v301) + Y(v1v5V2v3V1) = w(vzvy), and
y(v1vsv3v1) + y(vivsvsvavy) = w(vsvs). Given the above equations and (14), to prove that
y(C) is integral for all C' € Co, it suffices to show that one of y(vivsvsvivy), y(vivsvevszvy), and
y(v1vsvsvy) is integral.

By Lemma 3.1 and Claim 1, each arc e € K satisfies w(e) = z(e) = y(Ca(e)). Let us proceed
by considering four subcases.

If VU3 € K, then w(vgvg) = y(CQ(Uzvg)) = y(U2U31)4U2) + y(vlvgvngl) + y(1)11151121)31)1)

+ y(vav3v4v5v2), which implies that y(vivsvovgvy) is integral.

If vsvy € K, then w(vsvy) = y(Ca(vsvs)) = y(vovzvave) 4+ y(v1v2v3v4v1) + y(v203040502)
+ y(v1v5v3v4v1 ), which implies that y(vivsvzvavy) is integral.

If vyv; € K, then w(vgvy) = y(Ca(vav1)) = y(v1v2v3v4v1) + y(v105030401 ), which implies that
y(vivsvgvgvy) is integral.

If vsve € K, then w(vsve) = y(Ca(vsv2)) = y(v1v5v203v1) + y(v2v3V4V5v2), which implies that
y(vivsvousvy) is integral.

Since each K € Gy contains at least one arc in the set {vovs, v3v4, v4v1,vV502}, it follows that
y(C) is integral for all C € Cy. So y(vivsvavsvy) is a positive integer, and hence v (T') is an
integer by Lemma 3.2(iii). Therefore we may assume that (15) holds.

Depending on what K € Gy is, we distinguish among nine cases.

Case 2.1. K = {vyvs, v2v3, U304 }.

In this case, by Lemma 3.1(i) and (iii), we have y(vavsv4v2) = y(vivav3v4v1) = y(v2v3v40502) =
y(v1vsvousvy) = y(vivsvzvgvy) = 0 and w(e) = y(Ca(e)) for each e € K, which together with
(14) yields w(vivs) = y(Ca(vivs)) = y(vivsvsvy), w(vavs) = y(Ca(vevz)) = y(vivevzvy), and
w(vsvy) = y(Ca(vszvs)) = y(vsvavsvs). So y(C) is integral for all C' € Cs.

Case 2.2. K = {v1v2, v304, U502, U503 }.

In this case, by Lemma 3.1(i) and (iii), we have y(v1v5v3v4v1 ) = y(v3v4v503) = y(v1v2v30401) =
y(vavgvgvsvy) = 0, which together with (14) yields w(vive) = y(Ca(vive)) = y(vivavsvy),



w(vsvy) = y(Co(vzvy)) = y(vovzvgva), w(vsve) = y(Ca(vsva)) = y(vivsvavgvy), and w(vsvs) =
y(Ca(vsv3)) = y(v1vsv301). So y(C) is integral for all C' € Cs.

Case 2.3. K = {U2U3, U37)1,1)4U1,U4U5}.

In this case, by Lemma 3.1(i) and (iii), we have y(v1vov3v1) = y(v1v5020301) = y(v1v2V30401)
= y(vavsvausv2) = 0, which together with (14) yields w(vavs) = y(Ca(vavs)) = y(vavzvava),
w(vsvy) = y(Co(vzv1)) = y(vivsvsvr), w(vavy) = y(Ca(vav1)) = y(vivsvzvgvy), and w(vgvs) =
y(Ca(vqvs5)) = y(vsvgvsvs). So y(C) is integral for all C' € Cs.

Case 2.4. K = {v3v1, v4v1, 0402, U502, V503 }.

In this case, by Lemma 3.1(i) and (iii), we have y(v1v5v3v1) = y(v1v5v20301) = y(v1v50304v1) =
0, which together with (14) yields w(vzv1) = y(Ca(vav1)) = y(vivavsvy), w(vavy) = y(Ca(vavy)) =
y(v1v2v3v401), wW(vav2) = Y(Ca(vave)) = y(vovzvava), w(vsve) = Y(Ca(vsve)) = y(vevzv4v5V2),
and w(vsvz) = y(Ca(vsv3)) = y(vavavsvsg). So y(C) is integral for all C' € Ca.

Case 2.5. K = {U1U2,’U1’U5,’Ugv4}.

In this case, by Lemma 3.1(i) and (iii), we have y(vivevzvav1) = y(vivsvsvgavy) = 0 and
w(e) = y(Ca(e)) for each e € K, which together with (14) yields the following three equations:

w(vivz) = y(Ca(v1v2)) = y(vlvgvgvl)

w(v1vs) = y(Ca(v1vs)) = y(vivsvzvr) + y(vivsvavzvr); and

w(vzvg) = y(Ca(v3v4)) = y(vauzvava) + y(v304050V3) + Y(v2V3V4V5V2).

Depending on the value of y(v1vsvav3v1), we consider two subcases.

e y(vivsvevzvr) = 0. In this subcase, y(vivsvsvy) = w(vivs). If y(vavsvgvsve) > 0, then
w(vsvs) = y(Ca(vsv3)) = y(vivsv3v1) + y(v3vgvsvy) and w(vava) = y(Ca(vave)) = y(vavsvave)
by (12). Thus both y(vsvsvsvs) and y(vevsvsvsve) are integral, and hence y(C) is integral for
all C' € Ca. So we assume that y(vevsvgvsve) = 0. Then w(vsvy) = y(vevzvava) + y(v3vgvsvs3).
If y(vouzvgve) is an integer, then y(C') is integral for all C' € Cy. So we further assume that
y(vavzvgva) is not integral. Thus [y(vevsvava)] + [y(vsvavsvs)] = 1. Since each arc in K is
saturated by y in F}j, both vavs and v4ve are outside Cj. Let ¢y’ be obtained from y by replacing
y(vavsv4v2) and y(vsvavsvs) with y(vovzvave) + [y(vsvavsvs)] and |y(vsvavsvs)| respectively.
Then gy’ is also an optimal solution to D(T, w). Since y'(vsv4vsv3) < y(vsv4vsv3), the existence
of y' contradicts the assumption (5) on y.

e y(vivsveuzvy) > 0. In this subcase, y(vsvqvsvs) = 0 and wvsvs is saturated by y in Fj
by (9). So w(vsvs) = y(v2v3v4v2) + y(vovzvavsv2) and w(vsvs) = y(vivsvavr). It follows that
y(vivsvav3vr) = w(vivs) — w(vsvz). If y(vavzvavsva) = 0, then y(vavgvave) = w(vavy); other-
wise, by (12), both vjvs and vqvy are saturated by y in Fy. Thus y(vevzvs) = w(vqve) and
y(vou3vgvsv2) = w(vzvy) — w(vgve). So y(C) is integral for all C' € Co.

Case 2.6. K = {U3U1, ’U4’U1,’U4U2,U4U5}.

In this case, by Lemma 3.1 (iii), we have w(e) = y(Ca(e)) for each e € K, which together
with (14) yields the following four equations:

w(vzvr) = y(Ca(vzvr)) = y(v1v2vsv) + y(vivsvzv1) + y(v1vsv20301);
w(vgvr) = y(Ca(vav1)) = y(v1v203v401) + Y(V1V5V304V1 );

w(vavz) = y(C2(v4v2)) = y(vauzvava); and

(1)4@5) = y(Cg(v4v5)) = y(v3v4v5v3) + y(UQU3U4U5UQ)

Depending on the values of y(vivsvsvavy) and y(vivsvevsvy), we consider three subcases.
e y(vivsv3v4v1) > 0. In this subcase, by (10) and (15), we have y(vivevzv1) = y(v1v5020301) =
0. So y(vivsvzv1) = w(vsvy). If y(vavsvgvsve) > 0, then both vive and vsvs are saturated by y



in Fy by (10) and (12). So w(viv2) = y(Ca(viv2)) = y(vivavzvavy) and w(vsvs) = y(Ca(vsvs)) =
y(v1vsv3v1) + y(vsvgvsvs) + y(vivsvsvgvr).  Since y(vivsvsvavy) = w(vgvr) — y(vivavsv4v1)
and y(vavsvgvsve) = w(vgvs) — y(vsvavsvs), it follows that y(vivsvsvavr), y(vsvavsvs), and
y(vavzvgvsvg) are all integral. So we assume that y(vovsvgvsvy) = 0. Then y(vsvgvsvs) =
w(vqvs). Since each arc in K is saturated by y in Fy, both vjvy and wvyvs are outside Cg.
By Lemma 3.2(i), we may assume that w(e) = [z(e)] for all arcs e in 7. Thus, from (3) we
deduce that y(vivevzvsv1) = min{w(vivy), w(vevs) — w(vave)} and y(vivsvsvavy) = w(vgvy) —
y(v1vavgvgvy). Therefore y(C) is integral for all C' € Co.

e y(vivsvavgvy) > 0. In this subcase, from (9) and (15), we deduce that y(vsvsvsvs) =
y(vivsvgvgvr) = 0, and that both vjve and vsvs are saturated by y in Fy. So y(vivevzvgvy) =
w(vgv1) y(v2v3v4v5v2) = w(v4vs), w(vive) = Y(Ca(vive)) = y(vivavsvy) + y(vivavsvavy), and
w(vsvs) = y(Ca(vsv3)) = y(vivsvzvy). Thus y(vivevzvy) = w(vive) — w(vavy) is integral, so is
y(v1vsvovsvy). Therefore y(C) is integral for all C' € Co.

o y(vivsv3vav) = y(vivsvavsvr) = 0. In this subcase, y(vivovsvavy) = w(vavy). Suppose
y(vavzvgvsvy) > 0. Then wvsvs is saturated by y in Fy by (12). So w(vsvs) = y(Ca(vsvs)) =
y(v1vsv3v1) + y(v3vavsvs). If y(vivsvgvr) > 0, then vivg is saturated by y in Fy by (12). So
w(vivy) = y(Ca(viva)) = y(vivevsvy) + y(vivavsvgvy), It follows that y(vivevsvy) and hence
y(C) is integral for any C' € Co. If y(vivsvsvr) = 0, then y(vivevzv) = w(vsvr), which im-
plies that y(C) is integral for any C € Cs. So we assume that y(vevsvsvsve) = 0. Then
y(vsvgusvs) = w(vgvs). Observe that y(vivevsvy) is integral, for otherwise, let y’ be ob-
tained from y by replacing y(vivevszvy) and y(vivsvsvy) with y(vivevsvr) + [y(vivsvsvr)] and
|y(vivsvsv1) ]|, respectively. Since vive and vovs are outside Cf, we see y’ is also an optimal
solution to D(T, w). Since y'(v1vsv3v1) < y(vivsvzvy), the existence of y' contradicts the as-
sumption (5) on y. From the above observation, it is easy to see that y(C') is integral for any
C €.

Case 2.7. K = {vjv2, 0402, V502, U503 }.

In this case, by Lemma 3.1(iii), we have w(e) = y(Cz(e)) for each e € K, which together
with (14) yields the following four equations:

w(v1v2) = y(Ca(v1v2)) = y(viv2vsv1) + y(vivaV3V4V1);

w(vavz) = y(C2(vav2)) = y(v2v30402);

w(vsve) = y(Ca(vsv2)) = y(v1vsv203v1) + Y(V2V3V4V5V2); and
w(vsv3) = y(Ca(vsv3)) = y(vivsv3v1) + Y(v3040503) + Y(V1V5V3V407 ).

Depending on the values of y(vivsvsvavy) and y(vivsvevsvy), we consider three subcases.

e y(vivsvgvgvy) > 0. In this subcase, by (10) and (15), y(vivevsvy) = y(vivsvevzvy) = 0
and both vzv; and vqvs are saturated by y in Fy. So y(vovsvgvy) = w(vgva), y(vivovsvgvy) =
w(viva), y(vavsvavsvz) = y(Ca(vsv2)) = w(vsvz), and y(vivsvzvr) = y(Ca(vsv1)) = w(vsvr).
Thus y(vsvgvsvs) and y(vivsvsvgvy) are also integral.

o y(vivsvavsvr) > 0. In this subcase, by (9) and (15), we have y(vsvivsv3) = y(vivsv3v4v1) =
0. So y(vivsvgvy) = w(vsvs). If y(vivevzvgvy) > 0, then both vsv; and vyvs are saturated by y
in Fy by (9) and (11). So w(vzvi) = y(Ca(vsv1)) = y(vivavsvr) + y(vivsvsvr) + y(vivsvavavy)
and w(vqvs) = y(Ca(v4vs)) = y(vavsvavsve). It follows that y(C) is integral for all C' € Ca. So
we assume that y(vivavgvgvy) = 0. Then y(vivevsvy ), y(vavsvave), and y(vivsvsvy) are integral,
and y(v1v5v2v3v1) +y(v2v3v4v5v2) = w(vsve). If y(vavsvavsve) is an integer, then y(C) is integral
for any C € Cy. So we assume that y(vevzvsvsv2) is not integral. We propose to show that



(16) v (T) is an integer.

To justify this, let & be an optimal solution to P(T, w). By Lemma 3.2(iii), we may assume
that w(vive) = w(vavs) = w(vsvz) = 0. Thus y(C) = 0 for all C' € Ca\{viv5V2v3v1, V2V3V4V5V2 }.
Observe that vsvy is outside C§, for otherwise, let D be a cycle in C§ that contains vzvs. It is
then easy to see that an optimal solution ¢y’ to D(7,w) can be obtained from y by modifying
y(D), y(vivsvavsvy), and y(vavsvavsvy) and by possibly rerouting D, so that y/(vivsvavzvy) <
y(vivsvavsvy ), contradicting (3). Since y(vav3v4v5v2) < w(v3vs), we have z(vsvs) = 0 by Lemma
3.1(ii). Since both y(vjvsvovsv1) and y(vevsvavsvy) are positive, z(vsvy) + x(vivs) = x(vsvg) +
x(vqvs) by Lemma 3.1(i). So z(v4vs) = x(v3v1) + x(v105).

Let us show that if w(vqvy) > 0, then x(vqv1) = wz(vsv1). For this purpose, note that
both vyv; and v4qvs are contained in some cycles in Cg , for otherwise, we can obtain a new
optimal solution y’ from y satisfying (1) and (2), but ¢/ (vivsvevsvy) = |y(vivsvevzvy)]| and
Y (v203V405v2) = y(vav3V4v5v2) + [y(v1vsV2v3v1)], Which again contradicts (3). Thus z(v4vs) =
x(v1vs) +x(vav1) by Lemma 3.1(iii). Combining it with the equality established in the preceding
paragraph, we obtain the x(v4v1) = z(vsv1). If w(vgvy) = 0, then we may assume that x(vqv1) =
x(v3vy) (replacing the smaller of these two with the larger if necessary).

Similarly, we can prove that x(uvs) = x(uvyg) for each u € V(T1)\{b, a1}, where b is the hub
of the 1-sum. Let 7" be the the digraph obtained from T by identifying v3 and v4; the resulting
vertex is still denoted by vs. Let w’ be obtained from the restriction of w to A(T”) by replacing
w(uvy) with w(uvs) +w(uvy) for each u € V(T1)\{b, a1}. Note that T” is Mobius-free by Lemma
2.7, x corresponds to a feasible solution «’ to P(T”, w’), and y corresponds to a feasible solution
y' to P(T,w') with ¢ (v4vsvs) = ' (v4v9v4) = 0, both having the same objective value v} (T') as
x and y. So o’ and y’ are optimal solutions to P(T, w) and D(7T,w), respectively. By Lemma
3.3, the optimal value v (T) of P(T",w’) is integral. So (16) is established.

o y(vivsv3v4v1) = y(vivsvavsv) = 0. In this subcase, y(vovzvgvy) and y(vavsvivsva) are
integral. Assume first that y(vivevsvgvy) > 0. Then, by (11), the arc vgv; is saturated by y in Fy.
So w(vzvr) = y(Ca(vsv1)) = y(vivevsvr) + y(vivsvsvr). If y(vivsvzvr) = 0, then y(vsvivsvs) =
w(vsv3). So y(C) is integral for any C € Cy. If y(vivsvgvy) > 0, then vyvs is is saturated by y
in Fy by (11). Thus w(v4vs) = y(Ca(vavs)) = y(v3vsv5v3) + y(v2v3v4v5v2), which is integral. It
follows that y(vsvivsvs) = w(vgvs) — w(vsve). So y(C) is integral for any C' € Cy. Assume next
that y(vivevsvgvr) = 0. Then y(vivevsvy) is integral and y(vivsvsvi) + y(v3vavsvs) = w(vsvs).
Clearly, we may assume that neither y(vivsv3v1) nor y(vsvgvsvs) is integral, otherwise we are
done. Similar to (16), we can show that

(17) v (T) is an integer.

The proof goes along the same line as that of (16). In fact, we only need to replace
y(vivsvausvy) and y(vevzvgvsve) with y(vivsvs) and y(vsvgvsvs), respectively. So we omit the
details here.

Case 2.8. K = {vqu3,v5v3}.

In this case, by Lemma 3.1(iii), we have w(e) = y(Cz(e)) for each e € K, which together
with (14) yields the following two equations:

w(vav3) = y(v1v2v3v1) + Y(v2v3v4v2) + Y(V1v2V3V4V1) + Y(V2U3V4V5V2) + y(v1v5V2V3VL); and

w(vsvs) = y(vivsvzv1) + y(v3vavsv3) + y(vivsv3vav7).

Since wvavs is saturated by y in Fy, we have w(uve) = z(uvz) = 0 for any v € V(11)\{b, a1}
in this case. Depending on the values of y(vivsvsvavr) and y(vivsvavsvy), we consider three



subcases.

e y(vivsvzvgvy) > 0. In this subcase, from (10) and (15) we deduce that y(vivevzvy) =
y(vivsvausvy) = 0 and that both vzv; and vsvs are saturated by y in Fy. So y(vsvgvsvs) +
y(v2v3vgvsv2) = w(vgvs) and y(vivsvsvr) = w(vsvy). I y(vevsvgvsve) > 0, then both vivy and
v4v9 are saturated by y in Fy by (10) and (12). Thus y(vavsvsve) = w(vgvz) and y(vivavsvavy) =
w(vivy). It follows that y(vsvsvsvs), y(vavsvavsve), and y(vivsvsvavy) are all integral. So we
assume that y(vavsvavsve) = 0. Then y(vsvavsvs) = w(vgvs), and y(vivsvzvavy) = w(vsvs) —
w(vsvy) — w(vgvs). Moreover, y(vovsvavy) = w(vgve) and y(vivavsvavy) = w(vavs) — w(v4ve)
if y(vivavgvavr) > 0, and y(vavsvave) = w(vovs) otherwise. Therefore y(C') is integral for all
C' € Cy, no matter whether if y(vovsvivsve) > 0.

e y(vivsvouzvy) > 0. In this subcase, by (9) and (15) we deduce that y(vsvsvsvs) =
y(vivsvgvgvr) = 0 and that vyvy is saturated by y in Fy. So y(vivavsvy) + y(vivevsvgvy) =
w(vivg). If y(vivevzvgvy) > 0, then vzvy, v4ve, and vyvs are saturated by y in Fy by (9) and
(11). So y(vavsvave) = w(vavz), Y(v2v3v4v5v2) = w(v4vs), and y(vevzvyve) + Y(vV1vsV3V1) +
y(v1vsvovsvy) = w(vsvy). It follows that y(vivovsvy), y(vivevzvavy), and y(vivsvavsvy) are all
integral. Hence y(C) is integral for all C' € Cy. So we assume that y(vivavsvavi) = 0. Then
y(vivavsvr) = w(viva). If y(vavsvgvsve) = 0, then y(vavsvave) + y(vivsvavsvi) = w(vavs) —
w(v1ve). Since y(vivsvevsvy) > 0, we see that vzvy is outside CY, for otherwise, we can obtain an
optimal solution y’ to D(T, w) with ¢/ (vivsvav3v1) < y(vivsv2v301), contradicting (3). It follows
that y(vovsvave) = min{w(vave), w(vsvs)} and y(vivsvevzv1) = W(V2V3) — wW(V1v2) — Y(V2V3V4V2).
If y(vovgvavsve) > 0, then y(vevgvgivay) = w(vgvy) by (12) and y(vivsvevzvy) + y(vavsvavsve) =
w(vavs) — w(v1v2) — w(vgva). Thus we always have w(vjve) = [z(viv2)] = z(vva) for i = 1,4, 5.
Since vy is a near-sink, D(7', w) has an integral optimal solution by Lemma 3.4(i).

e y(v1v5v9v301) = y(v1v5v3v4v1) = 0. In this subcase, depending on whether y(vovzvgvsve) >
0, we distinguish between two subsubcases.

(a) We first assume that y(vovsvqvsvy) > 0. Now, in view of (12), vqve is saturated by
y in Fy, which yields w(vqve) = y(vavsvgva). If y(vivsvzvy) > 0, then vivy is saturated by
y in Fy. So y(vivouzvy) + y(vivavzvgvy) = w(vive) and y(vavsvavsve) = w(vavy) — w(viva) —
w(vqve). Thus w(vivy) = [z(vive)] = z(vive) for i = 1,4,5. By Lemma 3.4(i), D(T,w) has
an integral optimal solution. So we assume that y(vivsvsv) = 0. If y(vivevzvgvy) = 0, then
y(v1v2v301) + Y(vav3v4U5v2) = w(vevs) — w(vave). Since y satisfies (1), we have y(vivavsvy) =
min{w(vive), w(vzvy)} and y(vavgvavsve) = w(vevs) — w(v4va) — y(vivavsvy). If y(vivovsvgvy) >
0, then y(vivevzv1) = w(vsvy) by (11) and y(vivevsvavy) + y(vov3v4v5V2) = Ww(v2V3) — W (V3V1) —
w(vqve). Assume y(v1vav3v4v1) is not integral. Then [y(vivovsvivy)] + [y(vevsvavsve)] = 1. We
propose to show that

(18) wqvy is saturated by y in Fj.

Suppose the contrary. If vqv; is not saturated by y in T, we set § = min{w(vqvy) —
2(vqv1), [y(vovzvavsva)]}, and let ¢y arise from y by replacing y(vivevzvavy) and y(vevsvivsvs)
with y(vivevsvavy) + 6 and y(vavsvsvsve) — 6, respectively. Since vqvs is outside Cf, y' is also an
optimal solution to D(T, w), contradicting (4). If vqv; is saturated by y in T but contained in a
cycle C € CY, let C' = Clvs, v4] U {v4v5} and o = min{y(C), [y(vovsvavsv2)]}, and let y’ be ob-
tained from y by replacing y(vivavsv4v1), y(vovsvavsv2), y(C), and y(C’) with y(vivavzvavy )+ 0,
y(vavsvgvsv2) — 0, y(C) — o, and y(C’) + o, respectively. Then vy’ is also an optimal solution to
D(T, w), contradicting (4) again. So (18) is established.



By (18), we have y(vivavzvavy) = w(vavy). It follows that y(C') is integral for all C' € Ca.

(b) We next assume that y(vevzvgvsve) = 0. If y(vivevzvgvy) > 0, then vivg is saturated by
y in Fy by (11). So y(vavsvave) = w(vave) and y(vivavsvy) +y(v1v2v3v4v1) = w(vavsg) — w(v4v2).
Thus w(viv2) = [z(vive)] = z(vive) for i = 1,4,5. By Lemma 3.4(i), D(7T', w) has an integral
optimal solution. So we assume that y(vivevzvavy) = 0. Then y(vivevzvy) + y(vavsvave) =
w(veus) and y(v1vsv3v1) + y(vsvavsvs) = w(vsvs). If y(vivgvsvy) is integral, then w(vvg) =
[z(viv2)] = z(vive) for i = 1,4,5. Hence, by Lemma 3.4(i), D(7,w) has an integral optimal
solution. So we assume that y(vivavsvy) is not integral. We propose to show that

(19) v} (T) is an integer.

To justify this, let & be an optimal solution to P(7, w). Since 0 < y(vivavsvy) < w(viva)
and 0 < y(vavsvavy) < w(vave), by Lemma 3.1(i) and (ii), we have z(vivy) = x(vq4v2) = 0 and
x(v3v1) = x(v3vy).

Let us show that z(vivs) = x(v4vs). If both y(vivsvsvr) and y(vsvavsvs) are positive, then,
by Lemma 3.1(i), we have z(vivsv3vi) = x(vsvavsvs) = 1, which implies z(vivs) = x(v4vs), as
desired. If one of y(v1vsv3v1) and y(vsvavsvs) is zero, then the other equals w(vsvs). By Lemma
3.2(iii), we may assume that w(vsvs) = 0. Since vous is saturated by y in Fj, both vjvy and
v4vy are outside C§. If vzvy is also outside C, let y’ be obtained from y by replacing y(vsv4vsv3)
and y(vivsvgv) with y(vsvavsvs) + [y(vivsvsvr)] and |y(vivsvsvr)], respectively, then y' is an
optimal solution to D(T,w). Since y'(vsv4vsvs) is a positive integer, D(T,w) has an integral
optimal solution by Lemma 3.2(iii). So we may assume that vzv, is contained in some cycle
in CY; the same holds for vsvy. Let Cy and Cy be two cycles in C passing through vsv; and
v3vy, respectively. By Lemma 3.1(iii), we have x(vsv1) + z(v1vs) = x(vsvs) + x(v4vs). Thus
x(v1vs) = z(v4v5) also holds.

Similarly, we can prove that z(uvy) = x(uvs) for each vertex u € V(T1)\{b, a1}, where b is
the hub of the 1-sum. Let 7" = (V/, A’) be the digraph obtained from T' by identifying v; and
vg; the resulting vertex is still denoted by vy. Let w’ be the restriction of w to A’. Then x
corresponds to a feasible solution @’ to P(T",w’) with 2/ (vivs) = z(v4v1) + x(v1v5) = z(v4V5)
by Lemma 3.1(iii), and y corresponds to a feasible solution y’ to D(T”,w’); both having the
same objective value v} (T) as P(T,w) and D(T,w). By the LP-duality theorem, &’ and y’
are optimal solutions to P(T”, w’) and D(T”, w'), respectively. By Lemma 3.3, D(7”, w’) has an
integral optimal solution. So v(T') is an integer. This proves (19).

Case 2.9. K = {v3v1,v304}.

In this case, by Lemma 3.1(iii), we have w(e) = y(Ca(e)) for each e € K, which together
with (14) yields the following two equations:

w(vgv1) = y(vivavzvi) + y(vivsvsvr) + y(vivsvavsvr); and

w(vgvg) = y(v2v3v4v2) + Y(v30405v3) + y(v1v2030401) + Y(V2030V4U5V2) + Y(V1V5V3V4VY).
Since each e € K is saturated by y in Fy, we have w(uv;) = z(uv;) = 0 for i = 2,3 and all
u € V(T1)\{b, a1}, where b is the hub of the 1-sum. Depending on the values of y(vivsvzvavy)
and y(v1v5v2v3v1 ), we consider three subcases.

e y(vivsvavgvy) > 0. In this subcase, from (9) and (15) we deduce that y(vsvsvsvs) =
y(vivsvgvgvr) = 0 and that vivg and vsvs are saturated by y in Fy. So w(vive) = y(vivevzvy) +
y(vivavsvavr) and w(vsvs) = y(vivsvsvr). I y(vivavsvgvr) > 0, then both vyve and vyvs are
saturated by y in Fy by (9) and (11). Thus y(vevzvsva) = w(v4ve) and y(vevzvgvsve) = w(vavs).
It follows that y(C) is integral for all C' € C3. So we assume that y(vivovsvgvy) = 0. If
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y(vouzvgvsvg) > 0, then vyvy is saturated by y in Fy by (12), which implies that y(vovsvivg) =
w(vgva); if y(vavsvgvsve) = 0, then y(vovgvgvy) = w(vsvy). So y(C) is integral for all C' € Co,
regardless of the value of y(vovsvsvs5v2).

e y(vivsvzvgvy) > 0. In this subcase, from (10) and (15) we deduce that y(vivevzvy) =
y(vivsvausvy) = 0 and that vqvs is saturated by y in Fy. So w(vsvy) = y(vivsvsvr) and
w(vqvs) = y(v3vgvsvs) + y(vovsvgvsva). If y(vavsvgvsvy) > 0, then vive, v4ve, and vsvs are all
saturated by y in Fy by (10) and (12). So y(vivevsvsvi) = w(viva), y(vevzvave) = w(vava),
and y(vsvgusvsy) + y(vivsvsvgvy) = w(vsvy) — y(vivsvgvr). It follows that y(C) is integral
for all C' € C3. So we assume that y(vevsvsvsve) = 0. Then y(vsvivsvs) = w(vgvs). If
y(vivavgvgvr) > 0, then vqve is saturated by y in Fy by (11). So y(vevzvsvy) = w(vave) and
hence y(v1v2v3vav1) + y(v1v5v30V401) = w(v3v4) — W(V4V5) — w(V4v2); if y(vivavsvvy) = 0, then
Y(v2v3v4v2) +y(v1V5v3V4v1 ) = w(v3v4) —w(v4v5). Since all arcs in Fy\vg except {v1vs, v4v1, v405}
are outside CJ and y(vivsvsvavy) > 0, by (ii) we have y(vivavzvavr) = min{w(vive), w(vevs) —
w(vav2)} if y(vivavzvavr) > 0 and y(vevzvavs) = min{w(vave), w(vevs)} otherwise. So y(vivsvzvavy)
is integral, and hence y(C) is integral for all C' € Cy, regardless of the value of y(vivovsvsvy).

o y(vivsv2u3v1) = y(v1vsv3v4v1) = 0. In this subcase, depending on whether y(vovsv4v5v2)
> 0, we distinguish between two subsubcases.

(a) We first assume that y(vevsvsvsve) > 0. By (12), both vqvy and vsvs are saturated
by y in Fy, which implies w(vqvs) = y(vovsvave) and w(vsvs) = y(vivsvsvy) + y(vsvavsvs).
If y(vivsvsvr) > 0, then vyvy is saturated by y in Fy by (12). So w(vive) = y(vivavsvy) +
y(v1vavgvgvy). Moreover, if y(vivovsvgvy) > 0, then vqvs is saturated by y in Fy by (11), which
yields one more equation w(vqvs) = y(vsvavsv3) + y(vevsvavsve). Hence y(C) is integral for
all C' € Cq, no matter whether y(vivavsvsv1) = 0. So we assume that y(vivsvsv;) = 0. Then
y(v1vavsv1) = w(vzvy), y(vsvgvsvs) = w(vsvy) and y(v1vavsv4v1) + Y(V2V3V4V5V2) = w(V3v4) —
w(vav2) — w(vsvs). If y(vivevzvavy) is integral, then y(C) is integral for all C' € Ca. So we
assume that y(vivovsvavy) is integral. Similar to (18), we can prove that vqvp is saturated by y
in Fy. Then y(vivavsvgvy) = w(vgvy), a contradiction.

(b) We next assume that y(vavsvsvsve) = 0. Suppose y(vivavgvgvy) = 0. Then y(vivovgvy) +
y(vivsvzvr) = w(vsvy) and y(vevzvave) + y(vsvavsvs) = w(vsvs). If neither y(vivsvzvr) nor
y(vsvavsvs) is integral, then neither y(vivovsvy) nor y(vavsvave) is integral. Similar to (19),
we can show that v} (T') is an integer. So we may assume that y(vivsvsvy) or y(vsvivsvs)
is integral. Observe that both of them are integral, for otherwise, let 4’ be obtained from y
by replacing y(vivevsvy) and y(vivsvsvr) with y(vivevsvy) + [y(vivsvsvr)] and |y(vivsvsvr)],
respectively. Since v1ve, vovs, and vqvo are all outside Cg , ¥y’ is an optimal solution to D(T, w),
with ¢/ (vivsv3v1) < y(v1vsv301), contradicting (5).

Suppose y(vivevzvgvy) > 0. Then y(vovzvgva) = w(vgva). If y(vivsvsvr) > 0, then vqvs is
saturated by y in Fy by (11), which implies y(v3vqvsv3) = w(v4vs), y(vivavsvgvy) = w(vsvy) —
w(vav2) — w(vavs), and y(vivavsvr) + y(vivsvsvr) = w(vsvy). If y(vivsvsvr) is not integral, let
vy’ be obtained from y by replacing y(v1vov3v1) and y(vivsvsvy) with y(vivevzvy) + [y(vivsv301)]
and |y(v1v5v3v1) |, respectively. Since both vive and vevs are outside Cy, y’ is an optimal solution
to D(T, w), with ¢/ (vivsv3v1) < y(vivsv3v1), contradicting (5). So y(vivsvsvy) is integral and
hence is zero by Lemma 3.2(iii). It follows that y(vivevsvi) = w(vzvr) and y(vivavsvgvy) +
y(v3v4v5v3) = w(v3vy) — w(vgve). If y(vsvgvsvs) is integral, then y(C') is integral for all C' € Co.
So we assume that y(vsv4vsvs) is not integral. Let us show that
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(20) v (T) is an integer.

By Lemma 3.2(iii), we may assume that w(vsv1) = w(vqve) = 0. Recall that w(vsve) =
z(vsv2) = 0 and w(uv;) = z(uv;) = 0 for ¢ = 2,3 and all u € V(T1)\{b,a1}. So we may assume
that x(uve) = x(uvs). Let T" = (V', A’) be the digraph obtained from T by identifying ve and
v3; the resulting vertex is still denoted by w3, and let w’ be the restriction of w to A’. Then
@ corresponds to a feasible solution @’ to P(T”,w’), and y corresponds to a feasible solution
vy’ to D(T’,w’); both having the same objective value v (T) as P(T,w) and D(T,w). By the
LP-duality theorem, &’ and y’ are optimal solutions to P(7”, w’) and D(T”, w'), respectively. By
Lemma 3.3, D(7”, w'’) has an integral optimal solution. So v (T') is an integer. This proves (20)
and hence Claim 2.

Since Tw(Fy\vg) > 0, from Claim 2, Lemma 3.2(iii) and Lemma 3.4(ii) we deduce that
D(T,w) has an integral optimal solution. This completes the proof of Lemma 4.4. |

Lemma 4.6. If Ty = Gg, then D(T,w) has an integral optimal solution.

Proof. It is routine to check that

o Co = {v10204V1, V1VEV3VT, V1VEULVT, V] VgU2V4V] , V1 UgU3VLVT, V1 UgU3V204V1 } and

[} fg = {{’1)11}6, 1}11)2}, {’1}11}6, 112’04}, {1}11]6, U4’U1}, {Ugvl, ’U4’U1}, {114’01, ’1)6’1}3}, {’02’04, VU3, 1}61]4},

{vouy4, V301, V3V4, VeV4 }, {V1V2, V62, VU3, V64 }, {V1V2, VU1, U3V, V3V, VgV, VU4 |}

We also have a computer verification of these results. So |Ca| = 6 and |F2| = 9. Recall that
(b2, a2) = (v4,vs5).

Let y be an optimal solution to (T, w) such that

(1) y(Cz) is maximized;

(2) subject to (1), (y(Dyq),y(Dyg-1),...,y(D3)) is minimized lexicographically;

(3) subject to (1) and (2), y(vivgvsvavy) is minimized; and

(4) subject to (1)-(3), y(vivevavy) is minimized;

Let us make some simple observations about y.

(5) If K € F, satisfies y(C2) = w(K), then K is an MFAS. (The statement is exactly the
same as (4) in the proof of Lemma 4.3.)

The three statements below follow instantly from Lemma 3.5(v).

(6) If y(vivgvgvavgvy) > 0, then each arc in the set {vive, v3v1, V3v4, VeV2, Vev4} is saturated
by y in Ga.

(7) If y(v1vgvsvavy) > 0, then both vsvy and vgvy are saturated by y in Go.

(8) If y(vivevavavyr) > 0, then both vivy and vgvy are saturated by y in Ga.

Claim 1. y(CQ) = Tw(GQ\U5).

To justify this, observe that if both vjve and vvg are saturated by y in Ga, then y(Co) =
w(K), where K = {vjvg,v106}; if both vsv; and vgv; are saturated by y in Ga, then y(Cy) =
w(K), where K = {vzv1,v4v1}. By (5), K is an MFAS and hence y(C2) = 7,(G2\vs) in either
case. So we assume that

(9) at most one of v1ve and vyvg is saturated by y in Ga. The same holds for vsv; and vqvy.

As vy, is a special arc of T' and vg is a near-sink, by Lemma 3.4(iv), we may assume that
vy is saturated by y in 7. Depending on whether vovy is outside C§, we distinguish between
two cases.

Case 1.1. vgvy is contained by some cycle in C§.
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In this case, we proceed by considering two subcases.

e v3v; is saturated by y in Gy. In this subcase, by (9), v4v1 is not saturated by y in Gy
and hence in T, because vqv; is outside Cy. By the hypothesis of the present case and Lemma
3.5(iii), v1vy is saturated by y in T. Observe that vjvy is outside C§, for otherwise, a cycle
Ce Cé’ containing vjve must pass through vevs. Thus, by Lemma 3.5(iv), vqv; is saturated by
y in Go, a contradiction. It follows that vjve is saturated by y in Ga. So, by (9), v1vg is not
saturated by y in Ga. If v1vg is contained in some cycle C' € Cf§, applying Lemma 3.5(iv) to the
cycle Clvy,v4)U{vgv1} in Ca, we see that vyv; is saturated by y in T, a contradiction. So vjvg is
outside C' € C§. By Lemma 3.5(iii), vgvs is saturated by y in G2 and vgvy is outside C§. Using
Lemma 3.5(i), we further deduce that vgvy is saturated by y in Ga. If vgvs is also saturated by
y in Go, then y(C3) = w(K), where K = {vjva, vgv2, vgv3,v6v4}. By (5), K is an MFAS and
thus y(C2) = 7,(G2\vs). If vgvs is saturated by y in T but contained in some cycle C' € C§,
applying Lemma 3.5(iii) to the cycle Cluvg,v4] U {vav1,v106} € Ca, we see that vqv; or vivg is
saturated, a contradiction. If vgvs is not saturated by y in 7" then, by Lemma 3.5(iii), vzve is
saturated by y in G2 and and v3vy is outside C§. Using Lemma 3.5(i), we further deduce that
v3vy is saturated by y in Ga. Thus y(Ca) = w(J), where J = {vv2, v3v1, v302, V304, Vg2, V64 }-
By (5), J is an MFAS and thus y(Cs) = 7,(G2\vs).

e v3v1 is not saturated by y in Go. In this subcase, we have y(vivgv3vav1) = y(vivgV3V2VLV1) =
0 by (6) and (7). Assume first that vjve is saturated by y in G3. Then vivg is not satu-
rated by y in Ga by (9). Thus vgvs is saturated by y in Go by Lemma 3.5(iii) and (iv). If
vqv1 is also saturated by y in Ga, then y(Cy) = w(K), where K = {v4v1,v6v3}; otherwise,
both vgve and vgvs are saturated by y in G2 by Lemma 3.5(iii) and (iv). So y(Ca2) = w(K),
where K = {vjvg, vgve, v6u3,v6v4}. By (5), K is an MFAS in either subsubcase, and thus
Y(C2) = 1w (G2\vs).

Assume next that vjvy is not saturated by y in Gy. By (8), we have y(vivgvavgvy) = 0. By
the hypothesis of the present case and by Lemma 3.5(iii) and (iv), vqv; is saturated by y in Ga.
If vgvs is also saturated by y in Ga, then y(C2) = w(K), where K = {vqvi,v6v3}. By (5), K
is an MFAS and thus y(C2) = 7,(G2\v5). So we assume that vgvs is not saturated by y in Go.
Thus vyvg is saturated by y in Gy by Lemma 3.5(iii) and (iv). We propose to show that

(10) y(vivevavy) = 0.

Assume the contrary: y(vivevsvr) > 0. Observe that vive is outside Cé’ , for otherwise, let
C be a cycle in Cé’ containing v1ve. Then the multiset sum of vivgvivy and C' contains two
arc-disjoint cycles v1v9v4v1 and Clug, v1] U {v1vg, vgva}. Set 6 = min{y(vivgvsv1), y(C)}. Let 3y’
be obtained from y by replacing y(vivgvav1), y(vivavgvy), y(C), and y(C’) with y(vivgvsvy) — 0,
y(vivovgvy) + 0, y(C) — 0, and y(C’) + 0, respectively. Then gy’ is also an optimal solution to
D(T,w). Since y'(vivgvav1) < y(v1vevavy), the existence of y' contradicts the assumption (4)
on y. It follows that vsv; is also outside C§, because every cycle containing v3v; in C§ must pass
through vivs. So neither v1vs nor vzvy is saturated by y in 7.

Let us show that vevs is outside C, for otherwise, let C € C§ contain vgvs. Then the
multiset sum of vyvgvavy, C, and the unsaturated arc vzvy, contains arc-disjoint cycles vivgv3vy
and C' = Clvg,ve] U {vgva}. Set 6 = min{y(vivgvsv1), y(C), w(vzv1) — z(vsv1)}. Let y' be
obtained from y by replacing y(vivgv4v1), y(vivevsvy), y(C), and y(C') with y(vivgvavy) — 6,
y(vivgusvy) + 0, y(C) — 0, and y(C’) + 0, respectively. Then vy’ is also an optimal solution to
D(T,w). Since y'(vivgvav1) < y(v1vevav1), the existence of ¢y’ contradicts the assumption (4)
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ony. Let D € Cé’ be a cycle containing vevs4. Then the multiset sum of D, vjvgvav1, and the
unsaturated arcs wvgvs, vzvy, and vive contains two arc-disjoint cycles vivev v; and vivevsvy.
Thus, by Lemma 3.5(vi), we obtain y(vijvsvav1) = 0; this contradiction proves (10).

From (10), we deduce that y(C2) = w(K), where K = {vjvg,v4v1}. So, by (5), K is an
MFAS and thus y(C2) = 7w (G2\vs).

Case 1.2. vyvy is outside Cg.

In this case, vouy is saturated by y in Ga. So v1vs, v3v2, and vgug are all outside Cg . Assume
first that v1vg is saturated by y in Go. Then vvs is not saturated by y by (9). By (6) and (8),
we have y(v1vv3v2v401) = y(vivevavgv1) = 0 and hence y(C2) = w(K), where K = {v1vg, v2v4}.
It follows from (5) that K is an MFAS and thus y(C2) = 7(G2\vs). Assume next that vjvg is
not saturated by y in Ga. If v4v; is not saturated by y in 7', then vgvy is outside C§ by Lemma
3.5(iii). So v3v4 is contained in some cycle in C§ because C§ # (. Using Lemma 3.5(iii), we deduce
that both vgvs and vgvy are saturated by y in Go. Using (6), we obtain y(vjvgvsvavgvy) = 0.
Thus y(C2) = w(K), where K = {vavy, vgv3, v6va}. If v4v1 is saturated by y in 7', then so is it
in G because vqv; is outside C§. By (9), vsv; is not saturated by y in Go. By Lemma 3.5(iii),
vev3 is saturated by y in G2. By (6) and (7), we have y(vivevzvav1) = y(vivevsvavgvy) = 0.
Hence y(Co) = w(K), where K = {v4v1,vgv3}. In either subsubcase, K is an MFAS by (5) and
thus y(C2) = 7 (G2\vs). This proves Claim 1.

Claim 2. y(C) is integral for all C' € Cy or v, (T') is an integer.

To justify this, we may assume that

(11) y(vivevgvavgvy) = 0.

Otherwise, by (6), we have w(e) = y(Ca(e)) for each e in the set {viva, v3v1, V3V4, VeV2, VU4 }-
So y(vivavgvy) = w(viva), y(vivevsvy) = w(vsvy), y(vivevsvavy) = w(vzvy), y(vivevav4vL) =
w(veva), and y(vivevav) = w(vgvy). By Claim 1, y(Cq) is an integer, so is y(v1vev3v2v4v1).
Hence y(C) is integral for all C' € Cs.

By Claim 1, y(C2) = w(K) for some K € Fy. Depending on what K is, we distinguish among
nine cases.

Case 2.1. K = {Ulvg, V3v1, V3V2, U3V4, VU2, 7)61)4}.

In this case, by Lemma 3.1 (iii), we have w(e) = y(Ca(e)) for each e € K. It follows instantly
that y(C) is integral for all C' € Cs.

Case 2.2. K = {vjvg,v401 }.

In this case, by Lemma 3.1 (i), we have y(vivgvav1) = y(vivevavavy) = y(v1vgv3v401) =
y(v1v6v3v2v4v1) = 0. By Lemma 3.1 (iii), we further obtain w(e) = y(Cz(e)) for each e € K. It
follows that y(vivevsv1) = w(vavy) and y(vivevsvy) = w(vive). Therefore y(C) is integral for
all C € Cs.

Case 2.3. K = {v1v2, vg02, V6U3, VgU4 }.

In this case, by Lemma 3.1 (iii), we have w(e) = y(C2(e)) for each e € K, which together
with (11) yields the following equations: y(vivovgvi) = w(v1v2), y(vivevavav1) = w(VgV2),
y(v1v6v4v1) = w(veva), and y(v1vv3v1 ) +y(v106v3V4v1) = w(vev3). Note that if y(vivsvsvavy) >
0, we have one more equation y(vivgvsv1) = w(vsvy) by (7). Hence y(C) is integral for all C' € Co,
no matter whether y(vivgvzvqvy) = 0.

Case 2.4. K = {vyvy, v6U3, UgV4 }.

In this case, by Lemma 3.1 (iii), we have w(e) = y(Cz(e)) for each e € K, which together
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with (11) yields the following equations: y(vivavavy) + y(vivevevavy) = w(vavy), y(vivevsvy) +
y(v1vgvsvgvy) = w(vgvs), and y(vivgvav) = w(vgvy). Note that if y(vivgvavgvy) > 0, we have
one more equation y(vivgvavy) = w(vive) by (8); if y(vivevsvavy) > 0, we have one more
equation y(v1vgvsvy) = w(vsvy) by (7). Hence y(C) is integral for all C' € Cy in any subcase.

Case 2.5. K = {vyvy, v301, U304, V604 }.

In this case, by Lemma 3.1 (iii), we have w(e) = y(Cz(e)) for each e € K, which together
with (11) yields the following equations: y(vivav4v1) + y(v1vevavV4v1) = w(Vavy), Y(v1VEV3VL) =
w(vsvr), y(vivevsvavr) = w(vgvy), and y(vivevavy) = w(vevy). Note that if y(vivgvavgvy) > 0,
we have one more equation y(vivevsv1) = w(vive) by (8). Hence y(C) is integral for all C' € Ca,
no matter whether y(vjvgvav4v1) = 0.

Case 2.6. K = {v1vg,v204}.

In this case, by Lemma 3.1 (i), we have y(vivgvavsv;) = 0. By Lemma 3.1 (iii), we ob-
tain w(e) = y(Ca(e)) for each e € K, which together with (11) yields the following equa-
tions: y(v1vevav1) = w(vevs) and y(vivevsvy) + y(vivevav1) + Yy(v1v6v3V4v1) = w(vive). More-
over, in this case vivg, v3v2, and wvgvy are all outside Cf, and w(uvy) = z(uvy) = 0 for any
u € V(T1)\{b,a1}, where b is the hub of the 1-sum. Examining the cycles in Ca, we see that
z(v3ve) = z(vgv2) = 0 and so w(v;ve) = [z(vive)] = z(vvg) for i = 1,3,6. Thus D(T,w) has an
integral optimal solution by Lemma 3.4(i).

Case 2.7. K = {vqv1,v603}.

In this case, by Lemma 3.1 (i) and (iii), we have y(vivgvsvavi) = 0, y(vivevzvy) = w(vevs),
and y(vivavgv1) + y(vivgvavr) + y(v1v6v204v1) = w(vgvy). Lemma 3.2(iii) allows us to assume
that w(vevs) = 0. If y(vivevavavy) > 0, then both vive and vgvy are saturated by y in Ga by (8).
So y(vivavgvy) = w(vive) and y(vivevavr) = w(vgvy). Hence y(C) is integral for all C' € Co; the
same holds if y(vivgvev4v1) = 0 and y(vivov4vr) is integral. So we assume that y(vivgvevsv1) = 0
and y(v1vavgvy) is not integral. Observe that vvs is outside Cé’ , for otherwise, let C be a cycle in
C§ containing vivg, let C" = Clvg, v1] U {v1v6, v6v4 }, and set = min{y(C), y(vivevsvy)}. Let ¢
be obtained from y by replacing y(vivgvav1), y(vivavavy), y(C), and y(C’) with y(vivevavy) — 0,
y(vivovgvy) + 0, y(C) — 0, and y(C’) + 0, respectively. Then gy’ is also an optimal solution to
D(T,w). Since y'(vivgvav1) < y(v1vgv4v1), the existence of ¢y’ contradicts the assumption (4)
on y. Similarly, we can prove that vgve is outside C§. Examining cycles in Co, we see that
w(vgv2) = z(vev2) = 0. Now we propose to show that

(12) v} (T) is an integer.

To justify this, let & be an optimal solution to P(T,w). Since both y(vivevsv) and
y(v1vev4v1) are positive, we have x(viv2) + z(vavs) = x(vive) + x(v6va) by Lemma 3.1(i). Since
y(v1vav4v1) < w(vivy), we have x(vive) = 0 by Lemma 3.1(ii). So x(vavs) = x(vivg) + 2 (vv4).
If each of vgvy and vsvs is contained in some cycle in C§, then x(vsv1) = z(vsv2) by Lemma
3.1(iv). If one of vzv; and vsvs is outside C§, say vsvi, then we may assume that w(vsvy) = 0
and z(vsv1) = x(vsve). Similarly, we can prove that x(uvi) = z(uve) for each u € V(T1)\{a1, b}.

Let T = (V', A’) be obtained from T by deleting vertex vy, let w’ be obtained from the
restriction of w to A’ by defining w'(uv1) = w(uvy) + w(uwvy) for u = v or u € V(T1)\{b,a1}
and w'(v;v;) = w(vv;) + w(vavy) for (i,5) = (1,6) or (6,4). Let @’ be the restriction of  to
A’ and let ¢’ be obtained from y as follows: for each cycle C' passing through the path uwsuvy
with u € (V(T1)\{a1,b}) U {vs}, let C’ be the cycle arising from C by replacing uvqvs with
uv1vgvy, and set ' (C) = y(C) + y(C") and y'(v1vgv4v1) = y(vivevavy) + y(vivevavy). From
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the LP-duality theorem, we see that ' and y’ are optimal solutions to P(7”, w’) and D(T", w')
respectively, both having the same value v} (T) as « and y. Hence v, (T) is an integer by the
hypothesis of Theorem 1.5.

Case 2.8. K = {vjvg,v102}.

In this case, by Lemma 3.1 (iii), we have w(e) = y(C2(e)) for each e € K, which together
with (11) yields the following equations: y(v1vov4v1) = w(v1ve) and y(vivevsvr) + y(vivevavy) +
y(v1v6vavav1) + y(v1vv3V4V1) = w(v1v6). Moreover, vgvy is outside C§. Depending on whether
y(vivgvsvgvy) = 0, we consider two subcases.

e y(vivgvsvgvr) = 0. In this subcase, we first assume that y(vivgvavsvi) > 0. Then
y(vivevavi) = w(vevs) by (8). Thus y(vivevzv) + y(vivevavsva) = w(vive) — w(vevs). Let us
show that y(v1vgvsv) is integral. Suppose not. If vgvs is outside C, let y’ be obtained from y by
replacing y(v1vev3v1) and y(vivevavavr) with y(vivevsvr) + [y(vivevavav:)] and [y(vivevavavy)],
respectively; if vgvs is contained in some cycle C' in C§, set § = min{y(C), [y(vivevavsvy)]}
and C" = Clvg,vg] U {vgva, v2v4}, and let y' be obtained from y by replacing y(vivevzvi),
y(v1v6v2v4v1), Y(C), and y(C”) with y(vivevzv1) +0, y(vivevavavr) — 0, y(C) — 0, and y(C’) + 0,
respectively. In both subsubcases, ¢y is an optimal solution to D(7, w) with v/(vivgvavvy) <
y(v1vevavgvy ), contradicting (2). We next assume that y(vivgvavgv;) = 0. The proof of this
subsubcase is similar to that in the preceding one (with y(vivgvsv1) in place of y(vivgvavavy)).
Thus we reach a contradiction to (4).

e y(vivguzvgvy) > 0. In this subcase, by (7), both vsv; and vgvy are saturated by y in G2. So
y(vivevav) = w(vav1), y(vivevavr) = w(vevs), and y(vivev2v4v1) + y(v1v6v3V401) = W(V1V6) —
w(v3vy) —w(vevs). If y(vivgvavgvy) is integral, then y(C') is integral for all C' € Ca. So we assume
that y(v1vevavavy) is not integral. Then [y(vivvavav1 )]+ [y(vivevsvavy )] = 1. Observe that vgve
is outside C§, for otherwise, let C' be a cycle in Cf containing vgva, let C" = Clvy, v]U{vevs, v3va},
let 0 = min{y(C), [y(vivevsvsvi]}, and let ¢y’ be obtained from y by replacing y(vivsvzvav),
y(v1vevavav), y(C), y(C') with y(vivevzvav) — 0, y(vivevavavr) + 0, y(C) — 0, and y(C") + 0,
respectively. Then y’ is an optimal solution to D(7T,w) with y'(vivgvsvsv1) < y(vivgv3V4V1),
contradicting (2). Similarly, we can show that vsvs is also outside C§. Thus w(vsvs) = z(v3ve) =
0. By Lemma 3.2(iii), we may assume that w(viva), w(vsvy), and w(vgvy) are all 0. We propose
to show that

(13) v} (T) is an integer.

To justify this, let  be an optimal solution to P(7,w). Since y(vivgvovsvy) > 0 and
y(vivgvzvgvy) > 0, from Lemma 3.1(1) we deduce that z(vgva) + x(vovs) = z(vev3) + x(v3v4).
Since y(vivgvav4v1) < w(vgv2), we have x(vgve) = 0 by Lemma 3.1(ii). It follows that x(vovy) =
z(vgv3) + z(v3vy). Since w(vvs) = 0 and vgvy is outside CY, z(uvg) = x(uve) for each u €
V(Th)\{b,a1}. Let T" = (V', A’) be the tournament obtained from 7" by deleting vertex va, let
w’ be obtained from the restriction of w to A’ by replacing w(uvg) with w(uve)+w(uvy) for each
u € V(T1)\{b, a1} and replacing w(v;v;) with w(v;v;) + w(vavs) for (i,5) = (6,3) or (3,4). Let
' be the restriction of x to A’, and let 4’ be obtained from y as follows: for each cycle C' passing
through wwvevy with u € V(T1)\{b,a1}, let C" be the cycle arising from C' by replacing uvovy
with uvgvsvy, and set ¢’ (C") = y(C")+y(C) and y' (v1vgv3v4v1) = Y(v1V6V3V4v1) +y(V1V6V2V4VT).
From the LP-duality theorem, we deduce that &’ and y’ are optimal solutions to P(7”,w’) and
D(T’, w'), respectively, both having the same value v (T) as « and y. Hence v (T) is an integer
by the hypothesis of Theorem 1.5.
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Case 2.9. K = {v3v1,v4v1 }.

In this case, by Lemma 3.1 (iii), we have w(e) = y(Cz(e)) for each e € K, which to-
gether with (11) yields the following equations: y(vivevsvy) = w(vsvy) and y(vivevavy) +
y(v1v6v401) + Y(v106v20401) + Yy(v1V6v3V4v1) = w(vgvy). Assume first that y(vivgvevgvy) = 0.
If y(vivevzvgvy) > 0, then vgvy is saturated by y in Ga. So y(vivevavi) = w(vgvs) and hence
y(vivavgvr) + y(v1vevzvgvr) = w(vgvr) — w(vevy); if y(vivevsvavr) = 0, then y(vivavgvy) +
y(v1vgvav1) = w(vgvr). If y(vivevgvr) is an integer, then y(C) is integral for all C' € Cy. So we
assume that y(vivov4v1) is not integral. Then we can prove that both vgvy and vivy are outside
CY and that v} (T') is an integer. The proof is the same as that of (12) (with y(vivgv4v1) in place
of y(v1vvzvavy) when y(vivgvzvavy) > 0), so we omit the details here .

Assume next that y(vivgvavqvy) > 0. Then both vive and wvgvs are saturated by y in
Ga. So y(vivavgvr) = w(vive), y(vivevav:) = w(veva), and y(vivevavavt) + Y(v1vev3vav1) =
w(vgvy) — w(vive) — w(vgvy). If y(vivgvzvgvy) is an integer, then y(C) is integral for all C' € Co.
So we assume that y(vivgvsvavy) is not integral. Then we can prove that both vgve and vsvy
are outside C§ and that v, (T) is an integer. The proof is the same as that of (13), so we omit
the details here. Thus Claim 2 is established.

Since Ty (Fy\vg) > 0, from Claim 2, Lemma 3.2(iii) and Lemma 3.4(ii) we deduce that
D(T, w) has an integral optimal solution. This completes the proof of Lemma 4.5. |

Lemma 4.7. If Ty = G3, then D(T,w) has an integral optimal solution.

Proof. It is routine to check that

o(y = {0102114?11,01061)3111,vzv41161)2,v3114061)3, V1V6V2V4V1, V1VgU3V4V1, V2V4VeV3V2, V1VgU3V2V4VT,

v1V2V4V6vV3V1 } and

° fg = {{’1)21}4, 1}61}3}, {1}11}2, V1Ve, ’U4’U6}, {’Ul’l)g, VeU2, Uﬁvg}, {’1)11}6, V2V4, ’03’1)4}, {1111)6, VU4, U4U6},

{v1v6, v4v1, V4v6 }, {V2V4, V3VT, V3V4 }, {U3VL, VaVT, V4VE }, {V4V1, V4VE, VeVS T,

{’U4’U1, VU2, U6U3}, {U1U2, V3V1, V3V2, V3U4, U6U2}, {U1U2, V1Vg, V3V2, V34, U6U2},

{v3v1, V309, V3V4, V4VT, VU } }.
We also have a computer verification of these results. So |C2] = 9 and |F2| = 13. Recall that
(bg, a2) = (1}4, 1)5).

Let y be an optimal solution to (7', w) such that

(1) y(Cq) is maximized;

(2) subject to (1), (y(Dq),y(Dyg—1),...,y(D3)) is minimized lexicographically;

(3) subject to (1) and (2), y(vivgvsvavy) is minimized; and

(4) subject to (1)-(3), y(vivevavy) + y(v3vavevs) is minimized;

Let us make some simple observations about y.

(5) If K € F, satisfies y(C2) = w(K), then K is an MFAS. (The statement is exactly the
same as (4) in the proof of Lemma 4.3.)

(6) If y(vivavgvgvzvy) > 0, then each arc in the set {v1vg, v3v2, V3V4, V41, VU2 } is saturated
by y in G3. Furthermore, y(v1vv2v4v1) = y(v1vgv3v4v1) = y(v1v6V3V204v1) = 0.

To justify this, note that each arc in the given set is a chord of the cycle vivovgvgvszvy. So
the first half follows instantly from Lemma 3.5(v). Once again let & stand for the multiset sum.
Then v1v9V4V6U3V1 W V1VgU2V4V1 = V1VU4V1 W V1V6V3V1 W V9U4V6V2, V1U2V4VgU3V W V1 VgU3V4U] =
V1V204U1 WU VU301 WU30406V3, and V1 U204 V6V301 WU UgU3Va04V] = 11V9V4V1 HU1U6V3V1 HUo 4 VU3 V2.
It follows from the optimality of y that y(vivevavsvi) = y(vivevsvavy) = y(vivevsvavgvy) = 0.
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(7) If y(vivgvsvavgvy) > 0, then each arc in the set {vjve, v3v1, v3v4, V46, VeV } is saturated
by y in G3. Furthermore, y(vavgvgve) = y(v3vgvgvs) = 0.

To justify this, note that each arc in the given set is a chord of the cycle vivovgvgvsvL. SO
the first half follows instantly from Lemma 3.5(v). Observe that vqvgvsvevsvy W v3v406v3 =
V1VgVU3V4V1 W U204VgU3V2 and v1UgU3V24V1 W Ua04UgU2 = V1VgV2U4V1 B U463V, Since y satisfies
(2), it is clear that y(vevsveva) = y(vsv4vev3) = 0.

(8) If y(vivvzvavy) > 0, then both vsvy and vqvg are saturated by y in Gs; so is vivg if
y(vovgvgv3vy) > 0. Furthermore, y(vovgvgve) = 0.

To justify this, note that both vsv; and vqvg are chords of the cycle vivovgvgvsvL, SO they are
saturated by y in G3 by Lemma 3.5(v). Suppose y(vavgvgvgve) > 0. If v1vy is not saturated by y
in T, then v1v6V3V4V1 WV2v4VaV3V2W{V1V2 } = V1V2V VI WU3V4VE3; if V1 vy is saturated by y in T' but
contained in some cycle C' € CE’)' , then the multiset sum of C', v1vgv3v4v1, and v9v4vV6V3V9 contains
arc-disjoint cycles vivavqvy, v3V406v3, and C' = Clug, v1] U {v1vs, v6v3, 302, v2v4 }. Thus we can
obtain an optimal solution y’ to D(T,w) that contradicts the assumption (3) on y. Moreover,
since v1V6U3V4V1 W U240V = V3V4V6V3 W V1 UgV204v1, it follows from (3) that y(vovsvgvs) = 0.

(9) If y(vivgvavavy) > 0, then both vivy and vivg are saturated by y in G3; so is vsvy if
y(vsvavgv3) > 0 or y(vevgvguzve) > 0.

The first half follows instantly from Lemma 3.5(v). To prove the second half, assume the
contrary. If vsvy is not saturated by y in T, then vzv vgvs W v1vgv2v4v1 W {v3v1} = vov4V6VL W
01060301, and Vav4VEU3V2 WU Vg2V V1 W{ V31 } = vovgugva WU vgUsYT; if v3vy is saturated by y in T
but contained in some cycle C' in Cg , then the multiset sum of C, v1vgvav4v1, and vsvsvgvs (resp.
V9U4UgV3V2) contains arc-disjoint cycles vovgvgua, vivgUsV1, and C' = Clvg, vs] U {vsvs} (resp.
C' = Clvug, v3) U {vgvg, vovs}). Since y satisfies (2), we have y(vsvgvgvs) = y(vavgvgvzvg) = 0, a
contradiction.

(10) If y(vovqvgvzve) > 0, then both vsvy and wvgve are saturated by y in Gz by Lemma
3.5(v).

(11) If vyvg is contained in a cycle in Cg, then both v4v; and v4vg are saturated by y in Gs.

Since both C[vy,v4] U {vgv1} and Clug, v4] U {vgvg} are cycles in Cy, the statement follows
instantly from Lemma 3.5(iv).

(12) If vgvz is contained in a cycle in Cg, then vqvg is saturated by y in G3; so is vivg or
V41 .

The first half follows instantly from Lemma 3.5(iv). To prove the second half, we may
assume, by (11), that vjvg is outside Cj. Let C be a cycle in C§ containing vgvs. Then both
Clve,v4] U{vgvg} and Clug, v4) U {vgv1,viv6} are cycles in Ca. Thus, by Lemma 3.5(iv), vqvg
and at least one of vivg and vqv; are saturated by y in Gs.

Claim 1. y(C2) = 7 (G3\vs).

To justify this, observe that vovy is a special arc of T" and v is a near-sink. By Lemma 3.4(iv),
we may assume that vavy is saturated by y in T'. Let Go = {{v1v2, v1v¢, 406}, {v1V2, V6v2, VU3 },
{U2U4, V31, 1)31)4}, {U37)1, V41, U4U6}}. Then Gy C F». Observe that

(13) if y(vivavgvgvzvy) = 0, then for each K € Go, not all arcs in K are saturated by y in
Gs.

Suppose the contrary: all arcs in K are saturated by y in (G3. Examining cycles in Ca, we see
that y(C2) = w(K). By (5), K is an MFAS and hence y(C2) = 7,(G3\vs). So we may assume
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that (13) holds.

Depending on whether vovy is outside Cf, we distinguish between two cases.

Case 1.1. vovy is contained in some cycle in Cg .

We proceed by considering four subcases.

e Neither vqv; nor vqvg is saturated by y in G3. In this subcase, by Lemma 3.5(iii) and
(iv), both vivy and vgve are saturated by y in Gs. By (6)-(9), y(vivavgvevsvy), y(vivevsvavavy ),
y(vivevsvavy), and y(vivevavgvy) are all zero. By (12) and (13), vgus is outside C§ and not
saturated by y. By Lemma 3.5(iii), both vsvy and vsvy are saturated by y in G3. By Lemma
3.5(1) and (iii), at least one of vjvg and wsv; is saturated by y in G3. Thus y(C2) = w(K),
where K is {vjve, v1v06, U3v2, U304, VgU2 } Or {v1v2, U3V1, V3V, U3Vg, VU2 }. By (5), K is an MFAS
and hence y(C2) = 7, (G3\vs).

e v4vg is saturated by y in Gz while vqv; is not. In this subcase, by Lemma 3.5(iii), vivy
is saturated by y in Gs. By (6), we have y(vivovqvgvzvy) = 0. By (11) and (13), vyivg is
outside C§ and not saturated by y. By Lemma 3.5(i) and (iii), vgve is saturated by y in Gs.
So, by (12) and (13), vevs is outside C§ and not saturated by y. It follows from Lemma 3.5(i)
and (iii) that vsvy, vsve, and vsvy are all saturated by y in G3. Thus y(C2) = w(K), where
K = {v1v9, v3v1, V302, 304, Vg2 }. By (5), K is an MFAS and hence y(C2) = 7 (G3\v5).

e vyv1 is saturated by y in G3 while v4vg is not. In this subcase, by Lemma 3.5(iii), vgvy is
saturated by y in G3. By (7)-(9), y(v1vevsvav4v1), y(v106v304v1 ), and y(vivvavavy ) are all zero.
By (12), vgvs is outside C§. Furthermore, we may assume that vgvs is not saturated by y, for
otherwise y(C2) = w(K ), where K = {v4v1,v6v2,v6v3}. Then, by Lemma 3.5(iii) and (iv), both
v3vy and vsvy are saturated by y in Gs. If vzv; is also saturated by y in G, then y(C2) = w(K),
where K = {v3v1, v3v2, V304, 401, VU2 }; otherwise, by Lemma 3.5(i) and (iii), both vjve and
v1vg are saturated by y in G3. So y(C2) = w(J), where J = {viva, v1v6, V302, V3V4, VU2 }.

e Both v4v; and vyvg are saturated by y in Gs. In this subcase, if y(vivovivgvsvy) > 0, then
v1vg is saturated by y in G and y(vivgvovivy) = y(vivgvsvavy) = y(v1v6v3v204v1) = 0 by (6).
Thus y(C2) = w(K), where K = {vqv1,v406,v106}. So we assume that y(vivavgvgvzvy) = 0.
Then v3vy is not saturated by y in Gg by (13). Thus y(vivevsvevsvy) = y(vivgvsvgvy) = 0
by (7) and (8). If y(vivgvavgvy) > 0, then vjvy is saturated by y in Gs and y(vsvivgvs) =
y(vavgvgvzvy) = 0 by (9). By (13), vivg is not saturated by y in Gs. Hence, by Lemma
3.5(iii), vgvs is saturated by y in Gs. Therefore, y(C2) = w(K), where K = {vqv1, v4vg, vgvs}.
So we may assume that y(vivgvavgvy) = 0 and that vivg is not saturated by y in Gg, for
otherwise y(C2) = w(K), where K = {v4v1, v4v6,v106}. Thus, by Lemma 3.5(iii) and (iv), vgvs
is saturated by y in G3. We may further assume that vgvy is not saturated by y in G, for
otherwise, y(Ca) = w(J), where J = {v4v1, v6v2,v6v3}. Then y(vevsvgvsva) = 0 by (10). We
propose to show that

(14) y(vsvgvgvs) = 0.

Assume the contrary: y(vsvsvgvs) > 0. Since neither vivg nor vsv; is saturated by y in Gs,
we distinguish among four subsubcases.

(a) Neither v1vg nor vsvy is saturated by y in 7. In this subsubcase, set § = min{w(vivg) —
z(v1vg), w(vzvr) — z(v3v1), y(v3vavevs) }. Let ¢y’ be obtained from y by replacing y(vsvivgvs) and
y(vivguzvy) with y(vsvgvevs) — 6 and y(vivgvsvy) + 0, respectively. Then y’ is also an optimal
solution to D(7, w) with y'(vsvsvevs) < y(vzvavevs), contradicting (4).

(b) vsvy is not saturated by y in T' and vjvg is contained in some cycle C € Cé’ . In this
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subsubcase, since vgvs is saturated by y in G3, cycle C; contains the path vgvavy. Thus the
multiset sum of C, vzvavgus, and v3v; contains two arc-disjoint cycles vovgvgve and vivgv3vy.
By Lemma 3.5(iv), we have y(vsvsvgvs) = 0, a contradiction.

(c) v1ve is not saturated by y in 7' and vsv; is contained in some cycle Cy € C§. In this
subsubcase, it is clear that Cy contains the path vivovs. Observe that the multiset sum of
Cs, vsvgvgvs, and the unsaturated vivg contains two arc-disjoint cycles vivgvzv; and Ch) =
Cs[vg, v3] U {vgvg}. Set 6 = min{y(Cy),y(vsvgvevs), w(vivg) — z(vive)}. Let y' be obtained
from y by replacing y(Cs), y(vsvavevs), y(vivevsvi), and y(Cy) with y(Cs) — 0, y(vsvavevs) — 0,
y(vivguzvy ) + 6, and y(C%) + 6, respectively. Then gy’ is also an optimal solution to D(7T, w) with
¥ (v3vgvgvs) < y(vsvavgvs), contradicting (4).

(d) vive and wvsv; are contained in some cycles C7 and Cy in Cg , respectively. In this
subsubcase, if v3v; is also on C4, then the multiset sum of C] and vsvsvgvs contains arc-disjoint
cycles v1v6v3v1, VaV4V6V2, and Cf = C1[vg, v3]U{vsvs}. From the optimality of y, we deduce that
y(vsvavgvs) = 0. If vgvy is outside Cq, then the multiset sum of Cy, Cy, and vsv4vgvs contains
arc-disjoint cycles v1vgv3v1, V240602, C1 = C1[vg, v1]U{v1v2, v204}, and Ch = Co[vy, v3]U{vsva}.
From the optimality of y, we again deduce that y(vsvsvgvs) = 0.

By (14), we have y(C2) = w(K), where K = {v4v1,v4v6,v6v3}. So K is an MFAS by (5) and
hence §(Ca) = 7u(Gs\vs).

Case 1.2. vyvy is outside CJ.

In this case, vovy is saturated by y in G3, and v1vs, v3ve, and vgve are all outside Cé’ . Since
C§ # 0, there exists a cycle C € C§ containing vsvy. From (6), (7), and (10), we see that
y(v1v2v4v6v301 ), Y(V1V6V3V2V4v1), and y(vevavgvsve) are all zero. If vgvs is also saturated by y
in G3, then y(C2) = w(K), where K = {vovg, vgv3}. So we assume that vgvs is not saturated by
y in G3. By Lemma 3.5(iii) and (iv), vqvg is saturated by y in Gjs.

Assume first that v4v; is not saturated by y in Gi3. Then, by Lemma 3.5(iii) and (iv), vive
is saturated by y in G3. By (13), vivy is not saturated by y in G3 and hence in T. By (9),
y(vivevavgavr) = 0. If vgus is not saturated by y in 7', then the multiset sum of C, vov4vgv2, and
the unsaturated arcs vgvs, v4v1, and v1ve contains two arc-disjoint cycles v1v9v4v1 and v3v4V6V3;
if vgvs is saturated by y in T but contained in some cycle C' in C§, then the multiset sum of
C, vovqvgve, and the unsaturated arcs vqv; and vive contains two arc-disjoint cycles vyvovgv1
and v3vgveus. By Lemma 3.5(vi), we have y(vevqvgve) = 0 in either subcase. So y(Ca) = w(K),
where K = {vyvg, v4v6, U204 }.

Assume next that vgv; is saturated by y in Gs. Then, by (13), vsv; and at least one of
v1ve and vivg are not saturated by y in G3. By Lemma 3.5(iii) and (iv), both vsv; and vjvg
are outside CJ; using Lemma 3.5(i) and (iii), we further deduce that vjvg is saturated by y
in G3. Thus, by (13), vive is not saturated by y in Gs. It follows from (8) and (9) that
y(v1vev3vavy) = y(v1vgvovgvy) = 0. Therefore y(Co) = w(K), where K = {vyvg, v4v1,v406}. S0
K is an MFAS by (5) and hence y(C2) = 7,(G3\vs). This proves Claim 1.

Claim 2. y(C) is integral for all C' € Cy or v, (T) is an integer.

To justify this, we may assume that

(15) y(v1v2v4v6v3v1) = Y(v1V6V3V204v1) = 0.

Assume the contrary: y(vivavgvgvsvy) = 0. Then, from (6) we deduce that y(vivgvevivy) =
y(v1vgv3v401) = Yy(v1v6v3V204v1) = 0 and that each arc in the set {vivg, v3v2, V3V, V4V1, VeV } 1S
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saturated by y in G3. So y(viv2v4v1) = w(v4v1), Y(v1v6v3v1) = W(V106), Y(V3V4VeV3) = W(V3V4),
y(vov4vgv2) = w(vgve), and y(vevsvevzvi) = w(vsvz). By Claim 1, y(Cq) is an integer; so is
y(v1vavgvgvsvr). Thus Lemma 3.2(iii) allows us to assume that y(vivevsvgvzvy) = 0.

If y(vivgv3vav4v1) > 0, then from (7) we deduce that y(vovgvgve) = y(vsvavgvs) = 0 and that
each arc in the set {vjv2, v3v1, U3V4, V4Vg, VeV2 } is saturated by y in G3. So y(vivavsv1) = w(viva),
y(vivevsvi) = w(vzvy), y(vivevavavy) = w(v3vy), y(v1vevavav1) = w(vevz), and y(v2v4v6v3V2) =
w(vqvg). By Claim 1, y(Cs) is an integer; so is y(v1vgvsvavavy). Thus Lemma 3.2(iii) allows us
to further assume that y(vivgvsvavgvy) = 0.

By Claim 1, y(C2) = w(K) for some K € F,. Depending on what K is, we distinguish among
13 cases.

Case 2.1. K = {v1vg, V204, 406 }.

In this case, by Lemma 3.1 (i), we have y(vavqvgva) = y(vivevavavy) = y(vavgvevzvy) =
y(v1v6v3v20401) = y(v1v2v4v6v3v1) = 0. By Lemma 3.1 (iii), we obtain w(e) = y(Ca(e)) for each
e € K, which together with (15) yields the following equations: y(vivevsvi) + y(v1v6v3v4v1) =
w(v1ve), Y(v1vavavr) = w(vavy), and y(vsvavevs) = w(vave). If y(vivevsvavy) > 0, then by (8)
we have one more equation y(vivgvsvy) = w(vzvy). So y(C) is integral for any C' € C2, no matter
whether y(vivgvzvavy) = 0.

Case 2.2. K = {v4v1,v406, 603 }.

In this case, by Lemma 3.1 (i), we have y(vsvqvgvs) = y(viveusvavy) = y(vavgvevzvy) =
y(v1v6v3v20401) = y(v1v2v4v6v3v1) = 0. By Lemma 3.1 (iii), we obtain w(e) = y(Ca(e)) for each
e € K, which together with (15) yields the following equations: y(vivevivi) + y(v1v6v2v4V1) =
w(vav1), Y(v2vsv6v2) = w(vave), and y(vivevavy) = w(vevs). If y(vivevavavy) > 0, then by (9)
we have one more equation y(v1v2v4v1) = w(viv2). So y(C) is integral for any C' € Co, no matter
whether y(vivgvavsv1) = 0.

Case 2.3. K = {v1v2, 0301, V302, U3V4, VU2 }.

In this case, by Lemma 3.1 (iii), we obtain w(e) = y(Cz(e)) for each e € K, which to-
gether with (15) yields the following equations: y(vivovgvy) = w(v1v2), y(vivevsvy) = w(vzvy),
Y(v2v4v6v3v2) = w(v3v2), Y(U3V4V6v3) +Y(V1V6V3V4V1) = w(v3vs), and y(vav4v6v2)+Y(V1V6V2V4V1)
= w(vgvz). Observe that if y(vivgvsvgvy) > 0, then by (8) we have y(vsvgvgvs) = w(vgvg) —
w(vsvz) and y(vavgveve) = 05 if y(vivevzvavy) = 0 and y(vivevavavr) > 0, then by (9) we have
y(vavgvev2) = w(vgve) — w(vsve) — w(vzvy). So y(C) is integral for any C' € Cy, no matter
whether y(vivgvavgv1) or y(viv6V3V401) IS zZETO.

Case 2.4. K = {v1v9, 0104, U302, U3V4, UgV2 }.

In this case, by Lemma 3.1 (i), we have y(vivgvsviv1) = y(vivgvavavr) = 0. By Lemma
3.1 (iii), we obtain w(e) = y(Ca(e)) for each e € K, which together with (15) yields the fol-
lowing equations: y(vivevavi) = w(viva), y(vivevsvy) = w(vive), y(vevavevsva) = w(vsva),
y(v3v4v6v3) = w(v3vy), and y(vovgveve) = w(vevz). Hence y(C) is integral for all C € Cs.

Case 2.5. K = {031)1, V302, V3V4, V407, ’U6’U2}.

In this case, by Lemma 3.1 (i), we have y(vivevsvav;) = 0. By Lemma 3.1 (iii), we ob-
tain w(e) = y(Cq(e)) for each e € K, which together with (15) yields the following equations:
y(v1vev3vr) = w(v3v1), y(v2vsv6v3v2) = w(V3v2), Y(v3v4vV6v3) = w(v3vs), Y(V1V2VIV1) = W(V4V1),
and y(vov4vgv2) + y(vivevov4v1) = w(vgve). Observe that if y(vivgvavavy) > 0, then by (9) we
have y(vovavgve) = w(vavg) — w(vsvy) — w(vzvy). So y(C) is integral for all C' € Cy, no matter
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whether y(vjvgvav4v1) is zero.

Case 2.6. K = {01’06,’02’04,’03?}4}.

In this case, by Lemma 3.1 (i), we have y(vjvgvav4v1) = y(vivgvzvgvy) = 0. By Lemma 3.1
(iii), we obtain w(e) = y(Cz(e)) for each e € K, which together with (15) yields the following
equations: y(v1vev3v1) = w(v1vs), Y(v1vevav1) + Y(v2v4v6v2) + Y(v2v4V6V3V2) = w(vovy), and
y(v3v4vgv3) = w(vsvy). I y(vovgvgvsvy) > 0, then y(vavgvgve) = w(vgve) by (10). Since v4v1 and
v1vg are outside C§ and y satisfies (2), it is easy to see that y(vivovav1) = min{w(v1v2), w(vavy)}.
So y(C) is integral for all C' € Cy. Thus we may assume that y(vovsvgvsvy) = 0. Since both
vgvg and vgvy are outside C§, by (4) we have y(vavavgve) = min{w(veva), w(vive) — w(vsvy)}. It
follows that y(C) is integral for all C' € Cs.

Case 2.7. K = {vov4,v301,0304}.

In this case, by Lemma 3.1 (iii), we obtain w(e) = y(Ca(e)) for each e € K, which to-
gether with (15) yields the following equations: y(vivovsv1) + y(vovavgve) + y(vivgvov4v1) +
Y(v2v4v6v3v2) = w(vavy), Y(v1vev3v1) = Ww(v3v1), and y(v3v4vev3) + Y(V1v6V3V4V1) = Ww(V3V4).

Assume first that y(vivgvsvav1) > 0. Then, by (8), we have y(vovgvgve) = 0 and y(vsvivgvs)+
y(vav4v6v3v2) = w(vave). If y(vavavgvzva) > 0, then, by (8) and (10), we obtain y(vivavavy) =
w(v1vg) and y(v1vevavavr) = w(vgve); if y(vavgvgvsve) = 0 and y(vivgvavgvr) > 0, then, by (9),
we get y(vivavav1) = w(viva), Y(v1vevav4v1) = w(vavs) — w(v1v2), and y(vsvavevs) = w(v4ve);
if y(v1vev2v4v1) = y(v2v4v6v3v2) = 0, then y(vivavgvr) = w(vavy), and y(v3vavevs) = w(v4vs).
Thus y(C) is integral for all C' € Cy in any subcase.

Assume next that y(vivgvsvavr) = 0. If y(vivgvavgvy) > 0, then, by (9), we have y(vivovivy) =
w(v1v2) and y(vavaveva) + Y(vav4v6v3V2) = w(v4ve) — Y(v3V4V6V3) = w(vave) — w(v3vy), and so
y(v1vev2v4v1) = w(vavy) +w(v3v4) — w(v1v2) — w(v4ve). Observe that if y(vovgvgvzve) > 0, then
we have one more equation y(vav4v6v2) +y(v1v6v204v1) = w(vev2) by (10). Thus y(C) is integral
for all C' € Cy, no matter whether y(vovsvgvzve) = 0. So we assume that y(vivgvevivy) = 0.
If y(vavgvgvsva) > 0, then y(vovsveva) = w(vevz) and y(vivavavy) + Y(v2v4v6v3v2) = w(vovy) —
w(veva); if y(vovavgvsvy) = 0, then y(vivovavr) + y(vevsveva) = w(vavy). Since y satisfies
(2) and (4) and since v4v1, v4v6, V1v2, and vgvo are all outside CJ, if y(vivavavy) > 0, then
y(vivovgvy) = min{w(vavy), w(vive)} or y(vevsvgve) = min{w(vive) — y(vsvavevs), w(vev2)},
regardless of the value of y(vovqvgvsve). Hence y(C) is integral for all C' € Cs.

Case 2.8. K = {v1v2,v6v2, VU3 }.

In this case, by Lemma 3.1 (iii), we obtain w(e) = y(Ca(e)) for each e € K, which together
with (15) yields the following equations: y(vivavsvy) = w(v1v2), Y(vavsvev2) + y(vivgV2VLVL) =
w(vevz), and y(vivev3vi) + y(v3v4v6v3) + Y(v1v6v3V401) + Y(v2v40V6v3V2) = w(vev3). Depending
on the value of y(vivgvsvav1), we consider two subcases.

o y(v1v6v3zvav1) > 0. In this subcase, by (8), we have y(vavavgva) = 0, y(vivevsv1) = w(vsvy),
and y(v3vavevs) + Y(v2v4v6v3v2) = w(vave). So y(vivevsvavi) = w(vevs) — w(vzv1) — w(vave).
Observe that if y(vavavevsva) > 0, then we have one more equation y(vsvivevs) = w(vsvs) —
y(v1vevsvgvr) by (10). So y(C) is integral for all C' € Cy, no matter whether y(vovqvgvsve) = 0.

e y(vivgvsvav1) = 0. In this subcase, assume first that y(vivgvavavr) > 0. If y(vsvgvgvs) > 0
or y(vavavgvsva) > 0, then, by (9), we have y(vivgvsvy) = w(vsvy), y(vsv4v6v3)+y(vevsv6UzV2) =
w(vgvs) — w(vsvy), and y(vevgvgve) = w(vave) + w(vsvy) — w(vgvs). If y(vavgvgvzvy) > 0,
then y(vsvgvgvs) = w(vsvg) by (10). Thus y(vevsvevsve) and y(vivevovsvy) are integral. If
y(vsvgvevs) = y(vavgvgvsva) = 0, then y(vevavgve) = w(vave) and y(vivevavavy) = w(vgva) —
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w(vqvg). So y(C) is integral for all C' € Cq in any subsubcase. Assume next that y(vjvgvevivy) =
0. If y(vovgvgvsvy) > 0, then y(vzvgvgvs) = w(vsvg) by (10) and y(vivevsvy) + y(vev4vgv3ve) =
w(vevz) — w(vsva); if y(vavavevzve) = 0, then y(vivevsv) + y(vavavevs) = w(vevs). Note that
both vsv; and vive are outside C§. As y satisfies (2) and (4), we deduce that y(vivevsvy) =
min{w(v1vg), w(vsv1)}, no matter whether y(vavgvgvsve) > 0. Hence y(C) is integral for all
C e (.

Case 2.9. K = {vqv1,v6v2, 0603 }.

In this case, by Lemma 3.1 (i), we have y(vjvgvav4v1) = y(v1v6v3v4v1) = 0. By Lemma 3.1
(iii), we obtain w(e) = y(Ca(e)) for each e € K, which together with (15) yields the following
equations: y(vivavav1) = w(vav1), Y(vavaveva) = w(vevz), and y(vivevsvi) + y(v3vavevs) +
y(vavgvgvzvy) = w(vgvs). If y(vevgugvsve) > 0, then y(vsvgvgus) = w(vzvy) by (10), so
y(v1vevsv1) + y(vavgvevave) = w(vevs) — w(vsvy); if y(vavavevzve) > 0, then y(vivevsvi) +
y(vavavgv3ve) = w(vevs). Clearly, v1vg is outside C§. We propose to show that

(16) y(vivevsvy) is integral.

Suppose on the contrary that y(vivgvsv1) is not integral. If vzv; is outside Cf, then from (2)
and (4) we deduce that y(vivsvsv1) = min{w(vsvy), w(v1ve)}, a contradiction. So we assume
that vzvy is contained in some cycle C' in Cg . Then C contains the path vivovy. Set C' =
Clvg, v3] U {vgvg, vous} if y(vovgvgusve) > 0 and €7 = Clog,vs] U {vsvs} otherwise, and set
0 = min{[y(vavsvgvava)], y(C)} if y(vavsvgvzva) > 0 and 0 = min{[y(vsvavevs)], y(C)} otherwise.
Let y’ be obtained from y by replacing y(vovqvgvsva) (resp. y(vsvavgvs)), y(vivevsvr), y(C),
and y(C") with y(vavsvgvsve) —0 (resp. y(vzvivgvs) —0), y(vivgvsvy)+6, y(C)—6, and y(C')+0,
respectively. Then vy (vov4v6v3v2) < y(vavavev3v2) Or Y (V3V4VeV3) < y(v3V4VEV3), contradicting
(2) or (4). So (16) is established.

From (16) it follows that y(C') is integral for all C' € Cs.

Case 2.10. K = {U2U4,U67)3}.

In this case, by Lemma 3.1 (i), we have y(vovqvgvsvy) = 0. By Lemma 3.1 (iii), we ob-
tain w(e) = y(Ca2(e)) for each e € K, which together with (15) yields the following equa-
tions: y(vivovavi) + Y(v2v4v6v2) + Y(v1vev2v4v1) = w(vavs) and y(vivevsvi) + y(vavavevs) +
y(vivgvsvavr) = w(vevs). It follows that all arcs in Gs\vs are outside C§ except possibly
vavg. If y(vivgvzvgvr) > 0, then, by (8), we have y(vevqvgva) = 0, y(vivgvsvy) = w(vzvy),
and y(vsvgvgvs) = w(vavg). Observe that if y(vivgvevsvy) > 0, then we have one more
equation y(vivovgv1) = w(vive). Thus y(C) is integral for all C' € Cy, no matter whether
y(v1vgvav4v1) = 0. So we assume that y(vivgvsvavy) = 0.

If y(vivgvavgvy) > 0, then, by (9), we obtain y(vivevsvy) = w(vive) and y(vevsveva) +
y(v3v4v6v3) = w(vgvg). Furthermore, y(vivgvsvy) = w(vsvy) if y(vsvavgvs) > 0 and y(vivgvzvy) =
w(vevz) otherwise. Hence y(C) is integral for all C' € Cq, no matter whether y(vzvsvgvs) = 0.
So we may assume that y(vivgvevqv1) = 0.

If y(vsvgvevs) = 0, then y(vivevsvr) = w(vgvs). Recall that both vive and veve are outside
Cy. 1If y(vivgvgvy) > 0, then from (4) we deduce that y(vevsveve) = min{w(vive), w(veva)}.
Hence y(C) is integral for all C' € Co, no matter whether y(vivovqv1) > 0. It remains to
consider the subcase when y(vsvsvgvs) > 0. Since both vsvy and vivg are outside Cf, from (4)
we deduce that y(vivgvsvy) = min{w(vsvy), w(vive)}. If y(vivavgvr) = 0, then y(vovgvgva) =
w(veuy); otherwise, by (4), at least one of v4vg and vgve is saturated by y in Gs. It follows that
y(vavgvev2) = min{w(veve), w(vive) — y(vsvavgvs)}. Hence y(C) is integral for all C' € Cy, no
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matter whether y(vivavgvy) = 0.

Case 2.11. K = {U3U1,’U4’U1,’U4U6}.

In this case, by Lemma 3.1 (iii), we obtain w(e) = y(Ca(e)) for each e € K, which together
with (15) yields the following equations: y(vivgvsvy) = w(vgv1), y(vivevsv1) + y(v1V6V2V401) +
y(v1vev3v4v1) = w(v4v1), and y(vavaveve) + Y(V3V4V6v3) + Y(V2v4v6V3V2) = w(v4v6). Depending
on the value of y(vivgvsvav1), we consider two subcases.

e y(vivgvgvgvy) > 0. In this subcase, y(vavgvgva) = 0 by (8). If y(vevqvgvsve) > 0, then,
by (8) and (10), we have y(vivevsv1) = w(v1v2), y(vivevevsv1) = w(Vev2), and y(v3vaveVs) =
w(vsvy). Hence y(C) is integral for all C' € Co. So we assume that y(vevqvgvsve) = 0. Then
y(vsvavgv3) = w(vave). Depending on the value of y(vivgvavavy), we distinguish between two
subsubcases.

(a) y(vivevavavr) > 0. By (9), y(vivavavr) = w(vivz) and y(vi1vevavavt) + y(v1vevsvavy) =
w(vgvy) — w(vive). If y(vivgvavgvy) is integral, then y(C) is integral for all C' € C. So we
assume that y(vivevavavy) is not integral. By Lemma 3.2(iii), we may assume that w(vsvy),
w(vive), and w(vsvg) are all zero. Observe that vgvy is outside Cj, for otherwise, let C' be a
cycle in C§ containing vgva. Then C passes through vovs. Let C' = Clug,vs] U {vgvs, v3v4},
let 8 = min{y(C), y(vivgvsvav1)}, and let y' be obtained from y by replacing y(vivgvsvavy),
y(vivevavavt), y(C), and y(C") with y(vivevzvave) —0, y(vivevavav:) +6, y(C) —0, and y(C') +9),
respectively. Then y’ is also an optimal solution to D(T, w) with ¢’ (vivgvsvav1) < y(vivev3V4VT),
contradicting (3). Similarly, we can prove that vsvy is outside C§. Thus w(vsve) = z(vsve) = 0.
We propose to show that

(17) v} (T) is an integer.

To justify this, let  be an optimal solution to P(7,w). Since y(vivgvovsvy) > 0 and
y(vivgvsvgvr) > 0, by Lemma 3.1(1) we have z(vgve) + x(vovy) = x(vgvs) + z(vsvy). Since
y(v1vev2v4v1) < w(vevz), by Lemma 3.1(ii) we obtain x(vevz2) = 0, which implies z(vavy) =
z(vgvs) + z(vsvy). Since vgve is outside Cf, for each vertex u in V(T1)\{b,a1}, we obtain
x(uvg) = x(uve). Let T = (V' A’) be obtained from T by deleting vertex va, let w’ be
obtained from the restriction of w to A’ by replacing w(uve) with w(uve) + w(uve) for each u
in V(T1)\{b, a1 } and replacing w(v;v;) with w(v;v;) +w(vavs) for (i, 5) = (6,3) or (3,4). Let &’
be the restriction of & to A’ and let 4’ be defined from y as follows: for each cycle C passing
through wwvevy with u € V(T1)\{b,a1}, let C" be the cycle arising from C' by replacing uvovy
with uvgvsvy, and set ¢/ (C") = y(C) +y(C") and y' (v1vgv3v4v1) = Y(v1V6V3V401) +y(V1V6V2V4VT).
Then «' and y’ are optimal solutions to P(7”,w’) and D(T", w’), respectively, with the same
value v} (T) as  and y. Hence v (T") is an integer by the hypothesis of Theorem 1.5. So (17)
follows.

(b) y(vivevavgvr) = 0. Then y(vivevav1) + y(vivevsvgvy) = w(vgvy). If y(vivevgvy) is
integral, then y(C) is integral for all C' € Cy. So we assume that y(vivovgvy) is not integral.
Observe that vivy is outside Cg , for otherwise, let C be a cycle in Cg containing vivy. Since
the multiset sum of C' and vjvgvsv4v; contains arc-disjoint cycles vivovgvy and C' = Clug, v1] U
{v1vg, v6vs3, v304}. By Lemma 3.5(vi), we have y(C) = 0, a contradiction. Similarly, we can
prove that vgve and vsvy are outside Cf as well. Thus w(v;v2) = z(viva) = 0 for i = 3,6. We
propose to show that

(18) v (T) is an integer.

To justify this, let & be an optimal solution to P(T,w). Since both y(vivevsv) and
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y(v1vgv3v4v1) are positive, by Lemma 3.1(1) we have z(vive) + x(vovg) = x(vivg) + 2 (vv3) +
x(v3vy). Since y(vivavgvy) < w(vive), by Lemma 3.1(ii) we obtain z(vive) = 0, which im-
plies that z(vevs) = x(vive) + z(vevs) + x(v3ve). Since vivy is outside Cf, for each vertex
u € V(T1)\{b, a1}, we obtain x(uv1) = x(uve). Let T' = (V', A’) be obtained from T by deleting
vertex vg, and let w’ be the restriction of w to A’ by replacing w(uwvy) with w(uvq) 4+ w(uwvy) for
each u € V(T1)\{b, a1} and replacing w(v;v;) with w(vsv;)+w(vavy) for (i,7) = (1,6), (6,3), and
(3,4). Let @’ be the restriction of  to A" and let ¢’ be defined from y as follows: for each cycle
C' passing through uvovy with u € V/(T1)\{b, a1}, let C’ be obtained from C' by replacing uvyvy
with uv1vgvsvy, and set 3/ (C7) = y(C) +y(C') and 3/ (v1vgv3v4v1) = Y(vV1VeU3V4VT ) + Y (V1 VV4V1 ).
Then @’ and ¢’ are optimal solutions to P(7”,w’) and D(T”, w'), respectively, with the same
value v} (T') as « and y. Hence v}, (T) is an integer by the hypothesis of Theorem 1.5. This
proves (18).

e y(v1vgvzvgvy) = 0. In this subcase, y(vivovivy) = w(vive). By (9), if y(vivevovgvy) > 0,
then y(v1v6v2v4v1) = w(vav1) —w(vive); otherwise, y(vivevavy) = w(vavy). If y(vavaveuzve) > 0,
then, by (10), we have y(vsvqvgvs) = w(vzvy), y(vevsvgve) = w(vgve) — y(v1v6v2vV4v2), and
y(vav4v6v3v2) = w(vavs) — w(v3vs) — Y(vavaveve). Hence y(C) is integral for all C' € Cy3. So
we assume that y(vovgvgvgve) = 0. Thus y(vevsveva) + y(vsvavevs) = w(vavg). If y(vavgveve)
is integral, then y(C') is integral for all C' € C3. So we further assume that y(vev4vgve) is not
integral. By Lemma 3.2(iii), we may assume that w(vsvi) = w(v4v1) = 0. Observe that vgvy is
outside C§, for otherwise, let C' be a cycle in C§ containing vgve. Then C passes through vavy.
Let C" = Clvg, vg] U {vgvs, v3v4}, let 8 = min{y(C), y(vsvsvevs)}, and let y’' be obtained from
y by replacing y(vsvav6vs), y(vevsvgva), y(C), and y(C’) with y(vsvsvevs) — 0, y(vavsveve) + 6,
y(C) — 0, and y(C’) + 0, respectively. Then y’ is also an optimal solution to D(T,w) with
' (v3v4v6v3) < y(v3v4vevs), contradicting (4). Similarly, we can show that vszve is outside C§.
So w(vsve) = z(vzva) = 0. Moreover, v (T) is an integer; the proof is the same as that of (17)
(with y(vavgvgve) and y(vsvgvgvs) in place of y(v1vgvavavy) and y(vivgvsvavy), respectively), so
we omit the details here.

Case 2.12. K = {v1vg, v401, 406 }.

In this case, by Lemma 3.1 (i), we have y(vivgvavsv1) = y(vivgvsvavy) = 0. By Lemma 3.1
(iii), we obtain w(e) = y(Ca(e)) for each e € K, which together with (15) yields the following
equations: y(vivgvsvy) = w(vive), Yy(vivavavy) = w(vavy), and y(vavaveva) + y(v3vavevs) +
y(v2v4v6v3v2) = w(vave). If y(vevgvguzve) > 0, then, by (10), we have y(vovsvgv) = w(vgve) and
y(v3v4v6v3) = w(v3v4), 50 Y(V2V4VeU3V2) = W (V4v6) — w(vgv2) — w(v3vy). Hence y(C) is integral
for all C' € Cq, It remains to assume that y(vovgvgvsve) = 0. Then y(vavaveve) + y(v3vgvpvs) =
w(vgvg). If y(vovgvgue) is integral, then y(C) is integral for all C' € C5. So we further assume
that y(vavgvgve) is not integral. Then we can prove that v (T') is an integer; the proof is the
same as that of (17), so we omit the details here.

Case 2.13. K = {vjv2,v106, V406 }.

In this case, by Lemma 3.1 (iii), we obtain w(e) = y(Cz(e)) for each e € K, which together
with (15) yields the following equations: y(vivovgv1) = w(vive), y(vivevsvl) + y(vivevavav1) +
y(v1v6v3v4v1) = w(v1ve), and y(v2vavev2) + Y(v3vav6v3) + Y(v204v6v3v2) = w(vave). Clearly,
v3v1 is outside Cé’ . Depending on the value of y(vivgvzvavy), we consider two subcases.

e y(vivgvgvgvr) > 0. In this subcase, y(vavgvgve) = 0 and y(vivevsvy) = w(vsvy) by (8).
If y(vovgvevzve) > 0, then y(vivevavavr) = w(vev2) and y(vsvavevs) + y(vivev3vav1) = wW(V304)
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by (10). Thus y(C) is integral for all C' € Ca. So we assume that y(vavsvguzve) = 0. Then
y(v3v4v6v3) = wye and y(v1vevav4v1) + Y(v106v3V4v1) = w(vivg) — w(vgvy). If y(vivgV2V4VY) is
integral, then y(C) is integral for all C' € C2. So we further assume that y(vivgvovavy) is not
integral. Then we can prove that v} (7T') is an integer; the proof is the same as that of (17), so
we omit the details here.

e y(v1vgv3vgv1) = 0. In this subcase, y(vivev3v1) +y(vivgvevsv1) = wW(V106). If Y(VvoV4V6V3V2)
> 0, then y(vsvqvgvs) = w(vsvy) and y(vavaveva) + y(v1vev2v4v1) = w(vevz) by (10). Observe
that if y(vivevovgvy) > 0, then we have one more equation y(vivgvsv) = w(vsvy) by (9). So
y(C) is integral for all C' € Cy, no matter whether y(vivgvavsv1) = 0. Thus we may assume that
y(vavgvgv3vy) = 0. We proceed by considering two subsubcases.

(a) Assume first that y(vsvsvgvs) = 0. Then y(vovgvgva) = w(vave). If y(vivevsvy) is
integral, then so is y(C) for all C € Cy. Thus we assume that y(vivgvsvy) is not integral.
If vgvs is outside C§, then it follows from (4) that y(vivevsvi) = min{w(vsvy), w(vevs)}; this
contradiction implies that vgvs is contained in a cycle C in C. Let C" = Clvg, vg] U{vgv2, vov4},
let & = min{[y(vivgvav4v1)],y(C)}, and let y' be obtained from y by replacing y(vivgvavsv1),
y(vivgvgvr), y(C), and y(C”") with y(vivgvavavy) — 6, y(vivgvsvr) + 0, y(C) — 6, and y(C") + 0,
respectively. Then y’ is also an optimal solution to D(T', w) with ¢ (vivgvavav1) < y(viveV2V4vT),
contradicting (2).

(b) Assume next that y(vsvqvgvs) > 0. If y(vivgvovgvy) > 0, then y(vivgvsv) = w(vsgvy)
and y(v1vevav4v1) = w(v1ve) — w(vsvy) by (9); otherwise, y(vivgvsvy) = w(vivg). If y(vsvavevs)
is integral, then so is y(C) for all C' € Cy. Thus we assume that y(vsv4vevs) is not integral. Let
us prove that

(19) v (T) is an integer.

By Lemma 3.2(iii), we may assume that w(vive) = w(vivg) = 0. Let T/ = (V' A’) be
obtained from T by deleting v, and let w be the restriction of w to A’. It is routine to check
that D(7”, w’) has the same optimal value v}, (T") as D(T,w). Hence v (T) is an integer by the
hypothesis of Theorem 1.5. This proves (19) and hence Claim 2.

Since Ty (G3\vs) > 0, from Claim 2, Lemma 3.2(iii) and Lemma 3.4(ii) we deduce that
D(T, w) has an integral optimal solution. This completes the proof of Lemma 4.6. |

5 Composite Reductions

Lemma 5.7. If Ty /S = Fy, then D(T,w) has an integral optimal solution.

Proof. Recall that (by,a2) = (vs,v6), s* = ve, and vy = vs. To establish the statement, by
Lemma 3.4(ii), it suffices to prove that

(1) the optimal value v}, (T") of D(T, w) is integral.

Given an optimal solution y to D(T', w), set ¢(s;) = {u : z(us;) > 0 for u € V(Tz)\ag} for
each s; € S. By Lemma 5.2(i) and (vi), we have

(2) ¢(s:) Np(sj) = 0 whenever i # j.

(3) There exist at least two and at most three vertices s;’s in S with ¢(s;) # 0.

In view of (2) and the structure of Fy, there are at most three vertices s;’s in S with ¢(s;) # 0.
Suppose on the contrary that there exists precisely one vertex s; € S with ¢(s;) # (). Then (1)
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follows immediately from Lemma 4.4; the argument can be found in that of (3) in the proof of
Lemma 5.5.

Lemma 5.2(i) allows us to assume that

(4) if @(s;) # 0, then 7 € {1,2,3}.

Let ¢ be the subscript in {1,2,3} with vs € ¢(s¢), if any. By (2), t is well defined. In the
remainder of our proof, we reserve y for an optimal solution to D(7, w) such that

(5) y(Cz) is maximized;

(6) subject to (5), (y(Dyq),y(Dy—1),...,y(D3)) is minimized lexicographically; and

(7) subject to (5) and (6), y(v1vssivsv1) + y(vivsvsvavr) is minimized.

Let us make a few observations about y before proceeding.

(8) If y(v1vss;vzvavy) > 0 for some i € {1,2,3}, then each arc in the set {v1s;, v3v1, v48;, V45,
vsv3} is saturated by y in T. Furthermore, y(visjvsv1) = y(vsvgvsvs) = y(vivsvsvy) = 0 for
any j € {1,2,3}\{i}.

To justify this, note that each arc in the given set is a chord of the cycle vivss;vgvqvy. So
the first half follows instantly from Lemma 3.5(v). Once again let & stand for the multiset sum.
Then vqvss;v3v4v1 W V1SU3V1 = V1U58;U3V1 W V185U30V4V1, V1U58;03V4V1 W 01U5V3V1 = V10580301 W
V15030401, and v1U58;U304V1 W V3040503 = v1U5V30401 W U58;03v4v5. Since y satisfies (6), we
deduce that y(visjvsv1) = y(vsvavsvs) = y(vivsvsvy) = 0.

(9) If y(v1vss;v3v1) > 0 for some i € {1,2,3}, then both vys; and vsvs are saturated by y in
Ty; so are vys; and vqvs if y(visjvzvavr) > 0. Furthermore, y(vsvavsvs) = 0.

Since both v1s; and vsvg are chords of the cycle vivss;v3v1, the first half follows instantly
from Lemma 3.5(v). To establish the second half, observe that v1v5s;v3v1 Wuzvsv5v3 = viv5V3V1W
v5S;v3v4v5. Hence y(vgvgvsvz) = 0 by (7). Suppose y(visjvzvavr) > 0. Since the multiset sum
of the cycles vivss;v3v1, v15;v3v4v1, and the arc vivs (resp. w4s;) contains arc-disjoint cycles
v1sj03v1 and vss;v3v4V5 (resp. v4S;v3vy), from (7) we deduce that both vss; and vqvs are are
saturated by y in T5.

(10) If y(vivsvzvgvy) > 0, then both vsv; and vyvs are saturated by y in 7. Furthermore,
y(vis;vzvy) = 0 for any i € {1,2,3}.

Since both wvgvy and v4vs are chords of the cycle vivsvsvavy, the first half follows instantly
from Lemma 3.5(v). To establish the second half, observe that v1vsvgv v Wv18;03v1 = V3V5V3VIW
v18;u3v4v1. Since y satisfies (7), we have y(vis;v3v1) = 0.

The following two statements can be seen from Lemma 3.5(v).

(11) If y(vis;vsvavr) > 0, then both vzv; and vys; are saturated by y in Ty, for i € {1,2,3}.

(12) If y(vss;vzvgvs) > 0, then both vys; and vsvs are saturated by y in Ts, for i € {1,2,3}.

We proceed by considering two cases, depending on whether ¢(sg) = {vs4} for some k €
{1,2,3} (see (4)).

Case 1. ¢(si) = {v4} for some k € {1,2,3}.

By Lemma 5.2(i), we may assume that & = 1; that is, ¢(s1) = {vsa}. Let i and j be the
subscripts in {2,3}, if any (possibly i = j), such that vs € ¢(s;) and v1 € ¢(s;). Then

(13) C§ C {v481v304, V18;U3V1, V18jU304V1, V1V5S8;V301, U5S;U3V4V5, U1 U5S;U3V4V1 , U1 U5U3V1

V30V4V503, ’U12)5U3’U41)1}.
We propose to show that
(14) if w(vsvy) > 0, then y(vasivsvy) is a positive integer.
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For this purpose, note that z(s1v3) = w(s1v3) > 0 by Lemma 5.2(iii). If sqv3 is outside Cf,
then y(v4s1v3v4) = w(s1v3) > 0. So we assume that sjv3 is contained in some cycle C' € C§. If C
contains vys1, then vgvy is saturated by y in 75 by Lemma 3.5(iii). Moreover, the multiset sum of
C and each cycle in the set {vlsjvngl, V585;V30V4V5, V1 U55;U30V4V1, U3UV4V5V3, ’U1U5U3U4’U1} contains
the cycle vys1v3v4, a cycle in {vlsjvgvl,v1U5siv3v1,v1v5v3v1}, and a cycle C' € Cy that are arc-
disjoint, where C’ = Clvs, v4] U {vgvs} or Clvs, vg] U {vgvy,v1v5}. From the optimality of y, we
thus deduce that y(visjuzvavi), y(vss;vsvavs), y(v1v55;03v401), y(v3v4v503), and y(vivsv3vavy)
are all zero. Hence y(v4sivsvy) = w(vgvg) > 0. So we assume that C' does not contain v4s;.
Furthermore, vys; is outside Cf§, because every cycle using vys1 passes through sjvs. Note that
v481 is not saturated by y in T, for otherwise y(vysiv3vy) = w(vygsy) > 0, as desired. By Lemma
3.5(vil), vgvy is saturated by y in T» and C contains vzv;. It follows from (8), (10) and (11) that
y(v1v58;v3v401), Y(vivsU3V4v1) and y(vysjv3vavy) are all zero. As the multiset sum of C, each of
v58;U3v4v5 and v3vavsv3, and the unsaturated arc vys; contains arc-disjoint cycles vqs1v3v4 and
one of vjvss;v3v1 and vivsv3v1, both y(vss;v3v4v5) and y(vsvavsvs) are zero by Lemma 3.5(vi).
So y(vgs1v3v4) = w(vsvg) > 0. This proves (14).

By (14) and Lemma 3.2(iii), we may assume that w(vszvs) = 0. It follows that w(vzvy) >
z(vzv1) > 0, for otherwise, 7,(T2\a2) = w(vsv1) + w(vsvy) = 0, contradicting («). Since
z(vas1) > 0 and w(vszvs) = 0, the arc vys; is contained in some cycle in C§. From the proof of
(14) we see that

(15) y(visjvsvavi), y(vssivzvavs), y(v1vs8;v3v4v1), y(v3vavsvs), and y(vivsvsvavy) are all
Zero.

(16) If w(vis;) > z(v1s;) > 0, then y(vis;v3v1) is a positive integer.

To justify this, note that z(s;v3) = w(s;v3) > 0 by Lemma 5.2(iii). Assume first that s;v3
is outside C§. If i # j, then y(visjugv1) = w(sjvg) > 0. So we assume that i = j. Then
y(visivzv) + y(vivssivsvr) = w(s;vs). If y(vivss;vzvy) > 0, then vys; is saturated by y in T
by (9). Thus y(visivzv1) = w(v1s;). Next assume that s;v3 is contained in some cycle C € CJ.
Since w(vszvg) = 0, cycle C' contains vzvy. It follows that vis; is saturated by y in Tp. So
y(visjuzvr) = w(vysj) > 0 and hence (16) is established.

By (16) and Lemma 3.2(iii), we may assume that w(vis;) = 0. By (3), we have z(vss;) > 0
and ¢(s;) = {vs}. By (13)-(16), we obtain

(17) Cg g {1)1’[)58,‘1)31)1,1}1?)51)31)1}.

(18) y(v1vss;v3v1) is a positive integer.

To justify this, note that z(s;v3) = w(s;v3) > 0 by Lemma 5.2(iii). If s;u3 is outside C§,
then y(vivss;vsvr) = w(s;vg) > 0 by (17), as desired. So we assume that s;vs is contained in
some cycle C' € C§. Applying Lemma 3.5(iii) to the cycle vivss;v3v1, we deduce that (vs, s;) is
saturated by y in T5. So y(v1vss;v3v1) = w(vss;) > 0 and hence (18) holds.

By (18) and Lemma 3.2(iii), D(7", w) has an integral optimal solution, which implies (1).

Case 2. ¢(sy) # {va} for any k € {1,2,3}.

By (3), the hypothesis of the present case, and Lemma 5.2(i), we may assume that v; € p(s1)
and vs € p(s2). Then

(19) CY C {wv151v3v1, V151V3V4V1, V1V582V3V1, U5 S2U3V4U5, U1 V5 S2U3V4V] , U1 U5V3V1 , V3V4V5V3,

V1UV5V30V4V1, V481V3V4, 1)482'1}3?)4}.
By Lemma 5.2(vi), we have
(20) if vq € @(s;), then z(v4s3—;) = 0 and y(vgs3_;v3vy) =0 for i = 1,2.
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Claim 1. y(Cz) = Tw(TQ\CLQ).

To justify this, observe that

(21) if K is an FAS of T\as such that y(C2) = w(K), then K is an MFAS. (The statement
is exactly the same as (4) in the proof of Lemma 4.3.)

In view of Lemma 5.2(iii), we distinguish among three subcases, depending on whether s;vs
is contained in a cycle in CJ.

Subcase 1.1. Both sjv3 and sov3 are outside Cé’. In this subcase, s;v3 is saturated by y in Tb
fori = 1,2. If vsvs is also saturated by y in T5, then y(C2) = w(K), where K = {vsvs, s1v3, s2v3}.
Since K is an FAS of Ty\ag, it is an MFAS by (21) and hence y(Ca) = Ty (T2\a2). So we assume
that vsv3 is not saturated by y in 75.

(22) Both v3v; and v3vy are outside C. Furthermore, at least one of them is not saturated
by y in T5.

Indeed, the first half follows directly from Lemma 3.5(iii). To justify the second half, assume
the contrary. Then y(C2) = w(K), where K = {v3v1,v3v4}. Thus K is an MFAS of Th\a2 by
(21) and hence y(C2) = Tw(T2\a2).

By (22), (8), (9), and (12), we have

(23) y(v1v582v301), Y(v582v3v4v5), and y(vivssavzvgvy) are all zero.

Since C§ # 0, some cycle C' € C§ contains v1vs or v4vs. Thus there are two possibilities to
consider.

e C contains vivs. Now by (22) and Lemma 3.5(iii), vsv; is saturated by y in T» and
hence v3vy is not saturated by y in Th. It follows from Lemma 3.5(i) and (iii) that both vqvq
and vqvs are saturated by y in Th. If z(vss;) = w(vgs;) for ¢ = 1,2, then y(C2) = w(K),
where K = {v3v1,v4v1,v405,0451,v482}. Thus K is an MFAS of Tb\as by (21) and hence
yY(C2) = Tw(To\a2). So we assume that 0 < z(vg8;) < w(vys;) for i = 1 or 2. Then z(v483-;) =
w(vgsz—;) = 0 by (2). If i = 2, then y(C2) = w(K), where K = {v3v1,v4v1, v405, V451, S2v3}, and
hence y(C2) = To(T2\a2). If i = 1, then y(visivsvgvy) = 0 by (11). Since the multiset sum of
the cycles v1s1vsv1, C, and the unsaturated arcs {v4s1,vsvs,v3v4} contains arc-disjoint cycles
v481v3v4 and v1v5v3v1, we have y(vi1s1vs3v1) = 0 by Lemma 3.5(vi). Thus y(Ce) = w(K), where
K = {v3v1,v4v1, 0405, S103, V452 }. It follows that y(Ca) = T (T2\a2).

e C contains v4vs. Now by (22) and Lemma 3.5(iii), vgvy is saturated by y in T» and hence
v3vy is not saturated by y in Ty. It follows from Lemma 3.5(i) and (iii) that vjvs is saturated
by y in T5. By (10) and (11), we have y(vivsvsvavy) = y(visivsvgvr) = 0. If v1s; is saturated
by y in Ts, then y(C2) = w(K), where K = {vivs,v3v4,v181}. Thus y(Ca) = T (T2\az). So we
assume that v1s; is not saturated by y in 75 and hence not in 7" by (22). Since the multiset
sum of the cycles C, vys1v3v4, and the unsaturated arcs {vsvi,vsvs,visi} contains arc-disjoint
cycles v1s1v3v; and vsvavsvs, we have y(vasivzvs) = 0 by Lemma 3.5(vi). So y(C2) = w(K),
where K = {vyvs, v3v4, s1v3}. It follows that y(Co) = 7o (T2 \a2).

Subcase 1.2. sjv3 is contained in some cycle C' € C; subject to this, we choose C' so that
it contains as many edges in T5\ag as possible.

Assume first that C' contains vy s;. Then C contains the path v1s1v3v4v5. By Lemma 3.5(iii),
each arc in the set {vgv1, v4v1,v481,v503} is saturated by y in T5. By (2), (8) and (10), we have
y(v1v582v3v4v1) = y(vivsvzvgvy) = 0. Since the multiset sum of C' and one of vivsvsv; and
v1V5820301 contains arc-disjoint cycles vsvgvsvsg, C' = Clvs,v1] U {vivs}, and one of visjvzvg
and vssav3v4vs, from the optimality of y we deduce that y(vivsvsvi) = y(vivssavgvy) = 0. If
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sovg is outside Cf, then spus is saturated by y in Th by Lemma 5.2(iii). So y(C2) = w(K),
where K = {v3v1,v4v1, 0451, S2v3,v5v3}. Hence y(Ca) = To(T2\az2). So we assume that sgvs is
contained in some cycle in C§. Since vsv; is saturated by y in Tb, every cycle in C§ containing
s9v3 passes through vsvs. By Lemma 3.5(iii), both vgs9 and vssy are saturated by y in T5. Thus
y(Co) = w(K), where K = {v3v1, v4v1, v451, V482, U582, V503 }. It follows that y(Co) = 7o (T2\a2).

Assume next that v1s1 is not on C. Then we may further assume that vis; is outside CJ.
We proceed by considering three subsubcases.

e (' contains vsv;. Now v1s; and vsvs are saturated by y in 75 by Lemma 3.5(iii). Hence
y(v1v5820304v1) = y(vivsvsvavy) = y(visivsvgvr) = 0 by (8), (10) and (11). If vgsy is not
saturated by y in T5, then wvgvg is saturated by y in T by Lemma 3.5(iii). Moreover, for
each D € {v3vqv5v3, v5S2v3v4v5}, if vgs1 is on C, then the multiset sum of C' and D contains
arc-disjoint cycles vgs1v3vg, C' = Clvs,v4] U {vgvs}, and one of vivsvgvy and vivssavzvy; if
v481 is not saturated by y in 7', then the multiset sum of C, D and the arc vss; contains
v451v3v4 and one of vivsvgvy and vivssovsv; that are arc-disjoint. It follows from the optimality
of y or Lemma 3.5(iv) that y(vsvsvsvs) = y(vssevzvgvs) = 0. So y(C2) = w(K) if squs is
contained in some cycle in C§ and y(C2) = w(J) otherwise, where K = {v1s1,v3v4, U503, S203}
and J = {v1s1, v304, V503, v552}. Hence y(Ca) = Ty (T2\a2). So we assume that vysy is saturated
by y in Tp. If sgvs is outside C§, then y(C2) = w(K), where K = {vis1,v481, 0503, S2v3},
which implies that y(Ca) = Tw(T2\a2). So we further assume that sgvs is contained in some
cycle in C§. By Lemma 3.5(iii), vssy is saturated by y in Th. If vysy is also saturated by y in
T5, then y(Cy) = w(K), where K = {v151,v481, 0503, V552, v482}; otherwise, vzvy is saturated
by y in Tb, and w(vgs1) = z(vas1) = 0. Similar to the case when wvys; is not saturated by
y in Ty, we can show that y(vsvsvsvs) = y(vssevzvgvs) = 0. Thus y(C2) = w(J), where
J = {v1s1,v304, V503, V552 }. Therefore y(Co) = Tw(T2\a2) in either situation.

e (' contains both wsvs and vqv;. Now v1sy, v4s1 and wvsvs are saturated by y in Ty by
Lemma 3.5(iii). If sovs is outside Cf, then y(C2) = w(K), where K = {v1s1,v481,v503, S2v3};
otherwise, vssy and vgsy are saturated by y in 75 by Lemma 3.5(iii). So y(C2) = w(J), where
J = {v151,v481, V503, U582, V482 }. Therefore y(Co) = 7o (T2 \a2) in either situation.

e (' contains both vzvs and vqvs. Now vgs; and vsvs are saturated by y in 75 by Lemma
3.5(iii) and y(vivsvsvav1) = y(v1vs82v3v4v1) = 0 by (8) and (10). If vy s; is also saturated by y in
Ty, then y(Ca) = w(K) or w(J), where K = {v181,v481,v503, s2v3} and J = {v181,v481, 503, U582,
v4S2}; otherwise, both vsv; and wvqv; are saturated by y in Tb, and every cycle in Cg con-
taining sovs traverses vzvqvs. Since the multiset sum of C, each of vivsvsvy and vivssav3vy,
and the unsaturated arc vis; contains visjvsv; and one of vsvsvsvs and vssovsvavs that are
arc-disjoint, we have y(vivsvsv1) = y(v1vssavsvy) = 0 by Lemma 3.5(iv). So y(C2) = w(K)
if spug is outside C§ and y(Ca2) = w(J) otherwise, where K = {v3v1, v4v1,v451, U503, S2v3} and
J = {v151,v481, 0503, V482, V582 }. Therefore y(Co) = o (T2 \a2) in either situation.

Subcase 1.3. spv3 is contained in some cycle C' € C§ and sjvs is saturated by y in Tb.
In this subcase, both vssy and vsvs are saturated by y in Tp by Lemma 3.5(iii). If vysg is
also saturated by y in Tb, then y(C2) = w(K), where K = {s1v3,v503,v452,v552}; otherwise,
z(vgs2) > 0 and w(vsas1) = z(vas1) = 0 by Lemma 5.2(vii). In this case C' contains vzvy, so
v3vy is saturated by y in T» by Lemma 3.5(iii). By (8) and (10)-(12), we have y(vivssav3v4v1),
y(v1vsvgvgvy), y(visivzvgvr), and y(vssevzvgvs) are all zero. Since the multiset sum of the
cycles C, wvsvgvsvs, and the unsaturated arc wvgse contains arc-disjoint cycles wvgsovsvy and
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v1v5v3v1, by Lemma 3.5(iv), we have y(vsvgvsvg) = 0. It follows that y(C2) = w(K), where
K = {81U3,U5’L)3,’L)3U4,U582}.

Combining the above three subcases, we see that the equality y(C2) = T (Z2\a2) holds. So
Claim 1 is established.

Claim 2. y(C) is a positive integer for some C € Cy or v (T') is an integer.

To justify this, note that y(Ce) = w(K) for some MFAS K of T5\ag by Claim 1. Depending
on what K is, we distinguish among eight cases.

Subcase 2.1. K is one of {vjvs, v3v4,v181}, {v181, U304, S2U3, U5V}, {181, V3V4, V582, V5U3 },
{v1vs, v304, S103}, and {s1v3, V3V4, V5S2, V5U3 }.

In this case, by Lemma 3.1(i), we have y(C) = 0 for some cycles C listed in (19). By
Lemma 3.1(iii), we obtain w(e) = y(Ca(e)) for each e € K, which, together with (19), implies
that y(visi1v3v1) = w(vis1) or w(sivs), each of them is positive by Lemma 5.2(iii) and the
assumption that vy € p(s1).

Subcase 2.2. K = {Ugvl, V4U1, V481, 827)3,1)5113}.

In this case, by Lemma 3.1(i), we have y(C') = 0 for some cycles C listed in (19). By
Lemma 3.1(iii), we obtain w(e) = y(Cz(e)) for each e € K, which, together with (19), implies
that y(visivsvr) = w(vsvr), y(visivgvavy) = w(vavr), y(vasivzvs) = w(vas), y(vasavzva) +
y(vss2v3vavs) = w(s2v3), y(vsvavsvy) = w(vsvs). If y(vssavsvgvs) = 0, then y(vysavzvy) =
w(sgu3z) > 0 by Lemma 5.2(iii). If y(vssavsvgvs) > 0, then wvyse is saturated by y in Ty by
Lemma 3.5(iii). So w(vss2) = y(Ca(vasa)). It follows that y(vgsevzvy) = w(vssa), and hence
y(vss2u3v4v5) is a positive integer.

Subcase 2.3. K = {v3v1, 0401, 0481, V452, V552, U503 }.

In this case, by Lemma 3.1(i), we have y(C) = 0 for some cycles C listed in (19). By Lemma
3.1(iii), we obtain w(e) = y(Ca(e)) for each e € K, which, together with (19), implies that
y(visiv3) = w(vsvy), y(v1s1v3v4v1) = w(vavy), y(vas1v3v4) = w(vas1), Y(vas2v3v4) = w(v4S2),
y(vs82v304v5) = w(vss2), and y(vsvavs) = w(vsvs). Since vs € p(s2), we have w(vssz) > 0. So
y(vss2v3v4v5) s a positive integer.

Subcase 2.4. K = {v3v1, 0401, V4U5, V451, SoU3} Or {301, V401, V4U5, S1U3, U482 }.

In this case, by Lemma 3.1(i), we have y(C) = 0 for some cycles C' listed in (19). By Lemma
3.1(iii), we obtain w(e) = y(Cz(e)) for each e € K, which, together with (19), implies that
y(vas2v3v4) = w(s2v3) > 0 or y(vgs1v3v4) = w(s1vz) > 0 by Lemma 5.2(iii).

Subcase 2.5. K = {v181,v4581, S2v3, U5U3} or {v181, V451, V452, V552, UsV3 }.

We only consider the subcase when K = {v;s1,v451, S2vs, v5v3}, as the other subcase can be
justified likewise.

By Lemma 3.1(i), we have y(C') = 0 for some cycles C' listed in (19). By Lemma 3.1(iii), we
obtain w(e) = y(Ca2(e)) for each e € K, which, together with (19), implies that y(visjvzv) +
y(v181v3v4v1) = w(v1s1), Y(v1v5v3v1) + Y(v304U5v3) + Y(v1V5V3V401) = w(V5v3), Y(vas1V3VL) =
w(vgs1), and y(vasav3vy) + y(v1vssavavy) + Y(vss2v30405) + y(vivssavzvavy) = w(savs). We
may assume that y(v1vs82v3v4v1) = y(vivsvsvgvr) = 0, for otherwise, by (8) or (10), we have
y(v1s1v3v1) = 0 and hence y(visivzvav1) = w(visy) > 0.

If y(v1vssavsvy) = 0, then y(vssav3v4v5)+y(vasov3vy) = w(savs). Observe that y(visovsvy) >
0, for otherwise, y(vssavsvgvs) = w(sqvs) > 0. By (6), we obtain y(vssovsvy) = w(sqvs) or
w(v482), which is a positive integer. So we assume that y(vivssqvsvy) > 0. Then y(vsvgvsvs) = 0
by (9). Note that y(visivsvavy) > 0, for otherwise, y(visivsvi) = w(visy) > 0. Thus, by
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(9), both vgsy and vyvs are saturated by y in 7. It follows that y(visqvsvy) = w(vgs2) and
y(v5820304v5) = w(vavs). So y(v1vsSavsv1) = w(sav3) — y(vasav3vs) — Y(vsS2v3V4v5). Since
w(sgu3) > 0, at least one of y(vysov3vy), y(vssav3v4vs5), and y(vivssavsv) is a positive integer.

Subcase 2.6. K = {s1v3, 0482, U582, U503} or {s1v3, Sov3, V5U3}.

We only consider the subcase when K = {sjvs, savs,vsv3}, as the other subcase can be
justified likewise.

By Lemma 3.1(iii), we obtain w(e) = y(Ca(e)) for each e € K, which, together with (19),
implies that y(vssi1vsvs) 4+ y(visivavy) + y(vis1v3vav1) = w(s1v3), y(vivsvavy) + y(v3vav5v3) +
y(v1vsv3v401) = w(v503), and y(v4sav3vy) + Y(v1v5S203V1) + Y(V5S203V4V5) + Y(V1V5S2V3V4V1) =
w(s9v3).

We may assume that y(vivssavzvavr) = y(vivsvsvgvr) = 0, for otherwise, by (8) or (10), we
have y(visjvsv1) = 0 and hence y(vys1v3vy) +y(v1$10304v1) = w(v1s1) > 0, which together with
(6) implies that y(vgs1v3v4) = w(sivs) or w(vesy), 80 Yy(v1s1v3v4v1) = w(v181) — Y(v481V304).
Since w(sjv3) > 0, at least one of y(v4s1v3v4) and y(v1sjvzvavy) is a positive integer.

If y(vivssavgvy) = 0, then y(vssavsvavs) + y(vasavsvy) = w(savs), which together with (6)
implies that y(v4savsvs) = w(s2v3) or w(vasa), 50 Y(v5S2vV3v4v5) = w(s2v3) — y(vas2v3v4). Since
w(sgu3) > 0, at least one of y(v4s9v3v4) and y(vssav3v4vs) is a positive integer. So we assume
that y(vivssevzvy) > 0. Thus, by (9), we have y(vivsvsvi) = w(vsvs). If y(visivsvgvy) >
0, then y(v4sovzvy) = w(vsse), Y(vssavzvavs) = w(vavs), and y(vivssevzvy) = w(sav3) —
y(vasavsv4) — y(vssoav3vavs). Since w(savs) > 0, at least one of y(vgsavzvy), y(vssav3vavs),
and y(vjvssav3vy) is a positive integer. So we further assume that y(visjvzvgv;) = 0. Then
y(v1s10301) + y(vasivsvg) = w(sivg). If y(vasivsvy) = 0, then y(visivsvy) = w(sivs) >
0. So we assume that y(vgsjvsvg) > 0. By Lemma 5.2(vii), we have y(vgsovsvg) = 0, so
y(v1v58203v1) + y(v5820304v5) = w(sgv3). Observe that if y(visjv3v1) or y(vivssevsvy) is an in-
teger, then accordingly y(vssivzvy) or y(vssavsvavs) is an integer. Since w(s;vg) > 0 for i = 1,2
by Lemma 5.2(iii), at least one of y(v1s1v3v1), y(v481v304), Y(v1V582v3v1), and y(vssev3v4v5) is
a positive integer, as claimed.

It remains to consider the subcase when neither y(vs1v3v1) nor y(vivssevszvy) is an integer.
We propose to show that

(24) v (T) is an integer.

To justify this, let @ be an optimal solution to P(7,w). Since 0 < y(vi1s1v3v1) < w(visy)
and 0 < y(vasivzvs) < w(vssy), by Lemma 3.1(i) and (ii), we have z(v1s1) = x(vsas1) = 0
and x(visivzvy) = wz(vasivsvg) = 1, which implies z(vsv1) = x(vsvy). Furthermore, since
y(vivssavsvy) > 0 and y(vssqvsvavs) > 0, we have z(vivsSov3v1) = x(v5S2v3v4v5) = 1, which
implies x(v3v1) +2(v1v5) = x(v304) +2(v4v5). Thus z(v1v5) = z(v4vs). Similarly, for each vertex
u € V\(V(T2)\a2), we deduce that x(uvi) = z(uvs). Let T/ = (V', A’) be obtained from T by
identifying v; and vy; the resulting vertex is still denoted by v;. Let w’ be obtained from the re-
striction of w by setting w'(v1v5) = w(vivs) +w(vavs), W' (v3v1) = w(vsvr) +w(vgvy), W' (v18;) =
w(v18;) +w(vgs;) for 1 < i < r, and w'(uvy) = w(uvy) + w(uvy) for each u € V\(V(T3)\az2). By
the LP-duality theorem,  and y naturally correspond to solutions to P(T",w’) and D(T", w’)
respectively with the same optimal value (7). From the hypothesis of Theorem 1.5, we deduce
that v (T') is an integer. This proves (24).

Subcase 2.7. K = {v3v1, 0401, 04V5, V451, V482 }.

In this case, by Lemma 3.1(iii), we obtain w(e) = y(Cz(e)) for each e € K, which, to-
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gether with (19), implies that y(vgs;vsvs) = w(vygs;) for i = 1,2, y(visjvsvr) + y(vivsvzvy) +
y(v1vssavsvy) = w(vzvy), y(vis1v3v4v1) + y(v1v5v304v1) + Yy(v1v58203vV401) = w(vgvy), and
y(v3v4v5v3) + Y(U5820304v5) = w(vavs). We may assume that w(vys;) = 0 for i = 1,2, for other-
wise, y(v481v3v4) or y(v4Sovsvy) is a positive integer. Note that both sjvs and sqvs are outside
CY. So sjvg is saturated by y in Tb for i = 1,2, and hence y(v1s1v3v1) + y(v1s103v401) = w(s103)
and y(v1vss2v3v1) + Y(v55203v405) + Yy(vivssavzvavy) = w(sgvs). If y(vivssavzvgvy) > 0 or
y(vivsvzvgvr) > 0, then y(visivgvgvy) = w(sivs) > 0 by (8) or (10). So we assume that
y(vivssavzvavy) = y(vivsvzvgvr) = 0. Then y(visivzvgvr) = w(vgvr) and y(visivsvy) =
w(s1vg) — y(visivsvavr). Since w(sivs) > 0, at least one of y(visjvsv) and y(visivzvavy)
is a positive integer.

Subcase 2.8. K = {v3vy,v3v4}.

In this case, by Lemma 3.1(iii), we obtain w(e) = y(Cz2(e)) for each e € K, which, together
with (19), implies that y(visivsvy) + y(vivsvsvy) + y(vivssevsvr) = w(vsvr), y(vasivsvy) +
Y(vas2v3v4) + y(v3v40503) + Y(v1vsV3V401) + Y(V151030401) + Y(V5S203V4V5) + Y (V1V552030401) =
w(vsvy). Since both sjvs and sgv3 are outside Cg, we see that s;vs is saturated by y in 15 for i =
1,2. Hence y(v1s1v3v1) +y(v45103v4) +y(v1510304) = w(s103) and y(v4sov3va) +y(v1v5820301) +
Y(v552030405) 4 y(v1V55203V4v1) = w(S203).

If y(v1vssavsvgvr) > 0 or y(vivsvzvavr) > 0, then y(vasivsvg) + y(visivzvavr) = w(sivs) by
(8) and (10). It follows from (6) that either y(vysiv3vy) = w(s1v3) > 0 or y(vas1v3v4) = w(v4S1)
and y(visivsvgvy) = w(sivs) — y(vgesivzvy). Since w(sjvs) > 0, at least one of y(visiv3vy)
and y(v1s1v3vy) is a positive integer. So we assume that y(vivssevsviv) = y(vivsvsvavy) = 0.
If y(vivssavsvy) = 0, then either y(vasovzvy) = w(savs) or y(vasavsvy) = w(vase) by (12),
s0 Y(v5S2v3v4v5) = w(sgu3) — w(vgs2). Since w(sgvg) > 0, at least one of y(vgsovsvy) and
y(vs82v3v4v5) is a positive integer.

Suppose y(vivssavsvr) > 0. Then y(vivsvsvy) = w(vsvs) by (9). If y(visivzvavr) > 0, then
Y(vasav3vs) = w(vas2), Y(vss203v4v5) = w(vvs), and y(vasivzve) = w(vgs1) by (9) and (11).
It follows that y(vivssavzvi) = w(s2v3) — y(vasavava) — y(vssavsvavs). Since w(sgvz) > 0, at
least one of y(v4s2v3v4), y(v582v3v4v5), and y(vivssevzvy) is a positive integer. So we assume
that y(visivgvgvy) = 0. If y(vssavsvavs) = 0, then y(vgsivzvy) + y(vasavsvy) = w(vsvy). By
Lemma 5.2(vii), at most one of w(vys1) and w(vasa) is nonzero. Thus either y(v4sivsvs) = 0 or
y(vasavsvg) = 0, and hence either y(visivsvy) = w(s1vs) > 0 or y(vivssavzvy) = w(savz) > 0.
So we further assume that y(vssavsvivs) > 0. If y(vysjvzv1) or y(vivssevszvy) is an integer, then
accordingly y(v4s1v3v4) or y(vss2v3v405) is an integer. Since w(s;vs) > 0 for i = 1,2, at least one
of y(v1s1v3v1), y(vasivsvy), y(vivssevsvy), and y(vssavsv4vs) is a positive integer, as claimed.

It remains to consider the subcase when neither y(vs1v3v1) nor y(vivssevzvy) is an integer.
Now we can prove that v (T') is an integer. Since the proof is the same as that of (24), we omit
the details here.

Combining the above subcases, we see that Claim 2 holds. Hence, by Lemma 3.2(iii), the
optimal value v}, (T") of D(T, w) is integral, as described in (1) above. 1

Lemma 5.8. If T5/S = G3, then D(T,w) has an integral optimal solution.

Proof. Recall that (ba,a2) = (v4,v5), s* = ve, and vyg = v4. To establish the statement, by
Lemma 3.4(ii), it suffices to prove that
(1) the optimal value v} (T") of D(T,w) is integral.
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Given an optimal solution y to D(T, w), set ¢(s;) = {u : z(us;) > 0 for u € V(T3)\az} for
each s; € S. By Lemma 5.2 (i) and (vi), we have

(2) ¢(si) Np(s;) = 0 whenever i # j.

(3) There exist at least two and at most three vertices s;’s in S with ¢(s;) # 0.

In view of (2) and the structure of Go, there are at most three vertices s;’s in .S with ¢(s;) # 0.
Suppose on the contrary that there exists precisely one vertex s; € S with ¢(s;) # (. Then (1)
follows immediately from Lemma 4.5; the argument can be found in that of (3) in the proof of
Lemma 5.5.

Lemma 5.2(i) allows us to assume that

(4) if p(s;) # 0, then i € {1,2,3}.

In the remainder of our proof, we reserve y for an optimal solution to D(T,w) such that

(5) y(Ca) is maximized;

(6) subject to (5), (y(Dq),y(Dg=1),...,y(D3)) is minimized lexicographically;

(7) subject to (5) and (6), y(vivevzvavy) is minimized; and

(8) subject to (5)-(7), y(vivevavy) is minimized.

Let us make some observations about y before proceeding.

(9) If K is an FAS of T\ a2 such that y(Ce) = w(K), then K is an MFAS. (The statement
is exactly the same as (4) in the proof of Lemma 4.3.)

The statements below follow instantly from Lemma 3.5(v).

(10) If y(vivgvgvgvy) > 0, then both vsv; and vgvy are saturated by y in Tb.

(11) If y(vives;vavr) > 0 for some i € {1,2,3}, then both vis; and vgvy are saturated by y
in TQ.

(12) If y(v1vevssivgvy) > 0 for some ¢ € {1,2,3}, then each arc in the set {vgv1, v3vy, vev4, V184,
veS;} is saturated by y in Th.

Claim 1. y(Ca) = Ty (T2 \a2).

To justify this, we may assume that

(13) at most one of vzv; and wvqv; is saturated by y in Tb, for otherwise, y(C2) = w(K),
where K = {vsv1,vqv1}. Since K is an FAS of Ty\ag, it is an MFAS by (9) and hence y(Cs) =
Tw (Tz\ag).

We proceed by considering two cases, depending on whether v; € ¢(s;) for some i.

Case 1.1. vy ¢ ¢(s;) for any i € {1,2,3}.

By (2), (3) and Lemma 5.2(i), we may assume that ¢(s1) = {vg} and ¢(s2) = {vs}. Thus

(14) CY C {v1v6v3v1, V1V6V4V1, V1VaU3VLV], V1VGS1 V4], V1VGU3S2V4V1 }-

By Lemma 5.2(iii), z(s;v4) = w(ziva) > 0. If s;04 is outside C§ for i = 1 or 2, then s;vy is
saturated by y in Th. In view of (14), we have y(v1vgs1v4v1) = w(s1v4) > 0 or y(v1v6v3S2v4v1) =
w(savyg) > 0, and hence (1) follows from Lemma 3.2(iii). Similarly, if vgs; or vsse is saturated
by y in To, then y(vivesiv4v1) = w(vgsy) > 0 or y(v1vev3savv1) = w(vgse) > 0, and hence (1)
follows from Lemma 3.2(iii). So we assume that

(15) s;vy is contained in some cycle in C§ for i = 1 and 2. Furthermore, neither vgs; nor
v3sg is saturated by y in T5.

By (15) and Lemma 3.5(iii), at least one of vivg and vqv; is saturated by y in Ts. If vivg
is saturated by y in Tb, then y(C2) = w(vivg). By (9), {v1ve} is an MFAS of Th\ay and hence
y(Co) = Tw(To\az2). If vyv; is saturated by y in Tb, then wvzv; is not saturated by y in To
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by (13). So, by Lemma 3.5(vi), vgvs is saturated by y in 75 and, by (10) and (12), we have
y(v1v6v35204v1) = y(vivevsvavy) = 0. Thus y(C2) = w(K), where K = {v4v1,v6v3}. Since K is
an FAS of Th\ag, it is an MFAS by (9) and hence y(C2) = 7w (12\a2).

Case 1.2. v; € ¢(s;) for some i € {1,2,3}.

By (2), (3) and Lemma 5.2(i), we may assume that v1 € ¢(s1), v6 € @(s;), and v3 € @(s;),
with {1} # {i,7} C {1,2,3}. Furthermore,

(16) Cg g {1)11)6'031)1, V1V6V4V1, V1VEV3V4V1, U181V4V1, V1V6S;V4V71, 1)11)61)38]‘1)41)1}.

We may further assume that syv4 is contained in some cycle in Cg and v1s7 is not saturated
by y in Th, for otherwise, y(v1s1v4v1) = w(s1vg) > 0 or y(vis1v4v1) = w(vysy) > 0. Hence (1)
follows instantly from Lemma 3.2(iii). It follows from Lemma 3.5(vii) that vsv; is saturated
by y in Ty and hence, by (13), vsv; is not saturated by y in To. By (10) and (12), we obtain
y(v1vev3s;vav1) = y(vivevsvavr) = 0. If vgvg is saturated by y in T5, then y(C2) = w(K),
where K = {vqv1,v6v3}. Since K is an FAS of Ts\ag, it is an MFAS by (9) and hence y(C2) =
Tw(T2\az). So we assume that vgvs is not saturated by y in T». Thus, by Lemma 3.5(vii), vjvg
is saturated by y in T5. We propose to show that

(17) y(vivevav1) = y(v1v6s;v4v1) = 0.

Assume the contrary: y(vivevsvi) > 0 or y(vivesivavy) > 0. Then wvys; is outside CJ,
for otherwise, let C' be a cycle in C§ containing v1s;. Then the multiset sum of the cycles
C' and vjvgvavr (resp. v1v6S;v4v1) contains arc-disjoint cycles vysjvq4v; and C' = Clug, v1] U
{vive, v6v4} (resp. C' = Clug,v1] U {v1v6, v68i, Siva}). Set 6 = min{y(vivgvav1),y(C)} (resp.
min{y(vivgs;vav1),y(C)}). Let y' be obtained from y by replacing y(vivgvivy) (resp. y(vives;vavy)),
y(vivaugvr), y(C), and y(C’) with y(vivgvavr) — 0 (resp. y(vivgsivave) — 6), y(vivavavy) + 6,
y(C) — 0, and y(C") 4 0, respectively. It is easy to see that y’ is an optimal solution to D(T, w)
with 3/ (vivgvav1) < y(vivgvavy) or 3 (v1vesivavr) < y(vives;vavy), contradicting (8) or (6).
Since vjvg is saturated by y in T, every cycle in C containing vsvy passes through vysy. Thus
v3v1 is outside Cé’, and neither v1s1 nor wsv; is saturated by y in 7.

Observe that vgvs is outside Cf, for otherwise, let C' be a cycle in C§ containing vgvs. Then the
multiset sum of the cycles C, vivgvavy (resp. v1v68;v4v1), and the unsaturated arc vsv contain
arc-disjoint cycles vivgvgvy; and C" = Clvg, ve) U {vgva} (resp. C' = Clva, ve] U {vgsi, siva)}).
Set 0 = min{y(vivev4v1),y(C), w(vsvy) —z(v3v1)} (resp. § = min{y(vivgsivavy), y(C), w(vsvy)—
z(vsv1)}). Let y’ be obtained from y by replacing y(vivgvav1) (resp. y(v1v68iv401)), y(vivev3vy),
y(C), and y(C") with y(vivevav1) — 6 (resp. y(vivesivav) — 0), y(vivevsvr) + 6, y(C) — 0,
and y(C’) + 6, respectively. It is easy to see that y’ is an optimal solution to D(T,w) with
Y (v1vgvav1) < y(v1vgvav1) or Y (v1v68;v401) < y(v1v6S;v4v1), contradicting (8) or (6). Hence
vgU3 is not saturated by y in T

Let C be a cycle in C§ containing sjv4. Then the multiset sum of the cycles C, each of the cy-
cles vivgvav1 and v1vgS;v4v1, and the unsaturated arcs vgvs, vsvi, and v1s; contains arc-disjoint
cycles v1sjvqv; and vivgvzvr. So, by Lemma 3.5(vi), we have y(vivgvav1) = y(vives;vavi) = 0;
this contradiction establishes (17).

Using (17), we obtain y(C2) = w(K), where K = {v1vg,v4v1}. Since K is an FAS of Th\as,
it is an MFAS by (9) and hence y(Ca) = Ty (T2\a2). This proves Claim 1.

The above proof yields the following statement, which will be used later.

(18) If Case 1.1 occurs, then every MFAS comes from {{vsvi,v4v1}, {vive}, {vavi, vevs}}. If
Case 1.2 occurs, then every MFAS comes from {{vsv1,vqv1}, {vive, vav1}, {vav1, vevs}}.
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Claim 2. y(C) is a positive integer for some C € Cy or v} (T) is an integer.

To justify this, we first show that

(19) if vz € @(s;) for i € {1,2,3}, then y(vivevss;vavy) = 0.

Assume the contrary: y(vivgvszs;vgvi) > 0. Then y(vivgvsvy) = w(vavy), y(vivevsvavy) =
w(vsvy), and y(vivevavi) = w(vevs) by (12). So Lemma 3.2(iii) allows us to assume that
w(vsvy) = w(vsvy) = w(vgvy) = 0. Let j and k be subscripts in {1,2,3}, if any, such that
ve € (sj) and v1 € @(si). If both y(visgvave) and y(vives;vavy) are integral, then, by Claim 1,
y(v1vevss;vavy) is a positive integer, so Claim 2 holds. Thus we may assume that y(v;sgv4vy) or
y(v1vesjvavr) is not integral. Then, by (11) and Lemma 3.2(iii), we have j, k # . Furthermore,
both v1s; and vgs; are outside Cj, for otherwise, we can construct an optimal solution y’ to
D(T, w) with y'(vivevss;vav1) < y(vivevssjvavi), contradicting (6).

Consider first the case when y(vives;jvsv1) is not integral. If j = k and y(visgvavi) > 0,
then y(visgvav1) = w(visg) > 0 by (11), so Claim 2 holds. Thus we may assume that j # k if
y(viskvavy) > 0. Let us show that v} (7T') is an integer.

For this purpose, let & be an optimal solution to P(T,w). Since both y(vives;v4vi) and
y(v1v6v3s;v4v1) are positive, x(vives;jv4v1) = x(vV106V38;04v1) = 1 by Lemma 3.1(i). By Lemma
5.2(vi), z(ves;) = x(v3s;) = 0. It follows that x(s;vs) = z(vevs) + x(s;v4). If vevz is outside
CY, then z(vgvs) = 0 by Lemma 3.1(ii), because z(vgvs) = y(vivevssivavi) < w(vgvs). Thus
x(s;v4) = x(sjv4), contradicting Lemma 5.2(iv). So we assume that vgvs is contained in some
cycle in C§. Since w(vsvs) = w(vgvs) = 0 and (vg, s;) is outside Cf, for any u € V\(V(T2)\a2),
if a cycle in C§ contains uvg, then it passes through vgvszsivs. Moreover, if a cycle in Cf
contains us;, then it passes through sjvs. By Lemma 3.1(iv), we obtain z(uve) + x(vevs) +
x(v3si) + x(s;va) = x(usj) + x(s;v4). Hence x(uvs) = x(us;). Clearly, we may assume that
this equality holds in any other situation. Let 77 = (V' A’) be obtained from T by delet-
ing vertex s;j, and let w’ be obtained from the restriction of w to A’ by replacing w(e) with
w(e)+w(sjvy) for each e € {vgvs, v3s;, siva} and replacing w(uve) with w(uve) +w(us;) for each
u € V\(V(Ts)\az). Let ' be the restriction of & to A" and let ¢y’ be obtained from y as follows:
set 3/ (v1vev3sivavy) = y(v1ves;vav1) + y(vivevssivavy); for each C € Cf passing through us;vs
for any u € V\(V(T2)\a2), let C’" be the cycle arising from C' by replacing the path us;vs with
the path uvgvss;va, and set y'(C") = y(C') +y(C). From the LP-duality theorem, we see that =’
and y’ are optimal solutions to P(T”, w’) and D(T”, w’), respectively, with the same value v (T)
as « and y. By the hypothesis of Theorem 1.5, v (T') is an integer.

In the other case when y(vives;vavi) = 0 and y(visEvave) is not integral, the proof goes
along the same line, so we omit the details here.

By Claim 1, y(C2) = w(K) for some FAS K of T5\as as described in (18). Recall that

(20) in Case 1.1, we have v ¢ ¢(s;) for any i € {1,2,3}, ¢(s1) = {vs}, and ¢(s2) = {v3}; in
Case 1.2, we have v1 € ¢(s1), v € ¢(s;), and v3 € ¢(s;), with {1} # {7,5} C {1,2,3}.

Depending on what K is, we distinguish among four cases.

Case 2.1. K = {vqv1,v6v3} in Case 1.1 or K = {vvg,v4v1} in Case 1.2.

Consider first the subcase when K = {vqv1,v6v3} in Case 1.1. Now y(v1vgv3v1) = w(vevs)
and y(v1vv401) + y(v1v6510401) = w(vgv1) (see (20)). If y(vivgsivavy) = 0, then y(vivevavy) =
w(vgvy). I y(vivgsivgvr) > 0, then y(vivgvavr) = w(vevy) by (11), and hence y(vivgs1v4v1) =
w(vqv1) —w(vgvy). By the hypothesis of the present section, w(K) = 7,(T2\a2) > 0. So at least
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one of y(vivgvsvy), y(vivevavs), and y(vivesivavy) is a positive integer.

Next consider the subcase when K = {vjvg,v4v1} in Case 1.2. Now y(vi1s1v4v1) = w(vqv1)
and y(v1vv3v1) = w(v1ve). So at least one of y(visivavr) and y(vivevszvy) is a positive integer.

Case 2.2. K = {vjvg} or {v3v1,v4v1} in Case 1.1.

We only consider the subcase when K = {v1vg}, as the proof in the other subcase goes along
the same line. Now y(vivgv3v1) + y(v1v6v401) + y(v1v6v304v1) + y(v10681v401) = w(v1v6), and
v3vy is outside C.

Observe that y(vivgvgvgvy) > 0, for otherwise, if y(vivgsivavi) > 0, then y(vivgvavy) =
w(vgvy) by (11), and hence y(v1vgv3v1 ) +y(v1ves1v4v1) = w(vive) —w(vevy); if y(vivesivavy) = 0,
then y(v1vv3v1) +y(v1vev4v1) = w(vive). Let us show that y(vivgvsvy) is integral. Assume first
that y(vivgsivav1) > 0. If vgvs is outside CF, let y’ be obtained from y by replacing y(v1vgvsv1)
and y(vivgsivavy) with y(vivevsvy) + [y(vivesivavr)] and |y(vivesivavr) |, respectively; if vgvs is
contained in a cycle C' € C§, set = min{y(C), [y(vivesi1vsv1)]} and C" = Clvy, v]U{ves1, s104},
and let ¢y’ be obtained from y by replacing y(vivevavi), y(vivesivave), y(C), and y(C’) with
y(vivgusvy) + 0, y(vivgsivgvr) — 6, y(C) — 0, and y(C’) + 6, respectively. Then y’ is also an
optimal solution to D(7T', w) with 3/ (vivgv3v1) > y(vivevsvy) while ¥ (v1v65104) < y(viveSIV4VY)
in either situation, so y’ is a better choice than y (see (6)), a contradiction. Assume next that
y(v1vgsivgvr) = 0. Imitating the above proof, with y(vivevsv1) in place of y(vivgsivgvy), we
can reach a contradiction to (8).

Since y(vivgvsvavr) > 0, by (10), we have y(vivgvsv1) = w(vsvy) and y(vivevav1) = w(vevs);
so Lemma 3.2(iii) allows us to assume that w(vzv1) = w(vgvs) = 0. Thus the previous equality
concerning w(vivg) becomes y(v1v651v4v1) + y(v1v6v3v401) = w(v1vg). So we may assume that
neither y(vivgsivavy) nor y(vivevsvgvy) is integral, for otherwise, at least one of them is a
positive integer. Observe that vgsy is outside C§, for otherwise, let C' be a cycle in C§ that
contains vgs1, let €' = Clug, vg] U {vgvs, v3v4}, and let 6 = min{y(C), y(vivevzvavy)}. Let y' be
obtained from y by replacing y(v1vgs1v4v1), y(v1v6v3v401), y(C), and y(C") with y(v1vesivavy)+
0, y(vivevzvavy) — 6, y(C) — 0, and y(C”) + 0, respectively. Then y’ is also an optimal solution
to D(T, w) with 3/ (vivevzvavr) < y(vivevsvgvy), contradicting (7).

We propose to show that v} (T') is an integer. For this purpose, let « be an optimal so-
lution to P(T,w). Since both y(vivgsivavy) and y(vivevzvavy) are positive, x(vivgsivavy) =
x(vivgvsvgvy) = 1 by Lemma 3.1(i). Since y(vivgsivavi) < w(vgsy), we have z(vgsy) = 0
by Lemma 3.1(ii). Thus z(sjva) = z(vevs) + x(vsvs). Since w(vgvy) = 0, for any u €
VA\(V(T2)\a2), if a cycle in C§ contains uvg, then it passes through vgvsvs or vgsjvs. More-
over, if a cycle in C§ contains usi, then it passes through sjvs. By Lemma 3.1(iv), we obtain
x(uvg) + x(vevs) + x(v3vy) = x(usy) + x(s1v4) or z(uve) + x(ves1) + x(s1v4) = x(us1) + x(s1v4).
Hence z(uvs) = x(us;). Clearly, we may assume that this equality holds in any other situation.
Let T" = (V', A’) be obtained from T by deleting vertex s1, and let w’ be obtained from the
restriction of w to A’ by replacing w(e) with w(e)+w(sivs) for e = vgvs and vzvs and replacing
w(uve) with w(uve) + w(usy) for any u € V\V(Ts)\az. Let &’ be the restriction of x to A" and
let y’ be obtained from y as follows: set y'(v1vgvsv4v1) = y(vivesivavy) + y(v1v6vsv407); for
each C' € C§ passing through usivs for any u € V\(V(T2)\a2), let C’ be the cycle arising from
C by replacing the path usjvy with the path uvgvsvy, and set y'(C’) = y(C') + y(C). From
the LP-duality theorem, we see that ' and y’ are optimal solutions to P(7”, w') and D(T", w’),
respectively, with the same value v (T') as  and y. By the hypothesis of Theorem 1.5, v} (T)
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is an integer.

Case 2.3. K = {v4v1,v6v3} in Case 1.2.

In this case, y(v1vv3v1) = w(vgvs) and y(vis1v4v1) + y(v1v6v4v1) + y(vV1Ve5;v4v1) = w(v4v1)
(see (20)). By Lemma 3.2(iii), we may assume that w(vgvs) = 0. Let us show that

(21) y(vivesivavy) = 0.

Assume the contrary. Then, by (11), we have y(vivgvsv1) = w(vgvy), and vy s; is saturated
by y in T». Lemma 3.2(iii) allows us to assume that w(vevs) = 0 and that y(vives;vav1) is not
integral. It follows from (6) and Lemma 3.5(v) that i # 1 and vys; is outside C§. We propose
to prove that v (T) is an integer.

For this purpose, let & be an optimal solution to P(T,w). Since both y(visjvsvi) and
y(v1vgsivav1) are positive, by Lemma 3.1(i), we have x(visjvqv1) = z(vivgs;vav1) = 1. Since
y(v1s1v4v1) < w(v1s1), by Lemma 3.1(ii), we obtain z(v1s1) = 0, so z(s1v4) = x(vive)+x(ves;)+
z(sivg). If vivg is outside Cf, then x(vivg) = 0, because z(vivg) = y(vivesvavy) < w(vive).
By Lemma 5.2(vi), z(vis1) = z(ves;) = 0. Hence, x(s1v4) = x(s;v4), contradicting Lemma
5.2(iv). So we assume that v1vg is contained in some cycle in C§. Since w(vgvs) = w(vgvs) = 0,
for any u € V\(V(T2)\a2), if a cycle in C§ contains uvq, then it passes through vjvgs;vs.
Moreover, if a cycle in C§ contains usy, then it passes through sjvy. By Lemma 3.1(iv), we
obtain x(uv1) + z(v1ve) + x(ves;) + x(s;ve) = x(us1) + x(s1v4). Hence z(uvy) = z(usy). Clearly,
we may assume that this equality holds in any other situation. Let 77 = (V’/,; A’) be obtained from
T by deleting vertex s1, and let w’ be obtained from the restriction of w to A’ by replacing w(e)
with w(e) +w(s1v4) for e € {vivs, v6Si, siva} and replacing w(uwvy) with w(uwvy) +w(us;) for any
u € V\(V(T)\a2), Let &’ be the restriction of & to A’, and let y’ be obtained from y as follows:
set 3/ (v1vgsivav1) = y(vis1v4v1) + y(v1vesivavy); for each C' € Cf passing through usjvy, let C’
arise from C by replacing the path usivs with the path uvivgs;vs, and set /' (C") = y(C") +y(C).
From the LP-duality theorem, we see that ' and ¢’ are optimal solutions to P(7”,w’) and
D(T",w’), respectively, with the same value v (T) as  and y. By the hypothesis of Theorem
1.5, v;(T) is an integer. So we may assume that (21) holds.

By (21), the equality concerning w(v4v1) becomes y(vys1v4v1) + y(vivgvav1) = w(vgvy). As
w(vgvy) = w(K) = 7,y (T2\az2) > 0, neither y(v1s1v4v1) nor y(vivgvavy) is integral. Observe that
v181 is outside Cg, for otherwise, let C be a cycle containing vys in Cg, let C" = Clvg, 1] U
{vive,v6v4}, and let 8 = min{y(C),y(vivevav1)}. Let y’ be obtained from y by replacing
y(v1s1v4v1), y(vivevavr), y(C), and y(C’) with y(visivavr) + 0, y(vivevsvr) — 0, y(C) — 6, and
y(C’) 4+ 0, respectively. Then y’ is also an optimal solution to D(7,w) with ¢ (vivgvav1) <
y(v1vev4v1 ), contradicting (8). Moreover, i # 1, for otherwise, it can be shown similarly that
vgs1 is outside C§, which implies z(vgs1) = 0, contradicting that v € ¢(s1). Let us show that

(22) v (T) is an integer.

For this purpose, let & be an optimal solution to P(7,w). Since both y(visjvavy) and
y(v1vevqv1) are positive, we have x(visjvav1) = z(v1v6vav1) = 1 by Lemma 3.1(i). By (16)
and Lemma 3.2(iii), we have y(v1sjv4v1) < w(vis1) and hence z(vis1) = 0. So x(sjvg) =
z(v1v6) + z(veva). Note that if a cycle in C§ contains usy, then it passes through sjvs. For
any u € V\(V(Tz)\az), if there exists a cycle C' € C§ containing uv; and passing through
v1V6v4, then by Lemma 3.1(iv), we obtain z(uvy) + x(vive) + x(vevs) = z(us1) + x(s1v4), and
hence z(uvi) = x(usi). Otherwise, since w(vgvz) = 0, if a cycle in C§ contains uvq, then it
passes through vjvgs;vs. By Lemma 3.1(i) and (iv), we have z(vgvy) > x(vgs;) + x(s;v4) and
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x(uvy)+z(v1ve)+x(ves;)+x(sivg) = x(usy)+x(s1v4). Since z(vivevavr) = 1 and z(v1v6S;v401) >
1, we see that x(vgvy) < x(ves;) + x(s;v4). Hence, x(uvy) = x(usy) also holds. Clearly, we may
assume that this equality holds in any other situation. Let 77 = (V’/, A") be obtained from T
by deleting vertex s1, and let w’ be obtained from the restriction of w to A’ by replacing w(e)
with w(e) + w(sivy) for e = v1vg and vgvy and replacing w(uvy) with w(uvy) + w(usy) for any
u € V\(V(T)\az2). Let «’ be the restriction of  to A" and let ¢’ be obtained from y as follows:
set y' (vivevavi) = y(visivavr) + y(vivevavr); for each C € C§ passing through usivg for any
u € V\(V(T)\az), let C" arise from C' by replacing the path usjvs with the path uwvivgvs, and
set ¥ (C") = y(C") + y(C). From the LP-duality theorem, we see that ' and y’ are optimal
solutions to P(T",w’) and D(T’,w’), respectively, with the same value as = and y. From the
hypothesis of Theorem 1.5, (22) follows.

Case 2.4. K = {vgv1,v4v1} in Case 1.2.

In this case, y(v1vev3v1) = w(vsv1) and y(v181v401)+y(v1V6V401)+y(v1V68;V401 ) +y (V1 V6V3V4VT )
= w(v4v1) (see (20)). By Lemma 3.2(iii), we may assume that w(vzv;) = 0.

If y(vivgsivav1) = y(vivgvsvavy) = 0, then y(visivavr) + y(vivgvgvy) = w(vgvy). Since
w(vgv) = w(K) = 1,(T2\a2) > 0, we see that y(visjvavr) is not integral. Imitating the
proof of (22), it can be shown that v} (T") is an integer. So we assume that at least one of
y(v1vgvsvavr) and y(vives;vavy) is positive. By (10) or (11), vgvy is saturated by y in Tb, and
hence y(vivgvav1) = w(vevs). By Lemma 3.2(iii), we may assume that w(vevs) = 0. If neither
y(v1v68;v4v1) nor y(viveusvavy) is integral then, imitating the proof in Case 2.2, it can be shown
that v (T') is an integer. It remains to consider the subcase when precisely one of them is
positive. Now it can be shown that v} (7)) is an integer. Since the proof is the same as that
contained in the argument of (21), we omit the routine details here.

Combining the above four cases, we see that Claim 2 holds. Hence, by Lemma 3.2(iii), the
optimal value v (T') of D(T,w) is integral, as described in (1) above. 1

Lemma 5.9. If 15 /S = G3, then D(T,w) has an integral optimal solution.

Proof. Recall that (by,a2) = (v4,v5), s* = ve, and vy = vg. To establish the statement, by
Lemma 3.2(iii) and Lemma 3.4(ii), it suffices to prove that

(1) y(C) is a positive integer for some C' € Ca or the optimal value v (T') of D(T,w) is an
integer.

Given an optimal solution y to D(T, w), set ¢(s;) = {u : z(us;) > 0 for u € V(T3)\az} for
each s; € S. By Lemma 5.2 (i) and (vi), we have

(2) ¢(si) Np(s;) = 0 whenever i # j.

(3) There exist at least two and at most three vertices s;’s in S with ¢(s;) # 0. (The
statement is exactly the same as (3) in the proof of Lemma 5.7.)

Lemma 5.2(i) allows us to assume that

(4) if p(s;) # 0, then i € {1,2,3}.

Let ¢t be the subscript in {1,2,3} with v; € p(s;), if any. By (2), t is well defined. In the
remainder of our proof, we reserve y for an optimal solution to D(7', w) such that

(5) y(Ca) is maximized;

(6) subject to (5), (y(Dyq),y(Dg-1), - --,y(Ds3)) is minimized lexicographically;

(7) subject to (5) and (6), y(vivevzvavy) is minimized; and

(8) subject to (5)-(7), y(visivav1) + y(vsvavgvs) is minimized.
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Let us make some observations about y before proceeding.

(9) If K is an FAS of Ty\as such that y(Ce) = w(K), then K is an MFAS. (The statement
is exactly the same as (4) in the proof of Lemma 4.3.)

The statements below follow instantly from Lemma 3.5(v) and the choice of y.

(10) If y(vivvzvgvy) > 0, then both vsv; and vyvg are saturated by y in 7. Furthermore,
for any i € {1,2,3}, we have y(vgs;vavg) = 0; if y(v3s;vgvgvs) > 0, then vys; is saturated by y
in TQ.

(11) If y(vives;vav1) > 0 for some i € {1,2,3}, then both v;s; and vyvg are saturated by y
in Ty. Furthermore, if y(vsvqvgvs) > 0, then vsv; is saturated by y in Ty; for any 1 < j # ¢ < 3,
if y(vzsjvavevz) > 0, then both vzvy and vys; are saturated by y in T5.

(12) If y(vssjvavgvs) > 0 for some i € {1,2,3}, then both vsvs and vgs; are saturated by y
in Tg.

(13) If v1 € @(s;) for some i € {1,2,3}, then y(vys;v4v6v3v1) = 0.

Assume the contrary: y(vis;vqvgvsvy) > 0. Then vvg, vsvs, and vqv; are saturated by y in
Ty by Lemma 3.5(v). Let j and k be subscripts in {1,2,3}, if any, such that vz € ¢(s;) and
ve € @(sg) (possibly j = k). As before, let W denote the multiset sum. Then v;s;v4v6v30; W
V1VgU3V4V1 = V18;V4V1 W V1060301 W V304V6V3, V18;V4VgV3V1 W V1068 V401 = V180401 Y V1060301 W
VSEU4Vg, and v18;v4v6v3vV1 U V1VV3S;V4V1 = V18;04V1 W v106U3V1 W U35;040V6V3. Thus, from the
optimality of y, we deduce that y(vivevzvav1), y(viveskvavr), and y(vivevssjvav) are all zero.
So y(v1vevsv1) = w(v1vg), Y(v18;v4v1) = w(vavy), and y(vsvavevs) = w(vzvy). Clearly, we may
assume that w(vive) = w(vav1) = w(vsvs) = 0, otherwise (1) holds. By (3), we have {j, k} # {i}.
Let us show that one of y(vesxvavs), y(v3sjvavevs), and y(vis;v4v6v3v1) is a positive integer or
vi(T) is an integer. We proceed by considering two cases.

e L exists and ¢ # k. In this case, observe first that vgsy is not saturated by y in Tb, for
otherwise, y(vesgvave) = w(vesk) > 0 and hence (1) holds. Next, vivs is not saturated by y
in Ty, for otherwise, if k # j, then y(vgsgvavg) = w(spvy) > 0; if k = j, then y(vesxvave) +
y(vsskvavevy) = w(spva) > 0, and y(vesgvave) = w(vesy) > 0 by Lemma 3.5(v) provided
y(vsspvavevs) > 0. So y(veskvave) is a positive integer, and hence (1) also holds. Moreover,
both vgsy, and vgs; are outside Cf, for otherwise, let Cy (resp. Cs) be a cycle in C§ containing vg sy
(resp. v3s;). Since C W v18;0406V3V1 = V6SkV4V6 W C1 and Co W1 8;04060301 = V35,0406V3 W Cy,
where C] = C1[vg, vg] U {vgvs, v3v1, 0184, $;v4} and Ch = Colvy, v3]W{vsv1, v18;, $;v4}, by Lemma
3.5(viii), we have y(C;) = 0 for i = 1,2, a contradiction. It follows that vgsy is not saturated by
y in T, and sv4 is contained in some cycle in C§. By Lemma 3.5(vii), vqvg is saturated by y in
Ty, 50 y(v15;v406v301) + Y (V6SKVaV6) + y(v3Sj04v6v3) = w(vave). If j = k and y(vgsgvavevs) > 0,
then vgsy is saturated by y in Ty by Lemma 3.5(v), a contradiction. So either j # k or j = k
and y(vsskvsvevs) = 0. Since w(vgsg) > 0 and vgsy is outside Cf, we have y(vgsgpvave) > 0.
Assume y(vgSiv4ve) is not integral. Let us show that v (7") is an integer.

For this purpose, let & be an optimal solution to P(7,w). Since both y(vgsipvsve) and
y(v18;v4v6v3v1) are positive, by Lemma 3.1(i), we have x(vgsivsvg) = z(v18;v4v6v3v1) = 1. By
Lemma 3.1(ii), we obtain x(vgsg) = 0. Hence z(spvs) = x(vev3) + x(vsv1) + x(v1si) + x(s;v4).
Since w(vsvy) = 0 and vgsy is outside Cf, for any u € V\(V(T2)\az), if a cycle in C§ contains
uvg, then it passes through vgvszvis;vs. Moreover, if a cycle in C§ contains usg, then it passes
through sivs. By Lemma 3.1(iv), we obtain x(uve) + z(vevs) + x(vsv1) + x(vis;) + x(siva) =
x(usk)+x(skva). Hence z(uvg) = x(usy). Clearly, we may assume that this equality holds in any
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other situation. Let 7" = (V’, A’) be obtained from T by deleting s, and let w’ be obtained from
the restriction of w to A’ by replacing w(e) with w(e) + w(vssi) for e € {vgvs, v3v1, V184, S;v4}
and replacing w(uvg) with w(uve) + w(usy) for any u € V\(V(T3)\az2). Let &’ be the restriction
of  to A’, and let 3y’ be obtained from y as follows: set y'(v1s;v4v6v3v1) = y(v18;v406v3V1) +
y(veskvave); for each C' € C§ passing through usjvy, let C7 arise from C' by replacing the path
uskvy with the path uvgvsvis;vyg, and set 3/ (C') = y(C’) + y(C). From the LP-duality theorem,
we see that @’ and ¢’ are optimal solutions to P(7”,w’) and D(T”,w'), respectively, with the
same value v (T) as « and y. By the hypothesis of Theorem 1.5, v} (T') is an integer.

e Either k does not exist or ¢ = k. In this case, by (3), we see that j exists; that is, v3 € ¢(s;).
Similar to the above case, we can show that either y(vssjvivgvs) is a positive integer or v, (T)
is an integer. Since the proof goes along the same line (with vss; and y(v3s;jvsvevs) in place of
vesk and y(vesgvavg), respectively), we omit the details here. Hence we may assume that (13)
holds.

(14) If v3 € (s;) for some j € {1,2,3}, then y(vivevss;vavy) = 0.

Assume the contrary: y(vlvgvgsjvwl) > 0. Then v3v1, vsvy, and v4vg are saturated by y
in 75 by Lemma 3.5(v). Let ¢ and k be subscripts in {1,2,3}, if any, such that v; € ¢(s;)
and v € @(s) (possibly i = k). Since v1v6U35;v4V1 W V3V4V6V3 = V1VeU3V4V1 W V3S;V4V6V3,
and v106V35;V4V1 U UgSpU4V6 = V1V6S5KV4V1 W V35,0406v3, from the optimality of y, we deduce
that y(vsvavevs) = y(vesrvave) = 0. So y(vivevsv) = w(vzvy), y(vivevzvgvr) = w(vavy), and
y(vgsjvavevs) = w(vave). Clearly, we may assume that w(vsvi) = w(vsvs) = w(vave) = 0,
otherwise (1) holds. By (3), we have {i,k} # {j}. Let us show that one of y(visjviv1),
y(v1veskvavr), and y(vivevssjvavr) is a positive integer or v (7T') is an integer. We proceed by
considering two cases.

e | exists and ¢ # j. In this case, observe first that vis; is not saturated by y in Ts, for
otherwise, y(v1s;v4v1) = w(v1s;) > 0 and hence (1) holds. Next, s;v4 is not saturated by y in 7%,
for otherwise, if i # k, then y(vis;v4v1) = w(s;vg) > 0; if i = k, then y(vys;v4v1) +y(vivesivy) =
w(sjve) > 0, and y(vis;vav1) = w(vys;) > 0 by Lemma 3.5(v) provided y(vivesivavy) > 0.
So y(v1s;v4v1) is a positive integer, and hence (1) also holds. Moreover, both vis; and vgsg
are outside C§, for otherwise, let Cy (resp. C2) be a cycle in C§ containing vis; (resp. vgsk).
Since C1 W v1v6v3sjv4v1 = v15;04v1 U C] and Co W 01060350401 = 010650401 © Ch, where C =
C1[va, v1] U {v1v6, v6v3, V385, sjv4} and Ch = Calva, vg) U {vevs, v3sj, 8504}, by Lemma 3.5(viii),
we have y(C;) = 0 for i = 1,2, a contradiction. It follows that vys; is not saturated by y in T
and s;vy is contained in some cycle in C§. By Lemma 3.5(vii), vqv; is saturated by y in Tb, so
y(visivav1) + y(v1vespvavy) + y(vivevssjvavy) = w(vavr). If @ = k and y(vivesgvavr) > 0, then
v1s; is saturated by y in T, by Lemma 3.5(v), a contradiction. So either i # k or i = k and
y(vivesgvavy) = 0. Since w(v1s;) > 0 and vys; is outside Cf, we have y(vis;v4v1) > 0. Assume
y(v18;v4v1) is not integral. Let us show that v (T") is an integer.

For this purpose, let  be an optimal solution to P(7,w). Since both y(vis;vqv1) and
y(v1vevssjvavr) are positive, by Lemma 3.1(i), we have z(visjvav1) = y(vivevss;vavy) = 1. By
Lemma 3.1(ii), we obtain x(vis;) = 0. Hence z(sjvs) = z(vive) + x(vev3) + x(v3s;) + (s;v4).
Since w(vsv1) = w(vsvy) = 0, for any u € V\(V(T2)\az2), if a cycle in C§ contains uvq, then it
passes through vgvssjvs. Moreover, if a cycle in Cf contains us;, then it passes through s;vs.
By Lemma 3.1(iv), we obtain z(uv1) + z(v1ve) + z(vev3) + x(v3s;) + z(sv4) = x(us;) + x(s;v4).
Hence x(uv1) = x(us;). Clearly, we may assume that this equality holds in any other situation.
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Let 77 = (V', A’) be obtained from T by deleting s;, and let w’ be obtained from the restriction
of w to A’ by replacing w(e) with w(e) + w(vss;) for e € {vivg, vevs, v355, S;v4} and replacing
w(uvy) with w(uvy) + w(us;) for any u € V\(V(T3)\az2). Let &’ be the restriction of  to A’
and let y’ be obtained from y as follows: set 3 (vivsv3sjvav1) = y(v1vev3sjvavt) + y(visivavi);
for each C € C§ passing through us;v4, let C' be obtained from C' by replacing the path wus;vs
with the path uwvivevzs;jvg, and set y'(C’) = y(C’) + y(C). From the LP-duality theorem, we
see that @’ and ¢ are optimal solutions to P(7”,w') and D(T”,w’), respectively, with the same
value v} (T') as « and y. By the hypothesis of Theorem 1.5, v (T") is an integer.

e Either i does not exist or 7 = j. In this case, by (3), we see that k exists; that is, vg € p(sk).
Similar to the above case, we can show that either y(vivgsivavy) is a positive integer or v (1)
is an integer. Since the proof goes along the same line (with vgsy; and y(vivgsgvavy) in place of
v1s; and y(v1s;v4v1), respectively), we omit the details here. Hence we may assume that (14)
holds.

We proceed by considering two cases, depending on whether ¢(s;) = {v1} for some i.

Case 1. ¢(s;) = {v1} for some i € {1,2,3}.

By Lemma 5.2(i), we may assume that ¢(s1) = {v1}. Let j and k be subscripts in {1, 2, 3},
if any, such that vz € p(s;) and ve € @(si) (possibly j = k). By (13) and (14), we have

(15) Cg g {1)11)61)37)41)1, V1V6SEV4V1, UgSjU4U6U3, V181U4V1, VgSEU4V6, V1VeV3V1, ?)31)41)61)3}.

Observe that neither sjvq nor vys; is saturated by y in T5, for otherwise, y(visjvqvy) =
w(s1v4) or w(v1s1); both of them are positive, so (1) holds. By Lemma 5.2(iii), z(sjv4) =
w(z1v4) > 0. Thus there exists a cycle C' € Cg containing siv4; subject to this, C' is chosen to
contain vys; if possible. If vis; is outside C, then v1s; is not saturated by y in T. By Lemma
3.5(vil), vqvy is saturated by y in Ty and hence y(vys1v4v1) + y(v1vasKv4v1) + Y(v1V6V3V4V1) =
w(vqvy).

(16) If w(vavy) > 0, then either y(visjv4vy) is a positive integer or v, (T") is an integer.

To justify this, assume y(v1s1v4v1) is not a positive integer. Then at least one of y(vivgsiv4v1)
and y(vivgvsvavy) is positive. Observe that vis; is outside Cg , for otherwise, let D be a cycle
in C§ containing vys1. If y(vivgvsvavy) > 0 then, using D W v1vgvgvav; = visivgvr W D', where
D' = Dlvg,v1] U {v1vg, v6v3, v304}, and applying Lemma 3.5(viii), we deduce that y(D) = 0,
a contradiction. If y(vivgsgvavi) > 0, then a contradiction can be reached similarly. Since
w(v1s1) > 0, we obtain y(visivqvr) > 0. As y(visivqvy) is not integral, at least one of
y(v1veskvav1) and y(vivgvsvavy) is not integral. Let us show that v (7)) is an integer.

We only consider the case when y(v1vgvsvgvr) is not integral, as the proof in the other case
when y(v1vgvgvgavy) = 0 and y(vivesgvavr) > 0 goes along the same line.

Let & be an optimal solution to P(T,w). Since both y(visjv4v1) and y(vivgvzvavy) are
positive, by Lemma 3.1(i), we have z(vis1v4v1) = x(vivevsvavy) = 1. By Lemma 3.1(ii), we
obtain x(v1s1) = 0, because v1s1 is not saturated by y. It follows that x(sjvs) = x(vive) +
z(vev3) + x(vsvs). Observe that there is no cycle D in C§ that contains the path vivgskva,
for otherwise, let # = min{y(D), y(vivevzvav1)}, let D' = Dluvg,v1] U {v1vg, vgvs, v304}, and
let 4y’ be obtained from y by replacing y(D), y(D'), y(v1vgvsvgvy), and y(vivgsgvavy) with
y(D) — 0, y(D') + 0, y(v1vgvsvavy) — 0, and y(vivesgvavr) + 6, respectively. Then y' is also an
optimal solution to D(T,w) with ' (v1vgvsv4v1) < y(v1vevsv4v1), contradicting (7). For any
u € V\(V(Tz)\az), if a cycle in C§ contains uvy, then it passes through vjvgvzvs. Moreover, if
a cycle in C§ contains usy, then it passes through sjv4. By Lemma 3.1(iv), we obtain z(uv1) +
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z(vive) + x(vevs) + x(vsvs) = x(usi) + x(s1va). Hence x(uvi) = z(usi). Clearly, we may
assume that this equality holds in any other situation. Let T = (V/, A’) be obtained from
T by deleting s1, and let w’ be obtained from the restriction of w to A’ by replacing w(e)
with w(e) + w(syvyq) for e € {vyvg, vev3, v3v4} and replacing w(uvy) with w(uvy) + w(usy) for
any u € V\(V(T2)\a2). Let @’ be the restriction of  to A’, and let 3y’ be obtained from y
as follows: set y/(vivgvzvav1) = y(vivevsvavy) + y(visivavy); for each C € C passing through
usivy, let C’ be obtained from C by replacing the path usjvs with the path uvivgvzvy, and
set ¥/(C") = y(C") + y(C). From the LP-duality theorem, we see that @’ and y’ are optimal
solutions to P(7”,w’) and D(T",w’), respectively, with the same value v} (T) as  and y. By
the hypothesis of Theorem 1.5, v (T') is an integer. So (16) follows.

By (16) and Lemma 3.2(iii), we may assume that w(vsv1) = 0 hereafter.

(17) If k exists (so vg € ¢(sg)) and w(vave) > 0, then either y(vesivave) is a positive integer
or v} (T) is an integer.

To justify this, observe first that vgsy, is not saturated by y in 75, for otherwise, y(vgsxv4ve) =
w(vesg) > 0, so (17) holds. Next, sxv4 is not saturated by y in Ts, for otherwise, if j # k,
then y(vesgvave) = w(sgve) > 0; if j = k, then y(vesgvave) + y(v3skvavevs) = w(skvy), and
y(vespvave) = w(vgsg) > 0 by Lemma 3.5(v) provided y(vssivsvgvs) > 0, so (17) also holds.
By Lemma 5.2(iii), syvy is saturated by y in T, so sgv4 is contained in some cycle C' € CJ;
subject to this, C' is chosen to contain wvgsy if possible. Clearly, if vgsi is not on C, then
veSk is not saturated by y in 7. By Lemma 3.5(vii), v4vg is saturated by y in T, and hence
Y(veskvave) + Y(v30406v3) + Y(v35;v4v6v3) = w(V4Vs).

Assume y(veskv4v6) is not a positive integer. Then at least one of y(vzvsvevs) and y(v3s;vavevs)
is positive, say the former. Note that vgsy is outside C§, for otherwise, let D be a cycle in Cf
containing vgsk. Set D' = Dluvg, vg] U {vgvs, v3v4} and 6 = min{y(vsvsvevs), y(C)}. Let y’ be
obtained from y by replacing y(vsvavevs), y(vesivave), y(C), and y(C’) with y(vsvsvevs) — 6,
y(veskvavg) + 6, y(C) — 0, and y(C') + 6, respectively. Then gy’ is also an optimal solution
to D(T,w) with 3/ (vsvsvevs) < y(vsvavevs), contradicting (8). Since w(vgsk) > 0, we have
y(veskvave) > 0. As y(veskvave) is not integral, y(vsvavevs) or y(vssjvavevs) is not integral. If
y(vgsjvavevs) > 0, then vgvy is saturated by y in 75 by Lemma 3.5(v), so y(v3v4v6v3) = w(v3vya).
Hence we may assume that exactly one of y(v3vsvgvs) and y(vss;vavevs) is positive. Let us show
that v (T) is an integer.

We only consider the case when y(vsvivgvs) is not integral, because the proof in the other
case when y(v3vavsv3) = 0 and y(v3s;vivevs) > 0 goes along the same line.

Let & be an optimal solution to P(T', w). Since both y(vesgv4vs) and y(vsvsvevs) are positive,
we have xz(vgspvavg) = x(v3vgvgvs) = 1 by Lemma 3.1(i). Since vgsy is not saturated by y in T,
we obtain x(vesy) = 0 by Lemma 3.1(ii). It follows that x(syvs) = x(vev3) + x(vsvs). For any
u € V\(V(Ty)\az), if a cycle in C contains uvg, then it passes through vgvsvs. Moreover, if a
cycle in C§ contains usy, then it passes through sgvs. By Lemma 3.1(iv), we obtain z(uve) +
x(vevs) + x(v3vg) = x(usk) + x(skvy). Hence z(uvg) = w(usy). Clearly, we may assume that
this equality holds in any other situation. Let 7" = (V’/, A’) be obtained from T by deleting s,
and let w’ be obtained from the restriction of w to A’ by replacing w(e) with w(e) + w(skvs)
for e = vgvs and wvzvy and replacing w(uvg) with w(uve) + w(usy) for any u € V\(V(T2)\az).
Let ' be the restriction of x to A" and let ¢’ be obtained from y as follows: set y/(vsvqvgvs) =
y(v3vavevs) + y(veskvave); for each C' € C§ passing through us;vy, let C” be the cycle arising
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from C' by replacing the path usivs with the path uvgvsvy, and set y' (C") = y(C’) +y(C). From
the LP-duality theorem, we see that ' and y’ are optimal solutions to P(7”, w') and D(T”, w’),
respectively, with the same value v (T") as  and y. By the hypothesis of Theorem 1.5, v (1)
is an integer. So (17) holds.

By (17) and Lemma 3.2(iii), we may assume that if w(vqve) > 0, then k does no exist, and
hence j exists (so v3 € ¢(s;)) by (3).

(18) If w(vaveg) > 0, then at least one of y(vivevsvi), y(v3vavevs), and y(v3s;jvivevs) is a
positive integer.

To justify this, note that neither s;vs nor wzs; is saturated by y in Ty, for otherwise,
y(v3sjvavevs) = w(s;va) or w(vssj); both of them are positive, so (18) holds. By Lemma
5.2(iii), sjvy is saturated by y in T, so sjvs is contained in a cycle C' € C§; subject to this,
C is chosen to contain wzs; if possible. Clearly, if vss; is not on C, then wv3s; is not satu-
rated by y in T. By Lemma 3.5(iii), at least one of vjvg and vgvs is saturated by y in Tb.
Furthermore, by Lemma 3.5(iv), if vgvs is contained in some cycle in C§, then vquvg is satu-
rated by y in Ty. If vave is saturated by y in Tb, then y(vsvavevs) + y(v3s;vavev3) = w(v4vs),
and y(v3vavevs) = w(vsvs) by Lemma 3.5(v) provided y(vssjvsvevz) > 0. So at least one of
y(v3vavev3) and y(v3s;vavev3) is a positive integer, and hence (18) holds. Thus we may assume
that vqvg is not saturated by y in 75, which implies that vgvs saturated by y in T5. It follows that
y(v1v6v301 ) +y(v3v406v3) +y(v35jV406v3) = w(vev3). If w(vevs) = 0, then K = {v4v1, v6v3, V65, }
is an FAS of T with total weight zero, so 7,(T2\a2) = 0, contradicting the hypothesis («) of this
section. Therefore w(vsvs) > 0. If y(vzsjvavgvz) > 0, then y(vsvivevs) = w(vzvs) by (15) and
Lemma 3.5(v). So we may further assume that exactly one of y(vsvsvgvs) and y(vssjvavevs) is
positive, and thus y(vjvgvzvy) > 0.

Let us show that y(vivevsvi) is an integer. Suppose not. Then y(v3vivevs) or y(vss;v4vevs)
is not integral, say the former (the proof in the other case goes along the same line). Since vgvs is
saturated by y in Tb and w(vgs;) = 0, the arc vivg is outside C§. If vgv; is also outside Cf, let y' be
obtained from y by replacing y(vsv4vgvs) and y(vivevsvy) with y(vsvsvevs) —6 and y(vivevzvy) +
0, respectively, where § = min{w(vivg) — z(v1vg), w(v3v1) — z(v3v1), y(vsvavevs)}; if vavy is
contained in some cycle C' € C{, let y' be obtained from y by replacing y(vsvavevs), y(vivevsvr),
y(C), and y(C") with y(vsvavevs) — o, y(vivevsvr) + o, y(C) — o, y(C’) + o, respectively, where
C" = Clvyg, v3]U{vsvs} and o = min{w(v1vg) — z(v1v6), y(C), y(vsvavgvs) }. Tt is easy to see that
in either situation gy’ is also an optimal solution to D(T,w) with y/(vsvsvvs) < y(vsvivevs),
contradicting (8). This proves (18).

By (16)-(18), we may assume that w(v4v1) = w(vavg) = 0. Since each of {v4v1,v4v6, v1U6},
{v4v1, V406, v6v3}, and {v4v1, v4ve, v301} is a minimal FAS of Th\ag,

e = min{w(v1vg), w(vevs), w(vsvy)} > 0

by the hypothesis («) of this section. By Lemma 3.5(vii), we obtain y(vivgvsvi) = € > 0. Thus
(1) is established in the present case.

Case 2. ¢(s;) # {v1} for any ¢ € {1,2,3}.

By the hypothesis of the present case, we may assume that vg € ©(s1), v3s € (s2), and
v € @(s;) for i =1 or 2. By (13) and (14), we have

(19) CY C {v1v6v31, U3V4V6V3, V1VEU3VLV1, VgS1 U4V, V1V6S1 VAV, U3S2V4VEUS, U1 S1U4V1, V1 S2U4V1 }
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and y(v1sjvqvy) =0 for i =1 or 2.

Claim 1. y(C2) = 7y(T2\a2).

To justify this, note that z(s;v4) = w(s;v4) > 0 for ¢ = 1 and 2 by Lemma 5.2(iii). Depending
on the saturation of sjv4 and ssv4, we distinguish among three subcases.

Subcase 1.1. sjv4 is contained in some cycle C € Cé/ . In this subcase, v4vg is saturated
by y in Ty, for otherwise, v4vg is not saturated by y in 7', because it is outside C§. By Lemma
3.5(iii), vgsy is saturated by y in Ts. By (11), we have y(vivgsivqvy) = 0, which together with
(19) implies y(ves1v4v6) = w(vgs1) > 0, so (1) holds. Clearly, v4v; is outside Cj. We proceed
by considering two subsubcases.

Assume first that vqv; is not saturated by y in 75 (and hence in T"). Then, by Lemma 3.5(iii),
v181 and at least one of v1sy and savy are saturated by y in Th. Furthermore, vs9 is outside Cg .
If vy s9 is not saturated by y in T, then y(vssavqvgvs) = 0, for otherwise, let y’ be obtained from
y by replacing y(v1s2v4v1) and y(vssavgvgvs) with y(visavsvy) + 6 and y(vssqvgvgvs) — 6, where
0 = min{w(vqvy) — z(vqv1), w(v182) — z(v182), y(v3savavevs)} > 0. Then y' is also an optimal
solution to D(T', w), contradicting (6). It follows from (19) that y(visqviv1) = w(sgvy) > 0, s0
(1) holds. Thus we may assume that visy is saturated by y in Ts. If vjvg is saturated by y
in Ty, then y(C2) = w(K), where K = {vjvg, v4vg,v181,v182}. By (9), K is an MFAS of Th\as
and hence y(C2) = 7, (T2\az). By Lemma 3.5(iii), vivs is outside Cf, for otherwise, vqv; would
be saturated by y in 75, a contradiction. So we may assume that vivg is not saturated by y
in T. By Lemma 3.5(iii), vgs; is saturated by y in Ts. If vgvs is also saturated by y in T,
then y(Ca) = w(K), where K = {vgvs, vgs1,v151,v152}. So we assume that vgvs is not saturated
by y in T5. By Lemma 3.5(iii), vgvs is outside C. Furthermore, vsvq, vsse, and vzvy are all
saturated by y in T. So y(C2) = w(J), where J = {v3v1, v3v4, V651, V151, V152, v352}. By (9), J
is an MFAS of Ts\ag and hence y(C2) = 7(T2\a2).

Next assume that v4v; is saturated by y in T5. We may assume that vsv; is not saturated by y
in Ty, for otherwise, y(Co) = w(K), where K = {vsv1,v4v1, v4v6}. By (9), K is an MFAS of Th\as
and hence y(C2) = 7,(T2\a2). Thus, by (10), we have y(vivguzvav) = 0. If y(vivgsivav) =0
and vjvg is saturated by y in Th, then y(Co) = w(K), where K = {vjvg,v4v1,v406}. So we
may assume that y(vivgsivav1) > 0 or vivg is not saturated by y in T». Consider the situation
when y(vivgsivavy) > 0. Now, by (11), v1s; is saturated by y in T», and y(vsvivgvs) =
y(v3savgvgus) = 0. Moreover, at least one of vise and squy is saturated by y in T (otherwise,
y(v1s2v4v1) can be made larger). If vivg is saturated by y in T5, then y(Cs) = w(K), where K =
{v1v6, v4v6, V151, V152 } Or {V1VE, V4VE, V181, S2v4}; if v1vg IS not saturated by y in Tb, then vgvs is
saturated by y in 75 by Lemma 3.5(iiv). So y(C2) = w(K), where K = {v4v1, v4v6,v6v3}. By (9),
K is an MFAS of T5\as and hence y(C2) = 7, (T2\a2). So we may assume that y(vivgsivqvy) =0
and vjvg is not saturated by y in 75. By Lemma 3.5(vii), vgvs is saturated by y in Ts. If vgsy
is also saturated by y in Ts, then y(Co) = w(K), where K = {v4v1,v651,v6v3}. So we further
assume that vgs; is not saturated by y in T». We propose to show that

(20) y(vsv4vevs) = y(vssavavevs) = 0.

We only prove that y(vssavsvgvs) = 0, as the proof of the other equality y(vsvivgvs) = 0
goes along the same line. Assume the contrary: y(vssevqvgvs) > 0. Depending on the saturation
of v1vg and v3vy, we consider several possibilities.

e Both vjvg and v3v; are not saturated by y in T'. Define § = min{w(vivg)—z(vivs), w(vsvy)—
z(v3v1), y(v3savavgvs) . Then 6 > 0. Let y’ be obtained from y by replacing y(vssqvsvgvs) and

45



y(v1vgvsvy) with y(vssgvgvgvs) — 0 and y(vivgvsvr) + 6, respectively. Then y' is also an optimal
solution to D(7, w) with y'(vssavsvevs) < y(vzsavavevs), contradicting (6).

e v3vy is not saturated by y in 7' and v1vg is contained in some cycle C' € C§. Since vgus
is saturated by y in 75, cycle C passes through vgsjvs. Thus the multiset sum of the cycles
C, v3s9v4v6v3 and the unsaturated arc vsv; contains arc-disjoint cycles vgsivqvg and vivgvsvy.
From Lemma 3.5(vi) we deduce that y(vssqvsvgvs) = 0, a contradiction.

e vyug s is not saturated by y in 7" and vsv; is contained in some cycle D € C§. It is clear
that D passes through vys;v4 for ¢ = 1 or 2. Furthermore, the multiset sum of D, vgsovvgvs, and
the unsaturated arc v1vg contains arc-disjoint cycles vivgvsvy and D' = Dlvg, v3] U {v3sa, Sov4}.
Define 6 = min{y(D), y(vssevivevs), w(vive) — z(vive) }. Let y' be obtained from y by replacing
y(D), y(D’), y(vssovsvgvs), and y(vivgvsvr) with y(D) — 6, y(D') + 0, y(vssavsvgvs) — 6, and
y(v1vgvsv1 )+0, respectively. Then gy is also an optimal solution to D(T', w) with 3/ (v3savavevs) <
y(v3s2v4v6v3), contradicting (6).

e v1vg and v3v; are contained in some cycles C' and D in Cg , respectively. If vzv; is on
C, then the multiset sum of C' and v3ssv4v6vs contains arc-disjoint cycles vivgusvy, V6510406,
and C' = Clug,v3] U {vssa, sovs}; if vgvy is outside C, then the multiset sum of C, D, and
V382040603 contains arc-disjoint cycles v1vgvsvy, vs1v4v6, C' = Clug, v1] U {v18;, s;u4} for i =1
or 2, and D' = Dlvy,vs] U {v3sa, sov4}. In either situation from the optimality of y we deduce
that y(vssqvqvgvs) = 0.

Combining the above observations, we see that (20) holds. Thus y(C2) = w(K), where
K = {v4v1,v4v6,v6v3}. By (9), K is an MFAS of T5\ay and hence y(Co) = 7, (T2\a2).

Subcase 1.2. sjv4 is saturated by y in T and ssvy4 is contained in some cycle C' € Cg ;
subject to this, C' is chosen to contain wsso if possible. In this subcase, observe first that
both v1s1 and vgs; are outside Cg. Next, vgsq is not saturated by y in Th, for otherwise,
y(vgsavgvevs) = w(vgse) > 0, so (1) holds. If both vgvs and vise are saturated by y in b,
then y(Co) = w(K), where K = {sjv4,v182,v6v3}. By (9), K is an MFAS of T5\as and hence
y(C2) = (T2 \a2). We proceed by considering two subsubcases.

(a) vevs is not saturated by y in Tp. Now wv4vg is saturated by y in 7o by Lemma 3.5(iii).

Assume first that vqv; is not saturated by y in 1. Then both vivg and vise are saturated
by y in Tb by Lemma 3.5(iii). If v1s; is also saturated by y in Tb, then y(C3) = w(K), where
K = {vivg,v4v6,v151,v182}; otherwise, v1s; is not saturated by y in 7. By (11), we have
y(vivesivgavy) = 0. Let us show that

(21) y(vesivavg) = 0.

Indeed, if vgvs is not saturated by y in T, then the multiset sum of the cycles C', vgsiv4vs,
and the unsaturated arcs vqv1, v181, and vgvs (or vsse if it is outside C') contains arc-disjoint
cycles vis1v4v1 and v3sqvgvgvs. Thus, by Lemma 3.5(vi), we have y(vgsivavg) = 0. If vgus is
contained in some cycle C' € C§, then C contains vsvs or v3se. Thus the multiset sum of cycles
C, vgsivavg, and the unsaturated arcs vqv; and vys; contains arc-disjoint cycles vysjvqv; and
one of v3v vgvs and v3sov vgvs. Thus, by Lemma 3.5(vi), we have y(vgsivqvg) = 0. This proves
(21).

It follows from (19) and (21) that y(visivsv1) = w(sjve) > 0, so (1) holds. Thus we may
assume that vqv; is saturated by y in T (and hence in T3). Then we may further assume that
v3v1 is not saturated by y in Ty, for otherwise, y(Co) = w(K), where K = {v4v1, v4v6, v301 }.
Thus y(Ca) = 7w (T2\a2). By Lemma 3.5(vii), v1vg is saturated by y in T and hence, by (10),
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we have y(vivgvgvgvr) = 0. Let us show that

(22) y(vivgsivgvy) = 0.

To justify this, we consider four possibilities, depending on the saturation of vgvs and v3v;.

e Both vgvs and vsvy are saturated by y in T'. Now define = min{w(vgv3)—z(vev3), w(vsvy)—
z(vsv1),y(vivesivavr)}. Then 0 > 0. Let y’ be obtained from y by replacing y(vivsvsvy) and
y(v1vgs104v1) With y(vivgvzvr )46 and y(vivgsivavy ) — 0, respectively. Then y' is also an optimal
solution to D(7T, w) with y'(v1vgs1v4v1) < y(vives1v4v1), contradicting (6).

e v3v; is not saturated by y in 7" and vgvs is contained in some cycle C' € C§. Now the multiset
sum of the cycles C, vivgsivqvy and the unsaturated arc vsvy contains arc-disjoint cycles v vgv3vy
and C' = Clvy, vg) U{vgs1, s1v4}. Define § = min{w(vsv1) — z(vsv1), y(C), y(vivgsivavy) }. Then
6 > 0. Let y’ be obtained from y by replacing y(v1vgs1v4v1), y(v1v6v3v1), y(C), and y(C’) with
y(vivgsivgvy) — 0, y(vivgvsvr) + 6, y(C) — 0, and y(C’) + 6, respectively. Then y’ is also an
optimal solution to D(T,w) with ¢ (vivgs1v4v1) < y(vivesiv4v1), contradicting (6).

e ugvs3 is not saturated by y in 7' and vsv; is contained in some cycle D € CJ. Now D passes
through v1s9v4. Since the multiset sum of the cycles D, vivgsivgv1, and the unsaturated arc vgus
contains arc-disjoint cycles vjvgvzvy and vy sav4v1, by Lemma 3.5(vi), we have y(vivgsivavr) = 0,
a contradiction.

e vgus and v3v; are contained in some cycles C' and D in C, respectively. Now if v3v; is on
C, then the multiset sum of the cycles C' and vivgsiv4v1 contains arc-disjoint cycles vyvgvsvy,
v1savgvy, and C' = Clug, vg] U {vgs1, s1v4}; otherwise, the multiset sum of the cycles C, D,
and vyvgs1v4v1 contains arc-disjoint cycles v1vgvsvy, V1820401, and C' = Clug, vg] U {vgs1, $104},
and D' = Dlvy,v3] U Clvs,v4]. In each situation from the optimality of y we deduce that
y(vivesivgvy) = 0.

Combining the above observations, we see that (22) holds. Thus y(C3) = w(K), where
K = {U41)1,1)4U6,1}11}6}. By (9), K is an MFAS of TQ\CLQ and hence y(CQ) = Tw(TQ\ag).

(b) vgvs is saturated by y in T. Now v1s2 is not saturated by y in T5. By Lemma 3.5(vii),
vqvy is saturated by y in Th. Since z(v1s2) > 0, by Lemma 5.2(vii), we have z(v1s1) = 0.
Furthermore, we may assume that y(vivgvsvsvy) = 0, for otherwise, both v3vy and v4vg saturated
by y in Ty by (10). Hence y(C2) = w(K), where K = {vqv1, v4vg,v301}. If y(vivgsivgvy) = 0,
then y(C2) = w(K), where K = {vqv1,v6v3, s1v4}; if y(vivgsivgvr) > 0 then, by (11), vqvg is
saturated by y in T5, and either v3v; is saturated by y in Ts or y(vsvavevs) = y(vssavavgvs) = 0.
Thus y(C2) = w(J), where J = {vqv1,v4v6,v301} or {v4v1,v4v6, v6v3}. Therefore y(Co) =
Tw(T2\a2).

Subcase 1.3. s;v4 is saturated by y in 15 for ¢ = 1 and 2. In this subcase, since Cg # 0,
v3vy4 is contained in some cycle in C§. By (12), we have y(vssovsvgvs) = 0. Thus y(visovgvr) =
w(s2v4) > 0 and (1) holds. This completes the proof of Claim 1.

Claim 2. y(C) is a positive integer for some C' € CY or v};(T) is an integer.

To justify this, note that y(C2) = w(K) for some MFAS K of Tb\az by Claim 1. From
the proof of Claim 1, we see that K has ten possibilities. So we proceed by considering them
accordingly.

Subcase 2.1. K is one of {v1vg, v4v6, V151, S2v4}, {v4v1, V63, V6S1}, and {vav1, VU3, S1V4}.

In this subcase, by (15) and (19), we have y(visav4v1) = w(sgvg) > 0 if K = {vyvg, v4vg, v151,
sou4}, Y(vgsivavg) = w(vgsy) > 0 if K = {vgv1, v6v3,v651}, and y(vesivavg) = w(sivg) > 0 if
K = {v4v1,v6v3, 5104}, as desired.
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Subcase 2.2. K = {v3v1,v3v4, V651, V151, V152, V352 }.

In this subcase, by (15) and (19), we have y(vgsiv4vs) + y(vivesivavi) = w(vgsy) > 0 and
y(v3v40603) +y(v106v3V4v1 ) = w(v3vy). So we may assume that y(vivgsivavy) > 0, for otherwise,
y(vesivavg) = w(vgsy) > 0. It follows from Lemma 3.5(v) that vyvg is saturated by y in Tb.
If y(vivevgvavy) > 0, then y(vgsivavg) = 0 by (10), and hence y(vivgsivivi) = w(vesy) > 0;
if y(vivevsvavr) = 0, then y(vsvavevs) = w(vsve) and so y(ves1vavs) = w(vavs) — Y(V3V4V6V3).
Since w(vgs1) > 0, at least one of y(vesivavs) and y(vivgsivavy) is a positive integer.

Subcase 2.3. K = {vgv3, vgs1,v151, 0182} or {vgvs, S104,0V182}.

In this subcase, we only consider the situation when K = {vgvs, s1v4,v152}, as the proof in
the other situation goes along the same line.

Given the arcs in K, we have y(v1s2v4v1) = w(v152), y(v1510401)+y(ve510406 ) +y(v106S1V401)
= w(s1vg) > 0, and y(v1vevzv1) + y(v3v4v6v3) + y(v1v6v3V4V1) + Y(v3520406v3) = w(vevs). If
y(vivevsvgvy) > 0, then y(vgsivavg) = 0 by (10). Thus y(visiv4v1) + y(v1ves1v4) = w(S104).
If y(vivesivavy) > 0, then one more equality y(visjvavi) = w(vysy) holds by (11). Since
w(s1vg) > 0, at least one of y(vis1v4v1) and y(vivgsivavy) is a positive integer. So we assume
that y(vivgvsvavr) = 0 in the following discussion.

Assume first that y(vivgsivqvy) > 0. Then y(visivgvr) = w(visy) and y(vesivave) +
y(vsvgveus) + y(vssavgvgus) = w(vgvg) by (11). If y(vsvavgvs) = y(vssavavgvs) = 0, then
y(ves1v4ve) = w(vave), and hence y(vivesivavi) = w(s1v4) — y(vis1v4v1) — y(ves1v4ve). Since
w(s1vg) > 0, at least one of y(vy1s1v4v1), y(ves1v4ve), and y(vivesivavy) is a positive integer. So
we assume that y(vsvsvevs) or y(v3sqvavgvs) is positive. By (11), we have y(vivgvzvy) = w(vsvy);
by (12), one more equality y(v3vivevs) = w(vzvy) holds if y(vssevivgvs) > 0. Thus y(vesiv4ve),
y(v1vS10401 ), Y(v3v4v6v3), and y(vssavavevs) are all integers.

Assume next that y(vivgsivgvy) = 0. Then y(visivgvr) + y(vesivavg) = w(sivg). If
y(v3sgvgvgvs) > 0, then y(vevsvave) = w(vzvy) by (12), so y(vivevszvi) + y(v3savavers) =
w(vevs) — w(vzvy); if y(vssavgvevs) = 0, then y(vivgvsvr) + y(vevsvave) = w(vgvs). Since both
v1v6 and vzv; are outside C§, from the choice of y, we deduce that y(vivgvzv1) = min{w(vsvy),
w(vivg)}. This implies that in either situation y(vssqvavgvs) and y(vgvsvavg) are integers. On
the other hand, since both wvsvs and wvgsy are outside C§, by (8), we obtain y(vesivive) =
min{w(vgsy), w(vive) —y(vev3vave) —y(v3S2v4v6v3) }, which is also an integer. Since w(s1v4) > 0,
at least one of y(v1s1v4v1) and y(ves1v4vg) is a positive integer.

Subcase 2.4. K = {vjvg, v4v6, 401 }.

In this subcase, we have y(vivgvsvy) = w(v1ve), y(vis1v4v1) + y(v1s2v4v1) = w(vgvy), and
y(v3v406v3) + Y(ves1v406) + y(v3S2v4v6v3) = w(vave). By Lemma 3.2(iii) and Lemma 5.2(vi),
we may assume that w(vivg) = w(vqv1) = 0 and thus w(vgvg) = w(K) > 0. If y(vssqvgvgvs) >
0, then y(vsvivevs) = w(vsva) by (12), and thus we may assume that w(vsvs) = 0. Hence
Y(v3v4v6v3) + Y(ves1v4v6) = w(vave) or y(ves1v4ve) + y(v3savavevs) = w(vave). If y(vesivive)
is an integer, then one of y(vsvivevs), y(ves1v4v6), and y(vesevavevs) is a positive integer. So
we assume that y(vesivave) is not integral. Then we can prove that v (T) is an integer; for a
proof, see the argument of the same statement contained in the proof of (17) (with y(vgsiv4ve)
in place of y(vgs;v4vg)).

Subcase 2.5. K = {vjvg, v406, V151, V152}.

In this subcase, we have y(visjvqv1) = w(vis1), y(visovavy) = w(vise), y(vivevsvy) +
y(v1vgv3v4v1) + y(v1ivesivav1) = w(vive), and y(vsvavevs) + y(ves1vave) + y(v3savaveus) =
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w(v4v). By Lemma 3.2(iii), we may assume that w(vis1) = w(vis2) = 0.

Assume first that y(vivgvsvgvr) > 0. Then y(vgsivavg) = 0 and y(vivgvsv) = w(vsvy) by
(10). So y(vsvaveus) + y(vssavavevs) = w(vave). By (12), one more equality y(vzvivevs) =
w(vsvy) holds if y(vssavgvgvs) > 0. So both y(vzvgvgvs) and y(vssavsvgvs) are integers. By
Lemma 3.2(iii), we may assume that w(vsv1) and w(v4ve) are both zero. Thus y(vivevsvavy) +
y(v1ves1v4v1) = w(vivg) > 0. By Lemma 3.2(iii), we may assume that neither y(vivgvsvivy)
nor y(vivesivavr) is integral. Observe that vgsy is outside Cf, for otherwise, let C' € C§ be
a cycle containing vgs;. Then C contains sjvy. Let C' = Cloy, vg] U {vgvs, v3v4} and 6 =
min{y(C), y(v1vgvsvav1)}. Let y’ be obtained from y by replacing y(vivgvzvavy ), y(v1ves10v401),
y(C), and y(C") with y(vivevzvavy) — 0, y(vivesivavy) + 6, y(C) — 0, and y(C”") + 0, respectively.
Then y’ is also an optimal solution to D(7, w) with ¢ (v1vgv3v4v1) < y(v1vev3V4v1), contradicting
(7). Let us show that v (T) is an integer.

For this purpose, let & be an optimal solution to P(7T,w). Since both y(vivgsivsv1) and
y(vivevgvgvy) are positive, we have z(vivgs1v4v1) = x(vivgv3vgvy) = 1 by Lemma 3.1(i). So
x(ves1)+x(s1v4) = x(vgv3)+x(v3v4). Since y(v1v6s1v4v1) < w(veS1), by Lemma 3.1(ii), we have
x(vgs1) = 0, which implies x(s1v4) = z(vev3) + x(vsvy). For any u € V\(V(T2)\a2), if a cycle in
C§ contains uvg, then it passes through vgvsvs. Moreover, if a cycle in C§ contains us, then it
passes through sjvs. By Lemma 3.1(iv), we obtain x(uvg) +x(vevs) +x(vsvg) = x(usy)+x(s1v4).
Hence z(uvg) = z(usy). Clearly, we may assume that this equality holds in any other situation.
Let 77 = (V', A’) be obtained from T by deleting vertex s1, and let w’ be obtained from the
restriction of w to A’ by setting w'(uvg) = w(uve) + w(usy) for any u € V\(V(Tz)\az). Let
be the restriction of  to A’ and let 4’ be obtained from y as follows: for each cycle C passing
through usjvy with u € V\(V(T2)\az), let C’ arise from C by replacing the path usjvy with
uvgusvy, and set 3 (C7) = y(C) + y(C") and y' (vivevzvavy) = y(vivev3vav1) + Yy(vives1vavy). Tt
is easy to see that @’ and ¢’ are optimal solutions to P(7”,w') and D(T”, w’), respectively, with
the same value v (T") as @ and y. By the hypothesis of Theorem 1.5, v (T) is an integer.

Assume next that y(vivgvsvavi) = 0. Then both y(vivevsvr) and y(vivesivavy) are inte-
gers, for otherwise, neither of them is integral, because their sum is w(vyvg). If y(vsvgvgvs) or
y(v3sav4v6v3) is positive, then y(vivguzvr) = w(vsvy) by (11), a contradiction. So y(vsvavevs) =
y(vgsavgvevs) = 0. Since vyvg is saturated by y in To, the arc vsv; is outside Cg. If vgvy is is
saturated by y in Th, then y(vivgvsvi) = w(vsvy); this contradiction implies that vsvy is not
saturated by y in 75 (and hence in T'). If vgvs is outside C§, then from the choice of y we
see that y(vivgvsvr) = min{w(vevs), w(vsv1)}, a contradiction again. So we assume that vgvs
is contained in some cycle C' € C§. Define § = min{w(vsv1) — z(vsv1),y(C), y(vivesivave)}.
Let C" = Clvg,v6] U {vgs1,s1v4}, and let y’ be obtained from y by replacing y(vivgvsvy),
y(vivesivavr), y(C), and y(C') with y(vivgvsvr) + 0, y(vivesivgvr) — 0, y(C) — 0, y(C') + 0,
respectively. Then y is also an optimal solution to D(T', w) with 3/ (v1vgs1v4v1) < y(v1ve81V401),
contradicting (6). By Lemma 3.2(iii), we may assume w(v1vg) = 0. Thus z(v4v1) = w(vgvy) = 0;
the remainder of the proof is exactly the same as that in the preceding subcase.

Subcase 2.6. K = {vqv1,v406, v6U3}.

In this subcase, we have y(vivgvsvy) = w(vgvs), y(vesi1vave) = w(vavg), and y(visivavy) +
y(v1820401) + y(vivesivav1) = w(vgvy). Since w(K) = 7,(To\a2) > 0, we have w(vqvy) > 0.
By Lemma 5.2(vi), y(visivav1) or y(visgvsavy) is zero. By Lemma 3.2(iii), we may assume
that w(vevs) = w(vavg) = 0 and y(vivgsivavy) > 0. So y(visivavy) = w(visy) by (11). By
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Lemma 3.2(iii), we may further assume that w(vis;) = 0. Thus y(visav4v1) + y(vivgs1v4v1) =
w(vqv1), and hence neither y(visqvgvy) nor y(vivesivavr) is integral. Observe that wvysg is
outside Cé’ , for otherwise, let C' € Cg be a cycle containing v1s3. Then C' contains sovy. Let
C" = Clug, 1] U{v1v6, 0651, s1v4} and 6 = min{y(C), y(vivesivsv1)}. Let y' be obtained from y
by replacing y(vis2v4v1), y(vivesivavi), y(C), and y(C”) with y(visavav) +0, y(vivesivav) —0,
y(C) — 0, and y(C") + 0, respectively. Then gy’ is also an optimal solution to D(T,w) with
Y (11v6510401) < y(v1ves1v4v1 ), contradicting (6). Furthermore, since w(vys1) = 0, the arc vsv;
is also outside C§. Thus w(vsvi) = z(vsv1) = 0. Let us show that v%(T) is an integer.

For this purpose, let & be an optimal solution to P(T,w). Since both y(visqvsv1) and
y(v1ves1v4v1) are positive, we have z(v1sav4v1) = x(v1vgs1v4v1) = 1 by Lemma 3.1(i). Since
y(v1savgv1) < w(vys2), we have x(vise) = 0 by Lemma 3.1(ii). It follows that z(sqv4) =
z(v1v6) + 2 (v651) +x(s1v4). Since w(v1s1) = 0 and vysy is outside C§, for any u € V\(V(T2)\az),
if a cycle in C§ contains wwvy, then it passes through v1vgsivs. Moreover, if a cycle in C§ contains
usg, then it passes through spvs. By Lemma 3.1(iv), we obtain z(uvi) + x(vive) + x(ve, s1) +
x(s1v4) = x(usa) + x(sovy). Hence x(uvi) = x(usz). Clearly, we may assume that this equality
holds in any other situation. Let 7" = (V’/, A’) be obtained from T by deleting s5, and let w’
be the restriction of w to A’ by replacing w(e) with w(e) + w(sqvy) for e € {vivg, v6s1, 5104},
replacing w(uvy) with w(uvy) + w(usg) for any u € V\(V(T2)\az2), and replacing w(vsv;) with
w(vzvy) + w(vsse). Let @’ be obtained from @ by setting z(vsvi) = x(v3s2). Since w(vsvy) =0
and w'(v3v1) = w(vzsy), we have (w')Tx’ = wlx. Let y’ be obtained from y as follows: set
Y (v1v65104v1) = y(v1v6s104v1 ) +y(v1520401); for each C' € Cf passing through usavy, let C” arise
from C' by replacing the path usovs with the path wwvivgsivg, and set /' (C') = y(C') + y(C).
From the LP-duality theorem, we see that ' and vy’ are optimal solutions to P(7”,w’) and
D(T",w’), respectively, with the same value v (T) as  and y. By the hypothesis of Theorem
1.5, v;(T) is an integer.

Subcase 2.7. K = {vqv1,v4v6,v301 }.

In this subcase, we have y(vivgv3v1) = w(vsvy), y(visivavr) + y(visavav) + y(vivesivavy) +
y(vivevzvavy) = w(vgvr), and y(ves1v4ve) + y(v3v4v6v3) + Y(v3S204v6v3) = w(v4v6). By Lemma
3.2(iii), we may assume that w(vzvy) = 0.

Assume first that y(vivevgvgvy) > 0. Then y(vgsivavg) = 0 by (10). If y(vssavgvgvs) > 0,
then y(vsvgvgvs) = w(vsvy) by (12); otherwise, y(vsvivgvs) = w(vavg). So both y(vsvivevs)
and y(v3sevavgvs) are integers in either situation. Thus we may assume that w(vqvg) = 0. The
remainder of the proof is exactly the same as that of (16).

Assume next that y(vivgvsvgv;) = 0. Consider first the subsubcase when w(vqv1) = 0.
Then w(vqvg) = w(K) > 0. If y(vssavgvgus) > 0, then y(vsvgvgvs) = w(vsvg) by (12), so
y(ves1v4v6) + y(v3sovavevs) = w(vgve) — w(vsvy); if y(vssavgvevs) = 0, then y(vesivave) +
y(v3vgvev3) = w(vavg). It can be shown that v (T') is an integer; for a proof, see the argument
of the same statement contained in the proof of (17).

Consider next the subsubcase when w(vqv;) > 0. Observe that y(vivgsivavy) > 0 and
y(v3sqvgvgus) = 0, for otherwise, since w(visy)w(vise) = 0 by Lemma 5.2(vi), at most one of
y(v1s1v4v1) and y(v1sev4v1) is positive. Hence, if y(vivgsivgavy) = 0, then either y(visivqv1) =
w(vgvy) or y(visavgvr) = w(vgvy); if y(vivesivavr) > 0 and y(vssevgvgvs) > 0, then, by (11),
we have y(v1s1v4v1) = w(v181), Y(v1S2v4v1) = w(v182). So Y(v1ves1v4v1) = w(v4v1) —w(v181) —
w(v1s2). By Lemma 3.2(iii), we see that v (T") is an integer. The preceding observation together
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with (11) implies that y(visivav1) = w(vys1), y(vis2v4v1) + y(v1veS$104v1) = w(vavy) — w(V151),
and y(vgs1v4v6) + y(v3vav6v3) = w(v4vg). Lemma 3.2(iii) allows us to assume that w(vis1) =0
and that neither y(v1s2vsv1) nor y(vivesivavy) is integral.

It can then be shown that v1sq is outside C§ and v};(T) is an integer; for a proof, see the
argument of the same statement contained in the preceding case.

Combining the above seven subcases, we see that Claim 2 holds. Hence, by Lemma 3.2(iii),
the optimal value v (T') of D(T,w) is integral, as described in (1) above. 1

To establish the corresponding lemmas for the cases when T»/S € {G4,G5,Gg}, we need
some further preparations.

Lemma 5.10. IfT5/S € {G5,Gg}, then we may assume that min{w(viv3), w(vavy), w(vavy)} =
0.

Proof. Let § = min{w(viv3), w(vsvy), w(vgv1)} and Cy = vivgvgv;. Assume the contrary:
6 > 0. Let y be an optimal solution to D(7T,w) such that

(1) y(C2) is maximized; and

(2) subject to (1), (y(Dyq),y(Dy-1),...,y(D3)) is minimized lexicographically.

Let C4 = C2\{Cp}. Note that every cycle in C) passes through b. By Lemma 3.5(vii), at least
one of v1v3, v3vy, and vqvy is saturated by y in Tb, say vivs (by symmetry). Thus w(vivs) = 6.
We propose to show that

(3) there is no cycle C' € C4 with y(C) > 0 passing through vvs.

Assume the contrary: vjvs is contained in some cycle Cy € C) with y(Cy) > 0. Clearly, |C1| >
4. If neither vsvy nor vqv is saturated by y in T, then 0; = min{w(vsvy) — z(vsv4), w(v4vy) —
z(vqv1)} > 0. Let y’ be obtained from y by replacing y(C1) and y(Cp) with y(C1) — 61 and
y(Co) + 61, respectively. Then gy’ is an optimal solution to D(T,w) with /'(C1) < y(C1),
contradicting (2). Thus at least one of vsvy and wvqvq is saturated by y in T. We proceed by
considering two cases.

e Both vszvy and vyvy are saturated by y in 7. In this case, let Cy € C§ UCh be a cycle
containing vsvs with y(Cs) > 0; subject to this, Cy is chosen to contain wvsv;, if possible.
If vqv1 is on Cy, then the multiset sum of C'y and C9 contains three arc-disjoint cycles Cy,
Cf = {bv1} U Caluy,b], and C) = Cylb, vs] U C1[vs, b]. Define € = min{y(C1),y(Cs)}. Let y’ be
obtained from y by replacing y(Cp) with y(Cp) + €, and replacing y(C;) and y(C}) with y(C;) —e
and y(C!) +¢, respectively, for i = 1,2. Then y’ is an optimal solution to D(T, w) with (y")7'1 =
yT'1 + €, a contradiction. If vyv; is outside Cy, then there exists a cycle C3 € C§ UCh containing
vqv with y(C3) > 0. Observe that the multiset sum of C1, Cs, and Cs contains four arc-disjoint
cycles Cy, Ci = {bv1} U 03[1)1, b], Cé = Cg[b, U3] uCh [Ug, b], and Cé = Cg[b,md @] CQ[U4, b] Define
€ = minj<;<3y(C;). Let y’ be obtained from y by replacing y(Cp) with y(Cp) + €, and replacing
y(C;) and y(C!) with y(C;) — e and y(C) + ¢, respectively, for 1 <i < 3. Then ¥y’ is an optimal
solution to D(T, w) with (y’)71 = y’1 + ¢, a contradiction again.

e Exactly one of vgvy and vqv; is saturated by y in 7. In this case, by symmetry, we may
assume that vsvy is saturated while vqv is not. Let Cy € Cg U C) be a cycle containing vsvy
with y(C2) > 0. Then the multiset sum of Cy, Co, and the unsaturated arc vqv; contains two
arc-disjoint cycles Cy and C% = Ca[b, v3] U C1[vs,b]. Clearly, C4 € Ch if Cy € C5. Define € =
min{y(C1), y(Ca), w(v4vy)—z(v4v1)}. Let y' be obtained from y by replacing y(Cp) with y(Cp)+
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¢, replacing y(C1) with y(C1) — €, and replacing y(C2) and y(C5) with y(C2) — € and y(CY) + €,
respectively. Then vy’ is an optimal solution to D(7, w) with ¢'(C1) < y(C1), contradicting (2).

Combining the above two cases, we see that (3) holds. So y(Cp) = 6 > 0, and hence D(T', w)
has an integral optimal solution by Lemma 3.2(iii). This proves the lemma. |

Let Q = V(TQ)\(SU{bQ,GQ}). Then Q = {’Ug,’Ug} ing/S = G4, Q = {’Ul, ’U3,’U4} ing/S = G5,
and Q = {v1,v2,v3,v4} if To/S = Gg. Moreover, vivsvavy is the unique cycle in T[Q] when
T2/S = G5 or Gg. Let T = T if Ty /S = Gy, and let T be obtained from T be reversing precisely
one arc e on v1v3v4v; with w(e) = 0 (see Lemma 5.9) so that T'[Q)] is acyclic if T5/S = G5 and Gé.
From Lemma 2.3 we see that T” is also Mobius-free. Note that every integral optimal solution to
D(T,w) naturally corresponds to an integral optimal solution to D(7”, w) with the same value,
and vice versa. So we shall not make effort to distinguish between D(7', w) and D(T”, w). Let
us label the vertices in Q as ¢1, g2, - .., g: such that g;jg; is an arc in 7" for 1 < i < j < ¢, where

t=1Ql.

Lemma 5.11. Suppose T»/S € {G4,G5,Gs}. Let © and y be optimal solutions to P(T,w) and
D(T, w), respectively. Then we may assume that the following statements hold:

(i) For each q; € Q, there exists exactly one s, € S such that z(q;s;) > 0;
(ii) 2(q5q:) = w(qjq:) =0 for 1 <i < j <t, where t =|Q);
(i) If z(qisk)z(gjsk) > 0 for some 1 <i < j<tandsy €S, then x(qisi) # x(qg;sk).

Proof. As remarked above the lemma, we may simply treat T, P(T,w), and D(T,w) as T’
and P(T",w), and D(T', w), respectively, in our proof.

(i) By Lemma 5.2(vi), for each vertex g; € @, there exists at most one s; € S with z(g;si) > 0.
Assume on the contrary that z(g;si) = 0 for all s € S. Then no cycle in CY passes through ¢;.
Let G = T\¢; and let w’ be the restriction of w to the arcs of G. By the hypothesis of Theorem
1.5, D(G,w’) has an integral optimal solution, and so does D(T”,w). Hence we assume that (i)
holds.

(ii) Assume the contrary: z(gjg;) > 0; subject to this, j + ¢ is minimized. If there exists
exactly one s, € S such that z(g;si)z(gjsk) > 0, then the proof is the same as that of Lemma
5.2(i) (with sy, ¢;, and ¢; in place of vy, s;, and sj, respectively), so we omit the details here. In
view of Lemma 5.2(i), we may assume that z(g;s1)z(gjs2) > 0. We proceed by considering two
cases.

Case 1. x(gj¢;) = 0. In this case, we may assume that z(ug;) = z(ug;) for any u € V\(SUQ).
Indeed, if z(ug;)z(ug;) > 0, then Lemma 3.1(iv) implies z(ug;) = z(ug;); if z(ug;)z(ug;) = 0,
then w(us;)w(us}) = 0 by Lemma 3.2(i). Thus we may modify x(ug;) and x(ug;) so that they
become equal. Let 77 = (V’, A’) be obtained from T by identifying ¢; with ¢;; we still use g
to denote the resulting vertex. Let w’ be obtained from the restriction of w to A’ by replacing
w(ug;) with w(ug;) + w(ug;) for any u € V\(SU Q). Let ' and y' be the projections of x
and y onto T”, respectively. From the LP-duality theorem, it is easy to see that ' and vy’ are
optimal solutions to P(T,w’) and D(T,w’), respectively, with the same value as « and y. By
the hypothesis of Theorem 1.5, v (T') is an integer. It follows from Lemma 3.4(ii) that D(T, w)
has an integral optimal solution.

Case 2. x(qjq;) > 0. In this case, 2(¢j¢;) = w(gjq;) > 0 by Lemma 3.1(iii). Let C; and Cs
be two cycles in C¥ that passes through ¢;¢; and g;s2, respectively. Clearly, both C1 and C5 pass
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through b. By Lemma 3.1(iv), we have x(g;q;) + z(gis1) + z(s1b) = z(g;s2) + x(s2b). Let w’ be
obtained from w by replacing w(e;) with w(e1) + w(g;q;) for e1 = gjs2 and s2b and replacing
w(ez) with w(ez) — w(g;q;) for ea = q;qi, gis1, and s1b. Let &’ = x, and let y’ be obtained from
y as follows: for each cycle passing through g¢;¢;, let C’ be the cycle arising from C by replacing
the path ¢;jg;s1b with gjs2b. From the LP-duality theorem, we see that ' and y’ are optimal
solutions to P(T,w’) and D(T,w’), respectively, with the same value v (T) as « and y. Since
w'(A) < w(A), by the hypothesis of Theorem 1.5, v} (T') is an integer. It follows from Lemma
3.4(ii) that D(7, w) has an integral optimal solution.

Combining the above two cases, we may assume that z(g;g;) = 0.

(iii) Since the proof is the same as that of Lemma 5.2(iv) (with s, ¢;, and ¢; in place of vy,
si, and sj, respectively), we omit the routine details here. |

Lemma 5.12. IfT5/S = G4, then D(T,w) has an integral optimal solution.

Proof. Recall that (b, a2) = (v1,v5), s* = v4, and Q = {ve,v3}. Given an optimal solution
y to D(T,w), set p(s;) = {u: z(us;) > 0 for u € V(T3)\az} for each s; € S. By Lemma 5.2(i)
and (vi), we have

(1) ¢(s:) Np(sj) = 0 whenever i # j.

From (1) and Lemma 5.10(i), we see that

(2) there exists at least one and at most two vertices s;’s in S with o(s;) # 0.
Lemma 5.2(i) allows us to assume that

(3) if ¢(s;) # 0, then i € {1,2}.

By Lemma 5.10(ii), we obtain

(4) w(vavz) = z(vav3) = 0.

In the remainder of our proof, we reserve y for an optimal solution to D(T,w) such that

(5) y(C2) is maximized; and

(6) subject to (5), (y(Dy),y(Dg-1),--.,y(D3)) is minimized lexicographically.

Claim. y(C) is integral for some C € C§.

To justify this, we distinguish between two cases.

Case 1. ¢(s;) = {ve} for i =1 or 2.

In this case, by Lemma 5.2(i) and Lemma 5.10(i), we may assume that ¢(s;) = {v2} and
©(s2) = {vs}. By (4), we obtain

(7) Cg g {011)281’01,111113821}1}.

From Lemma 3.5(vii), we deduce that y(vivasiv1) = min{w(viva), w(vesy),w(s1v1)} and
y(v1v3sovy) = min{w(vivs), w(vsse), w(sevy)}. If both y(vivesivy) and y(vivssevr) are zero,
then 7, (T5\az2) = min{w(viva), w(vas1), w(s1v1)} + min{w(vivs), w(vsss), w(sev1)} = 0, contra-
dicting («). Therefore, y(vivesivy) or y(vivssavy) is a positive integer.

Case 2. ¢(s;) # {v2}.

In this case, Lemma 5.10(i), (2) and (3) allow us to assume that ¢(s1) = {v2,v3}. By (4),
we have

(8) C§ C {wv1ves1v1, v1U38101 }

By Lemma 5.2(iii), we also obtain z(s1v1) = w(s1v1) > 0. Assume first that sjv; is outside C§.
Then both v9s; and vgs; are outside Cg, and sjvp is saturated by y in Tb. So y(vivesivi) +
y(vivzsiv1) = w(sivy) > 0. Observe that both y(vivesiv1) and y(vivgsivy) are integral, for
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otherwise, 0 < y(vivisiv1) < w(v;sy) for ¢ = 2,3, by Lemma 3.1(i) and (ii), we have x(vas1) =
x(v3s1) = 0, contradicting Lemma 5.9(iii). Hence y(vivas1v1) or y(vivssivy) is a positive integer.

Assume next that sqv is contained in some cycle C' € C§. From Lemma 3.5(vii), we see that
y(v1vis1v1) = min{w(v1v;), w(visy)} fori = 2,3. If y(viv;s1v1) = 0 fori = 2,3, then 7, (T \ag) =
S22 min{w(v1v;), w(vss1)} = 0, contradicting («). Therefore y(vivesivy) or y(vivzsivy) is a
positive integer. So the above Claim is established.

From the above Claim and Lemma 3.2(iii), we conclude that ID(7, w) has an integral optimal
solution. |

Lemma 5.13. If T5/S = G5, then D(T, w) has an integral optimal solution.

Proof. Recall that (be,a2) = (va,v6), s* = vs, and Q = {v1,v3,v4}. Given an optimal
solution y to D(T, w), set p(s;) = {u: z(us;) > 0 for u € V(T3)\az} for each s; € S. By Lemma
5.2(i) and (vi), we have

(1) ¢(si) Np(s;) = 0 whenever i # j.

From (1) and Lemma 5.10(i), we see that

(2) there exists at least one and at most three vertices s;’s in S with ¢(s;) # 0.
Lemma 5.2(i) allows us to assume that

(3) if p(si) # 0, then i € {1,2,3}.

By Lemma 5.10(ii), we obtain

(4) w(e) = z(e) = 0 for e € {viv3, v3V4, V4v] }.

In the remainder of our proof, we reserve y for an optimal solution to (7', w) such that

(5) y(C2) is maximized; and

(6) subject to (5), (y(Dyq),y(Dy-1),...,y(D3)) is minimized lexicographically.

Claim. y(C) is integral for some C € C3.

To justify this, we consider three possible cases (see the structure of Gs), depending on the
size of ¢(s;) for 1 < i < 3.

Case 1. |p(s;)| =1 for each 1 <37 < 3.

In this case, by Lemma 5.10(i), (2) and (3), we may assume that ¢(s1) = {v1}, p(s2) = {vs},
and ¢(s3) = {v4}. By (4), we obtain

(7) Cg g {02’0181’1}2,’021}3821}2, U2’U483’L)2}.

From Lemma 3.5(vii), we deduce that y(vav151v2) = min{w(vav1), w(vis1), w(s1v2)}, y(vavssava)

= min{w(vovs), w(vss2), w(sov2)}, and y(vavyszvy) = min{w(vovy), w(vyess), w(ssve)}. If y(vovisiva),
y(vavsgsevs), and y(vevgszvg) are all zero, then 7,(T\a2) = min{w(vovy), w(visi), w(siva)} +
min{w(vovs), w(vsse), w(save) } +min{w(vevy), w(vess), w(ssvz)} = 0, contradicting (). There-
fore, at least one of y(vov1s1v2), y(vavsseve), and y(vavsssve) is a positive integer.

Case 2. |p(s;)| =1 for exactly one i € {1,2,3}.

In this case, by Lemma 5.10(i), (2) and (3), we may assume that ¢(s1) = {vi}, ¢(s2) =
{vs,v4}. By (4), we have

(8) C?QJ g {112’0181’1)2,’1)21}3821]2, U2U432'U2}.

From Lemma 3.5(vii), we see that y(vav1s1v2) = min{w(vavy ), w(vis1), w(s1v2)}. fy(vavisive) >
0, we are done. So we assume that y(vovisivy) = 0. Since w(visy)w(sivz) > 0, we ob-
tain w(vevy) = min{w(vevy),w(v1s1), w(s1v2)} = 0. By Lemma 5.2(iii), we have z(sqv2) =
w(sav2) > 0.
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Assume first that sqovg is outside C§. Then both vgsy and vsse are outside C§, and sqvo
is saturated by y in Ty. Hence y(vov3sov2) + y(vavgs2v2) = w(save) > 0. Observe that both
y(vou3save) and y(vevsasave) are integral, for otherwise, since 0 < y(vov;sav2) < w(v;se) for
i = 3,4, by Lemma 3.1(i) and (ii), we have x(v3s2) = z(v4s2) = 0, contradicting Lemma 5.9(iii).
Hence both y(vavssave) and y(vavaseva) are positive integers.

Assume next that spvs is contained in some cycle C € C§. From Lemma 3.5(vii), we
see that y(vovisove) = min{w(vev;), w(v;se)} for i = 3,4. If y(vev;savy) = 0 for i = 3,4,
then 7,(Th\a2) = w(vovy) + St min{w(vov;), w(vis2)} = 0, contradicting (a). Therefore
y(vav3sov2) or y(vavaseve) is a positive integer.

Case 3. |p(s;)| # 1 for any i € {1,2,3}.

In this case, by Lemma 5.10(i), (2), and (3), we may assume that ¢(s1) = {v1,v3,v4} (see
the structure of G5). By (4), we obtain

(9) Cg g {02’0181’02,’021}3811}2,U2U481’U2}.

By Lemma 5.2(iii), we have z(sjv2) = w(sjv2) > 0.

Assume first that sjvs is outside Cg. Then v;s1 is outside Cg for each i € {1,3,4}, and s1vs
is saturated by y in T5. So 3 icq1,3.4) y(vau;s1v2) = w(sjve) > 0. Observe that y(vav;siva) is
integral for each i € {1,3,4}, for otherwise, symmetry allows us to assume that y(vovisive)
is not integral. Then y(vovgsive) or y(vavasive) is not integral, say y(vovssiva). Since 0 <
y(vavis1v2) < w(v;sy) for ¢ = 1,3, by Lemma 3.1(i) and (ii), we have z(vis1) = z(v3s1) = 0,
contradicting Lemma 5.9(iii). It follows that y(vov;s1v2) is a positive integer for each i € {1,3,4}.

Assume next that sjvg is contained in some cycle C' € C§. From Lemma 3.5(vii), we de-
duce that y(vev;siva) = min{w(vav;), w(v;s1)} for i € {1,3,4}. If y(vov;siv2) = 0 for each
i € {1,3,4}, then 7,(T2\a2) = Y icq1,3,4) min{w(vav;), w(v;s1)} = 0, contradicting (a). Hence
y(vav;s1v2) is a positive integer for some i € {1,3,4}. This proves the Claim.

From the Claim and Lemma 3.2(iii), we conclude that D(7,w) has an integral optimal
solution. |

Lemma 5.14. If T5/S = Gg, then D(T, w) has an integral optimal solution.

Proof. Recall that (be,as) = (vg,v7), s* = vs, and Q = {v1,v2,v3,v4}. Given an optimal
solution y to D(T, w), set p(s;) = {u: z(us;) > 0 for u € V(T)\az} for each s; € S. By Lemma
5.2(i) and (vi), we have

(1) ¢(si) Np(s;) = 0 whenever i # j.

From (1) and Lemma 5.10(i), we see that

(2) there exists at least one and at most four vertices s;’s in S with ¢(s;) # 0.
Lemma 5.2(i) allows us to assume that

(3) if p(s;) # 0, then 1 < i < 4.

By Lemma 5.10(ii), we obtain

(4) w(e) = z(e) = 0 for e € {viv3, V304, V4V1, V1V2, V3V, V4V }.

In the remainder of our proof, we reserve y for an optimal solution to (7', w) such that

(5) y(C2) is maximized; and

(6) subject to (5), (y(Dyq),y(Dy-1),...,y(D3)) is minimized lexicographically.

Claim. y(C) is integral for some C € C3.

To justify this, we consider five possible cases (see the structure of Gg), depending on the
size of ¢(s;) for 1 < i < 4.
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Case 1. |p(s;)] =1 for each 1 <i < 4.

In this case, by Lemma 5.10(i), (2) and (3), we may assume that ¢(s;) = {v;} for each
1 <i<4. By (4), we obtain

(7) Cg - {126’0181’06, VeUV252V6, V6U3S53V6, U6U4$4U6}.

From Lemma 3.5(vii), we deduce that y(vev;sive) = min{w(vev;), w(v;s;), w(s;ve)} for each 1 <
i < 4. If y(vevisivg) = 0 for 1 < i < 4, then 7, (Th\az) = Y2t min{w(vev;), w(v;s;), w(s;ve)} =
0, contradicting («). Hence y(vgv;s;vg) is a positive integer for some ¢ € {1,2,3,4}.

Case 2. |p(s;)| =1 for exactly one i € {1,2,3,4}.

In this case, by Lemma 5.10(i), (2) and (3), we may assume that ¢(s1) = {vi}, ¢(s2) =
{v2,v3,v4}. By (4), we have

(8) Cg g {UGUISIUG; VeV252V6, VeU3S2V6, ’1)61}4821]6}.

From Lemma 3.5(vii), we see that y(vev151v6) = min{w(vev1), w(visi), w(sive)}. If y(vevis1ve)
> 0, we are done. So we assume that y(vgvisivg) > 0. Since w(vis1)w(sivg) > 0, we obtain
w(vevr) = min{w(vevy ), w(visy),w(s1vs)} = 0. By Lemma 5.2(iii), we have z(sav6) = w(s2vg) >
0.

Assume first that soug is outside C§. Then v;s is outside C§ for i € {2,3,4}, and spv
is saturated by y in Tp. So Y., y(vevisavg) = w(savg) > 0. Observe that y(vev;sque) is
integral for each i € {2,3,4}, for otherwise, symmetry allows us to assume that y(vgvesavg) is
not integral. Then one of y(vgvssavg) and y(vevasavg) is not integral, say y(vgvssavg). Since
0 < y(vevisave) < w(v;s2) for i = 2,3, by Lemma 3.1(i) and (ii), we have z(vase) = z(v3sa) = 0,
contradicting Lemma 5.9(iii). It follows that y(vev;save) is a positive integer for each i € {2,3,4}.

Assume next that sovg is contained in some cycle C' € C§. By Lemma 3.5(vii), we obtain
y(vevisave) = min{w(vev;), w(v;se)} for i € {2,3,4}. If y(vevisavg) = 0 for i € {2,3,4}, then
Tw(To\a2) = w(vev1) + Yo min{w(vev;), w(v;se)} = 0, contradicting («). Hence y(vgv;save) is
a positive integer for some i € {2,3,4}.

Case 3. |p(s;)| = 1 for exactly two ¢’s in {1,2,3,4}.

In this case, by Lemma 5.10(i), (2) and (3), we may assume that ¢(s;) = {v;} for i = 1,2
and ¢(s3) = {vs,v4}. By (4), we obtain

(9) Cg g {7)61)1311)6, VeV252V6, VgVU3S3V6, 1)61)4837)6}.

From Lemma 3.5(vii), we see that y(vevisive) = min{w(vev;), w(vis;), w(s;ve)} for i = 1,2. If
y(vvisivg) > 0, we are done. So we assume that y(vgv;s;vg) = 0. Since w(v;s;)w(s;ve) > 0, we
obtain w(vev;) = min{w(vev;), w(vis;), w(s;ve)} = 0 for i = 1,2. By Lemma 5.2(iii), we have
z(s3v6) = w(szvg) > 0.

Assume first that sgvg is outside Cg . Then v;s3 is outside Cé’ for i = 3,4, and s3vg is saturated
by y in Ts. So y(vevsssve) + y(vevas3vs) = w(ssvg) > 0. Observe that both y(vgvszssvg) and
y(vevaS3ve) are integral, for otherwise, since 0 < y(vev;s3v6) < w(v;s3) for i = 3,4, by Lemma
3.1(i) and (ii), we have z(vss3) = x(vgs3) = 0, contradicting Lemma 5.9(iii). It follows that
y(vev;S3v6) is a positive integer for ¢ = 3, 4.

Assume next that ssvg is contained in some cycle C' € C§. By Lemma 3.5(vii), we obtain
y(vevis3vg) = min{w(vev;), w(v;se)} fori = 3,4. If y(vgv;ssvg) = 0 for i = 3,4, then 7,(To\az) =
S22 w(vew;) + ks min{w(vev; ), w(vis3)} = 0, contradicting (). Hence y(vev;s3vg) is a posi-
tive integer for ¢ = 3 or 4.

Case 4. 1 < |p(s;)| < 4if ¢(s;) #0, for i € {1,2,3,4}.
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In this case, by Lemma 5.10(i), (2) and (3), we may assume that ¢(s;) = {vi,v2} and
©(s2) = {vs,v4}. By (4), we obtain

(10) Cg - {1)61)181116, VeV251V6, VeU3S2V6, U6U4SQUG}.

By Lemma 5.2(iii), we have z(s;v6) = w(s;v) > 0 for i = 1, 2.

Assume first that sjvg is outside Cé’ . Then both vis; and wesy are outside Cg , and s1vg
is saturated by y in Tb. So y(vevisi1vg) + y(vevasivg) = w(sjvg) > 0. Observe that both
y(vev1s1vg) and y(vevasivg) are integral, for otherwise, since 0 < y(vgv;sivg) < w(v;s1) for
i =1,2, by Lemma 3.1(i) and (ii), we have z(v1s1) = x(v2s1) = 0, contradicting Lemma 5.9(iii).
It follows that y(vev;s1vg) is a positive integer for ¢ = 1,2. Similarly, we can show that if sovg
is outside Cf, then y(vev;s2vs) is a positive integer for i = 3, 4.

Assume next that s;vg is contained in some cycle in C§ for i = 1,2. By Lemma 3.5(vii), we
have y(vgv;s1vs) = min{w(vev;), w(v;s1)} for i = 1,2, and y(vev;save) = min{w(vev;), w(v;s2)}
fori = 3,4. If y(vev151v6), y(vev251V6), Y(vev3S2v6) and y(vevasavs) are all zero, then 7, (T2 \az) =
2 min{w(vev;), w(vis1)}+ s min{w(vev;), w(vis2)} = 0, contradicting (). So at least one
of y(vgv181v6), y(vev251v6), Y(vev3s2s), and y(vev4S2v6) is a positive integer.

Case 5. |p(s;)] > 2 if ¢(s;) # 0, for i € {1,2,3,4}.

In this case, by Lemma 5.10(i), (2) and (3), we may assume that ¢(s1) = {v1,v2,v3,v4}. By
(4), we obtain

(11) CY C {wgv151v6, V6v251V6, VgU3S1V6, VgU4S1V6 }-

By Lemma 5.2(iii), we have z(s1vg) = w(sivg) > 0.

Assume first that sjvg is outside C§. Then Z;L:l y(vevisivg) = w(sive). If y(vev;sivg) is a
positive integer for some i € {1,2,3,4}, we are done. So we assume the contrary. Thus at least
two of y(vev151v6), Y(vev251v6), Y(vev351v6), and y(vevasive) are not integral, say y(vgv1sive)
and y(vgvasivg). Since 0 < y(vvis1ve) < w(v;s1) for i = 1,2, by Lemma 3.1 (i) and (ii), we
have z(v1s1) = x(ves1) = 0, contradicting Lemma 5.9(iii).

Assume next that sjvg is contained in some cycle of C§. By Lemma 3.5(vii), we have
y(vevis1vg) = min{w(vev;), w(v;s1)} for 1 < i < 4. If y(vgvisivg) is zero for 1 < i < 4, then
Tw(To\a2) = i min{w(vev;), w(v;s1)} = 0, contradicting (). So y(vev;s1ve) is a positive
integer for some ¢ € {1,2,3,4}. This proves the Claim.

From the above Claim and Lemma 3.2(iii), we conclude that D(7", w) has an integral optimal
solution. |
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