
The Maximum-weight Stable Matching Problem:

Duality and Efficiency

Xujin Chena∗ Guoli Dingb† Xiaodong Hua‡ Wenan Zangc§

a Institute of Applied Mathematics, Chinese Academy of Sciences
Beijing 100190, China

b Mathematics Department, Louisiana State University
Baton Rouge, LA 70803, USA

c Department of Mathematics, The University of Hong Kong
Hong Kong, China

Abstract

Given a preference system (G,≺) and an integral weight function defined on the edge set
of G (not necessarily bipartite), the maximum-weight stable matching problem is to find a
stable matching of (G,≺) with maximum total weight. In this paper we study this NP -hard
problem using linear programming and polyhedral approaches. We show that the Rothblum
system for defining the fractional stable matching polytope of (G,≺) is totally dual integral
if and only if this polytope is integral if and only if (G,≺) has a bipartite representation.
We also present a combinatorial polynomial-time algorithm for the maximum-weight stable
matching problem and its dual on any preference system with a bipartite representation.
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1 Introduction

Let G = (V,E) be a graph. For each v ∈ V , let δ(v) be the set of all edges incident with v and

let ≺v be a strict linear order on δ(v). We call ≺v the preference of v and say that v prefers

e to f if e ≺v f . Let ≺ be the collection of all these ≺v for v ∈ V . We call the pair (G,≺)
a preference system. In particular, (G,≺) is referred to as a bipartite preference system if G is

a bipartite graph. For convenience, we write e ≼v f and say that e dominates f at vertex v if

e ≺v f or e = f . An edge e is said to dominate an edge f if they have a common end v such

that e ≼v f . Let M be a matching of G. We call M stable if each edge of G is dominated by

some edge in M . The stable matching problem (SMP) is to determine if G contains a stable

matching. The origin of this problem can be traced back to 1962 when Gale and Shapley [4]

proposed the well-known stable marriage problem (which corresponds to the case where G is a

bipartite graph); since then the SMP and its variants have been subjects of extensive research,

see, for instance, the books by Knuth [9], Gusfield and Irving [6], Roth and Sotomayor [10], and

the references therein. Gale and Shapley [4] proved that, for the stable marriage problem, a

stable matching always exists. Irving [7] devised the first polynomial-time algorithm for finding

a stable matching of (G,≺), if any, or declaring that no such matching exists, where G is not

necessarily bipartite. With an attempt to improve Irving’s algorithm [7], Tan [14] obtained a

necessary and sufficient condition for the existence of a (perfect) stable matching in terms of

forbidden structures, the so-called stable partitions with odd parties.

The present paper is devoted to the maximum-weight stable matching problem (MWSMP),

which takes a preference system (G,≺) and an integral weight function w defined on E as

input, and aims to find a stable matching of (G,≺) with maximum total weight as output,

where G = (V,E). As shown by Feder [3], this problem is NP -hard in general, so there is

no polynomial-time algorithm for solving it exactly unless NP = P . In this paper we study

the MWSMP using linear programming and polyhedral approaches, which were first applied to

stable matchings by Vande Vate [16] and Rothblum [12]. It was discovered by Rothblum [12]

that the convex hull of stable matchings of a bipartite preference system can be described by

a very simple system of linear inequalities; this polyhedral description was later extended and

further developed in different aspects by Roth, Rothblum and Vande Vate [11], Abeledo and

Rothblum [1], Teo and Sethuraman [15], and Király and Pap [8]. The objective of this paper is

to characterize all preference systems for which the above-mentioned Rothblum system is totally

dual integral and to present a combinatorial polynomial-time algorithm for the MWSMP and

its dual on these preference systems.

We introduce some notations and terminology before proceeding. As usual, let R (resp. R+)

be the set of all (resp. nonnegative) real numbers, and let Z (resp. Z+) be the set of all (resp.

nonnegative) integers. A subset P of Rn is called a polytope if it is the convex hull of finitely

many vectors in Rn. A point x in P is called a vertex or an extreme point if there exist no

distinct points y and z in P and α ∈ (0, 1) such that x = αy+(1−α)z. It is well known that P
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is actually the convex hull of its vertices, and that there exists a linear system Ax ≤ b such that

P = {x : Ax ≤ b}. We call P integral if each of its vertices is an integral vector. By a theorem in

mathematical programming, P is integral if and only if the maximum in the LP-duality equation

max{wTx : Ax ≤ b} = min{yT b : yTA = wT, y ≥ 0} (1.1)

has an integral optimal solution, for every integral vector w for which the optimum is finite. If,

instead, the minimum in the equation enjoys this property, then the system Ax ≤ b is called

totally dual integral (TDI). The model of TDI systems plays a crucial role in combinatorial

optimization, and serves as a general framework for establishing various min-max theorems

because, as shown by Edmonds and Giles [2], total dual integrality implies primal integrality: if

Ax ≤ b is TDI and b is integral, then P is integral.

Let (G,≺) be a preference system, where G = (V,E). For each e ∈ E, let φ(e) denote the set

of all edges of G that dominate e, and let ψ(e) denote the set of all edges of G that are dominated

by e. For each c ∈ RE and S ⊆ E, let c(S) =
P

s∈S c(s). As observed by Abeledo and Rothblum

[1], the incidence vectors of stable matchings of (G,≺) are precisely integral solutions x ∈ ZE of

the following inequalities:

x(δ(v)) ≤ 1 ∀ v ∈ V, (1.2)

x(φ(e)) ≥ 1 ∀ e ∈ E, (1.3)

x(e) ≥ 0 ∀ e ∈ E. (1.4)

Let SM(G,≺) denote the convex hull of incidence vectors of all stable matchings of (G,≺),
and let FSM(G,≺) denote the set of all vectors x ∈ RE satisfying (1.2) − (1.4). Clearly,

SM(G,≺) ⊆ FSM(G,≺). In the literature, SM(G,≺) and FSM(G,≺) are called the stable

matching polytope and fractional stable matching polytope of (G,≺), respectively.
For each x ∈ FSM(G,≺), set
• E+(x) = {e ∈ E : xe > 0},
• Eα(x) = {e ∈ E : xe = α} for any α ∈ R, and
• T (x) = {uv ∈ E : ∃ e, f ∈ E+(x) such that uv ≼u e and uv ≼v f}.

Notice that T (x) consists of every edge uv of G that dominates some edges in E+(x) at both u

and v. Let GT (x) denote the subgraph of G induced by all edges in T (x). As we shall see, GT (x)

can be used to characterize all vertices x of FSM(G,≺). A cycle C = v1v2 . . . vkv1 of G is said

to have a cyclic preference in (G,≺) if vi−1vi ≼vi vivi+1 for all 1 ≤ i ≤ k or vi+1vi ≼vi vivi−1 for

all 1 ≤ i ≤ k, where vk+1 = v1. Moreover, a vector y is called half-integral if all coordinates of

2y are integral.

Let π(G,≺) stand for the system of linear inequalities (1.2)−(1.4). Rothblum [12] proved that

the stable matching polytope of a bipartite preference system (G,≺) is completely determined

by π(G,≺).
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Theorem 1.1 (Rothblum [12]) Let (G,≺) be a bipartite preference system. Then

SM(G,≺) = FSM(G,≺).

For an arbitrary preference system, Abeledo and Rothblum [1] showed that the vertices of

its fractional stable matching polytope are always half-integral; they also gave a description of

all vertices of this polytope.

Theorem 1.2 (Abeledo-Rothblum [1]) Let (G,≺) be a preference system and let x be a point

in FSM(G,≺). Then x is a vertex of FSM(G,≺) if and only if

(i) x is half-integral and

(ii) each component of GT (x) having edges in E1/2(x) contains at least one odd cycle.

In [8], Király and Pap obtained the following strengthening of Theorem 1.1.

Theorem 1.3 (Király-Pap [8]) Let (G,≺) be a bipartite preference system. Then π(G,≺) is

totally dual integral.

Let (G,≺) be a preference system with G = (V,E). Recall that for each v ∈ V , its preference

≺v is a strict linear order on δ(v). Let N(v) be the neighborhood of v. With a slight abuse of

notation, we also view ≺v as a strict linear order on N(v), such that a ≺v b (that is, v prefers

a to b) if and only if va ≺v vb. Thus we can naturally associate a preference list with v, which

lists its neighbors in the increasing order of ≺v. Note that this list is empty if N(v) = ∅. The

preference table of (G,≺) consists of the preference lists of all vertices of G, and is denoted by

T (G,≺) or simply by T (G) when ≺ is clear from the context. We use fG(v) or fT (G)(v) (resp.

lG(v) or lT (G)(v)) to denote the first (resp. last) vertex on v’s preference list. A pair of vertices

{u, v} is said to belong to T (G) if uv ∈ E. By deleting a pair {u, v} from T (G) we mean the

operation of deleting u from v’s preference list and deleting v from u’s preference list. For each

subgraph K of G, let ≺K be the projection of ≺ onto K. Clearly, (K,≺K) is also a preference

system. For notational simplicity, we write (K,≺) for (K,≺K) hereafter.

In [7], Irving devised a two-phase polynomial-time algorithm for finding a stable matching

of (G,≺), if any, or declaring that no such matching exists. It is worthwhile pointing out that

Irving’s original algorithm was intended for the so-called stable roommates problem, however

it can be extended to the general stable matching problem with only a slight modification (see

Subsection 4.5.2 of Gusfield and Irving [6]). Now let us present Phase 1 of his algorithm, which

is actually a proposal sequence and will play an important role in our proofs.

Phase 1 of Irving’s Algorithm (PhaseI)

Description: Initially, the preference table T is set to T (G,≺), and every vertex is set free.

Each successive proposal in this phase is made by some free vertex v, with nonempty preference

list in T , to fT (v), who receives the proposal. As a result of this proposal, v ceases to be free and
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becomes semiengaged to fT (v), and fT (v) rejects any vertex who was previously semiengaged to

it; the rejected vertex (if any) is reset free. Moreover, T is updated by deleting all pairs {fT (v), u}
in T with v ≺fT (v) u. The phase continues as long as some free vertex has a nonempty preference

list (and can therefore make a further proposal).

To facilitate better understanding of this phase, we remark that, first, the semiengagement,

as its name implies, is not symmetric. At the point when v becomes semiengaged to fT (v), this

fT (v) may be free, or may be semiengaged to someone else; second, there are no “immediate

rejections” in the algorithm; such rejections are preempted by the deletion of pairs from the

preference table. To be precise, when v becomes semiengaged to fT (v), all pairs {fT (v), v
′} in

that table such that fT (v) prefers v to v′ are deleted, so that v becomes the last entry on fT (v)’s

list, as well as fT (v) being the first on v’s list. If some other u was previously semiengaged to

fT (v), then it can be shown that this semiengagement is broken, the pair {fT (v), u} is among

those deleted, and u is set free as a result (see page 167 of Gusfield and Irving [6]).

The preference table produced by PhaseI will be referred to as the phase-1 table. Although

some nondeterminism is involved in PhaseI, the following statement (Lemma 4.2.1 in Gusfield

and Irving [6]) asserts that it is of no consequence.

Lemma 1.4 For any given preference system, all possible executions of PhaseI yield the same

phase-1 table.

Let H be a spanning subgraph of G. We call (H,≺) the representation of (G,≺) if the

preference table T (H,≺) is precisely the phase-1 table of (G,≺).
Throughout this paper, let P(G,≺, w) stand for the LP relaxation of the MWSMP

Maximize wTx (1.5)

subject to x ∈ FSM(G,≺)

and let D(G,≺, w) stand for its dual

Minimize y(V )− z(E)

subject to y(u) + y(v)− z(ψ(uv)) ≥ w(uv) ∀ uv ∈ E, (1.6)

y(v) ≥ 0 ∀ v ∈ V, (1.7)

z(e) ≥ 0 ∀ e ∈ E, (1.8)

Moreover, we propose to call an integral feasible solution (y, z) of D(G,≺, w) a stable cover1,

whose cost is defined to be y(V )− z(E).

Given C = {C1, C2, . . . , Ck}, such that

• each Ci is a vertex of G or an edge of G or a cycle with cyclic preference in (G,≺),
• each vertex of G is contained in some Ci, and

1This concept is in some sense very similar to w-stable set defined by Schrijver [13].
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• C1, C2, . . . , Ck are pairwise vertex-disjoint,

we define xC ∈ RE as

xC(e) =

8
<
:

1 if e ∈ C,
1/2 if e is contained in some cycle in C,
0 otherwise

(1.9)

for all e ∈ E, and call C a semistable partition of (G,≺) if xC ∈ FSM(G,≺). The partition is

so named because, as stated before, Tan [14] characterized all preference systems with (perfect)

stable matchings in terms of forbidden structures, the so-called stable partitions with odd parties.

(To be specific, C is called a stable partition of (G,≺) if for any e ∈ E with xC(e) = 0, at least one

end v of e satisfies xC(φ(e)∩ δ(v)) ≥ 1, and a member Ci of C is called an odd party if Ci has an

odd cardinality.) Obviously, every stable partition is a semistable partition, however the converse

need not hold. The other motivation for semistable partitions is given below: by Theorem 3.4

in Abeledo and Rothblum [1], if x is a half-integral point in FSM(G,≺), then the set of edges

in E1/2(x) forms vertex-disjoint cycles in G, each having cyclic preferences. Combining this

observation with Theorem 1.2(i), we see that every vertex of FSM(G,≺) naturally corresponds

to a semistable partition of (G,≺). Therefore, to ensure the integrality of FSM(G,≺), we may

turn to eliminating certain types of semistable partitions of (G,≺).
Set E(C) = ∪ki=1E(Ci) and

EC = {uv ∈ E : ∃ e1, e2, f1, f2 ∈ E(C) such that e1 ≼u uv ≼u e2 and f1 ≼v uv ≼v f2}. (1.10)

Let GC be the subgraph of G induced by all edges in EC . Now we are ready to present the main

result of this paper, which contains a complete characterization of all preference systems (G,≺)
with totally dual integral π(G,≺).

Theorem 1.5 Let (G,≺) be a preference system with G = (V,E), and let (H,≺) be its repre-

sentation. Then the following statements are equivalent:

(i) H is a bipartite graph;

(ii) GC is bipartite for every semistable partition C of (G,≺);
(iii) SM(G,≺) = FSM(G,≺); and
(iv) π(G,≺) is totally dual integral.

Moreover, for any G as described in (i) and any w ∈ ZE, a maximum-weight stable matching

and a minimum-cost stable cover of (G,≺, w) can be found in O(m2 logm) time, where m = |E|.

Five remarks may help to put our theorem in proper perspective: First, Theorem 1.5 clearly

generalizes the above Király-Pap theorem. Second, Theorem 1.2 contains a complete character-

ization of all preference systems (G,≺) whose fractional stable matching polytope is integral;

that is, SM(G,≺) = FSM(G,≺). The equivalence of (ii) and (iii) in our theorem also serves
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this purpose, however, the bipartition requirement in our structural description is different from

the negation of (ii) in Theorem 1.2. Third, from the definition of TDI system and the afore-

mentioned Edmonds-Giles theorem [2], we see that if π(G,≺) is totally dual integral, then both

D(G,≺, w) and P(G,≺, w) have integral optimal solutions for any w ∈ ZE . Thereby we get a

structural characterization of the following min-max relation on stable matchings.

Corollary 1.6 Let (G,≺) be a preference system with G = (V,E), and let (H,≺) be its rep-

resentation. Then the maximum total weight of a stable matching of (G,≺) is equal to the

minimum cost of a stable cover of (G,≺) for every w ∈ ZE if and only if GC is bipartite for

every semistable partition C of (G,≺) if and only if H is bipartite.

We point out that this min-max relation closely resembles Kőnig’s min-max theorem on bipartite

matching and the min-max theorem on weighted bipartite edge covers; see Theorems 16.2 and

19.5 in Schrijver [13]. Fourth, in Tan’s characterization [14] of all preference systems with

stable matchings, the forbidden structures are stable partitions with odd parties, while the

obstructions to our min-max relation are semistable partitions with odd cycles. So these two

characterizations are essentially in the same spirit. (Since any integral optimal solution to the

MWSMP is a solution to the corresponding SMP, and since the MWSMP is NP -hard while the

SMP is solvable in polynomial time, presumably more graphical structures should be excluded in

our study than in Tan’s characterization.) Finally, since (H,≺) can be produced by PhaseI in

O(m) time, Theorem 1.5 yields a linear-time algorithm for recognizing the scenarios addressed

in (ii)−(iv) by testing if H is a bipartite graph.

A linear system Ax ≤ b is called totally dual half-integral (TDI/2) if the minimum in the LP-

duality equation (1.1) has a half-integral optimal solution, for every integral vector w for which

the optimum is finite. It is easy to verify that Ax ≤ b is TDI/2 if and only if Bx ≤ b is TDI,

where B = A/2. Thus, from the above Edmonds-Giles theorem [2], we deduce that if Ax ≤ b

is TDI/2 and b is integral, then the maximum in equation (1.1) also has a half-integral optimal

solution, for every integral vector w for which the optimum is finite. Recall Theorem 1.2, for

any preference system, all vertices of the fractional stable matching polytope are half-integral.

Clearly, our next theorem strengthens this result.

Theorem 1.7 Let (G,≺) be a preference system with G = (V,E). Then π(G,≺) is totally dual

half-integral. Moreover, for any w ∈ ZE, a half-integral optimal solution to P(G,≺, w) and a

half-integral optimal solution to D(G,≺, w) can be found in O(m2 logm) time, where m = |E|.

2 Preliminaries

In our proofs, we shall use the following charming property enjoyed by stable matchings, which

was first exhibited by Abeledo and Rothblum [1] (see Theorem 4.2).
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Theorem 2.1 (Abeledo-Rothblum [1]) For any preference system (G,≺), the vertex set of G

can be partitioned into V 0 and V 1 such that for every x ∈ FSM(G,≺), there holds x(δ(v)) = i

for all v ∈ V i and i = 0, 1. (So all vertices in V 1 are matched in every stable matching of

(G,≺), and no vertex in V 0 is matched in any stable matching.)

Now let us exhibit some properties enjoyed by the representation of a preference system. As

usual, we use V (K) and E(K) to denote the vertex set and edge set of a graph K, respectively.

Lemma 2.2 Let (G,≺) be a preference system with G = (V,E), let (H,≺) be its representation,

and let V 1 be the set of all non-isolated vertices of H. Then the following statements hold:

(i) (G,≺) and (H,≺) have the same set of stable matchings. Besides, V 1 consists of exactly

the matched vertices in every stable matching (if any) of (G,≺) and (H,≺);

(ii) For any distinct u, v ∈ V , u = fH(v) if and only if v = lH(u);

(iii) An edge uv ∈ E − E(H) if and only if u ∈ V 1 prefers lH(u) to v or v ∈ V 1 prefers lH(v)

to u;

(iv) For each v ∈ V 1, if fH(v) ̸= lH(v), then fH(fH(v)) ̸= v; and

(v) For each v ∈ V 1, let Gv be the graph obtained from G by deleting the edge vlG(v). If

H ⊆ Gv, then (H,≺) is also the representation of (Gv,≺).

Proof. The first three statements can all be found in Gusfield and Irving [6]: the first half

of (i) is exactly the same as Lemma 4.2.3(i), the second half of (i) is contained in Theorem 4.5.2,

and statements (ii) and (iii) are the subjects of Lemma 4.2.2.

To justify (iv), observe from PhaseI that every vertex u ∈ V 1 has to propose to fH(u)

at some step and remains semiengaged to fH(u) from that step onwards, otherwise the pair

{u, fH(u)} would get deleted in the algorithm at some other step and hence ufH(u) would

not be an edge of H, a contradiction. Assume on the contrary that fH(fH(v)) = v while

fH(v) ̸= lH(v) for some v ∈ V 1. Then right after fH(v) proposed to v, the pair {v, lH(v)}
would get deleted in PhaseI because by hypothesis fH(v) ≺v lH(v), contradicting the fact that

vlH(v) ∈ E(H). So (iv) is established.

To prove (v), note that since vlG(v) is not an edge of H and since v ∈ V 1, we have vfH(v) ≺v

vlG(v). Thus v has never proposed to lG(v) in PhaseI.

Claim: There exists an execution of PhaseI in which lG(v) has never proposed to v.

Assume the contrary: lG(v) has to propose to v in all possible executions of PhaseI. Let

us consider an execution, denoted by (α), where the step at which lG(v) proposes to v is as

late as possible. Observe that after lG(v) proposed to v, nothing was done except for the

semiengagement of lG(v) to v. Moreover, no more proposal was possible (for otherwise, let k be

the index such that the kth proposal in (α) is the one made by lG(v) to v, and let (β) be an

execution whose first k− 1 proposals are exactly the same as those of (α), while kth proposal is

the (k+1)st proposal of (α). Then we can see that either lG(v) has never proposed to v in (β) or
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the step at which lG(v) proposes to v in (β) is later than that in (α), so we reach a contradiction

in either case). Thus execution (α) terminates right after the proposal made by lG(v) to v. It

follows that (α) yields a phase-1 table which contains {v, lG(v)} as a pair, contradicting Lemma

1.4 because vlG(v) is not an edge of H. Thus the claim is justified.

Let (γ) be an execution of PhaseI as claimed above. Since v and lG(v) have never proposed

to each other in (γ), and since (γ) terminates with T (H,≺) as the phase-1 table, (γ) naturally

corresponds to an execution of PhaseI on Gv which terminates with T (H,≺) as the phase-1

table as well. It follows that (H,≺) is also the representation of (Gv,≺). Hence (v) holds.

In view of Lemma 2.2(ii), we introduce the following notation:

F (H) = {vfH(v) : v ∈ V 1} = {vlH(v) : v ∈ V 1}. (2.1)

Let Ĥ be the subgraph of H induced by all edges in F (H). Thus Ĥ = (V 1, F (H)). Throughout

we use ℑ to denote the collection of all preference systems (G,≺) such that GC is bipartite for

every semistable partition C of (G,≺) (recall the definition above Theorem 1.5).

Lemma 2.3 Let G, H, and V 1 be as given in Lemma 2.2, let F (H) and Ĥ be as defined above,

and let V 0 = V − V 1. Then the following statements hold:

(i) Ĥ is the disjoint union of some edges and cycles, such that each of these cycles has a cyclic

preference in (G,≺);
(ii) Let D be the set of all edges and cycles as specified in (i). Then each edge in E(H)−F (H)

(if any) has both ends on cycles in D;
(iii) Let C be obtained from D by adding all vertices in V 0 as elements. Then C is a semistable

partition of (G,≺); and
(iv) H\V 0 = GC, which implies that H is a bipartite graph if (G,≺) ∈ ℑ.

Proof. To justify (i), note that, by Lemma 2.2(ii), the maximum degree of Ĥ is at most

two, and every cycle in Ĥ has a cyclic preference in (G,≺). If the assertion fails, then Ĥ would

contain a longest induced path P = v1v2v3...vk, with k ≥ 3. Lemma 2.2(ii) allows us to assume

that fH(vi) = vi−1 and lH(vi) = vi+1 for i = 2, 3, . . . , k − 1. Thus fH(v2) = v1 ̸= v3 = lH(v2).

By Lemma 2.2(iv) (with v2 in place of v), we have v2 ̸= fH(fH(v2)) = fH(v1). Since v1fH(v1) is

contained in F (H), it is an edge of Ĥ. Hence the degree of v1 in Ĥ is precisely two, contradicting

the assumption that P is a longest induced path in Ĥ. So (i) holds.

To justify (ii), let uv ∈ E(H)−F (H). From (2.1), we deduce that ufH(u) ≺u uv ≺u ulH(u)

and vfH(v) ≺v uv ≺v vlH(v). Thus fH(u) ̸= lH(u) and fH(v) ̸= lH(v). By definition, both u

and v have degree two in Ĥ. Hence (ii) follows instantly from (i).

To justify (iii), recall (1.9) and (i). Clearly x = xC satisfies (1.2) and (1.4). It remains to

show that x satisfies (1.3); that is, x(φ(e)) ≥ 1 for any e ∈ E. To this end, let e = uv. For

e ∈ F (H), by (2.1), we may assume that v ∈ V 1 and u = lH(v). Since vfH(v) ≼v vlH(v) = e, we
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have x(φ(e)) ≥ x(e) = 1 if e ∈ C and x(φ(e)) ≥ x(e)+x(vfH(v)) = 1/2+1/2 = 1 otherwise. For

e ∈ E(H)− F (H), it follows from (ii) that x(φ(e)) ≥ x(ufH(u)) + x(vfH(v)) = 1/2 + 1/2 = 1.

For e ∈ E−E(H), by Lemma 2.2(iii), there exists t ∈ V 1∩{u, v} such that tlH(t) ≺t e, yielding

x(φ(e)) ≥ x(δ(t) ∩ F (H)) = 1. So x satisfies (1.3) as well. By definition, C is a semistable

partition of (G,≺). This proves (iii).
To justify (iv), we appeal to Lemma 2.2(iii): an edge uv of G is contained in H if and only

if ufH(u) ≼u uv ≼u ulH(u) and vfH(v) ≼v uv ≼v vlH(v). In view of (i), (iii) and (1.10), we

obtain E(H) = EC . So (iv) is established.

Our next lemma implies that V i, for i = 0, 1, involved in Lemma 2.3 is precisely the same

as that in Theorem 2.1.

Lemma 2.4 Let G, H, V 0, and V 1 be as specified in the above two lemmas. Then for every

x ∈ FSM(G,≺), the following statements hold:

(i) x(δ(v)) = i for every v ∈ V i and i = 0, 1; and

(ii) x(E − E(H)) = 0, which implies that x|E(H) ∈ FSM(H,≺).

Proof. Let C be the semistable partition of (G,≺) as specified in Lemma 2.3(iii). Since

xC ∈ FSM(G,≺), from (1.9) we deduce that xC(δ(v)) = i for i = 0, 1 if and only if v ∈ V i.

Thus (i) follows from Theorem 2.1.

Assume on the contrary that x(uv) > 0 for some x ∈ FSM(G,≺) and uv ∈ E − E(H);

subject to this, we further assume that no pair {r, s} with x(rs) > 0 had been deleted in

PhaseI before {u, v}. Renaming u and v if necessary, we may suppose {u, v} was deleted from

the preference table T because u received a proposal from vertex t. From PhaseI, we see that

ut ≺u uv. In view of the choice of uv, no edge in δ(t) ∩ {e ∈ E : x(e) > 0} had been deleted

at the step when t proposed to u. So ut dominates all edges in δ(t) ∩ {e ∈ E : x(e) > 0} in

(G,≺). It follows that x(φ(ut)) ≤ x(δ(u))−x(uv). By (1.2), we have x(δ(u)) ≤ 1, which implies

x(φ(ut)) ≤ 1− x(uv) < 1, contradicting (1.3) for x ∈ FSM(G,≺). Thus (ii) also holds.

We shall establish the main result of this paper by an induction method; the following

statement will be used to dictate the induction step.

Lemma 2.5 Let (G,≺) be a preference system with G = (V,E), and let (H,≺) be its represen-

tation with E − E(H) ̸= ∅. Then G has three distinct vertices r, s, t, such that fG(r) = s ∈ V 1,

lG(s) = t, and st ∈ E − E(H).

Proof. Set F = {vfG(v) : v ∈ V and N(v) ̸= ∅}. If F ⊆ E(H), then PhaseI consists of |F |
proposals resulting in no rejections, and terminates with F (H) = F . By Lemma 2.2(iii), there

exists an edge su ∈ E−E(H), such that s ∈ V 1 and slH(s) ≺s su. Set r = lH(s) and t = lG(s).

Then sr ≺s su ≼s st. From the definition of lH(s), we see that st ∈ E − E(H). By Lemma
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2.2(ii), s = fH(r). As F ⊆ E(H), we have s = fG(r). Thus r, s, t are as desired, and hence we

may assume that F − E(H) ̸= ∅.
Set J = {v ∈ V : vfG(v) ∈ F − E(H)}. Let us consider an execution of PhaseI in which

every free vertex v in J has the priority to propose to fG(v) who is still on v’s preference list

(breaking ties arbitrarily). Then, under the assumption F −E(H) ̸= ∅, some vertex in J would

certainly be rejected by its most preferred neighbor in G at some step. Suppose the earliest

rejection happened when a vertex v ∈ J was rejected by s = fG(v) upon receiving proposal from

some r ∈ V − {v}. Since no vertex in J had been rejected before, no pair which corresponds

to an edge in F had been deleted, and hence the proposal made by r was to s = fG(r), which

implies that fG(r) = fG(v) and {rs, vs} ⊆ δ(s)∩F . Since s rejected v due to the proposal made

by r, we obtain sr ≺s sv ≼s slG(s). From the description of PhaseI, it can be seen that if a

vertex receives a proposal in an execution, then it belongs to V 1. Hence s ∈ V 1. Set t = lG(s).

Clearly r, s, t are as desired.

3 Proofs of Theorems

We break the proof of Theorem 1.5 into a series of lemmas.

Lemma 3.1 Let (G,≺) be a preference system. If FSM(G,≺) = SM(G,≺), then (G,≺) ∈ ℑ.

Proof. Let C be a semistable partition of (G,≺). We aim to prove that GC is a bipartite

graph. Since xC ∈ FSM(G,≺) (see (1.9)), by hypothesis we further have xC ∈ SM(G,≺).
Therefore there exist stable matchings M (i) of (G,≺), i = 1, 2, . . . , k, such that xC is a convex

combination of the incidence vectors x(i) of M (i). It follows that ∪ki=1M
(i) = E(C). In view of

Theorem 2.1, the vertex subsets of G matched by allM (i) are the same, so eachM (i) is a perfect

matching of K, the subgraph of G induced by all edges in E(C), which in turn implies that all

cycles in C are even. From (1.10), it can be seen that

E(K) = E(C) = {vfGC(v) : v ∈ V (K)} = {vlGC (v) : v ∈ V (K)}. (3.1)

Let W1 be the independent set in K such that M (1) = {vfGC (v) : v ∈ W1} and let W2 =

V (K)−W1. As xC ∈ FSM(G,≺), we deduce that 2xC−x(1) is the incidence vector of the stable
matching {vfGC(v) : v ∈ W2} of (G,≺). So we may assume that M (2) = {vfGC(v) : v ∈ W2}
and xC = 1

2(x
(1) + x(2)). If some edge uv ∈ EC has both ends in Wi for i = 1 or 2, then by

(3.1) the edges in M (3−i) incident with u and v are ulGC(u) and vlGC (v), respectively, neither

dominating uv, which contradicts the stability of M (3−i). Thus each edge in GC has one end in

W1 and the other in W2, and hence GC is a bipartite graph, as desired.

Lemma 3.2 Let (G,≺) be a preference system with a bipartite representation (H,≺) (that is,

H is bipartite). Then π(G,≺) is totally dual integral.
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We present two proofs of this lemma; the first one was discovered by Tamás Király, which

is shorter but does not yield a polynomial-time algorithm for the minimum-cost stable cover

problem, while the second is the backbone of subsequent Algorithm 3.5.

Király’s proof is based on the following technical lemma.

Lemma 3.3 Let

Ax+Bx̄ ≤ b, x ≥ 0, x̄ ≥ 0 (3.2)

and

Ax ≤ b, x ≥ 0 (3.3)

be two linear systems. Suppose x̄ ≡ 0 for all feasible solutions of (3.2). If (3.3) is totally dual

integral, then so is (3.2).

Proof. Let w (resp. w̄) be an arbitrary integral vector with the same length as x (resp. x̄).

By hypothesis, (3.3) is a TDI system, so the linear program min{yT b : yTA ≥ wT , y ≥ 0} has
an integral optimal solution y∗. Let c be the vector obtained from w̄ −BT y∗ by replacing each

negative entry with 0. Then c ≥ w̄ −BT y∗. As the optimal value of the linear program

max{0Tx+ cT x̄ : x and x̄ satisfy (3.2)}

is zero, its dual has an optimal solution ȳ satisfying ȳTA ≥ 0, ȳTB ≥ cT , ȳ ≥ 0, and ȳT b = 0.

This zero optimal value and the fact c ≥ 0 allow us to assume that ȳ is integral (otherwise

replace ȳ with kȳ for some positive integer k). Set ȳ∗ = y∗ + ȳ. Clearly, ȳ∗ is integral and

satisfies

(ȳ∗)TA ≥ (y∗)TA ≥ wT , (ȳ∗)TB ≥ (y∗)TB + cT ≥ w̄T , ȳ∗ ≥ 0, and (ȳ∗)T b = (y∗)T b. (3.4)

Since x̄ ≡ 0 for all feasible solutions of (3.2), and y∗ is the optimal solution to the dual of

max{wTx : x satisfies (3.3)}, we deduce that

max{wTx+ w̄T x̄ : x and x̄ satisfy (3.2)} = max{wTx : x satisfies (3.3)} = (y∗)T b,

which, together with (3.4), implies that ȳ∗ is an integral optimal solution to the dual of

max{wTx+ w̄T x̄ : x and x̄ satisfy (3.2)}, and hence (3.2) is a TDI system.

Király’s Proof of Lemma 3.2. Let G = (V,E). Write π(G,≺) as Ax|E(H)+Bx|E−E(H) ≤
b, x|E(H) ≥ 0, x|E−E(H) ≥ 0, where the columns of A and B are indexed by edges in E(H) and

in E − E(H), respectively, and b|V = 1, b|E = −1. By Lemma 2.4(ii), we have

x|E−E(H) ≡ 0 for every feasible solution x ∈ RE to

Ax|E(H) +Bx|E−E(H) ≤ b, x|E(H) ≥ 0, x|E−E(H) ≥ 0.
(3.5)
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Let w be an arbitrary vector in ZE(H), let L = V ∪ E(H), and let C be the submatrix

of A formed by rows corresponding to elements in L. With a slight abuse of the notation,

put x = x|E(H). Applying Theorem 1.3 to the bipartite preference system (H,≺), we see that

Cx ≤ b|L, x ≥ 0 is a TDI system. So max{wTx : Cx ≤ b|L, x ≥ 0} and its dual have integral

optimal solutions x∗ and y∗, respectively. By Lemma 2.2(i), x∗ satisfies Ax ≤ b, x ≥ 0, which

implies

max{wTx : Ax ≤ b, x ≥ 0} = max{wTx : Cx ≤ b|L, x ≥ 0}. (3.6)

Extending y∗ ∈ ZL
+ to y ∈ ZV ∪E

+ by adding zero entries, we obtain yTA = (y∗)TC ≥ wT , y ≥ 0,

and yT b = (y∗)T b|L = max{wTx : Cx ≤ b|L, x ≥ 0}. From (3.6), we conclude that y is an

integral optimal solution to the dual of max{wTx : Ax ≤ b, x ≥ 0}. Hence Ax ≤ b, x ≥ 0 is

a TDI system. From (3.5) and Lemma 3.3, we thus deduce that π(G,≺) is also totally dual

integral.

Second Proof of Lemma 3.2. Let G = (V,E). To establish the assertion, we need to

show that

(1) D(G,≺, w) has an integral optimal solution for all w ∈ ZE .

To this end, we apply induction on |E|. If |E| = 0, then E = ∅ and thus (1) is trivial. So we

proceed to the induction step, and assume that (1) holds for all preference systems with fewer

edges in the corresponding graphs.

If G = H, then (1) follows instantly from Theorem 1.3. So we assume that G ̸= H and hence

E−E(H) ̸= ∅. Let V 1 be the set of all non-isolated vertices of H. Using Lemma 2.5, we obtain

(2) G has three distinct vertices r, s, t, such that fG(r) = s ∈ V 1, lG(s) = t, and st ∈
E − E(H).

From (2), it can be seen that

(3) e ≼s st for all e ∈ δ(s) and hence ψ(st) = {st} ∪ {e ∈ δ(t) : st ≺t e}.

Let (G′,≺) be the preference system whose preference table is obtained from T (G,≺) by

deleting the pair {s, t}, with G′ = (V,E′). Observe that G′ = G\st and E′ = E − {st}. From

(2) and Lemma 2.2(v), we see that

(4) (H,≺) is also the representation of (G′,≺).
In the remainder of our proof, we use δ′(v) to denote the set of all edges of G′ incident with

a vertex v, and use φ′(e) (resp. ψ′(e)) to denote the set of all edges of G′ dominating (resp.

dominated by) an edge e in E′. In view of Lemma 2.3(iii) (with (G′,≺) in place of (G,≺)), we
have FSM(G′,≺) ̸= ∅ (actually this result was first established for all preference systems by

Abeledo and Rothblum [1] using a different method). Motivated by Lemma 2.4(ii), we propose

to show that

(5) Let x̄ be a vector in FSM(G′,≺) and let x be obtained from x̄ by adding one more entry

x(st) = 0. Then x ∈ FSM(G,≺).
To justify this, note that
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• x(δ(v)) = x̄(δ′(v)) ≤ 1 for all v ∈ V , and

• x(φ(e)) = x̄(φ′(e)) ≥ 1 for all e ∈ E′.

For the edge st, by (3) we have e ≺s st for all e ∈ δ′(s), which implies that x(φ(st)) ≥ x̄(δ′(s)).
Since s ∈ V 1, by (4) and Lemma 2.4(i) (with G′ in place of G), we obtain x̄(δ′(s)) = 1.

So x(φ(st)) ≥ 1. Combining the above observations, we conclude that x satisfies (1.2)−(1.4)
simultaneously, so (5) holds.

By (4) and induction hypothesis on (G′,≺), the linear system π(G′,≺) is totally dual integral.

Thus the definition of TDI system guarantees the existence of an integral optimal solution (ȳ, z̄)

to D(G′,≺, w̄), where w̄ = w|E′ . Let x̄ be an optimal solution to P(G′,≺, w̄). It follows from

the LP duality theorem that

(6) ȳ(V )− z̄(E′) = w̄T x̄.

Let x∗ be the vector obtained from x̄ by adding one more entry x∗(st) = 0. From (5), we

see that

(7) x∗ is a feasible solution to P(G,≺, w).
Set ϵ = max{0, w(st) − ȳ(s) − ȳ(t) + z̄(ψ(st) − {st})}. Let y∗ be the vector obtained from

ȳ by replacing ȳ(s) with ȳ(s) + ϵ, and let z∗ be the vector obtained from z̄ by replacing z̄(rs)

with z̄(rs) + ϵ and then adding one more entry z∗(st) = 0. By (6), we have y∗(V ) − z∗(E) =

ȳ(V ) + ϵ− (z̄(E′) + ϵ) = w̄T x̄. Hence

(8) y∗(V )− z∗(E) = wTx∗.

We propose to show that

(9) y∗(u) + y∗(v)− z∗(ψ(uv)) ≥ w(uv) for all uv ∈ E.

To justify this, we distinguish among five cases.

Case 1. {u, v} ∩ {r, s, t} = ∅. In this case, y∗(u) + y∗(v) − z∗(ψ(uv)) = ȳ(u) + ȳ(v) −
z̄(ψ′(uv)) ≥ w(uv) because (ȳ, z̄) is a feasible solution to D(G′,≺, w̄).

Case 2. u = s and v = t. In this case, y∗(s)+y∗(t)−z∗(ψ(st)) = (ȳ(s)+ ϵ)+ ȳ(t)−z∗(st)−
z∗(ψ(st)− {st}) = ȳ(s) + ϵ+ ȳ(t)− z̄(ψ(st)− {st}) ≥ w(st) by the definition of ϵ.

Case 3. u = s and v ̸= t. In this case, z∗(ψ(sv)) = z̄(ψ′(sv)−{sr})+z∗(sr)·|{sr}∩ψ′(sv)|+
z∗(st) = z̄(ψ′(sv)−{sr})+(z̄(sr)+ϵ)·|{sr}∩ψ′(sv)| ≤ z̄(ψ′(sv))+ϵ. So y∗(s)+y∗(v)−z∗(ψ(sv)) ≥
(ȳ(s) + ϵ) + ȳ(v)− (z̄(ψ′(sv)) + ϵ) = ȳ(s) + ȳ(v)− z̄(ψ′(sv)) ≥ w(sv).

Case 4. u ̸= s and v = t. In this case, ψ(ut) ⊆ ψ′(ut)∪{st} and y∗(u)+y∗(t)−z∗(ψ(ut)) ≥
ȳ(u) + ȳ(t)− (z̄(ψ′(ut)) + z∗(st)) = ȳ(u) + ȳ(t)− z̄(ψ′(ut)) ≥ w(ut).

Case 5. u = r and v ̸= s. In this case, we have rs ̸∈ ψ(rv) = ψ′(rv) for s = fG(r), which

implies that z∗(ψ(rv)) = z̄(ψ′(rv)). So y∗(r) + y∗(v) − z∗(ψ(rv)) = ȳ(r) + ȳ(v) − z̄(ψ′(rv)) ≥
w(rv).

As these cases have exhausted all possibilities, (9) is established.

From (9), it follows that

(10) (y∗, z∗) is an integral feasible solution to D(G,≺, w).
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Combining (7), (8) and (10) and using the LP duality theorem, we can further conclude that

(y∗, z∗) is an integral optimal solution to D(G,≺, w). This proves (1) and hence Lemma 3.2.

As described in Gusfield and Irving [6] and Király and Pap [8], network flow techniques can

be used to solve various stable matching problems and their duals. The following lemma is

concerned with their algorithm for finding a maximum-weight stable matching and a minimum-

cost stable cover of a bipartite preference system. Since the algorithm is lengthy, we shall neither

get into the details nor discuss its correctness. What we are going to do is to outline its major

steps and figure out its complexity, which is not given explicitly in [6] or [8].

Lemma 3.4 [6, 8] Let (G,≺) be a bipartite preference system with G = (V,E). Then for any

w ∈ ZE, a maximum-weight stable matching and a minimum-cost stable cover of (G,≺, w) can

be found in O(m2 logm) time, where m = |E|.

Proof. To establish this complexity result, let us give a sketch of their algorithm. In the

initialization step, we construct the following objects (see [8] for undefined terms):

(i) the set R of all rotations of (G,≺), such that each ρ ∈ R is expressed in the form ρ =

(v1, u1, v2, u2, . . . , vk, uk) for which w∗(ρ) is defined to be
Pk

i=1(−w(viui) + w(uivi+1)),

with vk+1 = v1;

(ii) the rotation digraphD = (R,A) whose closed subsets (i.e. vertex subsets with no incoming

arcs from the outside) correspond to stable matchings of (G,≺); and

(iii) the so-called man-optimal stable matching M0 of (G,≺).

Since both |R| and |A| are linear in m (see [8] and proof of Lemma 3.3.2 in [6]), as discussed

in Subsection 3.3.1 and Section 3.6 of [6], this step can be carried out in O(nm) time, where

n = |V |.
Let opt denote the optimal objective value of the following problem

Maximize (w∗)Tβ

subject to β(ρ)− β(ρ′) ≥ 0 ∀ (ρ, ρ′) ∈ A,
1 ≥ β(ρ) ≥ 0 ∀ ρ ∈ R

(see (i) for the definition of w∗) and its dual

Minimize γ(R)

subject to γ(ρ)− γ(A+(ρ)) + γ(A−(ρ)) ≥ w∗(ρ) ∀ ρ∈R, γ ∈ RR∪A
+ , (3.7)

where A+(ρ) and A−(ρ) are the sets of arcs in D leaving ρ and entering ρ, respectively. In the

main step of the algorithm, our objective is to find a closed subset S of R with w∗(S) = opt and

an integral optimal solution γ∗ to problem (3.7). As elaborated in the proofs of Theorem 3.6.2
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and Lemma 3.6.3 in [6], the desired S can be obtained from a minimum cut in an auxiliary flow

network D⃗ (constructed from D by adding a source and a sink). It is not difficult to see that

an integral maximum flow in D⃗ also yields the desired γ∗. So this step can be carried out in

O(m2 logm) time using the Goldberg-Tarjan algorithm [5, 13].

Given such an S, we can finally obtain a stable matching of (G,≺, w) with maximum pos-

sible weight w(M0) + opt from M0 by eliminating all rotations in S in O(nm) time (see [8] or

Subsections 3.6.1 and 3.6.2 of [6] for details). Besides, starting from γ∗, as shown by Király and

Pap [8], it takes O(nm) time to find a minimum-cost stable cover of (G,≺, w).
Therefore, a maximum-weight stable matching and a minimum-cost stable cover of (G,≺, w)

can be found in O(m2 logm) time.

Now let us present an efficient combinatorial algorithm for finding a maximum-weight stable

matching and a minimum-cost stable cover in a more general setting, where δi(t) is the set of

all edges in Gi incident with the vertex t.

Algorithm 3.5 for the Maximum-weight Stable Matching Problem & its Dual

Input: A preference system (G,≺) with a bipartite representation (H,≺) and a weight

function w ∈ ZE .

Output: A maximum-weight stable matching M and a minimum-cost stable cover (y, z) of

(G,≺, w).

1. M ← a maximum-weight stable matching of (H,≺, w|E(H)),

(y, z)← an integral optimal solution to D(H,≺, w|E(H)) (see Lemma 3.4),

V 1 ← the set of all non-isolated vertices in H, G0 ← G, i← 0

2. while E(Gi)− E(H) ̸= ∅ do

3. Find three distinct vertices ri, si, ti ∈ V (Gi) such that fGi(ri) = si ∈ V 1, lGi(si) = ti,

and siti ∈ E(Gi)− E(H)

4. Gi+1 ← Gi\siti, i← i+ 1

5. endwhile

6. for j = i− 1 down to 0 do

7. r ← rj , s← sj , t← tj , ϵ← max{0, w(st)− y(s)− y(t) + z({e ∈ δj+1(t) : st ≺t e})},
y(s)← y(s) + ϵ, z(rs)← z(rs) + ϵ, z(st)← 0

8. endfor

9. Output M and (y, z)
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Lemma 3.6 Let (G,≺) be a preference system with a bipartite representation (H,≺) and with

G = (V,E). Then for any w ∈ ZE, Algorithm 3.5 correctly finds a maximum-weight stable

matching and a minimum-cost stable cover of (G,≺, w) in O(m2 logm) time, where m = |E|.

Proof. By Lemma 3.4, the stable matchingM specified in line 1 can be found in O(m2 logm)

time. From Lemma 2.2(i), we conclude thatM is a maximum-weight stable matching of (G,≺, w)
as well.

Set k = |E − E(H)|. Then Gk = H and Gj is obtained from Gj+1 by adding the edge sjtj

for j = k − 1, k − 2, . . . , 0. Let (yj , zj) be the (y, z) generated in the algorithm corresponding

to Gj for j = k, k − 1, . . . , 0. By line 1, (yk, zk) is an integral optimal solution to D(Gk,≺, w).
Thus, from the proof of Lemma 3.2 (with Gj in place of G and Gj+1 in place of G′), we deduce

that (yj , zj) is an integral optimal solution to D(Gj ,≺, w|E(Gj)) for j = k − 1, k − 2, . . . , 0. So

the (y, z) output by the algorithm is an integral optimal solution to D(G,≺, w).
It is easy to see that the complexity of the algorithm is dominated by line 1. Hence the

whole algorithm runs in O(m2 logm) time.

Now we are ready to establish the main result of this paper.

Proof of Theorem 1.5. From the Edmonds-Giles theorem stated in Section 1, we see that

(iv)⇒(iii). The implications (iii)⇒(ii), (ii)⇒(i), and (i)⇒(iv) are established by Lemma 3.1,

Lemma 2.3(iv), and Lemma 3.2, respectively. So the statements (i)-(iv) are equivalent. The

second half of our theorem follows instantly from Lemma 3.6.

By Lemma 3.1, if (G,≺) /∈ ℑ, then FSM(G,≺) − SM(G,≺) ̸= ∅. Using Theorem 1.5, we

can explicitly find an element of this set.

Corollary 3.7 Let (G,≺) be a preference system outside ℑ, let (H,≺) be its representation,

and let C be the semistable partition as defined in Lemma 2.3(iii). Then (recall (1.9))

xC ∈ FSM(G,≺)− SM(G,≺).

Proof. From the proof of Lemma 3.1, we see that if xC ∈ SM(G,≺), then GC is a bipartite

graph and hence so is H by Lemma 2.3(iv). It follows from Theorem 1.5 that (G,≺) ∈ ℑ; this
contradiction establishes the assertion.

We finally arrive to statements concerning general preference systems.

Proof of Theorem 1.7. To establish the assertion, let us first show that

(1) for any w ∈ ZE , the problem D(G,≺, w) has a half-integral optimal solution (ȳ, z̄), which

can be found in O(m2 logm) time.

For this purpose, we construct a bipartite preference system (G′,≺′), with G′ = (V ′, E′),

and define a weight function w′ ∈ ZE′
as follows:

• each vertex v ∈ V corresponds to two vertices v̄, v̂ ∈ V ′;
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• each edge uv ∈ E corresponds to two edges ūv̂, ûv̄ ∈ E′ with weight w′(ūv̂) = w′(ûv̄) =

w(uv); and

• each pair of adjacent edges vp, vq ∈ E with vp ≺v vq in (G,≺) corresponds to two pairs

of adjacent edges v̄p̂, v̄q̂ ∈ E′ and v̂p̄, v̂q̄ ∈ E′ with v̄p̂ ≺′
v̄ v̄q̂ and v̂p̄ ≺′

v̂ v̂q̄ in (G′,≺′).

This completes the construction of (G′,≺′) and definition of w′. We point out that this proof

technique was first introduced by Abeledo and Rothblum in their proof of Theorem 3.3 in [1].

Let (y∗, z∗) be an optimal solution to D(G,≺, w). Set y′(v̄) = y′(v̂) = y∗(v) for all v ∈ V ,

and set z′(ūv̂) = z′(ûv̄) = z∗(uv) for all uv ∈ E. It is a routine matter to check that (y′, z′) is a

feasible solution to D(G′,≺′, w′), with objective value y′(V ′)− z′(E′) = 2(y∗(V )− z∗(E)). So

(2) the optimal objective value of D(G′,≺′, w′) is at most 2(y∗(V )− z∗(E)).

Since G′ is a bipartite graph with |E′| = 2m, by Theorem 1.3, we can find an integral optimal

solution (y′∗, z
′
∗) to D(G′,≺′, w′) in O(m2 logm) time. Using (2), we obtain

(3) y′∗(V
′)− z′∗(E′) ≤ 2(y∗(V )− z∗(E)).

Set ȳ(v) = (y′∗(v̄)+y
′
∗(v̂))/2 for all v ∈ V , and set z̄(uv) = (z′∗(ūv̂)+z

′
∗(ûv̄))/2 for all uv ∈ E.

It is easy to see that (ȳ, z̄) is a feasible solution to D(G,≺, w), with objective value

(4) ȳ(V )− z̄(E) = (y′∗(V
′)− z′∗(E′))/2 ≤ y∗(V )− z∗(E) by (3).

From the optimality of (y∗, z∗), we deduce that (ȳ, z̄) is also an optimal solution to D(G,≺, w).
Clearly, (ȳ, z̄) is half-integral and can be generated in O(m2 logm) time. Thus (1) holds, which

implies that π(G,≺) is totally dual half-integral.

By Lemma 3.4, an integral optimal solution x′∗ to P(G′,≺′, w′) can be found in O(m2 logm)

time. Observe that

(5) (w′)Tx′∗ = y′∗(V
′)− z′∗(E′).

Set x̄(uv) = (x′∗(ūv̂) + x′∗(ûv̄))/2 for all uv ∈ E. It is straightforward to verify that x̄ is a

feasible solution to P(G,≺, w), with objective value wT x̄ = (w′)Tx′∗/2 = ȳ(V ) − z̄(E) by (5)

and (4). So, from the LP duality theorem, we can conclude that x̄ is an optimal solution to

P(G,≺, w). Clearly, x̄ is half-integral and can be obtained in O(m2 logm) time.
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