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The purpose of this online appendix is to present proofs of Lemma 4.4 and Lemma 5.6 in
the submitted version of this paper.

4 Basic Reductions

Lemma 4.5. If T2 = F4, then D(T,w) has an integral optimal solution.

Proof. It is routine to check that
• C2 = {v1v2v3v1, v2v3v4v2, v1v5v3v1, v3v4v5v3, v1v2v3v4v1, v1v5v2v3v1, v1v5v3v4v1, v2v3v4v5v2,

v1v5v2v3v4v1} and
• F2 = {{v2v3, v5v3}, {v3v1, v3v4}, {v1v2, v1v5, v3v4}, {v1v5, v2v3, v3v4}, {v1v5, v2v3, v4v5},

{v1v2, v1v5, v4v2, v4v5}, {v1v2, v3v4, v5v2, v5v3}, {v1v2, v4v2, v5v2, v5v3},
{v2v3, v3v1, v4v1, v4v5}, {v3v1, v4v1, v4v2, v4v5}, {v3v1, v4v1, v4v2, v5v2, v5v3}}.

We also have a computer verification of these results. So |C2| = 9 and |F2| = 11. Recall that
(b2, a2) = (v5, v6).

Let y be an optimal solution to D(T,w) such that
(1) y(C2) is maximized;
(2) subject to (1), (y(Dq), y(Dq−1), . . . , y(D3)) is minimized lexicographically;
(3) subject to (1) and (2), y(v1v5v2v3v1) + y(v1v5v3v4v1) is minimized;
(4) subject to (1)-(3), y(v2v3v4v5v2) is minimized;
(5) subject to (1)-(4), y(v1v5v3v1) + y(v3v4v5v3) is minimized; and
(6) subject to (1)-(5), y(v1v5v3v1) is minimized.
Let us make some simple observations about y.
(7) If K ∈ F2 satisfies y(C2) = w(K), then K is an MFAS. (The statement is exactly the

same as (4) in the proof of Lemma 4.3.)
(8) If y(v1v5v2v3v4v1) > 0, then each arc in the set {v1v2, v3v1, v4v2, v4v5, v5v3} is saturated

by y in F4. Furthermore, y(v1v2v3v1) = y(v3v4v5v3) = y(v1v5v3v1) = 0.
To justify this, note that each arc in the given set is a chord of the cycle v1v5v2v3v4v1. So

the first half follows instantly from Lemma 3.5(v). Let ⊎ stand for the multiset sum. Then
v1v5v2v3v4v1 ⊎ v1v2v3v1 = v1v5v2v3v1 ⊎ v1v2v3v4v1, v1v5v2v3v4v1 ⊎ v1v5v3v1 = v1v5v2v3v1 ⊎
v1v5v3v4v1, and v1v5v2v3v4v1⊎v3v4v5v3 = v1v5v3v4v1⊎v2v3v4v5v2. Suppose on the contrary that
y(v1v2v3v1) > 0. Let θ = min{y(v1v5v2v3v4v1), y(v1v2v3v1)} and let y′ be obtained from y by re-
placing y(v1v5v2v3v4v1), y(v1v2v3v1), y(v1v5v2v3v1), and y(v1v2v3v4v1) with y(v1v5v2v3v4v1)−θ,
y(v1v2v3v1)− θ, y(v1v5v2v3v1)+ θ, and y(v1v2v3v4v1)+ θ. Then y′ is also an optimal solution to
D(T,w). Since y′(v1v5v2v3v4v1) < y(v1v5v2v3v4v1), the existence of y′ contradicts the assump-
tion (2) on y. So y(v1v2v3v1) = 0. Similarly, y(v3v4v5v3) = y(v1v5v3v1) = 0.

(9) If y(v1v5v2v3v1) > 0, then v1v2 and v5v3 are saturated by y in F4; so is v4v5 provided
y(v1v2v3v4v1) > 0. Furthermore, y(v3v4v5v3) = 0.
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To justify this, note that both v1v2 and v5v3 are chords of the cycle v1v5v2v3v1, so they are
saturated by y in F4 by Lemma 3.5(v). Since v1v5v2v3v1 ⊎ v3v4v5v3 = v1v5v3v1 ⊎ v2v3v4v5v2,
from (3) we deduce that y(v3v4v5v3) = 0 (for a proof, see that of (8)).

Consider the case when y(v1v2v3v4v1) > 0. If v4v5 is not saturated by y in T , then the
multiset sum of the cycles v1v5v2v3v1, v1v2v3v4v1, and the arc v4v5 contains two arc-disjoint
cycles v1v2v3v1 and v2v3v4v5v2; if v4v5 is saturated by y in T but contained in some cycle
C ∈ Cy

0 , then the multiset sum of v1v5v2v3v1, v1v2v3v4v1, and C contains three arc-disjoint
cycles v1v2v3v1, v2v3v4v5v2, and C ′ = C[v5, v4] ∪ {v4v1, v1v5}. In either subcase we can obtain
from y an optimal solution y′ to D(T,w) that is better than y by (2). So v4v5 is saturated by
y in F4.

(10) If y(v1v5v3v4v1) > 0, then both v3v1 and v4v5 are saturated by y in F4; so is v4v2 pro-
vided y(v1v5v2v3v1) > 0, and so is v1v2 provided y(v2v3v4v5v2) > 0. Furthermore, y(v1v2v3v1) =
0.

To justify this, note that both v3v1 and v4v5 are chords of the cycle v1v5v3v4v1, so they are
saturated by y in F4 by Lemma 3.5(v). Since v1v5v3v4v1 ⊎ v1v2v3v1 = v1v5v3v1 ⊎ v1v2v3v4v1,
from (3) we deduce that y(v1v2v3v1) = 0 (for a proof, see that of (8)).

Consider the case when y(v1v5v2v3v1) > 0. If v4v2 is not saturated by y in T , then the
multiset sum of the cycles v1v5v2v3v1, v1v5v3v4v1, and the arc v4v2 contains arc-disjoint cycles
v1v5v3v1 and v2v3v4v2; if v4v2 is saturated by y in T but contained in some cycle C1 ∈ Cy

0 , then
the multiset sum of C1, v1v5v2v3v1, and v1v5v3v4v1 contains three arc-disjoint cycles v1v5v3v1,
v2v3v4v2, and C ′

1 = C1[v5, v4]∪ {v4v1, v1v5}. In either subcase we can obtain from y an optimal
solution y′ to D(T,w) that is better than y by (2). So v4v5 is saturated by y in F4.

Next, consider the case when y(v2v3v4v5v2) > 0. If v1v2 is not saturated by y in T , then the
multiset sum of the cycles v1v5v3v4v1, v2v3v4v5v2, and the arc v1v2 contains arc-disjoint cycles
v3v4v5v3 and v1v2v3v4v1; if v1v2 is saturated by y in T but contained in some cycle C2 ∈ Cy

0 , then
the multiset sum of C2, v2v3v4v5v2, and v1v5v3v4v1 contains three arc-disjoint cycles v3v4v5v3,
v1v2v3v4v1, and C ′

2 = C2[v5, v1] ∪ {v1v5}. In either subcase we can obtain from y an optimal
solution y′ to D(T,w) that is better than y by (2). So v1v2 is saturated by y in F4.

(11) If y(v1v2v3v4v1) > 0, then both v3v1 and v4v2 are saturated by y in F4; so is v4v5
provided y(v1v5v3v1) > 0.

The first half follows instantly from Lemma 3.5(v). Suppose y(v1v5v3v1) > 0. If v4v5 is not
saturated by y in T , then the multiset sum of the cycles v1v5v3v1, v1v2v3v4v1, and the arc v4v5
contains arc-disjoint cycles v1v2v3v1 and v3v4v5v3; if v4v5 is saturated by y in T but contained
in some cycle C ∈ Cy

0 , then the multiset sum of v1v2v3v4v1, v1v5v3v1, and C contains three
arc-disjoint cycles v1v2v3v1, v3v4v5v3, and C ′ = C[v5, v4] ∪ {v4v1, v1v5}. In either subcase we
can obtain from y an optimal solution y′ to D(T,w) that is better than y by (2). So v4v5 is
saturated by y in F4.

(12) If y(v2v3v4v5v2) > 0, then both v4v2 and v5v3 are saturated by y in F4; so is v1v2
provided y(v1v5v3v1) > 0.

The first half follows instantly from Lemma 3.5(v). Suppose y(v1v5v3v1) > 0. If v1v2 is not
saturated by y in T , then the multiset sum of the cycles v1v5v3v1, v2v3v4v5v2, and the arc v1v2
contains arc-disjoint cycles v1v2v3v1 and v3v4v5v3; if v1v2 is saturated by y in T but contained
in some cycle C ∈ Cy

0 , then the multiset sum of C, v2v3v4v5v2, and v1v5v3v1 contains three arc-
disjoint cycles v3v4v5v3, v1v2v3v1, and C ′ = C[v5, v1] ∪ {v1v5}. In either subcase we can obtain
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from y an optimal solution y′ to D(T,w) that is better than y by (2). So v1v2 is saturated by
y in F4.

Claim 1. y(C2) = τw(F4\v6).
To justify this, observe that v2v3 is a special arc of T and v2 is a near-sink. By Lemma

3.4(iv), we may assume that v2v3 is saturated by y in T . Depending on whether v2v3 is outside
Cy
0 , we distinguish between two cases.

Case 1.1. v2v3 is contained in some cycle in Cy
0 .

Choose C ∈ Cy
0 that contains v2v3 and, subject to this, has the maximum number of arcs in

F4\v6. We proceed by considering three subcases.
• C contains v1v2. In this subcase, C contains the path P = v1v2v3v4v5. By Lemma

3.5(ii) and (iv), each arc in the set K = {v3v1, v4v1, v4v2, v5v2, v5v3} is saturated by y in F4.
Since no arc on C (and hence on P ) is saturated by y in F4, we have y(v1v5v2v3v4v1) =
y(v1v5v2v3v1) = y(v1v5v3v4v1) = 0 by (8) − (10). Since the multiset sum of v1v5v3v1 and
C contains three arc-disjoint cycles v1v2v3v1, v3v4v5v3, and C ′ = C[v5, v1] ∪ {v1v5}, from the
optimality of y, we deduce that y(v1v5v3v1) = 0. So y(C2) = w(K). By (7), K is an MFAS and
hence y(C2) = τw(F3\v2).

• C contains v4v2. In this subcase, C contains the path P = v4v2v3v1v5. By Lemma 3.5(ii)
and (iv), each arc in the set K = {v1v2, v3v4, v5v2, v5v3} is saturated by y in F4. Since no arc on
C (and hence on P ) is saturated by y in F4, y(v1v5v2v3v4v1), y(v1v5v3v4v1), y(v1v2v3v4v1), and
y(v2v3v4v5v2) are all 0 by (8) and (10)-(12). Since the multiset sum of v3v4v5v3 and C contains
three arc-disjoint cycles v1v5v3v1, v2v3v4v2, and C ′ = C[v5, v4] ∪ {v4v5}, from the optimality
of y, we deduce that y(v3v4v5v3) = 0. So y(C2) = w(K). By (7), K is an MFAS and hence
y(C2) = τw(F3\v2).

• C contains neither v1v2 nor v4v2. In this subcase, we may assume that both v1v2 and v4v2
are outside Cy

0 , for otherwise, each cycle containing v1v2 or v4v2 passes through v2v3, and thus
one of the preceding subcases occurs. Clearly, C contains v3v4 or v3v1.

Assume first that C contains v3v4. If C contains v4v1, then it also contains v1v5. By Lemma
3.5(ii) and (iv), each arc in the set K = {v1v2, v4v2, v5v2, v5v3} is saturated by y in F4. So
y(C2) = w(K). By (7), K is an MFAS and hence y(C2) = τw(F3\v2). If C does not contain
v4v1, then C contains v4v5. By Lemma 3.5(ii) and (iv), each arc in the set {v4v2, v5v2, v5v3} is
saturated by y in F4. If v1v2 is also saturated by y in F4, then y(C2) = w(K), where K is as
defined above. Again, K is an MFAS and hence y(C2) = τw(F3\v2). So we assume that v1v2 is
not saturated by y in T . Since v1v2 is outside Cy

0 , so are v4v1 and v3v1. By Lemma 3.5(iii), both
v4v1 and v3v1 are saturated by y in T and hence in F4. Moreover, by (8)-(10), y(v1v5v2v3v4v1),
y(v1v5v2v3v1), and y(v1v5v3v4v1) are all 0. Since the multiset sum of the cycles v1v5v3v1, C,
and the unsaturated arc v1v2 contains two arc-disjoint cycles v1v2v3v1 and v3v4v5v3. By Lemma
3.5(vi), we have y(v1v5v3v1) = 0. So y(C2) = w(J), where J = {v3v1, v4v1, v4v2, v5v2, v5v3}. By
(7), J is an MFAS and hence y(C2) = τw(F3\v2).

Assume next that C contains v3v1. Then C contains v1v5. By Lemma 3.5(ii) and (iv),
each arc in the set {v1v2, v5v2, v5v3} is saturated by y in F4. If v4v2 is also saturated by y in
F4, then y(C2) = w(K), where K = {v1v2, v4v2, v5v2, v5v3}. By (7), K is an MFAS and hence
y(C2) = τw(F3\v2). So we assume that v4v2 is not saturated by y in F4 and hence in T (recall
that v4v2 is outside Cy

0 ). By Lemma 3.5(iv), v3v4 is outside Cy
0 . By Lemma 3.5(iii), v3v4 is
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saturated by y in T and hence in F4. By (8) and (10)-(12), y(v1v5v2v3v4v1), y(v1v5v3v4v1),
y(v1v2v3v4v1), and y(v2v3v4v5v2) are all 0. Since the multiset sum of the cycles v3v4v5v3, C,
and the unsaturated arc v4v2 contains two arc-disjoint cycles v1v5v3v1 and v2v3v4v2, we have
y(v3v4v5v3) = 0 by Lemma 3.5(vi). So y(C2) = w(J), where J = {v1v2, v3v4, v5v2, v5v3}. By (7),
K is an MFAS and hence y(C2) = τw(F3\v2).

Case 1.2. v2v3 is outside Cy
0 .

By the previous observation, v2v3 is saturated by y in F4 now. Note also that v5v3 is outside
C0. If v5v3 is saturated by y in T , so is it in F4, and hence y(C2) = w(K), whereK = {v2v3, v5v3}.
By (7), K is an MFAS and hence y(C2) = τw(F3\v2). So we assume that v5v3 is unsaturated.
By (8), (9), and (12), y(v1v5v2v3v4v1), y(v1v5v2v3v1), and y(v2v3v4v5v2) are all 0. Observe that
both v3v1 and v3v4 are outside Cy

0 , for otherwise, since each cycle passing through v3v1 or v3v4
contains v1v5 or v4v5, from Lemma 3.5(iv) we deduce that v5v3 is saturated, a contradiction. If
both v3v1 and v3v4 are saturated by y in F4, then y(C2) = w(J), where J = {v3v1, v3v4}. By
(7), J is an MFAS and hence y(C2) = τw(F3\v2). So we assume that

(13) at most one of v3v1 and v3v4 is saturated by y in F4.
Since Cy

0 ̸= ∅, there is a cycle C ∈ Cy
0 passing through v4v1, or v1v5, or v4v5; subject to this, let

C be chosen to have the maximum number of arcs in F4\v6. We proceed by considering three
subcases.

• C contains both v4v1 and v1v5. In this subcase, since v5v3 is unsaturated, by Lemma
3.5(iii), v3v1 and v3v4 are both saturated by y in F4, a contradiction.

• C contains v1v5 but not v4v1. In this subcase, from the choice of C, we see that v4v1 is
outside Cy

0 , because every cycle containing v4v1 passes through v1v5. Since v5v3 is unsaturated,
Lemma 3.5(iii) implies that v3v1 is saturated by y in F4, and thus v3v4 is not saturated by y in
F4 and hence in T by (13). Once again, by Lemma 3.5(iii), v4v1 is saturated by y in F4, and
v4v5 is outside Cy

0 . Since both v5v3 and v3v4 are unsaturated, it follows from Lemma 3.5(i) that
v4v5 is saturated by y in F4. If v4v2 is also saturated by y in F4, then y(C2) = w(K), where
K = {v3v1, v4v1, v4v2, v4v5}. By (7), K is an MFAS and hence y(C2) = τw(F4\v6). If v4v2 is not
saturated by y in F4, then y(v1v2v3v4v1) = 0 by (11). Moreover, since the multiset sum of the
cycles v1v2v3v1, C, and the unsaturated arcs v5v3, v3v4, and v4v2 contains two arc-disjoint cycles
v2v3v4v2 and v1v5v3v1, we have y(v1v2v3v1) = 0 by Lemma 3.5(vi). Therefore, y(C2) = w(J),
where J = {v2v3, v3v1, v4v1, v4v5}. By (7), J is an MFAS and hence y(C2) = τw(F3\v2).

• C contains v4v5. In this subcase, we may assume that both v4v1 and v1v5 are outside Cy
0 ,

otherwise one of the preceding subcases occurs. By Lemma 3.5(iii), v3v4 is saturated by y in T
and hence in F4, which together with (13) implies that v3v1 is not saturated by y in F4. Using
(10) and (11), we deduce that y(v1v5v3v4v1) = y(v1v2v3v4v1) = 0. Using Lemma 3.5(iii) and the
triangle v1v5v3v1, we see that v1v5 is outside Cy

0 . Using Lemma 3.5(i) and the triangle v1v5v3v1,
we also deduce that v1v5 is saturated by y in T and hence in F4. If v1v2 is also saturated by
y in F4, then y(C2) = w(K), where K = {v1v2, v1v5, v3v4}. By (7), K is an MFAS and hence
y(C2) = τw(F4\v6). So we assume that v1v2 is not saturated by y in F4 and hence in T , because
v1v2 is outside Cy

0 , by the hypothesis of the present case. Since the multiset sum of the cycles
C, v2v3v4v2, and unsaturated arcs v5v3, v3v1, and v1v2 contains two arc-disjoint cycles v1v2v3v1
and v3v4v5v3, we have y(v2v3v4v2) = 0 by Lemma 3.5(vi). It follows that y(C2) = w(J), where
J = {v1v5, v2v3, v3v4}. By (7), J is an MFAS and hence y(C2) = τw(F4\v6). This completes the
proof of Claim 1.
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Claim 2. y(C) is integral for all C ∈ C2 or ν∗w(T ) is an integer.
To justify this, let G2 = F2\{{v1v5, v2v3, v4v5}, {v1v2, v1v5, v4v2, v4v5}}. From the proof of

Claim 1, we see that y(C2) = w(K) for some K ∈ G2. Observe that if y(C2) = w(J) for
J = {v1v5, v2v3, v4v5} or {v1v2, v1v5, v4v2, v4v5}, then both v1v5 and v4v5 are saturated by y in
F4, so Cy

0 = ∅ in this case, which has been excluded by Lemma 3.2(ii).
Let us make some further observations about y.
(14) y(v1v5v2v3v4v1) = 0.
Suppose on the contrary that y(v1v5v2v3v4v1) > 0. By (8), we have y(v1v2v3v1) = y(v3v4v5v3)

= y(v1v5v3v1) = 0, and each arc in the set {v1v2, v3v1, v4v2, v4v5, v5v3} is saturated by y in F4.
So y(C2(v1v2)) = w(v1v2), y(C2(v3v1)) = w(v3v1), y(C2(v4v2)) = w(v4v2), y(C2(v4v5)) = w(v4v5),
and y(C2(v5v3)) = w(v5v3). It follows that y(v1v2v3v4v1) = w(v1v2), y(v1v5v2v3v1) = w(v3v1),
y(v2v3v4v2) = w(v4v2), y(v2v3v4v5v2) = w(v4v5), and y(v1v5v3v4v1) = w(v5v3). From Claim 1
we deduce that y(v1v5v2v3v4v1) is also integral, and hence ν∗w(T ) is an integer by Lemma 3.2(iii).

(15) y(v1v5v2v3v1) or y(v1v5v3v4v1) is 0.
Assume the contrary: both y(v1v5v2v3v1) and y(v1v5v3v4v1) are positive. By (9) and (10),

we have y(v1v2v3v1) = y(v3v4v5v3) = 0, and each arc in the set {v1v2, v5v3, v3v1, v4v2, v4v5} is
saturated by y in F4. So y(C2(v1v2)) = w(v1v2), y(C2(v5v3)) = w(v5v3), y(C2(v3v1)) = w(v3v1),
y(C2(v4v2)) = w(v4v2), and y(C2(v4v5)) = w(v4v5). It follows that y(v1v2v3v4v1) = w(v1v2),
y(v2v3v4v2) = w(v4v2), y(v2v3v4v5v2) = w(v4v5), y(v1v5v3v1) + y(v1v5v2v3v1) = w(v3v1), and
y(v1v5v3v1) + y(v1v5v3v4v1) = w(v5v3). Given the above equations and (14), to prove that
y(C) is integral for all C ∈ C2, it suffices to show that one of y(v1v5v3v4v1), y(v1v5v2v3v1), and
y(v1v5v3v1) is integral.

By Lemma 3.1 and Claim 1, each arc e ∈ K satisfies w(e) = z(e) = y(C2(e)). Let us proceed
by considering four subcases.

If v2v3 ∈ K, then w(v2v3) = y(C2(v2v3)) = y(v2v3v4v2) + y(v1v2v3v4v1) + y(v1v5v2v3v1)
+ y(v2v3v4v5v2), which implies that y(v1v5v2v3v1) is integral.

If v3v4 ∈ K, then w(v3v4) = y(C2(v3v4)) = y(v2v3v4v2) + y(v1v2v3v4v1) + y(v2v3v4v5v2)
+ y(v1v5v3v4v1), which implies that y(v1v5v3v4v1) is integral.

If v4v1 ∈ K, then w(v4v1) = y(C2(v4v1)) = y(v1v2v3v4v1)+y(v1v5v3v4v1), which implies that
y(v1v5v3v4v1) is integral.

If v5v2 ∈ K, then w(v5v2) = y(C2(v5v2)) = y(v1v5v2v3v1)+y(v2v3v4v5v2), which implies that
y(v1v5v2v3v1) is integral.

Since each K ∈ G2 contains at least one arc in the set {v2v3, v3v4, v4v1, v5v2}, it follows that
y(C) is integral for all C ∈ C2. So y(v1v5v2v3v1) is a positive integer, and hence ν∗w(T ) is an
integer by Lemma 3.2(iii). Therefore we may assume that (15) holds.

Depending on what K ∈ G2 is, we distinguish among nine cases.
Case 2.1. K = {v1v5, v2v3, v3v4}.
In this case, by Lemma 3.1(i) and (iii), we have y(v2v3v4v2) = y(v1v2v3v4v1) = y(v2v3v4v5v2) =

y(v1v5v2v3v1) = y(v1v5v3v4v1) = 0 and w(e) = y(C2(e)) for each e ∈ K, which together with
(14) yields w(v1v5) = y(C2(v1v5)) = y(v1v5v3v1), w(v2v3) = y(C2(v2v3)) = y(v1v2v3v1), and
w(v3v4) = y(C2(v3v4)) = y(v3v4v5v3). So y(C) is integral for all C ∈ C2.

Case 2.2. K = {v1v2, v3v4, v5v2, v5v3}.
In this case, by Lemma 3.1(i) and (iii), we have y(v1v5v3v4v1) = y(v3v4v5v3) = y(v1v2v3v4v1) =

y(v2v3v4v5v2) = 0, which together with (14) yields w(v1v2) = y(C2(v1v2)) = y(v1v2v3v1),
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w(v3v4) = y(C2(v3v4)) = y(v2v3v4v2), w(v5v2) = y(C2(v5v2)) = y(v1v5v2v3v1), and w(v5v3) =
y(C2(v5v3)) = y(v1v5v3v1). So y(C) is integral for all C ∈ C2.

Case 2.3. K = {v2v3, v3v1, v4v1, v4v5}.
In this case, by Lemma 3.1(i) and (iii), we have y(v1v2v3v1) = y(v1v5v2v3v1) = y(v1v2v3v4v1)

= y(v2v3v4v5v2) = 0, which together with (14) yields w(v2v3) = y(C2(v2v3)) = y(v2v3v4v2),
w(v3v1) = y(C2(v3v1)) = y(v1v5v3v1), w(v4v1) = y(C2(v4v1)) = y(v1v5v3v4v1), and w(v4v5) =
y(C2(v4v5)) = y(v3v4v5v3). So y(C) is integral for all C ∈ C2.

Case 2.4. K = {v3v1, v4v1, v4v2, v5v2, v5v3}.
In this case, by Lemma 3.1(i) and (iii), we have y(v1v5v3v1) = y(v1v5v2v3v1) = y(v1v5v3v4v1) =

0, which together with (14) yields w(v3v1) = y(C2(v3v1)) = y(v1v2v3v1), w(v4v1) = y(C2(v4v1)) =
y(v1v2v3v4v1), w(v4v2) = y(C2(v4v2)) = y(v2v3v4v2), w(v5v2) = y(C2(v5v2)) = y(v2v3v4v5v2),
and w(v5v3) = y(C2(v5v3)) = y(v3v4v5v3). So y(C) is integral for all C ∈ C2.

Case 2.5. K = {v1v2, v1v5, v3v4}.
In this case, by Lemma 3.1(i) and (iii), we have y(v1v2v3v4v1) = y(v1v5v3v4v1) = 0 and

w(e) = y(C2(e)) for each e ∈ K, which together with (14) yields the following three equations:
w(v1v2) = y(C2(v1v2)) = y(v1v2v3v1);
w(v1v5) = y(C2(v1v5)) = y(v1v5v3v1) + y(v1v5v2v3v1); and
w(v3v4) = y(C2(v3v4)) = y(v2v3v4v2) + y(v3v4v5v3) + y(v2v3v4v5v2).

Depending on the value of y(v1v5v2v3v1), we consider two subcases.
• y(v1v5v2v3v1) = 0. In this subcase, y(v1v5v3v1) = w(v1v5). If y(v2v3v4v5v2) > 0, then

w(v5v3) = y(C2(v5v3)) = y(v1v5v3v1) + y(v3v4v5v3) and w(v4v2) = y(C2(v4v2)) = y(v2v3v4v2)
by (12). Thus both y(v3v4v5v3) and y(v2v3v4v5v2) are integral, and hence y(C) is integral for
all C ∈ C2. So we assume that y(v2v3v4v5v2) = 0. Then w(v3v4) = y(v2v3v4v2) + y(v3v4v5v3).
If y(v2v3v4v2) is an integer, then y(C) is integral for all C ∈ C2. So we further assume that
y(v2v3v4v2) is not integral. Thus [y(v2v3v4v2)] + [y(v3v4v5v3)] = 1. Since each arc in K is
saturated by y in F4, both v2v3 and v4v2 are outside Cy

0 . Let y
′ be obtained from y by replacing

y(v2v3v4v2) and y(v3v4v5v3) with y(v2v3v4v2) + [y(v3v4v5v3)] and ⌊y(v3v4v5v3)⌋ respectively.
Then y′ is also an optimal solution to D(T,w). Since y′(v3v4v5v3) < y(v3v4v5v3), the existence
of y′ contradicts the assumption (5) on y.

• y(v1v5v2v3v1) > 0. In this subcase, y(v3v4v5v3) = 0 and v5v3 is saturated by y in F4

by (9). So w(v3v4) = y(v2v3v4v2) + y(v2v3v4v5v2) and w(v5v3) = y(v1v5v3v1). It follows that
y(v1v5v2v3v1) = w(v1v5) − w(v5v3). If y(v2v3v4v5v2) = 0, then y(v2v3v4v2) = w(v3v4); other-
wise, by (12), both v1v5 and v4v2 are saturated by y in F4. Thus y(v2v3v4) = w(v4v2) and
y(v2v3v4v5v2) = w(v3v4)− w(v4v2). So y(C) is integral for all C ∈ C2.

Case 2.6. K = {v3v1, v4v1, v4v2, v4v5}.
In this case, by Lemma 3.1 (iii), we have w(e) = y(C2(e)) for each e ∈ K, which together

with (14) yields the following four equations:
w(v3v1) = y(C2(v3v1)) = y(v1v2v3v1) + y(v1v5v3v1) + y(v1v5v2v3v1);
w(v4v1) = y(C2(v4v1)) = y(v1v2v3v4v1) + y(v1v5v3v4v1);
w(v4v2) = y(C2(v4v2)) = y(v2v3v4v2); and
w(v4v5) = y(C2(v4v5)) = y(v3v4v5v3) + y(v2v3v4v5v2).

Depending on the values of y(v1v5v3v4v1) and y(v1v5v2v3v1), we consider three subcases.
• y(v1v5v3v4v1) > 0. In this subcase, by (10) and (15), we have y(v1v2v3v1) = y(v1v5v2v3v1) =

0. So y(v1v5v3v1) = w(v3v1). If y(v2v3v4v5v2) > 0, then both v1v2 and v5v3 are saturated by y
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in F4 by (10) and (12). So w(v1v2) = y(C2(v1v2)) = y(v1v2v3v4v1) and w(v5v3) = y(C2(v5v3)) =
y(v1v5v3v1) + y(v3v4v5v3) + y(v1v5v3v4v1). Since y(v1v5v3v4v1) = w(v4v1) − y(v1v2v3v4v1)
and y(v2v3v4v5v2) = w(v4v5) − y(v3v4v5v3), it follows that y(v1v5v3v4v1), y(v3v4v5v3), and
y(v2v3v4v5v2) are all integral. So we assume that y(v2v3v4v5v2) = 0. Then y(v3v4v5v3) =
w(v4v5). Since each arc in K is saturated by y in F4, both v1v2 and v2v3 are outside Cy

0 .
By Lemma 3.2(i), we may assume that w(e) = ⌈z(e)⌉ for all arcs e in T . Thus, from (3) we
deduce that y(v1v2v3v4v1) = min{w(v1v2), w(v2v3) − w(v4v2)} and y(v1v5v3v4v1) = w(v4v1) −
y(v1v2v3v4v1). Therefore y(C) is integral for all C ∈ C2.

• y(v1v5v2v3v1) > 0. In this subcase, from (9) and (15), we deduce that y(v3v4v5v3) =
y(v1v5v3v4v1) = 0, and that both v1v2 and v5v3 are saturated by y in F4. So y(v1v2v3v4v1) =
w(v4v1) y(v2v3v4v5v2) = w(v4v5), w(v1v2) = y(C2(v1v2)) = y(v1v2v3v1) + y(v1v2v3v4v1), and
w(v5v3) = y(C2(v5v3)) = y(v1v5v3v1). Thus y(v1v2v3v1) = w(v1v2) − w(v4v1) is integral, so is
y(v1v5v2v3v1). Therefore y(C) is integral for all C ∈ C2.

• y(v1v5v3v4v1) = y(v1v5v2v3v1) = 0. In this subcase, y(v1v2v3v4v1) = w(v4v1). Suppose
y(v2v3v4v5v2) > 0. Then v5v3 is saturated by y in F4 by (12). So w(v5v3) = y(C2(v5v3)) =
y(v1v5v3v1) + y(v3v4v5v3). If y(v1v5v3v1) > 0, then v1v2 is saturated by y in F4 by (12). So
w(v1v2) = y(C2(v1v2)) = y(v1v2v3v1) + y(v1v2v3v4v1), It follows that y(v1v2v3v1) and hence
y(C) is integral for any C ∈ C2. If y(v1v5v3v1) = 0, then y(v1v2v3v1) = w(v3v1), which im-
plies that y(C) is integral for any C ∈ C2. So we assume that y(v2v3v4v5v2) = 0. Then
y(v3v4v5v3) = w(v4v5). Observe that y(v1v2v3v1) is integral, for otherwise, let y′ be ob-
tained from y by replacing y(v1v2v3v1) and y(v1v5v3v1) with y(v1v2v3v1) + [y(v1v5v3v1)] and
⌊y(v1v5v3v1)⌋, respectively. Since v1v2 and v2v3 are outside Cy

0 , we see y′ is also an optimal
solution to D(T,w). Since y′(v1v5v3v1) < y(v1v5v3v1), the existence of y′ contradicts the as-
sumption (5) on y. From the above observation, it is easy to see that y(C) is integral for any
C ∈ C2.

Case 2.7. K = {v1v2, v4v2, v5v2, v5v3}.
In this case, by Lemma 3.1(iii), we have w(e) = y(C2(e)) for each e ∈ K, which together

with (14) yields the following four equations:
w(v1v2) = y(C2(v1v2)) = y(v1v2v3v1) + y(v1v2v3v4v1);
w(v4v2) = y(C2(v4v2)) = y(v2v3v4v2);
w(v5v2) = y(C2(v5v2)) = y(v1v5v2v3v1) + y(v2v3v4v5v2); and
w(v5v3) = y(C2(v5v3)) = y(v1v5v3v1) + y(v3v4v5v3) + y(v1v5v3v4v1).

Depending on the values of y(v1v5v3v4v1) and y(v1v5v2v3v1), we consider three subcases.
• y(v1v5v3v4v1) > 0. In this subcase, by (10) and (15), y(v1v2v3v1) = y(v1v5v2v3v1) = 0

and both v3v1 and v4v5 are saturated by y in F4. So y(v2v3v4v2) = w(v4v2), y(v1v2v3v4v1) =
w(v1v2), y(v2v3v4v5v2) = y(C2(v5v2)) = w(v5v2), and y(v1v5v3v1) = y(C2(v3v1)) = w(v3v1).
Thus y(v3v4v5v3) and y(v1v5v3v4v1) are also integral.

• y(v1v5v2v3v1) > 0. In this subcase, by (9) and (15), we have y(v3v4v5v3) = y(v1v5v3v4v1) =
0. So y(v1v5v3v1) = w(v5v3). If y(v1v2v3v4v1) > 0, then both v3v1 and v4v5 are saturated by y
in F4 by (9) and (11). So w(v3v1) = y(C2(v3v1)) = y(v1v2v3v1) + y(v1v5v3v1) + y(v1v5v2v3v1)
and w(v4v5) = y(C2(v4v5)) = y(v2v3v4v5v2). It follows that y(C) is integral for all C ∈ C2. So
we assume that y(v1v2v3v4v1) = 0. Then y(v1v2v3v1), y(v2v3v4v2), and y(v1v5v3v1) are integral,
and y(v1v5v2v3v1)+y(v2v3v4v5v2) = w(v5v2). If y(v2v3v4v5v2) is an integer, then y(C) is integral
for any C ∈ C2. So we assume that y(v2v3v4v5v2) is not integral. We propose to show that
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(16) ν∗w(T ) is an integer.
To justify this, let x be an optimal solution to P(T,w). By Lemma 3.2(iii), we may assume

that w(v1v2) = w(v4v2) = w(v5v3) = 0. Thus y(C) = 0 for all C ∈ C2\{v1v5v2v3v1, v2v3v4v5v2}.
Observe that v3v4 is outside Cy

0 , for otherwise, let D be a cycle in Cy
0 that contains v3v4. It is

then easy to see that an optimal solution y′ to D(T,w) can be obtained from y by modifying
y(D), y(v1v5v2v3v1), and y(v2v3v4v5v2) and by possibly rerouting D, so that y′(v1v5v2v3v1) <
y(v1v5v2v3v1), contradicting (3). Since y(v2v3v4v5v2) < w(v3v4), we have x(v3v4) = 0 by Lemma
3.1(ii). Since both y(v1v5v2v3v1) and y(v2v3v4v5v2) are positive, x(v3v1) + x(v1v5) = x(v3v4) +
x(v4v5) by Lemma 3.1(i). So x(v4v5) = x(v3v1) + x(v1v5).

Let us show that if w(v4v1) > 0, then x(v4v1) = x(v3v1). For this purpose, note that
both v4v1 and v4v5 are contained in some cycles in Cy

0 , for otherwise, we can obtain a new
optimal solution y′ from y satisfying (1) and (2), but y′(v1v5v2v3v1) = ⌊y(v1v5v2v3v1)⌋ and
y′(v2v3v4v5v2) = y(v2v3v4v5v2) + [y(v1v5v2v3v1)], which again contradicts (3). Thus x(v4v5) =
x(v1v5)+x(v4v1) by Lemma 3.1(iii). Combining it with the equality established in the preceding
paragraph, we obtain the x(v4v1) = x(v3v1). If w(v4v1) = 0, then we may assume that x(v4v1) =
x(v3v1) (replacing the smaller of these two with the larger if necessary).

Similarly, we can prove that x(uv3) = x(uv4) for each u ∈ V (T1)\{b, a1}, where b is the hub
of the 1-sum. Let T ′ be the the digraph obtained from T by identifying v3 and v4; the resulting
vertex is still denoted by v4. Let w

′ be obtained from the restriction of w to A(T ′) by replacing
w(uv4) with w(uv3)+w(uv4) for each u ∈ V (T1)\{b, a1}. Note that T ′ is Möbius-free by Lemma
2.7, x corresponds to a feasible solution x′ to P(T ′,w′), and y corresponds to a feasible solution
y′ to P(T ′,w′) with y′(v4v5v4) = y′(v4v2v4) = 0, both having the same objective value ν∗w(T ) as
x and y. So x′ and y′ are optimal solutions to P(T,w) and D(T,w), respectively. By Lemma
3.3, the optimal value ν∗w(T ) of P(T ′,w′) is integral. So (16) is established.

• y(v1v5v3v4v1) = y(v1v5v2v3v1) = 0. In this subcase, y(v2v3v4v2) and y(v2v3v4v5v2) are
integral. Assume first that y(v1v2v3v4v1) > 0. Then, by (11), the arc v3v1 is saturated by y in F4.
So w(v3v1) = y(C2(v3v1)) = y(v1v2v3v1) + y(v1v5v3v1). If y(v1v5v3v1) = 0, then y(v3v4v5v3) =
w(v5v3). So y(C) is integral for any C ∈ C2. If y(v1v5v3v1) > 0, then v4v5 is is saturated by y
in F4 by (11). Thus w(v4v5) = y(C2(v4v5)) = y(v3v4v5v3) + y(v2v3v4v5v2), which is integral. It
follows that y(v3v4v5v3) = w(v4v5)− w(v5v2). So y(C) is integral for any C ∈ C2. Assume next
that y(v1v2v3v4v1) = 0. Then y(v1v2v3v1) is integral and y(v1v5v3v1) + y(v3v4v5v3) = w(v5v3).
Clearly, we may assume that neither y(v1v5v3v1) nor y(v3v4v5v3) is integral, otherwise we are
done. Similar to (16), we can show that

(17) ν∗w(T ) is an integer.
The proof goes along the same line as that of (16). In fact, we only need to replace

y(v1v5v2v3v1) and y(v2v3v4v5v2) with y(v1v5v3) and y(v3v4v5v3), respectively. So we omit the
details here.

Case 2.8. K = {v2v3, v5v3}.
In this case, by Lemma 3.1(iii), we have w(e) = y(C2(e)) for each e ∈ K, which together

with (14) yields the following two equations:
w(v2v3) = y(v1v2v3v1) + y(v2v3v4v2) + y(v1v2v3v4v1) + y(v2v3v4v5v2) + y(v1v5v2v3v1); and
w(v5v3) = y(v1v5v3v1) + y(v3v4v5v3) + y(v1v5v3v4v1).

Since v2v3 is saturated by y in F4, we have w(uv2) = z(uv2) = 0 for any u ∈ V (T1)\{b, a1}
in this case. Depending on the values of y(v1v5v3v4v1) and y(v1v5v2v3v1), we consider three
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subcases.
• y(v1v5v3v4v1) > 0. In this subcase, from (10) and (15) we deduce that y(v1v2v3v1) =

y(v1v5v2v3v1) = 0 and that both v3v1 and v4v5 are saturated by y in F4. So y(v3v4v5v3) +
y(v2v3v4v5v2) = w(v4v5) and y(v1v5v3v1) = w(v3v1). If y(v2v3v4v5v2) > 0, then both v1v2 and
v4v2 are saturated by y in F4 by (10) and (12). Thus y(v2v3v4v2) = w(v4v2) and y(v1v2v3v4v1) =
w(v1v2). It follows that y(v3v4v5v3), y(v2v3v4v5v2), and y(v1v5v3v4v1) are all integral. So we
assume that y(v2v3v4v5v2) = 0. Then y(v3v4v5v3) = w(v4v5), and y(v1v5v3v4v1) = w(v5v3) −
w(v3v1) − w(v4v5). Moreover, y(v2v3v4v2) = w(v4v2) and y(v1v2v3v4v1) = w(v2v3) − w(v4v2)
if y(v1v2v3v4v1) > 0, and y(v2v3v4v2) = w(v2v3) otherwise. Therefore y(C) is integral for all
C ∈ C2, no matter whether if y(v2v3v4v5v2) > 0.

• y(v1v5v2v3v1) > 0. In this subcase, by (9) and (15) we deduce that y(v3v4v5v3) =
y(v1v5v3v4v1) = 0 and that v1v2 is saturated by y in F4. So y(v1v2v3v1) + y(v1v2v3v4v1) =
w(v1v2). If y(v1v2v3v4v1) > 0, then v3v1, v4v2, and v4v5 are saturated by y in F4 by (9) and
(11). So y(v2v3v4v2) = w(v4v2), y(v2v3v4v5v2) = w(v4v5), and y(v2v3v4v2) + y(v1v5v3v1) +
y(v1v5v2v3v1) = w(v3v1). It follows that y(v1v2v3v1), y(v1v2v3v4v1), and y(v1v5v2v3v1) are all
integral. Hence y(C) is integral for all C ∈ C2. So we assume that y(v1v2v3v4v1) = 0. Then
y(v1v2v3v1) = w(v1v2). If y(v2v3v4v5v2) = 0, then y(v2v3v4v2) + y(v1v5v2v3v1) = w(v2v3) −
w(v1v2). Since y(v1v5v2v3v1) > 0, we see that v3v4 is outside Cy

0 , for otherwise, we can obtain an
optimal solution y′ to D(T,w) with y′(v1v5v2v3v1) < y(v1v5v2v3v1), contradicting (3). It follows
that y(v2v3v4v2) = min{w(v4v2), w(v3v4)} and y(v1v5v2v3v1) = w(v2v3)−w(v1v2)−y(v2v3v4v2).
If y(v2v3v4v5v2) > 0, then y(v2v3v4v2) = w(v4v2) by (12) and y(v1v5v2v3v1) + y(v2v3v4v5v2) =
w(v2v3)−w(v1v2)−w(v4v2). Thus we always have w(viv2) = ⌈z(viv2)⌉ = z(viv2) for i = 1, 4, 5.
Since v2 is a near-sink, D(T,w) has an integral optimal solution by Lemma 3.4(i).

• y(v1v5v2v3v1) = y(v1v5v3v4v1) = 0. In this subcase, depending on whether y(v2v3v4v5v2) >
0, we distinguish between two subsubcases.

(a) We first assume that y(v2v3v4v5v2) > 0. Now, in view of (12), v4v2 is saturated by
y in F4, which yields w(v4v2) = y(v2v3v4v2). If y(v1v5v3v1) > 0, then v1v2 is saturated by
y in F4. So y(v1v2v3v1) + y(v1v2v3v4v1) = w(v1v2) and y(v2v3v4v5v2) = w(v2v3) − w(v1v2) −
w(v4v2). Thus w(viv2) = ⌈z(viv2)⌉ = z(viv2) for i = 1, 4, 5. By Lemma 3.4(i), D(T,w) has
an integral optimal solution. So we assume that y(v1v5v3v1) = 0. If y(v1v2v3v4v1) = 0, then
y(v1v2v3v1) + y(v2v3v4v5v2) = w(v2v3) − w(v4v2). Since y satisfies (1), we have y(v1v2v3v1) =
min{w(v1v2), w(v3v1)} and y(v2v3v4v5v2) = w(v2v3)−w(v4v2)−y(v1v2v3v1). If y(v1v2v3v4v1) >
0, then y(v1v2v3v1) = w(v3v1) by (11) and y(v1v2v3v4v1)+ y(v2v3v4v5v2) = w(v2v3)−w(v3v1)−
w(v4v2). Assume y(v1v2v3v4v1) is not integral. Then [y(v1v2v3v4v1)] + [y(v2v3v4v5v2)] = 1. We
propose to show that

(18) v4v1 is saturated by y in F4.
Suppose the contrary. If v4v1 is not saturated by y in T , we set θ = min{w(v4v1) −

z(v4v1), [y(v2v3v4v5v2)]}, and let y′ arise from y by replacing y(v1v2v3v4v1) and y(v2v3v4v5v2)
with y(v1v2v3v4v1)+ θ and y(v2v3v4v5v2)− θ, respectively. Since v1v2 is outside Cy

0 , y
′ is also an

optimal solution to D(T,w), contradicting (4). If v4v1 is saturated by y in T but contained in a
cycle C ∈ Cy

0 , let C
′ = C[v5, v4] ∪ {v4v5} and σ = min{y(C), [y(v2v3v4v5v2)]}, and let y′ be ob-

tained from y by replacing y(v1v2v3v4v1), y(v2v3v4v5v2), y(C), and y(C ′) with y(v1v2v3v4v1)+σ,
y(v2v3v4v5v2)− σ, y(C)− σ, and y(C ′) + σ, respectively. Then y′ is also an optimal solution to
D(T,w), contradicting (4) again. So (18) is established.
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By (18), we have y(v1v2v3v4v1) = w(v4v1). It follows that y(C) is integral for all C ∈ C2.
(b) We next assume that y(v2v3v4v5v2) = 0. If y(v1v2v3v4v1) > 0, then v4v2 is saturated by

y in F4 by (11). So y(v2v3v4v2) = w(v4v2) and y(v1v2v3v1)+y(v1v2v3v4v1) = w(v2v3)−w(v4v2).
Thus w(viv2) = ⌈z(viv2)⌉ = z(viv2) for i = 1, 4, 5. By Lemma 3.4(i), D(T,w) has an integral
optimal solution. So we assume that y(v1v2v3v4v1) = 0. Then y(v1v2v3v1) + y(v2v3v4v2) =
w(v2v3) and y(v1v5v3v1) + y(v3v4v5v3) = w(v5v3). If y(v1v2v3v1) is integral, then w(viv2) =
⌈z(viv2)⌉ = z(viv2) for i = 1, 4, 5. Hence, by Lemma 3.4(i), D(T,w) has an integral optimal
solution. So we assume that y(v1v2v3v1) is not integral. We propose to show that

(19) ν∗w(T ) is an integer.
To justify this, let x be an optimal solution to P(T,w). Since 0 < y(v1v2v3v1) < w(v1v2)

and 0 < y(v2v3v4v2) < w(v4v2), by Lemma 3.1(i) and (ii), we have x(v1v2) = x(v4v2) = 0 and
x(v3v1) = x(v3v4).

Let us show that x(v1v5) = x(v4v5). If both y(v1v5v3v1) and y(v3v4v5v3) are positive, then,
by Lemma 3.1(i), we have x(v1v5v3v1) = x(v3v4v5v3) = 1, which implies x(v1v5) = x(v4v5), as
desired. If one of y(v1v5v3v1) and y(v3v4v5v3) is zero, then the other equals w(v5v3). By Lemma
3.2(iii), we may assume that w(v5v3) = 0. Since v2v3 is saturated by y in F4, both v1v2 and
v4v2 are outside Cy

0 . If v3v4 is also outside Cy
0 , let y

′ be obtained from y by replacing y(v3v4v5v3)
and y(v1v5v3v1) with y(v3v4v5v3) + [y(v1v5v3v1)] and ⌊y(v1v5v3v1)⌋, respectively, then y′ is an
optimal solution to D(T,w). Since y′(v3v4v5v3) is a positive integer, D(T,w) has an integral
optimal solution by Lemma 3.2(iii). So we may assume that v3v4 is contained in some cycle
in Cy

0 ; the same holds for v3v1. Let C1 and C2 be two cycles in Cy
0 passing through v3v1 and

v3v4, respectively. By Lemma 3.1(iii), we have x(v3v1) + x(v1v5) = x(v3v4) + x(v4v5). Thus
x(v1v5) = x(v4v5) also holds.

Similarly, we can prove that x(uv1) = x(uv4) for each vertex u ∈ V (T1)\{b, a1}, where b is
the hub of the 1-sum. Let T ′ = (V ′, A′) be the digraph obtained from T by identifying v1 and
v4; the resulting vertex is still denoted by v1. Let w′ be the restriction of w to A′. Then x
corresponds to a feasible solution x′ to P(T ′,w′) with x′(v1v5) = x(v4v1) + x(v1v5) = x(v4v5)
by Lemma 3.1(iii), and y corresponds to a feasible solution y′ to D(T ′,w′); both having the
same objective value ν∗w(T ) as P(T,w) and D(T,w). By the LP-duality theorem, x′ and y′

are optimal solutions to P(T ′,w′) and D(T ′,w′), respectively. By Lemma 3.3, D(T ′,w′) has an
integral optimal solution. So ν∗w(T ) is an integer. This proves (19).

Case 2.9. K = {v3v1, v3v4}.
In this case, by Lemma 3.1(iii), we have w(e) = y(C2(e)) for each e ∈ K, which together

with (14) yields the following two equations:
w(v3v1) = y(v1v2v3v1) + y(v1v5v3v1) + y(v1v5v2v3v1); and
w(v3v4) = y(v2v3v4v2) + y(v3v4v5v3) + y(v1v2v3v4v1) + y(v2v3v4v5v2) + y(v1v5v3v4v1).

Since each e ∈ K is saturated by y in F4, we have w(uvi) = z(uvi) = 0 for i = 2, 3 and all
u ∈ V (T1)\{b, a1}, where b is the hub of the 1-sum. Depending on the values of y(v1v5v3v4v1)
and y(v1v5v2v3v1), we consider three subcases.

• y(v1v5v2v3v1) > 0. In this subcase, from (9) and (15) we deduce that y(v3v4v5v3) =
y(v1v5v3v4v1) = 0 and that v1v2 and v5v3 are saturated by y in F4. So w(v1v2) = y(v1v2v3v1)+
y(v1v2v3v4v1) and w(v5v3) = y(v1v5v3v1). If y(v1v2v3v4v1) > 0, then both v4v2 and v4v5 are
saturated by y in F4 by (9) and (11). Thus y(v2v3v4v2) = w(v4v2) and y(v2v3v4v5v2) = w(v4v5).
It follows that y(C) is integral for all C ∈ C2. So we assume that y(v1v2v3v4v1) = 0. If
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y(v2v3v4v5v2) > 0, then v4v2 is saturated by y in F4 by (12), which implies that y(v2v3v4v2) =
w(v4v2); if y(v2v3v4v5v2) = 0, then y(v2v3v4v2) = w(v3v4). So y(C) is integral for all C ∈ C2,
regardless of the value of y(v2v3v4v5v2).

• y(v1v5v3v4v1) > 0. In this subcase, from (10) and (15) we deduce that y(v1v2v3v1) =
y(v1v5v2v3v1) = 0 and that v4v5 is saturated by y in F4. So w(v3v1) = y(v1v5v3v1) and
w(v4v5) = y(v3v4v5v3) + y(v2v3v4v5v2). If y(v2v3v4v5v2) > 0, then v1v2, v4v2, and v5v3 are all
saturated by y in F4 by (10) and (12). So y(v1v2v3v4v1) = w(v1v2), y(v2v3v4v2) = w(v4v2),
and y(v3v4v5v3) + y(v1v5v3v4v1) = w(v5v3) − y(v1v5v3v1). It follows that y(C) is integral
for all C ∈ C2. So we assume that y(v2v3v4v5v2) = 0. Then y(v3v4v5v3) = w(v4v5). If
y(v1v2v3v4v1) > 0, then v4v2 is saturated by y in F4 by (11). So y(v2v3v4v2) = w(v4v2) and
hence y(v1v2v3v4v1) + y(v1v5v3v4v1) = w(v3v4)− w(v4v5)− w(v4v2); if y(v1v2v3v4v1) = 0, then
y(v2v3v4v2)+y(v1v5v3v4v1) = w(v3v4)−w(v4v5). Since all arcs in F4\v6 except {v1v5, v4v1, v4v5}
are outside Cy

0 and y(v1v5v3v4v1) > 0, by (ii) we have y(v1v2v3v4v1) = min{w(v1v2), w(v2v3) −
w(v4v2)} if y(v1v2v3v4v1) > 0 and y(v2v3v4v2) = min{w(v4v2), w(v2v3)} otherwise. So y(v1v5v3v4v1)
is integral, and hence y(C) is integral for all C ∈ C2, regardless of the value of y(v1v2v3v4v1).

• y(v1v5v2v3v1) = y(v1v5v3v4v1) = 0. In this subcase, depending on whether y(v2v3v4v5v2)
> 0, we distinguish between two subsubcases.

(a) We first assume that y(v2v3v4v5v2) > 0. By (12), both v4v2 and v5v3 are saturated
by y in F4, which implies w(v4v2) = y(v2v3v4v2) and w(v5v3) = y(v1v5v3v1) + y(v3v4v5v3).
If y(v1v5v3v1) > 0, then v1v2 is saturated by y in F4 by (12). So w(v1v2) = y(v1v2v3v1) +
y(v1v2v3v4v1). Moreover, if y(v1v2v3v4v1) > 0, then v4v5 is saturated by y in F4 by (11), which
yields one more equation w(v4v5) = y(v3v4v5v3) + y(v2v3v4v5v2). Hence y(C) is integral for
all C ∈ C2, no matter whether y(v1v2v3v4v1) = 0. So we assume that y(v1v5v3v1) = 0. Then
y(v1v2v3v1) = w(v3v1), y(v3v4v5v3) = w(v5v3) and y(v1v2v3v4v1) + y(v2v3v4v5v2) = w(v3v4) −
w(v4v2) − w(v5v3). If y(v1v2v3v4v1) is integral, then y(C) is integral for all C ∈ C2. So we
assume that y(v1v2v3v4v1) is integral. Similar to (18), we can prove that v4v1 is saturated by y
in F4. Then y(v1v2v3v4v1) = w(v4v1), a contradiction.

(b) We next assume that y(v2v3v4v5v2) = 0. Suppose y(v1v2v3v4v1) = 0. Then y(v1v2v3v1)+
y(v1v5v3v1) = w(v3v1) and y(v2v3v4v2) + y(v3v4v5v3) = w(v3v4). If neither y(v1v5v3v1) nor
y(v3v4v5v3) is integral, then neither y(v1v2v3v1) nor y(v2v3v4v2) is integral. Similar to (19),
we can show that ν∗w(T ) is an integer. So we may assume that y(v1v5v3v1) or y(v3v4v5v3)
is integral. Observe that both of them are integral, for otherwise, let y′ be obtained from y
by replacing y(v1v2v3v1) and y(v1v5v3v1) with y(v1v2v3v1) + [y(v1v5v3v1)] and ⌊y(v1v5v3v1)⌋,
respectively. Since v1v2, v2v3, and v4v2 are all outside Cy

0 , y
′ is an optimal solution to D(T,w),

with y′(v1v5v3v1) < y(v1v5v3v1), contradicting (5).
Suppose y(v1v2v3v4v1) > 0. Then y(v2v3v4v2) = w(v4v2). If y(v1v5v3v1) > 0, then v4v5 is

saturated by y in F4 by (11), which implies y(v3v4v5v3) = w(v4v5), y(v1v2v3v4v1) = w(v3v4) −
w(v4v2) − w(v4v5), and y(v1v2v3v1) + y(v1v5v3v1) = w(v3v1). If y(v1v5v3v1) is not integral, let
y′ be obtained from y by replacing y(v1v2v3v1) and y(v1v5v3v1) with y(v1v2v3v1)+ [y(v1v5v3v1)]
and ⌊y(v1v5v3v1)⌋, respectively. Since both v1v2 and v2v3 are outside C0, y′ is an optimal solution
to D(T,w), with y′(v1v5v3v1) < y(v1v5v3v1), contradicting (5). So y(v1v5v3v1) is integral and
hence is zero by Lemma 3.2(iii). It follows that y(v1v2v3v1) = w(v3v1) and y(v1v2v3v4v1) +
y(v3v4v5v3) = w(v3v4)−w(v4v2). If y(v3v4v5v3) is integral, then y(C) is integral for all C ∈ C2.
So we assume that y(v3v4v5v3) is not integral. Let us show that
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(20) ν∗w(T ) is an integer.
By Lemma 3.2(iii), we may assume that w(v3v1) = w(v4v2) = 0. Recall that w(v5v2) =

z(v5v2) = 0 and w(uvi) = z(uvi) = 0 for i = 2, 3 and all u ∈ V (T1)\{b, a1}. So we may assume
that x(uv2) = x(uv3). Let T ′ = (V ′, A′) be the digraph obtained from T by identifying v2 and
v3; the resulting vertex is still denoted by v3, and let w′ be the restriction of w to A′. Then
x corresponds to a feasible solution x′ to P(T ′,w′), and y corresponds to a feasible solution
y′ to D(T ′,w′); both having the same objective value ν∗w(T ) as P(T,w) and D(T,w). By the
LP-duality theorem, x′ and y′ are optimal solutions to P(T ′,w′) and D(T ′,w′), respectively. By
Lemma 3.3, D(T ′,w′) has an integral optimal solution. So ν∗w(T ) is an integer. This proves (20)
and hence Claim 2.

Since τw(F4\v6) > 0, from Claim 2, Lemma 3.2(iii) and Lemma 3.4(ii) we deduce that
D(T,w) has an integral optimal solution. This completes the proof of Lemma 4.4.

Lemma 4.6. If T2 = G2, then D(T,w) has an integral optimal solution.

Proof. It is routine to check that
• C2 = {v1v2v4v1, v1v6v3v1, v1v6v4v1, v1v6v2v4v1, v1v6v3v4v1, v1v6v3v2v4v1} and
• F2 = {{v1v6, v1v2}, {v1v6, v2v4}, {v1v6, v4v1}, {v3v1, v4v1}, {v4v1, v6v3}, {v2v4, v6v3, v6v4},

{v2v4, v3v1, v3v4, v6v4}, {v1v2, v6v2, v6v3, v6v4}, {v1v2, v3v1, v3v2, v3v4, v6v2, v6v4}}.
We also have a computer verification of these results. So |C2| = 6 and |F2| = 9. Recall that
(b2, a2) = (v4, v5).

Let y be an optimal solution to D(T,w) such that
(1) y(C2) is maximized;
(2) subject to (1), (y(Dq), y(Dq−1), . . . , y(D3)) is minimized lexicographically;
(3) subject to (1) and (2), y(v1v6v3v4v1) is minimized; and
(4) subject to (1)-(3), y(v1v6v4v1) is minimized;
Let us make some simple observations about y.
(5) If K ∈ F2 satisfies y(C2) = w(K), then K is an MFAS. (The statement is exactly the

same as (4) in the proof of Lemma 4.3.)
The three statements below follow instantly from Lemma 3.5(v).
(6) If y(v1v6v3v2v4v1) > 0, then each arc in the set {v1v2, v3v1, v3v4, v6v2, v6v4} is saturated

by y in G2.
(7) If y(v1v6v3v4v1) > 0, then both v3v1 and v6v4 are saturated by y in G2.
(8) If y(v1v6v2v4v1) > 0, then both v1v2 and v6v4 are saturated by y in G2.

Claim 1. y(C2) = τw(G2\v5).
To justify this, observe that if both v1v2 and v1v6 are saturated by y in G2, then y(C2) =

w(K), where K = {v1v2, v1v6}; if both v3v1 and v4v1 are saturated by y in G2, then y(C2) =
w(K), where K = {v3v1, v4v1}. By (5), K is an MFAS and hence y(C2) = τw(G2\v5) in either
case. So we assume that

(9) at most one of v1v2 and v1v6 is saturated by y in G2. The same holds for v3v1 and v4v1.
As v2v4 is a special arc of T and v2 is a near-sink, by Lemma 3.4(iv), we may assume that

v2v4 is saturated by y in T . Depending on whether v2v4 is outside Cy
0 , we distinguish between

two cases.
Case 1.1. v2v4 is contained by some cycle in Cy

0 .
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In this case, we proceed by considering two subcases.
• v3v1 is saturated by y in G2. In this subcase, by (9), v4v1 is not saturated by y in G2

and hence in T , because v4v1 is outside C0. By the hypothesis of the present case and Lemma
3.5(iii), v1v2 is saturated by y in T . Observe that v1v2 is outside Cy

0 , for otherwise, a cycle
C ∈ Cy

0 containing v1v2 must pass through v2v4. Thus, by Lemma 3.5(iv), v4v1 is saturated by
y in G2, a contradiction. It follows that v1v2 is saturated by y in G2. So, by (9), v1v6 is not
saturated by y in G2. If v1v6 is contained in some cycle C ∈ Cy

0 , applying Lemma 3.5(iv) to the
cycle C[v1, v4]∪{v4v1} in C2, we see that v4v1 is saturated by y in T , a contradiction. So v1v6 is
outside C ∈ Cy

0 . By Lemma 3.5(iii), v6v2 is saturated by y in G2 and v6v4 is outside Cy
0 . Using

Lemma 3.5(i), we further deduce that v6v4 is saturated by y in G2. If v6v3 is also saturated by
y in G2, then y(C2) = w(K), where K = {v1v2, v6v2, v6v3, v6v4}. By (5), K is an MFAS and
thus y(C2) = τw(G2\v5). If v6v3 is saturated by y in T but contained in some cycle C ∈ Cy

0 ,
applying Lemma 3.5(iii) to the cycle C[v6, v4] ∪ {v4v1, v1v6} ∈ C2, we see that v4v1 or v1v6 is
saturated, a contradiction. If v6v3 is not saturated by y in T then, by Lemma 3.5(iii), v3v2 is
saturated by y in G2 and and v3v4 is outside Cy

0 . Using Lemma 3.5(i), we further deduce that
v3v4 is saturated by y in G2. Thus y(C2) = w(J), where J = {v1v2, v3v1, v3v2, v3v4, v6v2, v6v4}.
By (5), J is an MFAS and thus y(C2) = τw(G2\v5).

• v3v1 is not saturated by y inG2. In this subcase, we have y(v1v6v3v4v1) = y(v1v6v3v2v4v1) =
0 by (6) and (7). Assume first that v1v2 is saturated by y in G2. Then v1v6 is not satu-
rated by y in G2 by (9). Thus v6v3 is saturated by y in G2 by Lemma 3.5(iii) and (iv). If
v4v1 is also saturated by y in G2, then y(C2) = w(K), where K = {v4v1, v6v3}; otherwise,
both v6v2 and v6v4 are saturated by y in G2 by Lemma 3.5(iii) and (iv). So y(C2) = w(K),
where K = {v1v2, v6v2, v6v3, v6v4}. By (5), K is an MFAS in either subsubcase, and thus
y(C2) = τw(G2\v5).

Assume next that v1v2 is not saturated by y in G2. By (8), we have y(v1v6v2v4v1) = 0. By
the hypothesis of the present case and by Lemma 3.5(iii) and (iv), v4v1 is saturated by y in G2.
If v6v3 is also saturated by y in G2, then y(C2) = w(K), where K = {v4v1, v6v3}. By (5), K
is an MFAS and thus y(C2) = τw(G2\v5). So we assume that v6v3 is not saturated by y in G2.
Thus v1v6 is saturated by y in G2 by Lemma 3.5(iii) and (iv). We propose to show that

(10) y(v1v6v4v1) = 0.
Assume the contrary: y(v1v6v4v1) > 0. Observe that v1v2 is outside Cy

0 , for otherwise, let
C be a cycle in Cy

0 containing v1v2. Then the multiset sum of v1v6v4v1 and C contains two
arc-disjoint cycles v1v2v4v1 and C[v4, v1]∪ {v1v6, v6v4}. Set θ = min{y(v1v6v4v1), y(C)}. Let y′

be obtained from y by replacing y(v1v6v4v1), y(v1v2v4v1), y(C), and y(C ′) with y(v1v6v4v1)−θ,
y(v1v2v4v1) + θ, y(C) − θ, and y(C ′) + θ, respectively. Then y′ is also an optimal solution to
D(T,w). Since y′(v1v6v4v1) < y(v1v6v4v1), the existence of y′ contradicts the assumption (4)
on y. It follows that v3v1 is also outside Cy

0 , because every cycle containing v3v1 in Cy
0 must pass

through v1v2. So neither v1v2 nor v3v1 is saturated by y in T .
Let us show that v6v3 is outside Cy

0 , for otherwise, let C ∈ Cy
0 contain v6v3. Then the

multiset sum of v1v6v4v1, C, and the unsaturated arc v3v1 contains arc-disjoint cycles v1v6v3v1
and C ′ = C[v4, v6] ∪ {v6v4}. Set θ = min{y(v1v6v4v1), y(C), w(v3v1) − z(v3v1)}. Let y′ be
obtained from y by replacing y(v1v6v4v1), y(v1v6v3v1), y(C), and y(C ′) with y(v1v6v4v1) − θ,
y(v1v6v3v1) + θ, y(C) − θ, and y(C ′) + θ, respectively. Then y′ is also an optimal solution to
D(T,w). Since y′(v1v6v4v1) < y(v1v6v4v1), the existence of y′ contradicts the assumption (4)
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on y. Let D ∈ Cy
0 be a cycle containing v2v4. Then the multiset sum of D, v1v6v4v1, and the

unsaturated arcs v6v3, v3v1, and v1v2 contains two arc-disjoint cycles v1v2v4v1 and v1v6v3v1.
Thus, by Lemma 3.5(vi), we obtain y(v1v6v4v1) = 0; this contradiction proves (10).

From (10), we deduce that y(C2) = w(K), where K = {v1v6, v4v1}. So, by (5), K is an
MFAS and thus y(C2) = τw(G2\v5).

Case 1.2. v2v4 is outside Cy
0 .

In this case, v2v4 is saturated by y in G2. So v1v2, v3v2, and v6v2 are all outside Cy
0 . Assume

first that v1v6 is saturated by y in G2. Then v1v2 is not saturated by y by (9). By (6) and (8),
we have y(v1v6v3v2v4v1) = y(v1v6v2v4v1) = 0 and hence y(C2) = w(K), where K = {v1v6, v2v4}.
It follows from (5) that K is an MFAS and thus y(C2) = τw(G2\v5). Assume next that v1v6 is
not saturated by y in G2. If v4v1 is not saturated by y in T , then v6v4 is outside Cy

0 by Lemma
3.5(iii). So v3v4 is contained in some cycle in Cy

0 because Cy
0 ̸= ∅. Using Lemma 3.5(iii), we deduce

that both v6v3 and v6v4 are saturated by y in G2. Using (6), we obtain y(v1v6v3v2v4v1) = 0.
Thus y(C2) = w(K), where K = {v2v4, v6v3, v6v4}. If v4v1 is saturated by y in T , then so is it
in G2 because v4v1 is outside Cy

0 . By (9), v3v1 is not saturated by y in G2. By Lemma 3.5(iii),
v6v3 is saturated by y in G2. By (6) and (7), we have y(v1v6v3v4v1) = y(v1v6v3v2v4v1) = 0.
Hence y(C2) = w(K), where K = {v4v1, v6v3}. In either subsubcase, K is an MFAS by (5) and
thus y(C2) = τw(G2\v5). This proves Claim 1.

Claim 2. y(C) is integral for all C ∈ C2 or ν∗w(T ) is an integer.
To justify this, we may assume that
(11) y(v1v6v3v2v4v1) = 0.
Otherwise, by (6), we have w(e) = y(C2(e)) for each e in the set {v1v2, v3v1, v3v4, v6v2, v6v4}.

So y(v1v2v4v1) = w(v1v2), y(v1v6v3v1) = w(v3v1), y(v1v6v3v4v1) = w(v3v4), y(v1v6v2v4v1) =
w(v6v2), and y(v1v6v4v1) = w(v6v4). By Claim 1, y(C2) is an integer, so is y(v1v6v3v2v4v1).
Hence y(C) is integral for all C ∈ C2.

By Claim 1, y(C2) = w(K) for some K ∈ F2. Depending on what K is, we distinguish among
nine cases.

Case 2.1. K = {v1v2, v3v1, v3v2, v3v4, v6v2, v6v4}.
In this case, by Lemma 3.1 (iii), we have w(e) = y(C2(e)) for each e ∈ K. It follows instantly

that y(C) is integral for all C ∈ C2.
Case 2.2. K = {v1v6, v4v1}.
In this case, by Lemma 3.1 (i), we have y(v1v6v4v1) = y(v1v6v2v4v1) = y(v1v6v3v4v1) =

y(v1v6v3v2v4v1) = 0. By Lemma 3.1 (iii), we further obtain w(e) = y(C2(e)) for each e ∈ K. It
follows that y(v1v2v4v1) = w(v4v1) and y(v1v6v3v1) = w(v1v6). Therefore y(C) is integral for
all C ∈ C2.

Case 2.3. K = {v1v2, v6v2, v6v3, v6v4}.
In this case, by Lemma 3.1 (iii), we have w(e) = y(C2(e)) for each e ∈ K, which together

with (11) yields the following equations: y(v1v2v4v1) = w(v1v2), y(v1v6v2v4v1) = w(v6v2),
y(v1v6v4v1) = w(v6v4), and y(v1v6v3v1)+y(v1v6v3v4v1) = w(v6v3). Note that if y(v1v6v3v4v1) >
0, we have one more equation y(v1v6v3v1) = w(v3v1) by (7). Hence y(C) is integral for all C ∈ C2,
no matter whether y(v1v6v3v4v1) = 0.

Case 2.4. K = {v2v4, v6v3, v6v4}.
In this case, by Lemma 3.1 (iii), we have w(e) = y(C2(e)) for each e ∈ K, which together
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with (11) yields the following equations: y(v1v2v4v1) + y(v1v6v2v4v1) = w(v2v4), y(v1v6v3v1) +
y(v1v6v3v4v1) = w(v6v3), and y(v1v6v4v1) = w(v6v4). Note that if y(v1v6v2v4v1) > 0, we have
one more equation y(v1v2v4v1) = w(v1v2) by (8); if y(v1v6v3v4v1) > 0, we have one more
equation y(v1v6v3v1) = w(v3v1) by (7). Hence y(C) is integral for all C ∈ C2 in any subcase.

Case 2.5. K = {v2v4, v3v1, v3v4, v6v4}.
In this case, by Lemma 3.1 (iii), we have w(e) = y(C2(e)) for each e ∈ K, which together

with (11) yields the following equations: y(v1v2v4v1) + y(v1v6v2v4v1) = w(v2v4), y(v1v6v3v1) =
w(v3v1), y(v1v6v3v4v1) = w(v3v4), and y(v1v6v4v1) = w(v6v4). Note that if y(v1v6v2v4v1) > 0,
we have one more equation y(v1v2v4v1) = w(v1v2) by (8). Hence y(C) is integral for all C ∈ C2,
no matter whether y(v1v6v2v4v1) = 0.

Case 2.6. K = {v1v6, v2v4}.
In this case, by Lemma 3.1 (i), we have y(v1v6v2v4v1) = 0. By Lemma 3.1 (iii), we ob-

tain w(e) = y(C2(e)) for each e ∈ K, which together with (11) yields the following equa-
tions: y(v1v2v4v1) = w(v2v4) and y(v1v6v3v1) + y(v1v6v4v1) + y(v1v6v3v4v1) = w(v1v6). More-
over, in this case v1v2, v3v2, and v6v2 are all outside Cy

0 , and w(uv2) = z(uv2) = 0 for any
u ∈ V (T1)\{b, a1}, where b is the hub of the 1-sum. Examining the cycles in C2, we see that
z(v3v2) = z(v6v2) = 0 and so w(viv2) = ⌈z(viv2)⌉ = z(viv2) for i = 1, 3, 6. Thus D(T,w) has an
integral optimal solution by Lemma 3.4(i).

Case 2.7. K = {v4v1, v6v3}.
In this case, by Lemma 3.1 (i) and (iii), we have y(v1v6v3v4v1) = 0, y(v1v6v3v1) = w(v6v3),

and y(v1v2v4v1) + y(v1v6v4v1) + y(v1v6v2v4v1) = w(v4v1). Lemma 3.2(iii) allows us to assume
that w(v6v3) = 0. If y(v1v6v2v4v1) > 0, then both v1v2 and v6v4 are saturated by y in G2 by (8).
So y(v1v2v4v1) = w(v1v2) and y(v1v6v4v1) = w(v6v4). Hence y(C) is integral for all C ∈ C2; the
same holds if y(v1v6v2v4v1) = 0 and y(v1v2v4v1) is integral. So we assume that y(v1v6v2v4v1) = 0
and y(v1v2v4v1) is not integral. Observe that v1v2 is outside Cy

0 , for otherwise, let C be a cycle in
Cy
0 containing v1v2, let C

′ = C[v4, v1]∪{v1v6, v6v4}, and set θ = min{y(C), y(v1v6v4v1)}. Let y′

be obtained from y by replacing y(v1v6v4v1), y(v1v2v4v1), y(C), and y(C ′) with y(v1v6v4v1)−θ,
y(v1v2v4v1) + θ, y(C) − θ, and y(C ′) + θ, respectively. Then y′ is also an optimal solution to
D(T,w). Since y′(v1v6v4v1) < y(v1v6v4v1), the existence of y′ contradicts the assumption (4)
on y. Similarly, we can prove that v6v2 is outside Cy

0 . Examining cycles in C2, we see that
w(v6v2) = z(v6v2) = 0. Now we propose to show that

(12) ν∗w(T ) is an integer.
To justify this, let x be an optimal solution to P(T,w). Since both y(v1v2v4v1) and

y(v1v6v4v1) are positive, we have x(v1v2) + x(v2v4) = x(v1v6) + x(v6v4) by Lemma 3.1(i). Since
y(v1v2v4v1) < w(v1v2), we have x(v1v2) = 0 by Lemma 3.1(ii). So x(v2v4) = x(v1v6) + x(v6v4).
If each of v3v1 and v3v2 is contained in some cycle in Cy

0 , then x(v3v1) = x(v3v2) by Lemma
3.1(iv). If one of v3v1 and v3v2 is outside Cy

0 , say v3v1, then we may assume that w(v3v1) = 0
and x(v3v1) = x(v3v2). Similarly, we can prove that x(uv1) = x(uv2) for each u ∈ V (T1)\{a1, b}.

Let T ′ = (V ′, A′) be obtained from T by deleting vertex v2, let w′ be obtained from the
restriction of w to A′ by defining w′(uv1) = w(uv1) + w(uv2) for u = v3 or u ∈ V (T1)\{b, a1}
and w′(vivj) = w(vivj) + w(v2v4) for (i, j) = (1, 6) or (6, 4). Let x′ be the restriction of x to
A′ and let y′ be obtained from y as follows: for each cycle C passing through the path uv2v4
with u ∈ (V (T1)\{a1, b}) ∪ {v3}, let C ′ be the cycle arising from C by replacing uv2v4 with
uv1v6v4, and set y′(C ′) = y(C) + y(C ′) and y′(v1v6v4v1) = y(v1v6v4v1) + y(v1v2v4v1). From
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the LP-duality theorem, we see that x′ and y′ are optimal solutions to P(T ′,w′) and D(T ′,w′)
respectively, both having the same value ν∗w(T ) as x and y. Hence ν∗w(T ) is an integer by the
hypothesis of Theorem 1.5.

Case 2.8. K = {v1v6, v1v2}.
In this case, by Lemma 3.1 (iii), we have w(e) = y(C2(e)) for each e ∈ K, which together

with (11) yields the following equations: y(v1v2v4v1) = w(v1v2) and y(v1v6v3v1)+y(v1v6v4v1)+
y(v1v6v2v4v1) + y(v1v6v3v4v1) = w(v1v6). Moreover, v3v1 is outside Cy

0 . Depending on whether
y(v1v6v3v4v1) = 0, we consider two subcases.

• y(v1v6v3v4v1) = 0. In this subcase, we first assume that y(v1v6v2v4v1) > 0. Then
y(v1v6v4v1) = w(v6v4) by (8). Thus y(v1v6v3v1) + y(v1v6v2v4v2) = w(v1v6) − w(v6v4). Let us
show that y(v1v6v3v1) is integral. Suppose not. If v6v3 is outside Cy

0 , let y
′ be obtained from y by

replacing y(v1v6v3v1) and y(v1v6v2v4v1) with y(v1v6v3v1)+ [y(v1v6v2v4v1)] and ⌊y(v1v6v2v4v1)⌋,
respectively; if v6v3 is contained in some cycle C in Cy

0 , set θ = min{y(C), [y(v1v6v2v4v1)]}
and C ′ = C[v4, v6] ∪ {v6v2, v2v4}, and let y′ be obtained from y by replacing y(v1v6v3v1),
y(v1v6v2v4v1), y(C), and y(C ′) with y(v1v6v3v1)+ θ, y(v1v6v2v4v1)− θ, y(C)− θ, and y(C ′)+ θ,
respectively. In both subsubcases, y′ is an optimal solution to D(T,w) with y′(v1v6v2v4v1) <
y(v1v6v2v4v1), contradicting (2). We next assume that y(v1v6v2v4v1) = 0. The proof of this
subsubcase is similar to that in the preceding one (with y(v1v6v4v1) in place of y(v1v6v2v4v1)).
Thus we reach a contradiction to (4).

• y(v1v6v3v4v1) > 0. In this subcase, by (7), both v3v1 and v6v4 are saturated by y in G2. So
y(v1v6v3v1) = w(v3v1), y(v1v6v4v1) = w(v6v4), and y(v1v6v2v4v1) + y(v1v6v3v4v1) = w(v1v6) −
w(v3v1)−w(v6v4). If y(v1v6v2v4v1) is integral, then y(C) is integral for all C ∈ C2. So we assume
that y(v1v6v2v4v1) is not integral. Then [y(v1v6v2v4v1)]+[y(v1v6v3v4v1)] = 1. Observe that v6v2
is outside Cy

0 , for otherwise, let C be a cycle in Cy
0 containing v6v2, let C

′ = C[v4, v6]∪{v6v3, v3v4},
let θ = min{y(C), [y(v1v6v3v4v1]}, and let y′ be obtained from y by replacing y(v1v6v3v4v1),
y(v1v6v2v4v1), y(C), y(C ′) with y(v1v6v3v4v1) − θ, y(v1v6v2v4v1) + θ, y(C) − θ, and y(C ′) + θ,
respectively. Then y′ is an optimal solution to D(T,w) with y′(v1v6v3v4v1) < y(v1v6v3v4v1),
contradicting (2). Similarly, we can show that v3v2 is also outside Cy

0 . Thus w(v3v2) = z(v3v2) =
0. By Lemma 3.2(iii), we may assume that w(v1v2), w(v3v1), and w(v6v4) are all 0. We propose
to show that

(13) ν∗w(T ) is an integer.
To justify this, let x be an optimal solution to P(T,w). Since y(v1v6v2v4v1) > 0 and

y(v1v6v3v4v1) > 0, from Lemma 3.1(i) we deduce that x(v6v2) + x(v2v4) = x(v6v3) + x(v3v4).
Since y(v1v6v2v4v1) < w(v6v2), we have x(v6v2) = 0 by Lemma 3.1(ii). It follows that x(v2v4) =
x(v6v3) + x(v3v4). Since w(v6v4) = 0 and v6v2 is outside Cy

0 , x(uv6) = x(uv2) for each u ∈
V (T1)\{b, a1}. Let T ′ = (V ′, A′) be the tournament obtained from T by deleting vertex v2, let
w′ be obtained from the restriction of w to A′ by replacing w(uv6) with w(uv6)+w(uv2) for each
u ∈ V (T1)\{b, a1} and replacing w(vivj) with w(vivj) + w(v2v4) for (i, j) = (6, 3) or (3, 4). Let
x′ be the restriction of x to A′, and let y′ be obtained from y as follows: for each cycle C passing
through uv2v4 with u ∈ V (T1)\{b, a1}, let C ′ be the cycle arising from C by replacing uv2v4
with uv6v3v4, and set y′(C ′) = y(C ′)+y(C) and y′(v1v6v3v4v1) = y(v1v6v3v4v1)+y(v1v6v2v4v1).
From the LP-duality theorem, we deduce that x′ and y′ are optimal solutions to P(T ′,w′) and
D(T ′,w′), respectively, both having the same value ν∗w(T ) as x and y. Hence ν∗w(T ) is an integer
by the hypothesis of Theorem 1.5.
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Case 2.9. K = {v3v1, v4v1}.
In this case, by Lemma 3.1 (iii), we have w(e) = y(C2(e)) for each e ∈ K, which to-

gether with (11) yields the following equations: y(v1v6v3v1) = w(v3v1) and y(v1v2v4v1) +
y(v1v6v4v1) + y(v1v6v2v4v1) + y(v1v6v3v4v1) = w(v4v1). Assume first that y(v1v6v2v4v1) = 0.
If y(v1v6v3v4v1) > 0, then v6v4 is saturated by y in G2. So y(v1v6v4v1) = w(v6v4) and hence
y(v1v2v4v1) + y(v1v6v3v4v1) = w(v4v1) − w(v6v4); if y(v1v6v3v4v1) = 0, then y(v1v2v4v1) +
y(v1v6v4v1) = w(v4v1). If y(v1v2v4v1) is an integer, then y(C) is integral for all C ∈ C2. So we
assume that y(v1v2v4v1) is not integral. Then we can prove that both v6v2 and v1v2 are outside
Cy
0 and that ν∗w(T ) is an integer. The proof is the same as that of (12) (with y(v1v6v4v1) in place

of y(v1v6v3v4v1) when y(v1v6v3v4v1) > 0), so we omit the details here .
Assume next that y(v1v6v2v4v1) > 0. Then both v1v2 and v6v4 are saturated by y in

G2. So y(v1v2v4v1) = w(v1v2), y(v1v6v4v1) = w(v6v4), and y(v1v6v2v4v1) + y(v1v6v3v4v1) =
w(v4v1)−w(v1v2)−w(v6v4). If y(v1v6v3v4v1) is an integer, then y(C) is integral for all C ∈ C2.
So we assume that y(v1v6v3v4v1) is not integral. Then we can prove that both v6v2 and v3v2
are outside Cy

0 and that ν∗w(T ) is an integer. The proof is the same as that of (13), so we omit
the details here. Thus Claim 2 is established.

Since τw(F4\v6) > 0, from Claim 2, Lemma 3.2(iii) and Lemma 3.4(ii) we deduce that
D(T,w) has an integral optimal solution. This completes the proof of Lemma 4.5.

Lemma 4.7. If T2 = G3, then D(T,w) has an integral optimal solution.

Proof. It is routine to check that
• C2 = {v1v2v4v1, v1v6v3v1, v2v4v6v2, v3v4v6v3, v1v6v2v4v1, v1v6v3v4v1, v2v4v6v3v2, v1v6v3v2v4v1,

v1v2v4v6v3v1} and
• F2 = {{v2v4, v6v3}, {v1v2, v1v6, v4v6}, {v1v2, v6v2, v6v3}, {v1v6, v2v4, v3v4}, {v1v6, v2v4, v4v6},

{v1v6, v4v1, v4v6}, {v2v4, v3v1, v3v4}, {v3v1, v4v1, v4v6}, {v4v1, v4v6, v6v3},
{v4v1, v6v2, v6v3}, {v1v2, v3v1, v3v2, v3v4, v6v2}, {v1v2, v1v6, v3v2, v3v4, v6v2},
{v3v1, v3v2, v3v4, v4v1, v6v2}}.

We also have a computer verification of these results. So |C2| = 9 and |F2| = 13. Recall that
(b2, a2) = (v4, v5).

Let y be an optimal solution to D(T,w) such that
(1) y(C2) is maximized;
(2) subject to (1), (y(Dq), y(Dq−1), . . . , y(D3)) is minimized lexicographically;
(3) subject to (1) and (2), y(v1v6v3v4v1) is minimized; and
(4) subject to (1)-(3), y(v1v2v4v1) + y(v3v4v6v3) is minimized;
Let us make some simple observations about y.
(5) If K ∈ F2 satisfies y(C2) = w(K), then K is an MFAS. (The statement is exactly the

same as (4) in the proof of Lemma 4.3.)
(6) If y(v1v2v4v6v3v1) > 0, then each arc in the set {v1v6, v3v2, v3v4, v4v1, v6v2} is saturated

by y in G3. Furthermore, y(v1v6v2v4v1) = y(v1v6v3v4v1) = y(v1v6v3v2v4v1) = 0.
To justify this, note that each arc in the given set is a chord of the cycle v1v2v4v6v3v1. So

the first half follows instantly from Lemma 3.5(v). Once again let ⊎ stand for the multiset sum.
Then v1v2v4v6v3v1 ⊎ v1v6v2v4v1 = v1v2v4v1 ⊎ v1v6v3v1 ⊎ v2v4v6v2, v1v2v4v6v3v1 ⊎ v1v6v3v4v1 =
v1v2v4v1⊎v1v6v3v1⊎v3v4v6v3, and v1v2v4v6v3v1⊎v1v6v3v2v4v1 = v1v2v4v1⊎v1v6v3v1⊎v2v4v6v3v2.
It follows from the optimality of y that y(v1v6v2v4v1) = y(v1v6v3v4v1) = y(v1v6v3v2v4v1) = 0.
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(7) If y(v1v6v3v2v4v1) > 0, then each arc in the set {v1v2, v3v1, v3v4, v4v6, v6v2} is saturated
by y in G3. Furthermore, y(v2v4v6v2) = y(v3v4v6v3) = 0.

To justify this, note that each arc in the given set is a chord of the cycle v1v2v4v6v3v1. So
the first half follows instantly from Lemma 3.5(v). Observe that v1v6v3v2v4v1 ⊎ v3v4v6v3 =
v1v6v3v4v1⊎ v2v4v6v3v2 and v1v6v3v2v4v1⊎ v2v4v6v2 = v1v6v2v4v1⊎ v2v4v6v3v2. Since y satisfies
(2), it is clear that y(v2v4v6v2) = y(v3v4v6v3) = 0.

(8) If y(v1v6v3v4v1) > 0, then both v3v1 and v4v6 are saturated by y in G3; so is v1v2 if
y(v2v4v6v3v2) > 0. Furthermore, y(v2v4v6v2) = 0.

To justify this, note that both v3v1 and v4v6 are chords of the cycle v1v2v4v6v3v1, so they are
saturated by y in G3 by Lemma 3.5(v). Suppose y(v2v4v6v3v2) > 0. If v1v2 is not saturated by y
in T , then v1v6v3v4v1⊎v2v4v6v3v2⊎{v1v2} = v1v2v4v1⊎v3v4v6v3; if v1v2 is saturated by y in T but
contained in some cycle C ∈ Cy

0 , then the multiset sum of C, v1v6v3v4v1, and v2v4v6v3v2 contains
arc-disjoint cycles v1v2v4v1, v3v4v6v3, and C ′ = C[v4, v1] ∪ {v1v6, v6v3, v3v2, v2v4}. Thus we can
obtain an optimal solution y′ to D(T,w) that contradicts the assumption (3) on y. Moreover,
since v1v6v3v4v1 ⊎ v2v4v6v2 = v3v4v6v3 ⊎ v1v6v2v4v1, it follows from (3) that y(v2v4v6v2) = 0.

(9) If y(v1v6v2v4v1) > 0, then both v1v2 and v4v6 are saturated by y in G3; so is v3v1 if
y(v3v4v6v3) > 0 or y(v2v4v6v3v2) > 0.

The first half follows instantly from Lemma 3.5(v). To prove the second half, assume the
contrary. If v3v1 is not saturated by y in T , then v3v4v6v3 ⊎ v1v6v2v4v1 ⊎ {v3v1} = v2v4v6v2 ⊎
v1v6v3v1, and v2v4v6v3v2⊎v1v6v2v4v1⊎{v3v1} = v2v4v6v2⊎v1v6v3v1; if v3v1 is saturated by y in T
but contained in some cycle C in Cy

0 , then the multiset sum of C, v1v6v2v4v1, and v3v4v6v3 (resp.
v2v4v6v3v2) contains arc-disjoint cycles v2v4v6v2, v1v6v3v1, and C ′ = C[v4, v3] ∪ {v3v4} (resp.
C ′ = C[v4, v3] ∪ {v3v2, v2v4}). Since y satisfies (2), we have y(v3v4v6v3) = y(v2v4v6v3v2) = 0, a
contradiction.

(10) If y(v2v4v6v3v2) > 0, then both v3v4 and v6v2 are saturated by y in G3 by Lemma
3.5(v).

(11) If v1v6 is contained in a cycle in Cy
0 , then both v4v1 and v4v6 are saturated by y in G3.

Since both C[v1, v4] ∪ {v4v1} and C[v6, v4] ∪ {v4v6} are cycles in C2, the statement follows
instantly from Lemma 3.5(iv).

(12) If v6v3 is contained in a cycle in Cy
0 , then v4v6 is saturated by y in G3; so is v1v6 or

v4v1.
The first half follows instantly from Lemma 3.5(iv). To prove the second half, we may

assume, by (11), that v1v6 is outside Cy
0 . Let C be a cycle in Cy

0 containing v6v3. Then both
C[v6, v4] ∪ {v4v6} and C[v6, v4] ∪ {v4v1, v1v6} are cycles in C2. Thus, by Lemma 3.5(iv), v4v6
and at least one of v1v6 and v4v1 are saturated by y in G3.

Claim 1. y(C2) = τw(G3\v5).
To justify this, observe that v2v4 is a special arc of T and v2 is a near-sink. By Lemma 3.4(iv),

we may assume that v2v4 is saturated by y in T . Let G2 = {{v1v2, v1v6, v4v6}, {v1v2, v6v2, v6v3},
{v2v4, v3v1, v3v4}, {v3v1, v4v1, v4v6}}. Then G2 ⊂ F2. Observe that

(13) if y(v1v2v4v6v3v1) = 0, then for each K ∈ G2, not all arcs in K are saturated by y in
G3.

Suppose the contrary: all arcs in K are saturated by y in G3. Examining cycles in C2, we see
that y(C2) = w(K). By (5), K is an MFAS and hence y(C2) = τw(G3\v5). So we may assume
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that (13) holds.
Depending on whether v2v4 is outside Cy

0 , we distinguish between two cases.
Case 1.1. v2v4 is contained in some cycle in Cy

0 .
We proceed by considering four subcases.
• Neither v4v1 nor v4v6 is saturated by y in G3. In this subcase, by Lemma 3.5(iii) and

(iv), both v1v2 and v6v2 are saturated by y in G3. By (6)-(9), y(v1v2v4v6v3v1), y(v1v6v3v2v4v1),
y(v1v6v3v4v1), and y(v1v6v2v4v1) are all zero. By (12) and (13), v6v3 is outside Cy

0 and not
saturated by y. By Lemma 3.5(iii), both v3v2 and v3v4 are saturated by y in G3. By Lemma
3.5(i) and (iii), at least one of v1v6 and v3v1 is saturated by y in G3. Thus y(C2) = w(K),
where K is {v1v2, v1v6, v3v2, v3v4, v6v2} or {v1v2, v3v1, v3v2, v3v4, v6v2}. By (5), K is an MFAS
and hence y(C2) = τw(G3\v5).

• v4v6 is saturated by y in G3 while v4v1 is not. In this subcase, by Lemma 3.5(iii), v1v2
is saturated by y in G3. By (6), we have y(v1v2v4v6v3v1) = 0. By (11) and (13), v1v6 is
outside Cy

0 and not saturated by y. By Lemma 3.5(i) and (iii), v6v2 is saturated by y in G3.
So, by (12) and (13), v6v3 is outside Cy

0 and not saturated by y. It follows from Lemma 3.5(i)
and (iii) that v3v1, v3v2, and v3v4 are all saturated by y in G3. Thus y(C2) = w(K), where
K = {v1v2, v3v1, v3v2, v3v4, v6v2}. By (5), K is an MFAS and hence y(C2) = τw(G3\v5).

• v4v1 is saturated by y in G3 while v4v6 is not. In this subcase, by Lemma 3.5(iii), v6v2 is
saturated by y in G3. By (7)-(9), y(v1v6v3v2v4v1), y(v1v6v3v4v1), and y(v1v6v2v4v1) are all zero.
By (12), v6v3 is outside Cy

0 . Furthermore, we may assume that v6v3 is not saturated by y, for
otherwise y(C2) = w(K), where K = {v4v1, v6v2, v6v3}. Then, by Lemma 3.5(iii) and (iv), both
v3v2 and v3v4 are saturated by y in G3. If v3v1 is also saturated by y in G3, then y(C2) = w(K),
where K = {v3v1, v3v2, v3v4, v4v1, v6v2}; otherwise, by Lemma 3.5(i) and (iii), both v1v2 and
v1v6 are saturated by y in G3. So y(C2) = w(J), where J = {v1v2, v1v6, v3v2, v3v4, v6v2}.

• Both v4v1 and v4v6 are saturated by y in G3. In this subcase, if y(v1v2v4v6v3v1) > 0, then
v1v6 is saturated by y in G3 and y(v1v6v2v4v1) = y(v1v6v3v4v1) = y(v1v6v3v2v4v1) = 0 by (6).
Thus y(C2) = w(K), where K = {v4v1, v4v6, v1v6}. So we assume that y(v1v2v4v6v3v1) = 0.
Then v3v1 is not saturated by y in G3 by (13). Thus y(v1v6v3v2v4v1) = y(v1v6v3v4v1) = 0
by (7) and (8). If y(v1v6v2v4v1) > 0, then v1v2 is saturated by y in G3 and y(v3v4v6v3) =
y(v2v4v6v3v2) = 0 by (9). By (13), v1v6 is not saturated by y in G3. Hence, by Lemma
3.5(iii), v6v3 is saturated by y in G3. Therefore, y(C2) = w(K), where K = {v4v1, v4v6, v6v3}.
So we may assume that y(v1v6v2v4v1) = 0 and that v1v6 is not saturated by y in G3, for
otherwise y(C2) = w(K), where K = {v4v1, v4v6, v1v6}. Thus, by Lemma 3.5(iii) and (iv), v6v3
is saturated by y in G3. We may further assume that v6v2 is not saturated by y in G3, for
otherwise, y(C2) = w(J), where J = {v4v1, v6v2, v6v3}. Then y(v2v4v6v3v2) = 0 by (10). We
propose to show that

(14) y(v3v4v6v3) = 0.
Assume the contrary: y(v3v4v6v3) > 0. Since neither v1v6 nor v3v1 is saturated by y in G3,

we distinguish among four subsubcases.
(a) Neither v1v6 nor v3v1 is saturated by y in T . In this subsubcase, set θ = min{w(v1v6)−

z(v1v6), w(v3v1)−z(v3v1), y(v3v4v6v3)}. Let y′ be obtained from y by replacing y(v3v4v6v3) and
y(v1v6v3v1) with y(v3v4v6v3) − θ and y(v1v6v3v1) + θ, respectively. Then y′ is also an optimal
solution to D(T,w) with y′(v3v4v6v3) < y(v3v4v6v3), contradicting (4).

(b) v3v1 is not saturated by y in T and v1v6 is contained in some cycle C1 ∈ Cy
0 . In this
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subsubcase, since v6v3 is saturated by y in G3, cycle C1 contains the path v6v2v4. Thus the
multiset sum of C1, v3v4v6v3, and v3v1 contains two arc-disjoint cycles v2v4v6v2 and v1v6v3v1.
By Lemma 3.5(iv), we have y(v3v4v6v3) = 0, a contradiction.

(c) v1v6 is not saturated by y in T and v3v1 is contained in some cycle C2 ∈ Cy
0 . In this

subsubcase, it is clear that C2 contains the path v1v2v4. Observe that the multiset sum of
C2, v3v4v6v3, and the unsaturated v1v6 contains two arc-disjoint cycles v1v6v3v1 and C ′

2 =
C2[v4, v3] ∪ {v3v4}. Set θ = min{y(C2), y(v3v4v6v3), w(v1v6) − z(v1v6)}. Let y′ be obtained
from y by replacing y(C2), y(v3v4v6v3), y(v1v6v3v1), and y(C ′

2) with y(C2)− θ, y(v3v4v6v3)− θ,
y(v1v6v3v1)+θ, and y(C ′

2)+θ, respectively. Then y′ is also an optimal solution to D(T,w) with
y′(v3v4v6v3) < y(v3v4v6v3), contradicting (4).

(d) v1v6 and v3v1 are contained in some cycles C1 and C2 in Cy
0 , respectively. In this

subsubcase, if v3v1 is also on C1, then the multiset sum of C1 and v3v4v6v3 contains arc-disjoint
cycles v1v6v3v1, v2v4v6v2, and C ′

1 = C1[v4, v3]∪{v3v4}. From the optimality of y, we deduce that
y(v3v4v6v3) = 0. If v3v1 is outside C1, then the multiset sum of C1, C2, and v3v4v6v3 contains
arc-disjoint cycles v1v6v3v1, v2v4v6v2, C

′
1 = C1[v4, v1]∪{v1v2, v2v4}, and C ′

2 = C2[v4, v3]∪{v3v4}.
From the optimality of y, we again deduce that y(v3v4v6v3) = 0.

By (14), we have y(C2) = w(K), where K = {v4v1, v4v6, v6v3}. So K is an MFAS by (5) and
hence y(C2) = τw(G3\v5).

Case 1.2. v2v4 is outside Cy
0 .

In this case, v2v4 is saturated by y in G3, and v1v2, v3v2, and v6v2 are all outside Cy
0 . Since

Cy
0 ̸= ∅, there exists a cycle C ∈ Cy

0 containing v3v4. From (6), (7), and (10), we see that
y(v1v2v4v6v3v1), y(v1v6v3v2v4v1), and y(v2v4v6v3v2) are all zero. If v6v3 is also saturated by y
in G3, then y(C2) = w(K), where K = {v2v4, v6v3}. So we assume that v6v3 is not saturated by
y in G3. By Lemma 3.5(iii) and (iv), v4v6 is saturated by y in G3.

Assume first that v4v1 is not saturated by y in G3. Then, by Lemma 3.5(iii) and (iv), v1v6
is saturated by y in G3. By (13), v1v2 is not saturated by y in G3 and hence in T . By (9),
y(v1v6v2v4v1) = 0. If v6v3 is not saturated by y in T , then the multiset sum of C, v2v4v6v2, and
the unsaturated arcs v6v3, v4v1, and v1v2 contains two arc-disjoint cycles v1v2v4v1 and v3v4v6v3;
if v6v3 is saturated by y in T but contained in some cycle C in Cy

0 , then the multiset sum of
C, v2v4v6v2, and the unsaturated arcs v4v1 and v1v2 contains two arc-disjoint cycles v1v2v4v1
and v3v4v6v3. By Lemma 3.5(vi), we have y(v2v4v6v2) = 0 in either subcase. So y(C2) = w(K),
where K = {v1v6, v4v6, v2v4}.

Assume next that v4v1 is saturated by y in G3. Then, by (13), v3v1 and at least one of
v1v2 and v1v6 are not saturated by y in G3. By Lemma 3.5(iii) and (iv), both v3v1 and v1v6
are outside Cy

0 ; using Lemma 3.5(i) and (iii), we further deduce that v1v6 is saturated by y
in G3. Thus, by (13), v1v2 is not saturated by y in G3. It follows from (8) and (9) that
y(v1v6v3v4v1) = y(v1v6v2v4v1) = 0. Therefore y(C2) = w(K), where K = {v1v6, v4v1, v4v6}. So
K is an MFAS by (5) and hence y(C2) = τw(G3\v5). This proves Claim 1.

Claim 2. y(C) is integral for all C ∈ C2 or ν∗w(T ) is an integer.
To justify this, we may assume that
(15) y(v1v2v4v6v3v1) = y(v1v6v3v2v4v1) = 0.
Assume the contrary: y(v1v2v4v6v3v1) = 0. Then, from (6) we deduce that y(v1v6v2v4v1) =

y(v1v6v3v4v1) = y(v1v6v3v2v4v1) = 0 and that each arc in the set {v1v6, v3v2, v3v4, v4v1, v6v2} is
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saturated by y in G3. So y(v1v2v4v1) = w(v4v1), y(v1v6v3v1) = w(v1v6), y(v3v4v6v3) = w(v3v4),
y(v2v4v6v2) = w(v6v2), and y(v2v4v6v3v1) = w(v3v2). By Claim 1, y(C2) is an integer; so is
y(v1v2v4v6v3v1). Thus Lemma 3.2(iii) allows us to assume that y(v1v2v4v6v3v1) = 0.

If y(v1v6v3v2v4v1) > 0, then from (7) we deduce that y(v2v4v6v2) = y(v3v4v6v3) = 0 and that
each arc in the set {v1v2, v3v1, v3v4, v4v6, v6v2} is saturated by y inG3. So y(v1v2v4v1) = w(v1v2),
y(v1v6v3v1) = w(v3v1), y(v1v6v3v4v1) = w(v3v4), y(v1v6v2v4v1) = w(v6v2), and y(v2v4v6v3v2) =
w(v4v6). By Claim 1, y(C2) is an integer; so is y(v1v6v3v2v4v1). Thus Lemma 3.2(iii) allows us
to further assume that y(v1v6v3v2v4v1) = 0.

By Claim 1, y(C2) = w(K) for some K ∈ F2. Depending on what K is, we distinguish among
13 cases.

Case 2.1. K = {v1v6, v2v4, v4v6}.
In this case, by Lemma 3.1 (i), we have y(v2v4v6v2) = y(v1v6v2v4v1) = y(v2v4v6v3v2) =

y(v1v6v3v2v4v1) = y(v1v2v4v6v3v1) = 0. By Lemma 3.1 (iii), we obtain w(e) = y(C2(e)) for each
e ∈ K, which together with (15) yields the following equations: y(v1v6v3v1) + y(v1v6v3v4v1) =
w(v1v6), y(v1v2v4v1) = w(v2v4), and y(v3v4v6v3) = w(v4v6). If y(v1v6v3v4v1) > 0, then by (8)
we have one more equation y(v1v6v3v1) = w(v3v1). So y(C) is integral for any C ∈ C2, no matter
whether y(v1v6v3v4v1) = 0.

Case 2.2. K = {v4v1, v4v6, v6v3}.
In this case, by Lemma 3.1 (i), we have y(v3v4v6v3) = y(v1v6v3v4v1) = y(v2v4v6v3v2) =

y(v1v6v3v2v4v1) = y(v1v2v4v6v3v1) = 0. By Lemma 3.1 (iii), we obtain w(e) = y(C2(e)) for each
e ∈ K, which together with (15) yields the following equations: y(v1v2v4v1) + y(v1v6v2v4v1) =
w(v4v1), y(v2v4v6v2) = w(v4v6), and y(v1v6v3v1) = w(v6v3). If y(v1v6v2v4v1) > 0, then by (9)
we have one more equation y(v1v2v4v1) = w(v1v2). So y(C) is integral for any C ∈ C2, no matter
whether y(v1v6v2v4v1) = 0.

Case 2.3. K = {v1v2, v3v1, v3v2, v3v4, v6v2}.
In this case, by Lemma 3.1 (iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which to-

gether with (15) yields the following equations: y(v1v2v4v1) = w(v1v2), y(v1v6v3v1) = w(v3v1),
y(v2v4v6v3v2) = w(v3v2), y(v3v4v6v3)+y(v1v6v3v4v1) = w(v3v4), and y(v2v4v6v2)+y(v1v6v2v4v1)
= w(v6v2). Observe that if y(v1v6v3v4v1) > 0, then by (8) we have y(v3v4v6v3) = w(v4v6) −
w(v3v2) and y(v2v4v6v2) = 0; if y(v1v6v3v4v1) = 0 and y(v1v6v2v4v1) > 0, then by (9) we have
y(v2v4v6v2) = w(v4v6) − w(v3v2) − w(v3v4). So y(C) is integral for any C ∈ C2, no matter
whether y(v1v6v2v4v1) or y(v1v6v3v4v1) is zero.

Case 2.4. K = {v1v2, v1v6, v3v2, v3v4, v6v2}.
In this case, by Lemma 3.1 (i), we have y(v1v6v3v4v1) = y(v1v6v2v4v1) = 0. By Lemma

3.1 (iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which together with (15) yields the fol-
lowing equations: y(v1v2v4v1) = w(v1v2), y(v1v6v3v1) = w(v1v6), y(v2v4v6v3v2) = w(v3v2),
y(v3v4v6v3) = w(v3v4), and y(v2v4v6v2) = w(v6v2). Hence y(C) is integral for all C ∈ C2.

Case 2.5. K = {v3v1, v3v2, v3v4, v4v1, v6v2}.
In this case, by Lemma 3.1 (i), we have y(v1v6v3v4v1) = 0. By Lemma 3.1 (iii), we ob-

tain w(e) = y(C2(e)) for each e ∈ K, which together with (15) yields the following equations:
y(v1v6v3v1) = w(v3v1), y(v2v4v6v3v2) = w(v3v2), y(v3v4v6v3) = w(v3v4), y(v1v2v4v1) = w(v4v1),
and y(v2v4v6v2) + y(v1v6v2v4v1) = w(v6v2). Observe that if y(v1v6v2v4v1) > 0, then by (9) we
have y(v2v4v6v2) = w(v4v6) − w(v3v2) − w(v3v4). So y(C) is integral for all C ∈ C2, no matter
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whether y(v1v6v2v4v1) is zero.
Case 2.6. K = {v1v6, v2v4, v3v4}.
In this case, by Lemma 3.1 (i), we have y(v1v6v2v4v1) = y(v1v6v3v4v1) = 0. By Lemma 3.1

(iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which together with (15) yields the following
equations: y(v1v6v3v1) = w(v1v6), y(v1v2v4v1) + y(v2v4v6v2) + y(v2v4v6v3v2) = w(v2v4), and
y(v3v4v6v3) = w(v3v4). If y(v2v4v6v3v2) > 0, then y(v2v4v6v2) = w(v6v2) by (10). Since v4v1 and
v1v2 are outside Cy

0 and y satisfies (2), it is easy to see that y(v1v2v4v1) = min{w(v1v2), w(v4v1)}.
So y(C) is integral for all C ∈ C2. Thus we may assume that y(v2v4v6v3v2) = 0. Since both
v4v6 and v6v2 are outside Cy

0 , by (4) we have y(v2v4v6v2) = min{w(v6v2), w(v4v6)−w(v3v4)}. It
follows that y(C) is integral for all C ∈ C2.

Case 2.7. K = {v2v4, v3v1, v3v4}.
In this case, by Lemma 3.1 (iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which to-

gether with (15) yields the following equations: y(v1v2v4v1) + y(v2v4v6v2) + y(v1v6v2v4v1) +
y(v2v4v6v3v2) = w(v2v4), y(v1v6v3v1) = w(v3v1), and y(v3v4v6v3) + y(v1v6v3v4v1) = w(v3v4).

Assume first that y(v1v6v3v4v1) > 0. Then, by (8), we have y(v2v4v6v2) = 0 and y(v3v4v6v3)+
y(v2v4v6v3v2) = w(v4v6). If y(v2v4v6v3v2) > 0, then, by (8) and (10), we obtain y(v1v2v4v1) =
w(v1v2) and y(v1v6v2v4v1) = w(v6v2); if y(v2v4v6v3v2) = 0 and y(v1v6v2v4v1) > 0, then, by (9),
we get y(v1v2v4v1) = w(v1v2), y(v1v6v2v4v1) = w(v2v4) − w(v1v2), and y(v3v4v6v3) = w(v4v6);
if y(v1v6v2v4v1) = y(v2v4v6v3v2) = 0, then y(v1v2v4v1) = w(v2v4), and y(v3v4v6v3) = w(v4v6).
Thus y(C) is integral for all C ∈ C2 in any subcase.

Assume next that y(v1v6v3v4v1) = 0. If y(v1v6v2v4v1) > 0, then, by (9), we have y(v1v2v4v1) =
w(v1v2) and y(v2v4v6v2) + y(v2v4v6v3v2) = w(v4v6)− y(v3v4v6v3) = w(v4v6)− w(v3v4), and so
y(v1v6v2v4v1) = w(v2v4)+w(v3v4)−w(v1v2)−w(v4v6). Observe that if y(v2v4v6v3v2) > 0, then
we have one more equation y(v2v4v6v2)+y(v1v6v2v4v1) = w(v6v2) by (10). Thus y(C) is integral
for all C ∈ C2, no matter whether y(v2v4v6v3v2) = 0. So we assume that y(v1v6v2v4v1) = 0.
If y(v2v4v6v3v2) > 0, then y(v2v4v6v2) = w(v6v2) and y(v1v2v4v1) + y(v2v4v6v3v2) = w(v2v4)−
w(v6v2); if y(v2v4v6v3v2) = 0, then y(v1v2v4v1) + y(v2v4v6v2) = w(v2v4). Since y satisfies
(2) and (4) and since v4v1, v4v6, v1v2, and v6v2 are all outside Cy

0 , if y(v1v2v4v1) > 0, then
y(v1v2v4v1) = min{w(v4v1), w(v1v2)} or y(v2v4v6v2) = min{w(v4v6) − y(v3v4v6v3), w(v6v2)},
regardless of the value of y(v2v4v6v3v2). Hence y(C) is integral for all C ∈ C2.

Case 2.8. K = {v1v2, v6v2, v6v3}.
In this case, by Lemma 3.1 (iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which together

with (15) yields the following equations: y(v1v2v4v1) = w(v1v2), y(v2v4v6v2) + y(v1v6v2v4v1) =
w(v6v2), and y(v1v6v3v1) + y(v3v4v6v3) + y(v1v6v3v4v1) + y(v2v4v6v3v2) = w(v6v3). Depending
on the value of y(v1v6v3v4v1), we consider two subcases.

• y(v1v6v3v4v1) > 0. In this subcase, by (8), we have y(v2v4v6v2) = 0, y(v1v6v3v1) = w(v3v1),
and y(v3v4v6v3) + y(v2v4v6v3v2) = w(v4v6). So y(v1v6v3v4v1) = w(v6v3) − w(v3v1) − w(v4v6).
Observe that if y(v2v4v6v3v2) > 0, then we have one more equation y(v3v4v6v3) = w(v3v4) −
y(v1v6v3v4v1) by (10). So y(C) is integral for all C ∈ C2, no matter whether y(v2v4v6v3v2) = 0.

• y(v1v6v3v4v1) = 0. In this subcase, assume first that y(v1v6v2v4v1) > 0. If y(v3v4v6v3) > 0
or y(v2v4v6v3v2) > 0, then, by (9), we have y(v1v6v3v1) = w(v3v1), y(v3v4v6v3)+y(v2v4v6v3v2) =
w(v6v3) − w(v3v1), and y(v2v4v6v2) = w(v4v6) + w(v3v1) − w(v6v3). If y(v2v4v6v3v2) > 0,
then y(v3v4v6v3) = w(v3v4) by (10). Thus y(v2v4v6v3v2) and y(v1v6v2v4v1) are integral. If
y(v3v4v6v3) = y(v2v4v6v3v2) = 0, then y(v2v4v6v2) = w(v4v6) and y(v1v6v2v4v1) = w(v6v2) −
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w(v4v6). So y(C) is integral for all C ∈ C2 in any subsubcase. Assume next that y(v1v6v2v4v1) =
0. If y(v2v4v6v3v2) > 0, then y(v3v4v6v3) = w(v3v4) by (10) and y(v1v6v3v1) + y(v2v4v6v3v2) =
w(v6v3) − w(v3v4); if y(v2v4v6v3v2) = 0, then y(v1v6v3v1) + y(v3v4v6v3) = w(v6v3). Note that
both v3v1 and v1v6 are outside Cy

0 . As y satisfies (2) and (4), we deduce that y(v1v6v3v1) =
min{w(v1v6), w(v3v1)}, no matter whether y(v2v4v6v3v2) > 0. Hence y(C) is integral for all
C ∈ C2.

Case 2.9. K = {v4v1, v6v2, v6v3}.
In this case, by Lemma 3.1 (i), we have y(v1v6v2v4v1) = y(v1v6v3v4v1) = 0. By Lemma 3.1

(iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which together with (15) yields the following
equations: y(v1v2v4v1) = w(v4v1), y(v2v4v6v2) = w(v6v2), and y(v1v6v3v1) + y(v3v4v6v3) +
y(v2v4v6v3v2) = w(v6v3). If y(v2v4v6v3v2) > 0, then y(v3v4v6v3) = w(v3v4) by (10), so
y(v1v6v3v1) + y(v2v4v6v3v2) = w(v6v3) − w(v3v4); if y(v2v4v6v3v2) > 0, then y(v1v6v3v1) +
y(v2v4v6v3v2) = w(v6v3). Clearly, v1v6 is outside Cy

0 . We propose to show that
(16) y(v1v6v3v1) is integral.
Suppose on the contrary that y(v1v6v3v1) is not integral. If v3v1 is outside Cy

0 , then from (2)
and (4) we deduce that y(v1v6v3v1) = min{w(v3v1), w(v1v6)}, a contradiction. So we assume
that v3v1 is contained in some cycle C in Cy

0 . Then C contains the path v1v2v4. Set C ′ =
C[v4, v3] ∪ {v3v2, v2v4} if y(v2v4v6v3v2) > 0 and C ′ = C[v4, v3] ∪ {v3v4} otherwise, and set
θ = min{[y(v2v4v6v3v2)], y(C)} if y(v2v4v6v3v2) > 0 and θ = min{[y(v3v4v6v3)], y(C)} otherwise.
Let y′ be obtained from y by replacing y(v2v4v6v3v2) (resp. y(v3v4v6v3)), y(v1v6v3v1), y(C),
and y(C ′) with y(v2v4v6v3v2)−θ (resp. y(v3v4v6v3)−θ), y(v1v6v3v1)+θ, y(C)−θ, and y(C ′)+θ,
respectively. Then y′(v2v4v6v3v2) < y(v2v4v6v3v2) or y′(v3v4v6v3) < y(v3v4v6v3), contradicting
(2) or (4). So (16) is established.

From (16) it follows that y(C) is integral for all C ∈ C2.
Case 2.10. K = {v2v4, v6v3}.
In this case, by Lemma 3.1 (i), we have y(v2v4v6v3v2) = 0. By Lemma 3.1 (iii), we ob-

tain w(e) = y(C2(e)) for each e ∈ K, which together with (15) yields the following equa-
tions: y(v1v2v4v1) + y(v2v4v6v2) + y(v1v6v2v4v1) = w(v2v4) and y(v1v6v3v1) + y(v3v4v6v3) +
y(v1v6v3v4v1) = w(v6v3). It follows that all arcs in G3\v5 are outside Cy

0 except possibly
v3v4. If y(v1v6v3v4v1) > 0, then, by (8), we have y(v2v4v6v2) = 0, y(v1v6v3v1) = w(v3v1),
and y(v3v4v6v3) = w(v4v6). Observe that if y(v1v6v2v4v1) > 0, then we have one more
equation y(v1v2v4v1) = w(v1v2). Thus y(C) is integral for all C ∈ C2, no matter whether
y(v1v6v2v4v1) = 0. So we assume that y(v1v6v3v4v1) = 0.

If y(v1v6v2v4v1) > 0, then, by (9), we obtain y(v1v2v4v1) = w(v1v2) and y(v2v4v6v2) +
y(v3v4v6v3) = w(v4v6). Furthermore, y(v1v6v3v1) = w(v3v1) if y(v3v4v6v3) > 0 and y(v1v6v3v1) =
w(v6v3) otherwise. Hence y(C) is integral for all C ∈ C2, no matter whether y(v3v4v6v3) = 0.
So we may assume that y(v1v6v2v4v1) = 0.

If y(v3v4v6v3) = 0, then y(v1v6v3v1) = w(v6v3). Recall that both v4v6 and v6v2 are outside
Cy
0 . If y(v1v2v4v1) > 0, then from (4) we deduce that y(v2v4v6v2) = min{w(v4v6), w(v6v2)}.

Hence y(C) is integral for all C ∈ C2, no matter whether y(v1v2v4v1) > 0. It remains to
consider the subcase when y(v3v4v6v3) > 0. Since both v3v1 and v1v6 are outside Cy

0 , from (4)
we deduce that y(v1v6v3v1) = min{w(v3v1), w(v1v6)}. If y(v1v2v4v1) = 0, then y(v2v4v6v2) =
w(v2v4); otherwise, by (4), at least one of v4v6 and v6v2 is saturated by y in G3. It follows that
y(v2v4v6v2) = min{w(v6v2), w(v4v6) − y(v3v4v6v3)}. Hence y(C) is integral for all C ∈ C2, no
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matter whether y(v1v2v4v1) = 0.
Case 2.11. K = {v3v1, v4v1, v4v6}.
In this case, by Lemma 3.1 (iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which together

with (15) yields the following equations: y(v1v6v3v1) = w(v3v1), y(v1v2v4v1) + y(v1v6v2v4v1) +
y(v1v6v3v4v1) = w(v4v1), and y(v2v4v6v2) + y(v3v4v6v3) + y(v2v4v6v3v2) = w(v4v6). Depending
on the value of y(v1v6v3v4v1), we consider two subcases.

• y(v1v6v3v4v1) > 0. In this subcase, y(v2v4v6v2) = 0 by (8). If y(v2v4v6v3v2) > 0, then,
by (8) and (10), we have y(v1v2v4v1) = w(v1v2), y(v1v6v2v4v1) = w(v6v2), and y(v3v4v6v3) =
w(v3v4). Hence y(C) is integral for all C ∈ C2. So we assume that y(v2v4v6v3v2) = 0. Then
y(v3v4v6v3) = w(v4v6). Depending on the value of y(v1v6v2v4v1), we distinguish between two
subsubcases.

(a) y(v1v6v2v4v1) > 0. By (9), y(v1v2v4v1) = w(v1v2) and y(v1v6v2v4v1) + y(v1v6v3v4v1) =
w(v4v1) − w(v1v2). If y(v1v6v2v4v1) is integral, then y(C) is integral for all C ∈ C2. So we
assume that y(v1v6v2v4v1) is not integral. By Lemma 3.2(iii), we may assume that w(v3v1),
w(v1v2), and w(v4v6) are all zero. Observe that v6v2 is outside Cy

0 , for otherwise, let C be a
cycle in Cy

0 containing v6v2. Then C passes through v2v4. Let C ′ = C[v4, v6] ∪ {v6v3, v3v4},
let θ = min{y(C), y(v1v6v3v4v1)}, and let y′ be obtained from y by replacing y(v1v6v3v4v1),
y(v1v6v2v4v1), y(C), and y(C ′) with y(v1v6v3v4v1)−θ, y(v1v6v2v4v1)+θ, y(C)−θ, and y(C ′)+θ,
respectively. Then y′ is also an optimal solution to D(T,w) with y′(v1v6v3v4v1) < y(v1v6v3v4v1),
contradicting (3). Similarly, we can prove that v3v2 is outside Cy

0 . Thus w(v3v2) = z(v3v2) = 0.
We propose to show that

(17) ν∗w(T ) is an integer.
To justify this, let x be an optimal solution to P(T,w). Since y(v1v6v2v4v1) > 0 and

y(v1v6v3v4v1) > 0, by Lemma 3.1(i) we have x(v6v2) + x(v2v4) = x(v6v3) + x(v3v4). Since
y(v1v6v2v4v1) < w(v6v2), by Lemma 3.1(ii) we obtain x(v6v2) = 0, which implies x(v2v4) =
x(v6v3) + x(v3v4). Since v6v2 is outside Cy

0 , for each vertex u in V (T1)\{b, a1}, we obtain
x(uv6) = x(uv2). Let T ′ = (V ′, A′) be obtained from T by deleting vertex v2, let w′ be
obtained from the restriction of w to A′ by replacing w(uv6) with w(uv6) + w(uv2) for each u
in V (T1)\{b, a1} and replacing w(vivj) with w(vivj) +w(v2v4) for (i, j) = (6, 3) or (3, 4). Let x′

be the restriction of x to A′ and let y′ be defined from y as follows: for each cycle C passing
through uv2v4 with u ∈ V (T1)\{b, a1}, let C ′ be the cycle arising from C by replacing uv2v4
with uv6v3v4, and set y′(C ′) = y(C)+y(C ′) and y′(v1v6v3v4v1) = y(v1v6v3v4v1)+y(v1v6v2v4v1).
Then x′ and y′ are optimal solutions to P(T ′,w′) and D(T ′,w′), respectively, with the same
value ν∗w(T ) as x and y. Hence ν∗w(T ) is an integer by the hypothesis of Theorem 1.5. So (17)
follows.

(b) y(v1v6v2v4v1) = 0. Then y(v1v2v4v1) + y(v1v6v3v4v1) = w(v4v1). If y(v1v2v4v1) is
integral, then y(C) is integral for all C ∈ C2. So we assume that y(v1v2v4v1) is not integral.
Observe that v1v2 is outside Cy

0 , for otherwise, let C be a cycle in Cy
0 containing v1v2. Since

the multiset sum of C and v1v6v3v4v1 contains arc-disjoint cycles v1v2v4v1 and C ′ = C[v4, v1] ∪
{v1v6, v6v3, v3v4}. By Lemma 3.5(vi), we have y(C) = 0, a contradiction. Similarly, we can
prove that v6v2 and v3v2 are outside Cy

0 as well. Thus w(viv2) = z(viv2) = 0 for i = 3, 6. We
propose to show that

(18) ν∗w(T ) is an integer.
To justify this, let x be an optimal solution to P(T,w). Since both y(v1v2v4v1) and
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y(v1v6v3v4v1) are positive, by Lemma 3.1(i) we have x(v1v2) + x(v2v4) = x(v1v6) + x(v6v3) +
x(v3v4). Since y(v1v2v4v1) < w(v1v2), by Lemma 3.1(ii) we obtain x(v1v2) = 0, which im-
plies that x(v2v4) = x(v1v6) + x(v6v3) + x(v3v4). Since v1v2 is outside Cy

0 , for each vertex
u ∈ V (T1)\{b, a1}, we obtain x(uv1) = x(uv2). Let T

′ = (V ′, A′) be obtained from T by deleting
vertex v2, and let w′ be the restriction of w to A′ by replacing w(uv1) with w(uv1)+w(uv2) for
each u ∈ V (T1)\{b, a1} and replacing w(vivj) with w(vivj)+w(v2v4) for (i, j) = (1, 6), (6, 3), and
(3, 4). Let x′ be the restriction of x to A′ and let y′ be defined from y as follows: for each cycle
C passing through uv2v4 with u ∈ V (T1)\{b, a1}, let C ′ be obtained from C by replacing uv2v4
with uv1v6v3v4, and set y′(C ′) = y(C)+y(C ′) and y′(v1v6v3v4v1) = y(v1v6v3v4v1)+y(v1v2v4v1).
Then x′ and y′ are optimal solutions to P(T ′,w′) and D(T ′,w′), respectively, with the same
value ν∗w(T ) as x and y. Hence ν∗w(T ) is an integer by the hypothesis of Theorem 1.5. This
proves (18).

• y(v1v6v3v4v1) = 0. In this subcase, y(v1v2v4v1) = w(v1v2). By (9), if y(v1v6v2v4v1) > 0,
then y(v1v6v2v4v1) = w(v4v1)−w(v1v2); otherwise, y(v1v2v4v1) = w(v4v1). If y(v2v4v6v3v2) > 0,
then, by (10), we have y(v3v4v6v3) = w(v3v4), y(v2v4v6v2) = w(v6v2) − y(v1v6v2v4v2), and
y(v2v4v6v3v2) = w(v4v6) − w(v3v4) − y(v2v4v6v2). Hence y(C) is integral for all C ∈ C2. So
we assume that y(v2v4v6v3v2) = 0. Thus y(v2v4v6v2) + y(v3v4v6v3) = w(v4v6). If y(v2v4v6v2)
is integral, then y(C) is integral for all C ∈ C2. So we further assume that y(v2v4v6v2) is not
integral. By Lemma 3.2(iii), we may assume that w(v3v1) = w(v4v1) = 0. Observe that v6v2 is
outside Cy

0 , for otherwise, let C be a cycle in Cy
0 containing v6v2. Then C passes through v2v4.

Let C ′ = C[v4, v6] ∪ {v6v3, v3v4}, let θ = min{y(C), y(v3v4v6v3)}, and let y′ be obtained from
y by replacing y(v3v4v6v3), y(v2v4v6v2), y(C), and y(C ′) with y(v3v4v6v3)− θ, y(v2v4v6v2) + θ,
y(C) − θ, and y(C ′) + θ, respectively. Then y′ is also an optimal solution to D(T,w) with
y′(v3v4v6v3) < y(v3v4v6v3), contradicting (4). Similarly, we can show that v3v2 is outside Cy

0 .
So w(v3v2) = z(v3v2) = 0. Moreover, ν∗w(T ) is an integer; the proof is the same as that of (17)
(with y(v2v4v6v2) and y(v3v4v6v3) in place of y(v1v6v2v4v1) and y(v1v6v3v4v1), respectively), so
we omit the details here.

Case 2.12. K = {v1v6, v4v1, v4v6}.
In this case, by Lemma 3.1 (i), we have y(v1v6v2v4v1) = y(v1v6v3v4v1) = 0. By Lemma 3.1

(iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which together with (15) yields the following
equations: y(v1v6v3v1) = w(v1v6), y(v1v2v4v1) = w(v4v1), and y(v2v4v6v2) + y(v3v4v6v3) +
y(v2v4v6v3v2) = w(v4v6). If y(v2v4v6v3v2) > 0, then, by (10), we have y(v2v4v6v2) = w(v6v2) and
y(v3v4v6v3) = w(v3v4), so y(v2v4v6v3v2) = w(v4v6)−w(v6v2)−w(v3v4). Hence y(C) is integral
for all C ∈ C2, It remains to assume that y(v2v4v6v3v2) = 0. Then y(v2v4v6v2) + y(v3v4v6v3) =
w(v4v6). If y(v2v4v6v2) is integral, then y(C) is integral for all C ∈ C2. So we further assume
that y(v2v4v6v2) is not integral. Then we can prove that ν∗w(T ) is an integer; the proof is the
same as that of (17), so we omit the details here.

Case 2.13. K = {v1v2, v1v6, v4v6}.
In this case, by Lemma 3.1 (iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which together

with (15) yields the following equations: y(v1v2v4v1) = w(v1v2), y(v1v6v3v1) + y(v1v6v2v4v1) +
y(v1v6v3v4v1) = w(v1v6), and y(v2v4v6v2) + y(v3v4v6v3) + y(v2v4v6v3v2) = w(v4v6). Clearly,
v3v1 is outside Cy

0 . Depending on the value of y(v1v6v3v4v1), we consider two subcases.
• y(v1v6v3v4v1) > 0. In this subcase, y(v2v4v6v2) = 0 and y(v1v6v3v1) = w(v3v1) by (8).

If y(v2v4v6v3v2) > 0, then y(v1v6v2v4v1) = w(v6v2) and y(v3v4v6v3) + y(v1v6v3v4v1) = w(v3v4)
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by (10). Thus y(C) is integral for all C ∈ C2. So we assume that y(v2v4v6v3v2) = 0. Then
y(v3v4v6v3) = w46 and y(v1v6v2v4v1) + y(v1v6v3v4v1) = w(v1v6) − w(v3v1). If y(v1v6v2v4v1) is
integral, then y(C) is integral for all C ∈ C2. So we further assume that y(v1v6v2v4v1) is not
integral. Then we can prove that ν∗w(T ) is an integer; the proof is the same as that of (17), so
we omit the details here.

• y(v1v6v3v4v1) = 0. In this subcase, y(v1v6v3v1)+y(v1v6v2v4v1) = w(v1v6). If y(v2v4v6v3v2)
> 0, then y(v3v4v6v3) = w(v3v4) and y(v2v4v6v2) + y(v1v6v2v4v1) = w(v6v2) by (10). Observe
that if y(v1v6v2v4v1) > 0, then we have one more equation y(v1v6v3v1) = w(v3v1) by (9). So
y(C) is integral for all C ∈ C2, no matter whether y(v1v6v2v4v1) = 0. Thus we may assume that
y(v2v4v6v3v2) = 0. We proceed by considering two subsubcases.

(a) Assume first that y(v3v4v6v3) = 0. Then y(v2v4v6v2) = w(v4v6). If y(v1v6v3v1) is
integral, then so is y(C) for all C ∈ C2. Thus we assume that y(v1v6v3v1) is not integral.
If v6v3 is outside Cy

0 , then it follows from (4) that y(v1v6v3v1) = min{w(v3v1), w(v6v3)}; this
contradiction implies that v6v3 is contained in a cycle C in Cy

0 . Let C
′ = C[v4, v6]∪{v6v2, v2v4},

let θ = min{[y(v1v6v2v4v1)], y(C)}, and let y′ be obtained from y by replacing y(v1v6v2v4v1),
y(v1v6v3v1), y(C), and y(C ′) with y(v1v6v2v4v1)− θ, y(v1v6v3v1) + θ, y(C)− θ, and y(C ′) + θ,
respectively. Then y′ is also an optimal solution to D(T,w) with y′(v1v6v2v4v1) < y(v1v6v2v4v1),
contradicting (2).

(b) Assume next that y(v3v4v6v3) > 0. If y(v1v6v2v4v1) > 0, then y(v1v6v3v1) = w(v3v1)
and y(v1v6v2v4v1) = w(v1v6)−w(v3v1) by (9); otherwise, y(v1v6v3v1) = w(v1v6). If y(v3v4v6v3)
is integral, then so is y(C) for all C ∈ C2. Thus we assume that y(v3v4v6v3) is not integral. Let
us prove that

(19) ν∗w(T ) is an integer.
By Lemma 3.2(iii), we may assume that w(v1v2) = w(v1v6) = 0. Let T ′ = (V ′, A′) be

obtained from T by deleting v1, and let w be the restriction of w to A′. It is routine to check
that D(T ′,w′) has the same optimal value ν∗w(T ) as D(T,w). Hence ν∗w(T ) is an integer by the
hypothesis of Theorem 1.5. This proves (19) and hence Claim 2.

Since τw(G3\v5) > 0, from Claim 2, Lemma 3.2(iii) and Lemma 3.4(ii) we deduce that
D(T,w) has an integral optimal solution. This completes the proof of Lemma 4.6.

5 Composite Reductions

Lemma 5.7. If T2/S = F4, then D(T,w) has an integral optimal solution.

Proof. Recall that (b2, a2) = (v5, v6), s
∗ = v2, and v0 = v3. To establish the statement, by

Lemma 3.4(ii), it suffices to prove that
(1) the optimal value ν∗w(T ) of D(T,w) is integral.
Given an optimal solution y to D(T,w), set φ(si) = {u : z(usi) > 0 for u ∈ V (T2)\a2} for

each si ∈ S. By Lemma 5.2(i) and (vi), we have
(2) φ(si) ∩ φ(sj) = ∅ whenever i ̸= j.
(3) There exist at least two and at most three vertices si’s in S with φ(si) ̸= ∅.
In view of (2) and the structure of F4, there are at most three vertices si’s in S with φ(si) ̸= ∅.

Suppose on the contrary that there exists precisely one vertex si ∈ S with φ(si) ̸= ∅. Then (1)
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follows immediately from Lemma 4.4; the argument can be found in that of (3) in the proof of
Lemma 5.5.

Lemma 5.2(i) allows us to assume that
(4) if φ(si) ̸= ∅, then i ∈ {1, 2, 3}.
Let t be the subscript in {1, 2, 3} with v5 ∈ φ(st), if any. By (2), t is well defined. In the

remainder of our proof, we reserve y for an optimal solution to D(T,w) such that
(5) y(C2) is maximized;
(6) subject to (5), (y(Dq), y(Dq−1), . . . , y(D3)) is minimized lexicographically; and
(7) subject to (5) and (6), y(v1v5stv3v1) + y(v1v5v3v4v1) is minimized.
Let us make a few observations about y before proceeding.
(8) If y(v1v5siv3v4v1) > 0 for some i ∈ {1, 2, 3}, then each arc in the set {v1si, v3v1, v4si, v4v5,

v5v3} is saturated by y in T2. Furthermore, y(v1sjv3v1) = y(v3v4v5v3) = y(v1v5v3v1) = 0 for
any j ∈ {1, 2, 3}\{i}.

To justify this, note that each arc in the given set is a chord of the cycle v1v5siv3v4v1. So
the first half follows instantly from Lemma 3.5(v). Once again let ⊎ stand for the multiset sum.
Then v1v5siv3v4v1 ⊎ v1sjv3v1 = v1v5siv3v1 ⊎ v1sjv3v4v1, v1v5siv3v4v1 ⊎ v1v5v3v1 = v1v5siv3v1 ⊎
v1v5v3v4v1, and v1v5siv3v4v1 ⊎ v3v4v5v3 = v1v5v3v4v1 ⊎ v5siv3v4v5. Since y satisfies (6), we
deduce that y(v1sjv3v1) = y(v3v4v5v3) = y(v1v5v3v1) = 0.

(9) If y(v1v5siv3v1) > 0 for some i ∈ {1, 2, 3}, then both v1si and v5v3 are saturated by y in
T2; so are v4si and v4v5 if y(v1sjv3v4v1) > 0. Furthermore, y(v3v4v5v3) = 0.

Since both v1si and v5v3 are chords of the cycle v1v5siv3v1, the first half follows instantly
from Lemma 3.5(v). To establish the second half, observe that v1v5siv3v1⊎v3v4v5v3 = v1v5v3v1⊎
v5siv3v4v5. Hence y(v3v4v5v3) = 0 by (7). Suppose y(v1sjv3v4v1) > 0. Since the multiset sum
of the cycles v1v5siv3v1, v1sjv3v4v1, and the arc v4v5 (resp. v4si) contains arc-disjoint cycles
v1sjv3v1 and v5siv3v4v5 (resp. v4siv3v4), from (7) we deduce that both v4si and v4v5 are are
saturated by y in T2.

(10) If y(v1v5v3v4v1) > 0, then both v3v1 and v4v5 are saturated by y in T2. Furthermore,
y(v1siv3v1) = 0 for any i ∈ {1, 2, 3}.

Since both v3v1 and v4v5 are chords of the cycle v1v5v3v4v1, the first half follows instantly
from Lemma 3.5(v). To establish the second half, observe that v1v5v3v4v1⊎v1siv3v1 = v1v5v3v1⊎
v1siv3v4v1. Since y satisfies (7), we have y(v1siv3v1) = 0.

The following two statements can be seen from Lemma 3.5(v).
(11) If y(v1siv3v4v1) > 0, then both v3v1 and v4si are saturated by y in T2, for i ∈ {1, 2, 3}.
(12) If y(v5siv3v4v5) > 0, then both v4si and v5v3 are saturated by y in T2, for i ∈ {1, 2, 3}.

We proceed by considering two cases, depending on whether φ(sk) = {v4} for some k ∈
{1, 2, 3} (see (4)).

Case 1. φ(sk) = {v4} for some k ∈ {1, 2, 3}.
By Lemma 5.2(i), we may assume that k = 1; that is, φ(s1) = {v4}. Let i and j be the

subscripts in {2, 3}, if any (possibly i = j), such that v5 ∈ φ(si) and v1 ∈ φ(sj). Then
(13) Cy

2 ⊆ {v4s1v3v4, v1sjv3v1, v1sjv3v4v1, v1v5siv3v1, v5siv3v4v5, v1v5siv3v4v1, v1v5v3v1,
v3v4v5v3, v1v5v3v4v1}.

We propose to show that
(14) if w(v3v4) > 0, then y(v4s1v3v4) is a positive integer.
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For this purpose, note that z(s1v3) = w(s1v3) > 0 by Lemma 5.2(iii). If s1v3 is outside Cy
0 ,

then y(v4s1v3v4) = w(s1v3) > 0. So we assume that s1v3 is contained in some cycle C ∈ Cy
0 . If C

contains v4s1, then v3v4 is saturated by y in T2 by Lemma 3.5(iii). Moreover, the multiset sum of
C and each cycle in the set {v1sjv3v4v1, v5siv3v4v5, v1v5siv3v4v1, v3v4v5v3, v1v5v3v4v1} contains
the cycle v4s1v3v4, a cycle in {v1sjv3v1, v1v5siv3v1, v1v5v3v1}, and a cycle C ′ ∈ C0 that are arc-
disjoint, where C ′ = C[v5, v4] ∪ {v4v5} or C[v5, v4] ∪ {v4v1, v1v5}. From the optimality of y, we
thus deduce that y(v1sjv3v4v1), y(v5siv3v4v5), y(v1v5siv3v4v1), y(v3v4v5v3), and y(v1v5v3v4v1)
are all zero. Hence y(v4s1v3v4) = w(v3v4) > 0. So we assume that C does not contain v4s1.
Furthermore, v4s1 is outside Cy

0 , because every cycle using v4s1 passes through s1v3. Note that
v4s1 is not saturated by y in T , for otherwise y(v4s1v3v4) = w(v4s1) > 0, as desired. By Lemma
3.5(vii), v3v4 is saturated by y in T2 and C contains v3v1. It follows from (8), (10) and (11) that
y(v1v5siv3v4v1), y(v1v5v3v4v1) and y(v1sjv3v4v1) are all zero. As the multiset sum of C, each of
v5siv3v4v5 and v3v4v5v3, and the unsaturated arc v4s1 contains arc-disjoint cycles v4s1v3v4 and
one of v1v5siv3v1 and v1v5v3v1, both y(v5siv3v4v5) and y(v3v4v5v3) are zero by Lemma 3.5(vi).
So y(v4s1v3v4) = w(v3v4) > 0. This proves (14).

By (14) and Lemma 3.2(iii), we may assume that w(v3v4) = 0. It follows that w(v3v1) ≥
z(v3v1) > 0, for otherwise, τw(T2\a2) = w(v3v1) + w(v3v4) = 0, contradicting (α). Since
z(v4s1) > 0 and w(v3v4) = 0, the arc v4s1 is contained in some cycle in Cy

0 . From the proof of
(14) we see that

(15) y(v1sjv3v4v1), y(v5siv3v4v5), y(v1v5siv3v4v1), y(v3v4v5v3), and y(v1v5v3v4v1) are all
zero.

(16) If w(v1sj) ≥ z(v1sj) > 0, then y(v1sjv3v1) is a positive integer.
To justify this, note that z(sjv3) = w(sjv3) > 0 by Lemma 5.2(iii). Assume first that sjv3

is outside Cy
0 . If i ̸= j, then y(v1sjv3v1) = w(sjv3) > 0. So we assume that i = j. Then

y(v1siv3v1) + y(v1v5siv3v1) = w(siv3). If y(v1v5siv3v1) > 0, then v1si is saturated by y in T2

by (9). Thus y(v1siv3v1) = w(v1si). Next assume that sjv3 is contained in some cycle C ∈ Cy
0 .

Since w(v3v4) = 0, cycle C contains v3v1. It follows that v1sj is saturated by y in T2. So
y(v1sjv3v1) = w(v1sj) > 0 and hence (16) is established.

By (16) and Lemma 3.2(iii), we may assume that w(v1sj) = 0. By (3), we have z(v5si) > 0
and φ(si) = {v5}. By (13)-(16), we obtain

(17) Cy
2 ⊆ {v1v5siv3v1, v1v5v3v1}.

(18) y(v1v5siv3v1) is a positive integer.
To justify this, note that z(siv3) = w(siv3) > 0 by Lemma 5.2(iii). If siv3 is outside Cy

0 ,
then y(v1v5siv3v1) = w(siv3) > 0 by (17), as desired. So we assume that siv3 is contained in
some cycle C ∈ Cy

0 . Applying Lemma 3.5(iii) to the cycle v1v5siv3v1, we deduce that (v5, si) is
saturated by y in T2. So y(v1v5siv3v1) = w(v5si) > 0 and hence (18) holds.

By (18) and Lemma 3.2(iii), D(T,w) has an integral optimal solution, which implies (1).
Case 2. φ(sk) ̸= {v4} for any k ∈ {1, 2, 3}.
By (3), the hypothesis of the present case, and Lemma 5.2(i), we may assume that v1 ∈ φ(s1)

and v5 ∈ φ(s2). Then
(19) Cy

2 ⊆ {v1s1v3v1, v1s1v3v4v1, v1v5s2v3v1, v5s2v3v4v5, v1v5s2v3v4v1, v1v5v3v1, v3v4v5v3,
v1v5v3v4v1, v4s1v3v4, v4s2v3v4}.

By Lemma 5.2(vi), we have
(20) if v4 ∈ φ(si), then z(v4s3−i) = 0 and y(v4s3−iv3v4) = 0 for i = 1, 2.
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Claim 1. y(C2) = τw(T2\a2).
To justify this, observe that
(21) if K is an FAS of T2\a2 such that y(C2) = w(K), then K is an MFAS. (The statement

is exactly the same as (4) in the proof of Lemma 4.3.)
In view of Lemma 5.2(iii), we distinguish among three subcases, depending on whether siv3

is contained in a cycle in Cy
0 .

Subcase 1.1. Both s1v3 and s2v3 are outside Cy
0 . In this subcase, siv3 is saturated by y in T2

for i = 1, 2. If v5v3 is also saturated by y in T2, then y(C2) = w(K), whereK = {v5v3, s1v3, s2v3}.
Since K is an FAS of T2\a2, it is an MFAS by (21) and hence y(C2) = τw(T2\a2). So we assume
that v5v3 is not saturated by y in T2.

(22) Both v3v1 and v3v4 are outside Cy
0 . Furthermore, at least one of them is not saturated

by y in T2.
Indeed, the first half follows directly from Lemma 3.5(iii). To justify the second half, assume

the contrary. Then y(C2) = w(K), where K = {v3v1, v3v4}. Thus K is an MFAS of T2\a2 by
(21) and hence y(C2) = τw(T2\a2).

By (22), (8), (9), and (12), we have
(23) y(v1v5s2v3v1), y(v5s2v3v4v5), and y(v1v5s2v3v4v1) are all zero.
Since Cy

0 ̸= ∅, some cycle C ∈ Cy
0 contains v1v5 or v4v5. Thus there are two possibilities to

consider.
• C contains v1v5. Now by (22) and Lemma 3.5(iii), v3v1 is saturated by y in T2 and

hence v3v4 is not saturated by y in T2. It follows from Lemma 3.5(i) and (iii) that both v4v1
and v4v5 are saturated by y in T2. If z(v4si) = w(v4si) for i = 1, 2, then y(C2) = w(K),
where K = {v3v1, v4v1, v4v5, v4s1, v4s2}. Thus K is an MFAS of T2\a2 by (21) and hence
y(C2) = τw(T2\a2). So we assume that 0 < z(v4si) < w(v4si) for i = 1 or 2. Then z(v4s3−i) =
w(v4s3−i) = 0 by (2). If i = 2, then y(C2) = w(K), where K = {v3v1, v4v1, v4v5, v4s1, s2v3}, and
hence y(C2) = τw(T2\a2). If i = 1, then y(v1s1v3v4v1) = 0 by (11). Since the multiset sum of
the cycles v1s1v3v1, C, and the unsaturated arcs {v4s1, v5v3, v3v4} contains arc-disjoint cycles
v4s1v3v4 and v1v5v3v1, we have y(v1s1v3v1) = 0 by Lemma 3.5(vi). Thus y(C2) = w(K), where
K = {v3v1, v4v1, v4v5, s1v3, v4s2}. It follows that y(C2) = τw(T2\a2).

• C contains v4v5. Now by (22) and Lemma 3.5(iii), v3v4 is saturated by y in T2 and hence
v3v1 is not saturated by y in T2. It follows from Lemma 3.5(i) and (iii) that v1v5 is saturated
by y in T2. By (10) and (11), we have y(v1v5v3v4v1) = y(v1s1v3v4v1) = 0. If v1s1 is saturated
by y in T2, then y(C2) = w(K), where K = {v1v5, v3v4, v1s1}. Thus y(C2) = τw(T2\a2). So we
assume that v1s1 is not saturated by y in T2 and hence not in T by (22). Since the multiset
sum of the cycles C, v4s1v3v4, and the unsaturated arcs {v3v1, v5v3, v1s1} contains arc-disjoint
cycles v1s1v3v1 and v3v4v5v3, we have y(v4s1v3v4) = 0 by Lemma 3.5(vi). So y(C2) = w(K),
where K = {v1v5, v3v4, s1v3}. It follows that y(C2) = τw(T2\a2).

Subcase 1.2. s1v3 is contained in some cycle C ∈ Cy
0 ; subject to this, we choose C so that

it contains as many edges in T2\a2 as possible.
Assume first that C contains v1s1. Then C contains the path v1s1v3v4v5. By Lemma 3.5(iii),

each arc in the set {v3v1, v4v1, v4s1, v5v3} is saturated by y in T2. By (2), (8) and (10), we have
y(v1v5s2v3v4v1) = y(v1v5v3v4v1) = 0. Since the multiset sum of C and one of v1v5v3v1 and
v1v5s2v3v1 contains arc-disjoint cycles v3v4v5v3, C

′ = C[v5, v1] ∪ {v1v5}, and one of v1s1v3v1
and v5s2v3v4v5, from the optimality of y we deduce that y(v1v5v3v1) = y(v1v5s2v3v1) = 0. If
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s2v3 is outside Cy
0 , then s2v3 is saturated by y in T2 by Lemma 5.2(iii). So y(C2) = w(K),

where K = {v3v1, v4v1, v4s1, s2v3, v5v3}. Hence y(C2) = τw(T2\a2). So we assume that s2v3 is
contained in some cycle in Cy

0 . Since v3v1 is saturated by y in T2, every cycle in Cy
0 containing

s2v3 passes through v3v4. By Lemma 3.5(iii), both v4s2 and v5s2 are saturated by y in T2. Thus
y(C2) = w(K), where K = {v3v1, v4v1, v4s1, v4s2, v5s2, v5v3}. It follows that y(C2) = τw(T2\a2).

Assume next that v1s1 is not on C. Then we may further assume that v1s1 is outside Cy
0 .

We proceed by considering three subsubcases.
• C contains v3v1. Now v1s1 and v5v3 are saturated by y in T2 by Lemma 3.5(iii). Hence

y(v1v5s2v3v4v1) = y(v1v5v3v4v1) = y(v1s1v3v4v1) = 0 by (8), (10) and (11). If v4s1 is not
saturated by y in T2, then v3v4 is saturated by y in T2 by Lemma 3.5(iii). Moreover, for
each D ∈ {v3v4v5v3, v5s2v3v4v5}, if v4s1 is on C, then the multiset sum of C and D contains
arc-disjoint cycles v4s1v3v4, C ′ = C[v5, v4] ∪ {v4v5}, and one of v1v5v3v1 and v1v5s2v3v1; if
v4s1 is not saturated by y in T , then the multiset sum of C, D and the arc v4s1 contains
v4s1v3v4 and one of v1v5v3v1 and v1v5s2v3v1 that are arc-disjoint. It follows from the optimality
of y or Lemma 3.5(iv) that y(v3v4v5v3) = y(v5s2v3v4v5) = 0. So y(C2) = w(K) if s2v3 is
contained in some cycle in Cy

0 and y(C2) = w(J) otherwise, where K = {v1s1, v3v4, v5v3, s2v3}
and J = {v1s1, v3v4, v5v3, v5s2}. Hence y(C2) = τw(T2\a2). So we assume that v4s1 is saturated
by y in T2. If s2v3 is outside Cy

0 , then y(C2) = w(K), where K = {v1s1, v4s1, v5v3, s2v3},
which implies that y(C2) = τw(T2\a2). So we further assume that s2v3 is contained in some
cycle in Cy

0 . By Lemma 3.5(iii), v5s2 is saturated by y in T2. If v4s2 is also saturated by y in
T2, then y(C2) = w(K), where K = {v1s1, v4s1, v5v3, v5s2, v4s2}; otherwise, v3v4 is saturated
by y in T2, and w(v4s1) = z(v4s1) = 0. Similar to the case when v4s1 is not saturated by
y in T2, we can show that y(v3v4v5v3) = y(v5s2v3v4v5) = 0. Thus y(C2) = w(J), where
J = {v1s1, v3v4, v5v3, v5s2}. Therefore y(C2) = τw(T2\a2) in either situation.

• C contains both v3v4 and v4v1. Now v1s1, v4s1 and v5v3 are saturated by y in T2 by
Lemma 3.5(iii). If s2v3 is outside Cy

0 , then y(C2) = w(K), where K = {v1s1, v4s1, v5v3, s2v3};
otherwise, v5s2 and v4s2 are saturated by y in T2 by Lemma 3.5(iii). So y(C2) = w(J), where
J = {v1s1, v4s1, v5v3, v5s2, v4s2}. Therefore y(C2) = τw(T2\a2) in either situation.

• C contains both v3v4 and v4v5. Now v4s1 and v5v3 are saturated by y in T2 by Lemma
3.5(iii) and y(v1v5v3v4v1) = y(v1v5s2v3v4v1) = 0 by (8) and (10). If v1s1 is also saturated by y in
T2, then y(C2) = w(K) or w(J), whereK = {v1s1, v4s1, v5v3, s2v3} and J = {v1s1, v4s1, v5v3, v5s2,
v4s2}; otherwise, both v3v1 and v4v1 are saturated by y in T2, and every cycle in Cy

0 con-
taining s2v3 traverses v3v4v5. Since the multiset sum of C, each of v1v5v3v1 and v1v5s2v3v1,
and the unsaturated arc v1s1 contains v1s1v3v1 and one of v3v4v5v3 and v5s2v3v4v5 that are
arc-disjoint, we have y(v1v5v3v1) = y(v1v5s2v3v1) = 0 by Lemma 3.5(iv). So y(C2) = w(K)
if s2v3 is outside Cy

0 and y(C2) = w(J) otherwise, where K = {v3v1, v4v1, v4s1, v5v3, s2v3} and
J = {v1s1, v4s1, v5v3, v4s2, v5s2}. Therefore y(C2) = τw(T2\a2) in either situation.

Subcase 1.3. s2v3 is contained in some cycle C ∈ Cy
0 and s1v3 is saturated by y in T2.

In this subcase, both v5s2 and v5v3 are saturated by y in T2 by Lemma 3.5(iii). If v4s2 is
also saturated by y in T2, then y(C2) = w(K), where K = {s1v3, v5v3, v4s2, v5s2}; otherwise,
z(v4s2) > 0 and w(v4s1) = z(v4s1) = 0 by Lemma 5.2(vii). In this case C contains v3v1, so
v3v4 is saturated by y in T2 by Lemma 3.5(iii). By (8) and (10)-(12), we have y(v1v5s2v3v4v1),
y(v1v5v3v4v1), y(v1s1v3v4v1), and y(v5s2v3v4v5) are all zero. Since the multiset sum of the
cycles C, v3v4v5v3, and the unsaturated arc v4s2 contains arc-disjoint cycles v4s2v3v4 and
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v1v5v3v1, by Lemma 3.5(iv), we have y(v3v4v5v3) = 0. It follows that y(C2) = w(K), where
K = {s1v3, v5v3, v3v4, v5s2}.

Combining the above three subcases, we see that the equality y(C2) = τw(T2\a2) holds. So
Claim 1 is established.

Claim 2. y(C) is a positive integer for some C ∈ C2 or ν∗w(T ) is an integer.
To justify this, note that y(C2) = w(K) for some MFAS K of T2\a2 by Claim 1. Depending

on what K is, we distinguish among eight cases.
Subcase 2.1. K is one of {v1v5, v3v4, v1s1}, {v1s1, v3v4, s2v3, v5v3}, {v1s1, v3v4, v5s2, v5v3},

{v1v5, v3v4, s1v3}, and {s1v3, v3v4, v5s2, v5v3}.
In this case, by Lemma 3.1(i), we have y(C) = 0 for some cycles C listed in (19). By

Lemma 3.1(iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which, together with (19), implies
that y(v1s1v3v1) = w(v1s1) or w(s1v3), each of them is positive by Lemma 5.2(iii) and the
assumption that v1 ∈ φ(s1).

Subcase 2.2. K = {v3v1, v4v1, v4s1, s2v3, v5v3}.
In this case, by Lemma 3.1(i), we have y(C) = 0 for some cycles C listed in (19). By

Lemma 3.1(iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which, together with (19), implies
that y(v1s1v3v1) = w(v3v1), y(v1s1v3v4v1) = w(v4v1), y(v4s1v3v4) = w(v4s1), y(v4s2v3v4) +
y(v5s2v3v4v5) = w(s2v3), y(v3v4v5v3) = w(v5v3). If y(v5s2v3v4v5) = 0, then y(v4s2v3v4) =
w(s2v3) > 0 by Lemma 5.2(iii). If y(v5s2v3v4v5) > 0, then v4s2 is saturated by y in T2 by
Lemma 3.5(iii). So w(v4s2) = y(C2(v4s2)). It follows that y(v4s2v3v4) = w(v4s2), and hence
y(v5s2v3v4v5) is a positive integer.

Subcase 2.3. K = {v3v1, v4v1, v4s1, v4s2, v5s2, v5v3}.
In this case, by Lemma 3.1(i), we have y(C) = 0 for some cycles C listed in (19). By Lemma

3.1(iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which, together with (19), implies that
y(v1s1v3) = w(v3v1), y(v1s1v3v4v1) = w(v4v1), y(v4s1v3v4) = w(v4s1), y(v4s2v3v4) = w(v4s2),
y(v5s2v3v4v5) = w(v5s2), and y(v3v4v5) = w(v5v3). Since v5 ∈ φ(s2), we have w(v5s2) > 0. So
y(v5s2v3v4v5) is a positive integer.

Subcase 2.4. K = {v3v1, v4v1, v4v5, v4s1, s2v3} or {v3v1, v4v1, v4v5, s1v3, v4s2}.
In this case, by Lemma 3.1(i), we have y(C) = 0 for some cycles C listed in (19). By Lemma

3.1(iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which, together with (19), implies that
y(v4s2v3v4) = w(s2v3) > 0 or y(v4s1v3v4) = w(s1v3) > 0 by Lemma 5.2(iii).

Subcase 2.5. K = {v1s1, v4s1, s2v3, v5v3} or {v1s1, v4s1, v4s2, v5s2, v5v3}.
We only consider the subcase when K = {v1s1, v4s1, s2v3, v5v3}, as the other subcase can be

justified likewise.
By Lemma 3.1(i), we have y(C) = 0 for some cycles C listed in (19). By Lemma 3.1(iii), we

obtain w(e) = y(C2(e)) for each e ∈ K, which, together with (19), implies that y(v1s1v3v1) +
y(v1s1v3v4v1) = w(v1s1), y(v1v5v3v1) + y(v3v4v5v3) + y(v1v5v3v4v1) = w(v5v3), y(v4s1v3v4) =
w(v4s1), and y(v4s2v3v4) + y(v1v5s2v3v1) + y(v5s2v3v4v5) + y(v1v5s2v3v4v1) = w(s2v3). We
may assume that y(v1v5s2v3v4v1) = y(v1v5v3v4v1) = 0, for otherwise, by (8) or (10), we have
y(v1s1v3v1) = 0 and hence y(v1s1v3v4v1) = w(v1s1) > 0.

If y(v1v5s2v3v1) = 0, then y(v5s2v3v4v5)+y(v4s2v3v4) = w(s2v3). Observe that y(v4s2v3v4) >
0, for otherwise, y(v5s2v3v4v5) = w(s2v3) > 0. By (6), we obtain y(v4s2v3v4) = w(s2v3) or
w(v4s2), which is a positive integer. So we assume that y(v1v5s2v3v1) > 0. Then y(v3v4v5v3) = 0
by (9). Note that y(v1s1v3v4v1) > 0, for otherwise, y(v1s1v3v1) = w(v1s1) > 0. Thus, by
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(9), both v4s2 and v4v5 are saturated by y in T2. It follows that y(v4s2v3v4) = w(v4s2) and
y(v5s2v3v4v5) = w(v4v5). So y(v1v5s2v3v1) = w(s2v3) − y(v4s2v3v4) − y(v5s2v3v4v5). Since
w(s2v3) > 0, at least one of y(v4s2v3v4), y(v5s2v3v4v5), and y(v1v5s2v3v1) is a positive integer.

Subcase 2.6. K = {s1v3, v4s2, v5s2, v5v3} or {s1v3, s2v3, v5v3}.
We only consider the subcase when K = {s1v3, s2v3, v5v3}, as the other subcase can be

justified likewise.
By Lemma 3.1(iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which, together with (19),

implies that y(v4s1v3v4) + y(v1s1v3v1) + y(v1s1v3v4v1) = w(s1v3), y(v1v5v3v1) + y(v3v4v5v3) +
y(v1v5v3v4v1) = w(v5v3), and y(v4s2v3v4) + y(v1v5s2v3v1) + y(v5s2v3v4v5) + y(v1v5s2v3v4v1) =
w(s2v3).

We may assume that y(v1v5s2v3v4v1) = y(v1v5v3v4v1) = 0, for otherwise, by (8) or (10), we
have y(v1s1v3v1) = 0 and hence y(v4s1v3v4)+y(v1s1v3v4v1) = w(v1s1) > 0, which together with
(6) implies that y(v4s1v3v4) = w(s1v3) or w(v4s1), so y(v1s1v3v4v1) = w(v1s1) − y(v4s1v3v4).
Since w(s1v3) > 0, at least one of y(v4s1v3v4) and y(v1s1v3v4v1) is a positive integer.

If y(v1v5s2v3v1) = 0, then y(v5s2v3v4v5) + y(v4s2v3v4) = w(s2v3), which together with (6)
implies that y(v4s2v3v4) = w(s2v3) or w(v4s2), so y(v5s2v3v4v5) = w(s2v3)− y(v4s2v3v4). Since
w(s2v3) > 0, at least one of y(v4s2v3v4) and y(v5s2v3v4v5) is a positive integer. So we assume
that y(v1v5s2v3v1) > 0. Thus, by (9), we have y(v1v5v3v1) = w(v5v3). If y(v1s1v3v4v1) >
0, then y(v4s2v3v4) = w(v4s2), y(v5s2v3v4v5) = w(v4v5), and y(v1v5s2v3v1) = w(s2v3) −
y(v4s2v3v4) − y(v5s2v3v4v5). Since w(s2v3) > 0, at least one of y(v4s2v3v4), y(v5s2v3v4v5),
and y(v1v5s2v3v1) is a positive integer. So we further assume that y(v1s1v3v4v1) = 0. Then
y(v1s1v3v1) + y(v4s1v3v4) = w(s1v3). If y(v4s1v3v4) = 0, then y(v1s1v3v1) = w(s1v3) >
0. So we assume that y(v4s1v3v4) > 0. By Lemma 5.2(vii), we have y(v4s2v3v4) = 0, so
y(v1v5s2v3v1) + y(v5s2v3v4v5) = w(s2v3). Observe that if y(v1s1v3v1) or y(v1v5s2v3v1) is an in-
teger, then accordingly y(v4s1v3v4) or y(v5s2v3v4v5) is an integer. Since w(siv3) > 0 for i = 1, 2
by Lemma 5.2(iii), at least one of y(v1s1v3v1), y(v4s1v3v4), y(v1v5s2v3v1), and y(v5s2v3v4v5) is
a positive integer, as claimed.

It remains to consider the subcase when neither y(v1s1v3v1) nor y(v1v5s2v3v1) is an integer.
We propose to show that

(24) ν∗w(T ) is an integer.
To justify this, let x be an optimal solution to P(T,w). Since 0 < y(v1s1v3v1) < w(v1s1)

and 0 < y(v4s1v3v4) < w(v4s1), by Lemma 3.1(i) and (ii), we have x(v1s1) = x(v4s1) = 0
and x(v1s1v3v1) = x(v4s1v3v4) = 1, which implies x(v3v1) = x(v3v4). Furthermore, since
y(v1v5s2v3v1) > 0 and y(v5s2v3v4v5) > 0, we have x(v1v5s2v3v1) = x(v5s2v3v4v5) = 1, which
implies x(v3v1)+x(v1v5) = x(v3v4)+x(v4v5). Thus x(v1v5) = x(v4v5). Similarly, for each vertex
u ∈ V \(V (T2)\a2), we deduce that x(uv1) = x(uv4). Let T ′ = (V ′, A′) be obtained from T by
identifying v1 and v4; the resulting vertex is still denoted by v1. Let w

′ be obtained from the re-
striction of w by setting w′(v1v5) = w(v1v5)+w(v4v5), w

′(v3v1) = w(v3v1)+w(v3v4), w
′(v1si) =

w(v1si)+w(v4si) for 1 ≤ i ≤ r, and w′(uv1) = w(uv1)+w(uv4) for each u ∈ V \(V (T2)\a2). By
the LP-duality theorem, x and y naturally correspond to solutions to P(T ′,w′) and D(T ′,w′)
respectively with the same optimal value ν∗w(T ). From the hypothesis of Theorem 1.5, we deduce
that ν∗w(T ) is an integer. This proves (24).

Subcase 2.7. K = {v3v1, v4v1, v4v5, v4s1, v4s2}.
In this case, by Lemma 3.1(iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which, to-
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gether with (19), implies that y(v4siv3v4) = w(v4si) for i = 1, 2, y(v1s1v3v1) + y(v1v5v3v1) +
y(v1v5s2v3v1) = w(v3v1), y(v1s1v3v4v1) + y(v1v5v3v4v1) + y(v1v5s2v3v4v1) = w(v4v1), and
y(v3v4v5v3) + y(v5s2v3v4v5) = w(v4v5). We may assume that w(v4si) = 0 for i = 1, 2, for other-
wise, y(v4s1v3v4) or y(v4s2v3v4) is a positive integer. Note that both s1v3 and s2v3 are outside
Cy
0 . So siv3 is saturated by y in T2 for i = 1, 2, and hence y(v1s1v3v1)+y(v1s1v3v4v1) = w(s1v3)

and y(v1v5s2v3v1) + y(v5s2v3v4v5) + y(v1v5s2v3v4v1) = w(s2v3). If y(v1v5s2v3v4v1) > 0 or
y(v1v5v3v4v1) > 0, then y(v1s1v3v4v1) = w(s1v3) > 0 by (8) or (10). So we assume that
y(v1v5s2v3v4v1) = y(v1v5v3v4v1) = 0. Then y(v1s1v3v4v1) = w(v4v1) and y(v1s1v3v1) =
w(s1v3) − y(v1s1v3v4v1). Since w(s1v3) > 0, at least one of y(v1s1v3v1) and y(v1s1v3v4v1)
is a positive integer.

Subcase 2.8. K = {v3v1, v3v4}.
In this case, by Lemma 3.1(iii), we obtain w(e) = y(C2(e)) for each e ∈ K, which, together

with (19), implies that y(v1s1v3v1) + y(v1v5v3v1) + y(v1v5s2v3v1) = w(v3v1), y(v4s1v3v4) +
y(v4s2v3v4) + y(v3v4v5v3) + y(v1v5v3v4v1) + y(v1s1v3v4v1) + y(v5s2v3v4v5) + y(v1v5s2v3v4v1) =
w(v3v4). Since both s1v3 and s2v3 are outside Cy

0 , we see that siv3 is saturated by y in T2 for i =
1, 2. Hence y(v1s1v3v1)+y(v4s1v3v4)+y(v1s1v3v4) = w(s1v3) and y(v4s2v3v4)+y(v1v5s2v3v1)+
y(v5s2v3v4v5) + y(v1v5s2v3v4v1) = w(s2v3).

If y(v1v5s2v3v4v1) > 0 or y(v1v5v3v4v1) > 0, then y(v4s1v3v4) + y(v1s1v3v4v1) = w(s1v3) by
(8) and (10). It follows from (6) that either y(v4s1v3v4) = w(s1v3) > 0 or y(v4s1v3v4) = w(v4s1)
and y(v1s1v3v4v1) = w(s1v3) − y(v4s1v3v4). Since w(s1v3) > 0, at least one of y(v4s1v3v4)
and y(v1s1v3v4) is a positive integer. So we assume that y(v1v5s2v3v4v1) = y(v1v5v3v4v1) = 0.
If y(v1v5s2v3v1) = 0, then either y(v4s2v3v4) = w(s2v3) or y(v4s2v3v4) = w(v4s2) by (12),
so y(v5s2v3v4v5) = w(s2v3) − w(v4s2). Since w(s2v3) > 0, at least one of y(v4s2v3v4) and
y(v5s2v3v4v5) is a positive integer.

Suppose y(v1v5s2v3v1) > 0. Then y(v1v5v3v1) = w(v5v3) by (9). If y(v1s1v3v4v1) > 0, then
y(v4s2v3v4) = w(v4s2), y(v5s2v3v4v5) = w(v4v5), and y(v4s1v3v4) = w(v4s1) by (9) and (11).
It follows that y(v1v5s2v3v1) = w(s2v3) − y(v4s2v3v4) − y(v5s2v3v4v5). Since w(s2v3) > 0, at
least one of y(v4s2v3v4), y(v5s2v3v4v5), and y(v1v5s2v3v1) is a positive integer. So we assume
that y(v1s1v3v4v1) = 0. If y(v5s2v3v4v5) = 0, then y(v4s1v3v4) + y(v4s2v3v4) = w(v3v4). By
Lemma 5.2(vii), at most one of w(v4s1) and w(v4s2) is nonzero. Thus either y(v4s1v3v4) = 0 or
y(v4s2v3v4) = 0, and hence either y(v1s1v3v1) = w(s1v3) > 0 or y(v1v5s2v3v1) = w(s2v3) > 0.
So we further assume that y(v5s2v3v4v5) > 0. If y(v1s1v3v1) or y(v1v5s2v3v1) is an integer, then
accordingly y(v4s1v3v4) or y(v5s2v3v4v5) is an integer. Since w(siv3) > 0 for i = 1, 2, at least one
of y(v1s1v3v1), y(v4s1v3v4), y(v1v5s2v3v1), and y(v5s2v3v4v5) is a positive integer, as claimed.

It remains to consider the subcase when neither y(v1s1v3v1) nor y(v1v5s2v3v1) is an integer.
Now we can prove that ν∗w(T ) is an integer. Since the proof is the same as that of (24), we omit
the details here.

Combining the above subcases, we see that Claim 2 holds. Hence, by Lemma 3.2(iii), the
optimal value ν∗w(T ) of D(T,w) is integral, as described in (1) above.

Lemma 5.8. If T2/S = G2, then D(T,w) has an integral optimal solution.

Proof. Recall that (b2, a2) = (v4, v5), s
∗ = v2, and v0 = v4. To establish the statement, by

Lemma 3.4(ii), it suffices to prove that
(1) the optimal value ν∗w(T ) of D(T,w) is integral.
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Given an optimal solution y to D(T,w), set φ(si) = {u : z(usi) > 0 for u ∈ V (T2)\a2} for
each si ∈ S. By Lemma 5.2 (i) and (vi), we have

(2) φ(si) ∩ φ(sj) = ∅ whenever i ̸= j.
(3) There exist at least two and at most three vertices si’s in S with φ(si) ̸= ∅.
In view of (2) and the structure ofG2, there are at most three vertices si’s in S with φ(si) ̸= ∅.

Suppose on the contrary that there exists precisely one vertex si ∈ S with φ(si) ̸= ∅. Then (1)
follows immediately from Lemma 4.5; the argument can be found in that of (3) in the proof of
Lemma 5.5.

Lemma 5.2(i) allows us to assume that
(4) if φ(si) ̸= ∅, then i ∈ {1, 2, 3}.
In the remainder of our proof, we reserve y for an optimal solution to D(T,w) such that
(5) y(C2) is maximized;
(6) subject to (5), (y(Dq), y(Dq−1), . . . , y(D3)) is minimized lexicographically;
(7) subject to (5) and (6), y(v1v6v3v4v1) is minimized; and
(8) subject to (5)-(7), y(v1v6v4v1) is minimized.
Let us make some observations about y before proceeding.
(9) If K is an FAS of T2\a2 such that y(C2) = w(K), then K is an MFAS. (The statement

is exactly the same as (4) in the proof of Lemma 4.3.)
The statements below follow instantly from Lemma 3.5(v).
(10) If y(v1v6v3v4v1) > 0, then both v3v1 and v6v4 are saturated by y in T2.
(11) If y(v1v6siv4v1) > 0 for some i ∈ {1, 2, 3}, then both v1si and v6v4 are saturated by y

in T2.
(12) If y(v1v6v3siv4v1) > 0 for some i ∈ {1, 2, 3}, then each arc in the set {v3v1, v3v4, v6v4, v1si,

v6si} is saturated by y in T2.

Claim 1. y(C2) = τw(T2\a2).
To justify this, we may assume that
(13) at most one of v3v1 and v4v1 is saturated by y in T2, for otherwise, y(C2) = w(K),

where K = {v3v1, v4v1}. Since K is an FAS of T2\a2, it is an MFAS by (9) and hence y(C2) =
τw(T2\a2).

We proceed by considering two cases, depending on whether v1 ∈ φ(si) for some i.
Case 1.1. v1 /∈ φ(si) for any i ∈ {1, 2, 3}.
By (2), (3) and Lemma 5.2(i), we may assume that φ(s1) = {v6} and φ(s2) = {v3}. Thus
(14) Cy

2 ⊆ {v1v6v3v1, v1v6v4v1, v1v6v3v4v1, v1v6s1v4v1, v1v6v3s2v4v1}.
By Lemma 5.2(iii), z(siv4) = w(ziv4) > 0. If siv4 is outside Cy

0 for i = 1 or 2, then siv4 is
saturated by y in T2. In view of (14), we have y(v1v6s1v4v1) = w(s1v4) > 0 or y(v1v6v3s2v4v1) =
w(s2v4) > 0, and hence (1) follows from Lemma 3.2(iii). Similarly, if v6s1 or v3s2 is saturated
by y in T2, then y(v1v6s1v4v1) = w(v6s1) > 0 or y(v1v6v3s2v4v1) = w(v3s2) > 0, and hence (1)
follows from Lemma 3.2(iii). So we assume that

(15) siv4 is contained in some cycle in Cy
0 for i = 1 and 2. Furthermore, neither v6s1 nor

v3s2 is saturated by y in T2.
By (15) and Lemma 3.5(iii), at least one of v1v6 and v4v1 is saturated by y in T2. If v1v6

is saturated by y in T2, then y(C2) = w(v1v6). By (9), {v1v6} is an MFAS of T2\a2 and hence
y(C2) = τw(T2\a2). If v4v1 is saturated by y in T2, then v3v1 is not saturated by y in T2
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by (13). So, by Lemma 3.5(vi), v6v3 is saturated by y in T2 and, by (10) and (12), we have
y(v1v6v3s2v4v1) = y(v1v6v3v4v1) = 0. Thus y(C2) = w(K), where K = {v4v1, v6v3}. Since K is
an FAS of T2\a2, it is an MFAS by (9) and hence y(C2) = τw(T2\a2).

Case 1.2. v1 ∈ φ(si) for some i ∈ {1, 2, 3}.
By (2), (3) and Lemma 5.2(i), we may assume that v1 ∈ φ(s1), v6 ∈ φ(si), and v3 ∈ φ(sj),

with {1} ̸= {i, j} ⊆ {1, 2, 3}. Furthermore,
(16) Cy

2 ⊆ {v1v6v3v1, v1v6v4v1, v1v6v3v4v1, v1s1v4v1, v1v6siv4v1, v1v6v3sjv4v1}.
We may further assume that s1v4 is contained in some cycle in Cy

0 and v1s1 is not saturated
by y in T2, for otherwise, y(v1s1v4v1) = w(s1v4) > 0 or y(v1s1v4v1) = w(v1s1) > 0. Hence (1)
follows instantly from Lemma 3.2(iii). It follows from Lemma 3.5(vii) that v4v1 is saturated
by y in T2 and hence, by (13), v3v1 is not saturated by y in T2. By (10) and (12), we obtain
y(v1v6v3sjv4v1) = y(v1v6v3v4v1) = 0. If v6v3 is saturated by y in T2, then y(C2) = w(K),
where K = {v4v1, v6v3}. Since K is an FAS of T2\a2, it is an MFAS by (9) and hence y(C2) =
τw(T2\a2). So we assume that v6v3 is not saturated by y in T2. Thus, by Lemma 3.5(vii), v1v6
is saturated by y in T2. We propose to show that

(17) y(v1v6v4v1) = y(v1v6siv4v1) = 0.
Assume the contrary: y(v1v6v4v1) > 0 or y(v1v6siv4v1) > 0. Then v1s1 is outside Cy

0 ,
for otherwise, let C be a cycle in Cy

0 containing v1s1. Then the multiset sum of the cycles
C and v1v6v4v1 (resp. v1v6siv4v1) contains arc-disjoint cycles v1s1v4v1 and C ′ = C[v4, v1] ∪
{v1v6, v6v4} (resp. C ′ = C[v4, v1] ∪ {v1v6, v6si, siv4}). Set θ = min{y(v1v6v4v1), y(C)} (resp.
min{y(v1v6siv4v1), y(C)}). Let y′ be obtained from y by replacing y(v1v6v4v1) (resp. y(v1v6siv4v1)),
y(v1v2v4v1), y(C), and y(C ′) with y(v1v6v4v1) − θ (resp. y(v1v6siv4v1) − θ), y(v1v2v4v1) + θ,
y(C)− θ, and y(C ′) + θ, respectively. It is easy to see that y′ is an optimal solution to D(T,w)
with y′(v1v6v4v1) < y(v1v6v4v1) or y′(v1v6siv4v1) < y(v1v6siv4v1), contradicting (8) or (6).
Since v1v6 is saturated by y in T2, every cycle in Cy

0 containing v3v1 passes through v1s1. Thus
v3v1 is outside Cy

0 , and neither v1s1 nor v3v1 is saturated by y in T .
Observe that v6v3 is outside Cy

0 , for otherwise, let C be a cycle in Cy
0 containing v6v3. Then the

multiset sum of the cycles C, v1v6v4v1 (resp. v1v6siv4v1), and the unsaturated arc v3v1 contain
arc-disjoint cycles v1v6v3v1 and C ′ = C[v4, v6] ∪ {v6v4} (resp. C ′ = C[v4, v6] ∪ {v6si, siv4)}).
Set θ = min{y(v1v6v4v1), y(C), w(v3v1)−z(v3v1)} (resp. θ = min{y(v1v6siv4v1), y(C), w(v3v1)−
z(v3v1)}). Let y′ be obtained from y by replacing y(v1v6v4v1) (resp. y(v1v6siv4v1)), y(v1v6v3v1),
y(C), and y(C ′) with y(v1v6v4v1) − θ (resp. y(v1v6siv4v1) − θ), y(v1v6v3v1) + θ, y(C) − θ,
and y(C ′) + θ, respectively. It is easy to see that y′ is an optimal solution to D(T,w) with
y′(v1v6v4v1) < y(v1v6v4v1) or y′(v1v6siv4v1) < y(v1v6siv4v1), contradicting (8) or (6). Hence
v6v3 is not saturated by y in T .

Let C be a cycle in Cy
0 containing s1v4. Then the multiset sum of the cycles C, each of the cy-

cles v1v6v4v1 and v1v6siv4v1, and the unsaturated arcs v6v3, v3v1, and v1s1 contains arc-disjoint
cycles v1s1v4v1 and v1v6v3v1. So, by Lemma 3.5(vi), we have y(v1v6v4v1) = y(v1v6siv4v1) = 0;
this contradiction establishes (17).

Using (17), we obtain y(C2) = w(K), where K = {v1v6, v4v1}. Since K is an FAS of T2\a2,
it is an MFAS by (9) and hence y(C2) = τw(T2\a2). This proves Claim 1.

The above proof yields the following statement, which will be used later.
(18) If Case 1.1 occurs, then every MFAS comes from {{v3v1, v4v1}, {v1v6}, {v4v1, v6v3}}. If

Case 1.2 occurs, then every MFAS comes from {{v3v1, v4v1}, {v1v6, v4v1}, {v4v1, v6v3}}.
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Claim 2. y(C) is a positive integer for some C ∈ C2 or ν∗w(T ) is an integer.
To justify this, we first show that
(19) if v3 ∈ φ(si) for i ∈ {1, 2, 3}, then y(v1v6v3siv4v1) = 0.
Assume the contrary: y(v1v6v3siv4v1) > 0. Then y(v1v6v3v1) = w(v3v1), y(v1v6v3v4v1) =

w(v3v4), and y(v1v6v4v1) = w(v6v4) by (12). So Lemma 3.2(iii) allows us to assume that
w(v3v1) = w(v3v4) = w(v6v4) = 0. Let j and k be subscripts in {1, 2, 3}, if any, such that
v6 ∈ φ(sj) and v1 ∈ φ(sk). If both y(v1skv4v1) and y(v1v6sjv4v1) are integral, then, by Claim 1,
y(v1v6v3siv4v1) is a positive integer, so Claim 2 holds. Thus we may assume that y(v1skv4v1) or
y(v1v6sjv4v1) is not integral. Then, by (11) and Lemma 3.2(iii), we have j, k ̸= i. Furthermore,
both v1sk and v6sj are outside Cy

0 , for otherwise, we can construct an optimal solution y′ to
D(T,w) with y′(v1v6v3sjv4v1) < y(v1v6v3sjv4v1), contradicting (6).

Consider first the case when y(v1v6sjv4v1) is not integral. If j = k and y(v1skv4v1) > 0,
then y(v1skv4v1) = w(v1sk) > 0 by (11), so Claim 2 holds. Thus we may assume that j ̸= k if
y(v1skv4v1) > 0. Let us show that ν∗w(T ) is an integer.

For this purpose, let x be an optimal solution to P(T,w). Since both y(v1v6sjv4v1) and
y(v1v6v3siv4v1) are positive, x(v1v6sjv4v1) = x(v1v6v3siv4v1) = 1 by Lemma 3.1(i). By Lemma
5.2(vi), x(v6sj) = x(v3si) = 0. It follows that x(sjv4) = x(v6v3) + x(siv4). If v6v3 is outside
Cy
0 , then x(v6v3) = 0 by Lemma 3.1(ii), because z(v6v3) = y(v1v6v3siv4v1) < w(v6v3). Thus

x(siv4) = x(sjv4), contradicting Lemma 5.2(iv). So we assume that v6v3 is contained in some
cycle in Cy

0 . Since w(v3v4) = w(v6v4) = 0 and (v6, sj) is outside Cy
0 , for any u ∈ V \(V (T2)\a2),

if a cycle in Cy
0 contains uv6, then it passes through v6v3siv4. Moreover, if a cycle in Cy

0

contains usj , then it passes through sjv4. By Lemma 3.1(iv), we obtain x(uv6) + x(v6v3) +
x(v3si) + x(siv4) = x(usj) + x(sjv4). Hence x(uv6) = x(usj). Clearly, we may assume that
this equality holds in any other situation. Let T ′ = (V ′, A′) be obtained from T by delet-
ing vertex sj , and let w′ be obtained from the restriction of w to A′ by replacing w(e) with
w(e)+w(sjv4) for each e ∈ {v6v3, v3si, siv4} and replacing w(uv6) with w(uv6)+w(usj) for each
u ∈ V \(V (T2)\a2). Let x′ be the restriction of x to A′ and let y′ be obtained from y as follows:
set y′(v1v6v3siv4v1) = y(v1v6sjv4v1) + y(v1v6v3siv4v1); for each C ∈ Cy

0 passing through usjv4
for any u ∈ V \(V (T2)\a2), let C ′ be the cycle arising from C by replacing the path usjv4 with
the path uv6v3siv4, and set y′(C ′) = y(C ′)+y(C). From the LP-duality theorem, we see that x′

and y′ are optimal solutions to P(T ′,w′) and D(T ′,w′), respectively, with the same value ν∗w(T )
as x and y. By the hypothesis of Theorem 1.5, ν∗w(T ) is an integer.

In the other case when y(v1v6sjv4v1) = 0 and y(v1skv4v1) is not integral, the proof goes
along the same line, so we omit the details here.

By Claim 1, y(C2) = w(K) for some FAS K of T2\a2 as described in (18). Recall that
(20) in Case 1.1, we have v1 /∈ φ(si) for any i ∈ {1, 2, 3}, φ(s1) = {v6}, and φ(s2) = {v3}; in

Case 1.2, we have v1 ∈ φ(s1), v6 ∈ φ(si), and v3 ∈ φ(sj), with {1} ̸= {i, j} ⊆ {1, 2, 3}.
Depending on what K is, we distinguish among four cases.
Case 2.1. K = {v4v1, v6v3} in Case 1.1 or K = {v1v6, v4v1} in Case 1.2.
Consider first the subcase when K = {v4v1, v6v3} in Case 1.1. Now y(v1v6v3v1) = w(v6v3)

and y(v1v6v4v1) + y(v1v6s1v4v1) = w(v4v1) (see (20)). If y(v1v6s1v4v1) = 0, then y(v1v6v4v1) =
w(v4v1). If y(v1v6s1v4v1) > 0, then y(v1v6v4v1) = w(v6v4) by (11), and hence y(v1v6s1v4v1) =
w(v4v1)−w(v6v4). By the hypothesis of the present section, w(K) = τw(T2\a2) > 0. So at least
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one of y(v1v6v3v1), y(v1v6v4v1), and y(v1v6s1v4v1) is a positive integer.
Next consider the subcase when K = {v1v6, v4v1} in Case 1.2. Now y(v1s1v4v1) = w(v4v1)

and y(v1v6v3v1) = w(v1v6). So at least one of y(v1s1v4v1) and y(v1v6v3v1) is a positive integer.
Case 2.2. K = {v1v6} or {v3v1, v4v1} in Case 1.1.
We only consider the subcase when K = {v1v6}, as the proof in the other subcase goes along

the same line. Now y(v1v6v3v1) + y(v1v6v4v1) + y(v1v6v3v4v1) + y(v1v6s1v4v1) = w(v1v6), and
v3v1 is outside Cy

0 .
Observe that y(v1v6v3v4v1) > 0, for otherwise, if y(v1v6s1v4v1) > 0, then y(v1v6v4v1) =

w(v6v4) by (11), and hence y(v1v6v3v1)+y(v1v6s1v4v1) = w(v1v6)−w(v6v4); if y(v1v6s1v4v1) = 0,
then y(v1v6v3v1)+y(v1v6v4v1) = w(v1v6). Let us show that y(v1v6v3v1) is integral. Assume first
that y(v1v6s1v4v1) > 0. If v6v3 is outside Cy

0 , let y
′ be obtained from y by replacing y(v1v6v3v1)

and y(v1v6s1v4v1) with y(v1v6v3v1)+[y(v1v6s1v4v1)] and ⌊y(v1v6s1v4v1)⌋, respectively; if v6v3 is
contained in a cycle C ∈ Cy

0 , set θ = min{y(C), [y(v1v6s1v4v1)]} and C ′ = C[v4, v6]∪{v6s1, s1v4},
and let y′ be obtained from y by replacing y(v1v6v3v1), y(v1v6s1v4v1), y(C), and y(C ′) with
y(v1v6v3v1) + θ, y(v1v6s1v4v1) − θ, y(C) − θ, and y(C ′) + θ, respectively. Then y′ is also an
optimal solution to D(T,w) with y′(v1v6v3v1) > y(v1v6v3v1) while y′(v1v6s1v4) < y(v1v6s1v4v1)
in either situation, so y′ is a better choice than y (see (6)), a contradiction. Assume next that
y(v1v6s1v4v1) = 0. Imitating the above proof, with y(v1v6v4v1) in place of y(v1v6s1v4v1), we
can reach a contradiction to (8).

Since y(v1v6v3v4v1) > 0, by (10), we have y(v1v6v3v1) = w(v3v1) and y(v1v6v4v1) = w(v6v4);
so Lemma 3.2(iii) allows us to assume that w(v3v1) = w(v6v4) = 0. Thus the previous equality
concerning w(v1v6) becomes y(v1v6s1v4v1) + y(v1v6v3v4v1) = w(v1v6). So we may assume that
neither y(v1v6s1v4v1) nor y(v1v6v3v4v1) is integral, for otherwise, at least one of them is a
positive integer. Observe that v6s1 is outside Cy

0 , for otherwise, let C be a cycle in Cy
0 that

contains v6s1, let C
′ = C[v4, v6]∪ {v6v3, v3v4}, and let θ = min{y(C), y(v1v6v3v4v1)}. Let y′ be

obtained from y by replacing y(v1v6s1v4v1), y(v1v6v3v4v1), y(C), and y(C ′) with y(v1v6s1v4v1)+
θ, y(v1v6v3v4v1)− θ, y(C)− θ, and y(C ′) + θ, respectively. Then y′ is also an optimal solution
to D(T,w) with y′(v1v6v3v4v1) < y(v1v6v3v4v1), contradicting (7).

We propose to show that ν∗w(T ) is an integer. For this purpose, let x be an optimal so-
lution to P(T,w). Since both y(v1v6s1v4v1) and y(v1v6v3v4v1) are positive, x(v1v6s1v4v1) =
x(v1v6v3v4v1) = 1 by Lemma 3.1(i). Since y(v1v6s1v4v1) < w(v6s1), we have x(v6s1) = 0
by Lemma 3.1(ii). Thus x(s1v4) = x(v6v3) + x(v3v4). Since w(v6v4) = 0, for any u ∈
V \(V (T2)\a2), if a cycle in Cy

0 contains uv6, then it passes through v6v3v4 or v6s1v4. More-
over, if a cycle in Cy

0 contains us1, then it passes through s1v4. By Lemma 3.1(iv), we obtain
x(uv6)+ x(v6v3)+ x(v3v4) = x(us1)+ x(s1v4) or x(uv6)+ x(v6s1)+ x(s1v4) = x(us1)+ x(s1v4).
Hence x(uv6) = x(usj). Clearly, we may assume that this equality holds in any other situation.
Let T ′ = (V ′, A′) be obtained from T by deleting vertex s1, and let w′ be obtained from the
restriction of w to A′ by replacing w(e) with w(e)+w(s1v4) for e = v6v3 and v3v4 and replacing
w(uv6) with w(uv6) +w(us1) for any u ∈ V \V (T2)\a2. Let x′ be the restriction of x to A′ and
let y′ be obtained from y as follows: set y′(v1v6v3v4v1) = y(v1v6s1v4v1) + y(v1v6v3v4v1); for
each C ∈ Cy

0 passing through us1v4 for any u ∈ V \(V (T2)\a2), let C ′ be the cycle arising from
C by replacing the path us1v4 with the path uv6v3v4, and set y′(C ′) = y(C ′) + y(C). From
the LP-duality theorem, we see that x′ and y′ are optimal solutions to P(T ′,w′) and D(T ′,w′),
respectively, with the same value ν∗w(T ) as x and y. By the hypothesis of Theorem 1.5, ν∗w(T )
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is an integer.
Case 2.3. K = {v4v1, v6v3} in Case 1.2.
In this case, y(v1v6v3v1) = w(v6v3) and y(v1s1v4v1)+ y(v1v6v4v1)+ y(v1v6siv4v1) = w(v4v1)

(see (20)). By Lemma 3.2(iii), we may assume that w(v6v3) = 0. Let us show that
(21) y(v1v6siv4v1) = 0.
Assume the contrary. Then, by (11), we have y(v1v6v4v1) = w(v6v4), and v1si is saturated

by y in T2. Lemma 3.2(iii) allows us to assume that w(v6v4) = 0 and that y(v1v6siv4v1) is not
integral. It follows from (6) and Lemma 3.5(v) that i ̸= 1 and v1s1 is outside Cy

0 . We propose
to prove that ν∗w(T ) is an integer.

For this purpose, let x be an optimal solution to P(T,w). Since both y(v1s1v4v1) and
y(v1v6siv4v1) are positive, by Lemma 3.1(i), we have x(v1s1v4v1) = x(v1v6siv4v1) = 1. Since
y(v1s1v4v1) < w(v1s1), by Lemma 3.1(ii), we obtain x(v1s1) = 0, so x(s1v4) = x(v1v6)+x(v6si)+
x(siv4). If v1v6 is outside Cy

0 , then x(v1v6) = 0, because z(v1v6) = y(v1v6siv4v1) < w(v1v6).
By Lemma 5.2(vi), x(v1s1) = x(v6si) = 0. Hence, x(s1v4) = x(siv4), contradicting Lemma
5.2(iv). So we assume that v1v6 is contained in some cycle in Cy

0 . Since w(v6v3) = w(v6v4) = 0,
for any u ∈ V \(V (T2)\a2), if a cycle in Cy

0 contains uv1, then it passes through v1v6siv4.
Moreover, if a cycle in Cy

0 contains us1, then it passes through s1v4. By Lemma 3.1(iv), we
obtain x(uv1)+x(v1v6)+x(v6si)+x(siv4) = x(us1)+x(s1v4). Hence x(uv1) = x(us1). Clearly,
we may assume that this equality holds in any other situation. Let T ′ = (V ′, A′) be obtained from
T by deleting vertex s1, and let w′ be obtained from the restriction of w to A′ by replacing w(e)
with w(e)+w(s1v4) for e ∈ {v1v6, v6si, siv4} and replacing w(uv1) with w(uv1)+w(us1) for any
u ∈ V \(V (T2)\a2), Let x′ be the restriction of x to A′, and let y′ be obtained from y as follows:
set y′(v1v6siv4v1) = y(v1s1v4v1) + y(v1v6siv4v1); for each C ∈ Cy

0 passing through us1v4, let C
′

arise from C by replacing the path us1v4 with the path uv1v6siv4, and set y′(C ′) = y(C ′)+y(C).
From the LP-duality theorem, we see that x′ and y′ are optimal solutions to P(T ′,w′) and
D(T ′,w′), respectively, with the same value ν∗w(T ) as x and y. By the hypothesis of Theorem
1.5, ν∗w(T ) is an integer. So we may assume that (21) holds.

By (21), the equality concerning w(v4v1) becomes y(v1s1v4v1) + y(v1v6v4v1) = w(v4v1). As
w(v4v1) = w(K) = τw(T2\a2) > 0, neither y(v1s1v4v1) nor y(v1v6v4v1) is integral. Observe that
v1s1 is outside Cy

0 , for otherwise, let C be a cycle containing v1s1 in Cy
0 , let C ′ = C[v4, v1] ∪

{v1v6, v6v4}, and let θ = min{y(C), y(v1v6v4v1)}. Let y′ be obtained from y by replacing
y(v1s1v4v1), y(v1v6v4v1), y(C), and y(C ′) with y(v1s1v4v1) + θ, y(v1v6v4v1)− θ, y(C)− θ, and
y(C ′) + θ, respectively. Then y′ is also an optimal solution to D(T,w) with y′(v1v6v4v1) <
y(v1v6v4v1), contradicting (8). Moreover, i ̸= 1, for otherwise, it can be shown similarly that
v6s1 is outside Cy

0 , which implies z(v6s1) = 0, contradicting that v6 ∈ φ(s1). Let us show that
(22) ν∗w(T ) is an integer.
For this purpose, let x be an optimal solution to P(T,w). Since both y(v1s1v4v1) and

y(v1v6v4v1) are positive, we have x(v1s1v4v1) = x(v1v6v4v1) = 1 by Lemma 3.1(i). By (16)
and Lemma 3.2(iii), we have y(v1s1v4v1) < w(v1s1) and hence x(v1s1) = 0. So x(s1v4) =
x(v1v6) + x(v6v4). Note that if a cycle in Cy

0 contains us1, then it passes through s1v4. For
any u ∈ V \(V (T2)\a2), if there exists a cycle C ∈ Cy

0 containing uv1 and passing through
v1v6v4, then by Lemma 3.1(iv), we obtain x(uv1) + x(v1v6) + x(v6v4) = x(us1) + x(s1v4), and
hence x(uv1) = x(us1). Otherwise, since w(v6v3) = 0, if a cycle in Cy

0 contains uv1, then it
passes through v1v6siv4. By Lemma 3.1(i) and (iv), we have x(v6v4) ≥ x(v6si) + x(siv4) and
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x(uv1)+x(v1v6)+x(v6si)+x(siv4) = x(us1)+x(s1v4). Since x(v1v6v4v1) = 1 and x(v1v6siv4v1) ≥
1, we see that x(v6v4) ≤ x(v6si) + x(siv4). Hence, x(uv1) = x(us1) also holds. Clearly, we may
assume that this equality holds in any other situation. Let T ′ = (V ′, A′) be obtained from T
by deleting vertex s1, and let w′ be obtained from the restriction of w to A′ by replacing w(e)
with w(e) + w(s1v4) for e = v1v6 and v6v4 and replacing w(uv1) with w(uv1) + w(us1) for any
u ∈ V \(V (T2)\a2). Let x′ be the restriction of x to A′ and let y′ be obtained from y as follows:
set y′(v1v6v4v1) = y(v1s1v4v1) + y(v1v6v4v1); for each C ∈ Cy

0 passing through us1v4 for any
u ∈ V \(V (T2)\a2), let C ′ arise from C by replacing the path us1v4 with the path uv1v6v4, and
set y′(C ′) = y(C ′) + y(C). From the LP-duality theorem, we see that x′ and y′ are optimal
solutions to P(T ′,w′) and D(T ′,w′), respectively, with the same value as x and y. From the
hypothesis of Theorem 1.5, (22) follows.

Case 2.4. K = {v3v1, v4v1} in Case 1.2.
In this case, y(v1v6v3v1) = w(v3v1) and y(v1s1v4v1)+y(v1v6v4v1)+y(v1v6siv4v1)+y(v1v6v3v4v1)

= w(v4v1) (see (20)). By Lemma 3.2(iii), we may assume that w(v3v1) = 0.
If y(v1v6siv4v1) = y(v1v6v3v4v1) = 0, then y(v1s1v4v1) + y(v1v6v4v1) = w(v4v1). Since

w(v4v1) = w(K) = τw(T2\a2) > 0, we see that y(v1s1v4v1) is not integral. Imitating the
proof of (22), it can be shown that ν∗w(T ) is an integer. So we assume that at least one of
y(v1v6v3v4v1) and y(v1v6siv4v1) is positive. By (10) or (11), v6v4 is saturated by y in T2, and
hence y(v1v6v4v1) = w(v6v4). By Lemma 3.2(iii), we may assume that w(v6v4) = 0. If neither
y(v1v6siv4v1) nor y(v1v6v3v4v1) is integral then, imitating the proof in Case 2.2, it can be shown
that ν∗w(T ) is an integer. It remains to consider the subcase when precisely one of them is
positive. Now it can be shown that ν∗w(T ) is an integer. Since the proof is the same as that
contained in the argument of (21), we omit the routine details here.

Combining the above four cases, we see that Claim 2 holds. Hence, by Lemma 3.2(iii), the
optimal value ν∗w(T ) of D(T,w) is integral, as described in (1) above.

Lemma 5.9. If T2/S = G3, then D(T,w) has an integral optimal solution.

Proof. Recall that (b2, a2) = (v4, v5), s
∗ = v2, and v0 = v4. To establish the statement, by

Lemma 3.2(iii) and Lemma 3.4(ii), it suffices to prove that
(1) y(C) is a positive integer for some C ∈ C2 or the optimal value ν∗w(T ) of D(T,w) is an

integer.
Given an optimal solution y to D(T,w), set φ(si) = {u : z(usi) > 0 for u ∈ V (T2)\a2} for

each si ∈ S. By Lemma 5.2 (i) and (vi), we have
(2) φ(si) ∩ φ(sj) = ∅ whenever i ̸= j.
(3) There exist at least two and at most three vertices si’s in S with φ(si) ̸= ∅. (The

statement is exactly the same as (3) in the proof of Lemma 5.7.)
Lemma 5.2(i) allows us to assume that
(4) if φ(si) ̸= ∅, then i ∈ {1, 2, 3}.
Let t be the subscript in {1, 2, 3} with v1 ∈ φ(st), if any. By (2), t is well defined. In the

remainder of our proof, we reserve y for an optimal solution to D(T,w) such that
(5) y(C2) is maximized;
(6) subject to (5), (y(Dq), y(Dq−1), . . . , y(D3)) is minimized lexicographically;
(7) subject to (5) and (6), y(v1v6v3v4v1) is minimized; and
(8) subject to (5)-(7), y(v1stv4v1) + y(v3v4v6v3) is minimized.
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Let us make some observations about y before proceeding.
(9) If K is an FAS of T2\a2 such that y(C2) = w(K), then K is an MFAS. (The statement

is exactly the same as (4) in the proof of Lemma 4.3.)
The statements below follow instantly from Lemma 3.5(v) and the choice of y.
(10) If y(v1v6v3v4v1) > 0, then both v3v1 and v4v6 are saturated by y in T2. Furthermore,

for any i ∈ {1, 2, 3}, we have y(v6siv4v6) = 0; if y(v3siv4v6v3) > 0, then v1si is saturated by y
in T2.

(11) If y(v1v6siv4v1) > 0 for some i ∈ {1, 2, 3}, then both v1si and v4v6 are saturated by y
in T2. Furthermore, if y(v3v4v6v3) > 0, then v3v1 is saturated by y in T2; for any 1 ≤ j ̸= i ≤ 3,
if y(v3sjv4v6v3) > 0, then both v3v1 and v1sj are saturated by y in T2.

(12) If y(v3siv4v6v3) > 0 for some i ∈ {1, 2, 3}, then both v3v4 and v6si are saturated by y
in T2.

(13) If v1 ∈ φ(si) for some i ∈ {1, 2, 3}, then y(v1siv4v6v3v1) = 0.
Assume the contrary: y(v1siv4v6v3v1) > 0. Then v1v6, v3v4, and v4v1 are saturated by y in

T2 by Lemma 3.5(v). Let j and k be subscripts in {1, 2, 3}, if any, such that v3 ∈ φ(sj) and
v6 ∈ φ(sk) (possibly j = k). As before, let ⊎ denote the multiset sum. Then v1siv4v6v3v1 ⊎
v1v6v3v4v1 = v1siv4v1 ⊎ v1v6v3v1 ⊎ v3v4v6v3, v1siv4v6v3v1 ⊎ v1v6skv4v1 = v1siv4v1 ⊎ v1v6v3v1 ⊎
v6skv4v6, and v1siv4v6v3v1 ∪ v1v6v3sjv4v1 = v1siv4v1 ⊎ v1v6v3v1 ⊎ v3sjv4v6v3. Thus, from the
optimality of y, we deduce that y(v1v6v3v4v1), y(v1v6skv4v1), and y(v1v6v3sjv4v1) are all zero.
So y(v1v6v3v1) = w(v1v6), y(v1siv4v1) = w(v4v1), and y(v3v4v6v3) = w(v3v4). Clearly, we may
assume that w(v1v6) = w(v4v1) = w(v3v4) = 0, otherwise (1) holds. By (3), we have {j, k} ̸= {i}.
Let us show that one of y(v6skv4v6), y(v3sjv4v6v3), and y(v1siv4v6v3v1) is a positive integer or
ν∗w(T ) is an integer. We proceed by considering two cases.

• k exists and i ̸= k. In this case, observe first that v6sk is not saturated by y in T2, for
otherwise, y(v6skv4v6) = w(v6sk) > 0 and hence (1) holds. Next, vkv4 is not saturated by y
in T2, for otherwise, if k ̸= j, then y(v6skv4v6) = w(skv4) > 0; if k = j, then y(v6skv4v6) +
y(v3skv4v6v3) = w(skv4) > 0, and y(v6skv4v6) = w(v6sk) > 0 by Lemma 3.5(v) provided
y(v3skv4v6v3) > 0. So y(v6skv4v6) is a positive integer, and hence (1) also holds. Moreover,
both v6sk and v3sj are outside Cy

0 , for otherwise, let C1 (resp. C2) be a cycle in Cy
0 containing v6sk

(resp. v3sj). Since C1 ⊎ v1siv4v6v3v1 = v6skv4v6 ⊎C ′
1 and C2 ⊎ v1siv4v6v3v1 = v3sjv4v6v3 ⊎C ′

2,
where C ′

1 = C1[v4, v6]∪{v6v3, v3v1, v1si, siv4} and C ′
2 = C2[v4, v3]⊎{v3v1, v1si, siv4}, by Lemma

3.5(viii), we have y(Ci) = 0 for i = 1, 2, a contradiction. It follows that v6sk is not saturated by
y in T , and skv4 is contained in some cycle in Cy

0 . By Lemma 3.5(vii), v4v6 is saturated by y in
T2, so y(v1siv4v6v3v1)+ y(v6skv4v6)+ y(v3sjv4v6v3) = w(v4v6). If j = k and y(v3skv4v6v3) > 0,
then v6sk is saturated by y in T2 by Lemma 3.5(v), a contradiction. So either j ̸= k or j = k
and y(v3skv4v6v3) = 0. Since w(v6sk) > 0 and v6sk is outside Cy

0 , we have y(v6skv4v6) > 0.
Assume y(v6skv4v6) is not integral. Let us show that ν∗w(T ) is an integer.

For this purpose, let x be an optimal solution to P(T,w). Since both y(v6skv4v6) and
y(v1siv4v6v3v1) are positive, by Lemma 3.1(i), we have x(v6skv4v6) = x(v1siv4v6v3v1) = 1. By
Lemma 3.1(ii), we obtain x(v6sk) = 0. Hence x(skv4) = x(v6v3) + x(v3v1) + x(v1si) + x(siv4).
Since w(v3v4) = 0 and v6sk is outside Cy

0 , for any u ∈ V \(V (T2)\a2), if a cycle in Cy
0 contains

uv6, then it passes through v6v3v1siv4. Moreover, if a cycle in Cy
0 contains usk, then it passes

through skv4. By Lemma 3.1(iv), we obtain x(uv6) + x(v6v3) + x(v3v1) + x(v1si) + x(siv4) =
x(usk)+x(skv4). Hence x(uv6) = x(usk). Clearly, we may assume that this equality holds in any
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other situation. Let T ′ = (V ′, A′) be obtained from T by deleting sk, and letw′ be obtained from
the restriction of w to A′ by replacing w(e) with w(e) + w(v4sk) for e ∈ {v6v3, v3v1, v1si, siv4}
and replacing w(uv6) with w(uv6)+w(usk) for any u ∈ V \(V (T2)\a2). Let x′ be the restriction
of x to A′, and let y′ be obtained from y as follows: set y′(v1siv4v6v3v1) = y(v1siv4v6v3v1) +
y(v6skv4v6); for each C ∈ Cy

0 passing through uskv4, let C
′ arise from C by replacing the path

uskv4 with the path uv6v3v1siv4, and set y′(C ′) = y(C ′) + y(C). From the LP-duality theorem,
we see that x′ and y′ are optimal solutions to P(T ′,w′) and D(T ′,w′), respectively, with the
same value ν∗w(T ) as x and y. By the hypothesis of Theorem 1.5, ν∗w(T ) is an integer.

• Either k does not exist or i = k. In this case, by (3), we see that j exists; that is, v3 ∈ φ(sj).
Similar to the above case, we can show that either y(v3sjv4v6v3) is a positive integer or ν∗w(T )
is an integer. Since the proof goes along the same line (with v3sj and y(v3sjv4v6v3) in place of
v6sk and y(v6skv4v6), respectively), we omit the details here. Hence we may assume that (13)
holds.

(14) If v3 ∈ φ(sj) for some j ∈ {1, 2, 3}, then y(v1v6v3sjv4v1) = 0.
Assume the contrary: y(v1v6v3sjv4v1) > 0. Then v3v1, v3v4, and v4v6 are saturated by y

in T2 by Lemma 3.5(v). Let i and k be subscripts in {1, 2, 3}, if any, such that v1 ∈ φ(si)
and v6 ∈ φ(sk) (possibly i = k). Since v1v6v3sjv4v1 ⊎ v3v4v6v3 = v1v6v3v4v1 ⊎ v3sjv4v6v3,
and v1v6v3sjv4v1 ∪ v6skv4v6 = v1v6skv4v1 ⊎ v3sjv4v6v3, from the optimality of y, we deduce
that y(v3v4v6v3) = y(v6skv4v6) = 0. So y(v1v6v3v1) = w(v3v1), y(v1v6v3v4v1) = w(v3v4), and
y(v3sjv4v6v3) = w(v4v6). Clearly, we may assume that w(v3v1) = w(v3v4) = w(v4v6) = 0,
otherwise (1) holds. By (3), we have {i, k} ̸= {j}. Let us show that one of y(v1siv4v1),
y(v1v6skv4v1), and y(v1v6v3sjv4v1) is a positive integer or ν∗w(T ) is an integer. We proceed by
considering two cases.

• i exists and i ̸= j. In this case, observe first that v1si is not saturated by y in T2, for
otherwise, y(v1siv4v1) = w(v1si) > 0 and hence (1) holds. Next, siv4 is not saturated by y in T2,
for otherwise, if i ̸= k, then y(v1siv4v1) = w(siv4) > 0; if i = k, then y(v1siv4v1)+y(v1v6siv4) =
w(siv4) > 0, and y(v1siv4v1) = w(v1si) > 0 by Lemma 3.5(v) provided y(v1v6siv4v1) > 0.
So y(v1siv4v1) is a positive integer, and hence (1) also holds. Moreover, both v1si and v6sk
are outside Cy

0 , for otherwise, let C1 (resp. C2) be a cycle in Cy
0 containing v1si (resp. v6sk).

Since C1 ⊎ v1v6v3sjv4v1 = v1siv4v1 ∪ C ′
1 and C2 ⊎ v1v6v3sjv4v1 = v1v6skv4v1 ⊎ C ′

2, where C ′
1 =

C1[v4, v1] ∪ {v1v6, v6v3, v3sj , sjv4} and C ′
2 = C2[v4, v6] ∪ {v6v3, v3sj , sjv4}, by Lemma 3.5(viii),

we have y(Ci) = 0 for i = 1, 2, a contradiction. It follows that v1si is not saturated by y in T
and siv4 is contained in some cycle in Cy

0 . By Lemma 3.5(vii), v4v1 is saturated by y in T2, so
y(v1siv4v1) + y(v1v6skv4v1) + y(v1v6v3sjv4v1) = w(v4v1). If i = k and y(v1v6skv4v1) > 0, then
v1si is saturated by y in T2 by Lemma 3.5(v), a contradiction. So either i ̸= k or i = k and
y(v1v6skv4v1) = 0. Since w(v1si) > 0 and v1si is outside Cy

0 , we have y(v1siv4v1) > 0. Assume
y(v1siv4v1) is not integral. Let us show that ν∗w(T ) is an integer.

For this purpose, let x be an optimal solution to P(T,w). Since both y(v1siv4v1) and
y(v1v6v3sjv4v1) are positive, by Lemma 3.1(i), we have x(v1siv4v1) = y(v1v6v3sjv4v1) = 1. By
Lemma 3.1(ii), we obtain x(v1si) = 0. Hence x(siv4) = x(v1v6) + x(v6v3) + x(v3sj) + x(sjv4).
Since w(v3v1) = w(v3v4) = 0, for any u ∈ V \(V (T2)\a2), if a cycle in Cy

0 contains uv1, then it
passes through v6v3sjv4. Moreover, if a cycle in Cy

0 contains usi, then it passes through siv4.
By Lemma 3.1(iv), we obtain x(uv1)+ x(v1v6)+ x(v6v3)+ x(v3sj)+ x(sjv4) = x(usi)+ x(siv4).
Hence x(uv1) = x(usi). Clearly, we may assume that this equality holds in any other situation.
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Let T ′ = (V ′, A′) be obtained from T by deleting si, and let w′ be obtained from the restriction
of w to A′ by replacing w(e) with w(e) + w(v4si) for e ∈ {v1v6, v6v3, v3sj , sjv4} and replacing
w(uv1) with w(uv1) + w(usi) for any u ∈ V \(V (T2)\a2). Let x′ be the restriction of x to A′

and let y′ be obtained from y as follows: set y′(v1v6v3sjv4v1) = y(v1v6v3sjv4v1) + y(v1siv4v1);
for each C ∈ Cy

0 passing through usiv4, let C
′ be obtained from C by replacing the path usiv4

with the path uv1v6v3sjv4, and set y′(C ′) = y(C ′) + y(C). From the LP-duality theorem, we
see that x′ and y′ are optimal solutions to P(T ′,w′) and D(T ′,w′), respectively, with the same
value ν∗w(T ) as x and y. By the hypothesis of Theorem 1.5, ν∗w(T ) is an integer.

• Either i does not exist or i = j. In this case, by (3), we see that k exists; that is, v6 ∈ φ(sk).
Similar to the above case, we can show that either y(v1v6skv4v1) is a positive integer or ν∗w(T )
is an integer. Since the proof goes along the same line (with v6sk and y(v1v6skv4v1) in place of
v1si and y(v1siv4v1), respectively), we omit the details here. Hence we may assume that (14)
holds.

We proceed by considering two cases, depending on whether φ(si) = {v1} for some i.
Case 1. φ(si) = {v1} for some i ∈ {1, 2, 3}.
By Lemma 5.2(i), we may assume that φ(s1) = {v1}. Let j and k be subscripts in {1, 2, 3},

if any, such that v3 ∈ φ(sj) and v6 ∈ φ(sk) (possibly j = k). By (13) and (14), we have
(15) Cy

2 ⊆ {v1v6v3v4v1, v1v6skv4v1, v3sjv4v6v3, v1s1v4v1, v6skv4v6, v1v6v3v1, v3v4v6v3}.
Observe that neither s1v4 nor v1s1 is saturated by y in T2, for otherwise, y(v1s1v4v1) =

w(s1v4) or w(v1s1); both of them are positive, so (1) holds. By Lemma 5.2(iii), z(s1v4) =
w(z1v4) > 0. Thus there exists a cycle C ∈ Cy

0 containing s1v4; subject to this, C is chosen to
contain v1s1 if possible. If v1s1 is outside C, then v1s1 is not saturated by y in T . By Lemma
3.5(vii), v4v1 is saturated by y in T2 and hence y(v1s1v4v1) + y(v1v6skv4v1) + y(v1v6v3v4v1) =
w(v4v1).

(16) If w(v4v1) > 0, then either y(v1s1v4v1) is a positive integer or ν∗w(T ) is an integer.
To justify this, assume y(v1s1v4v1) is not a positive integer. Then at least one of y(v1v6skv4v1)

and y(v1v6v3v4v1) is positive. Observe that v1s1 is outside Cy
0 , for otherwise, let D be a cycle

in Cy
0 containing v1s1. If y(v1v6v3v4v1) > 0 then, using D ⊎ v1v6v3v4v1 = v1s1v4v1 ⊎D′, where

D′ = D[v4, v1] ∪ {v1v6, v6v3, v3v4}, and applying Lemma 3.5(viii), we deduce that y(D) = 0,
a contradiction. If y(v1v6skv4v1) > 0, then a contradiction can be reached similarly. Since
w(v1s1) > 0, we obtain y(v1s1v4v1) > 0. As y(v1s1v4v1) is not integral, at least one of
y(v1v6skv4v1) and y(v1v6v3v4v1) is not integral. Let us show that ν∗w(T ) is an integer.

We only consider the case when y(v1v6v3v4v1) is not integral, as the proof in the other case
when y(v1v6v3v4v1) = 0 and y(v1v6skv4v1) > 0 goes along the same line.

Let x be an optimal solution to P(T,w). Since both y(v1s1v4v1) and y(v1v6v3v4v1) are
positive, by Lemma 3.1(i), we have x(v1s1v4v1) = x(v1v6v3v4v1) = 1. By Lemma 3.1(ii), we
obtain x(v1s1) = 0, because v1s1 is not saturated by y. It follows that x(s1v4) = x(v1v6) +
x(v6v3) + x(v3v4). Observe that there is no cycle D in Cy

0 that contains the path v1v6skv4,
for otherwise, let θ = min{y(D), y(v1v6v3v4v1)}, let D′ = D[v4, v1] ∪ {v1v6, v6v3, v3v4}, and
let y′ be obtained from y by replacing y(D), y(D′), y(v1v6v3v4v1), and y(v1v6skv4v1) with
y(D)− θ, y(D′) + θ, y(v1v6v3v4v1)− θ, and y(v1v6skv4v1) + θ, respectively. Then y′ is also an
optimal solution to D(T,w) with y′(v1v6v3v4v1) < y(v1v6v3v4v1), contradicting (7). For any
u ∈ V \(V (T2)\a2), if a cycle in Cy

0 contains uv1, then it passes through v1v6v3v4. Moreover, if
a cycle in Cy

0 contains us1, then it passes through s1v4. By Lemma 3.1(iv), we obtain x(uv1) +
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x(v1v6) + x(v6v3) + x(v3v4) = x(us1) + x(s1v4). Hence x(uv1) = x(us1). Clearly, we may
assume that this equality holds in any other situation. Let T ′ = (V ′, A′) be obtained from
T by deleting s1, and let w′ be obtained from the restriction of w to A′ by replacing w(e)
with w(e) + w(s1v4) for e ∈ {v1v6, v6v3, v3v4} and replacing w(uv1) with w(uv1) + w(us1) for
any u ∈ V \(V (T2)\a2). Let x′ be the restriction of x to A′, and let y′ be obtained from y
as follows: set y′(v1v6v3v4v1) = y(v1v6v3v4v1) + y(v1s1v4v1); for each C ∈ Cy

0 passing through
us1v4, let C ′ be obtained from C by replacing the path us1v4 with the path uv1v6v3v4, and
set y′(C ′) = y(C ′) + y(C). From the LP-duality theorem, we see that x′ and y′ are optimal
solutions to P(T ′,w′) and D(T ′,w′), respectively, with the same value ν∗w(T ) as x and y. By
the hypothesis of Theorem 1.5, ν∗w(T ) is an integer. So (16) follows.

By (16) and Lemma 3.2(iii), we may assume that w(v4v1) = 0 hereafter.
(17) If k exists (so v6 ∈ φ(sk)) and w(v4v6) > 0, then either y(v6skv4v6) is a positive integer

or ν∗w(T ) is an integer.
To justify this, observe first that v6sk is not saturated by y in T2, for otherwise, y(v6skv4v6) =

w(v6sk) > 0, so (17) holds. Next, skv4 is not saturated by y in T2, for otherwise, if j ̸= k,
then y(v6skv4v6) = w(skv4) > 0; if j = k, then y(v6skv4v6) + y(v3skv4v6v3) = w(skv4), and
y(v6skv4v6) = w(v6sk) > 0 by Lemma 3.5(v) provided y(v3skv4v6v3) > 0, so (17) also holds.
By Lemma 5.2(iii), skv4 is saturated by y in T , so skv4 is contained in some cycle C ∈ Cy

0 ;
subject to this, C is chosen to contain v6sk if possible. Clearly, if v6sk is not on C, then
v6sk is not saturated by y in T . By Lemma 3.5(vii), v4v6 is saturated by y in T2, and hence
y(v6skv4v6) + y(v3v4v6v3) + y(v3sjv4v6v3) = w(v4v6).

Assume y(v6skv4v6) is not a positive integer. Then at least one of y(v3v4v6v3) and y(v3sjv4v6v3)
is positive, say the former. Note that v6sk is outside Cy

0 , for otherwise, let D be a cycle in Cy
0

containing v6sk. Set D′ = D[v4, v6] ∪ {v6v3, v3v4} and θ = min{y(v3v4v6v3), y(C)}. Let y′ be
obtained from y by replacing y(v3v4v6v3), y(v6skv4v6), y(C), and y(C ′) with y(v3v4v6v3) − θ,
y(v6skv4v6) + θ, y(C) − θ, and y(C ′) + θ, respectively. Then y′ is also an optimal solution
to D(T,w) with y′(v3v4v6v3) < y(v3v4v6v3), contradicting (8). Since w(v6sk) > 0, we have
y(v6skv4v6) > 0. As y(v6skv4v6) is not integral, y(v3v4v6v3) or y(v3sjv4v6v3) is not integral. If
y(v3sjv4v6v3) > 0, then v3v4 is saturated by y in T2 by Lemma 3.5(v), so y(v3v4v6v3) = w(v3v4).
Hence we may assume that exactly one of y(v3v4v6v3) and y(v3sjv4v6v3) is positive. Let us show
that ν∗w(T ) is an integer.

We only consider the case when y(v3v4v6v3) is not integral, because the proof in the other
case when y(v3v4v6v3) = 0 and y(v3sjv4v6v3) > 0 goes along the same line.

Let x be an optimal solution to P(T,w). Since both y(v6skv4v6) and y(v3v4v6v3) are positive,
we have x(v6skv4v6) = x(v3v4v6v3) = 1 by Lemma 3.1(i). Since v6sk is not saturated by y in T ,
we obtain x(v6sk) = 0 by Lemma 3.1(ii). It follows that x(skv4) = x(v6v3) + x(v3v4). For any
u ∈ V \(V (T2)\a2), if a cycle in Cy

0 contains uv6, then it passes through v6v3v4. Moreover, if a
cycle in Cy

0 contains usk, then it passes through skv4. By Lemma 3.1(iv), we obtain x(uv6) +
x(v6v3) + x(v3v4) = x(usk) + x(skv4). Hence x(uv6) = x(usk). Clearly, we may assume that
this equality holds in any other situation. Let T ′ = (V ′, A′) be obtained from T by deleting sk,
and let w′ be obtained from the restriction of w to A′ by replacing w(e) with w(e) + w(skv4)
for e = v6v3 and v3v4 and replacing w(uv6) with w(uv6) + w(usk) for any u ∈ V \(V (T2)\a2).
Let x′ be the restriction of x to A′ and let y′ be obtained from y as follows: set y′(v3v4v6v3) =
y(v3v4v6v3) + y(v6skv4v6); for each C ∈ Cy

0 passing through usiv4, let C ′ be the cycle arising
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from C by replacing the path uskv4 with the path uv6v3v4, and set y′(C ′) = y(C ′)+y(C). From
the LP-duality theorem, we see that x′ and y′ are optimal solutions to P(T ′,w′) and D(T ′,w′),
respectively, with the same value ν∗w(T ) as x and y. By the hypothesis of Theorem 1.5, ν∗w(T )
is an integer. So (17) holds.

By (17) and Lemma 3.2(iii), we may assume that if w(v4v6) > 0, then k does no exist, and
hence j exists (so v3 ∈ φ(sj)) by (3).

(18) If w(v4v6) > 0, then at least one of y(v1v6v3v1), y(v3v4v6v3), and y(v3sjv4v6v3) is a
positive integer.

To justify this, note that neither sjv4 nor v3sj is saturated by y in T2, for otherwise,
y(v3sjv4v6v3) = w(sjv4) or w(v3sj); both of them are positive, so (18) holds. By Lemma
5.2(iii), sjv4 is saturated by y in T , so sjv4 is contained in a cycle C ∈ Cy

0 ; subject to this,
C is chosen to contain v3sj if possible. Clearly, if v3sj is not on C, then v3sj is not satu-
rated by y in T . By Lemma 3.5(iii), at least one of v4v6 and v6v3 is saturated by y in T2.
Furthermore, by Lemma 3.5(iv), if v6v3 is contained in some cycle in Cy

0 , then v4v6 is satu-
rated by y in T2. If v4v6 is saturated by y in T2, then y(v3v4v6v3) + y(v3sjv4v6v3) = w(v4v6),
and y(v3v4v6v3) = w(v3v4) by Lemma 3.5(v) provided y(v3sjv4v6v3) > 0. So at least one of
y(v3v4v6v3) and y(v3sjv4v6v3) is a positive integer, and hence (18) holds. Thus we may assume
that v4v6 is not saturated by y in T2, which implies that v6v3 saturated by y in T2. It follows that
y(v1v6v3v1)+y(v3v4v6v3)+y(v3sjv4v6v3) = w(v6v3). If w(v6v3) = 0, then K = {v4v1, v6v3, v6sj}
is an FAS of T with total weight zero, so τw(T2\a2) = 0, contradicting the hypothesis (α) of this
section. Therefore w(v6v3) > 0. If y(v3sjv4v6v3) > 0, then y(v3v4v6v3) = w(v3v4) by (15) and
Lemma 3.5(v). So we may further assume that exactly one of y(v3v4v6v3) and y(v3sjv4v6v3) is
positive, and thus y(v1v6v3v1) > 0.

Let us show that y(v1v6v3v1) is an integer. Suppose not. Then y(v3v4v6v3) or y(v3sjv4v6v3)
is not integral, say the former (the proof in the other case goes along the same line). Since v6v3 is
saturated by y in T2 and w(v6sj) = 0, the arc v1v6 is outside Cy

0 . If v3v1 is also outside C
y
0 , let y

′ be
obtained from y by replacing y(v3v4v6v3) and y(v1v6v3v1) with y(v3v4v6v3)−θ and y(v1v6v3v1)+
θ, respectively, where θ = min{w(v1v6) − z(v1v6), w(v3v1) − z(v3v1), y(v3v4v6v3)}; if v3v1 is
contained in some cycle C ∈ Cy

0 , let y
′ be obtained from y by replacing y(v3v4v6v3), y(v1v6v3v1),

y(C), and y(C ′) with y(v3v4v6v3)− σ, y(v1v6v3v1) + σ, y(C)− σ, y(C ′) + σ, respectively, where
C ′ = C[v4, v3]∪{v3v4} and σ = min{w(v1v6)− z(v1v6), y(C), y(v3v4v6v3)}. It is easy to see that
in either situation y′ is also an optimal solution to D(T,w) with y′(v3v4v6v3) < y(v3v4v6v3),
contradicting (8). This proves (18).

By (16)-(18), we may assume that w(v4v1) = w(v4v6) = 0. Since each of {v4v1, v4v6, v1v6},
{v4v1, v4v6, v6v3}, and {v4v1, v4v6, v3v1} is a minimal FAS of T2\a2,

ϵ = min{w(v1v6), w(v6v3), w(v3v1)} > 0

by the hypothesis (α) of this section. By Lemma 3.5(vii), we obtain y(v1v6v3v1) = ϵ > 0. Thus
(1) is established in the present case.

Case 2. φ(si) ̸= {v1} for any i ∈ {1, 2, 3}.
By the hypothesis of the present case, we may assume that v6 ∈ φ(s1), v3 ∈ φ(s2), and

v1 ∈ φ(si) for i = 1 or 2. By (13) and (14), we have
(19) Cy

2 ⊆ {v1v6v3v1, v3v4v6v3, v1v6v3v4v1, v6s1v4v6, v1v6s1v4v1, v3s2v4v6v3, v1s1v4v1, v1s2v4v1}
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and y(v1siv4v1) = 0 for i = 1 or 2.
Claim 1. y(C2) = τw(T2\a2).
To justify this, note that z(siv4) = w(siv4) > 0 for i = 1 and 2 by Lemma 5.2(iii). Depending

on the saturation of s1v4 and s2v4, we distinguish among three subcases.
Subcase 1.1. s1v4 is contained in some cycle C ∈ Cy

0 . In this subcase, v4v6 is saturated
by y in T2, for otherwise, v4v6 is not saturated by y in T , because it is outside Cy

0 . By Lemma
3.5(iii), v6s1 is saturated by y in T2. By (11), we have y(v1v6s1v4v1) = 0, which together with
(19) implies y(v6s1v4v6) = w(v6s1) > 0, so (1) holds. Clearly, v4v1 is outside Cy

0 . We proceed
by considering two subsubcases.

Assume first that v4v1 is not saturated by y in T2 (and hence in T ). Then, by Lemma 3.5(iii),
v1s1 and at least one of v1s2 and s2v4 are saturated by y in T2. Furthermore, v1s2 is outside Cy

0 .
If v1s2 is not saturated by y in T , then y(v3s2v4v6v3) = 0, for otherwise, let y′ be obtained from
y by replacing y(v1s2v4v1) and y(v3s2v4v6v3) with y(v1s2v4v1)+ θ and y(v3s2v4v6v3)− θ, where
θ = min{w(v4v1) − z(v4v1), w(v1s2) − z(v1s2), y(v3s2v4v6v3)} > 0. Then y′ is also an optimal
solution to D(T,w), contradicting (6). It follows from (19) that y(v1s2v4v1) = w(s2v4) > 0, so
(1) holds. Thus we may assume that v1s2 is saturated by y in T2. If v1v6 is saturated by y
in T2, then y(C2) = w(K), where K = {v1v6, v4v6, v1s1, v1s2}. By (9), K is an MFAS of T2\a2
and hence y(C2) = τw(T2\a2). By Lemma 3.5(iii), v1v6 is outside Cy

0 , for otherwise, v4v1 would
be saturated by y in T2, a contradiction. So we may assume that v1v6 is not saturated by y
in T . By Lemma 3.5(iii), v6s1 is saturated by y in T2. If v6v3 is also saturated by y in T2,
then y(C2) = w(K), where K = {v6v3, v6s1, v1s1, v1s2}. So we assume that v6v3 is not saturated
by y in T2. By Lemma 3.5(iii), v6v3 is outside Cy

0 . Furthermore, v3v1, v3s2, and v3v4 are all
saturated by y in T2. So y(C2) = w(J), where J = {v3v1, v3v4, v6s1, v1s1, v1s2, v3s2}. By (9), J
is an MFAS of T2\a2 and hence y(C2) = τw(T2\a2).

Next assume that v4v1 is saturated by y in T2. We may assume that v3v1 is not saturated by y
in T2, for otherwise, y(C2) = w(K), whereK = {v3v1, v4v1, v4v6}. By (9), K is an MFAS of T2\a2
and hence y(C2) = τw(T2\a2). Thus, by (10), we have y(v1v6v3v4v1) = 0. If y(v1v6s1v4v1) = 0
and v1v6 is saturated by y in T2, then y(C2) = w(K), where K = {v1v6, v4v1, v4v6}. So we
may assume that y(v1v6s1v4v1) > 0 or v1v6 is not saturated by y in T2. Consider the situation
when y(v1v6s1v4v1) > 0. Now, by (11), v1s1 is saturated by y in T2, and y(v3v4v6v3) =
y(v3s2v4v6v3) = 0. Moreover, at least one of v1s2 and s2v4 is saturated by y in T2 (otherwise,
y(v1s2v4v1) can be made larger). If v1v6 is saturated by y in T2, then y(C2) = w(K), where K =
{v1v6, v4v6, v1s1, v1s2} or {v1v6, v4v6, v1s1, s2v4}; if v1v6 is not saturated by y in T2, then v6v3 is
saturated by y in T2 by Lemma 3.5(iiv). So y(C2) = w(K), whereK = {v4v1, v4v6, v6v3}. By (9),
K is an MFAS of T2\a2 and hence y(C2) = τw(T2\a2). So we may assume that y(v1v6s1v4v1) = 0
and v1v6 is not saturated by y in T2. By Lemma 3.5(vii), v6v3 is saturated by y in T2. If v6s1
is also saturated by y in T2, then y(C2) = w(K), where K = {v4v1, v6s1, v6v3}. So we further
assume that v6s1 is not saturated by y in T2. We propose to show that

(20) y(v3v4v6v3) = y(v3s2v4v6v3) = 0.
We only prove that y(v3s2v4v6v3) = 0, as the proof of the other equality y(v3v4v6v3) = 0

goes along the same line. Assume the contrary: y(v3s2v4v6v3) > 0. Depending on the saturation
of v1v6 and v3v1, we consider several possibilities.

• Both v1v6 and v3v1 are not saturated by y in T . Define θ = min{w(v1v6)−z(v1v6), w(v3v1)−
z(v3v1), y(v3s2v4v6v3)}. Then θ > 0. Let y′ be obtained from y by replacing y(v3s2v4v6v3) and
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y(v1v6v3v1) with y(v3s2v4v6v3)− θ and y(v1v6v3v1)+ θ, respectively. Then y′ is also an optimal
solution to D(T,w) with y′(v3s2v4v6v3) < y(v3s2v4v6v3), contradicting (6).

• v3v1 is not saturated by y in T and v1v6 is contained in some cycle C ∈ Cy
0 . Since v6v3

is saturated by y in T2, cycle C passes through v6s1v4. Thus the multiset sum of the cycles
C, v3s2v4v6v3 and the unsaturated arc v3v1 contains arc-disjoint cycles v6s1v4v6 and v1v6v3v1.
From Lemma 3.5(vi) we deduce that y(v3s2v4v6v3) = 0, a contradiction.

• v1v6 is is not saturated by y in T and v3v1 is contained in some cycle D ∈ Cy
0 . It is clear

that D passes through v1siv4 for i = 1 or 2. Furthermore, the multiset sum of D, v3s2v4v6v3, and
the unsaturated arc v1v6 contains arc-disjoint cycles v1v6v3v1 and D′ = D[v4, v3] ∪ {v3s2, s2v4}.
Define θ = min{y(D), y(v3s2v4v6v3), w(v1v6)−z(v1v6)}. Let y′ be obtained from y by replacing
y(D), y(D′), y(v3s2v4v6v3), and y(v1v6v3v1) with y(D) − θ, y(D′) + θ, y(v3s2v4v6v3) − θ, and
y(v1v6v3v1)+θ, respectively. Then y′ is also an optimal solution to D(T,w) with y′(v3s2v4v6v3) <
y(v3s2v4v6v3), contradicting (6).

• v1v6 and v3v1 are contained in some cycles C and D in Cy
0 , respectively. If v3v1 is on

C, then the multiset sum of C and v3s2v4v6v3 contains arc-disjoint cycles v1v6v3v1, v6s1v4v6,
and C ′ = C[v4, v3] ∪ {v3s2, s2v4}; if v3v1 is outside C, then the multiset sum of C, D, and
v3s2v4v6v3 contains arc-disjoint cycles v1v6v3v1, v6s1v4v6, C

′ = C[v4, v1] ∪ {v1si, siv4} for i = 1
or 2, and D′ = D[v4, v3] ∪ {v3s2, s2v4}. In either situation from the optimality of y we deduce
that y(v3s2v4v6v3) = 0.

Combining the above observations, we see that (20) holds. Thus y(C2) = w(K), where
K = {v4v1, v4v6, v6v3}. By (9), K is an MFAS of T2\a2 and hence y(C2) = τw(T2\a2).

Subcase 1.2. s1v4 is saturated by y in T2 and s2v4 is contained in some cycle C ∈ Cy
0 ;

subject to this, C is chosen to contain v3s2 if possible. In this subcase, observe first that
both v1s1 and v6s1 are outside Cy

0 . Next, v3s2 is not saturated by y in T2, for otherwise,
y(v3s2v4v6v3) = w(v3s2) > 0, so (1) holds. If both v6v3 and v1s2 are saturated by y in T2,
then y(C2) = w(K), where K = {s1v4, v1s2, v6v3}. By (9), K is an MFAS of T2\a2 and hence
y(C2) = τw(T2\a2). We proceed by considering two subsubcases.

(a) v6v3 is not saturated by y in T2. Now v4v6 is saturated by y in T2 by Lemma 3.5(iii).
Assume first that v4v1 is not saturated by y in T . Then both v1v6 and v1s2 are saturated

by y in T2 by Lemma 3.5(iii). If v1s1 is also saturated by y in T2, then y(C2) = w(K), where
K = {v1v6, v4v6, v1s1, v1s2}; otherwise, v1s1 is not saturated by y in T . By (11), we have
y(v1v6s1v4v1) = 0. Let us show that

(21) y(v6s1v4v6) = 0.
Indeed, if v6v3 is not saturated by y in T , then the multiset sum of the cycles C, v6s1v4v6,

and the unsaturated arcs v4v1, v1s1, and v6v3 (or v3s2 if it is outside C) contains arc-disjoint
cycles v1s1v4v1 and v3s2v4v6v3. Thus, by Lemma 3.5(vi), we have y(v6s1v4v6) = 0. If v6v3 is
contained in some cycle C ∈ Cy

0 , then C contains v3v4 or v3s2. Thus the multiset sum of cycles
C, v6s1v4v6, and the unsaturated arcs v4v1 and v1s1 contains arc-disjoint cycles v1s1v4v1 and
one of v3v4v6v3 and v3s2v4v6v3. Thus, by Lemma 3.5(vi), we have y(v6s1v4v6) = 0. This proves
(21).

It follows from (19) and (21) that y(v1s1v4v1) = w(s1v4) > 0, so (1) holds. Thus we may
assume that v4v1 is saturated by y in T (and hence in T2). Then we may further assume that
v3v1 is not saturated by y in T2, for otherwise, y(C2) = w(K), where K = {v4v1, v4v6, v3v1}.
Thus y(C2) = τw(T2\a2). By Lemma 3.5(vii), v1v6 is saturated by y in T2 and hence, by (10),
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we have y(v1v6v3v4v1) = 0. Let us show that
(22) y(v1v6s1v4v1) = 0.
To justify this, we consider four possibilities, depending on the saturation of v6v3 and v3v1.
• Both v6v3 and v3v1 are saturated by y in T . Now define θ = min{w(v6v3)−z(v6v3), w(v3v1)−

z(v3v1), y(v1v6s1v4v1)}. Then θ > 0. Let y′ be obtained from y by replacing y(v1v6v3v1) and
y(v1v6s1v4v1) with y(v1v6v3v1)+θ and y(v1v6s1v4v1)−θ, respectively. Then y′ is also an optimal
solution to D(T,w) with y′(v1v6s1v4v1) < y(v1v6s1v4v1), contradicting (6).

• v3v1 is not saturated by y in T and v6v3 is contained in some cycle C ∈ Cy
0 . Now the multiset

sum of the cycles C, v1v6s1v4v1 and the unsaturated arc v3v1 contains arc-disjoint cycles v1v6v3v1
and C ′ = C[v4, v6]∪{v6s1, s1v4}. Define θ = min{w(v3v1)−z(v3v1), y(C), y(v1v6s1v4v1)}. Then
θ > 0. Let y′ be obtained from y by replacing y(v1v6s1v4v1), y(v1v6v3v1), y(C), and y(C ′) with
y(v1v6s1v4v1) − θ, y(v1v6v3v1) + θ, y(C) − θ, and y(C ′) + θ, respectively. Then y′ is also an
optimal solution to D(T,w) with y′(v1v6s1v4v1) < y(v1v6s1v4v1), contradicting (6).

• v6v3 is not saturated by y in T and v3v1 is contained in some cycle D ∈ Cy
0 . Now D passes

through v1s2v4. Since the multiset sum of the cycles D, v1v6s1v4v1, and the unsaturated arc v6v3
contains arc-disjoint cycles v1v6v3v1 and v1s2v4v1, by Lemma 3.5(vi), we have y(v1v6s1v4v1) = 0,
a contradiction.

• v6v3 and v3v1 are contained in some cycles C and D in Cy
0 , respectively. Now if v3v1 is on

C, then the multiset sum of the cycles C and v1v6s1v4v1 contains arc-disjoint cycles v1v6v3v1,
v1s2v4v1, and C ′ = C[v4, v6] ∪ {v6s1, s1v4}; otherwise, the multiset sum of the cycles C, D,
and v1v6s1v4v1 contains arc-disjoint cycles v1v6v3v1, v1s2v4v1, and C ′ = C[v4, v6]∪{v6s1, s1v4},
and D′ = D[v4, v3] ∪ C[v3, v4]. In each situation from the optimality of y we deduce that
y(v1v6s1v4v1) = 0.

Combining the above observations, we see that (22) holds. Thus y(C2) = w(K), where
K = {v4v1, v4v6, v1v6}. By (9), K is an MFAS of T2\a2 and hence y(C2) = τw(T2\a2).

(b) v6v3 is saturated by y in T2. Now v1s2 is not saturated by y in T2. By Lemma 3.5(vii),
v4v1 is saturated by y in T2. Since z(v1s2) > 0, by Lemma 5.2(vii), we have z(v1s1) = 0.
Furthermore, we may assume that y(v1v6v3v4v1) = 0, for otherwise, both v3v1 and v4v6 saturated
by y in T2 by (10). Hence y(C2) = w(K), where K = {v4v1, v4v6, v3v1}. If y(v1v6s1v4v1) = 0,
then y(C2) = w(K), where K = {v4v1, v6v3, s1v4}; if y(v1v6s1v4v1) > 0 then, by (11), v4v6 is
saturated by y in T2, and either v3v1 is saturated by y in T2 or y(v3v4v6v3) = y(v3s2v4v6v3) = 0.
Thus y(C2) = w(J), where J = {v4v1, v4v6, v3v1} or {v4v1, v4v6, v6v3}. Therefore y(C2) =
τw(T2\a2).

Subcase 1.3. siv4 is saturated by y in T2 for i = 1 and 2. In this subcase, since Cy
0 ̸= ∅,

v3v4 is contained in some cycle in Cy
0 . By (12), we have y(v3s2v4v6v3) = 0. Thus y(v1s2v4v1) =

w(s2v4) > 0 and (1) holds. This completes the proof of Claim 1.
Claim 2. y(C) is a positive integer for some C ∈ Cy

2 or ν∗w(T ) is an integer.
To justify this, note that y(C2) = w(K) for some MFAS K of T2\a2 by Claim 1. From

the proof of Claim 1, we see that K has ten possibilities. So we proceed by considering them
accordingly.

Subcase 2.1. K is one of {v1v6, v4v6, v1s1, s2v4}, {v4v1, v6v3, v6s1}, and {v4v1, v6v3, s1v4}.
In this subcase, by (15) and (19), we have y(v1s2v4v1) = w(s2v4) > 0 ifK = {v1v6, v4v6, v1s1,

s2v4}, y(v6s1v4v6) = w(v6s1) > 0 if K = {v4v1, v6v3, v6s1}, and y(v6s1v4v6) = w(s1v4) > 0 if
K = {v4v1, v6v3, s1v4}, as desired.
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Subcase 2.2. K = {v3v1, v3v4, v6s1, v1s1, v1s2, v3s2}.
In this subcase, by (15) and (19), we have y(v6s1v4v6) + y(v1v6s1v4v1) = w(v6s1) > 0 and

y(v3v4v6v3)+y(v1v6v3v4v1) = w(v3v4). So we may assume that y(v1v6s1v4v1) > 0, for otherwise,
y(v6s1v4v6) = w(v6s1) > 0. It follows from Lemma 3.5(v) that v4v6 is saturated by y in T2.
If y(v1v6v3v4v1) > 0, then y(v6s1v4v6) = 0 by (10), and hence y(v1v6s1v4v1) = w(v6s1) > 0;
if y(v1v6v3v4v1) = 0, then y(v3v4v6v3) = w(v3v4) and so y(v6s1v4v6) = w(v4v6) − y(v3v4v6v3).
Since w(v6s1) > 0, at least one of y(v6s1v4v6) and y(v1v6s1v4v1) is a positive integer.

Subcase 2.3. K = {v6v3, v6s1, v1s1, v1s2} or {v6v3, s1v4, v1s2}.
In this subcase, we only consider the situation when K = {v6v3, s1v4, v1s2}, as the proof in

the other situation goes along the same line.
Given the arcs inK, we have y(v1s2v4v1) = w(v1s2), y(v1s1v4v1)+y(v6s1v4v6)+y(v1v6s1v4v1)

= w(s1v4) > 0, and y(v1v6v3v1) + y(v3v4v6v3) + y(v1v6v3v4v1) + y(v3s2v4v6v3) = w(v6v3). If
y(v1v6v3v4v1) > 0, then y(v6s1v4v6) = 0 by (10). Thus y(v1s1v4v1) + y(v1v6s1v4) = w(s1v4).
If y(v1v6s1v4v1) > 0, then one more equality y(v1s1v4v1) = w(v1s1) holds by (11). Since
w(s1v4) > 0, at least one of y(v1s1v4v1) and y(v1v6s1v4v1) is a positive integer. So we assume
that y(v1v6v3v4v1) = 0 in the following discussion.

Assume first that y(v1v6s1v4v1) > 0. Then y(v1s1v4v1) = w(v1s1) and y(v6s1v4v6) +
y(v3v4v6v3) + y(v3s2v4v6v3) = w(v4v6) by (11). If y(v3v4v6v3) = y(v3s2v4v6v3) = 0, then
y(v6s1v4v6) = w(v4v6), and hence y(v1v6s1v4v1) = w(s1v4) − y(v1s1v4v1) − y(v6s1v4v6). Since
w(s1v4) > 0, at least one of y(v1s1v4v1), y(v6s1v4v6), and y(v1v6s1v4v1) is a positive integer. So
we assume that y(v3v4v6v3) or y(v3s2v4v6v3) is positive. By (11), we have y(v1v6v3v1) = w(v3v1);
by (12), one more equality y(v3v4v6v3) = w(v3v4) holds if y(v3s2v4v6v3) > 0. Thus y(v6s1v4v6),
y(v1v6s1v4v1), y(v3v4v6v3), and y(v3s2v4v6v3) are all integers.

Assume next that y(v1v6s1v4v1) = 0. Then y(v1s1v4v1) + y(v6s1v4v6) = w(s1v4). If
y(v3s2v4v6v3) > 0, then y(v6v3v4v6) = w(v3v4) by (12), so y(v1v6v3v1) + y(v3s2v4v6v3) =
w(v6v3)− w(v3v4); if y(v3s2v4v6v3) = 0, then y(v1v6v3v1) + y(v6v3v4v6) = w(v6v3). Since both
v1v6 and v3v1 are outside Cy

0 , from the choice of y, we deduce that y(v1v6v3v1) = min{w(v3v1),
w(v1v6)}. This implies that in either situation y(v3s2v4v6v3) and y(v6v3v4v6) are integers. On
the other hand, since both v4v6 and v6s1 are outside Cy

0 , by (8), we obtain y(v6s1v4v6) =
min{w(v6s1), w(v4v6)−y(v6v3v4v6)−y(v3s2v4v6v3)}, which is also an integer. Since w(s1v4) > 0,
at least one of y(v1s1v4v1) and y(v6s1v4v6) is a positive integer.

Subcase 2.4. K = {v1v6, v4v6, v4v1}.
In this subcase, we have y(v1v6v3v1) = w(v1v6), y(v1s1v4v1) + y(v1s2v4v1) = w(v4v1), and

y(v3v4v6v3) + y(v6s1v4v6) + y(v3s2v4v6v3) = w(v4v6). By Lemma 3.2(iii) and Lemma 5.2(vi),
we may assume that w(v1v6) = w(v4v1) = 0 and thus w(v4v6) = w(K) > 0. If y(v3s2v4v6v3) >
0, then y(v3v4v6v3) = w(v3v4) by (12), and thus we may assume that w(v3v4) = 0. Hence
y(v3v4v6v3) + y(v6s1v4v6) = w(v4v6) or y(v6s1v4v6) + y(v3s2v4v6v3) = w(v4v6). If y(v6s1v4v6)
is an integer, then one of y(v3v4v6v3), y(v6s1v4v6), and y(v6s2v4v6v3) is a positive integer. So
we assume that y(v6s1v4v6) is not integral. Then we can prove that ν∗w(T ) is an integer; for a
proof, see the argument of the same statement contained in the proof of (17) (with y(v6s1v4v6)
in place of y(v6siv4v6)).

Subcase 2.5. K = {v1v6, v4v6, v1s1, v1s2}.
In this subcase, we have y(v1s1v4v1) = w(v1s1), y(v1s2v4v1) = w(v1s2), y(v1v6v3v1) +

y(v1v6v3v4v1) + y(v1v6s1v4v1) = w(v1v6), and y(v3v4v6v3) + y(v6s1v4v6) + y(v3s2v4v6v3) =
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w(v4v6). By Lemma 3.2(iii), we may assume that w(v1s1) = w(v1s2) = 0.
Assume first that y(v1v6v3v4v1) > 0. Then y(v6s1v4v6) = 0 and y(v1v6v3v1) = w(v3v1) by

(10). So y(v3v4v6v3) + y(v3s2v4v6v3) = w(v4v6). By (12), one more equality y(v3v4v6v3) =
w(v3v4) holds if y(v3s2v4v6v3) > 0. So both y(v3v4v6v3) and y(v3s2v4v6v3) are integers. By
Lemma 3.2(iii), we may assume that w(v3v1) and w(v4v6) are both zero. Thus y(v1v6v3v4v1) +
y(v1v6s1v4v1) = w(v1v6) > 0. By Lemma 3.2(iii), we may assume that neither y(v1v6v3v4v1)
nor y(v1v6s1v4v1) is integral. Observe that v6s1 is outside Cy

0 , for otherwise, let C ∈ Cy
0 be

a cycle containing v6s1. Then C contains s1v4. Let C ′ = C[v4, v6] ∪ {v6v3, v3v4} and θ =
min{y(C), y(v1v6v3v4v1)}. Let y′ be obtained from y by replacing y(v1v6v3v4v1), y(v1v6s1v4v1),
y(C), and y(C ′) with y(v1v6v3v4v1)− θ, y(v1v6s1v4v1)+ θ, y(C)− θ, and y(C ′)+ θ, respectively.
Then y′ is also an optimal solution to D(T,w) with y′(v1v6v3v4v1) < y(v1v6v3v4v1), contradicting
(7). Let us show that ν∗w(T ) is an integer.

For this purpose, let x be an optimal solution to P(T,w). Since both y(v1v6s1v4v1) and
y(v1v6v3v4v1) are positive, we have x(v1v6s1v4v1) = x(v1v6v3v4v1) = 1 by Lemma 3.1(i). So
x(v6s1)+x(s1v4) = x(v6v3)+x(v3v4). Since y(v1v6s1v4v1) < w(v6s1), by Lemma 3.1(ii), we have
x(v6s1) = 0, which implies x(s1v4) = x(v6v3)+x(v3v4). For any u ∈ V \(V (T2)\a2), if a cycle in
Cy
0 contains uv6, then it passes through v6v3v4. Moreover, if a cycle in Cy

0 contains us1, then it
passes through s1v4. By Lemma 3.1(iv), we obtain x(uv6)+x(v6v3)+x(v3v4) = x(us1)+x(s1v4).
Hence x(uv6) = x(us1). Clearly, we may assume that this equality holds in any other situation.
Let T ′ = (V ′, A′) be obtained from T by deleting vertex s1, and let w′ be obtained from the
restriction of w to A′ by setting w′(uv6) = w(uv6) + w(us1) for any u ∈ V \(V (T2)\a2). Let x′

be the restriction of x to A′ and let y′ be obtained from y as follows: for each cycle C passing
through us1v4 with u ∈ V \(V (T2)\a2), let C ′ arise from C by replacing the path us1v4 with
uv6v3v4, and set y′(C ′) = y(C) + y(C ′) and y′(v1v6v3v4v1) = y(v1v6v3v4v1) + y(v1v6s1v4v1). It
is easy to see that x′ and y′ are optimal solutions to P(T ′,w′) and D(T ′,w′), respectively, with
the same value ν∗w(T ) as x and y. By the hypothesis of Theorem 1.5, ν∗w(T ) is an integer.

Assume next that y(v1v6v3v4v1) = 0. Then both y(v1v6v3v1) and y(v1v6s1v4v1) are inte-
gers, for otherwise, neither of them is integral, because their sum is w(v1v6). If y(v3v4v6v3) or
y(v3s2v4v6v3) is positive, then y(v1v6v3v1) = w(v3v1) by (11), a contradiction. So y(v3v4v6v3) =
y(v3s2v4v6v3) = 0. Since v1v6 is saturated by y in T2, the arc v3v1 is outside Cy

0 . If v3v1 is is
saturated by y in T2, then y(v1v6v3v1) = w(v3v1); this contradiction implies that v3v1 is not
saturated by y in T2 (and hence in T ). If v6v3 is outside Cy

0 , then from the choice of y we
see that y(v1v6v3v1) = min{w(v6v3), w(v3v1)}, a contradiction again. So we assume that v6v3
is contained in some cycle C ∈ Cy

0 . Define θ = min{w(v3v1) − z(v3v1), y(C), y(v1v6s1v4v1)}.
Let C ′ = C[v4, v6] ∪ {v6s1, s1v4}, and let y′ be obtained from y by replacing y(v1v6v3v1),
y(v1v6s1v4v1), y(C), and y(C ′) with y(v1v6v3v1) + θ, y(v1v6s1v4v1) − θ, y(C) − θ, y(C ′) + θ,
respectively. Then y′ is also an optimal solution to D(T,w) with y′(v1v6s1v4v1) < y(v1v6s1v4v1),
contradicting (6). By Lemma 3.2(iii), we may assume w(v1v6) = 0. Thus z(v4v1) = w(v4v1) = 0;
the remainder of the proof is exactly the same as that in the preceding subcase.

Subcase 2.6. K = {v4v1, v4v6, v6v3}.
In this subcase, we have y(v1v6v3v1) = w(v6v3), y(v6s1v4v6) = w(v4v6), and y(v1s1v4v1) +

y(v1s2v4v1) + y(v1v6s1v4v1) = w(v4v1). Since w(K) = τw(T2\a2) > 0, we have w(v4v1) > 0.
By Lemma 5.2(vi), y(v1s1v4v1) or y(v1s2v4v1) is zero. By Lemma 3.2(iii), we may assume
that w(v6v3) = w(v4v6) = 0 and y(v1v6s1v4v1) > 0. So y(v1s1v4v1) = w(v1s1) by (11). By
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Lemma 3.2(iii), we may further assume that w(v1s1) = 0. Thus y(v1s2v4v1) + y(v1v6s1v4v1) =
w(v4v1), and hence neither y(v1s2v4v1) nor y(v1v6s1v4v1) is integral. Observe that v1s2 is
outside Cy

0 , for otherwise, let C ∈ Cy
0 be a cycle containing v1s2. Then C contains s2v4. Let

C ′ = C[v4, v1]∪{v1v6, v6s1, s1v4} and θ = min{y(C), y(v1v6s1v4v1)}. Let y′ be obtained from y
by replacing y(v1s2v4v1), y(v1v6s1v4v1), y(C), and y(C ′) with y(v1s2v4v1)+θ, y(v1v6s1v4v1)−θ,
y(C) − θ, and y(C ′) + θ, respectively. Then y′ is also an optimal solution to D(T,w) with
y′(v1v6s1v4v1) < y(v1v6s1v4v1), contradicting (6). Furthermore, since w(v1s1) = 0, the arc v3v1
is also outside Cy

0 . Thus w(v3v1) = z(v3v1) = 0. Let us show that ν∗w(T ) is an integer.
For this purpose, let x be an optimal solution to P(T,w). Since both y(v1s2v4v1) and

y(v1v6s1v4v1) are positive, we have x(v1s2v4v1) = x(v1v6s1v4v1) = 1 by Lemma 3.1(i). Since
y(v1s2v4v1) < w(v1s2), we have x(v1s2) = 0 by Lemma 3.1(ii). It follows that x(s2v4) =
x(v1v6)+x(v6s1)+x(s1v4). Since w(v1s1) = 0 and v1s2 is outside Cy

0 , for any u ∈ V \(V (T2)\a2),
if a cycle in Cy

0 contains uv1, then it passes through v1v6s1v4. Moreover, if a cycle in Cy
0 contains

us2, then it passes through s2v4. By Lemma 3.1(iv), we obtain x(uv1) + x(v1v6) + x(v6, s1) +
x(s1v4) = x(us2) + x(s2v4). Hence x(uv1) = x(us2). Clearly, we may assume that this equality
holds in any other situation. Let T ′ = (V ′, A′) be obtained from T by deleting s2, and let w′

be the restriction of w to A′ by replacing w(e) with w(e) + w(s2v4) for e ∈ {v1v6, v6s1, s1v4},
replacing w(uv1) with w(uv1) + w(us2) for any u ∈ V \(V (T2)\a2), and replacing w(v3v1) with
w(v3v1) + w(v3s2). Let x

′ be obtained from x by setting x(v3v1) = x(v3s2). Since w(v3v1) = 0
and w′(v3v1) = w(v3s2), we have (w′)Tx′ = wTx. Let y′ be obtained from y as follows: set
y′(v1v6s1v4v1) = y(v1v6s1v4v1)+y(v1s2v4v1); for each C ∈ Cy

0 passing through us2v4, let C
′ arise

from C by replacing the path us2v4 with the path uv1v6s1v4, and set y′(C ′) = y(C ′) + y(C).
From the LP-duality theorem, we see that x′ and y′ are optimal solutions to P(T ′,w′) and
D(T ′,w′), respectively, with the same value ν∗w(T ) as x and y. By the hypothesis of Theorem
1.5, ν∗w(T ) is an integer.

Subcase 2.7. K = {v4v1, v4v6, v3v1}.
In this subcase, we have y(v1v6v3v1) = w(v3v1), y(v1s1v4v1)+ y(v1s2v4v1)+ y(v1v6s1v4v1)+

y(v1v6v3v4v1) = w(v4v1), and y(v6s1v4v6) + y(v3v4v6v3) + y(v3s2v4v6v3) = w(v4v6). By Lemma
3.2(iii), we may assume that w(v3v1) = 0.

Assume first that y(v1v6v3v4v1) > 0. Then y(v6s1v4v6) = 0 by (10). If y(v3s2v4v6v3) > 0,
then y(v3v4v6v3) = w(v3v4) by (12); otherwise, y(v3v4v6v3) = w(v4v6). So both y(v3v4v6v3)
and y(v3s2v4v6v3) are integers in either situation. Thus we may assume that w(v4v6) = 0. The
remainder of the proof is exactly the same as that of (16).

Assume next that y(v1v6v3v4v1) = 0. Consider first the subsubcase when w(v4v1) = 0.
Then w(v4v6) = w(K) > 0. If y(v3s2v4v6v3) > 0, then y(v3v4v6v3) = w(v3v4) by (12), so
y(v6s1v4v6) + y(v3s2v4v6v3) = w(v4v6) − w(v3v4); if y(v3s2v4v6v3) = 0, then y(v6s1v4v6) +
y(v3v4v6v3) = w(v4v6). It can be shown that ν∗w(T ) is an integer; for a proof, see the argument
of the same statement contained in the proof of (17).

Consider next the subsubcase when w(v4v1) > 0. Observe that y(v1v6s1v4v1) > 0 and
y(v3s2v4v6v3) = 0, for otherwise, since w(v1s1)w(v1s2) = 0 by Lemma 5.2(vi), at most one of
y(v1s1v4v1) and y(v1s2v4v1) is positive. Hence, if y(v1v6s1v4v1) = 0, then either y(v1s1v4v1) =
w(v4v1) or y(v1s2v4v1) = w(v4v1); if y(v1v6s1v4v1) > 0 and y(v3s2v4v6v3) > 0, then, by (11),
we have y(v1s1v4v1) = w(v1s1), y(v1s2v4v1) = w(v1s2). So y(v1v6s1v4v1) = w(v4v1)−w(v1s1)−
w(v1s2). By Lemma 3.2(iii), we see that ν∗w(T ) is an integer. The preceding observation together
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with (11) implies that y(v1s1v4v1) = w(v1s1), y(v1s2v4v1) + y(v1v6s1v4v1) = w(v4v1)−w(v1s1),
and y(v6s1v4v6) + y(v3v4v6v3) = w(v4v6). Lemma 3.2(iii) allows us to assume that w(v1s1) = 0
and that neither y(v1s2v4v1) nor y(v1v6s1v4v1) is integral.

It can then be shown that v1s2 is outside Cy
0 and ν∗w(T ) is an integer; for a proof, see the

argument of the same statement contained in the preceding case.
Combining the above seven subcases, we see that Claim 2 holds. Hence, by Lemma 3.2(iii),

the optimal value ν∗w(T ) of D(T,w) is integral, as described in (1) above.

To establish the corresponding lemmas for the cases when T2/S ∈ {G4, G5, G6}, we need
some further preparations.

Lemma 5.10. If T2/S ∈ {G5, G6}, then we may assume that min{w(v1v3), w(v3v4), w(v4v1)} =
0.

Proof. Let θ = min{w(v1v3), w(v3v4), w(v4v1)} and C0 = v1v3v4v1. Assume the contrary:
θ > 0. Let y be an optimal solution to D(T,w) such that

(1) y(C2) is maximized; and
(2) subject to (1), (y(Dq), y(Dq−1), . . . , y(D3)) is minimized lexicographically.
Let C′

2 = C2\{C0}. Note that every cycle in C′
2 passes through b. By Lemma 3.5(vii), at least

one of v1v3, v3v4, and v4v1 is saturated by y in T2, say v1v3 (by symmetry). Thus w(v1v3) = θ.
We propose to show that

(3) there is no cycle C ∈ C′
2 with y(C) > 0 passing through v1v3.

Assume the contrary: v1v3 is contained in some cycle C1 ∈ C′
2 with y(C1) > 0. Clearly, |C1| ≥

4. If neither v3v4 nor v4v1 is saturated by y in T , then θ1 = min{w(v3v4) − z(v3v4), w(v4v1) −
z(v4v1)} > 0. Let y′ be obtained from y by replacing y(C1) and y(C0) with y(C1) − θ1 and
y(C0) + θ1, respectively. Then y′ is an optimal solution to D(T,w) with y′(C1) < y(C1),
contradicting (2). Thus at least one of v3v4 and v4v1 is saturated by y in T . We proceed by
considering two cases.

• Both v3v4 and v4v1 are saturated by y in T . In this case, let C2 ∈ Cy
0 ∪ C′

2 be a cycle
containing v3v4 with y(C2) > 0; subject to this, C2 is chosen to contain v4v1, if possible.
If v4v1 is on C2, then the multiset sum of C1 and C2 contains three arc-disjoint cycles C0,
C ′
1 = {bv1} ∪ C2[v1, b], and C ′

2 = C2[b, v3] ∪ C1[v3, b]. Define ϵ = min{y(C1), y(C2)}. Let y′ be
obtained from y by replacing y(C0) with y(C0)+ ϵ, and replacing y(Ci) and y(C ′

i) with y(Ci)− ϵ
and y(C ′

i)+ϵ, respectively, for i = 1, 2. Then y′ is an optimal solution to D(T,w) with (y′)T1 =
yT1+ ϵ, a contradiction. If v4v1 is outside C2, then there exists a cycle C3 ∈ Cy

0 ∪ C′
2 containing

v4v1 with y(C3) > 0. Observe that the multiset sum of C1, C2, and C3 contains four arc-disjoint
cycles C0, C

′
1 = {bv1} ∪C3[v1, b], C

′
2 = C2[b, v3]∪C1[v3, b], and C ′

3 = C3[b, v4]∪C2[v4, b]. Define
ϵ = min1≤i≤3 y(Ci). Let y

′ be obtained from y by replacing y(C0) with y(C0)+ ϵ, and replacing
y(Ci) and y(C ′

i) with y(Ci)− ϵ and y(C ′
i) + ϵ, respectively, for 1 ≤ i ≤ 3. Then y′ is an optimal

solution to D(T,w) with (y′)T1 = yT1+ ϵ, a contradiction again.
• Exactly one of v3v4 and v4v1 is saturated by y in T . In this case, by symmetry, we may

assume that v3v4 is saturated while v4v1 is not. Let C2 ∈ Cy
0 ∪ C′

2 be a cycle containing v3v4
with y(C2) > 0. Then the multiset sum of C1, C2, and the unsaturated arc v4v1 contains two
arc-disjoint cycles C0 and C ′

2 = C2[b, v3] ∪ C1[v3, b]. Clearly, C ′
2 ∈ C′

2 if C2 ∈ C′
2. Define ϵ =

min{y(C1), y(C2), w(v4v1)−z(v4v1)}. Let y′ be obtained from y by replacing y(C0) with y(C0)+
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ϵ, replacing y(C1) with y(C1)− ϵ, and replacing y(C2) and y(C ′
2) with y(C2)− ϵ and y(C ′

2) + ϵ,
respectively. Then y′ is an optimal solution to D(T,w) with y′(C1) < y(C1), contradicting (2).

Combining the above two cases, we see that (3) holds. So y(C0) = θ > 0, and hence D(T,w)
has an integral optimal solution by Lemma 3.2(iii). This proves the lemma.

LetQ = V (T2)\(S∪{b2, a2}). ThenQ = {v2, v3} if T2/S = G4, Q = {v1, v3, v4} if T2/S = G5,
and Q = {v1, v2, v3, v4} if T2/S = G6. Moreover, v1v3v4v1 is the unique cycle in T [Q] when
T2/S = G5 or G6. Let T

′ = T if T2/S = G4, and let T ′ be obtained from T be reversing precisely
one arc e on v1v3v4v1 with w(e) = 0 (see Lemma 5.9) so that T [Q] is acyclic if T2/S = G5 and G6.
From Lemma 2.3 we see that T ′ is also Möbius-free. Note that every integral optimal solution to
D(T,w) naturally corresponds to an integral optimal solution to D(T ′,w) with the same value,
and vice versa. So we shall not make effort to distinguish between D(T,w) and D(T ′,w). Let
us label the vertices in Q as q1, q2, . . . , qt such that qjqi is an arc in T ′ for 1 ≤ i < j ≤ t, where
t = |Q|.

Lemma 5.11. Suppose T2/S ∈ {G4, G5, G6}. Let x and y be optimal solutions to P(T,w) and
D(T,w), respectively. Then we may assume that the following statements hold:

(i) For each qi ∈ Q, there exists exactly one sk ∈ S such that z(qisk) > 0;

(ii) z(qjqi) = w(qjqi) = 0 for 1 ≤ i < j ≤ t, where t = |Q|;
(iii) If z(qisk)z(qjsk) > 0 for some 1 ≤ i < j ≤ t and sk ∈ S, then x(qisk) ̸= x(qjsk).

Proof. As remarked above the lemma, we may simply treat T , P(T,w), and D(T,w) as T ′

and P(T ′,w), and D(T ′,w), respectively, in our proof.
(i) By Lemma 5.2(vi), for each vertex qi ∈ Q, there exists at most one sk ∈ S with z(qisk) > 0.

Assume on the contrary that z(qisk) = 0 for all sk ∈ S. Then no cycle in Cy passes through qi.
Let G = T\qi and let w′ be the restriction of w to the arcs of G. By the hypothesis of Theorem
1.5, D(G,w′) has an integral optimal solution, and so does D(T ′,w). Hence we assume that (i)
holds.

(ii) Assume the contrary: z(qjqi) > 0; subject to this, j + i is minimized. If there exists
exactly one sk ∈ S such that z(qisk)z(qjsk) > 0, then the proof is the same as that of Lemma
5.2(i) (with sk, qi, and qj in place of v0, si, and sj , respectively), so we omit the details here. In
view of Lemma 5.2(i), we may assume that z(qis1)z(qjs2) > 0. We proceed by considering two
cases.

Case 1. x(qjqi) = 0. In this case, we may assume that x(uqj) = x(uqi) for any u ∈ V \(S∪Q).
Indeed, if z(uqj)z(uqi) > 0, then Lemma 3.1(iv) implies x(uqj) = x(uqi); if z(uqj)z(uqi) = 0,
then w(us′i)w(us

′
j) = 0 by Lemma 3.2(i). Thus we may modify x(uqj) and x(uqi) so that they

become equal. Let T ′ = (V ′, A′) be obtained from T by identifying qj with qi; we still use qi
to denote the resulting vertex. Let w′ be obtained from the restriction of w to A′ by replacing
w(uqi) with w(uqj) + w(uqi) for any u ∈ V \(S ∪ Q). Let x′ and y′ be the projections of x
and y onto T ′, respectively. From the LP-duality theorem, it is easy to see that x′ and y′ are
optimal solutions to P(T,w′) and D(T,w′), respectively, with the same value as x and y. By
the hypothesis of Theorem 1.5, ν∗w(T ) is an integer. It follows from Lemma 3.4(ii) that D(T,w)
has an integral optimal solution.

Case 2. x(qjqi) > 0. In this case, z(qjqi) = w(qjqi) > 0 by Lemma 3.1(iii). Let C1 and C2

be two cycles in Cy that passes through qjqi and qjs2, respectively. Clearly, both C1 and C2 pass
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through b. By Lemma 3.1(iv), we have x(qjqi) + x(qis1) + x(s1b) = x(qjs2) + x(s2b). Let w
′ be

obtained from w by replacing w(e1) with w(e1) + w(qjqi) for e1 = qjs2 and s2b and replacing
w(e2) with w(e2)−w(qjqi) for e2 = qjqi, qis1, and s1b. Let x

′ = x, and let y′ be obtained from
y as follows: for each cycle passing through qjqi, let C

′ be the cycle arising from C by replacing
the path qjqis1b with qjs2b. From the LP-duality theorem, we see that x′ and y′ are optimal
solutions to P(T,w′) and D(T,w′), respectively, with the same value ν∗w(T ) as x and y. Since
w′(A) < w(A), by the hypothesis of Theorem 1.5, ν∗w(T ) is an integer. It follows from Lemma
3.4(ii) that D(T,w) has an integral optimal solution.

Combining the above two cases, we may assume that z(qjqi) = 0.
(iii) Since the proof is the same as that of Lemma 5.2(iv) (with sk, qi, and qj in place of v0,

si, and sj , respectively), we omit the routine details here.

Lemma 5.12. If T2/S = G4, then D(T,w) has an integral optimal solution.

Proof. Recall that (b2, a2) = (v1, v5), s
∗ = v4, and Q = {v2, v3}. Given an optimal solution

y to D(T,w), set φ(si) = {u : z(usi) > 0 for u ∈ V (T2)\a2} for each si ∈ S. By Lemma 5.2(i)
and (vi), we have

(1) φ(si) ∩ φ(sj) = ∅ whenever i ̸= j.
From (1) and Lemma 5.10(i), we see that

(2) there exists at least one and at most two vertices si’s in S with φ(si) ̸= ∅.
Lemma 5.2(i) allows us to assume that

(3) if φ(si) ̸= ∅, then i ∈ {1, 2}.
By Lemma 5.10(ii), we obtain
(4) w(v2v3) = z(v2v3) = 0.
In the remainder of our proof, we reserve y for an optimal solution to D(T,w) such that
(5) y(C2) is maximized; and
(6) subject to (5), (y(Dq), y(Dq−1), . . . , y(D3)) is minimized lexicographically.
Claim. y(C) is integral for some C ∈ Cy

2 .
To justify this, we distinguish between two cases.
Case 1. φ(si) = {v2} for i = 1 or 2.
In this case, by Lemma 5.2(i) and Lemma 5.10(i), we may assume that φ(s1) = {v2} and

φ(s2) = {v3}. By (4), we obtain
(7) Cy

2 ⊆ {v1v2s1v1, v1v3s2v1}.
From Lemma 3.5(vii), we deduce that y(v1v2s1v1) = min{w(v1v2), w(v2s1), w(s1v1)} and

y(v1v3s2v1) = min{w(v1v3), w(v3s2), w(s2v1)}. If both y(v1v2s1v1) and y(v1v3s2v1) are zero,
then τw(T2\a2) = min{w(v1v2), w(v2s1), w(s1v1)}+min{w(v1v3), w(v3s2), w(s2v1)} = 0, contra-
dicting (α). Therefore, y(v1v2s1v1) or y(v1v3s2v1) is a positive integer.

Case 2. φ(si) ̸= {v2}.
In this case, Lemma 5.10(i), (2) and (3) allow us to assume that φ(s1) = {v2, v3}. By (4),

we have
(8) Cy

2 ⊆ {v1v2s1v1, v1v3s1v1}.
By Lemma 5.2(iii), we also obtain z(s1v1) = w(s1v1) > 0. Assume first that s1v1 is outside Cy

0 .
Then both v2s1 and v3s1 are outside Cy

0 , and s1v1 is saturated by y in T2. So y(v1v2s1v1) +
y(v1v3s1v1) = w(s1v1) > 0. Observe that both y(v1v2s1v1) and y(v1v3s1v1) are integral, for
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otherwise, 0 < y(v1vis1v1) < w(vis1) for i = 2, 3, by Lemma 3.1(i) and (ii), we have x(v2s1) =
x(v3s1) = 0, contradicting Lemma 5.9(iii). Hence y(v1v2s1v1) or y(v1v3s1v1) is a positive integer.

Assume next that s1v1 is contained in some cycle C ∈ Cy
0 . From Lemma 3.5(vii), we see that

y(v1vis1v1) = min{w(v1vi), w(vis1)} for i = 2, 3. If y(v1vis1v1) = 0 for i = 2, 3, then τw(T2\a2) =∑2
i=1min{w(v1vi), w(vis1)} = 0, contradicting (α). Therefore y(v1v2s1v1) or y(v1v3s1v1) is a

positive integer. So the above Claim is established.
From the above Claim and Lemma 3.2(iii), we conclude that D(T,w) has an integral optimal

solution.

Lemma 5.13. If T2/S = G5, then D(T,w) has an integral optimal solution.

Proof. Recall that (b2, a2) = (v2, v6), s
∗ = v5, and Q = {v1, v3, v4}. Given an optimal

solution y to D(T,w), set φ(si) = {u : z(usi) > 0 for u ∈ V (T2)\a2} for each si ∈ S. By Lemma
5.2(i) and (vi), we have

(1) φ(si) ∩ φ(sj) = ∅ whenever i ̸= j.
From (1) and Lemma 5.10(i), we see that

(2) there exists at least one and at most three vertices si’s in S with φ(si) ̸= ∅.
Lemma 5.2(i) allows us to assume that

(3) if φ(si) ̸= ∅, then i ∈ {1, 2, 3}.
By Lemma 5.10(ii), we obtain
(4) w(e) = z(e) = 0 for e ∈ {v1v3, v3v4, v4v1}.
In the remainder of our proof, we reserve y for an optimal solution to D(T,w) such that
(5) y(C2) is maximized; and
(6) subject to (5), (y(Dq), y(Dq−1), . . . , y(D3)) is minimized lexicographically.
Claim. y(C) is integral for some C ∈ Cy

2 .
To justify this, we consider three possible cases (see the structure of G5), depending on the

size of φ(si) for 1 ≤ i ≤ 3.
Case 1. |φ(si)| = 1 for each 1 ≤ i ≤ 3.
In this case, by Lemma 5.10(i), (2) and (3), we may assume that φ(s1) = {v1}, φ(s2) = {v3},

and φ(s3) = {v4}. By (4), we obtain
(7) Cy

2 ⊆ {v2v1s1v2, v2v3s2v2, v2v4s3v2}.
From Lemma 3.5(vii), we deduce that y(v2v1s1v2) = min{w(v2v1), w(v1s1), w(s1v2)}, y(v2v3s2v2)
= min{w(v2v3), w(v3s2), w(s2v2)}, and y(v2v4s3v2) = min{w(v2v4), w(v4s3), w(s3v2)}. If y(v2v1s1v2),
y(v2v3s2v2), and y(v2v4s3v2) are all zero, then τw(T2\a2) = min{w(v2v1), w(v1s1), w(s1v2)} +
min{w(v2v3), w(v3s2), w(s2v2)}+min{w(v2v4), w(v4s3), w(s3v2)} = 0, contradicting (α). There-
fore, at least one of y(v2v1s1v2), y(v2v3s2v2), and y(v2v4s3v2) is a positive integer.

Case 2. |φ(si)| = 1 for exactly one i ∈ {1, 2, 3}.
In this case, by Lemma 5.10(i), (2) and (3), we may assume that φ(s1) = {v1}, φ(s2) =

{v3, v4}. By (4), we have
(8) Cy

2 ⊆ {v2v1s1v2, v2v3s2v2, v2v4s2v2}.
From Lemma 3.5(vii), we see that y(v2v1s1v2) = min{w(v2v1), w(v1s1), w(s1v2)}. If y(v2v1s1v2) >
0, we are done. So we assume that y(v2v1s1v2) = 0. Since w(v1s1)w(s1v2) > 0, we ob-
tain w(v2v1) = min{w(v2v1), w(v1s1), w(s1v2)} = 0. By Lemma 5.2(iii), we have z(s2v2) =
w(s2v2) > 0.
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Assume first that s2v2 is outside Cy
0 . Then both v3s2 and v4s2 are outside Cy

0 , and s2v2
is saturated by y in T2. Hence y(v2v3s2v2) + y(v2v4s2v2) = w(s2v2) > 0. Observe that both
y(v2v3s2v2) and y(v2v4s2v2) are integral, for otherwise, since 0 < y(v2vis2v2) < w(vis2) for
i = 3, 4, by Lemma 3.1(i) and (ii), we have x(v3s2) = x(v4s2) = 0, contradicting Lemma 5.9(iii).
Hence both y(v2v3s2v2) and y(v2v4s2v2) are positive integers.

Assume next that s2v2 is contained in some cycle C ∈ Cy
0 . From Lemma 3.5(vii), we

see that y(v2vis2v2) = min{w(v2vi), w(vis2)} for i = 3, 4. If y(v2vis2v2) = 0 for i = 3, 4,
then τw(T2\a2) = w(v2v1) +

∑4
i=3min{w(v2vi), w(vis2)} = 0, contradicting (α). Therefore

y(v2v3s2v2) or y(v2v4s2v2) is a positive integer.
Case 3. |φ(si)| ̸= 1 for any i ∈ {1, 2, 3}.
In this case, by Lemma 5.10(i), (2), and (3), we may assume that φ(s1) = {v1, v3, v4} (see

the structure of G5). By (4), we obtain
(9) Cy

2 ⊆ {v2v1s1v2, v2v3s1v2, v2v4s1v2}.
By Lemma 5.2(iii), we have z(s1v2) = w(s1v2) > 0.

Assume first that s1v2 is outside Cy
0 . Then vis1 is outside Cy

0 for each i ∈ {1, 3, 4}, and s1v2
is saturated by y in T2. So

∑
i∈{1,3,4} y(v2vis1v2) = w(s1v2) > 0. Observe that y(v2vis1v2) is

integral for each i ∈ {1, 3, 4}, for otherwise, symmetry allows us to assume that y(v2v1s1v2)
is not integral. Then y(v2v3s1v2) or y(v2v4s1v2) is not integral, say y(v2v3s1v2). Since 0 <
y(v2vis1v2) < w(vis1) for i = 1, 3, by Lemma 3.1(i) and (ii), we have x(v1s1) = x(v3s1) = 0,
contradicting Lemma 5.9(iii). It follows that y(v2vis1v2) is a positive integer for each i ∈ {1, 3, 4}.

Assume next that s1v2 is contained in some cycle C ∈ Cy
0 . From Lemma 3.5(vii), we de-

duce that y(v2vis1v2) = min{w(v2vi), w(vis1)} for i ∈ {1, 3, 4}. If y(v2vis1v2) = 0 for each
i ∈ {1, 3, 4}, then τw(T2\a2) =

∑
i∈{1,3,4}min{w(v2vi), w(vis1)} = 0, contradicting (α). Hence

y(v2vis1v2) is a positive integer for some i ∈ {1, 3, 4}. This proves the Claim.
From the Claim and Lemma 3.2(iii), we conclude that D(T,w) has an integral optimal

solution.

Lemma 5.14. If T2/S = G6, then D(T,w) has an integral optimal solution.

Proof. Recall that (b2, a2) = (v6, v7), s
∗ = v5, and Q = {v1, v2, v3, v4}. Given an optimal

solution y to D(T,w), set φ(si) = {u : z(usi) > 0 for u ∈ V (T2)\a2} for each si ∈ S. By Lemma
5.2(i) and (vi), we have

(1) φ(si) ∩ φ(sj) = ∅ whenever i ̸= j.
From (1) and Lemma 5.10(i), we see that

(2) there exists at least one and at most four vertices si’s in S with φ(si) ̸= ∅.
Lemma 5.2(i) allows us to assume that

(3) if φ(si) ̸= ∅, then 1 ≤ i ≤ 4.
By Lemma 5.10(ii), we obtain
(4) w(e) = z(e) = 0 for e ∈ {v1v3, v3v4, v4v1, v1v2, v3v2, v4v2}.
In the remainder of our proof, we reserve y for an optimal solution to D(T,w) such that
(5) y(C2) is maximized; and
(6) subject to (5), (y(Dq), y(Dq−1), . . . , y(D3)) is minimized lexicographically.
Claim. y(C) is integral for some C ∈ Cy

2 .
To justify this, we consider five possible cases (see the structure of G6), depending on the

size of φ(si) for 1 ≤ i ≤ 4.
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Case 1. |φ(si)| = 1 for each 1 ≤ i ≤ 4.
In this case, by Lemma 5.10(i), (2) and (3), we may assume that φ(si) = {vi} for each

1 ≤ i ≤ 4. By (4), we obtain
(7) Cy

2 ⊆ {v6v1s1v6, v6v2s2v6, v6v3s3v6, v6v4s4v6}.
From Lemma 3.5(vii), we deduce that y(v6visiv6) = min{w(v6vi), w(visi), w(siv6)} for each 1 ≤
i ≤ 4. If y(v6visiv6) = 0 for 1 ≤ i ≤ 4, then τw(T2\a2) =

∑4
i=1min{w(v6vi), w(visi), w(siv6)} =

0, contradicting (α). Hence y(v6visiv6) is a positive integer for some i ∈ {1, 2, 3, 4}.
Case 2. |φ(si)| = 1 for exactly one i ∈ {1, 2, 3, 4}.
In this case, by Lemma 5.10(i), (2) and (3), we may assume that φ(s1) = {v1}, φ(s2) =

{v2, v3, v4}. By (4), we have
(8) Cy

2 ⊆ {v6v1s1v6, v6v2s2v6, v6v3s2v6, v6v4s2v6}.
From Lemma 3.5(vii), we see that y(v6v1s1v6) = min{w(v6v1), w(v1s1), w(s1v6)}. If y(v6v1s1v6)
> 0, we are done. So we assume that y(v6v1s1v6) > 0. Since w(v1s1)w(s1v6) > 0, we obtain
w(v6v1) = min{w(v6v1), w(v1s1), w(s1v6)} = 0. By Lemma 5.2(iii), we have z(s2v6) = w(s2v6) >
0.

Assume first that s2v6 is outside Cy
0 . Then vis2 is outside Cy

0 for i ∈ {2, 3, 4}, and s2v6
is saturated by y in T2. So

∑4
i=2 y(v6vis2v6) = w(s2v6) > 0. Observe that y(v6vis2v6) is

integral for each i ∈ {2, 3, 4}, for otherwise, symmetry allows us to assume that y(v6v2s2v6) is
not integral. Then one of y(v6v3s2v6) and y(v6v4s2v6) is not integral, say y(v6v3s2v6). Since
0 < y(v6vis2v6) < w(vis2) for i = 2, 3, by Lemma 3.1(i) and (ii), we have x(v2s2) = x(v3s2) = 0,
contradicting Lemma 5.9(iii). It follows that y(v6vis2v6) is a positive integer for each i ∈ {2, 3, 4}.

Assume next that s2v6 is contained in some cycle C ∈ Cy
0 . By Lemma 3.5(vii), we obtain

y(v6vis2v6) = min{w(v6vi), w(vis2)} for i ∈ {2, 3, 4}. If y(v6vis2v6) = 0 for i ∈ {2, 3, 4}, then
τw(T2\a2) = w(v6v1) +

∑4
i=2min{w(v6vi), w(vis2)} = 0, contradicting (α). Hence y(v6vis2v6) is

a positive integer for some i ∈ {2, 3, 4}.
Case 3. |φ(si)| = 1 for exactly two i’s in {1, 2, 3, 4}.
In this case, by Lemma 5.10(i), (2) and (3), we may assume that φ(s1) = {vi} for i = 1, 2

and φ(s3) = {v3, v4}. By (4), we obtain
(9) Cy

2 ⊆ {v6v1s1v6, v6v2s2v6, v6v3s3v6, v6v4s3v6}.
From Lemma 3.5(vii), we see that y(v6visiv6) = min{w(v6vi), w(visi), w(siv6)} for i = 1, 2. If
y(v6visiv6) > 0, we are done. So we assume that y(v6visiv6) = 0. Since w(visi)w(siv6) > 0, we
obtain w(v6vi) = min{w(v6vi), w(visi), w(siv6)} = 0 for i = 1, 2. By Lemma 5.2(iii), we have
z(s3v6) = w(s3v6) > 0.

Assume first that s3v6 is outside Cy
0 . Then vis3 is outside Cy

0 for i = 3, 4, and s3v6 is saturated
by y in T2. So y(v6v3s3v6) + y(v6v4s3v6) = w(s3v6) > 0. Observe that both y(v6v3s3v6) and
y(v6v4s3v6) are integral, for otherwise, since 0 < y(v6vis3v6) < w(vis3) for i = 3, 4, by Lemma
3.1(i) and (ii), we have x(v3s3) = x(v4s3) = 0, contradicting Lemma 5.9(iii). It follows that
y(v6vis3v6) is a positive integer for i = 3, 4.

Assume next that s3v6 is contained in some cycle C ∈ Cy
0 . By Lemma 3.5(vii), we obtain

y(v6vis3v6) = min{w(v6vi), w(vis2)} for i = 3, 4. If y(v6vis3v6) = 0 for i = 3, 4, then τw(T2\a2) =∑2
i=1w(v6vi) +

∑4
i=3min{w(v6vi), w(vis3)} = 0, contradicting (α). Hence y(v6vis3v6) is a posi-

tive integer for i = 3 or 4.
Case 4. 1 < |φ(si)| < 4 if φ(si) ̸= ∅, for i ∈ {1, 2, 3, 4}.
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In this case, by Lemma 5.10(i), (2) and (3), we may assume that φ(s1) = {v1, v2} and
φ(s2) = {v3, v4}. By (4), we obtain

(10) Cy
2 ⊆ {v6v1s1v6, v6v2s1v6, v6v3s2v6, v6v4s2v6}.

By Lemma 5.2(iii), we have z(siv6) = w(siv6) > 0 for i = 1, 2.
Assume first that s1v6 is outside Cy

0 . Then both v1s1 and v2s1 are outside Cy
0 , and s1v6

is saturated by y in T2. So y(v6v1s1v6) + y(v6v2s1v6) = w(s1v6) > 0. Observe that both
y(v6v1s1v6) and y(v6v2s1v6) are integral, for otherwise, since 0 < y(v6vis1v6) < w(vis1) for
i = 1, 2, by Lemma 3.1(i) and (ii), we have x(v1s1) = x(v2s1) = 0, contradicting Lemma 5.9(iii).
It follows that y(v6vis1v6) is a positive integer for i = 1, 2. Similarly, we can show that if s2v6
is outside Cy

0 , then y(v6vis2v6) is a positive integer for i = 3, 4.
Assume next that siv6 is contained in some cycle in Cy

0 for i = 1, 2. By Lemma 3.5(vii), we
have y(v6vis1v6) = min{w(v6vi), w(vis1)} for i = 1, 2, and y(v6vis2v6) = min{w(v6vi), w(vis2)}
for i = 3, 4. If y(v6v1s1v6), y(v6v2s1v6), y(v6v3s2v6) and y(v6v4s2v6) are all zero, then τw(T2\a2) =∑2

i=1min{w(v6vi), w(vis1)}+
∑4

i=3min{w(v6vi), w(vis2)} = 0, contradicting (α). So at least one
of y(v6v1s1v6), y(v6v2s1v6), y(v6v3s2v6), and y(v6v4s2v6) is a positive integer.

Case 5. |φ(si)| > 2 if φ(si) ̸= ∅, for i ∈ {1, 2, 3, 4}.
In this case, by Lemma 5.10(i), (2) and (3), we may assume that φ(s1) = {v1, v2, v3, v4}. By

(4), we obtain
(11) Cy

2 ⊆ {v6v1s1v6, v6v2s1v6, v6v3s1v6, v6v4s1v6}.
By Lemma 5.2(iii), we have z(s1v6) = w(s1v6) > 0.

Assume first that s1v6 is outside Cy
0 . Then

∑4
i=1 y(v6vis1v6) = w(s1v6). If y(v6vis1v6) is a

positive integer for some i ∈ {1, 2, 3, 4}, we are done. So we assume the contrary. Thus at least
two of y(v6v1s1v6), y(v6v2s1v6), y(v6v3s1v6), and y(v6v4s1v6) are not integral, say y(v6v1s1v6)
and y(v6v2s1v6). Since 0 < y(v6vis1v6) < w(vis1) for i = 1, 2, by Lemma 3.1 (i) and (ii), we
have x(v1s1) = x(v2s1) = 0, contradicting Lemma 5.9(iii).

Assume next that s1v6 is contained in some cycle of Cy
0 . By Lemma 3.5(vii), we have

y(v6vis1v6) = min{w(v6vi), w(vis1)} for 1 ≤ i ≤ 4. If y(v6vis1v6) is zero for 1 ≤ i ≤ 4, then
τw(T2\a2) =

∑4
i=1min{w(v6vi), w(vis1)} = 0, contradicting (α). So y(v6vis1v6) is a positive

integer for some i ∈ {1, 2, 3, 4}. This proves the Claim.
From the above Claim and Lemma 3.2(iii), we conclude that D(T,w) has an integral optimal

solution.
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