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Abstract

There are sixteen 3-connected graphs on eleven or fewer edges. For each of these graphs H we discuss

the structure of graphs that do not contain a minor isomorphic to H.
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1 Introduction

Let G and H be graphs. In this paper, G is called H-free if no minor of G is isomorphic to H. We consider

the problem of characterizing all H-free graphs, for certain fixed H.

In graph theory, many important problems are about H-free graphs. For instance, Hadwiger’s Conjecture

[7], made in 1943, states that every Kn-free graph is n− 1 colorable. Today, this conjecture remains “one of

the deepest unsolved problems in graph theory” [1]. Another long standing problem of this kind is Tutte’s

4-flow conjecture [19], which asserts that every bridgeless Petersen-free graph admits a 4-flow. It is generally

believed that knowing the structures of Kn-free graphs and Petersen-free graphs, respectively, would lead to

a solution to the corresponding conjecture.

In their Graph-Minors project, Robertson and Seymour [16] obtained, for every graph H, an approximate

structure for H-free graphs. This powerful result has many important consequences, yet it is not strong

enough to handle the two conjectures mentioned above. An interesting contrast can be made for K6-free

graphs. By extending techniques developed in the Graph-Minors project, Kawarabayashi et. al. [10] proved

that a sufficiently large 6-connected graph is K6-free if and only if it is an apex graph, i.e. it has a vertex

whose deletion results in a planar graph. However, no complete characterization for K6-free graphs is known,

not even when only 6-connected graphs are considered (in this special case, Jørgensen conjectured in [9] that

they are all apex graphs).

Note that both K6 and Petersen graph have fifteen edges. Currently, there is no connected graph H with

that many edges for which H-free graphs are completely characterized. As an attempt to better understand

these graphs, we try to exclude a graph with fewer than fifteen edges. We will focus on 3-connected graphs

H since they provide the most insights on graph structures. By gradually increasing the size of H we

hope eventually we will be able to characterize H-free graphs for some 15-edge graph H, including K6 and

Petersen. So this paper is the beginning of this project.

∗Corresponding author. Fax: 225-578-4276. Email: ding@math.lsu.edu.
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The rest of the paper is arranged as follows. The next section includes preliminaries in this study. Then,

in Section 3, we survey results on excluding a fixed graph H. In particular, we will see that the smallest

3-connected graphs H for which H-free graphs are not yet characterized are six graphs with eleven edges.

In Section 4, we completely determine H-free graphs for each of these six graphs.

2 Preliminaries

In this paper all graphs are simple unless otherwise stated. We begin with a few definitions. A wheel on

n + 1 vertices (n ≥ 3), denoted by Wn, is obtained from a cycle on n vertices by adding a new vertex and

making this vertex adjacent to all vertices on the cycle. Notice that the smallest wheel W3 is K4. Let G be

a graph. If u, v are nonadjacent vertices of G, then G+ uv is obtained from G by adding a new edge uv. If

v has degree at least four, then by splitting v we mean the operation of first deleting v from G, then adding

two new adjacent vertices v′, v′′ and joining each neighbor of v to exactly one of v′, v′′ such that each of

v′, v′′ has degree at least three in the new graph. The operations of adding an edge and splitting a vertex are

also known as undeletion and uncontraction, respectively. The next is a classical result of Tutte [18], which

explains how 3-connected graphs are generated.

Theorem 2.1 (Tutte’s wheel theorem.) A graph is 3-connected if and only if it is obtained from a wheel by

repeatedly adding edges and splitting vertices.

The next is a useful theorem of Seymour [17] which we will use repeatedly in this paper.

Theorem 2.2 (Seymour’s splitter theorem.) Suppose a 3-connected graph H 6= W3 is a proper minor of a

3-connected graph G 6= Wn. Then G has a minor J , which is obtained from H by either adding an edge or

splitter a vertex.

If a 3-connected graph H is a minor of a non-3-connected graph G, then H has to be a minor of a “3-

connected component” of G. To make this fact more clear we need some definitions. Let G1, G2 be disjoint

graphs. The 0-sum of G1, G2 is the disjoint union of these two graphs; a 1-sum of G1, G2 is obtained by

identifying one vertex of G1 with one vertex of G2; a 2-sum of G1, G2 is obtained by identifying one edge of

G1 with one edge of G2, and the common edge could be deleted after the identification. Notice that, if G is

a k-sum (k = 0, 1, 2) of G1, G2, then both G1 and G2 are minors of G. The following is a well known fact,

so we omit its proof, which is easy. Let us write H � G if H is a minor of G.

Lemma 2.3 Let H be 3-connected and let G be a k-sum of G1, G2, where k = 0, 1, 2. Then G � H if and

only if G1 � H or G2 � H.

Let H be a 3-connected graph. We use F(H) to denote the class of 3-connected H-free graphs. Since

every non-3-connected graph is a k-sum (k = 0, 1, 2) of two smaller graphs, we deduce the following from

the last lemma immediately.

Lemma 2.4 Let H be a 3-connected graph. Then a graph is H-free if and only if it is constructed by

repeatedly taking 0-, 1-, and 2-sums, starting from graphs in {K1,K2,K3} ∪ F(H).

Because of this lemma, in order to characterize H-free graphs, we only need to determine F(H), which

is exactly what we will do in this paper.
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Finally, we state a technical lemma. For any graph G = (V,E), let ρ(G) = |E| − |V |. If G is connected

and H is a minor of G, it is not difficult to verify that H can be obtained from G by deleting and contracting

edges, and without using the operation of deleting vertices. Thus the following lemma is obvious. This result

is also apparent to those who are familiar with matroids since ρ is basically the corank function.

Lemma 2.5 Suppose H is a minor of a connected graph G. Then ρ(H) ≤ ρ(G). Moreover, if ρ(H) = ρ(G)

then H = G/X, for some X ⊆ E(G) with |X| = |V (G)| − |V (H)|.

3 Known results

In this section we survey known results on excluding a single 3-connected graph. Most of these results are

easy to prove, thanks to Theorem 2.2. However, we will not formally prove any of them. In stead, we will

simply point out the main idea of these proofs, whenever it is possible. For these results, since the proof

technique is exactly what we are going to use in the next section, their proofs can be constructed easily by

mimicking the proofs given in the next section. In our survey below, we order the results according to the

number of edges of the graph to be excluded. By Theorem 2.1, K4 = W3 is the smallest 3-connected graph,

which has six edges. Moreover, every 3-connected graph contains a wheel, and thus W3, as a minor, which

implies the following result [5] immediately.

Theorem 3.1 (Dirac 1952) F(K4) = ∅.

Equivalently, K4-free graphs are precisely the 0-, 1-, 2-sums of K1, K2, and K3. This class is better

known as series-parallel graphs since 2-summing a graph with K3 is a series-parallel extension.

Since K4 is cubic, none of its vertices can be split. On the other hand, since K4 is complete, no edge can

be added either. Therefore, by Theorem 2.1, all other 3-connected graphs contain W4, and so the following

holds.

Theorem 3.2 F(W4) = {K4}.

As we have seen, K4 and W4 are the only 3-connected graphs with eight or fewer edges. Next, we consider

3-connected graphs with nine edges. By Theorem 2.1, these graphs are constructed from W4. In fact, it is

easy to check that there are three such graphs: Prism, K5\e, and K3,3. We make an interesting observation

on these graphs, which follows immediately from Theorem 2.1.

Proposition 3.1 Every 3-connected non-wheel graph contains Prism, K5\e, or K3,3 as a minor

Notice that both Prism and K3,3 are cubic, so none of their vertices can be split. Since adding any edge

to any of them creates a K5\e minor, we deduce from Proposition 3.1 and Theorem 2.2 the following result

of [21]. Let W = {Wn : n ≥ 3}.

Theorem 3.3 (Wagner 1960) F(K5\e) = {K3,3, P rism} ∪W.

Prism-free graphs are characterized in [6] and [12]. Let K be the class of 3-connected graphs G for which

there exists a set X of three vertices such that G−X is edgeless. Equivalently, such a graph G is obtained

from K3,n (n ≥ 1) by adding edges to its color class of size three. The following result can also be proved

using Proposition 3.1 and Theorem 2.2 by considering how to add an edge and how to split a vertex in a

non-wheel graph G ∈ K ∪ {K5}.
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Theorem 3.4 (Dirac 1963, Lovasz 1965) F(Prism) = {K5} ∪W ∪K.

Hall [8] characterized K3,3-free graphs using Kuratowski Theorem [11], which states that a graph is planar

if and only if it contains neither K5 nor K3,3 as a minor. Notice that no edge can be added to K5, and

splitting any vertex of K5 creates a K3,3 minor, so the next result follows from Theorem 2.2 immediately.

Let P denote the class of 3-connected planar graphs.

Theorem 3.5 (Hall 1943) F(K3,3) = {K5} ∪ P.

Next, we consider 3-connected graphs on ten edges. By Theorem 2.1, these graphs (other than W5) are

constructed from Prism, K5\e, and K3,3 by adding an edge or splitting a vertex. It is routine to verify that

there are exactly four such graphs: W5, Prism+ e, K3,3 + e, and K5. During this verification we used the

observation that Prism and K3,3 are cubic and so none of their vertices can be split. Together with Theorem

2.2, this observation also implies the following two results immediately.

Theorem 3.6 F(Prism+ e) = {Prism} ∪ F(Prism) = {Prism,K5} ∪W ∪K.

Theorem 3.7 F(K3,3 + e) = {K3,3} ∪ F(K3,3) = {K3,3,K5} ∪ P.

Using Theorem 2.2, Oxley [15] characterized W5-free graphs.

Theorem 3.8 (Oxley 1989) F(W5) consists of K and 3-connected minors of graphs in {Cube, Octahedron,

Pyramid, K⊥
5 }.

Figure 3.1: Cube, Octahedron, Pyramid, and K⊥
5

Wagner [20] characterized K5-free graphs. A 3-sum of two 3-connected graphs G1, G2 is obtained

by identifying a triangle of G1 with a triangle of G2. Some common edges could be deleted after the

identification, as long as no degree-two vertices are created. It is not difficult to verify that the resulting

graph is always 3-connected.

Theorem 3.9 (Wagner 1937) F(K5) = {V8} ∪ {3-sums of 3-connected planar graphs}.

Figure 3.2: Wagner graph V8

There is only one result on graphs with eleven edges. In a recent paper [3], the two authors of this

paper characterized Cube/e-free graphs, which we state below. An augmentation of a graph is obtained by

replacing a K3,n- or a fan-subgraph with a larger one. That is, if two cubic vertices have the same set of

neighbors, then we can add a new cubic vertex of the same set of neighbors; if two cubic vertices x, y are in

a triangle xyz, then we can replace edge xy with a new vertex v and three edges vx, vy, vz.
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Theorem 3.10 (Liu and Ding 2011) F(Cube/e) consists of augmentations of 3-connected minors of graphs

in Figure 3.3.

Figure 3.3: Maximal Cube/e-free graphs

Beyond the ten graphs listed above, there are only three other 3-connected graphs H, all happen to

have twelve edges, for which H-free graphs are completely characterized. Robertson characterized V8-free

graphs, Maharry [14] characterized Cube-free graphs, and Ding [2] characterized Octahedron-free graphs,

which extends a partial characterization of Maharry [13]. Robertson’s result is not published, but it can

be found in many papers, for instance, in [2]. This result is often stated as a characterization of internally

4-connected V8-free graphs, yet it can be easily turned into a complete characterization of all V8-free graphs.

We will not get into the detail of these three results, but we do point out that, in all three cases, graphs in

F(H) can be further “decomposed” into graphs that belong to a few well defined classes (like what happened

in Theorem 3.9).

4 Excluding a 3-connected graph on eleven edges

By Theorem 2.1, 3-connected graphs on eleven edges are constructed from those on ten edges: W5, Prism+e,

K3,3 + e, and K5. It is not difficult to verify that there are seven such graphs: K⊥
5 (from Figure 3.1) and

the six graphs shown below. Notice that K⊥
5 is the unique graph obtained from K5 by splitting a vertex.

Moreover, the first two graphs in Figure 4.1 are simple modifications of K3,3; the middle two are planar dual

to each other, and so are the last two. Since Cube/e-free graphs are characterized, we characterize H-free

graphs in this section for the remaining six graphs.

Figure 4.1: K∇
3,3, K

‡
3,3, W5 + e, (W5 + e)∗, Octahedron\e, Cube/e

A typical F(H) consists of a few isolated graphs and a few well defined infinite families. Theorem 3.3 is

a good example of such a result. In fact, its proof also illustrate how our other proofs go. The main tool

we use is Theorem 2.2. To capture the isolated graphs, we repeatedly perform edge additions and vertex

splittings, starting from some small graphs, which are usually small wheels. In the proofs of the first few

results, we are going to include as much detail as possible, to help the reader to understand the process.

Since the isolated graphs are getting bigger in the last few results, we will skip some of the details. In fact, in

the last result, some extensions are performed by computer. We also use Theorem 2.2 to handle the infinite

families. We prove that, for each graph in the family, all its H-free edge-additions and vertex-splittings still

belong to the family. Since graphs in these families are not defined by abstract properties, but by special

constructions, it is understandable that there have to be a lot of case checking. In fact, the main work in

this part is to find ways to efficiently organize the cases.
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4.1 Excluding K
⊥
5 , K

∇
3,3, and K

‡
3,3

In this subsection we consider the three nonplanar graphs. The first result is known to many people. We

include a proof for completeness.

Theorem 4.1 F(K⊥
5 ) = {K5} ∪ F(K5) = {K5, V8} ∪ {3-sums of 3-connected planar graphs}.

Proof. The second equation follows from Theorem 3.9, so we only need to prove the first. Since K5 and

K5-free graphs are K⊥
5 -free, it follows that F(K⊥

5 ) ⊇ {K5} ∪F(K5). To prove F(K⊥
5 ) ⊆ {K5} ∪F(K5), let

G ∈ F(K⊥
5 ). We need to show that G = K5 or G ∈ F(K5). If G ∈ F(K5) then we are done, so we assume

that G 6∈ F(K5), meaning that G � K5. If G 6= K5, by Theorem 2.2, G has a minor J , which is obtained

from K5 by adding an edge or splitting a vertex. Since K5 is complete, no edge can be added, so J is

obtained by splitting a vertex of K5, which means J = K⊥
5 , contradicting the assumption that G ∈ F(K⊥

5 ).

Therefore, G = K5, and thus the theorem is proved.

Theorem 4.2 F(K∇
3,3) = K ∪ P ∪ {3-connected graphs on ≤ 6 vertices}.

Proof. Let L = K ∪ P ∪ {3-connected graphs on ≤ 6 vertices}. We first verify that L ⊆ F(K∇
3,3). Since

K∇
3,3 is nonplanar, every planar graph is K∇

3,3-free. Since K
∇
3,3 has seven vertices, every graph on ≤ 6 vertices

is K∇
3,3-free. Finally, in every minor of any graph in K, there are three or fewer vertices that meet all its

edges. However, it requires four or more vertices to meet all edges of K∇
3,3, which implies that all graphs in

K are K∇
3,3-free.

Next, for any G ∈ F(K∇
3,3), we prove that G ∈ L. If G is (K3,3 + e)-free, then the result follows

from Theorem 3.7. Thus we assume G � K3,3 + e. Since K3,3 + e ∈ L, we can choose H ∈ L such that

G � H � K3,3 + e and such that H has as many edges as possible. Note that H is not planar, so either

|V (H)| = 6 or H ∈ K, which allows us to make the following assumption.

(*) Let the vertices of H be x1, x2, x3, y1, y2, ..., ym such that every xi is adjacent to every yj . In addition,

if m > 3 then no yi is adjacent to any other yj , and if m = 3 then some xi has degree ≥ 4.

Suppose G 6= H. Then H is a proper minor of G. By Theorem 2.2, G has a minor J obtained from H

by adding an edge or splitting a vertex. We prove that J � K∇
3,3, which implies G � K∇

3,3, contradicting the

assumption G ∈ F(K∇
3,3). This contradiction will prove G = H and that proves the theorem.

We first assume J = H + e. Then m > 3 since otherwise |V (H + e)| = 6, implying H + e ∈ L and

contradicting the maximality of H. Also by the maximality of H, we deduce that e = yiyj , for some i 6= j.

Thus J contains the first graph in Figure 4.2 as a subgraph, which implies J � K∇
3,3, as required.

x1 x2 x3 x’1 x"1 x2 x3 x’1 x"1 x2 x3

Figure 4.2: J � K∇
3,3, by deleting the dashed edges

Now we assume that J is obtained from H by splitting a vertex v. To simplify our analysis, we may

further assume that v is some xi. This is clear if m > 3 since dH(v) ≥ 4 while dH(yj) = 3 for every j. If

m = 3 and v is some yj , since dH(v) ≥ 4, we can interchange {x1, x2, x3} and {y1, y2, y3} without violating

definition (*), which justifies the assumption that v is some xi. Without loss of generality, let i = 1. Let
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x′
1, x

′′
1 be the two new vertices. Let y1, ..., yk be adjacent to x′

1, and yk+1, ..., ym be adjacent to x′′
1 . By

symmetry, let k ≥ m/2. Then k ≥ 2. Since dJ(x
′′
1) ≥ 3, either m − k ≥ 2 or x′′

1 is adjacent to x2 or x3.

We may assume k < m because otherwise J ∈ K, contradicting the maximality of H. Thus J contains the

second or third graph in Figure 4.2 as a subgraph, which implies J � K∇
3,3, as required.

Theorem 4.3 F(K‡
3,3) consists of 3-connected planar graphs and 3-connected minors of the three graphs

in Figure 4.3.

Figure 4.3: Maximal 3-connected nonplanar K‡
3,3-free graphs

Proof. The first graph in Figure 4.3 is V8. Let us denote the other two by A1 and A2, respectively. Since

planar graphs are clearly K‡
3,3-free, to prove the forward containment, we only need to show that V8, A1, A2

are K‡
3,3-free. By Lemma 2.5, this is clear for V8 since ρ(K‡

3,3) = 5 > 4 = ρ(V8). We also deduce from the

same lemma that, if K‡
3,3 is a minor of A1 or A2, then the minor is obtained by only contracting edges. In

A1, contracting any edge incident with a degree-four vertex results in a planar graph, which is K‡
3,3-free. On

the other hand, contracting any other edge results in three pairwise adjacent vertices of degree four, which

do not appear in K‡
3,3. Thus A1 is K‡

3,3-free. In A2, let C be the 4-cycle formed by edges not incident with

any of the two triangles. Note that the four edges of C are symmetric and contracting any of them results

in a planar graph, which implies that no edge of C is contracted. Since no deletion is allowed, edges in a

triangle cannot be contracted either. Therefore, since no two cubic vertices are adjacent in K‡
3,3, all edges

not in C or the two triangles have to be contracted. But this is impossible because the result has only ten

edges, which proves that A2 is K‡
3,3-free. In summary, V8, A1, A2 are K‡

3,3-free and thus all graphs described

in the theorem belong to F(K‡
3,3).

Next, for any graph G ∈ F(K‡
3,3), we prove that either G is planar or G is a minor of V8, A1, or A2. If G

is (K3,3+ e)-free, by Theorem 3.7, either G is planar or G = K5 or K3,3. Since both K5 and K3,3 are minors

of A1, the theorem holds for (K3,3 + e)-free, and thus we may assume that G contains a K3,3 + e minor.

In the following, we generate all graphs, starting from K3,3 + e, by repeatedly adding edges and splitting

vertices. We will only keep those that are K‡
3,3-free and we prove that the process terminates at V8, A1, A2.

Consequently, by Theorem 2.2, G is a minor of V8, A1, or A2, which will prove the theorem.

Remark. We should warn the reader that the following analysis is tedious. We include the details because

this is the first proof in this paper that involves nontrivial case analysis and we want to show how our method

works. The task we are facing is clearly finite, so it is possible to solve the problem using computer, which

is exactly what we did. We wrote a computer program with which we verified our case checking (and we

did not miss any case!). Therefore, those who trust a computer on this type of computation can skip the

following details.

In this proof, we will denote the generated graphs by Γa
k, Γb

k, and so on, where k is the number of

edges of the graph. Let K3,3 + e be labeled as in the figure below. By symmetry there is one addition

Γa
11 (obtained by adding 45) and one split Γb

11 (obtained by splitting 1). For any generated graph Γ, let

F (Γ) = {e : Γ + e � K‡
3,3}, which is the set of forbidden edges. For instance, F (K3,3 + e) = {13, 23}. Since

F (Γa
11) ⊇ F (K3,3 + e), using symmetry we deduce that F (Γa

11) ⊇ {13, 23, 46, 56}. From the construction of
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Γb
11 and the fact 13 ∈ F (K3,3 + e) ⊆ F (Γb

11) we deduce that 1′3 ∈ F (Γb
11). Then by symmetry we obtain

F (Γb
11) ⊇ {13, 23, 1′3, 12, 16}. For the purpose of reducing the amount of case checking, we will keep track

of these sets using the same type of arguments, which we will not explicitly explain every time.

1 2 3

4 5 6

1 2 3

4 5 6 1

2

3

4 561’

1

2

3

4
5

61

2

3

4

56

1’

1’

1

2

3

4 5

61’

1

2

3

4 5

6 1’

2’

2’

Figure 4.4: The first two steps: Γa
11, Γ

b
11, and Γa

12, Γ
b
12, Γ

c
12, Γ

d
12

Since F (Γa
11) ⊇ {13, 23, 46, 56}, no addition to Γa

11 is K‡
3,3-free. Since all degree-four vertices of Γa

11

are symmetric, we only need to split 1, which give rise to two graphs (up to isomorphism): Γa
12 and Γb

12.

As before, using the construction and symmetry we obtain F (Γa
12) ⊇ {13, 23, 46, 56, 1′3, 12, 1′5, 1′4, 16} and

F (Γb
12) ⊇ {13, 23, 46, 56, 1′3, 14, 1′2, 1′5, 16}.

From F (Γb
11) ⊇ {13, 23, 1′3, 12, 16} we deduce that any addition to Γb

11 has to be between two vertices

in {1′, 4, 5, 6}. By symmetry, we may add 45 or 46, which give rise to two graphs isomorphic to Γa
12

and Γb
12, respectively. In Γb

11 only vertex 2 can be split, which give rise to Γc
12 and Γd

12(= V8). Since

F (Γd
12) ⊇ F (Γb

11) ⊇ {13, 23}, we deduce by symmetry that no addition to Γd
12 is K‡

3,3-free. On the other

hand, Γd
12 is cubic so no split is possible either. Therefore, the process terminates at Γd

12. In the following

we assume that this situation does not occur any more. To be precise, we assume that:

(*) if both vertices 1 and 2 are split in K3,3+ e and the split at 1 is {2, i}-{j, k}, where set {i, j, k} equals

{4, 5, 6}, then the split at 2 is {1, i}-{j, k}.

We further observe from F (Γc
12) ⊇ F (Γb

11) that F (Γc
12) ⊇ {13, 23, 1′3, 12, 16, 2′3, 12′}.

From F (Γa
12) we see that no addition to Γa

12 is possible. By symmetry we will split 2 and 4. By (*)

there is only one way to split 2, which results in Γa
13. By symmetry, splitting 4 results in Γb

13 and Γc
13.

Similarly, no edge can be added to F (Γb
12) either. Splitting at 5 results in Γb

13, Γ
d
13, and V8 + 24, which

is not K‡
3,3-free. By (*), there is only one way to split 2, which is 15-46, and the result is isomorphic to

Γc
13. Using the isomorphism 1′1526342′ → 11′2344′56 and F (Γb

12) ⊇ {65, 64, 31′, 32} we also conclude that

F (Γc
13) ⊇ {42, 45, 4′1, 4′3}. Finally, in Γc

12 no splitting applies, and, by F (Γc
12), any addition should involve

neither 1 nor 3. From early analysis we have seen that adding edges to Γb
11 between vertices in {1′, 4, 5, 6}

would result in Γa
12 or Γb

12, which have been analyzed. So we may assume that none of these are added to

Γc
12. It follows that we only need to add edges incident with either 2 or 2′. By symmetry, we may add either

24 or 1′2′, which give rise to Γc
13 or a graph that contains K‡

3,3 (by contracting 11′ and 36), respectively.

Since no addition is possible to Γa
12, the only potential additions to Γa

13 are between 22′ and 1′456.

By symmetry, none of these is possible, so no addition to Γa
13 is possible. Since Γb

13,Γ
c
13,Γ

d
13 are obtained

similarly, the same argument (together with F (Γc
13) ⊇ {42, 45, 4′1, 4′3}) shows that no addition to any of

these is possible either. So we only need to consider splits of these four graphs. By symmetry, Γa
13 has

only one split, obtained by splitting at 4, with respect to 12′-35. The result is isomorphic to Γa
14, with

isomorphism 11′22′344′56 → 44′55′1′3621. By symmetry and (*), Γb
13 has only one split Γa

14, obtained by

splitting at 5, with respect to 23-14′. Since additions to Γa
13,Γ

b
13 are impossible, we deduce that no addition
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is possible to Γa
14. In Γc

13, splitting 2 results in Γa
14, and splitting 5 results in Γb

14 and other two graphs that

contain K‡
3,3 (they properly contain V8, by deleting 1′2). Again, all potential additions to Γb

14 are between

55′ and 1234′, and by symmetry, we deduce that no addition to Γb
14 is possible. Finally, F (Γd

13) = A1 and it

has only one split, which contains K‡
3,3. Thus the process terminates at A1, as required.
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Figure 4.5: Γa
13, Γ

b
13, Γ

c
13, Γ

d
13, and Γa

14, Γ
b
14, Γ

a
15

Since no addition to Γa
14,Γ

b
14 is possible, we only need to consider splits. Note that the only non-cubic

vertex is 2 in both cases, so by (*), there is only split in each graph. Splitting Γa
14 results in Γa

15 and splitting

Γb
14 results in an isomorphic copy of Γa

15. Since Γa
15 is cubic, no split is possible. Moreover, using the same

argument it is easy to see that no addition is possible either. Thus the process terminates at Γa
15 = A2,

which proves the theorem.

4.2 Excluding W5 + e

Theorem 4.4 F(W5 + e) = W ∪K ∪ {3-connected minors of graphs in Figure 4.6}.

Figure 4.6: Maximal 3-connected (W5 + e)-free graphs

Proof. The first four graphs in Figure 4.6 are V8, Cube, Octahedron, and Pyramid. We denote the next

three graphs by A1, A2, and A3, respectively. To simplify our notation, we denote W5 + e by J . First, we

prove that all graphs listed in the theorem are J-free. By Theorem 3.8, Cube, Octahedron, Pyramid, and

graphs in K are W5-free and thus they are also J-free. Since all 3-connected minors of a wheel is a wheel,

every Wn is J-free. Next, since ρ(V8) = ρ(A1) = 4 < 5 = ρ(J), it follows from Lemma 2.5 that V8 and A1

are J-free. For A2 and A3, since ρ(A2) = ρ(A3) = ρ(J), we deduce from Lemma 2.5 that if J is a minor of

A2 or A3 then the minor is obtained by contracting two and deleting zero edges. In particular, no edge in

a triangle is contracted and no two edges from a 4-cycle are both contracted. Therefore, by inspecting A2

and A3 we see that the two contracted edges are not incident and all their ends have to be cubic. It follows

that the maximum degree of the contracted graph must be four, which is different from that of J , and thus

A2 and A3 are J-free as well.

Next we prove that every G ∈ F(J) is a minor of a graph listed in the theorem. By Theorem 2.1, G

can be constructed from some wheel Wn by adding edges and splitting vertices. Let n be the largest such
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number. We first establish that either n ≤ 5 or G = Wn or A2. Suppose n ≥ 6 and G 6= Wn. Then G

has a 3-connected minor G′ that is obtained from Wn by either adding an edge or splitting a vertex. Since

Wn + e has a J-minor, G′ must be obtained from Wn by splitting v, its degree-n vertex. Let C be the cycle

Wn − v and let x, y be the two new vertices such that dG′(x) ≤ dG′(y). If dG′(y) ≥ 5, we may choose two

neighbors x1, x2 ∈ V (C) of x and four neighbors y1, y2, y3, y4 ∈ V (C) of y. Clearly, there are three possible

distributions (up to isomorphism) of x1, x2, y1, y2, y3, y4 on cycle C. In each of these cases it is easy to see

that a C + {xy, xx1, xx1, yy1, yy2, yy3, yy4} (and hence of G) contains a J-minor. Thus dG′(y) < 5, which

implies that n = 6 and dG′(x) = dG′(y) = 4. Again, there are three cases, one results in A2 while the other

two (Cube +e and A1+e) contain a J-minor. Finally, it is routine to verify that adding any edge or splitting

any vertex in A2 will result in a J-minor, which implies G = A2, as required.

If G is W5-free, by Theorem 3.8, G is in K or G is a minor of Cube, Octahedron, Pyramid, or K⊥
5 (a

minor of A3), and thus we are done. In the following we assume that G � W5. From Theorem 2.2 and our

discussion in the last paragraph we may further assume that G is W6-free and so G can be constructed from

W5 by repeatedly adding edges and splitting vertices. We prove that the process terminates at {V8, A1, A3}.
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Figure 4.7: Γa
11, Γ

b
11 and Γa

12, Γ
b
12, Γ

c
12

Adding any edge to W5 results in a J-minor. Only vertex 6 of W5 can be split and there are two ways

to do it, which give raise to Γa
11 and Γb

11. In Γa
11, adding any edge not incident with 6′ results in a J-minor.

There are two ways of adding an edge incident with 6′, which give raise to Γa
12 and Γb

12. In Γa
11, only vertex

6 can be split, which can be done in two ways and the results are Γc
12 and A1. Similarly, in Γb

11, adding any

edge not incident with 6′ results in a J-minor. There are two ways of adding an edge incident with 6′, one

gives raise to Γb
12 and the other contains a J-minor. The only vertex that can be split in Γb

11 is 6 and there

are two ways to do it, which give raise to Γc
12 or V8.

It is routine to verify that adding any edge to V8 or A1 results a J-minor. Since these two are cubic

graphs, it follows that if G contains either one of them then G is one of them. Thus we may assume that G

contains Γa
12, Γ

b
12, or Γ

c
12. In Γa

12, adding any edge or splitting vertex 6 creates a J-minor; splitting vertex 3

either creates a J-minor or results in A2. In Γb
12, adding any edge or splitting vertex 6 creates a J-minor;

splitting vertex 6′ either creates a J-minor or results in A3. In Γc
12, adding edge 46′′ gives raise to A3 while

adding any other edge creates a J-minor. In conclusion, G has a A3-minor. Finally, it is routine to verify

that adding any edge or splitting any vertex in A3 creates a J-minor, which implies G = A3, and that proves

the theorem.

4.3 Excluding Octahedron\e

Recall that a 3-sum of two 3-connected graphs G1, G2 is obtained by identifying a triangle of G1 with a

triangle of G2, and then deleting some of the common edges, as long as no degree-two vertices are created.

The last graph in Figure 4.6 is a 3-sum of K5 and Prism, where the common edges are all deleted. We will

denote this graph by K∆
5 . Let S be the set of graphs obtained by 3-summing wheels and Prisms over a

common triangle. In other words, every graph in S is constructed from a set of wheels and Prisms, each

with a specified triangle, by identifying all these specified triangles. Edges of these triangles could be deleted
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after the identification. It is worth pointing out that every 3-connected minor of a graph in S remains in S,

because 3-connected minors of a wheel are till wheels and 3-connected minors of a Prism are also wheels.

Theorem 4.5 F(Octahedron\e) consists of graphs in S and 3-connected minors of V8, Cube, and K∆
5 .

Proof. In this proof we denote Octahedron\e by J . We first show that every graph listed in the theorem

is J-free. Since ρ(V8) = ρ(Cube) = 4 < 5 = ρ(J) we deduce from Lemma 2.5 that V8 and Cube are J-free. If

K∆
5 has a J-minor, since ρ(K∆

5 ) = ρ(J), this minor is obtained by contracting two edges and deleting none.

It follows that edges in a triangle cannot be contracted. Up to isomorphism there is only one choice of such

two edges yet the result of contracting these two edges leads to K⊥
5 , not J , so K∆

5 is J-free. If G ∈ S has a

J-minor, since J is 3-connected and all 3-connected minors of G are in S, we deduce that J must be in S.

However, each graph in S has at most three vertices of degree > 3, yet J has four such vertices, so J is not

in S and thus every graph in S is J-free.

Next we prove that every graph G ∈ F(J) is a minor of a graph listed in the theorem. In this proof

we denote W5 + e by A1, and the fifth and sixth graphs in Figure 4.6 by A2, A3, respectively. Notice that

A1, A2 ∈ S as A1 is a 3-sum of W3 and W4, and A2 is a 3-sum of W4 and the Prism. We first consider the

case that G is A1-free. In this case G is a minor of a graph H listed in Theorem 4.4. If H is V8, Cube, A2,

K∆
5 , Wn, or K3,n (which belongs to S as it is a 3-sum of n copies of W3 over a common triangle), then it is

trivial that G is a minor of a graph listed in Theorem 4.5. Thus H has to be Octahedron, Pyramid, or A3.

In Section 3 and the beginning of Section 4 we have listed all 3-connected graphs with at most eleven edges.

It is easy to see that, other than J , they are either in S or minors of K∆
5 . Thus we may assume that G has

at least twelve edges. Since Octahedron and Pyramid are not J-free and they have twelve edges, H cannot

be either one of them and so H = A3. Notice that A3 � J has thirteen edges and its only 3-connected J-free

minor on twelve edges is W6, so G = W6 ∈ S, as required.

From now on we assume G � A1 and we prove that G belongs to S. By Theorem 2.2, G is constructed

from A1 by repeatedly adding edges and splitting vertices. Clearly, since A1 is in S, we only need to show

that: if G is obtained from H ∈ S by adding an edge or splitting a vertex, then G either belongs to S or has

a J-minor. Let H be the 3-sum of H1, H2, ..., Hk over a common triangle with vertex set X = {x1, x2, x3},

where each Hi is either a wheel or a Prism, and edges of the form xixj may or may not exist.

Suppose G = H + e, where e = uv. If both ends of e are in X then it is clear that G ∈ S. Now we

distinguish among the following three cases:

Case 1: u ∈ V (H1)−X and v ∈ V (H2)−X;

Case 2: u, v ∈ V (H1)−X; and

Case 3: u ∈ V (H1)−X and v ∈ X.

Case 1. We first consider a subcase that both H1 and H2 are W3. Since H � A1, some Hi must have five

or more vertices and moreover, H contains a minor H ′, which is obtained from H1, H2,W4 by taking 3-sum

over X such that at least one edge x1x2, x2x3, x1x3 remains in H ′. Then G � H ′ + e � J (see Firgure 4.8),

which settles this subcase.

Figure 4.8: A J-minor can be obtained by contracting the heavy edge.
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In the following proof, we will need to produce J-minors in almost every step. It would occupy too much

space if we explain the constructions explicitly every time. Therefore, we will often simply present a graph

on eight or nine vertices that contains a J-minor. With the help of different examples, the reader should be

able to construct the minors without too much difficulty.

Now we assume that H1 has five or more vertices. If k > 2, then a similar argument shows that H

contains a minor H ′, which is a 3-sum of W4 and W3 over X such that u ∈ V (W4)−X, v ∈ V (W3)−X, and

all three edges x1x2, x2x3, x1x3 remain in H ′ (so H ′ = A1). It follows that G � H ′ + e � J . So we assume

that k = 2. Figure 4.9 shows nine such graphs, where the middle three vertices are in X. The first graph

is a 3-sum of two Prisms, the next three are 3-sums of a Prism and a wheel, and the last five are 3-sums of

two wheels. It is straightforward to verify that H contains H ′, one of the first eight, as a minor, unless H

equals the last graphs (with u, v as labeled). Then one can easily check that, if H equals the last graph then

H + e ∈ S, while in all other cases H ′ + e and thus G contains J as a minor.

u

u

v

v

Figure 4.9: Relevant graphs in Case 1 when k = 2.

Case 2. It is clear that H1 can only be a wheel with six or more vertices. Let Γ1 and Γ2 be the two

graphs illustrated in Figure 4.10. If H has only one vertex outside H1, then it is not difficult to see that

either H + e contains Γ1, which contains J (by contracting the heavy edge), or H + e = Γ2, which belongs

to S. So we assume that H has two or more vertices outside H1. We claim that H + e must contain Γ1 and

thus also J . If k ≥ 3, then such a minor can be found easily by contracting H2 −X and H3 −X. Thus we

assume k = 2. It is straightforward to verify the claim if H2 is a Prism, so we assume that H2 is a wheel with

at least five vertices. If the wheels H1, H2 have the same center vertex x1 ∈ X, then x2x3 must be an edge

of H (otherwise H would be a wheel, which does not contain A1). So a Γ1-minor can be found easily since

H2 has at least five vertices. If H1, H2 have different center vertices, say x1, x2, then x3 must be adjacent to

either x1 or x2. Now it is again routine to check that H + e contains Γ1 as a minor, which proves the claim

and thus settles Case 2.

u v

u v

Figure 4.10: Relevant graphs in Case 2.

Case 3. The argument is very similar to that in the last two case so we only outline the proof and

omit the details. If k ≥ 3, then H contains a minor H ′, which is a 3-sum of W4,W3,W3 over X such that
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u ∈ V (W4) − X, v ∈ X, and u, v are not adjacent in W4. It follows that G � H ′ + e � J , so we assume

that k = 2. If H1 or H2 is a Prism, then H + e � J (see the first four graphs in Figure 4.9), except for the

third graph when H1 is the Prism. In this exception case, H can also be expressed as a 3-sum of W3,Wn,

or a 3-sum of W4,Wn−1. It is easy to check that, among the three additions, one contains J and the other

two belong to S. So we further assume that H1 and H2 are both wheels. If they have the same center (see

the fifth and eighth graphs), then H + e � J , except for the eighth graph with u as being labeled, which

implies that G is a 3-sum of W4 and Wn. So we assume that Hi (i = 1, 2) has five or more vertices and has

center xi. We also assume that dH(xi) ≥ 4 (i = 1, 2) because otherwise H is also a 3-sum of a Prism and a

wheel. If H can be expressed as the 3-sum of two other wheels (see the seventh graph), we assume that H1

is as small as possible. If v = x3, we may contract H2 to W4 and such that x2 is adjacent to either x1 or

x3, which implies that H + e � J . If v = x2, the minimality of H1 implies x1x3 ∈ E(H) and so H + e � J ,

which completes Case 3.

Now we turn to the second half of the proof, which is the case that G is obtained from H by splitting a

vertex. From the construction of H we can see that every vertex in V (H)−X has degree three. Thus G is

obtained from H by splitting a vertex in X. By symmetry we assume that x1 ∈ X is split into x′
1, x

′′
2 . We

group graphs Hi according to their adjacency with the two new vertices. Let I ′ = {i : G has an edge from x′
1

to V (Hi)−X} and I ′′ = {i : G has an edge from x′′
1 to V (Hi)−X}. Let n′ = |I ′ − I ′′|, n′′ = |I ′′ − I ′|, and

n0 = |I ′ ∩ I ′′|. If there exist distinct indexes i1, i2, i3, i4 such that i1, i2 ∈ I ′ and i3, i4 ∈ I ′′, then a J-minor

can be found in G by contracting E(Hij −X) (j = 1, 2, 3, 4) and deleting V (Hi)−X for all other i. So we

assume that no such four indexes exist. Then it is not difficult to verify that at least one of the following

inequalities holds: n0 + n′ ≤ 1, n0 + n′′ ≤ 1, n0 + n′ + n′′ ≤ 3. Now we organize the cases according to the

values of n′, n′′, n0.

Suppose n0 + n′ ≥ 2 and n0 + n′′ ≥ 2. Then n0 + n′ + n′′ ≤ 3 and thus (n′, n0, n
′′) = (1, 1, 1), (1, 2, 0),

(0, 2, 1), (0, 2, 0), or (0, 3, 0). If (n′, n0, n
′′) = (1, 2, 0), (0, 2, 1), or (0, 3, 0), then a J-minor can be found in G

by contracting E(Hi − X) (i = 1, 2, 3). If (n′, n0, n
′′) = (0, 2, 0), then both H1, H2 are wheels with five or

more vertices and x1 is the center of both wheels. Since H contains A1, x2x3 ∈ E(H) and we may further

assume that both wheels are W4 and X contains at least two edges. Then it is routine to verify that G has

a J-minor. Finally, when (n′, n0, n
′′) = (1, 1, 1), a similar case checking proves that G � V8 + e � J .

Therefore, we may assume by symmetry that n0 + n′ ≤ 1. If n0 + n′ = 0 then G is the 3-sum of

H0, H1, ..., Hk over a common triangle on X, where H0 is a 3-wheel. This implies G ∈ S and so we assume

n0 + n′ = 1 and I ′ = {1}. In other words, x′
1 is adjacent to at least one vertex in V (H1) − X, but to no

vertex in V (Hi) −X (i ≥ 2). We first consider the case that k ≥ 3. If H1 is a prism then it is easy to see

that G has a J-minor, so H1 is a wheel. If H1 is a 3-wheel, then either x′
1 is adjacent to both x2, x3, which

implies that G has a J-minor, or x′
1 is adjacent to only one of x2, x3, which implies G ∈ S. So we assume

that H1 has five or more vertices. If x1 is the center of H1 then it is straightforward to check that G has a

J-minor unless H1 is a 4-wheel and the split turns H1 into a Prism (and thus G ∈ S). If x2 is the center of

H1, then either x′
1x3 ∈ E(G), which implies that G has a J-minor, or x′

1x3 6∈ E(G), which implies that the

split turns H1 into a larger wheel (and thus G ∈ S).

It remains to consider the case k = 2, under the assumptions that n0 + n′ = 1 and I ′ = {1}. The

situation max{|V (H1)|, |V (H2|} ≤ 6 is handled by case checking. This part is tedious so we omit the details.

We remark that we are ensured that we did not miss any cases since we wrote a computer program, which

confirmed our checking [4]. Thus we assume in the following that |V (Hi)| ≥ 7 for some i ∈ {1, 2}. Note that

Hi is not a Prism, so we further assume that Hi is a wheel with center x ∈ X. If x 6= x1, or x = x1 but one

of x′
1, x

′′
1 is adjacent to all vertices in Hi −X, then the wheel structure remains intact. In such a situation

we can replace Hi with W5 since it does not change whether G has a J-minor or not, and neither it changes
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whether G belongs to S or not. This observation implies that |V (H2)| ≤ 6 and thus |V (H1)| ≥ 7, which in

turn implies that x′′
1 is also adjacent to at least one vertex of H1 −X. Consequently, x1 is the center of H1.

Furthermore, we can obtain a minor H ′ of H by contracting H2 to W3 and such that x2x3, x1xi ∈ E(H ′),

for i = 1 or 2, unless H2 = W3 and x1x2, x1x3 6∈ E(H). Let {x1, x2, x3, y} be the vertex set of this W3.

From the first two graphs in Figure 4.11 we conclude that x′
1 is cubic. Then we deduce from the next two

graphs that either G ∈ S or G equals the last graph. In the last case, notice that G/zxj � A2 is a 3-sum of

W3, H1/zxj , H2, so the result follows from an early case with k > 2.

y

jxix

1x"

x’1 x’1

1x"

ix jx

y

x’1

1x"

ix jx

y

x’1

1x"

ix jx

y

x’1

1x"

ix
jx

z

Figure 4.11: Contracting the heavy edges results in a J-minor.
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4.4 Excluding (W5 + e)∗

Theorem 4.6 F((W5+e)∗)=W ∪ {3-connected minors of K6, K4,4, Petersen, and graphs in Figure 4.12}.

. . . ... ...

...

Figure 4.12: Some maximal 3-connected (W5 + e)∗-free graphs

Proof. Let A1, A2, A3 denote the first three graphs in Figure 4.12, respectively. The next two graphs

in Figure 4.12 are denoted by K+
3,n and K⊥

3,n, respectively, since they are obtained from K3,n (n ≥ 4) by

adding an edge and splitting a vertex, respectively. Let Θ̂n denote the last graph in Figure 4.12, where n is

the number of triangles in the graph. This graph is so named because a subdivision of K2,n is usually called

a Θ graph and Ĝ stands for a graph obtained from G by adding a new vertex that is joined to vertices of G

arbitrarily. In this proof we will denote (W5 + e)∗ by J .

We first prove in three paragraphs that all graphs listed in the theorem are J-free. K6 is J-free because

it has fewer vertices than J . Since K4,4 is bipartite while J is not, if K4,4 has a J-minor then at least one

edge is contracted. Since K4,4 has only one more vertex than J , only one edge can be contracted. However,

the new vertex of K4,4/e meets all its triangles but J does not have a vertex with this property, which

implies that J is not a subgraph of K4,4/e and thus J is not a minor of K4,4. Suppose the Petersen graph,

denoted by P10, has a J-minor. Since P10 has three more vertices than J , we may assume that three edges

are contracted and thus one edge is deleted. Notice that P10\e is a subdivision of V8 and J has min-degree

> 2, so V8 has a J-minor. Clearly, one edge f of V8 has to be contracted. However, the new vertex meets

all triangles of V8/f , which implies V8/f is not J , so V8, and thus also P10, is J-free.

Observe that A1 has a vertex that does not belong to any triangle while J does not have such a vertex.

Hence J is not a spanning subgraph of A1, which implies J is not a minor of A1 since they have the same

number of vertices. If A2 has a J-minor then exactly one edge is contracted. If the middle vertical edge is

contracted then the new vertex meets all triangles of the contracted graph, which is impossible since J does

not have such a vertex. If any other edge is contracted, at least one of the top three vertices does not belong

to any triangle, which is again impossible, so A2 is J-free. If A3 has a J-minor then we may assume that an

edge e is deleted. By symmetry there are three choices for e. In each case, it is routine to check that A3\e

is a subdivision of a graph that is a minor of P10. Since P10 is J-free, it follows that A3 is also J-free.

Now we consider the four infinite families. Wn is J-free since all its 3-connected minors are wheels. Notice

that K+
3,n has a set of ≤ 3 vertices whose deletion results in at most one edge. This is a property preserved

under taking minors. Moreover, it is straightforward to verify that deleting any ≤ 3 vertices from J results

in two or more edges and thus every minor of K+
3,n is J-free. Let us call a forest a double-star if it has a set

of ≤ 2 vertices that meets all edges of the forest. Notice that K⊥
3,n has a set of ≤ 2 vertices whose deletion

results in a double-star. This is a property preserved under taking minors. In addition, it is routine to check

that J does not have this property, which implies that all minors of K⊥
3,n are J-free. In this proof let us call

a graph a Θ-graph if it is the union of internally vertex-disjoint paths between two specified vertices such

that each path has at most three edges. Notice that Θ̂n has a vertex whose deletion results in a Θ-graph.

Moreover, all its 3-connected minors also have this property. Since J does not have this property, which is

easy to verify, it follows that all the 3-connected minors of Θ̂n are J-free.
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Next we prove the second half of the theorem that every 3-connected J-free graph G is a minor of one

of the graphs listed in the theorem. By Theorem 2.1, G can be constructed from some wheel Wn by adding

edges and splitting vertices. Let n be the largest such number. We first establish that either G = Wn or

n ≤ 6. Suppose otherwise that G 6= Wn and n ≥ 7. Then G has a 3-connected minor G′ that is obtained

from Wn by either adding an edge or splitting a vertex. It is easy to see that W7 + e has a J-minor, which

implies that G′ = Wn + e has a J-minor, a contradiction. Hence G′ is obtained from Wn by splitting v, its

degree-n vertex. Let C be the cycle Wn − v and let x, y be the two new vertices such that dG′(x) ≤ dG′(y).

Choose two neighbors x1, x2 ∈ V (C) of x such that they are as close (on C) as possible. Then C − {x1, x2}

consists of two paths (one would be empty if x1, x2 are adjacent), and the longer one must contain (at least)

three neighbors y1, y2, y3 of y. Now it is clear that C+{xx1, xx2, yy1, yy2, yy3, xy} contains a J-minor, again

a contradiction.

If G = Wn then we are done, so we assume that G 6= Wn. From what we proved in the last paragraph we

deduce that n ≤ 6. If n ≤ 4 then G is W5-free. In this case the result follows from Theorem 3.8 immediately.

Therefore, G is obtained from W5 or W6 by adding edges and splitting vertices, which we call a growing

process. From the proofs of the previous theorems we have seen how this process works. Since everything

is routine and since the process for the current problem is even longer, we are not going to go through all

the details. Instead, we only provide a summary of each iteration, where the actual computation was done

using computer. A more detailed supplement can be found in [4] and that can help the reader to verify the

whole process.

From W5 we can get two 11-edge J-free graphs: one on six vertices and one on seven vertices. From

these two we obtain eight 12-edge J-free graphs: two on six vertices, five on seven vertices, and one on

eight vertices. From these eight and W6 we obtain fifteen 13-edge J-free graphs: two on six vertices, nine

on seven vertices, and four on eight vertices. From these fifteen we obtain seventeen 14-edge J-free graphs,

nine of which are shown in Figure 4.13. Among the other eight, one is on six vertices, three are on seven

vertices, three are on eight vertices, and one is on nine vertices. From these eight we obtain seven 15-edge

J-free graphs, including K6, Petersen, A1, A2, and A3, while the other two have seven and eight vertices,

respectively. From the first five we do not get any new J-free graphs, which means that they are maximal.

From the last two we get only one 16-edge J-free graph, K4,4. Finally, from K4,4 do not get any new J-free

graphs, so K4,4 is also maximal, which terminates the growing process.

Figure 4.13: Seeds for the last three infinite families

It remains to consider the nine graphs in Figure 4.13. We prove that the growing process starting form

these nine graphs will only lead to a minor of K+
3,n, K

⊥
3,n, or Θ̂n, which will complete the whole proof. Let

us denote these nine graphs by Γ1, Γ2, · · · , Γ9, respectively. Notice that Γ1 is a minor of K+
3,n; Γ2,Γ3,Γ4,Γ5

are minors of K⊥
3,n; and Γ6,Γ7,Γ8,Γ9 are minors of Θ̂n. We consider these three cases separately.

We first consider Γ1. Observe that there are three ways of adding an edge to Γ1, two of which lead to

a J-minor and the other one, adding an edge between the center vertex and a degree-5 vertex, leads to a
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minor of K+
3,5. Moreover, there are nine ways of splitting a vertex in Γ1, all lead to a J-minor [4]. We claim

that if G is obtained by growing from Γ1 and G is a minor of K+
3,n, then adding an edge or splitting a vertex

in G only results in a minor of K+
3,n+1, as long as the resulting graph is J-free. The claim holds if G = Γ1

since it is a restatement of our observation. In general, since G is a 3-connected minor of K+
3,n, its vertices

can be partitioned into X,Y, Z such that X consists of cubic vertices on the top, Z consists of two adjacent

degree-4 vertices at the bottom, and Y consists of three vertices in the middle (see the drawing of K+
3,n in

Figure 4.12). Our observation on Γ1 implies that G + e has a J-minor, unless e is between two vertices in

Y . So the claim holds for edge additions. The same argument also proves the claim if we split a vertex in

Z. Since all vertices in X are cubic, we only need to consider how to split a vertex in Y . Suppose the three

vertices in Y are y1, y2, y3, and suppose G′ is obtained by splitting y1 into y′1, y
′′
1 such that y′′1 has as many

neighbors in X ∪ Z as y′1. We may assume that y′1 has at least one neighbor in X ∪ Z, for otherwise G′ is a

minor of K+
3,n. Then it is routine to verify that G′ contains a split of Γ1 as a minor. Thus our observation

again implies that G′ has a J-minor, which proves the claim. As a consequence, we assume in the following

that all graphs appeared in the growing process are Γ1-free.

Now we consider Γ2,Γ3,Γ4,Γ5. We claim that if G is obtained from growing these four graphs and G is a

minor of K⊥
3,n then adding an edge or splitting a vertex in G only results in a minor of K⊥

3,n+1, as long as the

resulting graph is {J,Γ1}-free. Observe that the assumptions on G imply that G can be expressed as K⊥
3,n′

(n′ ≤ n) together with a few extra edges. To be more precise, let x1, x2 be the top two vertices of K⊥
3,n′ (see

the drawing in Figure 4.12), z1, z2 be the bottom two vertices of K⊥
3,n′ , and Y1 ∪ Y2 (where Y1 ∩ Y2 = ∅) be

the set of middle vertices such that zi (i = 1, 2) is adjacent to all vertices in Yi. Other than edges of K⊥
3,n′

the only edges in G are between vertices in {x1, x2, z1, z2}. Moreover, if |Yi| = 1 then zi is adjacent to both

x1, x2. We make the following observations [4] when G equals one of Γ2,Γ3,Γ4,Γ5.

(i) If G ∈ {Γ2,Γ3} and G+ e is J-free, then both ends of e belong to {x1, x2, z2, z2} and G+ e is a minor of

K⊥
3,6. If G ∈ {Γ4,Γ5} and G+ e is {J,Γ1}-free, then both ends of e belong to {x1, x2, z2, z2} and G+ e

is a minor of K⊥
3,6.

(ii) If G ∈ {Γ2,Γ3} then no splitting of G is J-free. If G ∈ {Γ4,Γ5} and if G′, obtained from G by splitting

a vertex, is {J,Γ1,Γ3}-free, assuming that x1, x2 and z1, z2 are enumerated from left to right in Figure

4.13, then either the splitting is at x1 in Γ4 with the neighborhood partition {x2, z1}-{rest}, or the

splitting is at z1 in Γ5 with the neighborhood partition {x1, x2}-{rest}. In both cases, we end up with

the same graph G′, which is a minor of K⊥
3,5. This graph will be referred to as the special slitting of Γ4

and Γ5.

For a general graph G, from (i) it follows that either G + e is a minor of K⊥
3,n+1 or G + e has a J- or

Γ1-minor because G+ e contains some Γt + e (2 ≤ t ≤ 5) as a minor. Now suppose that G′ is obtained from

G by splitting a vertex v. Since all vertices in Y1 ∪ Y2 are cubic, v must belong to {x1, x2} or {z1, z2}. We

consider these two cases separately.

Suppose v = xi. Let x
′
i, x

′′
i be the two new vertices. Let Y ′

1 , Y
′
2 be neighbors of x′

i in Y1, Y2, respectively,

and let Y ′′
1 , Y ′′

2 be defined similarly. Let us assume |Y ′
1 ∪Y ′

2 | ≥ |Y ′′
1 ∪Y ′′

2 |. If Y ′′
1 ∪Y ′′

2 = ∅, then all neighbors

of x′′
i are among x′

i, xj , z1, z2, where xj ∈ {x1, x2} − {xi}. If x′′
i is not adjacent to both z1, z2, then G′ is

a minor of K⊥
3,n+1; if x

′′
i is adjacent to both z1, z2 then G′ has a J-minor (by considering the subgraph of

G′ induced on x′
i, x

′′
i , xj , z1, z2, any two vertices from Y ′

1 , and one vertex from Y ′
2). Thus we assume that

|Y ′′
1 ∪ Y ′′

2 | ≥ 1. Now we claim that G′ contains a non-special splitting of Γt (2 ≤ t ≤ 5) as a minor, which

will settle the case v = xi, since they all have a J-minor. For k = 1, 2, by contracting edges of the form zky

we may assume that: if Y ′
k 6= ∅ 6= Y ′′

k , then |Y ′
k| = |Y ′′

k | = 1; if one of Y ′
k, Y

′′
k is empty, then the other has

size min{|Yk|, 2}. At this point, the claim can be verified directly.
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Suppose v = zi. Let z
′
i, z

′′
i be the two new vertices such that z′′i is adjacent to zj ∈ {z1, z2}−{zi}. Let Yi

be partitioned into Y ′
i and Y ′′

i according to the adjacency with z′i, z
′′
i . If Y ′

i = ∅ then z′i is adjacent to only

x1, x2, z
′′
i , which implies that G′ is a minor of K⊥

3,n. Thus we assume Y ′
1 6= ∅. As in the last case, we claim

that G′ contains a non-special splitting of Γt (2 ≤ t ≤ 5) as a minor, which will settle the case v = zi. The

proof of the claim is also similar to that in the last case. We may assume that: if |Yj | ≥ 2, then |Yj | = 2; if

Y ′
i 6= ∅ 6= Y ′′

i , then |Y ′
i | = |Y ′′

i | = 1; if one of Y ′
i , Y

′′
i is empty, then the other has size min{|Yi|, 2}. Again,

the claim can be verified directly.

Finally, we analyze Γ6,Γ7,Γ8,Γ9, the last four graphs in Figure 4.13. Based on what we have proved so

far we may exclude Γ5 as well. That is, we only need to consider {J,Γ5}-free graphs. Let Γ0 be obtained

from Θ̂3 by adding three edges zx1, zx2, x1x2, where z is its degree-six vertex. Then Γ0 is a minor of Θ̂4. We

observe [4] that all {J,Γ5,Γ7}-free graphs generated from {Γ6,Γ8,Γ9} are minors of Γ0. This process takes

four iterations: from {Γ6,Γ8,Γ9} we obtain three 15-edge graphs, two with eight vertices and one with nine

vertices; then we obtain three 16-edge graphs, one with eight vertices and two with nine vertices; then we

obtain two 17-edge graph, both with nine vertices; and finally we obtain the 18-edge graph Γ0, which cannot

be extended anymore.

Because of the last observation, we only need to start the growing process from Γ7. As before, we claim

that if G is obtained from growing Γ7 and G is a minor of Θ̂n, then adding an edge or splitting a vertex in G

only leads to a minor of Θ̂n+1, provided that the new graph is {J,Γ5}-free. Note that G has a vertex z such

that G − z consists of internally vertex-disjoint paths between two vertices x1, x2 such that each path has

at most three edges and all the internal vertices of these paths are adjacent to z. In the following, by a path

of G we will mean an x1x2-path of G− z with two or three edges. We also denote Y = V (G)− {x1, x2, z}.

Again, it is routine [4] to verify that the claim holds when G = Γ7. In particular,

(i) if e 6= x1x2 is a missing edge of Γ7 and e is not incident with z, then Γ7 + e as a J- or Γ5-minor;

(ii) splitting any vertex of Γ7 leads to either a J- or Γ5-minor;

(iii) if Γ′
7 = Γ7 + x1z, then any splitting of z in Γ′

7 leads to a J- or Γ5-minor.

For a general G, we deduce from (i) that, if e 6= x1x2 is not incident with z, then G + e contains either

J or Γ5 as a minor, which proves the claim for edge additions. Next, suppose G′ is obtained from G by

splitting a vertex v. Since all vertices in Y are cubic, v must be z or xi (i = 1, 2). We consider these two

cases separately. Let v′, v′′ be the two new vertices and let v′ have as many neighbors in Y as v′′. We first

assume v = z. If z′′ has no neighbor in Y , then G′ is a minor of Θ̂n+1. If z′′ has two or more neighbors in

Y , then G′ has a minor that is obtained from Γ7 by splitting z, which implies by (ii) that G′ has a J- or

Γ5-minor. Hence z′′ has exactly one neighbor in Y . Since z′′ has degree at least three, z′′ is adjacent to at

least one of x1, x2. It follows that G
′ has a minor that is obtained from Γ′

7 by splitting z, which implies by

(iii) that G′ has a J- or Γ5-minor. Therefore, G′ contains either J or Γ5 as a minor if v = z.

In the case v = x1 or x2, we assume by symmetry that v = x1. If x′′
1 is not adjacent to any vertex in

Y , then G′ is a minor of Θ̂n+1. Similarly, if x′′
1 is adjacent to only one y in Y and y is in a 2-edge path of

G then G′ is also a minor of Θ̂n+1. Hence we assume that either x′′
1 has two or more neighbors in Y or x′′

1

has exactly one neighbor y in Y such that y is in a 3-edge path of G. In the first case G′ has a minor that

is obtained from Γ7 by splitting x1, which implies by (ii) that G′ has a J- or Γ5-minor. In the second case

G′ has a J-minor, which can be seen by choosing three paths of G, including the one that contains y, and

then deleting all internal vertices of all other paths from G′. This proves our claim that that completes the

proof of the theorem.
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5 Appendix

The purpose of this section is to list, in a concise form, characterizations of H-free graphs, for all the sixteen

3-connected graphs on at most eleven edges. Hopefully, those who are only interested in applying these

results would find this Appendix useful.

By Lemma 2.4, H-free graphs are precisely those that are constructed by repeatedly taking 0-, 1-, and

2-sums, starting from K1, K2, K3, and 3-connected H-free graphs. Therefore, we only need to describe

3-connected H-free graphs.

Special graphs: Graphs Kn, Km,n, Wn (wheel), Prism, Cube, Oct (Octahedron), and Petersen are defined

as usual. Other necessary graphs are illustrated in figures indicated below:

Figure 3.1: K⊥
5 , Pyramid

Figure 3.2: V8

Figure 4.1: K∇
3,3, K‡

3,3, (W5 + e)∗

Figure 4.6: K∆
5 (the last graph)

Graph families:

{Wn} = {Wn : n ≥ 3}

{K3,n} = {K3,n : n ≥ 3}

S = {3-sums of wheels and Prisms over a common triangle}

C↓ = {3-connected minors of graphs in C}

Gm.n = {3-connected minors of all graphs illustrated in Figure m.n}

Note that {K3,n}
↓ consists of 3-connected graphs obtained from K3,n (n ≥ 1) by adding edges to its color

class of size three. A more detailed definition of each family mentioned below can be found right before the

corresponding theorem is stated.

Theorems:

H |E(H)| 3-connected H-free graphs Theorem

K4 6 ∅ 3.1

W4 8 {K4} 3.2

K5\e 9 {K3,3, P rism} ∪ {Wn} 3.3

Prism 9 {K5} ∪ {Wn} ∪ {K3,n}
↓ 3.4

K3,3 9 {K5} ∪ {3-connected planar graphs} 3.5

Prism+e 10 {K5, P rism} ∪ {Wn} ∪ {K3,n}
↓ 3.6

K3,3 + e 10 {K3,3,K5} ∪ {3-connected planar graphs} 3.7

W5 10 {K⊥
5 , Cube,Oct, Pyramid}↓ ∪ {K3,n}

↓ 3.8

K5 10 {V8} ∪ {3-sums of 3-connected planar graphs} 3.9

Cube/e 11 augmentations of graphs in G3.3 3.10

K⊥
5 11 {K5, V8} ∪ {3-sums of 3-connected planar graphs} 4.1

K∇
3,3 11 {K6}

↓ ∪ {K3,n}
↓ ∪ {3-connected planar graphs} 4.2

K‡
3,3 11 G4.3 ∪ {3-connected planar graphs} 4.3

W5 + e 11 G4.6 ∪ {Wn} ∪ {K3,n}
↓ 4.4

Oct\e 11 {V8,K
∆
5 , Cube}↓ ∪ S 4.5

(W5 + e)∗ 11 {K6,K4,4, P etersen}↓ ∪ G4.12 ∪ {Wn} 4.6

Acknowledgment

This research is supported in part by NSF grant DMS-1001230 and NSA grant H98230-10-1-0186.

19



References

[1] B. Bollobas, P. A. Catlin, and P. Erdos, Hadwiger’s conjecture is true for almost every graph, European

Journal on Combinatorics 1 (1980) 195 - 199.

[2] G. Ding, A characterization of graphs with no octahedron minor, Preprint.

[3] G. Ding and C. Liu, A chain theorem for 3+-connected graphs, SIAM Journal on Discrete Mathematics

26 (2012) 102-113.

[4] G. Ding and C. Liu, www.math.lsu.edu/˜ ding/supplement-smallminor.pdf.

[5] G.A. Dirac, A property of 4-chromatic graphs and some remarks on critical graphs, Journal of the

London Mathematical Society 27 (1952) 85 - 92.

[6] G.A. Dirac, Some results concerning the structure of graphs, Canadian Mathematical Bulletin 6 (1963)

183 - 210.
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